WO2005068098A9 - 継目無管の製造方法 - Google Patents

継目無管の製造方法

Info

Publication number
WO2005068098A9
WO2005068098A9 PCT/JP2005/000379 JP2005000379W WO2005068098A9 WO 2005068098 A9 WO2005068098 A9 WO 2005068098A9 JP 2005000379 W JP2005000379 W JP 2005000379W WO 2005068098 A9 WO2005068098 A9 WO 2005068098A9
Authority
WO
WIPO (PCT)
Prior art keywords
rolling
cold
pipe
piercing
mill
Prior art date
Application number
PCT/JP2005/000379
Other languages
English (en)
French (fr)
Other versions
WO2005068098A1 (ja
Inventor
Chihiro Hayashi
Original Assignee
Sumitomo Metal Ind
Chihiro Hayashi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Ind, Chihiro Hayashi filed Critical Sumitomo Metal Ind
Priority to EP05703618.8A priority Critical patent/EP1707280B1/en
Priority to JP2005517079A priority patent/JP4438960B2/ja
Publication of WO2005068098A1 publication Critical patent/WO2005068098A1/ja
Publication of WO2005068098A9 publication Critical patent/WO2005068098A9/ja
Priority to US11/485,979 priority patent/US7293443B2/en
Priority to US12/216,381 priority patent/USRE44308E1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B23/00Tube-rolling not restricted to methods provided for in only one of groups B21B17/00, B21B19/00, B21B21/00, e.g. combined processes planetary tube rolling, auxiliary arrangements, e.g. lubricating, special tube blanks, continuous casting combined with tube rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B17/00Tube-rolling by rollers of which the axes are arranged essentially perpendicular to the axis of the work, e.g. "axial" tube-rolling
    • B21B17/14Tube-rolling by rollers of which the axes are arranged essentially perpendicular to the axis of the work, e.g. "axial" tube-rolling without mandrel, e.g. stretch-reducing mills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B19/00Tube-rolling by rollers arranged outside the work and having their axes not perpendicular to the axis of the work
    • B21B19/02Tube-rolling by rollers arranged outside the work and having their axes not perpendicular to the axis of the work the axes of the rollers being arranged essentially diagonally to the axis of the work, e.g. "cross" tube-rolling ; Diescher mills, Stiefel disc piercers or Stiefel rotary piercers
    • B21B19/04Rolling basic material of solid, i.e. non-hollow, structure; Piercing, e.g. rotary piercing mills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B19/00Tube-rolling by rollers arranged outside the work and having their axes not perpendicular to the axis of the work
    • B21B19/02Tube-rolling by rollers arranged outside the work and having their axes not perpendicular to the axis of the work the axes of the rollers being arranged essentially diagonally to the axis of the work, e.g. "cross" tube-rolling ; Diescher mills, Stiefel disc piercers or Stiefel rotary piercers
    • B21B19/06Rolling hollow basic material, e.g. Assel mills
    • B21B19/08Enlarging tube diameter

Definitions

  • the present invention relates to a seamless pipe manufacturing method capable of radically streamlining a seamless pipe manufacturing process and preventing carburization occurring in a seamless steel pipe manufacturing process.
  • a method for producing a seamless steel pipe there are a Mannesmann-plug mill method, a Mannesmann-mandrel's mill method, a Mannesmann-Assel mill method, a Mannesmann-push bench mill method, and the like.
  • a solid billet heated to a predetermined temperature in a heating furnace is pierced by a piercing mill to form a hollow rod-shaped hollow piece.
  • the main method is to reduce the wall thickness to a hollow shell by using a drawing rolling mill such as that described above, and then reduce the outer diameter mainly using a drawing rolling machine such as a sizer or stretch reducer to obtain a seamless steel pipe with a predetermined size. .
  • the present invention relates to the elongation rolling step of the second step in such a "seamless pipe manufacturing process".
  • the force S which explains the present invention based on the "Mannesmann-mandrel mill” method, The functions and effects are the same in the elongation rolling step in other pipe making methods.
  • Fig. 1 is a diagram showing a process of a Mannes mandrel mill, in which (a) is a rotary hearth type + heating furnace, (b) is a piercer (a piercing mill), and Fig. 1 (c) is a diagram. Mandrel mill (drawing rolling mill) (d) shows a reheating furnace, and (e) shows a stretch reducer (drawing rolling mill).
  • a full-float 'man' drel mill is provided in which the mandrel bar 1 is initially inserted into the inner surface of the raw tube 2 and the mandrel bar is continuously rolled together with the hole-shaped rolls 3.
  • the mandrel bar 1 is initially inserted into the inner surface of the raw tube 2 and the mandrel bar is continuously rolled together with the hole-shaped rolls 3.
  • Retained 'Mandrel Mill' also referred to as 'Restrained' Mandrel Mill
  • FIG. 2 is a comparison diagram of a full float 'man' drel mill and a retained 'mandrel mill', (a) showing a full float. Mandrel mill, and (b) showing a littend 'man' drel mill.
  • an extractor is connected to the outlet side of the mandrel mill, and the hollow shell is pulled out during rolling by the mandrel mill. If the temperature of the tube material on the outlet side of the mandrel mill is sufficiently high, it becomes possible to draw and reduce the holo-shell to the final target size with a sizing mill or stretch reducer instead of an extractor. Becomes unnecessary.
  • the lubricant applied to the surface of the mandrel bar reduces friction between the inner surface of the tube and the surface of the mandrel bar, and prevents the occurrence of scratches on the inner surface of the tube material and seizure flaws on the surface of the mandrel bar, as well as stretching. Used to facilitate stripping of the mandrel bar after rolling.
  • the above lubricant has water-soluble oil power based on heavy oil to which fine graphite is added! / ⁇ is used as a lubricant by spraying fine graphite on the surface of an oiled mandrel bar. It has been.
  • non-graphite-based lubricants called borax, more precisely, scale melters, have been used as smokeless lubricants.
  • non-graphite lubricants based on my force may be used.
  • Patent Document 1 discloses a method for producing a small-diameter seamless pipe, characterized in that a hollow shell (hollow shell) produced by piercing and rolling is cold-drawn and stretched. .
  • a hot elongation rolling step using a mandrel mill is omitted.
  • the omission is merely intended to simplify the pipe making process, and is not to prevent carburization of the tube in the hot elongation rolling process using a mandrel mill.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 10-58013
  • An object of the present invention is to provide a method for manufacturing a seamless pipe in which the elongation and rolling process is rationalized in order to prevent a carburizing phenomenon that occurs in a manufacturing process of a seamless pipe, particularly a low carbon stainless steel pipe and a high alloy steel pipe. Is to provide.
  • the present inventor has conducted various studies to solve the above-mentioned problems, and as a result, has come to the invention of the following seamless pipe manufacturing method.
  • the piercing and rolling in the production methods (1) and (2) be performed by a cross piercing method.
  • the cross-punching method refers to a punching method in which the roll crossing angle ( ⁇ ) described later is set to 5 degrees or more. Particularly desirable is a perforation method in which the crossing angle is in the range of 20 degrees and 30 degrees.
  • the draw-rolling area on the flange side of the roll may be widened and the drawing-rolling area on the groove bottom side may be narrowed during the elongation rolling.
  • carburization prevention is still not complete.
  • rolling is performed without inserting a mandrel as an inner surface control tool into the pipe inner surface, and a mandrel mill is used as a squeezing mill like a sizer and a reducer, or the in-situ rolling process itself is used. It is better to omit it.
  • a myriad of graphite particles are floating in the air inside the building of a factory that performs hot pipe production. Even if non-graphite-based lubricants are currently used, graphite particles are always floating in factories where graphite-based lubricants have been used in the past. If a graphite-based lubricant is used, it goes without saying that the lubricant applied to the mandrel bar directly causes carburization.
  • FIG. 3 is a cross-sectional view of a material to be rolled during rolling, showing a state of stress during deformation in the mandrel mill.
  • the meanings of the symbols in FIG. 3 and FIG. 4 described below are as follows. [0026] ⁇ : axial stress
  • the prime symbol indicates the flange side, and the symbol without it indicates the groove bottom side.
  • the material at the groove bottom side is also subjected to an external pressure by the roll force, and the inner side of the mandrel bar 1 Rolled under pressure. Therefore, the material on the groove bottom side is stretched in the axial direction, and at the same time, widens in the circumferential direction.
  • the material on the flange side is stretched and stretched by the elongation of the material on the groove bottom side, and at the same time, its width is reduced in the circumferential direction.
  • the groove bottom deforms under external pressure, internal pressure and axial compression
  • the flange side deforms under external pressure and axial tension because the internal pressure is zero. Therefore, the stress at the bottom of the groove is in a triaxial compression state, and the surface pressure on the inner and outer surfaces is extremely higher than that on the flange.
  • FIG. 4 is a diagram showing a stress distribution in each stand. As shown, “ ⁇ / k” is ⁇ 1.6 to 1.5 on the groove bottom side. On the other hand, on the flange side, “ ⁇ , / k” is 0.06 or r f r f is about 0.04. In other words, the surface pressure on the flange side is only about 20 to 40 times smaller than the surface pressure on the groove bottom side, and is almost negligibly small. Therefore, on the bottom side of the roll groove, the graphite fine particles are trapped immediately on the inner and outer surfaces of the tube, whereas on the flange side, they are less likely to be trapped. The details of the stress distribution in FIG. 4 are described in Non-Patent Document 1 below.
  • Non-patent Document 1 Chihiro Hayashi, ⁇ Method of Manufacturing Steel Pipes, '' October 10, 2000, Published by The Iron and Steel Institute of Japan, 123-129
  • the sheet is deformed under external pressure and axial tension. This deformation is the same as the deformation on the flange side of the mandrel mill, and the surface pressure is extremely small, so that trapping of graphite penetrating particles is unlikely to occur.
  • the force material for iron and its alloys may be non-ferrous and its alloys.
  • the material is a round billet manufactured by slab rolling, a round piece manufactured by continuous forming, and the like.
  • the chemical composition of the material is as follows: carbon steel, low alloy steel for the production of pipes for oil wells, structures and pipes, stainless steel for the production of pipes for boilers and pipes, etc. High alloy steel is used for the manufacture of pipes, etc. Recently, high alloy steel has also been used for oil country tubular goods.
  • the present invention has a great effect particularly on hard-to-machine and easily carburized steel such as extremely low carbon stainless steel and high alloy steel.
  • the inner surface regulating tool (mandrel bar) is not used in the elongating and rolling step, or the elongating step itself is omitted. It must be shared between the cold rolling process, or both.
  • Patent Document 2 Japanese Patent Publication No. 5-23842
  • Patent Document 3 Japanese Patent Publication No. 8-4811
  • FIG. 5 is a diagram showing a mode of piercing rolling.
  • a cone-shaped roll 8 is disposed on the left and right or up and down with the billet 6 and the hollow shell (base tube) 7 interposed therebetween.
  • the angle formed by the axis of these rolls with respect to the horizontal or vertical plane of the pass line is the tilt angle / 3 (not shown).
  • the angle between the axis of the roll and the vertical or horizontal plane of the pass line is the crossing angle ⁇ .
  • a cross perforation method performing the perforation with the above-mentioned cross angle ⁇ of 5 degrees or more is referred to as a cross perforation method.
  • the elongation rolling force is performed on the roll groove bottom side and the drawing rolling is performed on the flange side.
  • rolling is performed without inserting a mandrel miller as an inner surface control tool into the inner surface of the pipe. That is, the mandrel mill is used as a drawing mill such as a sizer or a reducer. Further, the elongating and rolling step itself by the mandrel mill can be omitted, thereby significantly reducing the manufacturing cost.
  • Cold rolling and cold drawing are performed to enhance the mechanical properties of a product and at the same time to finish the product to a target size.
  • Cold rolling can be performed by inserting a mandrel bar on the inner side and using a cold pilger mill in which a pair of grooved rolls reciprocate. You can do this using a low bench.
  • Example 1 is an application example of the high-work-thinness thin-wall drilling method
  • Example 2 is an application example of the high-work-thinness thin-wall cold rolling method.
  • a high-deformation, thin-walled drilling with a pipe expansion ratio of 1.5 was performed at a temperature of 1250 ° C, and an outer diameter of 90mm and a wall thickness of 2.7mm. Holo shell.
  • the outer diameter was reduced to 45 mm (thickness: 3.5 mm), and after cooling, cold-rolled to a 25 mm outer diameter and 1.65 mm thickness by a cold pilga mill.
  • the pilot mill was used for the hot rolling process, and the actual production mill was used for the cold pressing process.
  • the elongation rolling step was omitted in the hot rolling step, a carburizing phenomenon was observed on the inner and outer surfaces of the product pipe. Specifically, compared to the carbon content of the base metal, the increase of the average carbon content in the inner and outer surface layers of the pipe at depths of 0.1 mm to 0.2 mm, respectively, is less than 0.01%. there were. Further, the spiral marks remaining in the piercing and rolling were completely disappeared by cold elongation rolling by a cold pilga mill, and the inner and outer surfaces were beautiful.
  • test conditions are shown below.
  • Base dimensions 90mm outside diameter, 2.7mm wall thickness Rolling dimensions: outer diameter 45mm, wall thickness 3.5mm
  • the inner and outer surface skin was beautiful and no carburizing phenomenon was observed. Specifically, compared to the carbon content of the base metal (0.01%), the increase in the average carbon content in the inner and outer surface layers of the pipe at a depth of 0.1 mm and a depth of up to 0.2 mm is 0.01%. Below, that is, the average carbon content of the above layer was 0.02% or less.
  • test conditions are shown below.
  • FIG. 1 is a view illustrating a mannes mandrel mill process.
  • FIG. 2 is an explanatory view of a full float 'mandrel mill and retained' mandrel mill.
  • FIG. 3 is a cross-sectional view of a material to be rolled, showing a state of stress during deformation in a mandrel mill.
  • FIG. 4 is a diagram showing a change in stress at each stand of the mandrel mill.
  • FIG. 5 is a view showing a mode of piercing rolling.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Heat Treatment Of Steel (AREA)
  • Metal Rolling (AREA)

Abstract

 管の製造工程で発生する浸炭現象を防止すると共に、延伸圧延工程を合理化した継目無管の製造方法である。この方法では、継目無管の製造工程において、穿孔圧廷工程で穿孔した後、延伸圧延工程で内面規制工具を使用することなく、または延伸圧延を施すことなく圧延し、絞り圧延工程で絞り圧延した後、冷間圧延工程では冷間圧延機または冷間抽伸機により肉厚加工を行う。この方法によれば、従来の延伸圧延工程における管内外面への黒鉛微粒子のトラップが少なくなり、管の浸炭が防止できる。本発明方法は、特に極低炭素のステンレス鋼や高合金鋼の浸炭防止対策として有効である。  

Description

明 細 書
継目無管の製造方法
技術分野
[0001] 本発明は、継目無管の製造工程を抜本的に合理化するとともに、継目無鋼管の製 造工程で生じる浸炭を防止することのできる継目無管の製造方法に関する。
背景技術
[0002] 継目無鋼管の製造方法としては、マンネスマン—プラグミル法、マンネスマン一マン ドレル'ミル法、マンネスマン一アッセルミル法あるいはマンネスマン一プッシュベンチミ ル法などがある。これらの方法は、力 (ΐ熱炉で所定の温度に加熱した中実ビレットを穿 孔圧延機により穿孔して中空棒状のホロ一ピースとなし、これをプラグミル、マンドレ ルミ、アッセルミルあるいはプッシュベンチミルなどの延伸圧延機により、主として肉厚 を減じてホロ一シェル'とし、次いでサイザまたはストレツチレデューサなどの絞り圧延 機により、主として外径を減じて所定の寸法の継目無鋼管とする方法である。
[0003] 本発明は、このような'継目無管製造プロセスのうち、第 2工程の延伸圧延工程に係 わるもので、以下、本発明をマンネスマン一マンドレルミル'法に基づき説明する力 S、他 の製管法における延伸圧延工程においてもその作用効果は同様である。
[0004] 図 1は、マンネスマンマンドレルミルの工程を示す図で、同図の(a)は回転炉床式 + 加熱炉、 (b)はピアサ一 (穿孔圧延機)、図 1 (c)はマンドレルミル (延伸圧延機) (d) は再加熱炉、 (e)はストレツチレデューサ (絞り圧延機)をそれぞれ示す。
[0005] 図 1の(c)に示すマンドレルミルでは、当初、マンドレルバ一 1を素管 2の内面側に 挿入したまま、マンドレルバ一ごと孔型ロール 3で連続圧延するフルフロート'マン'ドレ ルミルが一般的であった。しかし、最近では、さらに高能率、高品質のマンドレルミル としてリテインド'マンドレルミル (リストレインド'マンドレルミルともいう)が普及している
[0006] 図 2は、フルフロート 'マン'ドレルミルとリテインド 'マンドレルミルの比較図で、 (a)は フルフロート.マンドレルミル'、 (b)はリティンテンド'マン'ドレルミルをそれぞれ示す。
[0007] 図 2の(b)に示すリテインド 'マンドレルミルでは、マンドレルバ一リティナ 4によりマン
訂正された用弒 (規則 91) ドレルバ一 1を圧延終了までその背面 (圧延機の入側)から保持拘束し、圧延終了と 同時にマンドレルバ一 1を引き戻すフルリトラタト方式と、圧延終了と同時にマンドレル バー 1を解放するセミフロート方式がある。中径継目無鋼管の製法ではフルリトラタト 方式、小径継目無鋼管の製法ではセミフロート方式が一般に採用されている。
[0008] フルリトラタト方式ではマンドレルミルの出側にエキストラクタが接続されており、マン ドレルミルで圧延中にホロ一シェルを引つ張り出す。マンドレルミル出側の管材料温 度が十分高ければ、エキストラクタの代わりにサイジングミルまたはストレツチレデュー サでホロ一シェルを引っ張り出しながら最終目標寸法まで絞り圧延することが可能と なり、再加熱炉は不要となる。
マンドレルバ一の表面に塗布される潤滑剤は、管内面とマンドレルバ 表面との間 の摩擦を減じ、管材料内面の引つ搔き疵とマンドレルバ一表面の焼付き疵の発生を 防止するとともに、延伸圧延後のマンドレルバ一のストリツビングを容易にする目的で 使用される。
[0009] 上記の潤滑剤としては、当初、微粉黒鉛を添加した重油をベースとした水溶性の油 力 ある!/ヽは塗油したマンドレルバ一の表面に微粉黒鉛スプレイして潤滑剤として使 用されてきた。
[0010] 最近では、無煙潤滑剤としてボラックスと称する非黒鉛系の潤滑剤、正確にはスケ ール溶融剤が使用されるようになってきた。また、特にステンレス鋼管および高合金 鋼管の延伸圧延の際には、マイ力系の非黒鉛系潤滑剤が使用されることもある。
[0011] 特許文献 1には、穿孔圧延で製造した中空素管 (ホロ一シェル)を、冷間で縮径延 伸加工することを特徴とする小径継目無管の製造方法が開示されている。この方法 では、マンドレルミルによる熱間延伸圧延工程が省略されている。しかし、その省略 は、製管工程の簡略ィ匕を意図したものにすぎず、マンドレルミルによる熱間延伸圧延 工程における管の浸炭を防止するためではない。特許文献 1には、浸炭防止に関す る記載はまったく見られない。
特許文献 1:特開平 10-58013号公報
[0012] さて、マンドレルミルによりステンレス鋼管や高合金鋼管を延伸圧延すると、製品で ある管の内外表面、特に内面で浸炭現象が発生する。浸炭は耐食性の劣化等の好 ましくない影響を管に及ぼす。この浸炭現象は、黒鉛系の潤滑剤を使用する時はも ちろん、非黒鉛系の潤滑剤を使用する時でも発生する極めて厄介な問題である。製 管工場内の雰囲気には、以前の黒鉛系潤滑剤の使用等に起因する黒鉛微粉が存 在しており、これが素管の内外面やマンドレルバ一の表面に固着する力 である。 発明の開示
発明が解決しょうとする課題
[0013] 本発明の課題は、継目無管、特に低炭素のステンレス鋼管および高合金鋼管等の 製造課程で発生する浸炭現象を防止するために、延伸圧延工程を合理化した継目 無管の製造方法を提供することにある。
課題を解決するための手段
[0014] 本発明者は、上記の課題を解決すべく研究を重ねた結果、下記の継目無管の製 造方法の発明をなすに到った。
[0015] (1) 素材の加熱、穿孔圧延、延伸圧延、再加熱および絞り圧延から構成される継 目無管の製造工程において、穿孔圧延工程で穿孔した後、延伸圧延工程で内面規 制工具を使用することなく圧延し、絞り圧延工程で絞り圧延した後、冷間圧延工程で 冷間圧延機または冷間抽伸機により肉厚加工を行うことを特徴とする内外表層部に 浸炭層がな 、継目無管の製造方法。
[0016] (2) 加熱した素材を穿孔圧延し、延伸圧延を施すことなく絞り圧延し、次いで冷間 圧延工程で冷間圧延機または冷間抽伸機により肉厚加工を行うことを特徴とする内 外表層部に浸炭層がな 、継目無管の製造方法。
[0017] 上記 (1)および (2)の製造方法における穿孔圧延は、交叉穿孔法で行うのが望ましい
。交叉穿孔法とは、後述のロール交叉角(γ )を 5度以上として行う穿孔法をいう。特 に望ましいのは、交叉角を 20度力 30度の範囲として行う穿孔法である。
[0018] また、「内外表層部に浸炭層がない」というのは、管の内表面および外表面のそれ ぞれ 0.1mmから 0.2mmまでの厚さ 0.1mmの層の平均炭素含有量(質量%)力 母材の 炭素含有量 (質量%)に 0.01質量%を加えた値よりも多くないことを意味する。
[0019] (3) 素材としてステンレス鋼または高合金鋼、特に極低炭素のステンレス鋼または 高合金鋼の鋼片または铸片を用いる上記 (1)または (2)に記載の継目無管の製造方 法。
[0020] 前記の課題を解決するためになされた各種試験カゝら得られた知見は、以下のとおり である。
(a)継目無管の製造工程で発生する管の内外面力 の浸炭現象は、次のようにし て起きる。即ち、前記のように管製造の工場雰囲気には、黒鉛等の炭素系物質の微 粒子 (以下「黒鉛微粒子」と 、う)が存在し、これがロール孔型の溝底側でトラップされ る。また、管の内面は、冷却水で洗われることがないから、管の外面に較べて、黒鉛 微粒子がトラップされやすい。これらの黒鉛微粒子が、次工程の再加熱工程で拡散 して管肉内に侵入し、また、ガス化してガス浸炭を起こす。
[0021] なお、ロール孔型のフランジ側ではトラップされる黒鉛微粒子は少ないが、ロール 孔型のフランジ側に接した管の外面部分は、次のスタンドでは溝底側に来るので、全 スタンドを通過した後には、管の内外面全体に黒鉛微粒子が圧着されることになる。
[0022] (b)浸炭現象を抑制するためには、延伸圧延時にロールのフランジ側の絞り圧延領 域を広くし、溝底側の延伸圧延領域を狭くすればよい。しかし、それでも浸炭防止は 完全ではない。完全な浸炭防止対策としては、内面規制工具としてのマンドレルを管 内面に挿入することなく圧延し、マンドレルミルをサイザおよびレデューサのごとぐ絞 り圧延機として使用するか、または廷伸圧延工程そのものを省略するのがよい。
[0023] (c)延伸圧延工程でマンドレルを用いずに、または延伸圧延工程そのものを省略し て、継目無管の製造方法を実現するには、マンドレルミルでの肉厚加工量を前工程 たる穿孔圧延工程、または後工程たる冷間圧延工程に分担させればょ 、。
[0024] 上記 (a)についてさらに詳しく説明する。
熱間で製管を行う工場の建屋内の大気中には無数の黒鉛微粒子が浮遊している。 たとえ現在非黒鉛系の潤滑剤を使用しているにしても、過去に黒鉛系の潤滑剤が使 用されていたことのある工場内には、必ず黒鉛微粒子が浮遊している。なお、黒鉛系 潤滑剤を使用すれば、マンドレルバ一に塗布されたその潤滑剤が浸炭の直接的原 因になることは言うまでもない。
[0025] 図 3は、マンドレルミルにおける変形中の応力の状態を示す圧延中の被圧延材の 横断面図である。図 3および後述の図 4の中の記号の意味は下記のとおりである。 [0026] σ :軸方向応力
1
σ :円周方向応力
Θ
σ :管内面の半径方向応力
ra
σ :管外面の半径方向応力
rb
σ :半径方向応力の平均値、即ち、 σ = ( σ + σ ) /2
r r ra rb
k :変形抵抗
f
なお、プライム記号 (ダッシュ記号)はフランジ側を表し、それがついていない記号 は溝底側を表す。
[0027] 管内面 5がマンドレルバ一 1に接触しているか否かにより孔型を溝底側とフランジ側 に分けて考えれば、溝底側の材料はロール力も外圧を受け、マンドレルバ一 1から内 圧を受けながら圧延される。従って、溝底側の材料は軸方向に延伸されると同時に 円周方向に幅拡がりを生じる。一方、フランジ側の材料は溝底側の材料の伸びに引 つ張られ、延伸されると同時に円周方向に幅狭まりを生じる。即ち、マンドレルミルに おける管の塑性変形においては、溝底側は外圧と内圧と軸方向圧縮の下で変形し、 フランジ側は内圧ゼロであるから、外圧と軸方向引張りの下で変形する。従って、溝 底側の応力は 3軸圧縮状態になり、内外面の面圧はフランジ側に比較して極めて高 くなる。
[0028] 図 4は、各スタンドにおける応力分布を示す図である。図示のとおり、溝底側では「 σ /k」は—1.6から 1.5である。これに対して、フランジ側では「σ,/k」は 0.06か r f r f らー 0.04程度である。即ち、フランジ側の面圧は、溝底側の面圧のおよそ 20分の 1から 40分の 1に過ぎず、ほとんど無視できる程度に小さい。そのために、ロール溝底側で は黒鉛微粒子は管の内外表面にトラップされやすぐ一方、フランジ側ではトラップさ れにくいのである。なお、図 4の応力分布についての詳細は、下記の非特許文献 1に 記述されている。
非特許文献 1 :林千博「鋼管の製造方法」 2000年 10月 10日、 日本鉄鋼協会発行、 123 一 129頁
[0029] 管がマンドレルミルのロール孔型の溝底に接することによって、管の内外表面にトラ ップされた黒鉛微粒子は、次工程の再加熱工程で管の肉厚内部に拡散し、浸炭現 象が発生する。因みに、フランジ側領域が溝底側領域より広いロール孔型では、浸 炭現象は顕著に減少する。換言すれば、マンドレルミルでは、肉厚圧下量が小さくな るほど浸炭現象は軽減する。なお、ここでは 2ロール方式の延伸圧延を例にして説明 したが、 3ロール方式の延伸圧延でも事情は同じである。
[0030] 最終の絞り圧廷工程では、外圧と軸方向引張りの下で変形する。この変形は、マン ドレルミルにおけるフランジ側の変形と同じであり、面圧はきわめて小さいので、黒鉛 徹粒子のトラップは起こり難い。
発明を実施するための最良の形態
[0031] 以下、本発明の態様について詳細に説明する。
1.素材
以下、鉄およびその合金について述べる力 素材は非鉄およびその合金であって もよい。素材は、分塊圧延により製造された丸ビレットや連続铸造により製造された丸 铸片等である。また、素材の化学組成としては、油井用、構造用および配管用等の 管の製造には炭素鋼、低合金鋼、ボイラ用および配管用等の管の製造にはステンレ ス鋼、化学工業用管等の製造には高合金鋼が用いられるが、最近では油井管にも 高合金鋼が使用されるようになってきた。本発明は、特に極低炭素のステンレス鋼や 高合金鋼のような、難加工性で浸炭し易!ヽ鋼に対して大きな効果を奏する。
[0032] 2.穿孔圧延工程
本発明の製造方法では延伸圧延工程で内面規制工具 (マンドレルバ一)を用いな いか、延伸工程そのものを省略するので、マンドレルミルにおいて本来行われる肉厚 加工を前工程たる穿孔圧延工程もしくは後工程たる冷間圧延工程、またはそれらの 両方に分担させる必要がある。
[0033] 穿孔圧延工程で大きな肉厚加工を行い、薄肉のホロ一ピースにする方法としては、 例えば、下記の特許文献 2および特許文献 3に開示される方法、および本出願人が PCTZJP2004Z7698として特許出願して 、る方法が採用できる。これらの方法では、 穿孔過程における回転鍛造効果は顕著に抑制され、ステンレス鋼、高合金鋼などの 難加工性材料の高加工度薄肉穿孔において発生しやすい内面疵ゃラミネーシヨン をより確実に抑えることができる。 特許文献 2:特公平 5-23842号公報
特許文献 3:特公平 8-4811号公報
[0034] 図 5は、穿孔圧延の態様を示す図である。図示のように、ビレット 6およびホローシェ ル (素管) 7のパスラインを挟んで、左右または上下にコーン型ロール 8が配置されて いる。これらのロールの軸芯線がパスラインの水平面または垂直面に対してなす角度 が傾斜角 /3 (図示せず)である。そして、ロールの軸芯線がパスラインの垂直面また は水平面に対してなす角度が交叉角 γである。
[0035] 本発明において、上記の交叉角 γを 5度以上として穿孔を行うのを交叉穿孔法とい う。本発明方法の実施に当たっては、この交叉穿孔法を採用するのが望ましい。それ によって、穿孔工程で大きな肉厚加工を行うことができるからである。なお、一層望ま しいのは、交叉角を 20— 30度とする穿孔圧延である。
[0036] 3.延伸圧延工程
上述したようにマンドレルミルではロールの溝底側で延伸圧延力 フランジ側で絞り 圧延が行われる。浸炭現象を抑制するためには、フランジ側の絞り圧延領域を広くし 、溝底側の延伸圧延領域を狭くすればよい。しかし、狭くするのみでは完全ではない ので、内面規制工具としてのマンドレルミルバ一を管内面に挿入することなく圧延す るのである。即ち、マンドレルミルをサイザ、レデューサの如ぐ絞り圧延機として使用 するのである。また、マンドレルミルによる延伸圧延工程自体を省略することもでき、 それにより製造コストを著しく下げることができる。
[0037] 4.冷間圧延、冷間抽伸工程
幸いなことに、ステンレス鋼管および高合金鋼管は、ほとんどが冷間圧延工場へ送 られ、冷間圧延工程または冷間抽伸工程を経て製品となる。従って、穿孔圧延工程 で不可避的に生ずるスノィラルマークは、延伸圧延工程で肉厚加工がなされなくとも 、最後の冷間圧延工程で消失させることができ、管の内外面を平滑ィ匕することができ る。
[0038] 冷間圧延、冷間抽伸は、製品の機械的性質を高めると同時に、目標寸法に仕上げ るために行うものである。冷間圧延はマンドレルバ一を内面側に挿入し、一対の孔型 ロールが往復運動するコールドピルガーミルによって行えばよぐまた冷間抽伸はド ローベンチを用いて行えばよ 、。 実施例
[0039] 以下、本発明の実施例について述べる力 実施例 1は高加工度薄肉穿孔法の適 用例、実施例 2は高加工度薄肉冷間圧延法の適用例である。
[0040] [実施例 1]
18%Cr-8%Niオーステナイト系ステンレス鋼の 60mm径のビレットを供試材として、 1250°Cの温度で拡管比 1.5の高加工度薄肉穿孔を行って、外径 90mm、肉厚 2.7mm のホロ一シェルとした。次いで、同じ温度で外径を 45mm (肉厚 3.5mm)に絞り、冷却後 、コールドピルガミルにより外径 25mm、肉厚 1.65mmに冷間圧延した。熱間圧延工程 ではパイロットミルを、冷間圧廷工程は実生産ミルを使用した。
[0041] 熱間圧延工程で延伸圧延工程を省略したので製品管の内外表面に浸炭現象は認 められな力つた。具体的には、母材の炭素含有量に比べて、管の内外表層部のそれ ぞれ 0.1mmから 0.2mmまでの深さの層における炭素の平均含有量の増加分は、 0.01 %以下であった。また、穿孔圧延で残存したスパイラルマークもコールドピルガミルに よる冷間の延伸圧延によって完全に消失し、内外面肌は美麗であった。
[0042] 試験条件を以下に示す。
1.穿孔圧延条件 (図 5参照)
交叉角 · ' · γ =25°
傾斜角,,' |8 = 12°
プラグ径 · · ·(! =80mm
P
ビレット径 · · ·(! =60mm
ホローシエノレ径' · - d=90mm
ホローシェノレ肉厚' ·•t=2.7mm
拡管比 · · ·(!/(! = 1.50
穿孔比 · ' ·(1Ο2/41:((1- t) = 3.82
「肉厚/外径」比 · · -(t/d) X 100 = 3.0%
2.絞り圧延条件 (シンキングレデューサによる圧延条件)
素管寸法: 外径 90mm、肉厚 2.7mm 圧延寸法: 外径 45mm、肉厚 3.5mm
圧延比: 1.62
3.冷間圧延条件
素管寸法: 外径 45mm、肉厚 3.5mm
圧延寸法: 外径 25mm、肉厚 1.65mm
圧延比: 3.77
[0043] [実施例 2]
高合金鋼の熱間加工性は、ステンレス鋼のそれよりもなお劣悪であり、穿孔温度が 1275°Cを超えるとラミネーシヨンを発生することが多い。そこで、この実施例では、 25 %Cr-35%Ni-3%Mo高合金鋼 (C含有量は 0.01%)の 85mm径のビレットを供試材とし て 1200°Cの温度で拡管比 1.06の穿孔を行い、外径 90mm、肉厚 5.4mmのホローシェ ノレとなした。次いで、同じ温度で外径を 50mm (肉厚 6.2mm)に絞り、冷却後コールドピ ルガミルにより外径 25mm、肉厚 1.65mmになるように高加工度薄肉圧延を施した。内 外面の表面肌は美麗であり、浸炭現象は認められなかった。具体的には、母材の炭 素含有量 (0.01%)に比べて、管の内外表層部のそれぞれ 0.1mm力 0.2mmまでの深 さの層における炭素の平均含有量の増加分は 0.01%以下、即ち、上記の層の平均 炭素含有量は 0.02%以下であった。
[0044] 試験条件を以下に示す。
1.穿孔条件
交叉角 ^' =30°
傾斜角,,'|8=12°
プラグ径 ···(! =75mm
ビレット径 ···(! =85mm
ホローシエノレ径' · ·ά = 90Γηπι
ホローシェノレ肉厚' · 't = 5.4mm
拡管比 ·'·(1Α1 =1.06
穿孔比 ·'·(12/41:((1-) = 3.95
「肉厚/外径」比 · · .(t/d) X 100 = 6.0% 2.絞り圧延条件 (シンキングレデューサによる圧延条件)
素管寸法: 外径 90mm、肉厚 5.4mm
圧延寸法: 外径 50mm、肉厚 6.2mm
圧延比: 1.68
3.冷間圧延条件
素管寸法: 外径 50mm、肉厚 6.2mm
圧延寸法: 外径 25mmゝ肉厚 1.65mm
圧延比: 7.05
産業上の利用可能性
[0045] マンドレルミル工程に代表される、いわゆるマンネスマンプロセスでステンレス鋼管 および高合金鋼管を穿孔する際に発生する内面疵ゃラミネーシヨン(肉厚中央部の 二枚割れ)の問題は、本発明者の先の発明(PCTZJP2004Z7698として出願)により 既に解決した。残された最後の問題、すなわちマンドレルミルにおける浸炭問題も本 発明により解消される。これまで、ステンレス鋼管、高合金鋼管等は、ュジーン押出し プロセスによって製造されてきた力 押出し製管した製品の偏肉特性は、マンネスマ ンプロセスで製管した製品のそれに比較して決定的に劣っている。
[0046] また、周知のように、ュジーン製管の最大の欠点は製造コストが高いことであり、ビ レットの切削加工、工具の摩耗対策、潤滑剤として用いるガラスの除去作業にもコスト が嵩み、何よりも長尺管の製造が不可能なので、生産能率もマンネスマンプロセスに 比較して決定的に劣っている。本発明の製造方法の経済的効果はきわめて大きい。 図面の簡単な説明
[0047] [図 1]マンネスマンマンドレルミル工程を説明する図である。
[図 2]フルフロート 'マンドレルミルおよびリテインド'マンドレルミルの説明図である。
[図 3]マンドレルミルにおける変形中の応力の状態を示す被圧延材の横断面図であ る。
[図 4]マンドレルミルの各スタンドにおける応力の推移を示す図である。
[図 5]穿孔圧延の態様を示す図である。
符号の説明 [0048] 1.マンドレノレノ
2.被圧延材
3. ローノレ
4.パーリティナ
5.管の内面
6.ビレット
7.ホローシェノレ
8. ローノレ

Claims

請求の範囲
[1] 素材の加熱、穿孔圧延、延伸圧延、再加熱および絞り圧延から構成される継目無 管の製造工程において、穿孔圧延工程で穿孔した後、延伸圧延工程で内面規制ェ 具を使用することなく圧延し、絞り圧延工程で絞り圧延した後、冷間圧延工程で冷間 圧延機または冷間抽伸機により肉厚加工を行うことを特徴とする内外表層部に浸炭 層がな!、継目無管の製造方法。
[2] 交叉穿孔法で穿孔圧延を行う請求項 1の継目無管の製造方法。
[3] 素材としてステンレス鋼または高合金鋼、特に極低炭素のステンレス鋼または高合 金鋼の鋼片または铸片を用いる請求項 1または 2に記載の継目無管の製造方法。
[4] 加熱した素材を穿孔圧延し、延伸圧延を施すことなく絞り圧延し、次!ヽで冷間圧延 工程で冷間圧延機または冷間抽伸機により肉厚加工を行うことを特徴とする内外表 層部に浸炭層がな 、継目無管の製造方法。
[5] 交叉穿孔法で穿孔圧延を行う請求項 4の継目無管の製造方法。
[6] 素材としてステンレス鋼または高合金鋼、特に極低炭素のステンレス鋼または高合 金鋼の鋼片または铸片を用いる請求項 4または 5に記載の継目無管の製造方法。
PCT/JP2005/000379 2004-01-16 2005-01-14 継目無管の製造方法 WO2005068098A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP05703618.8A EP1707280B1 (en) 2004-01-16 2005-01-14 Method for producing seamless pipe
JP2005517079A JP4438960B2 (ja) 2004-01-16 2005-01-14 継目無管の製造方法
US11/485,979 US7293443B2 (en) 2004-01-16 2006-07-14 Method for manufacturing seamless pipes or tubes
US12/216,381 USRE44308E1 (en) 2004-01-16 2008-07-02 Method for manufacturing seamless pipes or tubes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004008723 2004-01-16
JP2004-008723 2004-01-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/485,979 Continuation US7293443B2 (en) 2004-01-16 2006-07-14 Method for manufacturing seamless pipes or tubes

Publications (2)

Publication Number Publication Date
WO2005068098A1 WO2005068098A1 (ja) 2005-07-28
WO2005068098A9 true WO2005068098A9 (ja) 2005-11-10

Family

ID=34792244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/000379 WO2005068098A1 (ja) 2004-01-16 2005-01-14 継目無管の製造方法

Country Status (6)

Country Link
US (2) US7293443B2 (ja)
EP (3) EP1707280B1 (ja)
JP (1) JP4438960B2 (ja)
CN (2) CN100522405C (ja)
TW (1) TWI265053B (ja)
WO (1) WO2005068098A1 (ja)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602005011447D1 (de) * 2004-06-18 2009-01-15 Sumitomo Metal Ind Verfahren zur herstellung eines nahtlosen stahlrohrs
AR056829A1 (es) * 2005-12-07 2007-10-24 Sumitomo Metal Ind Punzon para usar en una laminadora perforadora
JP4688037B2 (ja) * 2006-03-31 2011-05-25 住友金属工業株式会社 継目無鋼管の製造方法及び酸化性ガス供給装置
CN100408905C (zh) * 2006-04-05 2008-08-06 河北宏润管道集团有限公司 一种压力管道用无缝钢管的制造方法
WO2007126005A1 (ja) * 2006-04-28 2007-11-08 Sumitomo Metal Industries, Ltd. ステンレス鋼管の製造方法
JP5211841B2 (ja) * 2007-07-20 2013-06-12 新日鐵住金株式会社 二相ステンレス鋼管の製造方法
JP4402160B1 (ja) * 2009-03-02 2010-01-20 山田 正明 模型回転翼航空機の回転翼、及びその回転翼の製造方法
JP5262949B2 (ja) * 2009-04-20 2013-08-14 新日鐵住金株式会社 継目無鋼管の製造方法およびその製造設備
US20110049055A1 (en) 2009-08-31 2011-03-03 General Electric Company Reverse osmosis composite membranes for boron removal
CN102802824A (zh) * 2010-01-05 2012-11-28 斯姆丝因斯股份公司 扎管机设备
CN102010961B (zh) * 2010-09-27 2013-09-04 苏州奕欣特钢管业有限公司 一种钢管生产工艺
CN102172626B (zh) * 2010-12-29 2012-07-25 天津钢管集团股份有限公司 φ48-89mm超级13Cr油管的热轧生产方法
JP5035489B1 (ja) * 2011-02-15 2012-09-26 住友金属工業株式会社 高Crステンレス鋼からなる継目無管の管端矯正方法
RU2470725C1 (ru) * 2011-06-03 2012-12-27 Открытое акционерное общество "Научно-производственное объединение "Центральный научно-исследовательский институт технологии машиностроения" (ОАО НПО "ЦНИИТМАШ") СПОСОБ ПРОИЗВОДСТВА ПЕРЕДЕЛЬНЫХ ТРУБ РАЗМЕРОМ 290×12 мм ИЗ СПЛОШНЫХ СЛИТКОВ-ЗАГОТОВОК ЭЛЕКТРОШЛАКОВОГО ПЕРЕПЛАВА НИЗКОПЛАСТИЧНОЙ СТАЛИ МАРКИ 04×14T5P2"Ф-Ш"
RU2470723C1 (ru) * 2011-06-03 2012-12-27 Открытое акционерное общество "Научно-производственное объединение "Центральный научно-исследовательский институт технологии машиностроения" (ОАО НПО "ЦНИИТМАШ") СПОСОБ ПРОИЗВОДСТВА ШЕСТИГРАННЫХ ТРУБ-ЗАГОТОВОК РАЗМЕРОМ 257+2,0/-3,0×6,0+2,0/-1,0×4300+80/-30 мм
RU2470726C1 (ru) * 2011-06-03 2012-12-27 Открытое акционерное общество "Научно-производственное объединение "Центральный научно-исследовательский институт технологии машиностроения" (ОАО НПО "ЦНИИТМАШ") СПОСОБ ПРОИЗВОДСТВА ШЕСТИГРАННЫХ ТРУБ -ЗАГОТОВОК РАЗМЕРОМ 257+2,0/-3,0×6,0+2,0/-1,0×4300+80/-30 мм ДЛЯ УПЛОТНЕННОГО ХРАНЕНИЯ И ТРАНСПОРТИРОВКИ ОТРАБОТАННОГО ЯДЕРНОГО ТОПЛИВА
RU2470724C1 (ru) * 2011-06-03 2012-12-27 Открытое акционерное общество "Научно-производственное объединение "Центральный научно-исследовательский институт технологии машиностроения" (ОАО НПО "ЦНИИТМАШ") СПОСОБ ПРОИЗВОДСТВА ШЕСТИГРАННЫХ ТРУБ-ЗАГОТОВОК РАЗМЕРОМ 257+2,0/-3,0×6,0+2,0/-1,0×4300+80/-30 мм ДЛЯ ХРАНЕНИЯ И ТРАНСПОРТИРОВКИ ОТРАБОТАННОГО ЯДЕРНОГО ТОПЛИВА
CN102267040B (zh) * 2011-06-16 2012-10-03 张家港市逸洋制管有限公司 不锈钢轴承钢管和套圈的制备方法
CN102319764A (zh) * 2011-07-18 2012-01-18 新兴铸管股份有限公司 一种不锈钢无缝管制造方法
WO2013153878A1 (ja) * 2012-04-11 2013-10-17 新日鐵住金株式会社 穿孔機に用いられるプラグ及びプラグの再生方法
RU2541213C2 (ru) * 2013-01-22 2015-02-10 Общество с ограниченной ответственностью "Технологии энергетического машиностроения" (ООО "ТЭМ") Способ производства шестигранных труб-заготовок из низкопластичной стали с содержанием бора от 1,3 до 3,5 %
DE102013102703A1 (de) * 2013-03-18 2014-09-18 Sandvik Materials Technology Deutschland Gmbh Verfahren zum Herstellen eines Stahlrohres mit Reinigung der Rohraußenwand
CN103707071B (zh) * 2013-09-26 2016-12-07 广德鼎立精密钢管有限公司 运动枪械用高精度无缝钢管的生产工艺
CN104384855B (zh) * 2014-10-17 2018-09-18 王建良 一种电磁阀先导头连体隔磁管制作工艺
WO2017027711A2 (en) * 2015-08-12 2017-02-16 Alcoa Inc. Apparatus, manufacture, composition and method for producing long length tubing and uses thereof
RU2618687C1 (ru) * 2016-03-22 2017-05-10 Комаров Андрей Ильич Шестигранная труба-заготовка из стали с содержанием бора от 1,3 до 3,0% и способ её изготовления
CN106040743B (zh) * 2016-06-21 2019-02-05 太原科技大学 一种无缝镁合金管纵连轧工艺
CN106238500B (zh) * 2016-08-22 2018-09-07 臧东生 一种轧制整体型翅片管用无缝钢管的生产工艺
TWI655976B (zh) * 2017-11-28 2019-04-11 財團法人金屬工業研究發展中心 Curved servo mechanism for roll forming and bending machine using the same
RU2751407C1 (ru) * 2020-10-16 2021-07-13 Открытое Акционерное Общество "Тяжпрессмаш" Способ производства сварных шестигранных труб размером "под ключ" 252+2х5+0,7х4300+20 мм из боросодержащего листового проката для оборудования АЭС
CN112570448B (zh) * 2020-11-27 2023-04-14 中北大学 一种大型带内筋带导轨的矩形型材制造设备
CN115011914B (zh) * 2022-08-08 2022-10-25 西北工业大学 一种医用钴基合金无缝管材的制备方法

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1923700A (en) * 1928-12-14 1933-08-22 Becker Leo Cross rolling
US2025148A (en) * 1933-03-15 1935-12-24 Bannister Bryant Apparatus for the manufacture of pipes and tubes
US4034588A (en) * 1970-05-11 1977-07-12 Columbiana Foundry Company Methods of piercing and enlarging elongate metal members such as seamless tubes
DE2131343A1 (de) * 1971-06-24 1973-01-11 Benteler Werke Ag Verfahren und vorrichtung zum kaltziehen von metallrohren, insbesondere aus stahl
SU515818A1 (ru) 1971-07-20 1976-05-30 Государственный Научно-Исследовательский И Проектный Институт Сплавов И Обработки Цветных Металлов Сплав на основе меди
US4243437A (en) * 1978-11-20 1981-01-06 Marion Bronze Company Process for forming articles from leaded bronzes
JPS5725209A (en) * 1980-07-18 1982-02-10 Sumitomo Metal Ind Ltd Production of seamless metallic pipe
JPS6059042B2 (ja) * 1981-04-10 1985-12-23 住友金属工業株式会社 継目無鋼管の製造方法
DE3129903A1 (de) * 1981-07-24 1983-02-10 Mannesmann AG, 4000 Düsseldorf Verfahren und vorrichtung zum herstellen von rohren mit abschnittweise wechselnden aussen- und innendurchmessern
JPS5994514A (ja) * 1982-11-19 1984-05-31 Kawasaki Steel Corp サイザ−における外径制御方法
DE3309797A1 (de) * 1983-03-18 1984-09-20 Kocks Technik Gmbh & Co, 4010 Hilden Verfahren und anlage zum herstellen nahtloser rohre
US4578974A (en) * 1983-08-02 1986-04-01 Aetna-Standard Engineering Company Seamless tube mill
DE3432288A1 (de) * 1984-09-01 1986-03-13 Kocks Technik Gmbh & Co, 4010 Hilden Verfahren und anlage zum herstellen nahtloser rohre
DE3438395C1 (de) * 1984-10-19 1986-04-10 Ulrich Dr.-Ing. e.h. Dipl.-Ing. 4000 Düsseldorf Petersen Verfahren zum Herstellen nahtloser Stahlrohre grossen Durchmessers
JPS61162217A (ja) * 1985-01-11 1986-07-22 Sumitomo Metal Ind Ltd 継目無金属管の製造方法及び継目無金属管用ビレツト
US4594221A (en) * 1985-04-26 1986-06-10 Olin Corporation Multipurpose copper alloys with moderate conductivity and high strength
US4822560A (en) 1985-10-10 1989-04-18 The Furukawa Electric Co., Ltd. Copper alloy and method of manufacturing the same
US4798071A (en) * 1986-06-25 1989-01-17 Kocks Technik Gmbh & Co. Seamless tube production
EP0369795B1 (en) * 1988-11-18 1993-09-15 Sumitomo Metal Industries, Ltd. Method of manufacturing seamless tube formed of titanium material
JPH0327805A (ja) * 1989-06-27 1991-02-06 Kawasaki Steel Corp 継目無管の製造方法
IT1238224B (it) * 1989-11-30 1993-07-12 Dalmine S R L C Processo perfezionato di laminazione a caldo di tubi senza saldatura con preventiva riduzione degli sbozzati forati
US5315152A (en) 1990-05-31 1994-05-24 Kabushiki Kaisha Toshiba Lead frame with improved adhesiveness property against plastic and plastic sealing type semiconductor packaging using said lead frame
JPH0734926B2 (ja) * 1990-08-31 1995-04-19 川崎製鉄株式会社 オーステナイト系ステンレス継目無鋼管の製造方法
JPH04168221A (ja) * 1990-11-01 1992-06-16 Kawasaki Steel Corp オーステナイト系ステンレス継目無鋼管の製造方法
JPH0523842A (ja) 1991-07-19 1993-02-02 Hirado Kinzoku Kogyo Kk ろう付け方法
JP2591386B2 (ja) * 1991-09-12 1997-03-19 住友金属工業株式会社 熱間圧延用潤滑剤およびその潤滑剤を使用した管内面潤滑方法
JP2924523B2 (ja) * 1992-12-11 1999-07-26 住友金属工業株式会社 マンドレルミルによる金属管の延伸圧延方法
CA2146497C (en) 1994-06-17 2000-12-12 Yongbin Yuan Reinforced friction material
DE69620310T2 (de) * 1995-01-10 2002-11-21 Sumitomo Metal Ind Verfahren und vorrichtung zum lochen nahtloser rohre
CA2177427A1 (en) * 1995-05-30 1996-12-01 Jacques Periard Lubricant composition for preventing carburization in the production of seamless pipes
JP3296709B2 (ja) 1995-07-10 2002-07-02 古河電気工業株式会社 電子機器用薄板銅合金およびその製造方法
US5882442A (en) 1995-10-20 1999-03-16 Olin Corporation Iron modified phosphor-bronze
JPH09111165A (ja) 1995-10-20 1997-04-28 Canon Inc インク及びそれを用いたカラーインクジェット記録方法
JPH105818A (ja) * 1996-06-20 1998-01-13 Sumitomo Metal Ind Ltd ステンレス管の縮径加工方法
JP3082678B2 (ja) * 1996-08-14 2000-08-28 住友金属工業株式会社 小径継目無金属管の製造方法
JPH10230306A (ja) * 1997-02-20 1998-09-02 Sumitomo Metal Ind Ltd 継目無鋼管の製造方法
EP1264905A3 (en) 1997-09-05 2002-12-18 The Miller Company Copper based alloy featuring precipitation hardening and solid-solution hardening
JP2000024705A (ja) * 1998-07-14 2000-01-25 Sumitomo Metal Ind Ltd 継目無鋼管の製造方法および耐食性に優れた継目無合金鋼鋼管
JP2001105007A (ja) * 1999-10-08 2001-04-17 Sumitomo Metal Ind Ltd マンドレルミル圧延方法
FI114900B (fi) * 2000-12-20 2005-01-31 Outokumpu Oy Menetelmä ja laitteisto putkien valmistamiseksi
JP4159757B2 (ja) 2001-03-27 2008-10-01 株式会社神戸製鋼所 強度安定性および耐熱性に優れた銅合金
JP4196991B2 (ja) 2003-06-06 2008-12-17 住友金属工業株式会社 継目無管の製造における穿孔圧延方法

Also Published As

Publication number Publication date
CN100522405C (zh) 2009-08-05
JPWO2005068098A1 (ja) 2007-07-26
EP1707280A4 (en) 2007-08-29
TWI265053B (en) 2006-11-01
EP2111932A1 (en) 2009-10-28
EP2111932B1 (en) 2012-06-27
US7293443B2 (en) 2007-11-13
CN100574909C (zh) 2009-12-30
TW200531756A (en) 2005-10-01
WO2005068098A1 (ja) 2005-07-28
EP1707280A1 (en) 2006-10-04
USRE44308E1 (en) 2013-06-25
JP4438960B2 (ja) 2010-03-24
CN101254507A (zh) 2008-09-03
EP1946859A1 (en) 2008-07-23
EP1707280B1 (en) 2016-08-31
CN1909984A (zh) 2007-02-07
US20070022796A1 (en) 2007-02-01

Similar Documents

Publication Publication Date Title
WO2005068098A9 (ja) 継目無管の製造方法
CN102873512B (zh) 核电站用大口径中厚壁无缝钢管的制造方法
CN102245320B (zh) 利用冷轧制造无缝金属管的方法
EP1884296B1 (en) Method of manufacturing ultrathin wall metallic tube by cold working method
JP2003311317A (ja) 継目無管の製造方法
CN105499920B (zh) 一种大口径厚壁无缝铌管材的制造方法
JP2006341299A (ja) 冷間抽伸法による超薄肉金属管の製造方法
CN109702014B (zh) 挂车车轴定方装置、挂车车轴及其制备方法
RU2332271C1 (ru) Способ производства бесшовных горячекатаных труб
JP4569317B2 (ja) 超薄肉継目無金属管の製造方法
US2264455A (en) Method of producing a thick-walled seamless metallic tube
JP4603707B2 (ja) 継目無管の製造方法
JP4182556B2 (ja) 継目無鋼管の製造方法
CN103917307A (zh) 无缝金属管的制造方法
JP3407704B2 (ja) 高炭素継目無鋼管の製造方法
JP2711129B2 (ja) チタンシームレスパイプの製造方法
Blazynski et al. Classification of Processes
Bogatov et al. Improving the technology for making tubes of corrosion-resistant steels
JPH051082B2 (ja)
JPH0566201B2 (ja)
CZ287400B6 (cs) Způsob děrování plynule odlévaných polotovarů na válcovacích tratích s automatikem
JPH051085B2 (ja)
CZ189793A3 (cs) Způsob a zařízení k výrobě dutých těles

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

COP Corrected version of pamphlet

Free format text: PAGE 1, DESCRIPTION, REPLACED BY CORRECT PAGE 1; AFTER RECTIFICATION OF OBVIOUS ERRORS AUTHORIZED BY THE INTERNATIONAL SEARCH AUTHORITY

121 Ep: the epo has been informed by wipo that ep was designated in this application
COP Corrected version of pamphlet

Free format text: DUE TO AN ERROR DURING THE TECHNICAL PREPARATIONS FOR INTERNATIONAL PUBLICATION, REPLACE ALL PAGES BY CORRECT PAGES (17 PAGES)

WWE Wipo information: entry into national phase

Ref document number: 2005517079

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2005703618

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005703618

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11485979

Country of ref document: US

Ref document number: 200580002467.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 2005703618

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11485979

Country of ref document: US