WO2005047949A1 - 光ファイバアレイの製造方法とこの方法により製造された光ファイバアレイ - Google Patents

光ファイバアレイの製造方法とこの方法により製造された光ファイバアレイ Download PDF

Info

Publication number
WO2005047949A1
WO2005047949A1 PCT/JP2004/017205 JP2004017205W WO2005047949A1 WO 2005047949 A1 WO2005047949 A1 WO 2005047949A1 JP 2004017205 W JP2004017205 W JP 2004017205W WO 2005047949 A1 WO2005047949 A1 WO 2005047949A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
core
fixing substrate
fixing
strand
Prior art date
Application number
PCT/JP2004/017205
Other languages
English (en)
French (fr)
Inventor
Atsushi Yamada
Original Assignee
Sumitomo Metal Mining Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co., Ltd. filed Critical Sumitomo Metal Mining Co., Ltd.
Priority to JP2005515500A priority Critical patent/JP4301245B2/ja
Publication of WO2005047949A1 publication Critical patent/WO2005047949A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3833Details of mounting fibres in ferrules; Assembly methods; Manufacture
    • G02B6/3855Details of mounting fibres in ferrules; Assembly methods; Manufacture characterised by the method of anchoring or fixing the fibre within the ferrule
    • G02B6/3861Adhesive bonding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3833Details of mounting fibres in ferrules; Assembly methods; Manufacture
    • G02B6/3834Means for centering or aligning the light guide within the ferrule
    • G02B6/3838Means for centering or aligning the light guide within the ferrule using grooves for light guides
    • G02B6/3839Means for centering or aligning the light guide within the ferrule using grooves for light guides for a plurality of light guides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3628Mechanical coupling means for mounting fibres to supporting carriers
    • G02B6/3632Mechanical coupling means for mounting fibres to supporting carriers characterised by the cross-sectional shape of the mechanical coupling means
    • G02B6/3636Mechanical coupling means for mounting fibres to supporting carriers characterised by the cross-sectional shape of the mechanical coupling means the mechanical coupling means being grooves

Definitions

  • the present invention provides a plurality of optical fiber strands aligned and held between a pair of plate-like members, and a connection target (for example, an optical fiber array, an optical waveguide array, or an optical element on an optical circuit board)
  • the present invention relates to a method for manufacturing an optical fiber array that facilitates the optical and mechanical coupling work between the optical fiber and the above-mentioned optical fiber, and in particular, to an optical fiber array without reducing the precision of the alignment interval in the optical fiber.
  • the present invention relates to an optical fiber array manufacturing method capable of manufacturing an array at low cost, and an optical fiber array manufactured by this method. Background art
  • AWGs Arrayed Waveguide Gratings
  • PLC planar lightwave circuit
  • sheaths optical fiber wires
  • an optical fiber arrayed in the V-groove on a glass substrate (V-groove substrate) having a plurality of V-shaped guide grooves (V-grooves) is formed.
  • the wire is sandwiched between the V-groove substrate and the holding plate, and the V-groove substrate, holding plate, and light Japanese Patent Application Laid-Open Nos. 11-242127 and 11-326704 disclose a method in which an adhesive is filled in the gap between the fiber strands and the adhesive is cured to form an optical fiber array.
  • an optical fiber wire 34 aligned with a V-groove substrate 33 is coated with an optical fiber fixing adhesive 32 on a flat surface.
  • the optical fiber strand 34 is fixed to the optical fiber fixing substrate 31 by sticking the adhesive 32 to the optical fiber fixing substrate 31 (see FIG. 16B).
  • a force par plate 36 (see FIG. 16C) having a flat surface and a reinforcing resin material 35 provided on the bracket surface is superimposed on an optical fiber fixing substrate 31 on which the optical fiber wires 34 are fixed. It describes a method of manufacturing an optical fiber array in which a fiber strand 34 is sandwiched between a pair of plate members (see FIG. 16D) and a reinforcing resin material 35 is cured to form an integral structure.
  • the method described in Japanese Patent Application Laid-Open No. 2000-193844 uses the V-groove substrate 33 as a jig for aligning optical fibers, but since the expensive V-groove substrate 33 is not incorporated in the optical fiber array, It has the feature that an inexpensive optical fiber array can be realized.
  • the diameter of the optical fiber 34 is 125 ⁇ m and the pitch of the aligned optical fiber 34 is 127 ⁇ .
  • the gap is as narrow as about 2 ⁇ , the space formed when the optical fiber strand 34 is fixed to the optical fiber fixing substrate 31, that is, the optical fiber fixing adhesive 32 applied to the flat surface of the optical fiber fixing adhesive 32
  • a gap 37 remains there. (See Figure 16D).
  • the optical fiber is pressed against a V-groove substrate or an optical fiber fixing substrate having a flat surface to regulate the position, and is fixed with resin.
  • the resin layer between the wires and these substrates had to be thin.
  • An object of the present invention is to provide an inexpensive half-pitch in which the periphery of an optical fiber is filled with a resin, and the above-mentioned void and resin are not separated. It is an object of the present invention to provide an optical fiber array manufacturing method and an optical fiber array obtained by this method.
  • the manufacturing method of the optical fiber array according to the present invention A plurality of optical fiber strands are arranged and arranged between a pair of plate-like members having a flat surface, and the optical fiber is made of a resin material filled between each optical fiber strand and between the plate-like members.
  • the temporary fixing resin material side of the temporary fixing substrate having the flat surface coated with the temporary fixing resin material is brought into contact with the optical fiber strand aligned by the optical fiber strand aligning jig.
  • optical fiber array obtained by the manufacturing method according to the present invention is the optical fiber array obtained by the manufacturing method according to the present invention.
  • the optical fiber strands are composed of two sets of optical fiber strands each extending in the distal direction from the base end side of two sets of multi-core optical fiber cores arranged on the optical fiber fixing substrate, and The two sets of optical fiber strands extending in the distal direction are positioned at approximately the middle of the thickness direction of each multi-core optical fiber core while bending in the direction approaching each other from each multi-core optical fiber core toward the distal end.
  • a separation region that is guided to the optical fiber strand arrangement surface, and each strand of the other optical fiber strand group is interposed between the strands of one optical fiber strand group adjacent to this separation area.
  • the optical fiber element group has a juxtaposed region on the optical fiber element array plane.
  • At least 20 resin layers are formed between the optical fiber and the optical fiber fixing substrate and between the optical fiber and the force plate. Desirably it is present.
  • the optical fiber is pressed against the temporary fixing resin material side of the temporary fixing substrate having the flat surface coated with the temporary fixing resin material to regulate the position.
  • the fiber wire is fixed, but this fixing is temporary fixing, and the temporary fixing substrate is separated from the optical fiber together with the temporary fixing resin material provided on the flat surface thereof.
  • the gap between the temporary fixing substrate and the optical fiber is sufficiently filled with the resin material to fix the cover plate, so that the optical fiber in the manufactured optical fiber array can be fixed.
  • the above-mentioned gap is not generated around the optical fiber, and a sufficient resin layer can be interposed between the optical fiber and the optical fiber fixing substrate and between the optical fiber and the cover plate.
  • the optical fiber can be fixed without a sufficiently thick resin layer.
  • the stress on the optical fiber caused by the contact of a part of the fixed optical fiber board and the power-par plate This has the effect of preventing the occurrence of cracks and breaks in the optical fiber because the concentration of light is reduced.
  • FIGS. 1 (A) to 1 (D) are explanatory views showing steps of a method for manufacturing an optical fiber array according to the present invention.
  • FIGS. 2 (A) to 2 (C) are explanatory views showing steps of a method for manufacturing an optical fiber array according to the present invention.
  • FIGS. 3 (A) to 3 (C) are schematic perspective views showing steps of a method for manufacturing an optical fiber array according to Example 1 of the present invention.
  • 4 (A) to 4 (C) are schematic perspective views showing steps of a method for manufacturing an optical fiber array according to Embodiment 1 of the present invention.
  • 5 (A) to 5 (C) are schematic perspective views showing steps of a method for manufacturing an optical fiber array according to Embodiment 1 of the present invention. .
  • FIG. 6 is a schematic perspective view showing a multi-core optical fiber core wire superimposed in two stages, and a separation region and a juxtaposed region of each optical fiber extending from each multi-core optical fiber core wire.
  • FIG. 7 is a schematic sectional view of an optical fiber array obtained by the method for manufacturing an optical fiber array according to the present invention.
  • FIG. 8 is a schematic cross-sectional view of an optical fiber array in which only a juxtaposed region of fiber strands is arranged in a gap between a first flat surface of an optical fiber fixing substrate and a force plate.
  • FIG. 9 is a schematic explanatory view of a third step in the course of manufacturing the optical fiber array shown in FIG.
  • FIG. 10 is a schematic sectional view of an optical fiber array according to a second embodiment of the present invention.
  • FIG. 11 is a schematic explanatory view of a third step in the process of manufacturing the optical fiber array according to the second embodiment.
  • FIG. 12 is a schematic sectional view of an optical fiber array according to a third embodiment of the present invention.
  • FIG. 13 is a schematic sectional view of an optical fiber array according to Embodiment 4 of the present invention.
  • FIG. 14 is a schematic explanatory view of a third step in the process of manufacturing the optical fiber array according to the fourth embodiment.
  • FIG. 15 is a schematic sectional view of an optical fiber array according to Example 1 of the present invention.
  • FIGS. 16 (A) to 16 (D) are explanatory views showing the steps of a conventional method for manufacturing an optical fiber array using an optical fiber strand alignment jig. 4 017205
  • This method of manufacturing an optical fiber array is based on the premise that, as in the prior art, an optical fiber element alignment jig in which a plurality of guide grooves are formed in a longitudinal direction at predetermined intervals.
  • the core interval of the half-pitch optical fiber array is changed.
  • An optical fiber strand 14 is accommodated in each guide groove of the optical fiber strand alignment jig 13 in which a plurality of guide grooves are formed over the length ⁇ at intervals of 127 ⁇ .
  • the layer made of the temporary fixing resin material 12 is uniformly applied to the optical fiber strand aligning jig 13 in which the optical fiber strands 14 are aligned.
  • the formed temporary fixing substrate 11 is overlapped with the temporary fixing resin material 12 facing inward, and the contact between each optical fiber wire 14 and the temporary fixing substrate 11 is made.
  • the temporary fixing resin material 12 is cured while being maintained.
  • the optical fiber strands 14 are aligned on the temporary fixing substrate 11 at an interval of 127 jum as shown in FIG. 1 (C). It will be in the state of having done.
  • a layer made of an optical fiber fixing resin material 16 for fixing the optical fiber wires 14 on the flat surface of the optical fiber fixing substrate 15 is uniformly formed. Prepare what was formed in.
  • the optical fiber fixing substrate 15 on which the layer made of the optical fiber fixing resin material 16 is formed is pressed against the optical fiber strand 14 so as to press the optical fiber strand 1. 4 is sandwiched between the temporary fixing substrate 11 and the optical fiber fixing substrate 15, and the optical fiber fixing resin material 16 is hardened.
  • the optical fiber wires 14 are aligned with the optical fiber fixing substrate 15 at intervals of 127 ⁇ .
  • the temporary fixing substrate 11 is separated from the reinforcing resin.
  • the cover plate 18 coated with the material 17 is overlapped, and the optical fiber wires 14 are sandwiched between a pair of plate-shaped members consisting of the optical fiber fixing substrate 15 and the cover plate 18, and the reinforcing resin is used.
  • a resin material for fixing the optical fiber is provided between the optical fiber 14 and the optical fiber fixing substrate 15 and between the optical fiber 14 and the cover plate 18.
  • a sufficient resin layer composed of 16 and the reinforcing resin material 17 can be present.
  • the stress is shared by a larger volume, so that the flexibility of the entire resin layer is improved, and it is possible to avoid peeling of the optical fiber wires 14. .
  • the volume of the entire resin layer is increased, the amount of cure shrinkage also increases, which seems insignificant at first glance, but plate-like members such as the optical fiber wires 14 and the optical fiber fixing substrate 15 or the cover plate 18 Since the distance between them can be freely reduced, the flexibility of the resin layer as a whole can be improved without causing the problem of curing shrinkage.
  • the force plate 18 coated with the reinforcing resin material 17 is composed of a member different from the temporary fixing substrate 11, but is separated. Naturally, it is sufficient to reuse the temporary fixing substrate 11 after the above. That is, in FIG. 2 ( ⁇ ), after separating the temporary fixing substrate 11 from the optical fiber fixing substrate 15, the reinforcing resin material 17 is placed on the temporary fixing resin material 12 remaining on the surface. It may be applied and reused as the cover plate 8 coated with the reinforcing resin material 17. As a final step, the present invention is achieved by polishing and flattening the end faces of a pair of plate-like members composed of the optical fiber fixing substrate 15 and the cover plate 18 to expose the distal end side of the optical fiber strand 14. Is obtained. PT / JP2004 / 017205
  • FIGS. 1 and 2 show cross-sectional views of the configuration of the optical fiber array according to the present invention in the course of its manufacture.
  • two sets of multi-core optical fibers 40 and 50 in which a plurality of optical fiber wires 44 and 54 are housed in a coating, respectively, are connected to an optical fiber that bears mechanical strength. It has a structure mounted on the second flat surface 45 2 of the fixed substrate 45.
  • two sets of multi-core optical fiber cores 40 and 50 containing the optical fiber strands 44 and 54 in the coating are provided on the optical fiber fixing substrate 45.
  • a coating fixing region 103 fixed on the second flat surface 452 is provided.
  • the optical fiber fixing substrate 45 has a structure shown in FIG. As shown in the figure, a stepped portion 400 is provided, and with reference to the thickness direction of the optical fiber fixing substrate 45, the first flat surface 451, on which the distal end side of the optical fiber wires 44, 54 is disposed, has a larger number.
  • the second flat surface 452 to which the core optical fibers 40, 50 are fixed is set at a low level.
  • the rear end position of the wire fixing region 102 can be defined by the step portion 400.
  • the end faces of the optical fiber strands 44 and 54 exposed on the end face are arranged in a straight line at a constant interval of, for example, 127 ⁇ .
  • the position alignment and the optical coupling can be easily performed with a plurality of optical waveguides arranged on the optical circuit board at the arrangement interval corresponding to the above.
  • the strand spacing of the multi-core optical fiber cores 40 and 50 is approximately 250 / m, which is about twice the desired strand spacing, in a half-pitch optical fiber array.
  • the two sets of multi-core optical fiber cores 40 and 50 with the covering near the tip removed are used in two stages, one above the other, extending from one multi-core optical fiber core 40 as shown in Fig. 6.
  • Optical fiber strands 5 4 extending from the other multi-core optical fiber core 50 between each strand of the group 4 4 04 017205
  • the optical fiber wires 44, 54 at the end face of the optical fiber array are compared with the case where the multi-core optical fiber core wires 40, 50 are used alone. It is possible to arrange at twice the density.
  • optical fibers 44 and 54 incorporated in the half-pitch optical fiber array as shown in FIG. A separation area where the optical fiber strands 4 4 and 5 4 are guided to the optical fiber strand arrangement plane located approximately in the middle of the thickness direction in each of the multi-core optical fiber strands 40 and 50 while bending in a direction approaching each other.
  • the optical fiber strands 54 extending from the optical fiber strands 44 are interrupted so that the groups of optical fiber strands 44, 54 are arranged in parallel on the optical fiber strand arrangement plane. ing.
  • each optical fiber strand in the above-mentioned separation area 101 is secured.
  • the radius of curvature of the wires 44 and 54 is set to 25 mm
  • the height difference E (see Fig. 7) of the multi-core optical fibers 40 and 50 arranged in two stages is 30.
  • the length of the separation region 101 needs to be 3.8 mm or more, and the margin of each optical fiber wire 4 4, 5 4 in the separation region 101 is further secured by securing a margin.
  • the length of the separation region 101 must be 4.9 mm or more, and the total length of the optical fiber array is inevitably longer by the length of the separation region 101. This is inconvenient for a demand for a shorter optical fiber array.
  • two sets of multiple fibers are formed on the second flat surface 452 of the optical fiber fixing substrate 45 while maintaining the same length as the coating fixing region 103 shown in FIG.
  • the core optical fiber core wires 40 and 50 are fixed, and the first flat surface 45 1 of the optical fiber fixing substrate 45 and the flat shape arranged opposite to the first flat surface 45 1 In the gap between the force par plate 48 (corresponding to the wire fixing region 1002), the entire juxtaposition region 100 adjacent to the separation region 101 of the optical fiber wires 44, 54
  • the total length of the optical fiber wires 44, 54 from the optical fiber array shown in FIG. Can be shortened. That is, as compared with the optical fiber array of FIG. In the optical fiber array shown in FIG. 8, in which the entirety of the juxtaposed regions 100 of the fiber strands 44, 54 is arranged in the gap, the total length of the array can be reduced.
  • the optical fiber wires 44, 54 temporarily fixed to the temporary fixing substrate 11 in the middle of the manufacturing process have flat surfaces.
  • the rear end 110 of the flat surface of the temporary fixing substrate 11 is substantially formed. This corresponds to the boundary between the juxtaposition region 100 of the optical fiber wires 44 and 54 and the separation region 101.
  • the first optical fiber fixing substrate 45 passes through the first flat surface 451, which is higher in the thickness direction, and the step portion 400 through the step portion 400.
  • a second flat surface 45 2 lower than the flat surface is provided, as shown in FIG. 9, the step portion 400 of the optical fiber fixing substrate 45 and the rear end portion 110 of the temporary fixing substrate 11
  • An optical fiber array having a structure in which the entirety of the juxtaposed region 100 of the optical fiber strands 44 and 54 is arranged in the gap with the plate 48 can be obtained.
  • a first flat surface 45 1 of the optical fiber fixing substrate 45 and a flat force-par plate 48 opposing the first flat surface 45 1 By setting a large gap between the optical fiber wires 44 and 54 in the gap (corresponding to the wire fixing region 102), the entire region 100 adjacent to the optical fiber wires 44 and 54 is adjacent to this. Part of the separation region 101 can be arranged, and the total length of the array can be further reduced.
  • the optical fiber strands 44, 54 temporarily fixed to the temporary fixing substrate 11 during the manufacturing thereof have flat surfaces.
  • the step portion 400 of the optical fiber fixing substrate 45 is temporarily fixed to the substrate 11. It is necessary to arrange it behind the rear end portion 110 of the lens.
  • the entire region 100 in which the optical fiber wires 44, 54 are juxtaposed and the separation adjacent thereto are separated.
  • Region 1 In the case where the entirety of 01 is arranged, it is possible to further shorten the entire length of the array as compared with the optical fiber array having the structure shown in FIG. In this case, too, in the third step of fixing the optical fiber strand temporarily fixed to the temporary fixing substrate in the course of manufacturing to the optical fiber fixing substrate having a flat surface via a resin material, the optical fiber is fixed. It is necessary to dispose the step portion of the substrate at the boundary portion of the coating fixing region 103 on the rear side of the rear end portion of the temporary fixing substrate.
  • the optical fiber wires 44 and 54 arranged in the gaps are fixed to the juxtaposed region 100 and the optical fiber.
  • the optical fiber fixing substrate 45 Since a sufficient resin layer composed of the resin material 46 for fixing the optical fiber and the resin material 47 for reinforcement is interposed between the flat surface 4 51 and the cover plate 48, the optical fiber Light having a structure in which the optical fiber wires 4 4 and 5 4 are directly sandwiched between the first flat surface 4 5 1 of the fixed substrate 4 5 and the cover plate 4 8 without passing through a sufficiently thick resin layer.
  • the optical fiber fixing substrate 45 provided with the step portion 400 is applied.
  • an optical fiber fixing substrate having no step may be applied. That is, as shown in FIG. 13, two sets of gaps are provided between the flat optical fiber fixing substrate 45 having no step and the flat cover plate 48 disposed opposite thereto.
  • the multi-core optical fiber core wires 40, 50 and the optical fiber strands 44, 54 are arranged in the juxtaposed area 100 and the entire separation area 101 adjacent thereto. Both the fiber core wires 40, 50 and the optical fiber wires 44, 54 are used for fixing optical fibers. 2004/017205
  • the optical fiber wires 44, 54 temporarily fixed to the temporary fixing substrate 11 during the manufacturing process have a stepped portion.
  • the optical fiber element temporarily fixed on the temporary fixing substrate 11 as shown in FIG. At least the region on the rear end side of the wires 44, 54 and at least the region on the front end side of the two sets of the multi-core optical fiber cores 40, 50 should be arranged within the entire length range of the optical fiber fixing substrate 45. Cost.
  • an ultraviolet-curing epoxy resin is applied on a temporary fixing substrate 21 made of a glass flat plate, and a temporary fixing resin material 2 1 cm thick is applied.
  • a layer consisting of In order to make the thickness of the layer made of the temporary fixing resin material 22 uniform, once the ultraviolet curing epoxy resin was once excessively adhered onto the temporary fixing substrate 21, the metal plate was removed. The substrate was spread horizontally by moving horizontally while maintaining a distance of 1 O m from the surface of the temporary fixing substrate 21 so as to be uniformly adjusted.
  • the temporary fixing substrate with the layer made of the temporary fixing resin material 22 facing upward. 2 1 was arranged.
  • the arrangement interval of the guide grooves is 127 m.
  • the optical fiber strand 24 is placed from above the optical fiber strand aligning jig 23, and the distal end side is accommodated in the guide groove of the optical fiber strand aligning jig 23.
  • the temporary fixing substrate 21 is disposed slightly below the optical fiber strand aligning jig 23 so that the optical fiber strands 24 do not contact the layer made of the temporary fixing resin material 22. I have.
  • the guide fiber alignment jig 23 is inserted into the guide groove of the optical fiber strand.
  • the holding plate 25 with a V-shaped guide groove at the section of 1 2 7 / zm is aligned with the guide groove of the optical fiber strand alignment jig 23.
  • the optical fiber wires 24 are aligned in the guide groove by applying a load (first step), and are brought into close contact with the guide groove of the holding plate 25.
  • the material of the holding plate 25 was transparent quartz glass.
  • the temporary fixing substrate 21 is moved upward, and the layer made of the temporary fixing resin material 22 formed on the flat surface is optical fiber. Adhere to strand 24.
  • the temporary fixing resin material 22 is hardened by irradiating ultraviolet rays through the holding plate 25, a temporary fixing layer is formed, and the optical fiber wires 24 are temporarily attached to the temporary fixing substrate 21. It is fixed (second step).
  • the temporary fixing resin material 22 is not completely cured, and is sufficient to hold the optical fiber wires 24 on the temporary fixing substrate 21 at an interval of 127 ⁇ .
  • the temporary fixing substrate 21 is cured to such an extent that the temporary fixing substrate 21 is not adversely affected when it is separated from the optical fiber 24.
  • the optical fiber strand aligning jig 23 and the holding plate 25 are removed from the optical fiber strand 24, and are temporarily fixed to the temporary fixing substrate 21.
  • An optical fiber fixing resin material 26 made of a thermosetting epoxy resin is dropped onto the obtained optical fiber strand 24 and is applied flat on the optical fiber strand 24.
  • the optical fiber fixing substrate 27 is placed on the optical fiber fixing resin material 26 coated on the optical fiber strands 24, and The resin material 26 is cured by heating and the optical fiber fixing substrate 27 is Fix to strand 24 (third step).
  • the temporary fixing substrate 21 is separated from the optical fiber wire 24 together with the temporary fixing resin material 22 provided on the flat surface (fourth step), as shown in FIG. 4 (C).
  • the optical fiber wires 24 are aligned with the optical fiber fixing substrate 27 at an interval of 127 zm is obtained.
  • a cover plate 29 coated with a reinforcing resin material 28 made of a thermosetting epoxy resin is prepared, and as shown in FIG. 5 (B), a temporary fixing substrate is prepared.
  • the end surfaces of a pair of plate-like members composed of the optical fiber fixing substrate 27 and the cover plate 29 are flattened by polishing, and the distal end side of the optical fiber strand 24 is polished.
  • the optical fiber array shown in FIG. 15 is obtained by exposing and fixing the covering portion with the covering portion fixing resin material 49.
  • An optical fiber fixing substrate 27 is placed on the optical fiber fixing resin material 26 coated on the optical fiber strand 24, and the optical fiber fixing resin material 26 is cured by heating to fix the optical fiber.
  • the first flat surface 451, which is higher in the thickness direction, and the step portion 400 are interposed.
  • the step portion 400 of the optical fiber fixing substrate 45 as shown in FIG. A half pitch optical fiber array having the structure shown in FIG. 10 was obtained by disposing the temporary fixing substrate 11 behind the rear end 110 of the temporary fixing substrate 11.
  • two sets of multi-core optical fiber cores 40 and 50 having a thickness of 0.28 mm are used in two layers, one above the other, and the thickness of the upper and lower multi-core optical fiber cores 40 and 50 Center distance (No. 7205
  • the height difference E in Fig. 7 was 0.3 mm.
  • the radius of curvature of each of the optical fibers 44 and 54 in the separation region 101 was set to 25 mm, and the length of the separation region 101 was 3.8 mm.
  • the length of the common portion between the separation region 101 and the wire fixing region 102 is 1.9 mm, the length of the wire fixing region 102 is 4.1 mm, and the length of the covering fixing region 103 is 1.5 mm.
  • each layer composed of the resin material 46 for fixing the optical fiber and the resin material 47 for reinforcement is 0.1 mm in the juxtaposed region 100, and the rear end of the force-par plate 48 and the substrate 45 0.025 mm is secured in the vicinity of the step 400 of the first flat surface 451 of the optical fiber, and the first flat surface of the rear end of the cover plate 48 and the optical fiber fixing substrate 45 is provided at the curved portions of the optical fiber wires 44 and 54.
  • the rear end of surface 451 did not touch.
  • reference numeral 49 denotes a resin material for fixing the covering portion.
  • the optical fiber fixing substrate 27 is placed on the optical fiber fixing resin material 26 applied on the optical fiber strand 24, and the optical fiber fixing resin material 26 is cured by heating to cure the optical fiber fixing substrate 27.
  • the third step (see FIG. 4B) of the first embodiment for fixing to the fiber strand 24 in the thickness direction, the first flat surface 451 higher in the thickness direction and the second lower surface
  • the step 400 of the optical fiber fixing substrate 45 is arranged at the boundary of the coating fixing region 103 on the rear side of the rear end of the temporary fixing substrate.
  • two sets of multi-core optical fiber cores 40 and 50 having a thickness of 0.28 mm are used in two layers, one above the other, and the distance between the center of thickness of the upper and lower multi-core optical fiber cores 40 and 50 is 0. 3 mm.
  • the radius of curvature of each of the optical fiber wires 44 and 54 in the separation region 101 was set to 25 mm, and the length of the separation region 101 was 3.8 mm. 04 017205
  • the entire region 100 in which the optical fiber wires 44 and 54 are arranged side by side and the separation region 101 adjacent thereto are entirely in the wire fixed region 102. Since they are arranged, the wire fixing region 102 and the covering fixing region 103 are adjacent to each other.
  • the length of the wire fixing region 102 was set to 4.1 mm
  • the length of the coating fixing region 103 was set to 1.5 mm
  • the total length of the optical fiber array was 5.6 mm.
  • each layer made of the resin material 46 for fixing the optical fiber and the resin material 47 for capturing was 0.16 mm in the juxtaposed region 100, and the rear end of the cover plate 48 was Even in the vicinity of the stepped portion 400 of the first flat surface 451 in the optical fiber fixing substrate 45, 0.0 lmm is secured, and the curved portions of the optical fiber wires 44, 54 are covered.
  • the rear end of the single plate 48 or the rear end of the first flat surface 45 1 of the optical fiber fixing substrate 45 did not touch.
  • reference numeral 49 denotes a resin material for fixing the covering portion.
  • An optical fiber fixing substrate 27 is placed on the optical fiber fixing resin material 26 coated on the optical fiber strand 24, and the optical fiber fixing resin material 26 is cured by heating to fix the optical fiber.
  • a flat optical fiber fixing substrate 45 having no step is used, and FIG.
  • at least the rear end side area of the optical fiber strands 44, 54 temporarily fixed on the temporary fixing substrate 11 and two sets of the multi-core optical fiber cores 40, 50 A half-pitch optical fiber array having the structure shown in FIG. 13 was obtained by arranging at least the region on the tip side within the entire length range of the optical fiber fixing substrate 45.
  • two sets of multi-core optical fiber cores 40 and 50 having a thickness of 0.28 mm are used by overlapping them in the upper and lower stages, and the thickness of the upper and lower multi-core optical fiber cores 40 and 50 is used.
  • the center-to-center distance was 0.3 mm.
  • the radius of curvature of each of the optical fibers 44 and 54 in the separation region 101 was set to 25 mm, and the length of the separation region 101 was 3.8 mm. 2004/017205
  • the entire region 100 in which the optical fiber wires 44 and 54 are arranged side by side and the separation region 101 adjacent thereto are entirely in the wire fixed region 102. Since they are arranged, the wire fixing region 102 and the covering fixing region 103 are adjacent to each other.
  • the length of the wire fixing region 102 was set to 4.1 mm
  • the length of the coating fixing region 103 was set to 1.5 mm
  • the total length of the optical fiber array was 5.6 mm.
  • the same resin is used for the resin material 46 for fixing the optical fiber, the resin material 47 for the reinforcement, and the resin material 49 for the covering portion.
  • the thickness of each layer made of the resin material 47 was 0.25 mm in the juxtaposed region 100.
  • the optical fiber array according to the present invention can be used for connecting a planar optical circuit (PLC) such as an array waveguide diffraction grating (AWG) or an optical stabilizing optical fiber to an optical fiber, and is used for a planar optical circuit module.
  • PLC planar optical circuit
  • AWG array waveguide diffraction grating
  • optical stabilizing optical fiber to an optical fiber

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Coupling Of Light Guides (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

 本発明に係る光ファイバアレイの製造方法は、光ファイバ素線整列治具に複数の光ファイバ素線14を整列させる第一工程と、整列された光ファイバ素線に仮固定用樹脂材料12が塗布された仮固定用基板11の仮固定用樹脂材料側を接触させ仮固定用基板に光ファイバ素線を仮固定する第二工程と、仮固定された光ファイバ素線を光ファイバ固定基板15に樹脂材料16を介して固定する第三工程と、仮固定用基板を仮固定用樹脂材料と共に光ファイバ素線から分離する第四工程と、光ファイバ固定基板に固定された光ファイバ素線の仮固定用基板が分離された側に樹脂材料17を介してカバー板18を固定する第五工程、の各工程を具備することを特徴とする。

Description

明 細 書
光ファイバアレイの製造方法とこの方法により製造された光ファィパァレイ 技術分野
本発明は、 一対の板状部材間に整列保持された複数の光ファイバ素線を備え、 対向して配置される接続対象 (例えば、 光回路基板上の光ファイバ列、 光導波路 列若しくは光学素子等) と上記光ファイバ素線との光学的および機械的結合作業 を容易にさせる光ファイバアレイの製造方法に係り、 特に、 光ファイバ素線にお ける整列間隔の精度を低下させずに光ファイバアレイを安価に製造できる光ファ ィバァレイの製造方法とこの方法により製造された光ファイバアレイに関するも のである。 背景技術
ァレイ導波路回折格子 ( AWG; Arrayed Waveguide Grating) ゃ光スタ一 力ブラといった平面光回路 (P L C ; Planar Lightwave Circuit) と光ファイバ を接続するためには、 従来、 複数の光ファイバ素線 (外被が剥されて露出した光 ファイバ自体すなわちコアとクラッドで構成されたものを光ファイバ素線と称す るが、 狭義には光ファィパ心線の先端側外被が剥されて露出した部位を称する) を整列させた光ファイバアレイが用いられている。
そして、 この種の光ファイバアレイには、 主として光ファイバ素線のコアのピ ツチが 2 5 0 i mのノーマルピッチと 1 2 7 のハーフピッチの 2種類があり 、 P L Cの多心化が進む.につれ、 導波路基板の大型化を避ける観点からハーフピ ツチの光ファイバアレイが望まれている。
この様なハーフピッチの光ファイバアレイを製造する方法として、 断面 V字形 状の複数の案内溝 (V溝) が形成されたガラス基板 (V溝基板) の上記 V溝に整 列させた光ファイバ素線を V溝基板と押え板とで挟持し、 V溝基板、 押え板、 光 ファイバ素線の間隙に接着剤を充填し、 かつ 接着剤を硬化させて光ファイバァ レイとする方法が特開平 11— 242127号公報ゃ特開平 11— 326704 号公報に開示されている。
また、 特開 2000— 193844号公報には、 第 16図 (A) に示すように V溝基板 33に整列させた光ファイバ素線 34を、 光ファイバ固定用接着剤 32 が平坦面に塗布された光ファイバ固定基板 31に密着させ (第 16図 B参照) 、 接着剤 32を硬ィ匕させることにより光ファイバ素線 34を光ファイバ固定基板 3 1に固定させ、 更に、 補強のため、 同じく平坦面を有しかっこの面上に補強用樹 脂材料 35が設けられた力パー板 36 (第 16図 C参照) を光ファイバ素線 34 が固定された光ファイバ固定基板 31に重ね合せて光ファイバ素線 34を一対の 板状部材により挟持し (第 16図 D参照) 、 かつ、 補強用樹脂材料 35を硬化さ せて一体構造とする光ファイバアレイの製造方法が記載されている。
ところで、 特開平 11— 24212.7号公報ゃ特開平 11— 326704号公 報に記載されている方法は、 高い寸法精度で形成された V溝基板を光ファイバァ レイの構成部材として組み込んでしまうことから、 その分、 光ファイバアレイも 高額となる問題があった。 '
他方、 特開 2000— 193844号公報に記載された方法は、 V溝基板 33 を光ファイバ素線整列治具としては使用するが、 高価な V溝基板 33が光フアイ パアレイに組み込まれないため、 安価な光ファイバアレイを実現できるという特 徴を有している。 し力 し、 ハーフピッチの光ファイバアレイでは、 光ファイバ素 線 34の直径が 125 μ mで、 整列された光ファィパ素線 34のピッチが 127 μπιであることから、 光ファイバ素線 34間の間隙が 2 μπι程度と狭いため、 光 ファイバ素線 34を光ファイバ固定基板 31に固定させた際に形成される空間、 すなわち、 光ファイバ固定用接着剤 32が平坦面に塗布された光ファイバ固定基 板 31と光ファイバ素線 34とで囲まれた空間に補強用樹脂材料 35が入り込み 難く、 カバー板 36を接着、 固定した後に、 そこに空隙 37が残ってしまう場合 があった (第 1 6図 D参照) 。
そして、 光ファイバ素線 3 4と光ファイバ固定基板 3 1の間に空隙 3 7が生じ ると、 光ファイバ固定基板 3 1に対する光ファイバ素線 3 4の固定強度が弱くな るため、 光ファイバアレイの端面を研磨する際に光ファィバ素線 3 4が破損して しまう場合があった。
また、 空隙 3 7に滲みこんだ水分により補強用樹脂材料 3 5が膨潤し、 光ファ ィパァレイの強度の低下や、 コアの位置ずれが生じる可能性もあった。
尚、 光ファイバ固定基板 3 1と光ファイバ素線 3 4とを固定する際、 光フアイ パ固定基板 3 1の平坦面に多量の光ファイバ固定用接着剤 3 2を形成し、 光ファ ィバ固定基板 3 1と光ファイバ素線 3 4とで囲まれた空間に光ファイバ固定用接 着剤 3 2を十分に充填させる方法も考えられるが、 この空間を樹脂で満たそうと すると、 過剰な樹脂により光ファイバ素線整列治具 (V溝基板 3 3 ) までもが光 ファイバ素線に固定されてしまうという別の問題があった。
更に、 従来の光ファイバアレイでは、 V溝基板または平坦面を有する光フアイ パ固定基板に光ファイバを押し当てて位置を規制し、 樹脂により固定する手法が 採られている関係上、 光フアイバ素線とこれらの基板間に介在する樹脂層は薄く ならざるを得なかった。
そして、 光ファイバ素線と上記基板間に介在する樹脂層が薄い場合、 榭脂の硬 化収縮により樹脂層と光フアイバ素線の側面が剥離し易いという問題もあった。 発明の開示
本発明はこの様な問題点に着目してなされたもので、 その課題とするところは 、 光ファイバ素線の周囲が樹脂で充填され、 上述した空隙や樹脂の剥離が無い、 安価なハーフピッチの光ファイバアレイの製造方法とこの方法により得られる光 ファイバァレイを提供することにある。
すなわち、 本発明に係る光ファイバアレイの製造方法は、 平坦面を有する一対の板状部材間に複数の光ファイバ素線が整列して配置され 、 かつ、 各光ファイバ素線間および板状部材間に充填された樹脂材料により光フ 了ィパ素線およぴ板状部材が固定されていると共に、 各光フアイパ素線の先端が 対向して配置される接続対象の光路と同一の間隔で配列されて露出する光フアイ バアレイの製造方法において、
複数の案内溝が長さ方向に亘り上記間隔を介し形成されている光ファイバ素線 整列治具に複数の光ファィパ素線を整列させる第一工程と、
上記光ファイバ素線整列治具により整列された光ファイバ素線に、 平坦面に仮 固定用樹脂材料が塗布された仮固定用基板の上記仮固定用樹脂材料側を接触させ 、 仮固定用基板に光ファイバ素線を仮固定する第二工程と、
仮固定用基板に仮固定された光ファイバ素線を、 平坦面を有する光ファイバ固 定基板に樹脂材料を介して固定する第三工程と、
上記仮固定用基板をその平坦面に設けた仮固定用樹脂材料と共に光ファイバ素 線から分離する第四工程と、
上記光ファイバ固定基板に固定された光ファイバ素線の仮固定用基板が分離さ れた側に、 樹脂材料を介してカバー板を固定する第五工程、
の各工程を具備することを特徴とする。
また、 本発明に係る製造方法により得られる光ファイバアレイは、
上記光ファィパ素線が、 光フアイパ固定基板上に重ねて配置された二組の多芯 光フアイバ心線基端側からそれぞれ先端方向へ伸びる二組の光ファィバ素線群に より構成され、 かつ、 先端方向へ伸びる二組の上記光ファイバ素線群が、 各多芯 光ファイバ心線から先端方向へ向け互いに接近する方向に曲がりながら各多芯光 ファイバ心線における厚み方向の略中間に位置する光ファイバ素線配列面まで導 かれる分離領域と.、 この分離領域に隣接し一方の光ファィバ素線群の素線間に他 方の光ファィバ素線群の各素線を割り込ませて各光ファィパ素線群が上記光フ了 ィバ素線配列面上に並列される並設領域を有することを特徴とする。 P T/JP2004/017205
5
尚、 本発明に係る光ファイバアレイにおいては、 光ファイバ素線と光ファイバ 固定基板との間並びに光ファイバ素線と力パー板との間に少なくとも 2 0 ;u ni以 上の樹脂層がそれぞれ存在することが望ましい。
本発明に係る光ファイバァレイの製造方法によれば、
最初に、 平坦面に仮固定用樹脂材料が塗布された仮固定用基板の上記仮固定用 樹脂材料側に光ファイバ素線を押し当てて位置を規制し、 仮固定用樹脂材料によ り光フアイパ素線を固定するがこの固定は仮固定であり、 仮固定用基板はその平 坦面に設けた仮固定用樹脂材料と共に光ファイバ素線から分離される。
そして、 仮固定用基板と光ファイバ素線との間に生じていた空隙を樹脂材料で 十分に充填した上でカバー板を固定することができるため、 製造された光フアイ パアレイにおける光ファイバ素線の周りに上記空隙が生じることが無く、 しかも 、 光ファイバ素線と光ファイバ固定基板との間並びに光ファイバ素線とカバー板 との間に十分な樹脂層を介在させることができる。
従って、 高価な V溝基板を構成部材として組み込まないハーフピッチの光ファ ィバアレイにおいても、 光ファイバ素線の周囲に空隙の無い強固な光ファイバァ レイを提供することができる効果を有している。
更に、 光ファイバ素線と光ファイバ固定基板との間並びに光ファイバ素線と力 バー板との間に十分な樹脂層が介在するため、 十分な厚さの樹脂層を介さずに光 フアイパ固定基板とカバー板とで光フアイパ素線が直接挾持されている構造の光 ファイバアレイと較べ、 光ファイバ固定碁板や力パー板の一部が接触することに 起因した光ファイバ素線への応力の集中が軽減されることから、 光ファイバ素線 における亀裂や断線の発生も阻止することができる効果を有している。 図面の簡単な説明
第 1図 (A) 〜 (D) は、 本発明に係る光ファイバアレイの製造方法について その工程を示す説明図。 第 2図 (A) 〜 (C) は、 本発明に係る光ファイバアレイの製造方法について その工程を示す説明図。
第 3図 (A) 〜 (C) は、 本発明の実施例 1に係る光ファイバアレイの製造方 法についてその工程を示す概略斜視図。
第 4図 (A) 〜 (C) は、 本発明の実施例 1に係る光ファイバアレイの製造方 法についてその工程を示す概略斜視図。
第 5図 (A) 〜 (C) は、 本発明の実施例 1に係る光ファイバアレイの製造方 法についてその工程を示す概略斜視図。 .
第 6図は、 二段に重ねられた多芯光フアイパ心線と各多芯光フアイバ心線から 伸びる各光ファイバ素線の分離領域と並設領域を示す概略斜視図。
第 7図は、 本発明に係る光ファイバアレイの製造方法により得られた光フアイ パァレイの概略断面図。
第 8図は、 光ファイバ固定基板の第一平坦面と力パー板との隙間部内にフアイ パ素線群の並設領域のみが配置された光ファイバアレイの概略断面図。
第 9図は、 第 8図に示す光ファイバアレイの製造途中における第三工程の概略 説明図。
第 1 0図は、 本発明の実施例 2に係る光ファイバアレイの概略断面図。
第 1 1図は、 実施例 2に係る光ファイバアレイの製造途中における第三工程の 概略説明図。
第 1 2図は、 本発明の実施例 3に係る光ファイバアレイの概略断面図。
第 1 3図は、 本発明の実施例 4に係る光ファイバアレイの概略断面図。
第 1 4図は、 実施例 4に係る光ファイバアレイの製造途中における第三工程の 概略説明図。
第 1 5図は、 本発明の実施例 1に係る光ファイバアレイの概略断面図。
第 1 6図 (A) 〜 (D) は、 光ファイバ素線整列治具を用いた従来法に係る光 ファイバァレイの製造方法についてその工程を示す説明図。 4 017205
発明を実施するための最良の形態
以下、 本発明について図面を参照して詳細に説明する。
この光ファイバアレイの製造方法は、 従来技術と同様、 所定の間隔を介し複数 の案内溝が長さ方向に苴り形成されている光ファイバ素線整列治具を用いること を前提としている。
まず、 第 1図 (A) に示すように仮固定用基板 1 1の平坦面上に仮固定用樹脂 材料 1 2から成る層を一様に形成する一方、 ハーフピッチの光ファイバアレイの コア間隔である 1 2 7 μ ιη間隔で複数の案内溝が長さ^向に亘り形成されている 光ファイバ素線整列治具 1 3の各案内溝内に光ファイバ素線 1 4を収容する。 次に、 第 1図 (Β) に示すように光ファイバ素線 1 4が整列された光ファイバ 素線整列治具 1 3に対し、 上記仮固定用樹脂材料 1 2から成る層が一様に形成さ れた仮固定用基板 1 1をその仮固定用樹脂材料 1 2側が内側になるようにして重 ね合せると共に、 各光ファイバ素線 1 4と上記仮固定用基板 1 1との接触を維持 したまま仮固定用樹脂材料 1 2を硬化させる。
次に、 上記光ファイバ素線整列治具 1 3を取り外すことにより、 第 1図 (C) に示すように 1 2 7 ju m間隔で光ファイバ素線 1 4が仮固定用基板 1 1に整列し た状態となる。
そして、 第 1図 (C) に示すように光ファイバ固定基板 1 5の平坦面上に光フ アイバ素線 1 4を本固定するための光ファイバ固定用樹脂材料 1 6から成る層を 一様に形成したものを準備する。
次いで、 第 1図 (D) に示すように光ファイバ固定用樹脂材料 1 6から成る層 が形成された光ファイバ固定基板 1 5を光ファイバ素線 1 4に押し付けて光ファ ィパ素線 1 4を仮固定用基板 1 1と光ファイバ固定基板 1 5とで挟持し、 かつ、 上記光ファイバ固定用樹脂材料 1 6を硬ィヒさせる。
次に、 仮固定用基板 1 1をその平坦面に設けた仮固定用樹脂材料 1 2から成る 層と共に光ファイバ素線 1 4から分離することにより、 第 2図 (A) に示すよう 2004/017205
8
に 1 2 7 μ ιη間隔で光ファイバ素線 1 4が光ファイバ固定基板 1 5に整列した状 態となる。
次いで、 第 2図 (Β) および (C) に示すように光ファイバ素線 1 4が固定さ れた光ファイバ固定基板 1 5の仮固定用基板 1 1が分離された側に、 補強用樹脂 材料 1 7が塗布されたカバー板 1 8を重ね合せて光ファイバ素線 1 4を光フアイ バ固定基板 1 5およびカバー板 1 8からなる一対の板状部材により挟持し、 かつ 、 補強用樹脂材料 1 7を硬化させることにより、 光ファイバ素線 1 4と光フアイ バ固定基板 1 5との間並びに光ファイバ素線 1 4とカバー板 1 8との間に光ファ ィバ固定用樹脂材料 1 6と補強用樹脂材料 1 7から成る十分な樹脂層を存在させ ることができる。
そして、 樹脂層全体の体積を大きくすることによつて応力がより大きな体積で 分担されるため樹脂層全体の柔軟性が向上し、 光ファイバ素線 1 4の剥離を回避 することが可能となる。 尚、 樹脂層全体の体積を大きくすると硬化収縮量も大き くなつて一見無意味なように思えるが、 光ファイバ素線 1 4と光ファイバ固定基 板 1 5あるいはカバー板 1 8といった板状部材の間の距離は自由に縮むことがで きるため、 硬化収縮の問題を顕在化させることなく樹脂層全体の柔軟性が向上す る。
尚、 第 2図 (Β) および (C) においては、 補強用榭脂材料 1 7を塗布した力 パー板 1 8が上記仮固定用基板 1 1と別の部材で構成されているが、 分離した後 の仮固定用基板 1 1を再利用しても当然のことながらよい。 すなわち第 2図 (Α ) において光ファイバ固定基板 1 5から上記仮固定用基板 1 1を分離した後、 そ の表面に残留する仮固定用榭脂材料 1 2上に補強用樹脂材料 1 7を塗布し、 この ものを補強用樹脂材料 1 7が塗布されたカバー板 Γ8として再利用してもよい。 最終工程として、 光ファイバ固定基板 1 5とカバー板 1 8から成る一対の板状 部材の端面を研磨により平坦ィ匕し、 光ファイバ素線 1 4の先端側を露出させるこ とにより、 本発明に係る光ファイバアレイが得られる。 P T/JP2004/017205
9
ところで、 本発明に係る光ファイバァレイの構成について第 1図〜第 2図にお いてはその製造途中の断面図が.示されているが、 光ファイバアレイ全体は、 一般 に第 6図〜第 7図に示すように複数の光ファイバ素線 4 4、 5 4が被覆内にそれ ぞれ納められた二組の多芯光ファイバ心線 4 0、 5 0を、 機械的強度を担う光フ アイパ固定基板 4 5の第二平坦面 4 5 2上に積載した構造を有している。 そして 、 光ファイバアレイの後端付近には、 光ファイバ素線 4 4、 5 4を被覆内に収容 した二組の多芯光ファィバ心線 4 0、 5 0が光フアイバ固定基板 4 5の上記第二 平坦面 4 5 2上に固定される被覆固定領域 1 0 3が設けられている。 また、 光フ アイバアレイの先端付近には、 多芯光ファイバ心線 4 0、 5 0の被覆を除去して 露出した各光ファイバ素線 4 4、 5 4が光ファイバ固定基板 4 5の第一平坦面 4 5 1に固定されている素線固定領域 1 0 2が設けられている。 また、 光ファイバ 素線 4 4、 5 4よりも被覆の厚さ分だけ厚が大きい多芯光ファイバ心線 4 0、 5 0を収容するため、 光ファイバ固定基板 4 5には第 7図に示すように段差部 4 0 0が設けられ、 光ファイバ固定基板 4 5の厚み方向を基準として、 光ファイバ素 線 4 4、 5 4の先端側が配置される第一平坦面 4 5 1より、 多芯光ファイバ心線 4 0、 5 0が固定される上記第二平坦面 4 5 2が低位に設定されている。 尚、 素 線固定領域 1 0 2の後端位置は上記段差部 4 0 0により定義することができる。 また、 ハーフピッチの光ファイバアレイにおいては、 先端面に露出する光ファ ィバ素線 4 4、 5 4の端面列は、 例えば、 1 2 7 μ ηιの一定間隔をもって一直線 上に配列されており、 これに符合する配列間隔で光回^基板上に配置された複数 の光導波路と容易に位置整合および光学的結合ができるようになつている。 但し 、 多芯光フ了ィパ心線 4 0、 5 0の素線間隔は略 2 5 0 / mと所望の素線間隔の 約 2倍であるため、 ハーフピッチの光ファイバアレイにおいては、 先端付近の被 覆を除去した二組の多芯光ファイバ心線 4 0、 5 0を上下 2段に重ねて用い、 第 6図に示すように一方の多芯光フアイパ心線 4 0から伸びる光フアイパ素線 4 4 群の各素線間に他方の多芯光ファイバ心線 5 0から伸びる光ファイバ素線 5 4群 04 017205
10
の各素線を割り込ませて配置することにより、 多芯光ファイバ心線 4 0、 5 0を 単独で用いる場合に較べて、 光ファイバ素線 4 4、 5 4を光ファイバアレイの先 端面において倍の密度で配列させることを可能としている。
従って、 ハーフピッチの光ファイバアレイに組み込まれる光ファイバ素線 4 4 、 5 4においては、 第 7図に示すように二組の多芯光ファイバ心線 4 0、 5 0か ら先端方向へ向け互いに接近する方向に曲がりながら各多芯光フアイバ心線 4 0 、 5 0における厚み方向の略中間に位置する光ファイバ素線配列面まで光フアイ バ素線 4 4、 5 4が導かれる分離領域 1 0 1と、 この分離領域 1 0 1に隣接し一 方の多芯光ファイバ心線 4 0から伸びる光ファイバ素線 4 4群の各素線間に他方 の多芯光ファイバ心線 5 0から伸びる光ファイバ素線 5 4群の各素線を割り込ま せて各光ファイバ素線 4 4、 5 4群が上記光ファイバ素線配列面上に並列される 並設領域 1 0 0が設けられている。
ところで、 各光ファイバ素線 4 4、 5 4を互いに接近する方向に曲げながら光 ファイバアレイの光ファイバ素線配列面まで導く際、 信頼性確保のため上記分離 領域 1 0 1における各光ファイバ素線 4 4、 5 4の曲率半径を 2 5 mmに設定し た場合、 二段に重ねて配置した多芯光ファイバ心線 4 0、 5 0の高低差 E (第 7 図参照) が 3 0 0 μ mであると、 上記分離領域 1 0 1の長さは 3 . 8 mm以上必 要となり、 余裕度を更に確保して分離領域 1 0 1における各光ファイバ素線 4 4 、 5 4の曲率半径を 4 O mmに設定した場合には、 分離領域 1 0 1の長さは 4 . 9 mm以上必要となり、 分離領域 1 0 1の長さ分だけ光ファイバアレイの全長が 必然的に長くなつて光ファイバアレイの短小化要請には不都合となる。
この場合、 分離領域 1 0 1の上記長さを確保しながら光ファイバアレイの全長 を短縮しょうとすると、 その分、 被覆固定領域 1 0 3や素線固定領域 1 0 2の長 さを短縮しなければならず、 各固定領域における固定強度が低下するという別の 不具合が発生する。
但し、 本発明に係る光ファイバアレイの製造方法においては、 上述したように T/JP2004/017205
11 光ファイバ素線と光ファイバ固定基板との間並びに光ファイバ素線と力パー板と の間に光ファイバ固定用樹脂材料と補強用樹脂材料から成る十分な樹脂層を存在 させることができることから、 上記光ファイバ素線の分離領域に隣接する少なく とも並設領域の全体を上記素線固定領域内に含ませることができるため、 分離領 域の上記長さを確保しながら光ファイバアレイの全長を短縮させることが可能と なる。
例えば、 第 8図に示すように光ファイバ固定基板 4 5の第二平坦面 4 5 2上に 第 7図に示した被覆固定領域 1 0 3と同一の長さを維持したまま二組の多芯光フ アイパ心線 4 0、 5 0を固定し、 かつ、 光ファイバ固定基板 4 5の第一平坦面 4 5 1とこの第一平坦面 4 5 1に対向して配置された平坦状の力パー板 4 8との隙 間部 (上記素線固定領域 1 0 2に相当する) に光ファイバ素線 4 4、 5 4の上記 分離領域 1 0 1に隣接した並設領域 1 0 0全体を配置すると共に、 光ファイバ素 線 4 4、 5 4を光ファイバ固定用樹脂材料 4 6と補強用樹脂材料 4 7により固定 することにより、 第 7図に示した光フアイパァレイよりその全長の長さを短縮さ せることが可能となる。 すなわち、 光ファイバ素線 4 4、 5 4の並設領域 1 0 0 の一部が上記隙間部から被覆固定領域 1 0 3側へはみ出て配置された第 7図の光 ファイバアレイに較べ、 光ファイバ素線 4 4、 5 4の並設領域 1 0 0全体が上記 隙間部内に配置された第 8図の光ファイバアレイの方がァレイ全長の長さを短縮 させることが可能となる。
但し、 第 8図に示す構造の光ファイバアレイを得るには、 その製造途中におけ る仮固定用基板 1 1に仮固定された光ファイバ素線 4 4、 5 4を、 平坦面を有す 'る光ファイバ固定基板 4 5に樹脂材料 4 6を介し固定する第三工程において、 第 9図に示すように光ファイバ固定基板 4 5の段差部 4 0 0と仮固定用基板 1 1の 後端部 1 1 0とを揃えて配置することを要する。
すなわち、 仮固定用基板 1 1に光ファイバ素線 4 4、 5 4が仮固定される第二 工程においては、 第 9図に示すように光ファイバ素線 4 4、 5 4は仮固定用基板 17205
12
1 1の平坦面上において互いに整列して仮固定されているが、 仮固定用基板 1 1 の平坦面より後方側においては上下二組に分離している。 そして、 光ファイバ素 線 4 4、 5 4の上記形態は、 最終的に得られる光ファイバアレイにおいても保存 されるため、 仮固定用基板 1 1の平坦面の後端部 1 1 0が実質的に光ファイバ素 線 4 4、 5 4の並設領域 1 0 0と分離領域 1 0 1の境界に対応する。
従って、 上記第二工程に続く第三工程において、 光ファイバ固定基板 4 5が上 述したようにその厚み方向において高位の第一平坦面 4 5 1と段差部 4 0 0を介 し上記第一平坦面より低位の第二平坦面 4 5 2を有する場合、 第 9図に示すよう に光ファイバ固定基板 4 5の段差部 4 0 0と仮固定用基板 1 1の後端部 1 1 0と を揃えて配置することにより、 第 8図に示すような光ファイバ固定基板 4 5の第 一平坦面 4 5 1とこの第一平坦面 4 5 1に対向して配置された平坦状の力パー板 4 8との隙間部に各光ファイバ素線 4 4、 5 4群の上記並設領域 1 0 0の全体が 配置された構造の光ファイバアレイを得ることができる。
次に、 第 1 0図に示すように光ファイバ固定基板 4 5の第一平坦面 4 5 1とこ の第一平坦面 4 5 1に対向して配置された平坦状の力パー板 4 8との隙間間隔を 大きく設定することにより、 上記隙間部 (上記素線固定領域 1 0 2に相当する) 内に光ファイバ素線 4 4、 5 4の並設領域 1 0 0全体とこれに隣接する分離領域 1 0 1の一部を配置させることができ、 更にアレイ全長の長さを短縮させること が可能となる。
但し、 第 1 0図に示す構造の光ファイバアレイを得るには、 その製造途中にお ける仮固定用基板 1 1に仮固定された光ファイバ素線 4 4、 5 4を、 平坦面を有 する光ファイバ固定基板 4 5に樹脂材料 4 6を介し固定する第三工程において、 第 1 1図に示すように光ファイバ固定基板 4 5の上記段差部 4 0 0を仮固定用基 板 1 1の後端部 1 1 0より後方側に配置することを要する。
また、 第 1 2図に示すように上記隙間部 (素線固定領域 1 0 2に相当する) 内 に光ファイバ素線 4 4、 5 4の並設領域 1 0 0全体とこれに隣接する分離領域 1 0 1の全体を配置させた場合、 第 1 0図に示す構造の光ファイバアレイよりァレ ィ全長の長さを更に短縮させることが可能となる。 伹し、 この場合も、 製造途中 における仮固定用基板に仮固定された光ファイバ素線を、 平坦面を有する光ファ ィバ固定基板に樹脂材料を介し固定する第三工程において、 光ファイバ固定基板 の上記段差部を仮固定用基板の後端部より後方側の上記被覆固定領域 1 0 3の境 界部に配置することを要する。
尚、 第 8図、 第 1 0図、 第 1 2図に示した光ファイバアレイにおいては、 隙間 部内に配置された光ファイバ素線 4 4、 5 4の並設領域 1 0 0と光ファイバ固定 基板 4 5の第一平坦面 4 5 1とカバー板 4 8との間、 あるいは光ファイバ素線 4 4、 5 4の並設領域 1 0 0並びに分離領域 1 0 1と光ファイバ固定基板 4 5の第 —平坦面 4 5 1とカバー板 4 8との間に、 上記光ファイバ固定用樹脂材料 4 6と 補強用榭脂材料 4 7から成る十分な樹脂層が介在しているため、 光ファイバ固定 基板 4 5の第一平坦面 4 5 1とカバー板 4 8との間で十分な厚さの樹脂層を介さ ずに光ファイバ素線 4 4、 5 4が直接挾持されている構造の光ファイバアレイと 較べ、 光ファイバ固定基板 4 5の段差部 4 0 0やカバー板 4 8の後端が光フアイ バ素線 4 4、 5 4に接触することに起因した湾曲部への応力の集中が生じ難いた め、 光ファイバ素線 4 4、 5 4における亀裂や断線の発生も阻止することができ る。
ところで、 第 8図、 第 1 0図、 第 1 2図に示した光ファイバアレイにおいては 上記段差部 4 0 0が設けられた光ファイバ固定基板 4 5が適用されているが、 第 1 3図に示すように段差部を具備しない光ファイバ固定基板を適用してもよい。 すなわち、 第 1 3図に示すように段差部を有しない平坦状の光ファイバ固定基 板 4 5とこれに対向して配置された平坦状のカバー板 4 8との隙間部に、 二組の 多芯光ファイバ心線 4 0、 5 0と光ファイバ素線 4 4、 5 4の並設領域 1 0 0並 びにこれに隣接する分離領域 1 0 1の全体を配置し、 かつ、 多芯光ファイバ心線 4 0、 5 0と光ファイバ素線 4 4、 5 4の双方を光ファイバ固定用榭月旨材料 4 6 2004/017205
14
と補強用樹脂材料 4 7により固定することにより、 第 1 2図に示した光ファイバ アレイと同程度の短縮化が図られた光フ了ィパァレイを得ることが可能となる。 また、 第 1 3図に示す光ファイバアレイにおいては段差部を有しない平坦状の 光ファイバ固定基板 4 5が適用されるため、 光ファイバ固定基板の構造が簡略ィ匕 される分、 第 8図、 第 1 0図、 第 1 2図に示した光ファイバアレイと比較して製 造コストの低減も図れる。
但し、 第 1 3図に示す構造の光ファイバアレイを得るには、 その製造途中にお ける仮固定用基板 1 1に仮固定された光ファイバ素線 4 4、 5 4を、 段差部を有 しない平坦状の光ファイバ固定基板 4 5に樹脂材料 4 6を介し固定する第三工程 において、 第 1 4図に示すように上記仮固定用基板 1 1上に仮固定された光ファ ィパ素線 4 4、 5 4の少なくとも後端側の領域と二組の上記多芯光ファイバ心線 4 0、 5 0における少なくとも先端側の領域を光ファイバ固定基板 4 5の全長範 囲内に配置することを要する。
以下、 本発明の実施例について具体的に説明する。
[実施例 1 ]
まず、 第 3図 (A) に示すように、 ガラス製の平板からなる仮固定用基板 2 1 上に紫外線硬化エポキシ樹脂を塗布し、 厚さ約 1 C mの仮固定用樹脂材料 2 2 力 ら成る層を形成した。 尚、 この仮固定用樹脂材料 2 2から成る層の厚さを均一 にするため、 一旦、 仮固定用基板 2 1上に上記紫外線硬化エポキシ樹脂を過剰に 付着させた後、 金属製のプレードを仮固定用基板 2 1の表面上から 1 O ^ mの距 離を維持して水平移動させることにより塗り広げて均'一に調整した。
次に、 断面 V字形状の案内溝を上側にして予め配置されている光ファイバ素線 整列治具 2 3の近傍に上記仮固定用樹脂材料 2 2から成る層を上側にして仮固定 用基板 2 1を配置した。 ここで、 案内溝の配置間隔は 1 2 7 mである。
次に、 上記光ファイバ素線整列治具 2 3の上側から光ファイバ素線 2 4を載置 して、 その先端側を光ファイバ素線整列治具 2 3の案内溝内に収容する。 このと き、 仮固定用樹脂材料 2 2から成る層に光ファイバ素線 2 4が接触しない程度に 仮固定用基板 2 1を光ファイバ素線整列治具 2 3に対して若干下方側に配置して いる。
次に、 第 3図 (B ) に示すように、 光ファイバ素線整列治具 2 3の案内溝内に. その先端側が収容されている光ファイバ素線 2 4上に、 光ファイバ素線整列治具 2 3と同じく 1 2 7 /z m間隔の断面 V字形状の案内溝が刻まれた押え板 2 5を、 その案内溝が光ファィバ素線整列治具 2 3の案内溝と位置整合されるようにして 重ね合せると共に、 荷重を加えることにより光フアイバ素線 2 4は上記案内溝内 で整列され (第一工程) 、 かつ、 押え板 2 5の案内溝に密着される。 ここで、. 上 記押え板 2 5の材質は透明石英ガラスとした。
次に、 第 3図 (C) に示すように、 仮固定用基板 2 1を上方側へ移動させてそ の平坦面上に形成している仮固定用樹脂材料 2 2から成る層を光ファイバ素線 2 4に密着させる。
この状態で上記押え板 2 5を介し紫外線を照射して仮固定用樹脂材料 2 2を硬 化させると、 仮固定層が形成されて光ファイバ素線 2 4が仮固定用基板 2 1に仮 固定される (第二工程) 。 尚、 ここで、 仮固定用樹脂材料 2 2は完全には硬化さ せず、 光ファイバ素線 2 4を 1 2 7 μ πι間隔で仮固定用基板 2 1上に保持するに は十分であるが、 後の工程で仮固定用基板 2 1を光ファイバ素線 2 4から分離す る際に弊害とならない程度に硬化させる。
次に、 第 4図 (Α) に示すように上記光ファイバ素線整列治具 2 3および押え 板 2 5を光ファイバ素線 2 4から取り外し、 かつ、 仮固定用基板 2 1に仮固定さ れた光ファィパ素線 2 4上へ熱硬化エポキシ樹脂で構成される光ファィパ固定用 樹脂材料 2 6を滴下して光ファイバ素線 2 4上に平坦に塗布する。
更に、 第 4図 (Β) に示すように、 光ファイバ固定基板 2 7を光ファイバ素線 2 4上に塗布された光ファイバ固定用樹脂材料 2 6の上に配置し、 光ファイバ固 定用樹脂材料 2 6を加熱により硬化させて光ファィパ固定基板 2 7を光ファイバ 素線 2 4に固定する (第三工程) 。
そして、 仮固定用基板 2 1をその平坦面に設けた仮固定用榭脂材料 2 2と共に 光ファイバ素線 2 4から分離する (第四工程) ことにより、 第 4図 (C) に示す ように 1 2 7 z m間隔で光ファイバ素線 2 4が光ファイバ固定基板 2 7に整列し た構造体が得られる。
次に、 第 5図 (A) に示すように熱硬化エポキシ樹脂からなる補強用樹脂材料 2 8を塗布したカバー板 2 9を準備し、 第 5図 (B ) に示すように仮固定用基板 2 1を分離した部分に補強用樹脂材料 2 8が塗布された力パー板 2 9を下から押' し付けた上で、 補強用樹脂材料 2 8を硬化させることにより、 光ファイバ素線 2 4が光ファイバ固定基板 2 7と力パー板 2 9とで挟持された構造体が得られる ( 第五工程) 。
最後に、 第 5図 (C) に示すように光ファイバ固定基板 2 7とカバー板 2 9か ら成る一対の板状部材の端面を研磨により平坦化し、 光ファイバ素線 2 4の先端 側を露出させると共に、 被覆部固定用樹脂材料 4 9で被覆部を固定することによ り第 1 5図に示す光ファイバアレイが得られる。
[実施例 2 ]
光ファイバ素線 2 4上に塗布された光ファイバ固定用樹脂材料 2 6の上に光フ アイバ固定基板 2 7を配置し、 光ファイバ固定用樹脂材料 2 6を加熱により硬化 させて光ファイバ固定基板 2 7を光ファイバ素線 2 4に固定する実施例 1の第三 工程 (第 4図 B参照) において、 厚み方向において高位の第一平坦面 4 5 1と段 差部 4 0 0を介し上記第一平坦面より低位の第二平坦面 4 5 2を有する光フアイ バ固定基板 4 5を用い、 第 1 1図に示すように光ファイバ固定基板 4 5の上記段 差部 4 0 0を仮固定用基板 1 1の後端部 1 1 0より後方側に配置することにより 第 1 0図に示す構造を有するハーフピッチの光ファィパァレイを得た。
すなわち、 厚さが 0. 2 8 mmの二組の多芯光ファイバ心線 4 0、 5 0を上下 2段に重ねて用い、 上下の多芯光ファイバ心線 4 0、 5 0の厚さ中心間距離 (第 7205
17
7図において高低差 Eに相当) は 0. 3mmであった。 分離領域 101における 各光ファイバ素線 44、 54の曲率半径は 25 mmに設定され、 分離領域 101 の長さは 3. 8 mmであつた。 また、 分離領域 101と素線固定領域 102の共 通部分の長さは 1. 9mm、 素線固定領域 102の長さは 4. 1 mm、 被覆固定 領域 103の長さは 1. 5 mmにそれぞれ設定され、 光ファイバアレイの全長は 7. 5 mmであった。
また、 光ファイバ固定用榭脂材料 46と補強用樹脂材料 47から成る各層の厚 さは、 何れも並設領域 100において 0. 1mmであり、 力パー板 48の後端や 光ファイバ固定基板 45における第一平坦面 451の段差部 400近傍において も 0. 025mmが確保されており、 光ファイバ素線 44、 54の湾曲部にカバ 一板 48の後端や光ファイバ固定基板 45における第一平坦面 451の後端が接 触することはなかった。 尚、 第 10図中、 49は被覆部固定用樹脂材料を示して いる。
[実施例 3]
光ファイバ素線 24上に塗布された光ファイバ固定用樹脂材料 26の上に光フ アイパ固定基板 27を配置し、 光ファイバ固定用樹脂材料 26を加熱により硬化 させて光ファイバ固定基板 27を光ファイバ素線 24に固定する実施例 1の第三 工程 (第 4図 B参照) において、 厚み方向において高位の第一平坦面 451と段 差部 400を介し上記第一平坦面より低位の第二平坦面 452を有する光フアイ パ固定基板 45を用い、 光ファイバ固定基板 45の上記段差部 400を仮固定用 基板の後端部より後方側の上記被覆固定領域 103の境界部に配置することによ り第 12図に示す構造を有するハーフピッチの光ファイバァレイを得た。
すなわち、 厚さが 0. 28 mmの二組の多芯光ファイバ心線 40、 50を上下 2段に重ねて用い、 上下の多芯光ファイバ心線 40、 50の厚さ中心間距離は 0 . 3 mmであった。 分離領域 101における各光ファイバ素線 44、 54の曲率 半径は 25 mmに設定され、 分離領域 101の長さは 3. 8 mmであった。 04 017205
18
また、 この実施例に係る光ファイバアレイでは、 光ファイバ素線 4 4、 5 4の 並設領域 1 0 0とこれに隣接する分離領域 1 0 1の全体が素線固定領域 1 0 2内 に配置されているため、 素線固定領域 1 0 2と被覆固定領域 1 0 3が隣接してい る。 素線固定領域 1 0 2の長さは 4 . l mm、 被覆固定領域 1 0 3の長さは 1 . 5 mmにそれぞれ設定され、 光ファイバアレイの全長は 5 · 6 mmであった。 また、 光ファイバ固定用樹脂材料 4 6と捕強用樹脂材料 4 7から成る各層の厚 さは、 何れも並設領域 1 0 0において 0 . 1 6 mmであり、 カバー板 4 8の後端 や光ファイバ固定基板 4 5における第一平坦面 4 5 1の段差部 4 0 0近傍におい ても 0 . 0 l mmが確保されており、 光ファイバ素線 4 4、 5 4の湾曲部にカバ 一板 4 8の後端や光ファイバ固定基板 4 5における第一平坦面 4 5 1の後端が接 触することはなかった。 尚、 第 1 2図中、 4 9は被覆部固定用樹脂材料を示して いる。
[実施例 4 ]
光ファイバ素線 2 4上に塗布された光ファイバ固定用樹脂材料 2 6の上に光フ アイバ固定基板 2 7を配置し、 光ファイバ固定用樹脂材料 2 6を加熱により硬化 させて光ファイバ固定基板 2 7を光ファイバ素線 2 4に固定する実施例 1の第三 工程 (第 4図 B参照) において、 段差部を有しない平坦状の光ファイバ固定基板 4 5を用い、 第 1 4図に示すように仮固定用基板 1 1上に仮固定された光フアイ パ素線 4 4、 5 4の少なくとも後端側の領域と二組の上記多芯光ファイバ心線 4 0、 5 0における少なくとも先端側の領域を光ファイバ固定基板 4 5の全長範囲 内に配置することにより第 1 3図に示す構造を有するハーフピッチの光ファイバ アレイを得た。
すなわち、 厚さが 0 . 2 8 mmの二組の多芯光ファイバ心線 4 0、 5 0を上下 2段に重ねて用い、 上下の多芯光ファイバ心線 4 0、 5 0の厚さ中心間距離は 0 . 3 mmであった。 分離領域 1 0 1における各光ファイバ素線 4 4、 5 4の曲率 半径は 2 5 mmに設定され、 分離領域 1 0 1の長さは 3 . 8 mmであった。 2004/017205
19
また、 この実施例に係る光ファイバアレイでは、 光ファイバ素線 4 4、 5 4の 並設領域 1 0 0とこれに隣接する分離領域 1 0 1の全体が素線固定領域 1 0 2内 に配置されているため、 素線固定領域 1 0 2と被覆固定領域 1 0 3が隣接してい る。 素線固定領域 1 0 2の長さは 4 . l mm, 被覆固定領域 1 0 3の長さは 1 · 5 mmにそれぞれ設定され、 光ファイバアレイの全長は 5 · 6 mmであった。 また、 光ファイバ固定用樹脂材料 4 6、 補強用樹脂材料 4 7および被覆部固定 用樹脂材料 4 9には同一組成の樹脂を共通に用いており、 光ファイバ固定用樹脂 材料 4 6と補強用樹脂材料 4 7から成る各層の厚さは、 何れも並設領域 1 0 0に おいて 0 . 2 5 mmであった。 産業の利用可能性
本発明に係る光ファイバアレイは、 アレイ導波路回折格子 (AWG) や光スタ 一力ブラなどの平面光回路 (P L C) と光ファイバとの接続に利用することがで き、 平面光回路モジュールの低コスト化、 小型化に貢献できる産業上の利用可能 性を有している。

Claims

請 求 の 範 囲
1 . 平坦面を有する一対の板状部材間に複数の光ファイバ素線が整列して配置 され、 かつ、 各光ファイバ素線間および板状部材間に充填された樹脂材料により 光ファイバ素線およぴ板状部材が固定されていると共に、 各光ファイバ素線の先 端が対向して配置される接続対象の光路と同一の間隔で配列されて露出する光フ アイバアレイの製造方法において、
複数の案内溝が長さ方向に亘り上記間隔を介し形成されている光フアイパ素線 整列治具に複数の光ファィパ素線を整列させる第一工程と、
上記光ファイバ素線整列治具により整列された光ファイバ素線に、 平坦面に仮 固定用樹脂材料が塗布された仮固定用基板の上記仮固定用樹脂材料側を接触させ、 仮固定用基板に光ファイバ素線を仮固定する第二工程と、
仮固定用基板に仮固定された光ファイバ素線を、 平坦面を有する光ファイバ固 定基板に榭脂材料を介して固定する第三工程と、
上記仮固定用基板をその平坦面に設けた仮固定用樹脂材料と共に光ファイバ素 線から分離する第四工程と、
上記光ファィパ固定基板に固定された光ファィパ素線の仮固定用基板が分離さ れた側に、 樹脂材料を介してカバー板を固定する第五工程、
の各工程を具備することを特徴とする光ファイバアレイの製造方法。
2 . 上記第三工程において、 光ファイバ素線を固定する上記光ファイバ固定基 板がその厚み方向において高位の第一平坦面と段差部を介し上記第一平坦面より 低位の第二平坦面を有しており、 光フアイバ固定基板の上記段差部と仮固定用基 板の後端部とを揃えて配置することを特徴とする請求の範囲第 1項記載の光ファ ィバアレイの製造方法。
3 . 上記第三工程において、 光ファイバ素線を固定する上記光ファイバ固定基 板がその厚み方向において高位の第一平坦面と段差部を介し上記第—平坦面より 低位の第二平坦面を有しており、 光ファイバ固定基板の上記段差部を仮固定用基 板の後端部より後方側に配置することを特徴とする請求の範囲第 1項記載の光フ アイパァレイの製造方法。
4 . 上記第三工程において、 光ファイバ素線を固定する上記光ファイバ固定基 板が段差部を有しない平坦状の板状部材で構成されており、 上記仮固定用基板上 に仮固定された光ファイバ素線の少なくとも後端側の領域と二組の上記多芯光フ アイパ心線における少なくとも先端側の領域を光ファイバ固定基板の全長範囲内 に配置することを特徴とする請求の範囲第 1項記載の光ファイバァレイの製造方 法。
5 . 請求の範囲第 1項記載の光ファィパァレイの製造方法により製造された光 ファイバアレイにおいて、
上記光ファイバ素線が、 光ファイバ固定基板上に重ねて配置された二組の多芯 光フアイバ心線基端側からそれぞれ先端方向へ伸びる二組の光フ了ィパ素線群に より構成され、 かつ、 先端方向へ伸びる二組の上記光ファイバ素線群が、 各多芯 光ファイバ心線から先端方向へ向け互いに接近する方向に曲がりながら各多芯光 ファイバ心線における厚み方向の略中間に位置する光ファイバ素線配列面まで導 かれる分離領域と、 この分離領域に隣接し一方の光ファイバ素線群の素線間に他 方の光ファィパ素線群の各素線を割り込ませて各光フ了ィパ素線群が上記光ファ ィパ素線配列面上に並列される並設領域を有すること ^特徴とする光ファイバァ レイ。
6 . 請求の範囲第 2項記載の光ファィパァレイの製造方法により製造された光 ファイバアレイにおいて、
上記光ファィパ素線が、 二組の多芯光ファィパ心線基端側からそれぞれ先端方 向へ伸びる二組の光ファイバ素線群により構成され、 先端'方向へ伸びる二組の上 記光フアイパ素線群が、 各多芯光ファィパ心線から先端方向へ向け互いに接近す る方向に曲がりながら各多芯光フアイバ心線における厚み方向の略中間に位置す る光フアイパ素線配列面まで導かれる分離領域と、 この分離領域に隣接し一方の 光ファイバ素線群の素線間に他方の光ファイバ素線群の各素線を割り込ませて各 光ファイバ素線群が上記光ファイバ素線配列面上に並列される並設領域を有する と共に、 光フアイパ固定基板の第二平坦面上に上記二組の多芯光ファィパ心線と 各光ファイバ素線群の分離領域が配置され、 かつ、 光ファイバ固定基板の第一平 坦面とこの第一平坦面に対向して配置された平坦状のカバー板との隙間部に各光 フアイパ素線群の上記並設頜域全体が配置されることを特徴とする光ファイバァ レイ。
7 . 請求の範囲第 3項記載の光フ了ィパァレイの製造方法により製造された光 ファイバアレイにおいて、 .
上記光ファイバ素線が、 二組の多芯光ファイバ心線基端側からそれぞれ先端方 向へ伸びる二組の光ファイバ素線群により構成され、 先端方向へ伸びる二組の上 記光ファイバ素線群が、 各多芯光ファイバ心線から先端方向へ向け互いに接近す る方向に曲がりながら各多芯光ファイバ心線における厚み方向の略中間に位置す る光フアイパ素線配列面まで導かれる分離領域と、 この分離領域に隣接し一方の 光ファイバ素線群の素線間に他方の光ファイバ素線群の各素線を割り込ませて各 光フアイパ素線群が上記光ファィパ素線配列面上に並列される並設領域を有する と共に、 光フアイパ固定基板の第二平坦面上に上記二組の多芯光フ了ィパ心線が 配置され、 かつ、 光ファイバ固定基板の第一平坦面とこの第一平坦面に対向して 配置された平坦状の力パー板との隙間部に各光ファイバ素線群の上記並設領域全 体とこれに隣接する上記分離領域の一部若しくは全体が配置されることを特徴と する光ファイバアレイ。
8 . 請求の範囲第 4項記載の光フアイパアレイの製造方法により製造された光 ファイバアレイにおいて、
上記光ファイバ素線が、 二組の多芯光ファイバ心線基端側からそれぞれ先端方 向へ伸びる二組の光ファイバ素線群により構成され、 先端方向へ伸びる二組の上 記光ファイバ素線群が、 各多芯光ファイバ心線から先端方向へ向け互いに接近す る方^]に曲がりながら各多芯光フアイパ心線における厚み方向の略中間に位置す る光フアイパ素線配列面まで導かれる分離領域と、 この分離領域に隣接し一方の 光ファイバ素線群の素線間に他方の光ファイバ素線群の各素線を割り込ませて各 光フアイパ素線群が上記光ファィパ素線配列面上に並列される並設領域を有する と共に、 光ファイバ固定基板とこれに対向して配置された平坦状の力パー板との 隙間部に上記二組の多芯光ファイバ心線の一部と各光ファイバ素線群の上記分離 領域および並設領域の全体がそれぞれ配置されることを特徴とする光ファイバァ レイ。
9 . 光フアイバ素線と光フアイバ固定基板との間並びに光ファィバ素線とカバ 一板との間に少なくとも 2 0 ^ m以上の樹脂層がそれぞれ存在することを特徴と する請求の範囲第 5項〜第 8項のいずれかに記載の光ファィバァレイ。
PCT/JP2004/017205 2003-11-17 2004-11-12 光ファイバアレイの製造方法とこの方法により製造された光ファイバアレイ WO2005047949A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005515500A JP4301245B2 (ja) 2003-11-17 2004-11-12 光ファイバアレイ

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003386597 2003-11-17
JP2003-386597 2003-11-17
JP2004-166156 2004-06-03
JP2004166156 2004-06-03

Publications (1)

Publication Number Publication Date
WO2005047949A1 true WO2005047949A1 (ja) 2005-05-26

Family

ID=34593968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/017205 WO2005047949A1 (ja) 2003-11-17 2004-11-12 光ファイバアレイの製造方法とこの方法により製造された光ファイバアレイ

Country Status (2)

Country Link
JP (1) JP4301245B2 (ja)
WO (1) WO2005047949A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59226304A (ja) * 1983-06-06 1984-12-19 Mitsubishi Rayon Co Ltd 光学繊維シ−トの製造方法
JPH1123907A (ja) * 1997-06-30 1999-01-29 Sumitomo Electric Ind Ltd 光ファイバアレイ
JPH11211929A (ja) * 1998-01-27 1999-08-06 Sumitomo Electric Ind Ltd 光ファイバコネクタおよびその製造方法
JPH11326704A (ja) * 1998-03-19 1999-11-26 Ngk Insulators Ltd 光ファイバ―アレイ及びその製造方法
JP2000292654A (ja) * 1999-04-06 2000-10-20 Sumitomo Electric Ind Ltd 光ファイバコネクタおよびその製造方法
JP2003227966A (ja) * 2002-02-02 2003-08-15 Samsung Electronics Co Ltd ツリー構造の溝アレイを有するブロックベース、ツリー構造の溝アレイを有する多心の光ファイバブロック及びツリー構造の溝アレイを有する多心の光ファイバブロック内に光ファイバアレイを整列する方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59226304A (ja) * 1983-06-06 1984-12-19 Mitsubishi Rayon Co Ltd 光学繊維シ−トの製造方法
JPH1123907A (ja) * 1997-06-30 1999-01-29 Sumitomo Electric Ind Ltd 光ファイバアレイ
JPH11211929A (ja) * 1998-01-27 1999-08-06 Sumitomo Electric Ind Ltd 光ファイバコネクタおよびその製造方法
JPH11326704A (ja) * 1998-03-19 1999-11-26 Ngk Insulators Ltd 光ファイバ―アレイ及びその製造方法
JP2000292654A (ja) * 1999-04-06 2000-10-20 Sumitomo Electric Ind Ltd 光ファイバコネクタおよびその製造方法
JP2003227966A (ja) * 2002-02-02 2003-08-15 Samsung Electronics Co Ltd ツリー構造の溝アレイを有するブロックベース、ツリー構造の溝アレイを有する多心の光ファイバブロック及びツリー構造の溝アレイを有する多心の光ファイバブロック内に光ファイバアレイを整列する方法

Also Published As

Publication number Publication date
JP4301245B2 (ja) 2009-07-22
JPWO2005047949A1 (ja) 2007-05-31

Similar Documents

Publication Publication Date Title
KR100671119B1 (ko) 광섬유 테이프 심선 및 그 제조방법
JP5135513B2 (ja) 光ファイバアレイ
JP2000193844A (ja) 光ファイバアレイの製造方法
JP3908015B2 (ja) 偏波ファイバアレイ
JP3821971B2 (ja) 光ファイバーアレイ
WO2005098495A1 (ja) 光ファイバアレイ
JP2005157088A (ja) 光導波路モジュール
JP3772929B2 (ja) 光ファイバ保持部品および光ファイバアレイ
WO2020179513A1 (ja) 光ファイバアレイ
JP4301245B2 (ja) 光ファイバアレイ
JP5462080B2 (ja) 光ファイバコネクタ
JP3191797B2 (ja) 光ファイバコネクタおよびその製造方法
JP3374508B2 (ja) 光ファイバアレイ
JP4207903B2 (ja) 光ファイバアレイの製造方法
JP2763028B2 (ja) テープ状光ファイバ心線
US6885806B2 (en) Method of making an optical fiber array by overlapping stripped portions of ribbon fibers
JP4192963B2 (ja) 光ファイバアレイの製造方法
US20030156814A1 (en) Optical fiber block having semicircular grooves and method for same
JP4525635B2 (ja) 光ファイバアレイの製造方法
JP3139743B2 (ja) 光コネクタとその製造方法
JP2000329971A (ja) 光ファイバーアレイ
JP3650564B2 (ja) 多芯バンドルの製造用治具
JPH0611625A (ja) 光ファイバアレイ及びその製造方法
JP3446953B2 (ja) 光ファイバアレイ部品とその製造方法および光ファイバアレイ部品を用いた光ファイバと光導波路との接続方法および光ファイバアレイ部品を用いた光モジュール
JP2006084516A (ja) 光ファイバアレイとその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005515500

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase