WO2020179513A1 - 光ファイバアレイ - Google Patents
光ファイバアレイ Download PDFInfo
- Publication number
- WO2020179513A1 WO2020179513A1 PCT/JP2020/007153 JP2020007153W WO2020179513A1 WO 2020179513 A1 WO2020179513 A1 WO 2020179513A1 JP 2020007153 W JP2020007153 W JP 2020007153W WO 2020179513 A1 WO2020179513 A1 WO 2020179513A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical fiber
- fiber
- optical
- coating
- array
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/024—Optical fibres with cladding with or without a coating with polarisation maintaining properties
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
Definitions
- the present disclosure relates to an optical fiber array.
- This application claims the priority right based on Japanese application No. 2019-039849 filed on Mar. 5, 2019, and incorporates all the contents described in the Japanese application.
- the optical fiber array uses, for example, a V-groove substrate having a plurality of V-grooves for positioning a plurality of optical fibers and a multi-hole capillary having a plurality of guide holes so that the plurality of optical fibers are aligned at a predetermined interval. It is an arranged optical component.
- the optical fiber array disclosed in Patent Document 1 is an optical component intended for a single-core optical fiber, and the pitch of a plurality of V-grooves provided on a V-groove substrate is equal to the coating outer diameter of the optical fiber and is adjacent to each other. The optical fibers are in close contact with each other.
- An optical fiber array of the present disclosure includes a glass fiber and a resin coating that covers the glass fiber, a plurality of optical fibers having a structure that is not axially symmetric with respect to the central axis of the glass fiber, and light for arranging the plurality of optical fibers.
- An optical fiber array comprising: a fiber array component, wherein the optical fiber array component has a bare fiber portion of each optical fiber on which the glass fiber is exposed from the resin coating at the tip of each optical fiber.
- FIG. 1 is a perspective view of a V-groove substrate included in the optical fiber array of the first embodiment.
- FIG. 2 is a flow chart for explaining a manufacturing process of the optical fiber array of the first embodiment.
- FIG. 3A is an end view for explaining the relationship between the optical fiber array component and the optical fiber in the manufacturing process of the optical fiber array of the first embodiment.
- FIG. 3B is a side view for explaining the relationship between the optical fiber array component and the optical fiber in the manufacturing process of the optical fiber array of the first embodiment.
- FIG. 3C is a top view for explaining the relationship between the optical fiber array component and the optical fiber in the manufacturing process of the optical fiber array of the first embodiment.
- FIG. 4 is a cross-sectional view of the optical fiber array of the first embodiment along the longitudinal direction of the optical fiber.
- FIG. 5 is a perspective view showing an example of the optical fiber array of the first embodiment.
- FIG. 6A is a perspective view showing another example of the optical fiber array of the present disclosure.
- FIG. 6B is a cross-sectional view showing another example of the optical fiber of the present disclosure.
- FIG. 7A is a view of the optical fiber array viewed from the tip side of the optical fiber when the pitch of the plurality of V grooves of the V groove substrate is equal to the outer diameter of the optical fiber.
- FIG. 7B is a side view of the optical fiber array when the distance between the central axis of the optical fiber and the coating arrangement portion of the V-groove substrate is equal to the outer diameter of the optical fiber.
- the optical fiber array disclosed in Patent Document 1 is an optical component intended for a single-core optical fiber, in which the pitches of a plurality of V grooves are equal to the coating outer diameter of the optical fiber, and adjacent optical fibers are in close contact with each other. ing.
- the optical fiber array of Patent Document 1 is targeted for, for example, a multi-core fiber that requires rotational alignment, and the pitch of the plurality of V grooves is equal to the coating outer diameter of the optical fiber, the following Such problems arise.
- FIG. 7A is a view of the optical fiber array viewed from the tip side of the optical fiber when the pitch of the plurality of V-grooves on the V-groove substrate is equal to the outer diameter of the coating of the optical fiber.
- FIG. 7B is a view of the optical fiber array viewed from the side surface in the longitudinal direction of the optical fiber when the distance between the central axis of the optical fiber and the coating array portion of the V-groove substrate is equal to the coating outer diameter of the optical fiber. is there.
- the present disclosure provides an optical fiber array in which optical fibers that require rotational alignment are arranged, and has a structure capable of performing rotational alignment with high accuracy.
- An optical fiber array of the present disclosure includes a plurality of optical fibers that include a glass fiber and a resin coating that covers the glass fiber, and have a structure that is not axially symmetric with respect to the central axis of the glass fiber, and the plurality of optical fibers.
- the diameter is smaller than the distance between the central axes of the adjacent optical fibers, and the normal distance between the central axis of each optical fiber and the coating array portion is larger than 1/2 of the coating outer diameter. Since there is no contact between the resin coatings of each optical fiber and friction between the coating portion of each optical fiber and the optical fiber array component, the optical fiber array of the present disclosure accurately performs rotational alignment of each optical fiber. be able to.
- the plurality of optical fibers may be a plurality of single-core optical fibers.
- the plurality of optical fibers may be collectively bonded by the second resin coating at least at a part of the portion not mounted on the optical fiber array component to form an optical fiber ribbon.
- the optical fiber ribbon may be integrated over the entire length, or may be a so-called intermittent optical fiber ribbon with notches in some places.
- the bare fiber array portion may have a plurality of V-grooves on which the bare fiber portion is placed.
- the bare fiber array portion may have a plurality of holes into which the bare fiber portion is inserted. In the optical fiber array component, the positions of the bare fiber portions of the optical fiber can be accurately aligned.
- the glass fiber includes a multi-core fiber including a plurality of cores and a clad that collectively covers the plurality of cores, or (7) each glass fiber includes a polarization including a core and a stress applying portion. It may be a holding fiber.
- the optical fiber array of the present disclosure can be applied to various optical fibers that require rotational alignment.
- the distance between the central axes of the adjacent optical fibers on the optical fiber array component may be 250 ⁇ m or less.
- the optical fiber array of the present disclosure can arrange optical fibers densely, and can be a compact optical fiber array.
- FIG. 1 is a perspective view of a V-groove substrate included in the optical fiber array of the first embodiment.
- FIG. 2 is a flow chart for explaining the manufacturing process of the optical fiber array of the first embodiment.
- 3A to 3C are an end view, a side view, and a top view, respectively, for explaining the relationship between the V-groove substrate and the optical fiber in the process of manufacturing the optical fiber array according to the first embodiment.
- FIG. 4 is a sectional view of the optical fiber array of the first embodiment taken along the longitudinal direction of the optical fiber.
- FIG. 5 is a perspective view showing an example of the optical fiber array of the first embodiment.
- the V-groove substrate 10 shown in FIG. 1 and the lid member 20 serving as a lid are used as the optical fiber array component.
- the V-groove substrate 10 is made of optical glass or the like, and integrally includes a bare fiber array portion 11 having V-shaped grooves (V grooves) 12 at equal intervals and a coating array portion 13 in which coating portions of optical fibers are arrayed. ing.
- the glass fiber exposed by removing the resin coating is referred to as a bare fiber portion 4.
- the bare fiber section 4 of the optical fiber 1 is arranged in the bare fiber arrangement section 11, and the covering section 5 of the optical fiber 1 is arranged in the covering arrangement section 13. Since the bare fiber portion 4 is easily broken at the end of the resin coating, the coating portion 5 of the optical fiber 1 is adhered to the V-groove substrate 10 at the coating arrangement portion 13 as described later.
- FIG. 2 an optical fiber ribbon in which at least a part of the plurality of optical fibers which is not mounted on the optical fiber array component is collectively bonded in a ribbon shape with the second resin coating 6 (see FIG. 5) is shown.
- An optical fiber ribbon, a V-groove substrate 10 as an optical fiber array component, a lid member 20, and an adhesive are used for manufacturing the optical fiber array.
- an optical fiber ribbon is prepared, and each optical fiber 1 is separated at an end portion of the optical fiber ribbon (step S1).
- the length of each optical fiber 1 to be separated is preferably, for example, 10 mm or more in consideration of workability, alignment system, and reliability due to twisting of the optical fiber.
- an intermittent adhesive type optical fiber ribbon in which adjacent optical fibers 1 are intermittently adhered is more preferable than an integrated type optical fiber ribbon in which all the optical fibers 1 are integrally fixed over the entire length. , Workability is good.
- the plurality of optical fibers 1 may not be optical fibers bonded to each other to form an optical fiber ribbon, but may be a plurality of single-core optical fibers not bonded to each other.
- each optical fiber 1 is a multi-core fiber in which a plurality of cores 2 are arranged in one clad 3, and a resin coating is provided around the clad 3.
- the clad 3 is a glass fiber having a standard outer diameter of 125 ⁇ m, and the resin coating is usually composed of one or two coating layers, and the outermost layer may have a colored layer.
- the outer diameter of the coating of the optical fiber 1 is equal to the diameter of the optical fiber 1.
- each optical fiber 1 is placed on the optical fiber array component (step S3).
- each optical fiber 1 is placed on a V-groove substrate 10 which is an optical fiber array component.
- the bare fiber portions 4 of the plurality of optical fibers 1 are arranged so as to fit in the respective V-shaped grooves 12, and the respective coated portions 5 of the optical fiber 1 in which the resin coating is not removed are connected to the V-shaped groove substrate 10. It is placed on the fixing jig 21 arranged close to the above.
- the V-grooves 12 are arranged on the V-groove substrate 10 at equal pitches P.
- each optical fiber 1 When each optical fiber 1 is housed in each V groove 12, the distance between the central axes of the optical fibers 1 becomes equal to the pitch P of the V grooves 12.
- the pitch P of the V-groove 12 is larger than the outer diameter D of the coating of the optical fiber 1.
- the pitch P of the V grooves 12 is 250 ⁇ m.
- adjacent optical fibers 1 do not come into contact with each other at the coating portion 5.
- the pitch P of the V grooves 12 that is, the distance between the central axes of the adjacent optical fibers 1 to 250 ⁇ m or less, the optical fibers 1 can be arranged densely and a compact optical fiber array can be obtained.
- the surface S of the covering arrangement portion 13 is the central axis of each bare fiber portion 4 and the covering arrangement portion of the V-groove substrate 10 when each optical fiber 1 is placed on the V-groove substrate 10. Since the normal distance h to the surface S of the optical fiber 13 is larger than 1/2 of the coating outer diameter D of the optical fiber 1, the coating portion 5 of each optical fiber 1 is supported by the fixing jig 21. .. The fixing jig 21 allows the central axis of each bare fiber portion 4 to be parallel to the coating arrangement portion 13 of the V-groove substrate 10 when the bare fiber portion 4 of each optical fiber 1 is housed in each V groove 12. The height direction is positioned. As a result, the coating portion 5 of the optical fiber 1 does not come into contact with the V-groove substrate 10, so that no frictional force acts between the coating portion 5 of the optical fiber 1 and the V-groove substrate 10.
- the manufacturing variation of the coating outer diameter D of the optical fiber 1 is ⁇ 5 ⁇ m, and the manufacturing variation of each dimension of the V-groove substrate 10 is ⁇ 1 ⁇ m, for example.
- the pitch of the V-grooves 12 is made larger than the design value of the coating outer diameter D by 7 ⁇ m or more, and the central axis of the bare fiber portion 4 and the surface S of the coating array portion 13 of the V-groove substrate 10
- the optical fiber 1 and the V-groove substrate 10 are combined so that the normal distance h between the two is larger than 1/2 of the design value of the outer diameter D of the coating and the difference is 3.5 ⁇ m or more. As a result, a structure of an optical fiber array that can be easily rotationally aligned can be obtained.
- each optical fiber is rotationally aligned and then temporarily fixed (step S4).
- a known method can be used for rotational alignment.
- the covering portion 5 of the optical fiber 1 is rotated while monitoring the end face of each optical fiber 1.
- each optical fiber 1 is temporarily fixed by a holding tool 22 at a fixing jig 21.
- the pressing tool 22 can press each optical fiber 1 with a pressing force such that each optical fiber 1 does not rotate on the fixing jig 21.
- the rotation alignment is sequentially performed from one optical fiber 1 located at one end in the arrangement direction of the optical fibers 1, and when the rotation alignment is completed for all the optical fibers 1, the process proceeds to step S5.
- each bare fiber part 4 is bonded to the optical fiber fixing component.
- the lid member 20 is placed on the bare fiber array portion 11 of the V-groove substrate 10 with each optical fiber 1 temporarily fixed.
- the lid member 20 is a rectangular parallelepiped glass member shown in FIG. 4 (or FIG. 5). Since the cross-sectional shape of the bare fiber portion 4 is circular, a gap is formed between the bare fiber portion 4 and the V groove 12 and between the bare fiber portion 4 and the lid member 20.
- the bare fiber portion 4 of the optical fiber 1, the bare fiber array portion 11 of the V-groove substrate 10, and the lid member 20 are filled in the gap with an ultraviolet curable resin 31 and irradiated with ultraviolet rays. To glue.
- the end surface of the bare fiber portion 4 of the optical fiber 1 is fixed to the V-groove substrate 10 while being rotationally aligned.
- the covering portion 5 of each optical fiber 1 is adhered to the optical fiber array component. Since there is a gap between the coating arrangement portion 13 of the V-groove substrate 10 which is the optical fiber fixing member and the coating portion 5 of the optical fiber 1, in this state, the coating portion 5 and the bare fiber portion 4 are separated from each other. The bare fiber portion 4 may break. Therefore, the adhesive 32 is filled between the surface S of the coating arrangement portion 13 and the coating portion 5 of the optical fiber 1 and between the optical fibers 1 so that the optical fiber 1 is V at the position of the coating arrangement portion 13. Adhere to the groove substrate 10. As the adhesive, an ultraviolet curable resin can be used, but a thermosetting resin may also be used. Through the above steps, the optical fiber array 100 shown in FIG. 4 is obtained.
- FIG. 6 is a perspective view showing another example of the optical fiber array of the present disclosure.
- the multi-hole capillary 40 is used as the optical fiber array component of the optical fiber array 100'.
- the multi-hole capillary 40 is an optical component made of optical glass having an L-shaped cross section in the longitudinal direction, and has a bare fiber array portion 41 having a plurality of linear guide holes 42 at equal pitches P and a resin of the optical fiber 1. It has a coating array portion 43 facing the coating through a gap.
- the present embodiment has the same configuration as that of the first embodiment, except that the bare fiber portions 4 of the optical fibers 1 are arranged by the guide holes 42 of the bare fiber arrangement portion 41.
- each bare fiber portion 4 of each optical fiber 1 is inserted and arranged in each guide hole 42 of the multi-hole capillary 40. Further, in the optical fiber 1, the coating outer diameter of the optical fiber 1 is smaller than the center axis distance of the optical fiber 1, and the normal distance between the center axis of the bare fiber portion 4 and the coating array portion 43 is the coating outer diameter. Greater than 1/2 of. Further, each bare fiber portion 4 is fixed to the multi-hole capillary 40 by an adhesive in each guide hole 42, and each covering portion 5 of each optical fiber 1 is adhered to the multi-hole capillary 40 on the covering arrangement portion 43. It is fixed.
- the example of the multi-core fiber has been described as the optical fiber that needs the rotational alignment, but as shown in FIG. 6B, the optical fiber is the glass fiber including the core 2 and the stress imparting portion 7. It may be the polarization holding fiber 1'.
- a multi-core fiber or a polarization-maintaining fiber is an example of an optical fiber that includes a glass fiber and a resin coating that covers the glass fiber and has a structure that is not axisymmetric with respect to the center axis of the glass fiber.
- the present invention is not limited to the examples in these embodiments, and includes all modifications within the scope of the matters stated in the claims and within the scope of equality. Further, the present invention includes a combination of arbitrary embodiments as long as a plurality of embodiments can be combined.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mechanical Coupling Of Light Guides (AREA)
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
Abstract
光ファイバアレイは、複数の光ファイバと光ファイバ配列部品とを備える。各光ファイバは、ガラスファイバとガラスファイバを覆う樹脂被覆とを含み、ガラスファイバの中心軸に関して軸対称でない構造を有する。光ファイバ配列部品は、複数の光ファイバを配列させ、ベアファイバ配列部と被覆配列部とを有する。ベアファイバ配列部は、各光ファイバの先端部で樹脂被覆からガラスファイバが露出した、各光ファイバのベアファイバ部を載置する。被覆配列部は、各光ファイバのガラスファイバが樹脂被覆で覆われた、各光ファイバの被覆部を固定する。各光ファイバの被覆外径は隣り合う光ファイバの中心軸間距離よりも小さく、かつ、各光ファイバの中心軸と被覆配列部との法線距離は被覆外径の1/2よりも大きい。
Description
本開示は、光ファイバアレイに関する。
本出願は、2019年3月5日出願の日本出願第2019―039849号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
本出願は、2019年3月5日出願の日本出願第2019―039849号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
光ファイバアレイは、例えば、複数の光ファイバを位置決めする複数のV溝を有するV溝基板や複数のガイド孔を有するマルチホールキャピラリを用いて、複数の光ファイバを所定の間隔で整列するように配置した光部品である。特許文献1に開示された光ファイバアレイは、シングルコアの光ファイバを対象とした光部品であり、V溝基板に設けた複数のV溝のピッチが光ファイバの被覆外径と等しく、隣り合う光ファイバどうしが密着している。
本開示の光ファイバアレイは、ガラスファイバと前記ガラスファイバを覆う樹脂被覆とを含み、前記ガラスファイバの中心軸に関して軸対称でない構造を有する複数の光ファイバと、前記複数の光ファイバを配列させる光ファイバ配列部品と、を備えた光ファイバアレイであって、前記光ファイバ配列部品は、各光ファイバの先端部で前記樹脂被覆から前記ガラスファイバが露出した、各光ファイバのベアファイバ部を載置するベアファイバ配列部と、各光ファイバの前記ガラスファイバが前記樹脂被覆で覆われた、各光ファイバの被覆部を固定する被覆配列部と、を有し、前記光ファイバの被覆外径は隣り合う前記光ファイバの中心軸間距離よりも小さく、かつ、各光ファイバの中心軸と前記被覆配列部との法線距離は前記被覆外径の1/2よりも大きい。
[本開示の実施形態の説明]
特許文献1に開示された光ファイバアレイは、シングルコアの光ファイバを対象とした光部品であり、複数のV溝のピッチが光ファイバの被覆外径と等しく、隣り合う光ファイバどうしが密着している。しかし、特許文献1の光ファイバアレイが、回転調心を必要とする例えばマルチコアファイバを対象とする場合であって、複数のV溝のピッチが光ファイバの被覆外径と等しい場合に、次のような問題が生じる。
特許文献1に開示された光ファイバアレイは、シングルコアの光ファイバを対象とした光部品であり、複数のV溝のピッチが光ファイバの被覆外径と等しく、隣り合う光ファイバどうしが密着している。しかし、特許文献1の光ファイバアレイが、回転調心を必要とする例えばマルチコアファイバを対象とする場合であって、複数のV溝のピッチが光ファイバの被覆外径と等しい場合に、次のような問題が生じる。
図7Aは、V溝基板の複数のV溝のピッチが光ファイバの被覆外径と等しい場合における、光ファイバの先端側から光ファイバアレイを見た図である。図7Bは、光ファイバの中心軸とV溝基板の被覆配列部との間の距離が光ファイバの被覆外径と等しい場合における、光ファイバの長手方向の側面から光ファイバアレイを見た図である。
図7Aに示すように、V溝基板10のベアファイバ配列部11に並んだ複数のV溝12のピッチが光ファイバ1の被覆外径と等しい場合は、隣接する光ファイバ1の被覆が互いに接触した状態になる。1本の光ファイバ1が回転調心するために回転されると、隣接する光ファイバ1にも力が加わるため、隣接する光ファイバ1も回転してしまう。このため、全ての光ファイバを精度良く回転調心することが困難となる。図7Bに示すように、光ファイバ1がV溝基板10の被覆配列部13の表面Sに接していると、回転調心を行う際に回転による摩擦力が光ファイバ1と被覆配列部13との間に働くため、回転調心が難しくなるという問題があった。
本開示は、回転調心が必要な光ファイバを配列した光ファイバアレイであって、回転調心を精度よく行うことができる構造の光ファイバアレイを提供する。
[本開示の実施形態の説明]
最初に本開示の実施形態を列記して説明する。
(1)本開示の光ファイバアレイは、ガラスファイバと前記ガラスファイバを覆う樹脂被覆とを含み、前記ガラスファイバの中心軸に関して軸対称でない構造を有する複数の光ファイバと、前記複数の光ファイバを配列させる光ファイバ配列部品と、を備えた光ファイバアレイであって、前記光ファイバ配列部品は、各光ファイバの先端部で前記樹脂被覆から前記ガラスファイバが露出した、各光ファイバのベアファイバ部を載置するベアファイバ配列部と、各光ファイバの前記ガラスファイバが前記樹脂被覆で覆われた、各光ファイバの被覆部を固定する被覆配列部と、を有し、各光ファイバの被覆外径は隣り合う前記光ファイバの中心軸間距離よりも小さく、かつ、各光ファイバの中心軸と前記被覆配列部との法線距離は前記被覆外径の1/2よりも大きい。各光ファイバの樹脂被覆間での接触や、各光ファイバの被覆部と光ファイバ配列部品との間の摩擦がないため、本開示の光ファイバアレイは各光ファイバの回転調心を精度よく行うことができる。
最初に本開示の実施形態を列記して説明する。
(1)本開示の光ファイバアレイは、ガラスファイバと前記ガラスファイバを覆う樹脂被覆とを含み、前記ガラスファイバの中心軸に関して軸対称でない構造を有する複数の光ファイバと、前記複数の光ファイバを配列させる光ファイバ配列部品と、を備えた光ファイバアレイであって、前記光ファイバ配列部品は、各光ファイバの先端部で前記樹脂被覆から前記ガラスファイバが露出した、各光ファイバのベアファイバ部を載置するベアファイバ配列部と、各光ファイバの前記ガラスファイバが前記樹脂被覆で覆われた、各光ファイバの被覆部を固定する被覆配列部と、を有し、各光ファイバの被覆外径は隣り合う前記光ファイバの中心軸間距離よりも小さく、かつ、各光ファイバの中心軸と前記被覆配列部との法線距離は前記被覆外径の1/2よりも大きい。各光ファイバの樹脂被覆間での接触や、各光ファイバの被覆部と光ファイバ配列部品との間の摩擦がないため、本開示の光ファイバアレイは各光ファイバの回転調心を精度よく行うことができる。
(2)複数の前記光ファイバは、複数の単心光ファイバであってもよい。(3)複数の前記光ファイバは、前記光ファイバ配列部品に載置されていない部分の少なくとも一部で第2の樹脂被覆により一括接着され光ファイバリボンを構成していてもよい。光ファイバリボンは、全長にわたり一体化されていてもよく、ところどころに切れ込みが入ったいわゆる間欠型光ファイバリボンであってもよい。
(4)前記ベアファイバ配列部が前記ベアファイバ部を載置する複数のV溝を有していてもよい。(5)前記ベアファイバ配列部が前記ベアファイバ部を挿入する複数の孔を有していてもよい。光ファイバ配列部品は、光ファイバのベアファイバ部の位置を精度よく揃えることができる。
(6)各光ファイバは、前記ガラスファイバが複数のコアと前記複数のコアをまとめて覆うクラッドとを含むマルチコアファイバ、または、(7)各ガラスファイバがコアと応力付与部とを含む偏波保持ファイバであってよい。本開示の光ファイバアレイは、回転調心が必要な種々の光ファイバを対象とすることができる。
(8)光ファイバ配列部品上の隣り合う前記光ファイバの前記中心軸間距離が250μm以下であってもよい。本開示の光ファイバアレイは光ファイバを密に配置でき、コンパクトな光ファイバアレイとなり得る。
[本開示の実施形態の詳細]
以下、図面を参照しながら、本開示の光ファイバアレイに係る好適な実施形態について説明する。以下の説明において、異なる図面においても同じ符号を付した構成は同様であるとして、その説明を省略する場合がある。各図面は、説明を容易にするために模式的に記載している。
以下、図面を参照しながら、本開示の光ファイバアレイに係る好適な実施形態について説明する。以下の説明において、異なる図面においても同じ符号を付した構成は同様であるとして、その説明を省略する場合がある。各図面は、説明を容易にするために模式的に記載している。
(第1の実施形態)
図1は、第1の実施形態の光ファイバアレイが含むV溝基板の斜視図である。図2は、第1の実施形態の光ファイバアレイの製造工程を説明するためのフロー図である。図3Aから図3Cは、第1の実施形態の光ファイバアレイの製造過程における、V溝基板と光ファイバとの関係を説明するための、それぞれ端面図、側面図、および、上面図である。図4は、第1の実施形態の光ファイバアレイの、光ファイバの長手方向に沿った断面図である。図5は、第1の実施形態の光ファイバアレイの例を示す斜視図である。
図1は、第1の実施形態の光ファイバアレイが含むV溝基板の斜視図である。図2は、第1の実施形態の光ファイバアレイの製造工程を説明するためのフロー図である。図3Aから図3Cは、第1の実施形態の光ファイバアレイの製造過程における、V溝基板と光ファイバとの関係を説明するための、それぞれ端面図、側面図、および、上面図である。図4は、第1の実施形態の光ファイバアレイの、光ファイバの長手方向に沿った断面図である。図5は、第1の実施形態の光ファイバアレイの例を示す斜視図である。
本実施形態では、光ファイバ配列部品として図1に示すV溝基板10と、蓋となるリッド部材20(後述の例えば図5を参照。)を用いる。V溝基板10は、光学ガラス等からなり、等間隔のV字形の溝(V溝)12を有するベアファイバ配列部11と光ファイバの被覆部が配列される被覆配列部13とを一体に備えている。本開示では、樹脂被覆を除去して露出したガラスファイバをベアファイバ部4と呼ぶ。ベアファイバ配列部11には、光ファイバ1のベアファイバ部4が配列され、被覆配列部13には、光ファイバ1の被覆部5が配列される。ベアファイバ部4は、樹脂被覆の端部で折れやすいため、後述するように、光ファイバ1の被覆部5は被覆配列部13の箇所でV溝基板10に接着している。
次に、本実施形態に係る光ファイバアレイの製造方法について説明する。図2では、複数本の光ファイバのうち、光ファイバ配列部品に載置されていない部分の少なくとも一部を第2の樹脂被覆6(図5参照)でリボン状に一括接着した光ファイバリボンを対象として、光ファイバアレイを作製するためのフローを示している。光ファイバアレイの製造には、光ファイバリボン、光ファイバ配列部品としてのV溝基板10とリッド部材20、および、接着材を用いる。まず、光ファイバリボンを準備し、光ファイバリボンの端部において、各光ファイバ1を分離する(ステップS1)。分離する各光ファイバ1の長さは、作業性、調心制度、光ファイバのねじれにともなう信頼性を考慮して、例えば、10mm以上とすることが望ましい。光ファイバリボンとしては、全長にわたりすべての光ファイバ1を一体に固着した一体型の光ファイバリボンよりも、隣接する光ファイバ1が間欠的に接着されている間欠接着型の光ファイバリボンの方が、作業性がよい。複数本の光ファイバ1は、互いに接着され光ファイバリボンを構成する光ファイバではなく、互いに接着されていない複数本の単心光ファイバであってもよい。
次に、各光ファイバ1の先端部の樹脂被覆を所定長さだけ除去する(ステップS2)。これにより、各光ファイバ1の先端部には、ガラスファイバからなるベアファイバ部4が露出する。各光ファイバ1は、図3Aで示すように、1つのクラッド3の中に複数のコア2を配置したマルチコアファイバであり、クラッド3の周囲に樹脂被覆が設けられている。クラッド3は標準外径125μmのガラスファイバであり、樹脂被覆は通常1層あるいは2層の被覆層からなり、さらに最外層に着色層を有していてもよい。光ファイバ1の被覆外径は、光ファイバ1の径に等しい。
次に、各光ファイバ1を光ファイバ配列部品に載置する(ステップS3)。図3Aから図3Cに示すように、各光ファイバ1を光ファイバ配列部品であるV溝基板10の上に載置する。載置に当たっては、複数の光ファイバ1の各ベアファイバ部4が、各V溝12に収まるように配置し、光ファイバ1の樹脂被覆を除去していない各被覆部5を、V溝基板10に近接して配置した固定用治具21の上に載置する。ここで、V溝基板10には等間隔のピッチPでV溝12が並んでいる。各光ファイバ1を各V溝12内に収めた際に、光ファイバ1の中心軸間距離がV溝12のピッチPに等しくなる。V溝12のピッチPは光ファイバ1の被覆外径Dよりも大きい。
例えば、クラッド径125μm、被覆外径245μmの光ファイバ1に対して、V溝12のピッチPは250μmである。これにより、隣り合う光ファイバ1は被覆部5で接触することがない。また、V溝12のピッチP、すなわち隣り合う光ファイバ1の中心軸間距離を250μm以下にすることにより、光ファイバ1を密に配置でき、コンパクトな光ファイバアレイを得ることができる。
図3Bで示すように、被覆配列部13の表面Sは、各光ファイバ1をV溝基板10の上に載置した際に各ベアファイバ部4の中心軸とV溝基板10の被覆配列部13の表面Sとの法線距離hが光ファイバ1の被覆外径Dの1/2よりも大きくなる位置にあるので、各光ファイバ1の被覆部5は固定用治具21によって支持される。固定用治具21は各光ファイバ1のベアファイバ部4を各V溝12内に収納した際に、各ベアファイバ部4の中心軸がV溝基板10の被覆配列部13と平行になるように高さ方向が位置決めされている。これにより、光ファイバ1の被覆部5はV溝基板10と接触することがないため、光ファイバ1の被覆部5とV溝基板10との間に摩擦力が働かない。
光ファイバ1の被覆外径Dの製造ばらつきが、例えば±5μm、V溝基板10の各寸法の製造ばらつきが、例えば±1μmあるとする。この製造公差を考慮した場合、V溝12のピッチを被覆外径Dの設計値よりも7μm以上大きくし、かつ、ベアファイバ部4の中心軸とV溝基板10の被覆配列部13の表面Sとの法線距離hが被覆外径Dの設計値の1/2よりも大きく、その差が3.5μm以上となるように、光ファイバ1とV溝基板10とを組み合わせる。これにより、回転調心が容易な光ファイバアレイの構造が得られる。
次に、各光ファイバを回転調心した後、仮固定する(ステップS4)。回転調心は、既知の方法を用いることができる。例えば、各光ファイバ1の端面をモニタしながら、光ファイバ1の被覆部5を回転させる。各光ファイバ1の端面におけるコア2が所定方向となった時に、例えば、固定用治具21の箇所で押さえ具22によって各光ファイバ1を仮固定する。押さえ具22は、各光ファイバ1が固定用治具21上で回転しない程度の押圧力で、各光ファイバ1を押さえることが可能になっている。回転調心は、光ファイバ1の配列方向の一端部に位置する1つの光ファイバ1から順次行い、すべての光ファイバ1に対して回転調心が終了すると、ステップS5に移る。
ステップS5では、各ベアファイバ部4を光ファイバ固定部品に接着する。この工程では、まず、各光ファイバ1を仮固定した状態で、V溝基板10のベアファイバ配列部11の上に、リッド部材20を載置する。リッド部材20は、図4(または図5)に示す直方体形状のガラス部材である。ベアファイバ部4の断面形状は円形であるので、ベアファイバ部4とV溝12との間およびベアファイバ部4とリッド部材20との間に間隙が生じる。この間隙に、例えば紫外線硬化性樹脂31を充填し、紫外線を照射することによって、光ファイバ1のベアファイバ部4、V溝基板10のベアファイバ配列部11、および、リッド部材20の三者を接着する。これによって、光ファイバ1のベアファイバ部4の端面は、回転調心された状態でV溝基板10に固定される。
次に、各光ファイバ1の被覆部5を光ファイバ配列部品に接着する。光ファイバ固定部材であるV溝基板10の被覆配列部13と光ファイバ1の被覆部5との間には間隙が空いているため、この状態では、被覆部5とベアファイバ部4の際でベアファイバ部4が折れるおそれがある。このため、被覆配列部13の表面Sと光ファイバ1の被覆部5との間、および、各光ファイバ1の間に接着材32を充填し、光ファイバ1を被覆配列部13の箇所でV溝基板10に接着する。接着剤としては、紫外線硬化性樹脂を用いることができるが、熱硬化性樹脂を用いてもよい。以上の工程によって、図4に示す光ファイバアレイ100を得る。
(第2の実施形態)
図6は、本開示の光ファイバアレイの他の例を示す斜視図である。本実施形態では、光ファイバアレイ100’の光ファイバ配列部品として、マルチホールキャピラリ40を用いる。マルチホールキャピラリ40は、長手方向の断面L字形の光学ガラスからなる光学部品であり、直線状の複数のガイド孔42を等間隔のピッチPで有するベアファイバ配列部41と、光ファイバ1の樹脂被覆と間隙を介して対向する被覆配列部43を有している。本実施形態では、各光ファイバ1の各ベアファイバ部4がベアファイバ配列部41の各ガイド孔42によって配列されている以外は、第1の実施形態と同様の構成となっている。
図6は、本開示の光ファイバアレイの他の例を示す斜視図である。本実施形態では、光ファイバアレイ100’の光ファイバ配列部品として、マルチホールキャピラリ40を用いる。マルチホールキャピラリ40は、長手方向の断面L字形の光学ガラスからなる光学部品であり、直線状の複数のガイド孔42を等間隔のピッチPで有するベアファイバ配列部41と、光ファイバ1の樹脂被覆と間隙を介して対向する被覆配列部43を有している。本実施形態では、各光ファイバ1の各ベアファイバ部4がベアファイバ配列部41の各ガイド孔42によって配列されている以外は、第1の実施形態と同様の構成となっている。
光ファイバアレイ100’では、各光ファイバ1の各ベアファイバ部4がマルチホールキャピラリ40の各ガイド孔42内に挿入されて配列している。また、光ファイバ1は、光ファイバ1の被覆外径が光ファイバ1の中心軸間距離よりも小さく、かつ、ベアファイバ部4の中心軸と被覆配列部43との法線距離が被覆外径の1/2よりも大きい。また、各ベアファイバ部4は各ガイド孔42内で接着剤によってマルチホールキャピラリ40に固着されており、各光ファイバ1の各被覆部5は、被覆配列部43上でマルチホールキャピラリ40に接着固定されている。
以上、本開示の実施形態について、回転調心が必要な光ファイバとして、マルチコアファイバの例について説明したが、図6Bに示すように光ファイバはガラスファイバがコア2と応力付与部7とを含む偏波保持ファイバ1’であってもよい。マルチコアファイバあるいは偏波保持ファイバは、ガラスファイバとこのガラスファイバを覆う樹脂被覆とを含み、ガラスファイバの中心軸に関して軸対称でない構造を有する光ファイバの例である。そして、本発明はこれらの実施形態での例示に限定されるものではなく、請求の範囲に記載された事項の範囲内および均等の範囲内におけるすべての変更を含む。また、複数の実施形態について組み合わせが可能である限り、本発明は任意の実施形態を組み合わせたものを含む。
1…光ファイバ、1’… 偏波保持ファイバ、2…コア、3…クラッド、4…ベアファイバ部、5…被覆部、6…第2の樹脂被覆、7…応力付与部、10…V溝基板、11…ベアファイバ配列部、12…V溝、13…被覆配列部、20…リッド部材、21…固定用治具、22…押さえ具、31…紫外線硬化性樹脂、32…接着材、40…マルチホールキャピラリ、41…ベアファイバ配列部、42…ガイド孔、43…被覆配列部、100,100’…光ファイバアレイ
Claims (8)
- ガラスファイバと前記ガラスファイバを覆う樹脂被覆とを含み、前記ガラスファイバの中心軸に関して軸対称でない構造を有する複数の光ファイバと、
前記複数の光ファイバを配列させる光ファイバ配列部品と、
を備えた光ファイバアレイであって、
前記光ファイバ配列部品は、
各光ファイバの先端部で前記樹脂被覆から前記ガラスファイバが露出した、各光ファイバのベアファイバ部を載置するベアファイバ配列部と、
各光ファイバの前記ガラスファイバが前記樹脂被覆で覆われた、各光ファイバの被覆部を固定する被覆配列部と、を有し、
各光ファイバの被覆外径は隣り合う前記光ファイバの中心軸間距離よりも小さく、かつ、各光ファイバの中心軸と前記被覆配列部との法線距離は前記被覆外径の1/2よりも大きい、光ファイバアレイ。 - 前記複数の光ファイバは、複数の単心光ファイバである、
請求項1に記載の光ファイバアレイ。 - 前記複数の光ファイバは、前記光ファイバ配列部品に載置されていない部分の少なくとも一部で第2の樹脂被覆により一括接着され光ファイバリボンを構成している、
請求項1に記載の光ファイバアレイ。 - 前記ベアファイバ配列部が前記ベアファイバ部を載置する複数のV溝を有する、
請求項1から請求項3のいずれか1項に記載の光ファイバアレイ。 - 前記ベアファイバ配列部が前記ベアファイバ部を挿入する複数の孔を有する、
請求項1から請求項3のいずれか1項に記載の光ファイバアレイ。 - 各光ファイバは、前記ガラスファイバが複数のコアと前記複数のコアをまとめて覆うクラッドとを含むマルチコアファイバである、
請求項1から請求項5のいずれか1項に記載の光ファイバアレイ。 - 各光ファイバは、前記ガラスファイバがコアと応力付与部とを含む偏波保持ファイバである、
請求項1から請求項5のいずれか1項に記載の光ファイバアレイ。 - 前記光ファイバ配列部品上の隣り合う前記光ファイバの前記中心軸間距離が250μm以下である、
請求項1から請求項7のいずれか1項に記載の光ファイバアレイ。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019039849A JP2022067142A (ja) | 2019-03-05 | 2019-03-05 | 光ファイバアレイ |
JP2019-039849 | 2019-03-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020179513A1 true WO2020179513A1 (ja) | 2020-09-10 |
Family
ID=72338532
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/007153 WO2020179513A1 (ja) | 2019-03-05 | 2020-02-21 | 光ファイバアレイ |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2022067142A (ja) |
WO (1) | WO2020179513A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022138761A1 (ja) * | 2020-12-25 | 2022-06-30 | 住友電気工業株式会社 | 光ファイバリボン、光ファイバ接続部品、及び光ファイバ接続部品の製造方法 |
WO2022138763A1 (ja) * | 2020-12-25 | 2022-06-30 | 住友電気工業株式会社 | 光ファイバ接続部品の製造方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11174274A (ja) * | 1997-12-12 | 1999-07-02 | Sumitomo Electric Ind Ltd | 光ファイバアレイおよび金型の製造方法 |
JPH11202155A (ja) * | 1998-01-12 | 1999-07-30 | Sumitomo Electric Ind Ltd | 光ファイバコネクタ |
JP2002296442A (ja) * | 2001-03-29 | 2002-10-09 | Fujikura Ltd | 偏波保持光ファイバ配列部品およびこれを用いた光部品、偏波保持光ファイバ配列部品の製造方法 |
JP2006084516A (ja) * | 2004-09-14 | 2006-03-30 | Sumitomo Metal Mining Co Ltd | 光ファイバアレイとその製造方法 |
WO2014109395A1 (ja) * | 2013-01-10 | 2014-07-17 | 住友電気工業株式会社 | 光部品および光通信システム |
WO2017152003A1 (en) * | 2016-03-04 | 2017-09-08 | Molex, Llc | Optical coupling assembly |
-
2019
- 2019-03-05 JP JP2019039849A patent/JP2022067142A/ja active Pending
-
2020
- 2020-02-21 WO PCT/JP2020/007153 patent/WO2020179513A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11174274A (ja) * | 1997-12-12 | 1999-07-02 | Sumitomo Electric Ind Ltd | 光ファイバアレイおよび金型の製造方法 |
JPH11202155A (ja) * | 1998-01-12 | 1999-07-30 | Sumitomo Electric Ind Ltd | 光ファイバコネクタ |
JP2002296442A (ja) * | 2001-03-29 | 2002-10-09 | Fujikura Ltd | 偏波保持光ファイバ配列部品およびこれを用いた光部品、偏波保持光ファイバ配列部品の製造方法 |
JP2006084516A (ja) * | 2004-09-14 | 2006-03-30 | Sumitomo Metal Mining Co Ltd | 光ファイバアレイとその製造方法 |
WO2014109395A1 (ja) * | 2013-01-10 | 2014-07-17 | 住友電気工業株式会社 | 光部品および光通信システム |
WO2017152003A1 (en) * | 2016-03-04 | 2017-09-08 | Molex, Llc | Optical coupling assembly |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022138761A1 (ja) * | 2020-12-25 | 2022-06-30 | 住友電気工業株式会社 | 光ファイバリボン、光ファイバ接続部品、及び光ファイバ接続部品の製造方法 |
WO2022138763A1 (ja) * | 2020-12-25 | 2022-06-30 | 住友電気工業株式会社 | 光ファイバ接続部品の製造方法 |
EP4270070A4 (en) * | 2020-12-25 | 2024-05-22 | Sumitomo Electric Industries, Ltd. | OPTICAL FIBER RIBBON, OPTICAL FIBER CONNECTION COMPONENT AND METHOD FOR MANUFACTURING OPTICAL FIBER CONNECTION COMPONENT |
Also Published As
Publication number | Publication date |
---|---|
JP2022067142A (ja) | 2022-05-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012121318A1 (ja) | 光コネクタ、マルチコアファイバとバンドル構造との調芯方法、ファイバ配列変換部材 | |
WO2020179513A1 (ja) | 光ファイバアレイ | |
JP2000193844A (ja) | 光ファイバアレイの製造方法 | |
JP2010002743A (ja) | 光ファイバテープ心線の製造方法及びその装置 | |
JP2012185283A (ja) | 多心光コネクタ、多心光コネクタの製造方法、多心光コネクタ製造用の整列部材 | |
US11314019B2 (en) | Capillary-type lens array and capillary-type lens array composite component | |
WO2021187178A1 (ja) | 光ファイバ接続部品及び光ファイバ接続部品の製造方法 | |
JPWO2021187178A5 (ja) | ||
JP3772929B2 (ja) | 光ファイバ保持部品および光ファイバアレイ | |
JP2003043305A (ja) | 光ファイバアレイ | |
WO2022138763A1 (ja) | 光ファイバ接続部品の製造方法 | |
JP5224337B2 (ja) | 光導波路コネクタ及び光導波路コネクタの製造方法 | |
JP3989316B2 (ja) | 光ファイバの接続方法および光ファイバの接続構造 | |
US6885806B2 (en) | Method of making an optical fiber array by overlapping stripped portions of ribbon fibers | |
KR20020052988A (ko) | 리본 섬유 및 그 제조 방법과, 이것을 이용한 광섬유 어레이 | |
TWI771467B (zh) | 光連接零件、光連接零件之製造方法 | |
JPH10197755A (ja) | 光導波路モジュール及びその製造方法 | |
WO2022138761A1 (ja) | 光ファイバリボン、光ファイバ接続部品、及び光ファイバ接続部品の製造方法 | |
JP4207903B2 (ja) | 光ファイバアレイの製造方法 | |
JP2008040086A (ja) | 光ファイバアレイ | |
JP2000081528A (ja) | 光ファイバアレイの製造方法 | |
JP2000066057A (ja) | 光ファイバアレイ | |
KR100424459B1 (ko) | 광섬유 블록의 정렬 방법 | |
JP2005345951A (ja) | 光ファイバアレイおよびその製造方法 | |
JPH08327486A (ja) | 光ファイバセンサの作製方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20766984 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20766984 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |