WO2022138761A1 - 光ファイバリボン、光ファイバ接続部品、及び光ファイバ接続部品の製造方法 - Google Patents

光ファイバリボン、光ファイバ接続部品、及び光ファイバ接続部品の製造方法 Download PDF

Info

Publication number
WO2022138761A1
WO2022138761A1 PCT/JP2021/047692 JP2021047692W WO2022138761A1 WO 2022138761 A1 WO2022138761 A1 WO 2022138761A1 JP 2021047692 W JP2021047692 W JP 2021047692W WO 2022138761 A1 WO2022138761 A1 WO 2022138761A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
optical
optical fibers
fibers
fiber ribbon
Prior art date
Application number
PCT/JP2021/047692
Other languages
English (en)
French (fr)
Inventor
哲 森島
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to US18/038,131 priority Critical patent/US20230367092A1/en
Priority to EP21910901.4A priority patent/EP4270070A4/en
Priority to CN202180081012.XA priority patent/CN116710820A/zh
Priority to JP2022571584A priority patent/JPWO2022138761A1/ja
Publication of WO2022138761A1 publication Critical patent/WO2022138761A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4479Manufacturing methods of optical cables
    • G02B6/448Ribbon cables
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3833Details of mounting fibres in ferrules; Assembly methods; Manufacture
    • G02B6/3834Means for centering or aligning the light guide within the ferrule
    • G02B6/3843Means for centering or aligning the light guide within the ferrule with auxiliary facilities for movably aligning or adjusting the fibre within its ferrule, e.g. measuring position or eccentricity
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4403Optical cables with ribbon structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02042Multicore optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/024Optical fibres with cladding with or without a coating with polarisation maintaining properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3833Details of mounting fibres in ferrules; Assembly methods; Manufacture
    • G02B6/3863Details of mounting fibres in ferrules; Assembly methods; Manufacture fabricated by using polishing techniques
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3873Connectors using guide surfaces for aligning ferrule ends, e.g. tubes, sleeves, V-grooves, rods, pins, balls
    • G02B6/3885Multicore or multichannel optical connectors, i.e. one single ferrule containing more than one fibre, e.g. ribbon type

Definitions

  • the present disclosure relates to optical fiber ribbons, optical fiber connection parts, and methods for manufacturing optical fiber connection parts.
  • This application claims priority based on Japanese Application No. 2020-217224 filed on December 25, 2020, and incorporates all the contents described in the Japanese application.
  • Patent Document 1 discloses a method for manufacturing an optical connector including a multi-core fiber. According to the manufacturing method disclosed in Patent Document 1, after the multi-core fiber is arranged in the V-groove provided in the connector ferrule, the orientation around the central axis of the multi-core fiber is adjusted (that is, the multi-core fiber is rotated. Be mindful). Further, Patent Document 2 discloses an optical fiber ribbon having a plurality of multi-core fibers in which cores in each multi-core fiber are arranged in a predetermined orientation. In the optical fiber ribbon disclosed in Patent Document 2, adjacent multi-core fibers are intermittently bonded to each other along the longitudinal direction of the optical fiber ribbon.
  • the optical fiber ribbon of the present disclosure includes a plurality of optical fibers including a glass fiber having a core and a clad covering the core, and a resin coating covering the glass fiber.
  • the plurality of optical fibers are arranged in parallel. The distance in the direction orthogonal to the longitudinal direction between the central axes of the adjacent optical fibers among the plurality of optical fibers is larger than the outer diameter of each of the plurality of optical fibers.
  • optical fiber connection component using the above optical fiber ribbon is provided.
  • the method for manufacturing the optical fiber connection component of the present disclosure includes a step of separating the plurality of optical fibers included in the optical fiber ribbon of the present disclosure, and a step of exposing the ends of the plurality of glass fibers from the resin coating. , A step of mounting the plurality of glass fibers exposed from the resin coating on the holding member, and a step of adjusting the orientation around the central axis of each of the plurality of optical fibers.
  • each multi-core fiber is separated in the tip region of the optical fiber ribbon, and then each separated multi-core fiber is mounted on a connector ferrule. Then, after each multi-core fiber is rotationally aligned, the multi-core fiber and the connector ferrule are fixed by an adhesive. Then, the end face of the multi-core fiber protruding from the connector ferrule is polished so that the end face of the multi-core fiber and the end face of the connector ferrule are flush with each other.
  • the multi-core fiber included in the optical fiber ribbon is rotationally aligned, the multi-core fiber comes into contact with an adjacent multi-core fiber that has already been rotationally aligned, and the orientation around the central axis of the adjacent multi-core fiber. (Specifically, the position of the core on the end face) may fluctuate.
  • the accuracy of the rotational alignment of each multi-core fiber is lowered due to the contact between the adjacent multi-core fibers in the rotational alignment process.
  • the coupling loss between the multi-core fiber and the external optical device increases, and the optical characteristics of the optical connector deteriorate.
  • there is room for study on an optical fiber ribbon capable of improving the optical characteristics of an optical fiber connecting component such as an optical connector.
  • An optical fiber ribbon comprising a plurality of optical fibers including a glass fiber having a core and a clad covering the core, and a resin coating covering the glass fiber, and the plurality of optical fibers arranged in parallel.
  • the optical fiber ribbon wherein the distance in the direction orthogonal to the longitudinal direction between the central axes of the adjacent optical fibers among the plurality of optical fibers is larger than the outer diameter of each of the plurality of optical fibers.
  • the rotational alignment of each optical fiber is performed with high accuracy. It will be possible to do.
  • the rotational alignment of a predetermined optical fiber is performed, it is possible to prevent the predetermined optical fiber from coming into contact with an adjacent optical fiber that has already undergone rotational alignment. In this way, the situation in which the orientation around the central axis of the adjacent optical fiber (specifically, the position of the core on the end face of the adjacent optical fiber) fluctuates is prevented. Therefore, it is possible to provide an optical fiber ribbon capable of improving the optical characteristics of the optical fiber connecting component.
  • each of the plurality of optical fibers is a multi-core fiber or a polarization-retaining fiber.
  • the optical fiber is a multi-core fiber or a polarization-retaining fiber
  • the accuracy of the rotational alignment of each optical fiber is important when manufacturing an optical fiber connection component such as an optical connector using an optical fiber ribbon.
  • the optical fiber ribbon of the present embodiment it is possible to perform rotational alignment of each optical fiber with high accuracy.
  • each optical fiber can be easily manufactured when an optical fiber connection component such as an optical connector is manufactured using an optical fiber ribbon. Can be separated into. Further, when the optical fiber is rotated around the central axis, the twist generated in the optical fiber can be relaxed. Further, since a plurality of optical fibers are arranged with a gap provided in a direction orthogonal to the longitudinal direction, when the rotational alignment of the predetermined optical fiber is performed, the rotational alignment of the predetermined optical fiber is already performed. It is prevented from coming into contact with the adjacent optical fiber made.
  • the length of each optical fiber separated in the tip region of the optical fiber ribbon is 10 mm or more. In this way, it is possible to easily secure an optical fiber separated from the optical fiber ribbon by a sufficient length. Further, since the length of the separated optical fiber is sufficient, it is possible to loosen the twist generated in the optical fiber when the optical fiber is rotated around the central axis.
  • the optical fiber ribbon further includes a dummy wire arranged between the adjacent optical fibers, and the dummy wire and the adjacent optical fiber are intermittently bonded to each other in the longitudinal direction.
  • adjacent optical fibers are prevented from coming into contact with each other.
  • the optical fiber is prevented from coming into contact with the adjacent optical fiber that has already been rotationally aligned.
  • each optical fiber and a dummy wire can be easily separated. Further, when the optical fiber is rotated around the central axis, the twist generated in the optical fiber can be suppressed.
  • the resin coating and the dummy wire are simultaneously removed in the step of exposing the end portion of each glass fiber from the resin coating. Can be done.
  • the length of each optical fiber separated in the tip region of the optical fiber ribbon is 10 mm or more. Become. In this way, it is possible to easily secure an optical fiber separated from the optical fiber ribbon by a sufficient length. Further, since the length of the separated optical fiber is sufficient, it is possible to loosen the twist generated in the optical fiber when the optical fiber is rotated around the central axis.
  • the variation in the orientation around the central axis of the plurality of optical fibers with respect to the virtual plane passing through the central axes of the plurality of optical fibers is within 30 degrees.
  • the optical fiber ribbon according to any one item.
  • the amount of rotation of each optical fiber can be suppressed, so that the twist generated in each optical fiber can be relaxed. Furthermore, since the twist generated in each optical fiber becomes gentle, the length of each separated optical fiber (in other words, the length of the glass fiber exposed from the resin coating) can be shortened, and light from an optical connector or the like can be shortened. It is possible to reduce the length dimension of the fiber connection component.
  • FIG. 1 is a plan view showing an optical fiber ribbon 1 according to the first embodiment.
  • the optical fiber ribbon 1 includes optical fibers 2a to 2d extending in the Z-axis direction.
  • the optical fibers 2a to 2d may be collectively referred to simply as the optical fiber 2.
  • the optical fiber ribbon 1 has four optical fibers 2, but the number of optical fibers 2 is not particularly limited.
  • the optical fibers 2a to 2d are arranged in parallel in a direction (X-axis direction) orthogonal to the longitudinal direction (Z-axis direction) of the optical fiber 2.
  • the optical fiber ribbon 1 is an intermittent adhesive type optical fiber ribbon. That is, the optical fibers 2 adjacent to each other are intermittently bonded by the adhesive 10 along the Z-axis direction.
  • each adhesive 10 provided between the optical fiber 2b and the optical fiber 2c is a plurality of adhesives 10 provided between the optical fiber 2a and the optical fiber 2b in the Z-axis direction. It is located between the adhesives 10 adjacent to each other.
  • optical fibers 2 adjacent to each other are intermittently bonded to each other with a gap of 10 mm or more in the Z-axis direction. That is, the distance d1 between the adhesives 10 adjacent to each other in the Z-axis direction is 10 mm or more.
  • FIG. 2 is a cross-sectional view of the optical fiber ribbon 1 cut along the line II-II shown in FIG. In FIG. 2, for convenience of explanation, the hatching for expressing the cross section is omitted.
  • Each optical fiber 2 has a glass fiber 22 and a resin coating 21 that covers the glass fiber 22.
  • Each optical fiber 2 has a structure that is substantially equal to each other and is not axisymmetric with respect to the central axis Ax in a cross section perpendicular to the central axis Ax extending in the longitudinal direction (Z-axis direction) of the optical fiber 2, that is, it has a structure other than a specific rotation angle. It has a structure that does not overlap with itself.
  • a multi-core fiber is used as an example of the optical fiber 2 having a structure that is not axisymmetric with respect to the central axis Ax.
  • the glass fiber 22 has a plurality of cores 23 through which signal light propagates, and a clad 24 that covers the plurality of cores 23.
  • the refractive index of each core 23 is larger than that of the clad 24.
  • the variation in the direction around the central axis Ax of each optical fiber 2 with respect to the virtual plane H1 passing through the central axis Ax of each optical fiber 2 is within 30 degrees.
  • the angle between the reference line H2 of the optical fiber 2a (for example, a straight line connecting the central axis and the center of a specific core, a straight line connecting the centers of two or more specific cores) and the virtual plane H1 is 30. It will be within the degree.
  • the virtual plane H1 is sandwiched between any of two parallel common tangent planes of the clad 24 of each optical fiber 2 or two parallel common tangent planes, and is formed from two parallel common tangent planes. It may be a plane at equal distances.
  • the outer diameter of each optical fiber 2 may be the same. In this case, the outer diameter of each optical fiber 2 is assumed to be R.
  • the distance D1 in the X-axis direction between the central axes Ax of the optical fibers 2 adjacent to each other is larger than the outer diameter R of the optical fiber 2.
  • the optical fibers 2a to 2d are arranged with a gap provided in the X-axis direction, and the adjacent optical fibers 2 are not in contact with each other.
  • FIG. 3 is a flowchart for explaining an example of a method of manufacturing the optical fiber connection component 100 using the optical fiber ribbon 1.
  • the optical fiber connection component 100 functions as an optical fiber array including a plurality of optical fibers 2.
  • the optical fiber connection component 100 functions as an optical connector.
  • step S1 the optical fibers 2a to 2d contained in the optical fiber ribbon 1 are separated from each other in the tip region K1 of the optical fiber ribbon 1.
  • the length of each optical fiber 2 separated in the tip region K1 of the optical fiber ribbon 1 is 10 mm or more. .. Therefore, it is possible to easily secure the optical fiber 2 separated from the optical fiber ribbon 1 by a sufficient length. Further, since the length of the separated optical fiber 2 is sufficient, it is possible to loosen the twist generated in the optical fiber 2 when the optical fiber 2 is rotated around the central axis Ax.
  • FIG. 4 is a plan view showing an end portion of the glass fiber 22 exposed from the resin coating 21.
  • step S2 the end portion of the glass fiber 22 of each optical fiber 2 is exposed from the resin coating 21 by using a predetermined tool.
  • FIG. 5 is a diagram showing how each glass fiber 22 is rotationally aligned.
  • step S3 each glass fiber 22 exposed from the resin coating 21 is mounted on the holding substrate 6.
  • each glass fiber 22 is arranged in the corresponding one of the plurality of V-shaped groove portions 62 formed in the holding substrate 6.
  • Each glass fiber 22 is mounted on the holding substrate 6 so as to be arranged in the X-axis direction and project outward from the holding substrate 6 in the Z-axis direction.
  • step S4 the orientation around the central axis Ax of each glass fiber 22 (in other words, the position of the core 23 on the end face of the glass fiber 22) is adjusted.
  • the end face of the glass fiber 22 protruding from the holding substrate 6 may be imaged by an image pickup device such as a camera.
  • a rotation centering device (not shown) may automatically adjust the orientation around the central axis Ax of the glass fiber 22 based on the captured image showing the end face of the glass fiber 22 acquired by the image pickup device.
  • the rotary centering device adjusts the orientation around the central axis Ax of the glass fiber 22 so that the position of the core 23 becomes a predetermined position.
  • the optical fiber ribbon 1 since the orientation around the central axis Ax of each optical fiber 2 varies, it is necessary to perform rotational alignment for each optical fiber 2. On the other hand, since the variation in the orientation around the central axis Ax of each optical fiber 2 is within 30 degrees, it is possible to suppress the amount of rotation of each optical fiber 2 at the time of rotation alignment. As a result, it is possible to suppress the influence of the twist of each optical fiber 2 caused by the rotational alignment. Further, since the influence of the twist of each optical fiber 2 is suppressed, the length of each separated optical fiber 2 can be shortened, and the increase in the length dimension of the optical fiber connection component 100 in the Z-axis direction can be suppressed. be able to.
  • the resin coatings 21 of each optical fiber 2 are arranged in the X-axis direction with voids provided, the resin coatings 21 are not in contact with each other. Therefore, for example, it is prevented that the resin coating 21 of the optical fiber 2b comes into contact with the resin coating 21 of the adjacent optical fibers 2a and 2c while the rotational alignment is performed on the optical fiber 2b.
  • the resin coating 21 of the optical fiber 2b comes into contact with the resin coating 21 of the optical fiber 2a during the rotational alignment of the optical fiber 2b, the central axis Ax of the optical fiber 2a for which the rotational alignment has already been performed is performed. It is assumed that the orientation of the will fluctuate. As a result, the rotational position of the optical fiber 2a is displaced, and the accuracy of the rotational alignment of the optical fiber 2b is lowered.
  • the orientation around the central axis Ax of the optical fiber 2 for which rotational alignment has already been performed may change. Be prevented.
  • FIG. 6 is a plan view showing the optical fiber connection component 100.
  • the lid portion 7 is arranged above the holding substrate 6.
  • Each optical fiber 2 is sandwiched by the lid portion 7 and the holding substrate 6 in the Y-axis direction perpendicular to the X-axis and the Z-axis.
  • each glass fiber 22, the holding substrate 6, and the lid portion 7 are collectively bonded with an adhesive.
  • step S6 the end face of each glass fiber 22 is polished.
  • these end faces are polished so that the end face of each glass fiber 22, the end face of the lid portion 7, and the end face of the holding substrate 6 are flush with each other.
  • the optical fiber connection component 100 is manufactured using the optical fiber ribbon 1.
  • the rotational alignment of each optical fiber 2 (the orientation around the central axis Ax of each optical fiber 2). Adjustment) can be performed with high accuracy.
  • the rotational alignment of the predetermined optical fiber 2 is performed, the predetermined optical fiber 2 is prevented from coming into contact with the adjacent optical fiber 2 for which the rotational alignment has already been performed. In this way, it is possible to prevent a situation in which the orientation around the central axis Ax of the optical fiber 2 that has already been rotationally aligned (specifically, the position of the core 23 on the end face of the optical fiber 2) fluctuates. ..
  • each optical fiber 2 can be performed with high accuracy, and the coupling loss between the optical fiber connecting component 100 and another optical component (other optical connector or the like) may increase. Be prevented.
  • the optical fiber ribbon 1 capable of improving the optical characteristics of the optical fiber connecting component 100.
  • each optical fiber 2 is manufactured when the optical fiber connection component 100 is manufactured by using the optical fiber ribbon 1. Can be easily separated. Further, when the optical fiber 2 is rotated around the central axis Ax, the twist generated in the optical fiber 2 can be relaxed.
  • FIG. 7 is a plan view showing the optical fiber ribbon 1A according to the second embodiment.
  • the optical fiber ribbon 1A includes optical fibers 2a and 2b extending in the Z-axis direction and dummy wires 3a and 3b.
  • the optical fibers 2a and 2b may be collectively referred to as the optical fiber 2
  • the dummy wires 3a and 3b may be collectively referred to as the dummy wires 3.
  • the optical fiber ribbon 1A has two optical fibers 2 and two dummy wires 3, but the number of optical fibers 2 and the number of dummy wires 3 are not particularly limited.
  • the optical fibers 2a and 2b and the dummy lines 3a and 3b are arranged in parallel in the X-axis direction orthogonal to their longitudinal direction (Z-axis direction).
  • the optical fiber 2 and the dummy wire 3 are arranged alternately in the X-axis direction.
  • the dummy wire 3a is arranged between the optical fiber 2a and the optical fiber 2b
  • the optical fiber 2b is arranged between the dummy wire 3a and the dummy wire 3b.
  • the optical fiber ribbon 1A is an intermittent adhesive type optical fiber ribbon. That is, the optical fiber 2 and the dummy wire 3 adjacent to each other are intermittently bonded by the adhesive 10A along the Z-axis direction.
  • each adhesive 10A provided between the dummy wire 3a and the optical fiber 2b is a plurality of adhesives 10A provided between the optical fiber 2a and the dummy wire 3a in the Z-axis direction. It is located between the adhesives 10A adjacent to each other.
  • the optical fiber 2 and the dummy wire 3 adjacent to each other are intermittently bonded to each other with a gap of 10 mm or more in the Z-axis direction. That is, the distance d2 between the adhesives 10A adjacent to each other in the Z-axis direction is 10 mm or more.
  • FIG. 8 is a cross-sectional view of the optical fiber ribbon 1A cut along the line VIII-VIII shown in FIG. 7.
  • the hatching for expressing the cross section is omitted.
  • the variation in the orientation around the central axis Ax of each optical fiber 2 with respect to the virtual plane H3 passing through the central axis Ax of each optical fiber 2 is within 30 degrees.
  • the angle between the virtual plane H4 and the virtual plane H3 passing through the centers of the plurality of cores 23 of the optical fiber 2a is within 30 degrees.
  • the outer diameter of each optical fiber 2 may be the same. In this case, the outer diameter of each optical fiber 2 is assumed to be R.
  • Each dummy wire 3 is made of a resin material.
  • each dummy wire 3 may be made of the same resin material as the resin coating 21 of the optical fiber 2.
  • the outer diameter of the dummy wire 3 is R1, and may be the same as the outer diameter R of the optical fiber 2.
  • the distance D2 in the X-axis direction between the optical fiber 2a and the central axis Ax of the optical fiber 2b adjacent to each other is larger than the outer diameter R of the optical fiber 2.
  • the distance D2 is 2R.
  • step S1 (Manufacturing method of optical fiber connection component including the optical fiber ribbon of the second embodiment)
  • step S1 (Manufacturing method of optical fiber connection component including the optical fiber ribbon of the second embodiment)
  • step S1 (Manufacturing method of optical fiber connection component including the optical fiber ribbon of the second embodiment)
  • the optical fibers 2a and 2b and the dummy wires 3a and 3b contained in the optical fiber ribbon 1A are separated from each other in the tip region K2 of the optical fiber ribbon 1A.
  • the distance d2 between the adhesives 10A adjacent to each other in the Z-axis direction is 10 mm or more
  • the lengths of the optical fibers 2 and the dummy wires 3 separated in the tip region K2 of the optical fiber ribbon 1A are long. It will be 10 mm or more. Therefore, it is possible to easily secure the optical fiber 2 separated from the optical fiber ribbon 1A by a sufficient length. Further, since the length of the separated optical fiber 2 is sufficient, it is possible to loosen the twist generated in the optical fiber
  • FIG. 9 is a plan view showing an end portion of each glass fiber 22 exposed from the resin coating 21.
  • step S2 the end portion of the glass fiber 22 of each optical fiber 2 is exposed from the resin coating 21 by using a predetermined tool.
  • a predetermined tool for example, a thermal jacket remover or the like
  • FIG. 10 is a diagram showing how each glass fiber 22 is rotationally aligned.
  • step S3 each glass fiber 22 exposed from the resin coating 21 is mounted on the holding substrate 6A.
  • each glass fiber 22 is arranged in the corresponding one of the plurality of V-shaped groove portions 62A formed in the holding substrate 6A.
  • Each glass fiber 22 is mounted on the holding substrate 6A so as to be arranged in the X-axis direction and project outward from the holding substrate 6A in the Z-axis direction.
  • step S4 the orientation around the central axis Ax of each glass fiber 22 is adjusted.
  • the resin coatings 21 of the optical fibers 2 are not in contact with each other. Therefore, for example, it is prevented that the resin coating 21 of the optical fiber 2b comes into contact with the resin coating 21 of the optical fiber 2a while the rotational alignment is performed on the optical fiber 2b.
  • the central axis Ax of the optical fiber 2a for which the rotational alignment has already been performed is performed. It is assumed that the orientation of the will fluctuate. As a result, the rotational position of the optical fiber 2a is displaced, and the accuracy of the rotational alignment of the optical fiber 2a is lowered.
  • FIG. 11 is a plan view showing the optical fiber connection component 100A.
  • step S5 the lid portion 7A is arranged above the holding substrate 6A.
  • Each optical fiber 2 is sandwiched by the lid portion 7A and the holding substrate 6A in the Y-axis direction perpendicular to the X-axis and the Z-axis.
  • each glass fiber 22, the holding substrate 6A, and the lid portion 7A are collectively bonded with an adhesive.
  • these end faces are polished so that the end face of each glass fiber 22, the end face of the lid portion 7A, and the end face of the holding substrate 6A are flush with each other. In this way, the optical fiber connection component 100A is manufactured using the optical fiber ribbon 1A.
  • an optical fiber connection component 100A such as an optical connector is manufactured using the optical fiber ribbon 1A
  • the predetermined optical fiber 2 is prevented from coming into contact with the adjacent optical fiber 2 for which the rotational alignment has already been performed.
  • each optical fiber 2 can be performed with high accuracy, and the coupling loss between the optical fiber connection component 100A and another optical component (other optical connector, etc.) may increase. Be prevented.
  • the optical fiber ribbon 1A capable of improving the optical characteristics of the optical fiber connecting component 100A.
  • the optical fiber 2 and the dummy wire 3 adjacent to each other are intermittently bonded to each other in the Z-axis direction, when the optical fiber connection component 100A is manufactured using the optical fiber ribbon 1A. , Each optical fiber 2 and the dummy wire 3 can be easily separated. Further, when the optical fiber 2 is rotated around the central axis Ax, the twist generated in the optical fiber 2 can be relaxed.
  • the optical fiber connection component 100A may be manufactured using the optical fiber ribbon 1A according to the second embodiment.
  • the optical fiber connection component 100 may be manufactured using the optical fiber ribbon 1 according to the first embodiment.
  • a multi-core fiber is used as an example of the optical fiber 2, but the optical fiber 2 may be a polarization holding fiber.
  • the polarization-retaining fiber has a pair of stress-applying portions, a core arranged between the pair of stress-applying portions and through which signal light propagates, and a pair of stress-applying portions and a clad covering the core.
  • a polarization-retaining fiber is used as the optical fiber 2, it is possible to suppress crosstalk between an optical fiber connecting component optically connected to each other and another optical component.
  • the holding member configured to hold each glass fiber 22 is not limited to the holding substrate having the groove portion and the lid portion.
  • the holding member may be a hole capillary having a plurality of holes arranged in the X-axis direction. Each of the plurality of holes extends in the Z-axis direction and is configured to hold a corresponding one of the plurality of glass fibers 22.
  • 1,1A Optical fiber ribbon 2,2a, 2b, 2c, 2d: Optical fiber 3,3a, 3b: Dummy wire 6,6A: Holding substrate 7,7A: Lid portion 10, 10A: Adhesive 21: Resin coating 22 : Glass fiber 23: Core 24: Clad 62, 62A: Groove 100, 100A: Optical fiber connection component

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Abstract

光ファイバリボンは、コアと前記コアを覆うクラッドとを有するガラスファイバと、前記ガラスファイバを覆う樹脂被覆とを含む複数本の光ファイバを備える。前記複数本の光ファイバが並列に配列されている。前記複数本の光ファイバのうち隣接した光ファイバの中心軸間の長手方向に直交する方向における距離は、前記複数本の光ファイバ各々の外径よりも大きい。

Description

光ファイバリボン、光ファイバ接続部品、及び光ファイバ接続部品の製造方法
 本開示は、光ファイバリボン、光ファイバ接続部品、及び光ファイバ接続部品の製造方法に関する。
 本出願は、2020年12月25日出願の日本出願第2020-217224号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
 特許文献1には、マルチコアファイバを備えた光コネクタの製造方法が開示されている。特許文献1に開示された製造方法によれば、マルチコアファイバがコネクタフェルールに設けられたV溝に配置された後に、マルチコアファイバの中心軸回りの方位が調整される(即ち、マルチコアファイバが回転調心される)。また、特許文献2には、それぞれのマルチコアファイバ内のコアが所定の向きで配置された複数のマルチコアファイバを有する光ファイバリボンが開示されている。特許文献2に開示された光ファイバリボンでは、隣接するマルチコアファイバが光ファイバリボンの長手方向に沿って間欠的に相互に接着されている。
日本国特開2015-125172号公報 日本国特開2017-173514号公報
 本開示の光ファイバリボンは、コアと前記コアを覆うクラッドとを有するガラスファイバと、前記ガラスファイバを覆う樹脂被覆とを含む複数本の光ファイバを備える。前記複数本の光ファイバが並列に配列されている。前記複数本の光ファイバのうち隣接した光ファイバの中心軸間の長手方向に直交する方向における距離は、前記複数本の光ファイバ各々の外径よりも大きい。
 また、上記光ファイバリボンを用いた光ファイバ接続部品が提供される。
 本開示の光ファイバ接続部品の製造方法は、本開示の光ファイバリボンに含まれる前記複数本の光ファイバを分離させる工程と、前記複数のガラスファイバの端部を前記樹脂被覆から露出させる工程と、前記樹脂被覆から露出した複数のガラスファイバを保持部材に搭載する工程と、前記複数本の光ファイバの各々の中心軸回りの方位を調整する工程と、を含む。
本開示の第1実施形態に係る光ファイバリボンを示す平面図である。 図1に示すII-II線に沿って切断された光ファイバリボンの断面図である。 光ファイバリボンを用いて光ファイバ接続部品を製造する方法の一例を説明するためのフローチャートである。 樹脂被覆から露出したガラスファイバの端部を示す平面図である。 各ガラスファイバが回転調心されている様子を示す図である。 光ファイバ接続部品を示す平面図である。 本開示の第2実施形態に係る光ファイバリボンを示す平面図である。 図7に示すVIII-VIII線に沿って切断された光ファイバリボンの断面図である。 樹脂被覆から露出したガラスファイバの端部を示す平面図である。 各ガラスファイバが回転調心されている様子を示す図である。 光ファイバ接続部品を示す平面図である。
[本開示が解決しようとする課題]
 マルチコアファイバを備えた光ファイバリボンを用いて光コネクタを製造する場合には、光ファイバリボンの先端領域において各マルチコアファイバが分離された後に、分離された各マルチコアファイバがコネクタフェルールに搭載される。その後、各マルチコアファイバが回転調心された後に、マルチコアファイバとコネクタフェルールが接着剤により固定される。その後、マルチコアファイバの端面とコネクタフェルールの端面が面一となるようにコネクタフェルールから突出したマルチコアファイバの端面が研磨される。
 ところで、光ファイバリボンに含まれるマルチコアファイバを回転調心する場合、当該マルチコアファイバが、回転調心が既に行われた隣接するマルチコアファイバに接触してしまい、隣接するマルチコアファイバの中心軸回りの方位(具体的には、端面上におけるコアの位置)が変動してしまう場合がある。このように、回転調心工程の際における隣接マルチコアファイバ間の接触によって各マルチコアファイバの回転調心の精度が低下してしまう。この結果、マルチコアファイバと外部の光学デバイスとの間の結合損失が増大してしまい、光コネクタの光学特性が低下してしまう。このように、上記観点より光コネクタ等の光ファイバ接続部品の光学特性を向上させることが可能な光ファイバリボンについて検討の余地がある。
[実施態様の説明]
 実施態様を説明する。
 (1)コアと前記コアを覆うクラッドとを有するガラスファイバと、前記ガラスファイバを覆う樹脂被覆とを含む複数本の光ファイバを備え、前記複数本の光ファイバが並列に配列された光ファイバリボンであって、前記複数本の光ファイバのうち隣接した光ファイバの中心軸間の長手方向に直交する方向における距離は、前記複数本の光ファイバ各々の外径よりも大きい、光ファイバリボン。
 上記構成によれば、光ファイバリボンを用いて光コネクタ等の光ファイバ接続部品を製造する場合において、各光ファイバの回転調心(各光ファイバの中心軸回りの方位の調整)を高い精度で行うことが可能となる。特に、所定の光ファイバの回転調心が行われる場合に、当該所定の光ファイバが、回転調心が既に行われた隣接する光ファイバに接触してしまうことが防止される。このように、隣接する光ファイバの中心軸回りの方位(具体的には、隣接する光ファイバの端面上におけるコアの位置)が変動してしまう状況が防止される。したがって、光ファイバ接続部品の光学特性を向上させることが可能な光ファイバリボンを提供することができる。
 (2)前記複数本の光ファイバの各々は、マルチコアファイバ又は偏波保持ファイバである、項目(1)に記載の光ファイバリボン。
 光ファイバがマルチコアファイバ又は偏波保持ファイバである場合では、光ファイバリボンを用いて光コネクタ等の光ファイバ接続部品を製造する際に各光ファイバの回転調心の精度が重要となる。この点において、本実施態様の光ファイバリボンによれば、各光ファイバの回転調心を高い精度で行うことが可能となる。
 (3)前記隣接した光ファイバは、前記長手方向において間欠的に相互に接着されている、項目(1)又は項目(2)に記載の光ファイバリボン。
 上記構成によれば、隣接した光ファイバが長手方向において間欠的に相互に接着されているため、光ファイバリボンを用いて光コネクタ等の光ファイバ接続部品を製造する場合に、各光ファイバを容易に分離することができる。さらに、光ファイバを中心軸回りに回転させる際に、光ファイバに生じるねじれを緩やかにすることが可能となる。また、複数の光ファイバが長手方向に直交する方向において空隙を設けて配列されているため、所定の光ファイバの回転調心が行われる場合に、当該所定の光ファイバが、回転調心が既に行われた隣接する光ファイバに接触してしまうことが防止される。
 (4)前記隣接した光ファイバは、前記長手方向において10mm以上の間隔を設けて間欠的に相互に接着されている、項目(3)に記載の光ファイバリボン。
 上記構成によれば、光ファイバリボンに含まれる複数本の光ファイバを互いに分離させる際に、光ファイバリボンの先端領域において分離された各光ファイバの長さが10mm以上となる。このように、光ファイバリボンから十分な長さの分離した光ファイバを容易に確保することができる。さらに、分離した光ファイバの長さが十分であるため、光ファイバを中心軸回りに回転させる際に、光ファイバに生じるねじれを緩やかにすることが可能となる。
 (5)前記光ファイバリボンは、前記隣接した光ファイバ間に配置されたダミー線をさらに備え、前記ダミー線と前記隣接した光ファイバは、前記長手方向において間欠的に互いに接着されている、項目(1)又は項目(2)に記載の光ファイバリボン。
 上記構成によれば、隣接する光ファイバが互いに接触することが防止される。このように、光ファイバの回転調心が行われる場合に、当該光ファイバが、回転調心が既に行われた隣接する光ファイバに接触してしまうことが防止される。さらに、光ファイバリボンを用いて光コネクタ等の光ファイバ接続部品を製造する場合において、各光ファイバとダミー線を容易に分離することができる。さらに、光ファイバを中心軸回りに回転させる際に、光ファイバに生じるねじれを抑制することができる。
 (6)前記ダミー線は、前記樹脂被覆と同一の樹脂材料からなる、項目(5)に記載の光ファイバリボン。
 上記構成によれば、光ファイバリボンを用いて光コネクタ等の光ファイバ接続部品を製造する場合に、各ガラスファイバの端部を樹脂被覆から露出させる工程において樹脂被覆とダミー線を同時に除去することができる。
 (7)前記ダミー線と前記隣接した光ファイバは、前記長手方向において10mm以上の間隔を設けて間欠的に相互に接着されている、項目(5)又は項目(6)に記載の光ファイバリボン。
 上記構成によれば、光ファイバリボンに含まれる複数本の光ファイバと複数本のダミー線を互いに分離させる際に、光ファイバリボンの先端領域において分離された各光ファイバの長さが10mm以上となる。このように、光ファイバリボンから十分な長さの分離した光ファイバを容易に確保することができる。さらに、分離した光ファイバの長さが十分であるため、光ファイバを中心軸回りに回転させる際に、光ファイバに生じるねじれを緩やかにすることが可能となる。
 (8)前記複数本の光ファイバの中心軸を通る仮想平面に対する前記複数本の光ファイバの中心軸回りの方位のばらつきが、30度以内である、項目(1)から項目(7)のうちいずれか一項に記載の光ファイバリボン。
 上記構成によれば、各光ファイバを回転調心する際において、各光ファイバの回転量を抑えることができるため、各光ファイバに生じるねじれを緩やかにすることが可能となる。さらに、各光ファイバに生じるねじれが緩やかになるため、分離した各光ファイバの長さ(換言すれば、樹脂被覆から露出したガラスファイバの長さ)を短くすることができ、光コネクタ等の光ファイバ接続部品の長さ寸法を抑えることが可能となる。
 (9)項目(1)から項目(8)のうちいずれか一項に記載の光ファイバリボンを用いた光ファイバ接続部品。
 上記によれば、光学特性が向上した光ファイバ接続部品を提供することができる。
 (10)光ファイバ接続部品の製造方法であって、項目(1)から項目(8)のうちいずれか一項に記載の光ファイバリボンに含まれる複数本の光ファイバを分離させる工程と、前記複数のガラスファイバの端部を前記樹脂被覆から露出させる工程と、前記樹脂被覆から露出した複数のガラスファイバを保持部材に搭載する工程と、前記複数本の光ファイバの各々の中心軸回りの方位を調整する工程と、を含む、光ファイバ接続部品の製造方法。
 上記構成によれば、各光ファイバの回転調心(各光ファイバの中心軸回りの方位の調整)を高い精度で行うことが可能となる。特に、所定の光ファイバの回転調心が行われる場合に、当該所定の光ファイバが、回転調心が既に行われた隣接する光ファイバに接触してしまうことが防止される。このように、隣接する光ファイバの中心軸回りの方位(具体的には、隣接する光ファイバの端面上におけるコアの位置)が変動してしまう状況が防止される。したがって、光ファイバの回転調心の精度を高くすることができるため、光ファイバ接続部品の光学特性を向上させることが可能な光ファイバ接続部品の製造方法が提供される。
[本開示の効果]
 本開示によれば、光コネクタ等の光ファイバ接続部品の光学特性を向上させることが可能な光ファイバリボンを提供することができる。
 [実施形態の詳細]
 以下、本開示の実施形態について図面を参照しながら説明する。各図面に示された各部材の寸法の比率は、説明の便宜上、実際の各部材の寸法の比率とは異なる場合がある。また、同一の要素には同一の符号を付し、重複する説明を省略する。
(第1実施形態)
 図1は、第1実施形態に係る光ファイバリボン1を示す平面図である。光ファイバリボン1は、Z軸方向に延びる光ファイバ2a~2dを備える。以降の説明では、光ファイバ2a~2dを単に光ファイバ2と総称する場合がある。
 本例では、光ファイバリボン1は、4本の光ファイバ2を有しているが、光ファイバ2の本数は特に限定されるものではない。光ファイバ2a~2dは、光ファイバ2の長手方向(Z軸方向)に直交する方向(X軸方向)において並列に配列されている。光ファイバリボン1は、間欠接着型光ファイバリボンである。即ち、互いに隣接する光ファイバ2がZ軸方向に沿って間欠的に接着剤10により接着されている。
 光ファイバリボン1では、互いに隣接する光ファイバ2aと光ファイバ2bとの間に設けられた各接着剤10のZ軸方向における位置は、互いに隣接する光ファイバ2bと光ファイバ2cとの間に設けられた各接着剤10のZ軸方向における位置とは異なる。具体的には、光ファイバ2bと光ファイバ2cとの間に設けられた各接着剤10は、Z軸方向において、光ファイバ2aと光ファイバ2bとの間に設けられた複数の接着剤10のうちの互いに隣接する接着剤10の間に位置する。
 また、互いに隣接した光ファイバ2は、Z軸方向において10mm以上の間隔を設けて間欠的に相互に接着されている。つまり、Z軸方向において互いに隣接する接着剤10間の距離d1は、10mm以上となる。
 図2は、図1に示すII-II線に沿って切断された光ファイバリボン1の断面図である。図2では、説明の都合上、断面を表現するハッチングは省略されている。各光ファイバ2は、ガラスファイバ22と、ガラスファイバ22を覆う樹脂被覆21とを有する。各光ファイバ2は、光ファイバ2の長手方向(Z軸方向)に延びる中心軸Axに垂直な断面において、互いに略等しく、中心軸Axに関して軸対称ではない構造、すなわち特定の回転角度以外では自分自身と重ならない構造を有する。本実施形態では、中心軸Axに対して軸対称ではない構造を有する光ファイバ2の一例として、マルチコアファイバが用いられる。このように、各光ファイバ2は中心軸Axに関して非軸対称の構造を有するため、各光ファイバ2の中心軸Ax回りの方位を調整するための回転調心工程が必要となる。ガラスファイバ22は、信号光が伝搬する複数のコア23と、複数のコア23を覆うクラッド24とを有する。各コア23の屈折率はクラッド24の屈折率よりも大きい。
 本実施形態に係る光ファイバリボン1では、各光ファイバ2の中心軸Axを通る仮想平面H1に対する各光ファイバ2の中心軸Ax回りの向きのばらつきは、30度以内となる。例えば、光ファイバ2aの基準線H2(例えば、中心軸と特定のコアの中心とを結ぶ直線、特定の二つ以上のコアの中心を結ぶ直線)と仮想平面H1との間の角度は、30度以内となる。なお、仮想平面H1は、各光ファイバ2のクラッド24の平行な二枚の共通接平面のいずれか、又は2枚の平行な共通接平面にはさまれ、2本の平行な共通接平面から等距離にある平面であってもよい。また、各光ファイバ2の外径は同一であってもよい。この場合、各光ファイバ2の外径はRであるものとする。
 互いに隣接した光ファイバ2の中心軸Ax間のX軸方向における距離D1は、光ファイバ2の外径Rよりも大きい。互いに隣接した光ファイバ2間のX軸方向における空隙の距離をαとした場合に、距離D1は、D1=R/2+α+R/2=α+Rとなる。このように、本実施形態に係る光ファイバリボン1では、光ファイバ2a~2dは、X軸方向において空隙を設けて配列されており、隣接する光ファイバ2は互いに接触していない。
(第1実施形態の光ファイバリボンを含む光ファイバ接続部品の製造方法)
 図3は、光ファイバリボン1を用いて光ファイバ接続部品100を製造する方法の一例を説明するためのフローチャートである。光ファイバ接続部品100は、複数の光ファイバ2を含む光ファイバアレイとして機能する。光ファイバ接続部品100の光ファイバが他の光ファイバと光学的に接続される場合には、光ファイバ接続部品100は、光コネクタとして機能する。工程S1では、光ファイバリボン1の先端領域K1において光ファイバリボン1に含まれる光ファイバ2a~2dが互いに分離される。本実施形態では、Z軸方向において互いに隣接する接着剤10間の距離d1が10mm以上となるため、光ファイバリボン1の先端領域K1において分離された各光ファイバ2の長さが10mm以上となる。このため、光ファイバリボン1から十分な長さの分離した光ファイバ2を容易に確保することができる。また、分離した光ファイバ2の長さが十分となるため、光ファイバ2を中心軸Ax回りに回転させる際に、光ファイバ2に生じるねじれを緩やかにすることが可能となる。
 図4は、樹脂被覆21から露出したガラスファイバ22の端部を示す平面図である。工程S2において、所定の工具を用いることで各光ファイバ2のガラスファイバ22の端部が樹脂被覆21から露出される。
 図5は、各ガラスファイバ22が回転調心されている様子を示す図である。工程S3において、樹脂被覆21から露出した各ガラスファイバ22が保持基板6に搭載される。特に、各ガラスファイバ22は、保持基板6に形成された複数のV字状の溝部62の対応する一つに配置される。各ガラスファイバ22は、X軸方向に配列されると共にZ軸方向において保持基板6から外部に突出するように、保持基板6に搭載される。
 工程S4において、各ガラスファイバ22の中心軸Ax回りの方位(換言すれば、ガラスファイバ22の端面上のコア23の位置)が調整される。工程S4の回転調心工程では、例えば、保持基板6から突出したガラスファイバ22の端面がカメラ等の撮像装置によって撮像されてもよい。その後、図示しない回転調心装置が、撮像装置によって取得されたガラスファイバ22の端面を示す撮像画像に基づいて、ガラスファイバ22の中心軸Ax回りの方位を自動的に調整してもよい。この点において、回転調心装置は、コア23の位置が所定の位置となるようにガラスファイバ22の中心軸Ax回りの方位を調整する。
 本実施形態に係る光ファイバリボン1では、各光ファイバ2の中心軸Ax回りの方位にばらつきがあるため、各光ファイバ2に対して回転調心を行う必要がある。一方で、各光ファイバ2の中心軸Ax回りの方位のばらつきが30度以内となっているため、回転調心時における各光ファイバ2の回転量を抑えることが可能となる。この結果、回転調心によって生じる各光ファイバ2のねじれの影響を抑制することが可能となる。さらに、各光ファイバ2のねじれの影響が抑制されるため、分離した各光ファイバ2の長さを短くすることができ、光ファイバ接続部品100のZ軸方向の長さ寸法の大型化を抑えることができる。
 本実施形態では、各光ファイバ2の樹脂被覆21が空隙を設けた状態でX軸方向に配列されているため、各樹脂被覆21は互いに接触していない。このため、例えば、光ファイバ2bに対して回転調心が行われている間に、光ファイバ2bの樹脂被覆21が隣接する光ファイバ2a,2cの樹脂被覆21に接触することが防止される。一方、光ファイバ2bの回転調心の間において、光ファイバ2bの樹脂被覆21が光ファイバ2aの樹脂被覆21に接触する場合には、回転調心が既に行われた光ファイバ2aの中心軸Axの方位が変動してしまうことが想定される。この結果として、光ファイバ2aの回転位置がずれてしまい、光ファイバ2bの回転調心の精度が低下する。
 本実施形態では、回転調心時時において隣接する光ファイバ2間の接触が防止されるため、回転調心が既に行われた光ファイバ2の中心軸Ax回りの方位が変動してしまうことが防止される。
 図6は、光ファイバ接続部品100を示す平面図である。工程S5において、蓋部7が保持基板6の上方に配置される。各光ファイバ2は、X軸、Z軸に対して垂直なY軸方向において蓋部7と保持基板6によって挟まれる。その後、各ガラスファイバ22と、保持基板6と、蓋部7とが接着剤により一括で接着される。
 最後に、工程S6において、各ガラスファイバ22の端面が研磨される。特に、各ガラスファイバ22の端面と、蓋部7の端面と、保持基板6の端面が面一となるように、これらの端面が研磨される。このようにして、光ファイバリボン1を用いて光ファイバ接続部品100が製造される。
 本実施形態によれば、光ファイバリボン1を用いて光コネクタ等の光ファイバ接続部品100を製造する場合において、各光ファイバ2の回転調心(各光ファイバ2の中心軸Ax回りの方位の調整)を高い精度で行うことが可能となる。特に、所定の光ファイバ2の回転調心が行われる場合に、所定の光ファイバ2が、回転調心が既に行われた隣接する光ファイバ2に接触してしまうことが防止される。このように、回転調心が既に行われた光ファイバ2の中心軸Ax回りの方位(具体的には、光ファイバ2の端面上におけるコア23の位置)が変動してしまう状況が防止される。
 したがって、各光ファイバ2の回転調心を高い精度で行うことが可能となり、光ファイバ接続部品100と他の光学部品(他の光コネクタ等)との間の結合損失が増大してしまうことが防止される。このように、光ファイバ接続部品100の光学特性を向上させることが可能な光ファイバリボン1を提供することができる。
 また、本実施形態では、隣接した光ファイバ2がZ軸方向において間欠的に相互に接着されているので、光ファイバリボン1を用いて光ファイバ接続部品100を製造する場合に、各光ファイバ2を容易に分離することができる。さらに、光ファイバ2を中心軸Ax回りに回転させる際に、光ファイバ2に生じるねじれを緩やかにすることが可能となる。
(第2実施形態)
 図7は、第2実施形態に係る光ファイバリボン1Aを示す平面図である。光ファイバリボン1Aは、Z軸方向に延びる光ファイバ2a,2bと、ダミー線3a,3bを備える。以降の説明では、光ファイバ2a,2bを単に光ファイバ2と総称する場合があると共に、ダミー線3a,3bを単にダミー線3と総称する場合がある。
 本例では、光ファイバリボン1Aは、2本の光ファイバ2と2本のダミー線3を有しているが、光ファイバ2の本数及びダミー線3の本数は特に限定されるものではない。光ファイバ2a,2b及びダミー線3a,3bは、それらの長手方向(Z軸方向)に直交するX軸方向において並列に配列されている。光ファイバ2とダミー線3は、X軸方向において交互に配列されている。具体的には、光ファイバ2aと光ファイバ2bとの間にダミー線3aが配置されていると共に、ダミー線3aとダミー線3bとの間に光ファイバ2bが配置されている。
 光ファイバリボン1Aは、間欠接着型光ファイバリボンである。即ち、互いに隣接する光ファイバ2とダミー線3がZ軸方向に沿って間欠的に接着剤10Aにより接着されている。
 光ファイバリボン1Aでは、互いに隣接する光ファイバ2aとダミー線3aとの間に設けられた各接着剤10AのZ軸方向における位置は、互いに隣接するダミー線3aと光ファイバ2bとの間に設けられた各接着剤10のZ軸方向における位置とは異なる。具体的には、ダミー線3aと光ファイバ2bとの間に設けられた各接着剤10Aは、Z軸方向において、光ファイバ2aとダミー線3aとの間に設けられた複数の接着剤10Aのうちの互いに隣接する接着剤10Aの間に位置する。
 また、互いに隣接した光ファイバ2とダミー線3は、Z軸方向において10mm以上の間隔を設けて間欠的に相互に接着されている。つまり、Z軸方向において互いに隣接する接着剤10A間の距離d2は、10mm以上となる。
 図8は、図7に示すVIII-VIII線に沿って切断された光ファイバリボン1Aの断面図である。説明の都合上、断面を表現するハッチングは省略されている。本実施形態に係る光ファイバリボン1Aでは、各光ファイバ2の中心軸Axを通る仮想平面H3に対する各光ファイバ2の中心軸Ax回りの方位のばらつきは、30度以内となる。例えば、光ファイバ2aの複数のコア23の中心を通る仮想平面H4と仮想平面H3との間の角度は、30度以内となる。また、各光ファイバ2の外径は同一であってもよい。この場合、各光ファイバ2の外径はRであるものとする。各ダミー線3は、樹脂材料により構成されている。特に、各ダミー線3は、光ファイバ2の樹脂被覆21と同一の樹脂材料により構成されていてもよい。ダミー線3の外径はR1となり、光ファイバ2の外径Rと同一であってもよい。
 互いに隣接した光ファイバ2aと光ファイバ2bの中心軸Ax間のX軸方向における距離D2は、光ファイバ2の外径Rよりも大きい。特に、距離D2は、D2=R/2+R1+R/2=R1+Rとなる。ダミー線3の外径R1がRの場合には、距離D2は2Rとなる。このように、本実施形態に係る光ファイバリボン1Aでは、互いに隣接する光ファイバ2の間にダミー線3が配置されているため、隣接する光ファイバ2は互いに接触していない。一方で、互いに隣接する光ファイバ2とダミー線3は接触している。
(第2実施形態の光ファイバリボンを含む光ファイバ接続部品の製造方法)
 工程S1(図3)では、光ファイバリボン1Aの先端領域K2において光ファイバリボン1Aに含まれる光ファイバ2a,2b及びダミー線3a,3bを互いに分離させる。本実施形態では、Z軸方向において互いに隣接する接着剤10A間の距離d2が10mm以上となるため、光ファイバリボン1Aの先端領域K2において分離された各光ファイバ2及びダミー線3の長さが10mm以上となる。このため、光ファイバリボン1Aから十分な長さの分離した光ファイバ2を容易に確保することができる。また、分離した光ファイバ2の長さが十分となるため、光ファイバ2を中心軸Ax回りに回転させる際に、光ファイバ2に生じるねじれを緩やかにすることが可能となる。
 図9は、樹脂被覆21から露出した各ガラスファイバ22の端部を示す平面図である。工程S2において、所定の工具を用いることで各光ファイバ2のガラスファイバ22の端部が樹脂被覆21から露出される。このとき、ダミー線3が樹脂被覆21と同一の樹脂材料により構成されている場合、ダミー線3の端部も樹脂被覆21と同時に所定の工具(例えば、サーマルジャケットリムーバー等)により除去される。
 図10は、各ガラスファイバ22が回転調心されている様子を示す図である。工程S3において、樹脂被覆21から露出した各ガラスファイバ22が保持基板6Aに搭載される。特に、各ガラスファイバ22は、保持基板6Aに形成された複数のV字状の溝部62Aの対応する一つに配置される。各ガラスファイバ22は、X軸方向に配列されると共にZ軸方向において保持基板6Aから外部に突出するように、保持基板6Aに搭載される。
 工程S4において、各ガラスファイバ22の中心軸Ax回りの方位が調整される。本実施形態では、互いに隣接する光ファイバ2の間にダミー線3が配置されているため、光ファイバ2の樹脂被覆21は互いに接触していない。このため、例えば、光ファイバ2bに対して回転調心が行われている間に、光ファイバ2bの樹脂被覆21が光ファイバ2aの樹脂被覆21に接触することが防止される。特に、光ファイバ2bの回転調心の間において、光ファイバ2bの樹脂被覆21が光ファイバ2aの樹脂被覆21に接触する場合には、回転調心が既に行われた光ファイバ2aの中心軸Axの方位が変動してしまうことが想定される。この結果として、光ファイバ2aの回転位置がずれてしまい、光ファイバ2aの回転調心の精度が低下してしまう。
 一方で、本実施形態では、回転調心時において互いに隣接する光ファイバ2間の接触が防止されるため、回転調心が既に行われた光ファイバ2の中心軸Ax回りの方位が変動してしまうことが防止される。
 図11は、光ファイバ接続部品100Aを示す平面図である。次に、工程S5において、蓋部7Aが保持基板6Aの上方に配置される。各光ファイバ2は、X軸、Z軸に対して垂直なY軸方向において蓋部7Aと保持基板6Aによって挟まれる。その後、各ガラスファイバ22と、保持基板6Aと、蓋部7Aとが接着剤により一括で接着される。最後に、工程S6において、各ガラスファイバ22の端面と、蓋部7Aの端面と、保持基板6Aの端面が面一となるように、これらの端面が研磨される。このようにして、光ファイバリボン1Aを用いて光ファイバ接続部品100Aが製造される。
 本実施形態によれば、光ファイバリボン1Aを用いて光コネクタ等の光ファイバ接続部品100Aを製造する場合において、各光ファイバ2の回転調心を高い精度で行うことが可能となる。特に、所定の光ファイバ2の回転調心が行われる場合に、所定の光ファイバ2が、回転調心が既に行われた隣接する光ファイバ2に接触してしまうことが防止される。このように、回転調心が既に行われた光ファイバ2の中心軸Ax回りの方位(具体的には、光ファイバ2の端面上におけるコア23の位置)が変動してしまう状況が防止される。したがって、各光ファイバ2の回転調心を高い精度で行うことが可能となり、光ファイバ接続部品100Aと他の光学部品(他の光コネクタ等)との間の結合損失が増大してしまうことが防止される。このように、光ファイバ接続部品100Aの光学特性を向上させることが可能な光ファイバリボン1Aを提供することができる。
 また、本実施形態では、互いに隣接した光ファイバ2とダミー線3がZ軸方向において間欠的に相互に接着されているため、光ファイバリボン1Aを用いて光ファイバ接続部品100Aを製造する場合に、各光ファイバ2とダミー線3を容易に分離することができる。さらに、光ファイバ2を中心軸Ax回りに回転させる際に、光ファイバ2に生じるねじれを緩やかにすることが可能となる。
 また、X軸方向における隣接するガラスファイバ22間の間隔が広い場合には、第2実施形態に係る光ファイバリボン1Aを用いて光ファイバ接続部品100Aが製造されてもよい。その一方で、X軸方向における隣接するガラスファイバ22間の間隔が狭い場合には、第1実施形態に係る光ファイバリボン1を用いて光ファイバ接続部品100が製造されてもよい。
 以上、実施形態について説明をしたが、本発明の技術的範囲が実施形態の説明によって限定的に解釈されるべきではないのは言うまでもない。実施形態はあくまでも一例であって、請求の範囲に記載された発明の範囲内において、様々な実施形態の変更が可能であることが当業者によって理解される。このように、本発明の技術的範囲は請求の範囲に記載された発明の範囲及びその均等の範囲に基づいて定められるべきである。
 本実施形態では、光ファイバ2の一例としてマルチコアファイバが用いられているが、光ファイバ2は、偏波保持ファイバであってもよい。偏波保持ファイバは、一対の応力付与部と、一対の応力付与部の間に配置され、信号光が伝搬するコアと、一対の応力付与部及びコアを覆うクラッドとを有する。光ファイバ2として偏波保持ファイバが使用される場合では、互いに光学的に接続される光ファイバ接続部品と他の光学部品との間におけるクロストークを抑制することが可能となる。
 また、各ガラスファイバ22を保持するように構成された保持部材は、溝部を有する保持基板及び蓋部に限定されるものではない。例えば、保持部材は、X軸方向に配列された複数の孔部を有するホールキャピラリであってもよい。複数の孔部の各々は、Z軸方向に延びており、複数のガラスファイバ22のうちの対応する一つを保持するように構成されている。各ガラスファイバ22がホールキャピラリによって保持される場合、図3に示す工程S3では、各ガラスファイバ22は、対応する孔部に挿入される。
1,1A:光ファイバリボン
2,2a,2b,2c,2d:光ファイバ
3,3a,3b:ダミー線
6,6A:保持基板
7,7A:蓋部
10,10A:接着剤
21:樹脂被覆
22:ガラスファイバ
23:コア
24:クラッド
62,62A:溝部
100,100A:光ファイバ接続部品

Claims (10)

  1.  コアと前記コアを覆うクラッドとを有するガラスファイバと、前記ガラスファイバを覆う樹脂被覆とを含む複数本の光ファイバを備え、前記複数本の光ファイバが並列に配列された光ファイバリボンであって、
     前記複数本の光ファイバのうち隣接した光ファイバの中心軸間の長手方向に直交する方向における距離は、前記複数本の光ファイバ各々の外径よりも大きい、光ファイバリボン。
  2.  前記複数本の光ファイバの各々は、マルチコアファイバ又は偏波保持ファイバである、請求項1に記載の光ファイバリボン。
  3.  前記隣接した光ファイバは、前記長手方向において間欠的に相互に接着されている、
    請求項1又は請求項2に記載の光ファイバリボン。
  4.  前記隣接した光ファイバは、前記長手方向において10mm以上の間隔を設けて間欠的に相互に接着されている、請求項3に記載の光ファイバリボン。
  5.  前記光ファイバリボンは、前記隣接した光ファイバ間に配置されたダミー線をさらに備え、
     前記ダミー線と前記隣接した光ファイバは、前記長手方向において間欠的に互いに接着されている、請求項1又は請求項2に記載の光ファイバリボン。
  6.  前記ダミー線は、前記樹脂被覆と同一の樹脂材料からなる、
    請求項5に記載の光ファイバリボン。
  7.  前記ダミー線と前記隣接した光ファイバは、前記長手方向において10mm以上の間隔を設けて間欠的に相互に接着されている、請求項5又は請求項6に記載の光ファイバリボン。
  8.  前記複数本の光ファイバの中心軸を通る仮想平面に対する前記複数本の光ファイバの中心軸回りの方位のばらつきは、30度以内となる、請求項1から請求項7のうちいずれか一項に記載の光ファイバリボン。
  9.  請求項1から請求項8のうちいずれか一項に記載の光ファイバリボンを用いた光ファイバ接続部品。
  10.  光ファイバ接続部品の製造方法であって、
     請求項1から請求項8のうちのいずれか一項に記載の光ファイバリボンに含まれる複数本の光ファイバを分離させる工程と、
     前記複数のガラスファイバの端部を前記樹脂被覆から露出させる工程と、
     前記樹脂被覆から露出した複数のガラスファイバを保持部材に搭載する工程と、
     前記複数本の光ファイバの各々の中心軸回りの方位を調整する工程と、
    を含む、光ファイバ接続部品の製造方法。
PCT/JP2021/047692 2020-12-25 2021-12-22 光ファイバリボン、光ファイバ接続部品、及び光ファイバ接続部品の製造方法 WO2022138761A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/038,131 US20230367092A1 (en) 2020-12-25 2021-12-22 Optical fiber ribbon, optical fiber connection component, and method for manufacturing optical fiber connection component
EP21910901.4A EP4270070A4 (en) 2020-12-25 2021-12-22 OPTICAL FIBER RIBBON, OPTICAL FIBER CONNECTION COMPONENT AND METHOD FOR MANUFACTURING OPTICAL FIBER CONNECTION COMPONENT
CN202180081012.XA CN116710820A (zh) 2020-12-25 2021-12-22 光纤带、光纤连接部件以及光纤连接部件的制造方法
JP2022571584A JPWO2022138761A1 (ja) 2020-12-25 2021-12-22

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-217224 2020-12-25
JP2020217224 2020-12-25

Publications (1)

Publication Number Publication Date
WO2022138761A1 true WO2022138761A1 (ja) 2022-06-30

Family

ID=82159846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/047692 WO2022138761A1 (ja) 2020-12-25 2021-12-22 光ファイバリボン、光ファイバ接続部品、及び光ファイバ接続部品の製造方法

Country Status (5)

Country Link
US (1) US20230367092A1 (ja)
EP (1) EP4270070A4 (ja)
JP (1) JPWO2022138761A1 (ja)
CN (1) CN116710820A (ja)
WO (1) WO2022138761A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003344735A (ja) * 2002-05-28 2003-12-03 Photonic Science Technology Inc 偏波保持光ファイバリボン作製装置
JP2010224478A (ja) * 2009-03-25 2010-10-07 Hitachi Cable Ltd テープ状光ファイバ
WO2013099555A1 (ja) * 2011-12-28 2013-07-04 住友電気工業株式会社 マルチコア光ファイバ
JP2015125172A (ja) 2013-12-25 2015-07-06 住友電気工業株式会社 マルチコア光ファイバ及びマルチコア光ファイバコネクタの製造方法
US20160223774A1 (en) * 2013-11-22 2016-08-04 Corning Cable Systems, Llc Multicore optical fibers and methods of manufacturing the same
JP2017173514A (ja) 2016-03-23 2017-09-28 古河電気工業株式会社 光ファイバテープ心線および光ファイバテープ心線の製造方法
JP2020038255A (ja) * 2018-09-03 2020-03-12 Kddi株式会社 マルチコア光ファイバの融着のための調芯装置及び接続部材
WO2020179513A1 (ja) * 2019-03-05 2020-09-10 住友電気工業株式会社 光ファイバアレイ

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9069144B2 (en) * 2010-03-16 2015-06-30 Ofs Fitel, Llc Connectors for use with polarization-maintaining and multicore optical fiber cables

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003344735A (ja) * 2002-05-28 2003-12-03 Photonic Science Technology Inc 偏波保持光ファイバリボン作製装置
JP2010224478A (ja) * 2009-03-25 2010-10-07 Hitachi Cable Ltd テープ状光ファイバ
WO2013099555A1 (ja) * 2011-12-28 2013-07-04 住友電気工業株式会社 マルチコア光ファイバ
US20160223774A1 (en) * 2013-11-22 2016-08-04 Corning Cable Systems, Llc Multicore optical fibers and methods of manufacturing the same
JP2015125172A (ja) 2013-12-25 2015-07-06 住友電気工業株式会社 マルチコア光ファイバ及びマルチコア光ファイバコネクタの製造方法
JP2017173514A (ja) 2016-03-23 2017-09-28 古河電気工業株式会社 光ファイバテープ心線および光ファイバテープ心線の製造方法
JP2020038255A (ja) * 2018-09-03 2020-03-12 Kddi株式会社 マルチコア光ファイバの融着のための調芯装置及び接続部材
WO2020179513A1 (ja) * 2019-03-05 2020-09-10 住友電気工業株式会社 光ファイバアレイ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4270070A4

Also Published As

Publication number Publication date
EP4270070A1 (en) 2023-11-01
CN116710820A (zh) 2023-09-05
EP4270070A4 (en) 2024-05-22
US20230367092A1 (en) 2023-11-16
JPWO2022138761A1 (ja) 2022-06-30

Similar Documents

Publication Publication Date Title
US6782146B2 (en) Multiple polarization combiner-splitter-isolator and method of manufacturing the same
JP3273490B2 (ja) 多芯マイクロキャピラリとこれを用いた光導波回路と光ファイバとの接続方法
JP7040464B2 (ja) 光ファイバ保持部品、光コネクタ、及び光結合構造
JP2012208236A (ja) マルチコアファイバ用ファンナウト部品
WO2021187178A1 (ja) 光ファイバ接続部品及び光ファイバ接続部品の製造方法
JP2001281494A (ja) 光コネクタフェルールの製造方法
JP3697580B2 (ja) ファイバアレイ及び導波路デバイス
JP2003156648A (ja) 偏波ファイバおよびその製造方法、並びにこれを用いたリボンファイバおよび光導波路デバイス、光ファイバアレイとその製造方法
WO2022138761A1 (ja) 光ファイバリボン、光ファイバ接続部品、及び光ファイバ接続部品の製造方法
JP5559258B2 (ja) ファイバ接続部品およびその製造方法
WO2020179513A1 (ja) 光ファイバアレイ
JP2021026103A (ja) 光コネクタ
JP3256925B2 (ja) 光導波路装置
JP2001324647A (ja) 光ファイバアレイ、光導波路チップ及びこれらを接続した光モジュール
JP4172097B2 (ja) ロッドレンズ付き光ファイバ配列部品の製造方法
WO2022138763A1 (ja) 光ファイバ接続部品の製造方法
US20030156814A1 (en) Optical fiber block having semicircular grooves and method for same
JP2843338B2 (ja) 光導波路・光ファイバ接続コネクタ
JP2009244612A (ja) 光導波路取付部品、光導波路コネクタ及び光導波路コネクタの製造方法
JP2015064504A (ja) 光ファイバの調芯方法および光モジュールの製造方法
JP3222482U (ja) フェルール及び光コネクタ
KR20020052988A (ko) 리본 섬유 및 그 제조 방법과, 이것을 이용한 광섬유 어레이
JPH0593824A (ja) 光コネクタ及びその製造方法
WO2023119925A1 (ja) 屈曲光ファイバ、屈曲光ファイバの製造方法、および光接続部品
JP2001183546A (ja) 多心フェルール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21910901

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180081012.X

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2022571584

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021910901

Country of ref document: EP

Effective date: 20230725