WO2022138763A1 - 光ファイバ接続部品の製造方法 - Google Patents

光ファイバ接続部品の製造方法 Download PDF

Info

Publication number
WO2022138763A1
WO2022138763A1 PCT/JP2021/047694 JP2021047694W WO2022138763A1 WO 2022138763 A1 WO2022138763 A1 WO 2022138763A1 JP 2021047694 W JP2021047694 W JP 2021047694W WO 2022138763 A1 WO2022138763 A1 WO 2022138763A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
fixing
glass
fiber
glass fibers
Prior art date
Application number
PCT/JP2021/047694
Other languages
English (en)
French (fr)
Inventor
哲 森島
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to US18/268,062 priority Critical patent/US20240036256A1/en
Priority to CN202180086956.6A priority patent/CN116670548A/zh
Priority to JP2022571586A priority patent/JPWO2022138763A1/ja
Publication of WO2022138763A1 publication Critical patent/WO2022138763A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3628Mechanical coupling means for mounting fibres to supporting carriers
    • G02B6/3648Supporting carriers of a microbench type, i.e. with micromachined additional mechanical structures
    • G02B6/3652Supporting carriers of a microbench type, i.e. with micromachined additional mechanical structures the additional structures being prepositioning mounting areas, allowing only movement in one dimension, e.g. grooves, trenches or vias in the microbench surface, i.e. self aligning supporting carriers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • G02B6/2555Alignment or adjustment devices for aligning prior to splicing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/25Preparing the ends of light guides for coupling, e.g. cutting
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3833Details of mounting fibres in ferrules; Assembly methods; Manufacture
    • G02B6/3855Details of mounting fibres in ferrules; Assembly methods; Manufacture characterised by the method of anchoring or fixing the fibre within the ferrule
    • G02B6/3861Adhesive bonding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3873Connectors using guide surfaces for aligning ferrule ends, e.g. tubes, sleeves, V-grooves, rods, pins, balls
    • G02B6/3885Multicore or multichannel optical connectors, i.e. one single ferrule containing more than one fibre, e.g. ribbon type

Definitions

  • the present disclosure relates to optical connectors and optical connection structures.
  • This application claims priority based on Japanese Application No. 2020-217225 filed on December 25, 2020, and incorporates all the contents described in the Japanese application.
  • Patent Document 1 discloses a method for manufacturing an optical connector including a multi-core fiber. According to the manufacturing method disclosed in Patent Document 1, after the multi-core fiber is arranged in the V-groove provided in the connector, the orientation around the central axis of the multi-core fiber is adjusted (that is, the multi-core fiber is rotationally aligned). Will be).
  • the method for manufacturing an optical fiber connecting component includes a glass fiber having a core and a clad covering the core, and a resin coating covering the glass fiber, and the end portion of the glass fiber is said.
  • a plurality of optical fibers exposed from the resin coating are prepared, and the plurality of glass fibers exposed from the resin coating are arranged in the first direction, and the plurality of glass fibers are arranged so as to project outward from the optical fiber holding member.
  • the glass fiber is mounted on the optical fiber holding member, the orientation around the central axis of each of the plurality of glass fibers is adjusted and fixed, and two or more of the plurality of glass fibers are used with an adhesive.
  • the glass fiber and the optical fiber holding member are collectively bonded to each other.
  • the multi-core fiber and the connector are fixed by an adhesive after each multi-core fiber is rotationally aligned. Then, the end face of the multi-core fiber protruding from the connector is polished so that the end face of the multi-core fiber and the end face of the connector are flush with each other.
  • the multi-core fiber when the multi-core fiber is rotationally aligned, the multi-core fiber is twisted between the holding portion where the multi-core fiber is held and the end face of the glass fiber in order to rotate the multi-core fiber around the central axis. Due to the twisting of the multi-core fiber, rotational torque is generated at the end face of the multi-core fiber. Due to the rotational torque generated on this end face, the orientation around the central axis of the multi-core fiber (specifically, from the time when the multi-core fiber is rotationally aligned until all of the multi-core fiber is collectively bonded to the connector). The position of the core on the end face of the multi-core fiber) will fluctuate.
  • the manufacturing method of the aspect (1) it is possible to suppress the rotational torque of the end face of the glass fiber caused by the twist of the optical fiber.
  • the orientation around the central axis of each glass fiber (specifically). Prevents the situation where the position of the core on the end face of each glass fiber fluctuates.
  • the position of the core on the end face of the glass fiber is prevented from deviating from the desired position set by the rotational alignment, and the optical fiber connection component and the external optical component (for example, an optical waveguide circuit) are prevented from being displaced. It is possible to prevent a situation in which the coupling loss of the optical fiber is increased.
  • a method for manufacturing an optical fiber connection component capable of improving the optical characteristics of the optical fiber connection component is provided.
  • Adjusting and fixing the orientation means adjusting the orientation around the central axis of the first glass fiber among the plurality of glass fibers and fixing the orientation around the central axis of the first glass fiber.
  • An embodiment including, in order, adjusting the orientation around the central axis of the second glass fiber adjacent to the first glass fiber and fixing the orientation around the central axis of the second glass fiber ( The method for manufacturing an optical fiber connection component according to 1).
  • the first glass fiber and the first glass fiber and the first glass fiber and the first glass fiber and the first glass fiber and the first glass fiber and the first glass fiber and the first glass fiber are obtained from the time when each glass fiber is rotationally aligned until the entire plurality of glass fibers are collectively bonded to the optical fiber holding member.
  • the central axis of each glass fiber is from the time when each glass fiber is rotationally aligned until the entire plurality of glass fibers are collectively bonded to the optical fiber holding member. It is possible to prevent the situation where the surrounding direction fluctuates. Further, according to this manufacturing method, it is not necessary to separately prepare a fixing substrate for fixing each glass fiber, so that the manufacturing process of the optical fiber connection component can be simplified.
  • Adjusting and fixing the orientation means fixing the portion of the plurality of glass fibers protruding outward from the optical fiber holding member between the end faces of the plurality of glass fibers and the optical fiber holding member.
  • the manufacturing method comprises fixing to a substrate, further comprising cutting the plurality of glass fibers between the fixing substrate and the optical fiber holding member, according to embodiment (1) or (2).
  • the manufacturing method of the aspect (4) since the orientation around the central axis of the glass fiber is fixed in the vicinity of the end face of the glass fiber, the rotational torque of the end face of the glass fiber caused by the twist of the optical fiber is more effectively applied. It becomes possible to suppress it. Therefore, it is possible to more effectively prevent the situation where the orientation around the central axis of the glass fiber fluctuates.
  • Adjusting and fixing the orientation means that each of the plurality of glass fibers is attached to each of the plurality of glass fibers by an adhesive (for example, an ultraviolet curable adhesive or a thermosetting adhesive) in the case of the manufacturing method of the aspect (3).
  • an adhesive for example, an ultraviolet curable adhesive or a thermosetting adhesive
  • a method for manufacturing an optical fiber connection component which comprises fixing the optical fiber holding member to a fixing substrate in the case of the manufacturing method according to the aspect (4).
  • each glass fiber can be fixed to the optical fiber holding member or the fixing substrate relatively easily and quickly.
  • Adjusting and fixing the orientation means that each of the plurality of glass fibers is attached to the optical fiber holding member by laser welding in the case of the manufacturing method of the aspect (3), according to the manufacturing method of the aspect (4).
  • each glass fiber can be firmly fixed to the optical fiber holding member or the fixing substrate.
  • each glass fiber can be reliably fixed to the optical fiber holding member or the fixing substrate. Further, when the rotational alignment of the glass fiber is redone, the fixing between the glass fiber and the optical fiber holding member or the fixing substrate can be released.
  • the optical fiber holding member has a holding substrate having a plurality of grooves, each of which holds a corresponding one of the plurality of glass fibers, and a lid portion facing the holding substrate via the plurality of glass fibers.
  • the center of each glass fiber is obtained from the time when each glass fiber is rotationally aligned until the entire plurality of glass fibers are collectively adhered to the holding substrate and the lid portion. It is possible to prevent the situation where the orientation around the axis fluctuates.
  • optical fiber holding member is a block having a plurality of holes each holding a corresponding one of the plurality of glass fibers.
  • the orientation around the central axis of each glass fiber from the time when each glass fiber is rotationally aligned until the entire plurality of glass fibers are collectively bonded to the block is possible to prevent the situation where the fluctuation occurs.
  • optical fiber connection component (10) The method for manufacturing an optical fiber connection component according to any one of aspects (1) to (9), wherein the optical fiber is a multi-core fiber, a polarization-retaining fiber, or a bundle fiber.
  • the optical fiber is a multi-core fiber, a polarization-retaining fiber or a bundle fiber
  • the accuracy of the rotational alignment of each optical fiber is important.
  • an optical fiber connecting component and an external optical component for example, optical
  • an optical fiber connection component capable of improving the optical characteristics of the optical fiber connection component
  • each member shown in each drawing may differ from the actual dimensional ratio of each member for convenience of explanation.
  • the X-axis direction, the Y-axis direction, and the Z-axis direction set for the optical fiber connection component 1 shown in FIG. 1 are appropriately referred to.
  • Each of the X-axis direction, the Y-axis direction, and the Z-axis direction is perpendicular to the remaining two directions.
  • the optical fiber connection component 1 functions as an optical fiber array including a plurality of optical fibers 2.
  • the optical fiber connection component 1 functions as an optical connector.
  • FIG. 1 is a perspective view showing an optical fiber connection component 1.
  • the optical fiber connection component 1 includes a plurality of optical fibers 2 (12 optical fibers 2 in FIG. 1) arranged in the X-axis direction (first direction), and an optical fiber holding member 3 for holding the plurality of optical fibers 2. And prepare.
  • Each optical fiber 2 is arranged in the X-axis direction while being separated from each other.
  • the optical fiber 2 has a glass fiber 20 and a resin coating 21 that covers the glass fiber 20.
  • FIG. 2 is a diagram showing a cross section perpendicular to the central axis of the glass fiber 20.
  • the glass fiber 20 is a multi-core fiber having a structure that is not axisymmetric in a cross section perpendicular to the central axis.
  • each optical fiber 2 since each optical fiber 2 has a structure that is non-axially symmetric with respect to the central axis, it is necessary to adjust the orientation (rotational alignment) around the central axis of each optical fiber 2.
  • the glass fiber 20 has a plurality of cores 24 through which signal light propagates, a marker 25, and a clad 23 that covers the plurality of cores 24 and the marker 25.
  • the refractive index of each core 24 is larger than that of the clad 23.
  • the refractive index of the marker 25 is different from that of the clad 23.
  • the marker 25 is used in the rotational alignment process of the optical fiber 2 described later.
  • the optical fiber holding member 3 holds a plurality of glass fibers 20 so that the plurality of glass fibers 20 exposed from the resin coating 21 are arranged in the X-axis direction.
  • the optical fiber holding member 3 has a holding substrate 4 and a lid portion 5 facing the holding substrate 4 via a plurality of glass fibers 20.
  • the holding substrate 4 is provided with a plurality of V-shaped groove portions 46 (see FIG. 4) for holding one of the corresponding glass fibers 20.
  • the lid portion 5, each glass fiber 20, and the holding substrate 4 are fixed to each other via an adhesive. Further, the end surface of each glass fiber 20, the end surface 51 of the lid portion 5, and the end surface 41 of the holding substrate 4 are flush with each other.
  • optical fiber connection component 1 Next, a method for manufacturing the optical fiber connection component 1 according to the first embodiment of the present disclosure will be described with reference to FIGS. 3 to 7.
  • four optical fibers 2 out of the twelve optical fibers 2 will be referred to as optical fibers 2a to 2d
  • the glass fibers 20 of the optical fibers 2a to 2d will be referred to as glass fibers 20a to 20d.
  • FIG. 3 is a flowchart for explaining a first embodiment of a method for manufacturing an optical fiber connection component.
  • step S1 the end portion of each glass fiber 20 is exposed from the resin coating 21 by using a predetermined tool.
  • the plurality of optical fibers 2 may be a plurality of optical fibers that are not bonded to each other, or may be a plurality of optical fibers included in the intermittently bonded fiber ribbon. In the intermittently bonded fiber ribbon, adjacent optical fibers are intermittently bonded to each other along the longitudinal direction.
  • FIG. 4 is a diagram showing a state in which each glass fiber 20 is mounted on the holding substrate 4.
  • step S2 each glass fiber 20 exposed from the resin coating 21 is mounted on the holding substrate 4.
  • Each glass fiber 20 is mounted on the holding substrate 4 so as to be arranged in the X-axis direction and project outward from the holding substrate 4 in the Z-axis direction.
  • FIG. 5 is a diagram showing how one of the glass fibers 20 is rotationally aligned.
  • the orientation in other words, the position of the core 24 on the end face of the glass fiber 20a
  • the central axis Ax of the glass fiber 20a an example of the first glass fiber
  • the optical fiber 2a is adjusted (step S3). ..
  • the end face of the glass fiber 20 protruding from the holding substrate 4 may be imaged by an image pickup device such as a camera.
  • a rotation centering device (not shown) may automatically adjust the orientation around the central axis Ax of the glass fiber 20 based on the image showing the end face of the glass fiber 20 acquired by the image pickup device.
  • the rotary centering device may adjust the orientation around the central axis Ax of the glass fiber 20 so that the position of the marker 25 (see FIG. 2) of the glass fiber 20 becomes a predetermined position. Further, the rotary centering device may adjust the direction of the central axis Ax of the glass fiber 20 while holding the resin coating 21 of the optical fiber 2. In this way, the rotation positions of the plurality of cores 24 are adjusted to desired rotation positions through the rotation alignment step of step S3.
  • the glass fiber 20 rotates around the central axis Ax. Therefore, the optical fiber 2 is twisted between the holding portion of the optical fiber 2 held by the rotary centering device and the end face of the glass fiber 20. Rotational torque is generated on the end face of the glass fiber 20 due to the twisting of the optical fiber 2.
  • FIG. 6 is a diagram showing how one of the glass fibers 20 is fixed to the holding substrate 4.
  • the glass fiber 20a whose orientation around the central axis Ax is adjusted is fixed to the holding substrate 4 (step S4). Examples of the fixing method between the glass fiber 20 and the holding substrate 4 include the methods shown below.
  • the glass fiber 20 may be fixed to the holding substrate 4 with an adhesive.
  • an ultraviolet curable adhesive or a thermosetting adhesive may be used as the adhesive.
  • the ultraviolet curable adhesive may be previously applied between the holding substrate 4 and each glass fiber 20 before the step S3. After that, ultraviolet rays may be applied to the ultraviolet curable adhesive applied to the glass fiber 20 that has been rotationally aligned. In this way, the rotationally aligned glass fiber 20 is fixed to the holding substrate 4 by the ultraviolet curable adhesive. Further, after the step S3, an ultraviolet curable adhesive may be applied between the glass fiber 20 that has been rotationally aligned and the holding substrate 4.
  • thermosetting adhesive When a thermosetting adhesive is used as the adhesive, the thermosetting adhesive may be applied in advance between the holding substrate 4 and each glass fiber 20 before the step S3. After that, the thermosetting adhesive applied to the rotationally aligned glass fiber 20 may be heated through a heater or laser irradiation. In this way, the rotationally aligned glass fiber 20 is fixed to the holding substrate 4 by the thermosetting adhesive. Further, after step S3, a thermosetting adhesive may be applied between the glass fiber 20 that has been rotationally aligned and the holding substrate 4.
  • the glass fiber 20 can be fixed to the holding substrate 4 relatively easily and quickly.
  • the glass fiber 20 may be fixed to the holding substrate 4 by laser welding.
  • the melting point of the material constituting the holding substrate 4 is preferably lower than the melting point of the material constituting the clad 23 of the glass fiber 20 (for example, quartz glass or Tempax).
  • the laser used for laser welding is, for example, a CO2 laser, a YAG laser, a fiber laser or a disk laser.
  • the glass fiber 20 can be firmly fixed to the holding substrate 4.
  • the glass fiber 20 may be fixed to the holding substrate 4 by the mechanical fixing means.
  • the mechanical fixing means is, for example, a metal or resin fixing member.
  • the mechanical fixing means is mounted on the holding substrate 4 so as to face the rotationally aligned glass fiber 20.
  • the glass fiber 20 is pressed toward the groove portion 46 by the mechanical fixing means in a state of being arranged in the groove portion 46 of the holding substrate 4.
  • the glass fiber 20 is in contact with the V-shaped groove 46 at two points and is in contact with the mechanical fixing means at one point.
  • the shape of the mechanical fixing means is not particularly limited, but it is preferable that the mechanical fixing means is removable from the holding substrate 4.
  • the glass fiber 20 When a mechanical fixing means is used as a fixing means between the glass fiber 20 and the holding substrate 4, the glass fiber 20 can be reliably fixed to the holding substrate 4. Further, when the rotational alignment of the glass fiber 20 is redone, the fixing between the glass fiber 20 and the holding substrate 4 can be released.
  • the position for fixing the glass fiber 20 and the holding substrate 4 is not particularly limited, but the position for fixing the glass fiber 20 in order to suppress the rotational torque generated on the end surface of the glass fiber 20 is preferably close to the end surface of the glass fiber 20.
  • FIG. 7 is a diagram showing how each glass fiber 20 whose orientation around the central axis is adjusted is fixed to the holding substrate 4.
  • steps S3 and S4 are repeatedly executed until the rotational alignment of all the glass fibers 20 is completed (step S5). Specifically, after the orientation around the central axis Ax of the glass fiber 20b (an example of the second glass fiber) of the optical fiber 2b adjacent to the optical fiber 2a is adjusted, the orientation around the central axis Ax of the glass fiber 20b. The glass fiber 20b is fixed to the holding substrate 4 in order to fix the glass fiber 20b.
  • Step S3 and step S4 are also executed for the remaining glass fiber 20.
  • step S5 After the steps S3 and S4 are executed for all the glass fibers 20 (YES in the step S5), two or more glass fibers, the holding substrate 4, and the lid portion of the glass fibers 20 are used. 5 and 5 are collectively bonded using an adhesive (step S6).
  • step S7 the end face of the glass fiber 20 is polished until the end face of each glass fiber 20, the end face 41 of the holding substrate 4, and the end face 51 of the lid portion 5 are flush with each other. In this way, the optical fiber connection component 1 shown in FIG. 1 is manufactured through each manufacturing process shown in FIG.
  • each glass fiber is fixed in the step S4 in order to fix the orientation around the central axis Ax of each glass fiber 20.
  • 20 is fixed to the holding substrate 4. Therefore, it is possible to suppress the rotational torque of the end face of the glass fiber 20 caused by the twist of the optical fiber 2 at the time of rotational alignment.
  • the distance from the position where the glass fiber 20 and the holding substrate 4 are fixed to the end face of the glass fiber 20 is larger than the distance from the holding portion of the optical fiber 2 held by the rotary centering device to the end face of the glass fiber 20. It gets smaller. Therefore, it is possible to suppress the rotational torque of the end face of the glass fiber 20 caused by the twist of the optical fiber 2.
  • step S4 since the orientation around the central axis Ax of the glass fiber 20a is fixed in step S4, it is possible to prevent the position of the core 24 of the glass fiber 20a from deviating from a desired position. Will be done.
  • the optical fiber connection component 1 capable of improving the optical characteristics of the optical fiber connection component 1 is provided.
  • the manufacturing process of the optical fiber connecting component 1 is simplified. can do.
  • FIG. 8 is a flowchart for explaining a method of manufacturing the optical fiber connection component according to the second embodiment.
  • the process S10 and the process S11 are the same as the process S1 and the process S2 in the first embodiment.
  • FIG. 9 is a diagram showing how each glass fiber 20 whose orientation around the central axis Ax is adjusted is fixed to the fixing substrate 7.
  • the fixing substrate 7 is arranged between the end face of each glass fiber 20 in the Z-axis direction and the holding substrate 4 of the optical fiber holding member 3.
  • the fixing substrate 7 may be arranged so that the distance between the fixing substrate 7 and the end surface of the glass fiber 20 in the Z-axis direction is smaller than the distance between the fixing substrate 7 and the holding substrate 4. ..
  • the fixing substrate 7 and the holding substrate 4 are separated from each other, the fixing substrate 7 can be successfully removed in the step S17.
  • step S13 the orientation around the central axis Ax of the glass fiber 20a of the optical fiber 2a is first adjusted.
  • the glass fiber 20a whose orientation around the central axis Ax is adjusted is fixed to the fixing substrate 7 (step S14).
  • the glass fiber 20a may be fixed to the fixing substrate 7 by using an adhesive, or may be fixed to the fixing substrate 7 by laser welding. Further, the glass fiber 20a may be fixed to the fixing substrate 7 by mechanical fixing means.
  • steps S13 and S14 are repeatedly executed until the rotational alignment of all the glass fibers 20 is completed (step S15). Specifically, after the orientation around the central axis Ax of the glass fiber 20b of the optical fiber 2b adjacent to the optical fiber 2a is adjusted, the glass fiber 20b is used to fix the orientation around the central axis Ax of the glass fiber 20b. Is fixed to the fixing substrate 7. Next, after the orientation around the central axis Ax of the glass fiber 20c of the optical fiber 2c adjacent to the optical fiber 2b is adjusted, the glass fiber 20c is fixed in order to fix the orientation around the central axis Ax of the glass fiber 20c. It is fixed to the substrate 7.
  • the glass fiber 20d is fixed in order to fix the orientation around the central axis Ax of the glass fiber 20d. It is fixed to the substrate 7.
  • step S16 After the steps S13 and S14 are executed for all the glass fibers 20 (YES in the step S15), two or more glass fibers, the holding substrate 4, and the lid portion of the glass fibers 20 are used. 5 and 5 are collectively adhered to each other using an adhesive (step S16).
  • FIG. 10 is a diagram for explaining a step S17 for removing the fixing substrate 7.
  • step S17 the fixing substrate 7 is removed. Specifically, each glass fiber 20 located between the fixing substrate 7 in the Z-axis direction and the holding substrate 4 of the optical fiber holding member 3 is cut by a cutting tool. By cutting each glass fiber 20 in this way, the fixing substrate 7 can be removed.
  • step S18 the end face of the glass fiber 20 is polished until the end face of each glass fiber 20, the end face 41 of the holding substrate 4, and the end face 51 of the lid portion 5 are flush with each other. In this way, the optical fiber connection component 1 shown in FIG. 1 is manufactured through each manufacturing process shown in FIG.
  • each glass fiber is fixed in the step S14 in order to fix the orientation around the central axis Ax of each glass fiber 20.
  • the end portion of 20 is fixed to the fixing substrate 7. Therefore, it is possible to suppress the rotational torque of the end face of the glass fiber 20 caused by the twist of the optical fiber 2 at the time of rotational alignment.
  • the distance from the position where the glass fiber 20 and the fixing substrate 7 are fixed to the end face of the glass fiber 20 is larger than the distance from the holding portion of the optical fiber 2 held by the rotary centering device to the end face of the glass fiber 20. Also becomes smaller.
  • FIG. 11 is a diagram for explaining a method for manufacturing an optical fiber connecting component according to the first embodiment when the optical fiber holding member 3a according to a modified example is used for the optical fiber connecting component.
  • the optical fiber holding member 3a according to the modified example is a block having a plurality of holes 30a arranged in the X-axis direction. Each of the plurality of holes 30a extends in the Z-axis direction and is configured to hold the corresponding one of the plurality of glass fibers 20.
  • step S2 shown in FIG. 3 each glass fiber 20 is inserted into the corresponding hole portion 30a. In this case, the tip portion of each glass fiber 20 projects outward from the optical fiber holding member 3a in the Z-axis direction. After that, steps S3 and S4 are performed on all the glass fibers 20.
  • the glass fiber 20 may be fixed to the optical fiber holding member 3a in the vicinity of the end surface 32a of the optical fiber holding member 3a.
  • the glass fiber 20 may be fixed to the optical fiber holding member 3a by an adhesive (ultraviolet curable adhesive or heat curable adhesive), or may be fixed to the optical fiber holding member 3a by laser welding. ..
  • the ultraviolet curable adhesive is poured into the hole 30a before the step S3.
  • the ultraviolet curable resin existing in the vicinity of the end surface 32a of the optical fiber holding member 3a is irradiated with ultraviolet rays. In this way, the glass fiber 20 is fixed to the optical fiber holding member 3a by the ultraviolet curable adhesive in the vicinity of the end face 32a.
  • step S6 the adhesive is poured into each hole 30a in a state where each glass fiber 20 inserted into the hole 30a is fixed to the optical fiber holding member 3a. In this way, each glass fiber 20 is adhered to the optical fiber holding member 3a. After that, the end face of the glass fiber 20 is polished until the end face of each glass fiber 20 and the end face 32a of the optical fiber holding member 3a are flush with each other. As a result, an optical fiber connection component provided with the optical fiber holding member 3a is manufactured.
  • FIG. 12 is a diagram for explaining a method for manufacturing an optical fiber connecting component according to a second embodiment when the optical fiber holding member 3a according to a modified example is used for the optical fiber connecting component.
  • step S11 of FIG. 8 each glass fiber 20 is inserted into the corresponding hole 30a.
  • the tip portion of each glass fiber 20 projects outward from the optical fiber holding member 3a in the Z-axis direction.
  • the fixing substrate 7a is arranged between the optical fiber holding member 3a in the Z-axis direction and the end face of each glass fiber 20 (step S12).
  • steps S13 and S14 are performed on all the glass fibers 20.
  • step S14 the end portion of the glass fiber 20 protruding outward from the optical fiber holding member 3a is fixed to the fixing substrate 7a.
  • the glass fiber 20 may be fixed to the fixing substrate 7 by an adhesive (ultraviolet curable adhesive or thermosetting adhesive), or may be fixed to the fixing substrate 7a by laser welding. Further, the glass fiber 20 may be fixed to the fixing substrate 7a by mechanical fixing means.
  • a multi-core fiber is used as an example of the optical fiber 2, but the optical fiber 2 may be a polarization-retaining fiber or a bundle fiber.
  • the polarization-retaining fiber has a pair of stress-applying portions, a core arranged between the pair of stress-applying portions and through which signal light propagates, and a pair of stress-applying portions and a clad covering the core.
  • a polarization-retaining fiber is used as the optical fiber 2, it is possible to suppress crosstalk between the optical fiber connecting component 1 optically connected to each other and another optical component.
  • the bundle fiber is composed of a bundle of a plurality of single core fibers.
  • Optical fiber connection parts 2a, 2b, 2c, 2d Optical fiber 3
  • Optical fiber holding member 4 Holding substrate 5: Lid portion 7: Fixing substrate 20, 20a, 20b, 20c, 20d: Glass Fiber 21: Resin coating 23: Clad 24: Core 25: Marker 30a: Hole 32a: End face 41: End face 46: Groove 51: End face

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Abstract

光ファイバ接続部品の製造方法は、コアと前記コアを覆うクラッドとを有するガラスファイバと、前記ガラスファイバを覆う樹脂被覆とを有し、前記ガラスファイバの端部が前記樹脂被覆から露出した複数の光ファイバを用意することと、前記樹脂被覆から露出した複数のガラスファイバが第一方向に配列されると共に、光ファイバ保持部材から外部に突出するように、前記複数のガラスファイバを前記光ファイバ保持部材に搭載することと、前記複数のガラスファイバの各々の中心軸回りの方位を調整すると共に、前記複数のガラスファイバの各々の中心軸回りの方位を固定することと、接着剤を用いて前記複数のガラスファイバのうち二本以上のガラスファイバと前記光ファイバ保持部材とを一括で接着することと、を含む。

Description

光ファイバ接続部品の製造方法
 本開示は、光コネクタ及び光接続構造に関する。
 本出願は、2020年12月25日出願の日本出願第2020-217225号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
 特許文献1には、マルチコアファイバを備えた光コネクタの製造方法が開示されている。特許文献1に開示された製造方法によれば、マルチコアファイバがコネクタに設けられたV溝に配置された後に、マルチコアファイバの中心軸回りの方位が調整される(即ち、マルチコアファイバが回転調心される)。
日本国特開2015-125172号公報
 本開示の一態様に係る光ファイバ接続部品の製造方法は、コアと前記コアを覆うクラッドとを有するガラスファイバと、前記ガラスファイバを覆う樹脂被覆とを有し、前記ガラスファイバの端部が前記樹脂被覆から露出した複数の光ファイバを用意することと、前記樹脂被覆から露出した複数のガラスファイバが第一方向に配列されると共に、光ファイバ保持部材から外部に突出するように、前記複数のガラスファイバを前記光ファイバ保持部材に搭載することと、前記複数のガラスファイバの各々の中心軸回りの方位を調整し固定することと、接着剤を用いて前記複数のガラスファイバのうち二本以上のガラスファイバと前記光ファイバ保持部材とを一括で接着することと、を含む。
本開示の光ファイバ接続部品の製造方法で製造された光ファイバ接続部品の一例を示す斜視図である。 図1の光ファイバ接続部品に含まれるガラスファイバの断面を示す図である。 本開示の第1実施形態に係る光ファイバ接続部品の製造方法を説明するためのフローチャートである。 第1実施形態に係る光ファイバ接続部品の製造方法において、各ガラスファイバが保持基板に搭載されている状態を示す斜視図である。 第1実施形態に係る光ファイバ接続部品の製造方法において、ガラスファイバの一つが回転調心されている様子を示す図である。 第1実施形態に係る光ファイバ接続部品の製造方法において、ガラスファイバの一つが保持基板に固定されている様子を示す図である。 第1実施形態に係る光ファイバ接続部品の製造方法において、中心軸回りの方位が調整された各ガラスファイバが保持基板に固定されている様子を示す図である。 本開示の第2実施形態の係る光ファイバ接続部品の製造方法を説明するためのフローチャートである。 第2実施形態に係る光ファイバ接続部品の製造方法において、中心軸回りの方位が調整された各ガラスファイバが固定用基板に固定されている様子を示す図である。 第2実施形態に係る光ファイバ接続部品の製造方法において、固定用基板を除去する工程を説明するための図である。 変形例に係る光ファイバ保持部材が光ファイバ接続部品に用いられる場合の第1実施形態に係る光ファイバ接続部品の製造方法を説明するための図である。 変形例に係る光ファイバ保持部材が光ファイバ接続部品に用いられる場合の第2実施形態に係る光ファイバ接続部品の製造方法を説明するための図である。
[本開示が解決しようとする課題]
 マルチコアファイバを備えた光コネクタの製造方法では、各マルチコアファイバが回転調心された後に、マルチコアファイバとコネクタが接着剤により固定される。その後、マルチコアファイバの端面とコネクタの端面が面一となるようにコネクタから突出したマルチコアファイバの端面が研磨される。
 ところで、マルチコアファイバが回転調心された場合、マルチコアファイバを中心軸回りに回転させるためにマルチコアファイバが保持される保持部分からガラスファイバの端面までの間において、マルチコアファイバにねじれが生じてしまう。このマルチコアファイバのねじれによって、マルチコアファイバの端面に回転トルクが発生する。この端面に発生した回転トルクによって、マルチコアファイバが回転調心されたときからマルチコアファイバの全てがコネクタに一括で接着されるまでの間において、マルチコアファイバの中心軸回りの方位(具体的には、マルチコアファイバの端面上のコアの位置)が変動してしまう。この結果、マルチコアファイバの端面上のコアの位置が所望の位置からずれてしまい、光コネクタと光導波路回路等の外部の光学デバイスとの間の結合損失が増大してしまう。このように、上記観点より光コネクタ等の光ファイバ接続部品の製造方法について改善の余地がある。
 [実施態様の説明]
 実施形態を説明する。
 (1)コアと前記コアを覆うクラッドとを有するガラスファイバと、前記ガラスファイバを覆う樹脂被覆とを有し、前記ガラスファイバの端部が前記樹脂被覆から露出した複数の光ファイバを用意することと、前記樹脂被覆から露出した複数のガラスファイバが第一方向に配列されると共に、光ファイバ保持部材から外部に突出するように、前記複数のガラスファイバを前記光ファイバ保持部材に搭載することと、前記複数のガラスファイバの各々の中心軸回りの方位を調整し固定することと、接着剤を用いて前記複数のガラスファイバのうち二本以上のガラスファイバと前記光ファイバ保持部材とを一括で接着することと、を含む、光ファイバ接続部品の製造方法。
 態様(1)の製造方法によれば、光ファイバのねじれによって生じるガラスファイバの端面の回転トルクを抑制することが可能となる。このように、各ガラスファイバが回転調心されたときから複数のガラスファイバの全てが光ファイバ保持部材に一括で接着されるまでの間において、各ガラスファイバの中心軸回りの方位(具体的には、各ガラスファイバの端面上におけるコアの位置)が変動してしまう状況が防止される。この結果、ガラスファイバの端面上におけるコアの位置が回転調心によって設定された所望の位置からずれてしまうことが防止され、光ファイバ接続部品と外部光学部品(例えば、光導波路回路)との間の結合損失が増大してしまうといった状況を防止することができる。このように、光ファイバ接続部品の光学特性を向上させることが可能な光ファイバ接続部品の製造方法が提供される。
 (2)前記方位を調整し固定することは、前記複数のガラスファイバのうち第一ガラスファイバの中心軸回りの方位を調整することと、前記第一ガラスファイバの中心軸回りの方位を固定することと、前記第一ガラスファイバに隣接する第二ガラスファイバの中心軸回りの方位を調整することと、前記第二ガラスファイバの中心軸回りの方位を固定することと、を順に含む、態様(1)に記載の光ファイバ接続部品の製造方法。
 態様(2)の製造方法によれば、各ガラスファイバが回転調心された後から複数のガラスファイバの全体が光ファイバ保持部材に一括で接着されるまでの間において、第一ガラスファイバ及び第二ガラスファイバの中心軸回りの方位が変動してしまう状況を防止することが可能となる。
 (3)前記方位を調整し固定することは、前記複数のガラスファイバが前記光ファイバ保持部材に固定することを含む、態様(1)又は態様(2)に記載の光ファイバ接続部品の製造方法。
 態様(3)の製造方法によれば、各ガラスファイバが回転調心された後から複数のガラスファイバの全体が光ファイバ保持部材に一括で接着されるまでの間において、各ガラスファイバの中心軸回りの方位が変動してしまう状況を防止することが可能となる。さらに、本製造方法によれば、各ガラスファイバを固定するための固定用基板を別途用意する必要がないため、光ファイバ接続部品の製造工程を簡素化することができる。
 (4)前記方位を調整し固定することは、前記光ファイバ保持部材から外部に突出した前記複数のガラスファイバの部分を前記複数のガラスファイバの端面と前記光ファイバ保持部材との間で固定用基板に固定することを含み、前記製造方法は、前記複数のガラスファイバを前記固定用基板と前記光ファイバ保持部材との間で切断することをさらに含む、態様(1)又は態様(2)に記載の光ファイバ接続部品の製造方法。
 態様(4)の製造方法によれば、ガラスファイバの端面の付近においてガラスファイバの中心軸回りの方位が固定されるため、光ファイバのねじれによって生じるガラスファイバの端面の回転トルクをより効果的に抑制することが可能となる。したがって、ガラスファイバの中心軸回りの方位が変動してしまう状況をより効果的に防止することが可能となる。
 (5)前記方位を調整し固定することは、前記複数のガラスファイバの各々を、接着剤(例えば、紫外線硬化型接着剤や熱硬化型接着剤)によって態様(3)の製造方法の場合では前記光ファイバ保持部材に、態様(4)の製造方法の場合では固定用基板に固定することを含む、光ファイバ接続部品の製造方法。
 態様(5)の製造方法によれば、各ガラスファイバを光ファイバ保持部材若しくは固定用基板に比較的簡単に且つ素早く固定することができる。
 (6)前記方位を調整し固定することは、前記複数のガラスファイバの各々を、レーザ溶着によって態様(3)の製造方法の場合では前記光ファイバ保持部材に、態様(4)の製造方法の場合では固定用基板に固定することを含む、光ファイバ接続部品の製造方法。
 態様(6)の製造方法によれば、各ガラスファイバを光ファイバ保持部材若しくは固定用基板に強固に固定することができる。
 (7)前記方位を調整し固定することは、前記複数のガラスファイバの各々を、機械的固定手段によって態様(3)の製造方法の場合では前記光ファイバ保持部材に、態様(4)の製造方法の場合では固定用基板に固定することを含む、光ファイバ接続部品の製造方法。
 態様(7)の製造方法によれば、各ガラスファイバを光ファイバ保持部材若しくは固定用基板に確実に固定することができる。さらに、ガラスファイバの回転調心をやり直す場合に、ガラスファイバと光ファイバ保持部材若しくは固定用基板との間の固定を解除することが可能となる。
 (8)前記光ファイバ保持部材は、各々が前記複数のガラスファイバの対応する一つを保持する複数の溝部を有する保持基板と、前記複数のガラスファイバを介して前記保持基板と対向する蓋部と、を備える、態様(1)から態様(7)のうちいずれか一項に記載の光ファイバ接続部品の製造方法。
 態様(8)の製造方法によれば、各ガラスファイバが回転調心された後から複数のガラスファイバの全体が保持基板及び蓋部に一括で接着されるまでの間において、各ガラスファイバの中心軸回りの方位が変動してしまう状況を防止することが可能となる。
 (9)前記光ファイバ保持部材は、各々が前記複数のガラスファイバのうちの対応する一つを保持する複数の孔部を有するブロックである、態様(1)から態様(7)のうちいずれか一項に記載の光ファイバ接続部品の製造方法。
 態様(9)の製造方法によれば、各ガラスファイバが回転調心された後から複数のガラスファイバの全体がブロックに一括で接着されるまでの間において、各ガラスファイバの中心軸回りの方位が変動してしまう状況を防止することが可能となる。
 (10)前記光ファイバは、マルチコアファイバ、偏波保持ファイバ又はバンドルファイバである、態様(1)から態様(9)のうちいずれか一項に記載の光ファイバ接続部品の製造方法。
 光ファイバがマルチコアファイバ、偏波保持ファイバ又はバンドルファイバである場合では、各光ファイバの回転調心の精度が重要となる。この点において、本開示の製造方法によれば、各ガラスファイバの中心軸回りの方位が変動してしまう状況を防止することが可能となるため、光ファイバ接続部品と外部光学部品(例えば、光導波路回路)との間の結合損失が増大してしまうといった状況を防止可能となる。したがって、光ファイバ接続部品の光学特性を向上させることが可能な光ファイバ接続部品の製造方法が提供される。
[本開示の効果]
 本開示によれば、光ファイバ接続部品の光学特性を向上させることが可能な光ファイバ接続部品の製造方法を提供することができる。
 [実施形態の詳細]
 以下、本開示の実施形態について図面を参照しながら説明する。各図面に示された各部材の寸法の比率は、説明の便宜上、実際の各部材の寸法の比率とは異なる場合がある。また、本開示では、図1に示す光ファイバ接続部品1に対して設定されたX軸方向、Y軸方向、Z軸方向について適宜言及する。X軸方向、Y軸方向、Z軸方向の各々は、残りの2つの方向に対して垂直となる。
 光ファイバ接続部品1は、複数の光ファイバ2を含む光ファイバアレイとして機能する。光ファイバ接続部品1の光ファイバが他の光ファイバと光学的に接続される場合には、光ファイバ接続部品1は、光コネクタとして機能する。
 図1は、光ファイバ接続部品1を示す斜視図である。光ファイバ接続部品1は、X軸方向(第一方向)に配列された複数の光ファイバ2(図1では12本の光ファイバ2)と、複数の光ファイバ2を保持する光ファイバ保持部材3とを備える。各光ファイバ2は、互いに分離した状態でX軸方向に配列されている。光ファイバ2は、ガラスファイバ20と、ガラスファイバ20を覆う樹脂被覆21とを有する。
 図2は、ガラスファイバ20の中心軸に垂直な断面を示す図である。ガラスファイバ20は、中心軸に垂直な断面において、軸対称ではない構造を有するマルチコアファイバである。このように、各光ファイバ2は中心軸に関して非軸対称の構造を有するため、各光ファイバ2の中心軸回りの方位を調整(回転調心)する必要がある。
 ガラスファイバ20は、信号光が伝搬する複数のコア24と、マーカ25と、複数のコア24とマーカ25とを覆うクラッド23とを有する。各コア24の屈折率はクラッド23の屈折率よりも大きい。マーカ25の屈折率は、クラッド23の屈折率と異なっている。マーカ25は、後述する光ファイバ2の回転調心工程において利用される。
 図1に示すように、各光ファイバ2では、ガラスファイバ20の端部が樹脂被覆21から露出している。光ファイバ保持部材3は、樹脂被覆21から露出した複数のガラスファイバ20がX軸方向に配列されるように複数のガラスファイバ20を保持する。光ファイバ保持部材3は、保持基板4と、複数のガラスファイバ20を介して保持基板4と対向する蓋部5とを有する。保持基板4には、各々が対応するガラスファイバ20の一つを保持する複数のV字状の溝部46(図4参照)が設けられている。蓋部5と、各ガラスファイバ20と、保持基板4は、接着剤を介して互いに固定されている。また、各ガラスファイバ20の端面と、蓋部5の端面51と、保持基板4の端面41は、面一となっている。
(第1実施形態)
 次に、図3から図7を参照して本開示の第1実施形態に係る光ファイバ接続部品1の製造方法について説明する。尚、以降では、説明の便宜上、12本の光ファイバ2のうち4本の光ファイバ2を光ファイバ2a~2dというと共に、光ファイバ2a~2dのガラスファイバ20をガラスファイバ20a~20dという。
 図3は、光ファイバ接続部品の製造方法の第1実施形態を説明するためのフローチャートである。工程S1において、所定の工具を用いることで各ガラスファイバ20の端部が樹脂被覆21から露出される。尚、第1実施形態では、複数の光ファイバ2は、互いに接着されていない複数の光ファイバであってもよいし、間欠接着型ファイバリボンに含まれる複数の光ファイバであってもよい。間欠接着型ファイバリボンでは、隣接する光ファイバが長手方向に沿って間欠的に互いに接着されている。
 図4は、各ガラスファイバ20が保持基板4に搭載されている状態を示す図である。工程S2において、樹脂被覆21から露出した各ガラスファイバ20が保持基板4に搭載される。各ガラスファイバ20は、X軸方向に配列されると共にZ軸方向において保持基板4から外部に突出するように、保持基板4に搭載される。
 図5は、ガラスファイバ20の一つが回転調心されている様子を示す図である。最初に光ファイバ2aのガラスファイバ20a(第一のガラスファイバの一例)の中心軸Ax回りの方位(換言すれば、ガラスファイバ20aの端面上のコア24の位置)が調整される(工程S3)。工程S3の回転調心工程では、例えば、保持基板4から突出したガラスファイバ20の端面がカメラ等の撮像装置によって撮像されてもよい。その後、図示しない回転調心装置が、撮像装置によって取得されたガラスファイバ20の端面を示す画像に基づいて、ガラスファイバ20の中心軸Ax回りの方位を自動的に調整してもよい。この点において、回転調心装置は、ガラスファイバ20のマーカ25(図2参照)の位置が所定の位置となるようにガラスファイバ20の中心軸Ax回りの方位を調整してもよい。また、回転調心装置は、光ファイバ2の樹脂被覆21を保持しながら、ガラスファイバ20の中心軸Axの方位を調整してもよい。このように、工程S3の回転調心工程を通じて複数のコア24の回転位置が所望の回転位置に調整される。
 ガラスファイバ20の回転調心が行われる場合には、ガラスファイバ20は中心軸Ax回りに回転する。このため、回転調心装置によって保持される光ファイバ2の保持部分からガラスファイバ20の端面までの間において光ファイバ2にねじれが生じてしまう。この光ファイバ2のねじれによってガラスファイバ20の端面に回転トルクが発生する。
 図6は、ガラスファイバ20の一つが保持基板4に固定されている様子を示す図である。光ファイバ2aのガラスファイバ20aの中心軸Ax回りの方位を固定するために、中心軸Ax回りの方位が調整されたガラスファイバ20aが保持基板4に固定される(工程S4)。ガラスファイバ20と保持基板4との間の固定方法としては、以下に示す方法が挙げられる。
 (1)接着剤を用いた固定方法
 ガラスファイバ20は、接着剤によって保持基板4に固定されてもよい。この場合、接着剤としては、紫外線硬化型接着剤又は熱硬化型接着剤が使用されてもよい。例えば、接着剤として紫外線硬化型接着剤が使用される場合には、工程S3の前に予め保持基板4と各ガラスファイバ20との間に紫外線硬化型接着剤が塗られてもよい。その後、回転調心が行われたガラスファイバ20に塗布された紫外線硬化型接着剤に対して紫外線が照射されてもよい。このようにして、回転調心が行われたガラスファイバ20が紫外線硬化型接着剤によって保持基板4に固定される。また、工程S3の後において、回転調心が行われたガラスファイバ20と保持基板4との間に紫外線硬化型接着剤が塗られてもよい。
 また、接着剤として熱硬化型接着剤が使用される場合には、工程S3の前に予め保持基板4と各ガラスファイバ20との間に熱硬化型接着剤が塗られてもよい。その後、回転調心が行われたガラスファイバ20に塗布された熱硬化型接着剤がヒータ又はレーザ照射を通じて加熱されてもよい。このようにして、回転調心が行われたガラスファイバ20が熱硬化型接着剤によって保持基板4に固定される。また、工程S3の後において、回転調心が行われたガラスファイバ20と保持基板4との間に熱硬化型接着剤が塗られてもよい。
 ガラスファイバ20と保持基板4との間の固定手段として接着剤が使用される場合には、ガラスファイバ20を保持基板4に比較的簡単に且つ素早く固定することができる。
 (2)レーザ溶着による固定方法
 ガラスファイバ20は、レーザ溶着によって保持基板4に固定されてもよい。この場合、保持基板4を構成する材料の融点は、ガラスファイバ20のクラッド23を構成する材料(例えば、石英ガラスやテンパックス)の融点よりも低いことが好ましい。また、レーザ溶着に使用されるレーザは、例えば、CO2レーザ、YAGレーザ、ファイバレーザ又はディスクレーザである。
 ガラスファイバ20と保持基板4との間の固定手段としてレーザ溶着が使用される場合には、ガラスファイバ20を保持基板4に強固に固定することができる。
 (3)機械的固定手段による固定方法
 ガラスファイバ20は、機械的固定手段によって保持基板4に固定されてもよい。機械的固定手段は、例えば、金属製又は樹脂製の固定部材である。機械的固定手段は、回転調心がされたガラスファイバ20に対向するように保持基板4に搭載される。機械的固定手段が保持基板4に搭載された場合に、ガラスファイバ20は、保持基板4の溝部46内に配置された状態で機械的固定手段によって溝部46に向かって押圧される。この場合、ガラスファイバ20は、V字状の溝部46と2点で接触しつつ、機械的固定手段と一点で接触する。機械的固定手段の形状は特に限定されるものではないが、機械的固定手段は保持基板4から取り外し可能であることが好ましい。
 ガラスファイバ20と保持基板4との間の固定手段として機械的固定手段が使用される場合には、ガラスファイバ20を保持基板4に確実に固定することができる。また、ガラスファイバ20の回転調心をやり直す場合に、ガラスファイバ20と保持基板4との間の固定を解除することが可能となる。
 また、ガラスファイバ20と保持基板4とを固定する位置は特に限定されないが、ガラスファイバ20の端面に生じる回転トルクを抑制するために固定する位置はガラスファイバ20の端面に近いことが好ましい。
 図7は、中心軸回りの方位が調整された各ガラスファイバ20が保持基板4に固定されている様子を示す図である。次に、全てのガラスファイバ20の回転調心が終了するまで工程S3及び工程S4が繰り返し実行される(工程S5)。具体的には、光ファイバ2aに隣接する光ファイバ2bのガラスファイバ20b(第二のガラスファイバの一例)の中心軸Ax回りの方位が調整された後に、ガラスファイバ20bの中心軸Ax回りの方位を固定するために、ガラスファイバ20bが保持基板4に固定される。次に、光ファイバ2bに隣接する光ファイバ2cのガラスファイバ20cの中心軸Ax回りの方位が調整された後に、ガラスファイバ20cの中心軸Ax回りの方位を固定するために、ガラスファイバ20cが保持基板4に固定される。さらに、光ファイバ2cに隣接する光ファイバ2dのガラスファイバ20dの中心軸Ax回りの方位が調整された後に、ガラスファイバ20dの中心軸Ax回りの方位を固定するために、ガラスファイバ20dが保持基板4に固定される。残りのガラスファイバ20に対しても工程S3及び工程S4が実行される。
 このようにして、全てのガラスファイバ20に対して工程S3及び工程S4が実行された後に(工程S5でYES)、ガラスファイバ20のうち二本以上のガラスファイバと、保持基板4と、蓋部5とが接着剤を用いて一括で接着される(工程S6)。次に、工程S7において、各ガラスファイバ20の端面と、保持基板4の端面41と、蓋部5の端面51とが面一となるまでガラスファイバ20の端面が研磨される。このように、図3に示す各製造工程を通じて図1に示す光ファイバ接続部品1が製造される。
 第1実施形態によれば、ガラスファイバ20の全てが光ファイバ保持部材3に一括で接着される前に、工程S4において各ガラスファイバ20の中心軸Ax回りの方位を固定するために各ガラスファイバ20が保持基板4に固定される。このため、回転調心時の光ファイバ2のねじれによって生じるガラスファイバ20の端面の回転トルクを抑制することが可能となる。特に、ガラスファイバ20と保持基板4とを固定する位置からガラスファイバ20の端面までの距離は、回転調心装置によって保持される光ファイバ2の保持部分からガラスファイバ20の端面までの距離よりも小さくなる。このため、光ファイバ2のねじれによって生じるガラスファイバ20の端面の回転トルクを抑制することができる。
 このように、各ガラスファイバ20が回転調心されたときからガラスファイバ20の全てが光ファイバ保持部材3に一括で接着剤により接着されるまでの間において、各ガラスファイバ20の中心軸Ax回りの方位が変動してしまう状況が防止される。この結果、ガラスファイバ20の端面上におけるコア24の位置が回転調心によって設定された所望の位置からずれてしまうことが防止される。この点において、最初に回転調心が行われるガラスファイバ20aのコア24の位置が所望の位置から最もずれやすい。その一方で、第1実施形態によれば、工程S4においてガラスファイバ20aの中心軸Ax回りの方位が固定されるので、ガラスファイバ20aのコア24の位置が所望の位置からずれてしまうことが防止される。
 したがって、最終的に製造された光ファイバ接続部品1と外部光学部品(例えば、光導波路回路や光コネクタ)との間の結合損失が増大してしまうといった状況を防止可能となる。このように、光ファイバ接続部品1の光学特性を向上させることが可能な光ファイバ接続部品1の製造方法が提供される。
 また、第1実施形態によれば、各ガラスファイバ20の中心軸Ax回りの方位を固定するための固定用基板を別途用意する必要がないことから、光ファイバ接続部品1の製造工程を簡素化することができる。
(第2実施形態)
 図8は、第2実施形態に係る光ファイバ接続部品の製造方法を説明するためのフローチャートである。工程S10及び工程S11は、第1実施形態における工程S1、工程S2と同じである。
 図9は、中心軸Ax回りの方位が調整された各ガラスファイバ20が固定用基板7に固定されている様子を示す図である。工程S12において、固定用基板7が、Z軸方向における各ガラスファイバ20の端面と光ファイバ保持部材3の保持基板4との間に配置される。Z軸方向における固定用基板7とガラスファイバ20の端面との間の距離が固定用基板7と保持基板4との間の距離よりも小さくなるように、固定用基板7が配置されてもよい。特に、固定用基板7と保持基板4が互いに離れているため、工程S17において固定用基板7を首尾よく除去することが可能となる。
 次に、工程S13において、最初に光ファイバ2aのガラスファイバ20aの中心軸Ax回りの方位が調整される。その後、ガラスファイバ20aの中心軸Ax回りの方位を固定するために、中心軸Ax回りの方位が調整されたガラスファイバ20aが固定用基板7に固定される(工程S14)。第1実施形態と同様に、ガラスファイバ20aは、接着剤を用いて固定用基板7に固定されてもよいし、レーザ溶着により固定用基板7に固定されてもよい。また、ガラスファイバ20aは、機械的固定手段によって固定用基板7に固定されてもよい。
 次に、全てのガラスファイバ20の回転調心が終了するまで工程S13及び工程S14が繰り返し実行される(工程S15)。具体的には、光ファイバ2aに隣接する光ファイバ2bのガラスファイバ20bの中心軸Ax回りの方位が調整された後に、ガラスファイバ20bの中心軸Ax回りの方位を固定するために、ガラスファイバ20bが固定用基板7に固定される。次に、光ファイバ2bに隣接する光ファイバ2cのガラスファイバ20cの中心軸Ax回りの方位が調整された後に、ガラスファイバ20cの中心軸Ax回りの方位を固定するために、ガラスファイバ20cが固定用基板7に固定される。さらに、光ファイバ2cに隣接する光ファイバ2dのガラスファイバ20dの中心軸Ax回りの方位が調整された後に、ガラスファイバ20dの中心軸Ax回りの方位を固定するために、ガラスファイバ20dが固定用基板7に固定される。
 このようにして、全てのガラスファイバ20に対して工程S13及び工程S14が実行された後に(工程S15でYES)、ガラスファイバ20のうち二本以上のガラスファイバと、保持基板4と、蓋部5とが接着剤を用いて一括で接着される(工程S16)。
 図10は、固定用基板7を除去する工程S17を説明するための図である。次に、工程S17において、固定用基板7が除去される。具体的には、Z軸方向における固定用基板7と光ファイバ保持部材3の保持基板4との間に位置する各ガラスファイバ20が切断工具によって切断される。このように、各ガラスファイバ20を切断することで固定用基板7を除去することができる。次に、工程S18において、各ガラスファイバ20の端面と、保持基板4の端面41と、蓋部5の端面51とが面一となるまでガラスファイバ20の端面が研磨される。このように、図8に示す各製造工程を通じて図1に示す光ファイバ接続部品1が製造される。
 第2実施形態によれば、ガラスファイバ20の全てが光ファイバ保持部材3に一括で接着される前に、工程S14において各ガラスファイバ20の中心軸Ax回りの方位を固定するために各ガラスファイバ20の端部が固定用基板7に固定される。このため、回転調心時の光ファイバ2のねじれによって生じるガラスファイバ20の端面の回転トルクを抑制することが可能となる。特に、ガラスファイバ20と固定用基板7とを固定する位置からガラスファイバ20の端面までの距離は、回転調心装置によって保持される光ファイバ2の保持部分からガラスファイバ20の端面までの距離よりも小さくなる。この点において、ガラスファイバ20の端面の付近においてガラスファイバ20の中心軸Ax回りの方位が固定されるため、光ファイバ2のねじれによって生じるガラスファイバ20の端面の回転トルクをさらに抑制することができる。
 このように、各ガラスファイバ20が回転調心されたときからガラスファイバ20の全てが光ファイバ保持部材3に一括で接着剤により接着されるまでの間において、各ガラスファイバ20の中心軸Ax回りの方位が変動してしまう状況が防止される。この結果、ガラスファイバ20の端面上におけるコア24の位置が回転調心によって設定された所望の位置からずれてしまうことが防止される。したがって、最終的に製造された光ファイバ接続部品1と外部光学部品(例えば、光導波路回路や光コネクタ)との間の結合損失が増大してしまうといった状況を防止可能となる。このように、光ファイバ接続部品1の光学特性を向上させることが可能な光ファイバ接続部品1の製造方法が提供される。
(光ファイバ保持部材の変形例)
 図11は、変形例に係る光ファイバ保持部材3aが光ファイバ接続部品に用いられた場合の第1実施形態に係る光ファイバ接続部品の製造方法を説明するための図である。変形例に係る光ファイバ保持部材3aは、X軸方向に配列された複数の孔部30aを有するブロックである。複数の孔部30aの各々は、Z軸方向に延びており、複数のガラスファイバ20のうちの対応する一つを保持するように構成されている。各ガラスファイバ20が光ファイバ保持部材3aによって保持される場合、図3に示す工程S2では、各ガラスファイバ20は、対応する孔部30aに挿入される。この場合、各ガラスファイバ20の先端部分が、Z軸方向において光ファイバ保持部材3aから外部に突出している。その後、全てのガラスファイバ20に対して工程S3及び工程S4が行われる。
 工程S4では、光ファイバ保持部材3aの端面32aの付近において、ガラスファイバ20が光ファイバ保持部材3aに固定されてもよい。特に、ガラスファイバ20は、接着剤(紫外線硬化型接着剤又は熱硬化型接着剤)により光ファイバ保持部材3aに固定されてもよいし、レーザ溶着により光ファイバ保持部材3aに固定されてもよい。例えば、ガラスファイバ20が紫外線硬化型接着剤により光ファイバ保持部材3aに固定される場合には、工程S3の前に孔部30a内に紫外線硬化型接着剤が流し込まれる。その後、ガラスファイバ20の回転調心が実行された後に、光ファイバ保持部材3aの端面32aの付近に存在する紫外線硬化型樹脂に紫外線が照射される。このように、端面32aの付近においてガラスファイバ20が紫外線硬化型接着剤により光ファイバ保持部材3aに固定される。
 このように、全てのガラスファイバ20に対して工程S3及び工程S4が実行された後に工程S6及び工程S7が実行される。工程S6では、孔部30aに挿入された各ガラスファイバ20が光ファイバ保持部材3aに固定された状態で、各孔部30a内に接着剤が流し込まれる。このように、各ガラスファイバ20が光ファイバ保持部材3aに接着される。その後、各ガラスファイバ20の端面と、光ファイバ保持部材3aの端面32aとが面一となるまでガラスファイバ20の端面が研磨される。この結果、光ファイバ保持部材3aを備えた光ファイバ接続部品が製造される。
 図12は、変形例に係る光ファイバ保持部材3aが光ファイバ接続部品に用いられた場合の第2実施形態に係る光ファイバ接続部品の製造方法を説明するための図である。図8の工程S11では、各ガラスファイバ20は、対応する孔部30aに挿入される。この場合、各ガラスファイバ20の先端部分が、Z軸方向において光ファイバ保持部材3aから外部に突出している。その後、固定用基板7aがZ軸方向における光ファイバ保持部材3aと各ガラスファイバ20の端面の間に配置される(工程S12)。次に、全てのガラスファイバ20に対して工程S13及び工程S14が行われる。
 工程S14では、光ファイバ保持部材3aから外部に突出したガラスファイバ20の端部が固定用基板7aに固定される。特に、ガラスファイバ20は、接着剤(紫外線硬化型接着剤又は熱硬化型接着剤)により固定用基板7に固定されてもよいし、レーザ溶着により固定用基板7aに固定されてもよい。さらに、ガラスファイバ20は、機械的固定手段により固定用基板7aに固定されてもよい。
 このように、全てのガラスファイバ20に対して工程S13及び工程S14が実行された後に工程S16から工程S18が実行される。この結果、光ファイバ保持部材3aを備えた光ファイバ接続部品が製造される。
 以上、実施形態について説明をしたが、本発明の技術的範囲が実施形態の説明によって限定的に解釈されるべきではないのは言うまでもない。実施形態はあくまでも一例であって、請求の範囲に記載された発明の範囲内において、様々な実施形態の変更が可能であることが当業者によって理解される。このように、本発明の技術的範囲は請求の範囲に記載された発明の範囲及びその均等の範囲に基づいて定められるべきである。
 本開示では、光ファイバ2の一例としてマルチコアファイバが用いられているが、光ファイバ2は、偏波保持ファイバ又はバンドルファイバであってもよい。偏波保持ファイバは、一対の応力付与部と、一対の応力付与部の間に配置され、信号光が伝搬するコアと、一対の応力付与部及びコアを覆うクラッドとを有する。光ファイバ2として偏波保持ファイバが使用される場合では、互いに光学的に接続される光ファイバ接続部品1と他の光学部品との間におけるクロストークを抑制することが可能となる。また、バンドルファイバは、複数のシングルコアファイバの束によって構成されている。
1:光ファイバ接続部品
2,2a,2b,2c,2d:光ファイバ
3,3a:光ファイバ保持部材
4:保持基板
5:蓋部
7:固定用基板
20,20a,20b,20c,20d:ガラスファイバ
21:樹脂被覆
23:クラッド
24:コア
25:マーカ
30a:孔部
32a:端面
41:端面
46:溝部
51:端面

Claims (13)

  1.  コアと前記コアを覆うクラッドとを有するガラスファイバと、前記ガラスファイバを覆う樹脂被覆とを有し、前記ガラスファイバの端部が前記樹脂被覆から露出した複数の光ファイバを用意することと、
     前記樹脂被覆から露出した複数のガラスファイバが第一方向に配列されると共に、光ファイバ保持部材から外部に突出するように、前記複数のガラスファイバを前記光ファイバ保持部材に搭載することと、
     前記複数のガラスファイバの各々の中心軸回りの方位を調整し固定することと、
     接着剤を用いて前記複数のガラスファイバのうち二本以上のガラスファイバと前記光ファイバ保持部材とを一括で接着することと、を含む、光ファイバ接続部品の製造方法。
  2.  前記方位を調整し固定することは、
     前記複数のガラスファイバのうち第一ガラスファイバの中心軸回りの方位を調整することと、
     前記第一ガラスファイバの中心軸回りの方位を固定することと、
     前記第一ガラスファイバに隣接する第二ガラスファイバの中心軸回りの方位を調整することと、
     前記第二ガラスファイバの中心軸回りの方位を固定することと、
    を順に含む、請求項1に記載の光ファイバ接続部品の製造方法。
  3.  前記方位を調整し固定することは、前記複数のガラスファイバを前記光ファイバ保持部材に固定することを含む、請求項1又は請求項2に記載の光ファイバ接続部品の製造方法。
  4.  前記方位を調整し固定することは、前記複数のガラスファイバの各々を接着剤によって前記光ファイバ保持部材に固定することを含む、請求項3に記載の光ファイバ接続部品の製造方法。
  5.  前記方位を調整し固定することは、前記複数のガラスファイバの各々をレーザ溶着によって前記光ファイバ保持部材に固定することを含む、請求項3に記載の光ファイバ接続部品の製造方法。
  6.  前記方位を調整し固定することは、前記複数のガラスファイバの各々を機械的固定手段によって前記光ファイバ保持部に固定することを含む、請求項3に記載の光ファイバ接続部品の製造方法。
  7.  前記方位を調整し固定することは、前記光ファイバ保持部材から外部に突出した前記複数のガラスファイバの部分を前記複数のガラスファイバの端面と前記光ファイバ保持部材との間で固定用基板に固定することを含み、
     前記製造方法は、
     前記複数のガラスファイバを前記固定用基板と前記光ファイバ保持部材との間で切断することをさらに含む、請求項1又は請求項2に記載の光ファイバ接続部品の製造方法。
  8.  前記方位を調整し固定することは、
     前記複数のガラスファイバの各々を接着剤によって前記固定用基板に固定することを含む、請求項7に記載の光ファイバ接続部品の製造方法。
  9.  前記方位を調整し固定することは、
     前記複数のガラスファイバの各々をレーザ溶着によって前記固定用基板に固定することを含む、請求項7に記載の光ファイバ接続部品の製造方法。
  10.  前記方位を調整し固定することは、
     前記複数のガラスファイバの各々を機械的固定手段によって前記固定用基板に固定することを含む、請求項7に記載の光ファイバ接続部品の製造方法。
  11.  前記光ファイバ保持部材は、
     各々が前記複数のガラスファイバの対応する一つを保持する複数の溝部を有する保持基板と、
     前記複数のガラスファイバを介して前記保持基板と対向する蓋部と、
    を備える、
    請求項1から請求項10のうちいずれか一項に記載の光ファイバ接続部品の製造方法。
  12.  前記光ファイバ保持部材は、
     各々が前記複数のガラスファイバの対応する一つを保持する複数の孔部を有するブロックである、請求項1から請求項10のうちいずれか一項に記載の光ファイバ接続部品の製造方法。
  13.  前記光ファイバは、マルチコアファイバ、偏波保持ファイバ又はバンドルファイバである、請求項1から請求項12のうちいずれか一項に記載の光ファイバ接続部品の製造方法。
PCT/JP2021/047694 2020-12-25 2021-12-22 光ファイバ接続部品の製造方法 WO2022138763A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/268,062 US20240036256A1 (en) 2020-12-25 2021-12-22 Method for manufacturing optical fiber connecting component
CN202180086956.6A CN116670548A (zh) 2020-12-25 2021-12-22 光纤连接部件的制造方法
JP2022571586A JPWO2022138763A1 (ja) 2020-12-25 2021-12-22

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-217225 2020-12-25
JP2020217225 2020-12-25

Publications (1)

Publication Number Publication Date
WO2022138763A1 true WO2022138763A1 (ja) 2022-06-30

Family

ID=82157009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/047694 WO2022138763A1 (ja) 2020-12-25 2021-12-22 光ファイバ接続部品の製造方法

Country Status (4)

Country Link
US (1) US20240036256A1 (ja)
JP (1) JPWO2022138763A1 (ja)
CN (1) CN116670548A (ja)
WO (1) WO2022138763A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11142688A (ja) * 1997-09-12 1999-05-28 Whitaker Corp:The 光ファイバ固定方法及び光ファイバ固定構造
JP2005284223A (ja) * 2004-03-29 2005-10-13 Photonic Science Technology Inc 偏波保持光ファイバアレイの製造方法及び製造装置
JP2015145989A (ja) * 2014-02-04 2015-08-13 住友電気工業株式会社 マルチコアファイバの調芯方法、コネクタの製造方法、及びリボンファイバの製造方法
JP2015169873A (ja) * 2014-03-10 2015-09-28 住友電気工業株式会社 光モジュール製造方法
US20200192040A1 (en) * 2018-12-12 2020-06-18 Corning Incorporated High-density optical fiber ribbon interconnect and method of making
WO2020179513A1 (ja) * 2019-03-05 2020-09-10 住友電気工業株式会社 光ファイバアレイ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11142688A (ja) * 1997-09-12 1999-05-28 Whitaker Corp:The 光ファイバ固定方法及び光ファイバ固定構造
JP2005284223A (ja) * 2004-03-29 2005-10-13 Photonic Science Technology Inc 偏波保持光ファイバアレイの製造方法及び製造装置
JP2015145989A (ja) * 2014-02-04 2015-08-13 住友電気工業株式会社 マルチコアファイバの調芯方法、コネクタの製造方法、及びリボンファイバの製造方法
JP2015169873A (ja) * 2014-03-10 2015-09-28 住友電気工業株式会社 光モジュール製造方法
US20200192040A1 (en) * 2018-12-12 2020-06-18 Corning Incorporated High-density optical fiber ribbon interconnect and method of making
WO2020179513A1 (ja) * 2019-03-05 2020-09-10 住友電気工業株式会社 光ファイバアレイ

Also Published As

Publication number Publication date
US20240036256A1 (en) 2024-02-01
JPWO2022138763A1 (ja) 2022-06-30
CN116670548A (zh) 2023-08-29

Similar Documents

Publication Publication Date Title
JP2958305B2 (ja) 光繊維手動整列方法
WO2018139184A1 (ja) 光接続部品及び光結合構造
US20210041637A1 (en) Optical connector and method for manufacturing same
WO2021187178A1 (ja) 光ファイバ接続部品及び光ファイバ接続部品の製造方法
JP2024050843A (ja) 光コネクタの製造方法
JP3908015B2 (ja) 偏波ファイバアレイ
JP2003156648A (ja) 偏波ファイバおよびその製造方法、並びにこれを用いたリボンファイバおよび光導波路デバイス、光ファイバアレイとその製造方法
WO2022138763A1 (ja) 光ファイバ接続部品の製造方法
JP7198155B2 (ja) フェルール、ファイバ付きフェルール及びファイバ付きフェルールの製造方法
JP2015210306A (ja) 光コネクタ及び光コネクタの製造方法
JP3201864B2 (ja) 石英系光導波路部品の製造方法
JP2018165814A (ja) 光コネクタの製造方法
JP7400739B2 (ja) 光コネクタの製造方法
US11675142B2 (en) Ferrule, fiber-equipped ferrule, and method for manufacturing fiber-equipped ferrule
JP2009244612A (ja) 光導波路取付部品、光導波路コネクタ及び光導波路コネクタの製造方法
WO2022138761A1 (ja) 光ファイバリボン、光ファイバ接続部品、及び光ファイバ接続部品の製造方法
JP6930170B2 (ja) 光接続部品の製造方法
WO2003065099A1 (fr) Dispositif optique et son procede de realisation
JP7123857B2 (ja) フェルール、ファイバ付きフェルール及びファイバ付きフェルールの製造方法
JP2003227963A (ja) ロッドレンズ付リボン光ファイバおよびその製造方法
WO2022003880A1 (ja) 光部品
WO2023199632A1 (ja) 光ファイバ保持部品、光ファイバ結合構造体、光コネクタ、及び光結合構造
WO2019189680A1 (ja) 光ファイバアレイ
JP3430501B2 (ja) 光導波路デバイスおよびその製造方法
JPH0651155A (ja) 光ファイバと光導波路の接続方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21910903

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18268062

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022571586

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180086956.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21910903

Country of ref document: EP

Kind code of ref document: A1