WO2013099555A1 - マルチコア光ファイバ - Google Patents

マルチコア光ファイバ Download PDF

Info

Publication number
WO2013099555A1
WO2013099555A1 PCT/JP2012/081689 JP2012081689W WO2013099555A1 WO 2013099555 A1 WO2013099555 A1 WO 2013099555A1 JP 2012081689 W JP2012081689 W JP 2012081689W WO 2013099555 A1 WO2013099555 A1 WO 2013099555A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
core
core optical
outer peripheral
peripheral surface
Prior art date
Application number
PCT/JP2012/081689
Other languages
English (en)
French (fr)
Inventor
林 哲也
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to DK12861073.0T priority Critical patent/DK2799920T3/da
Priority to CN201280065221.6A priority patent/CN104024903B/zh
Priority to EP12861073.0A priority patent/EP2799920B1/en
Publication of WO2013099555A1 publication Critical patent/WO2013099555A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02042Multicore optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02395Glass optical fibre with a protective coating, e.g. two layer polymer coating deposited directly on a silica cladding surface during fibre manufacture

Definitions

  • the present invention relates to a multi-core optical fiber.
  • a multi-core optical fiber having a plurality of core portions extending along a central axis in a common cladding portion is expected as an optical transmission line capable of transmitting a large amount of information.
  • it is required to reduce crosstalk between two adjacent core portions among a plurality of core portions in a common cladding. If crosstalk is reduced, signal light transmission over a longer-distance multi-core optical fiber becomes possible.
  • by reducing the crosstalk it is possible to provide a larger number of core portions in a common cladding by reducing the interval between two adjacent core portions, and as a result, it is possible to transmit a larger amount of information. It becomes possible.
  • Non-patent documents 1 to 3 describe reports on the relationship between bending (macro bend or micro bend) of multi-core optical fiber and crosstalk.
  • Non-Patent Document 1 reports the relationship between bending and crosstalk in a multi-core optical fiber in which a plurality of core portions in a common cladding have the same kind of structure.
  • Non-Patent Documents 2 and 3 report the relationship between bending and crosstalk in a multi-core optical fiber in which two adjacent core portions in a common cladding have different structures.
  • Non-Patent Documents 1 to 3 the crosstalk of the multi-core optical fiber is expected to be reduced by appropriately setting the bending of the multi-core optical fiber.
  • the crosstalk of the multi-core optical fiber is expected to be reduced by appropriately setting the bending of the multi-core optical fiber.
  • it is not easy to provide a mechanism for imparting an appropriate bend to the multi-core optical fiber, and there is a problem that it causes an increase in cost.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a multi-core optical fiber that can realize crosstalk suppression easily and inexpensively.
  • the multi-core optical fiber according to the present embodiment includes a plurality of core parts, a common clad part, a coating layer, and a bending imparting part as a first aspect.
  • Each of the plurality of core portions extends along the central axis of the multicore optical fiber.
  • the common clad portion integrally holds the core portion in a state of being separated from each other by a predetermined distance.
  • the cladding part has a refractive index lower than the refractive index of each core part.
  • the coating layer is provided so as to surround the outer peripheral surface of the common clad portion.
  • the bending imparting portion is provided on at least one of the outer peripheral surface and the inside of the coating layer in order to impart a bending stress to the glass region including the core portion and the common cladding portion.
  • the coating layer may include a plurality of layers.
  • the bending imparting portion may be provided at an interface between adjacent layers among the plurality of layers.
  • the position of the bending imparting portion changes along the central axis. That is, the position of the bending imparting portion in the cross section of the multi-core optical fiber perpendicular to the central axis at the first point on the central axis is orthogonal to the central axis at a second point different from the first point on the central axis. It is different from the position of the bending imparting portion in the cross section of the multi-core optical fiber.
  • the bending imparting portion is provided inside the coating layer and has a Young's modulus higher than the Young's modulus of the coating layer.
  • the bending imparting portion of the multicore optical fiber in the configuration provided on the outer peripheral surface of the coating layer, the bending imparting portion of the multicore optical fiber
  • the thickness in the radial direction is preferably 77.5 ⁇ m or less.
  • it is preferable that the bending imparting portion has a shape continuously extending in a direction along the central axis.
  • the bend imparting section may include a plurality of bend imparting elements spaced apart from each other in the circumferential direction.
  • the bend imparting portions are arranged on the outer periphery of the coating layer in a state of being separated from each other in the direction along the central axis.
  • a plurality of bending elements provided on at least one of the surface and the inside may be included.
  • the multi-core optical fiber further includes a plurality of depressed layers in addition to the plurality of core parts and the common cladding part. May be.
  • the plurality of depressed layers are provided on the outer peripheral surface of each core part corresponding to each core part.
  • Each depressed layer is preferably located between the corresponding core portion and the common cladding portion and has a refractive index lower than that of the common cladding portion.
  • the multi-core optical fiber includes a plurality of core layers and a common cladding portion, a plurality of trench layers, An inner cladding layer may further be provided.
  • the plurality of trench layers are provided on the outer peripheral surface of each core part corresponding to each core part.
  • each trench layer is located between the corresponding core part and the common cladding part, and has a refractive index lower than the refractive index of the common cladding part.
  • the plurality of inner cladding layers are provided on the outer peripheral surface of each core part corresponding to each core part.
  • Each of the inner cladding layers is preferably located between the corresponding core portion and the corresponding trench layer, and preferably has a refractive index lower than that of the corresponding core portion and higher than that of the corresponding trench layer.
  • a multicore optical fiber having the above-described structure can be applied to various optical components such as a multi-core optical fiber tape and a multi-core optical fiber cable.
  • a multicore optical fiber tape according to a tenth aspect includes a plurality of multicore optical fiber elements and a resin coat.
  • the plurality of multi-core optical fiber elements have the same structure as the multi-core optical fiber according to at least one of the first to ninth aspects.
  • the resin coat integrally covers the multi-core optical fiber elements with a predetermined distance therebetween.
  • a multi-core optical fiber cable according to an eleventh aspect is a cable incorporating a multi-core optical fiber according to at least one of the first to ninth aspects, and is applicable to both a tight cable and a loose cable.
  • the tight cable further includes a cable jacket closely attached to the outer peripheral surface of the multicore optical fiber so that a lateral pressure is applied to the outer peripheral surface of the multicore optical fiber.
  • the cable jacket may be composed of a plurality of layers.
  • the loose cable further includes a sheath having a space for accommodating the multicore optical fiber without applying a side pressure to the outer peripheral surface of the multicore optical fiber.
  • crosstalk can be easily and inexpensively suppressed.
  • Multi-core optical fiber 10 ... Glass area
  • FIG. 1 is a perspective view showing a configuration of a multi-core optical fiber 1 according to the first embodiment.
  • FIG. 2A is a cross-sectional view showing the configuration of the multi-core optical fiber 1 according to the first embodiment.
  • 2B is an enlarged view of a part (a region surrounded by a broken line) of FIG. 2A, and
  • FIG. 2C is a preferred example of the refractive index distribution around each core portion.
  • FIG. 1 the multi-core optical fiber 1 according to the first embodiment includes a plurality of (seven in FIG.
  • core portions 11 extending along a central axis AX (fiber axis), and a core A common cladding portion 12 that surrounds each of the outer peripheral surfaces of the portion 11, a coating layer 20 that surrounds the outer peripheral surface of the common cladding portion 12, a micro-bend imparting portion 31 provided on the outer peripheral surface (outer surface) of the coating layer 20, Is provided.
  • one of the seven core portions 11 is disposed at the center position.
  • the other six core parts 11 are arranged at equal intervals on the circumference of a circle centered on this. That is, the seven core portions 11 are arranged at each lattice point of the triangular lattice.
  • Each core part 11 has a refractive index higher than the refractive index of the cladding part 12, and can guide light (refer FIG.2 (c)).
  • the seven core portions 11 have substantially the same kind of structure with respect to the core diameter and the refractive index distribution, and have substantially the same optical transmission characteristics.
  • the glass region 10 including the core portion 11 and the cladding portion 12 is made of quartz glass.
  • the covering layer 20 surrounding the outer peripheral surface of the clad portion 12 is made of resin.
  • the coating layer 20 may have a single-layer structure or a multilayer structure, and may include a colored layer.
  • the microbending imparting portion 31 is formed in a partial region on the outer peripheral surface of the coating layer 20 in the longitudinal direction of the multi-core optical fiber 1 (the direction along the central axis AX, hereinafter referred to as the fiber longitudinal direction). It has the shape extended continuously. Further, as shown in FIG.
  • the thickness d of the microbending imparting portion 31 means the thickness along the radial direction of the multi-core optical fiber 1, and the radial thickness d is equal to or greater than a predetermined value. is there.
  • the microbending can be imparted to the glass region 10 by the microbending imparting portion 31 having such a structure.
  • the core arrangement in the glass region 10 core arrangement on a cross section perpendicular to the central axis AX
  • the thickness d in the radial direction or the width in the circumferential direction of the minute bend imparting portion 31 may be changed in each part of the minute bend imparting portion 31 extending along the fiber longitudinal direction.
  • the present embodiment it is not necessary to provide a mechanism for imparting an appropriate bend to the multi-core optical fiber separately from the minute bend imparting portion. Therefore, crosstalk can be suppressed easily and inexpensively.
  • a mechanism for imparting an appropriate bending to the multi-core optical fiber is minute. It is not necessary to provide it separately from the bending imparting portion.
  • the cable may be in the form of a cord as long as it has a member that covers the outer periphery of the multi-core optical fiber.
  • FIG. 3 is a diagram for explaining an example of a method for manufacturing the multi-core optical fiber 1.
  • the lower end portion of the optical fiber preform 41 inserted into the drawing furnace 51 is heated and melted to produce a spun bare optical fiber 42.
  • the bare optical fiber 42 passes through the coating device 52 and the micro-bending imparting portion forming device 53 in order, and the optical fiber 43 is obtained.
  • a resin is applied around the cladding of the bare optical fiber 42, and the resin is cured to form a coating layer.
  • the minute bending imparting part forming device 53 the minute bending imparting part is formed on the outer peripheral surface of the coating layer.
  • the optical fiber 43 is taken up by the second bobbin 55 through the guide roller 54.
  • the optical fiber 43 thus manufactured becomes the multi-core optical fiber 1 according to the present embodiment.
  • FIG. 4 is a diagram for explaining another example of the manufacturing method of the multi-core optical fiber 1.
  • the optical fiber 44 formed up to the covering layer is wound around the first bobbin 61.
  • the optical fiber 44 fed out from the first bobbin 61 passes through the guide roller 62 and the minute bending imparting portion forming device 63 in this order to become the optical fiber 45.
  • the minute bend imparting part forming device 63 the minute bend imparting part is formed on the outer peripheral surface of the coating layer.
  • the optical fiber 45 is taken up by the second bobbin 65 via the guide roller 64.
  • the optical fiber 45 thus manufactured becomes the multi-core optical fiber 1 according to the present embodiment.
  • the coloring apparatus which forms a colored layer may be provided before or after the micro bending provision part formation apparatus.
  • the microbending imparting portion formed by the microbending imparting portion forming apparatus may be colored differently for each fiber, or may have a different shape for each fiber. In this way, individual multicore optical fibers can be identified in an optical cable storing a plurality of multicore optical fibers.
  • the multi-core optical fiber When the multi-core optical fiber is wound around the bobbin, if the thickness d of the microbending portion is too large, the multi-core optical fiber may not be wound neatly.
  • the fiber interval per winding when the multi-core optical fiber is wound around the bobbin is 0.4 mm (that is, 400 ⁇ m) and the fiber coating diameter is 245 ⁇ m
  • FIG. 5 is a perspective view showing the configuration of the multi-core optical fiber 2 according to the second embodiment.
  • the multi-core optical fiber 2 includes a plurality of (seven in FIG. 5) core portions 11 extending along the central axis AX, and a common clad portion surrounding each outer peripheral surface of the core portion 11. 12, a covering layer 20 that surrounds the outer peripheral surface of the common cladding portion 12, and a micro-bending imparting portion 32 provided inside the covering layer 20.
  • the coating layer 20 includes a two-layer structure including a first coating layer 21 that surrounds the outer peripheral surface of the common cladding portion 12 and a second coating layer 22 that surrounds the outer peripheral surface of the first coating layer 21, and includes a microbending imparting portion. 32 is provided between the first coating layer 21 and the second coating layer 22 (interface).
  • the micro-bending imparting portion 32 is provided in a partial region of the interface between the first coating layer 21 and the second coating layer 22 and has a shape that continuously extends in the fiber longitudinal direction.
  • the thickness d (see FIG. 2B) in the radial direction of the minute bend imparting portion 32 is not less than a predetermined value.
  • the microbending portion 32 having such a structure can impart a microbending to the glass region 10.
  • the core arrangement in the glass region 10 core arrangement on a cross section perpendicular to the central axis AX
  • the thickness d in the radial direction or the circumferential width of the minute bend imparting portion 32 may be changed in each part of the minute bend imparting portion 31 extending along the fiber longitudinal direction.
  • Each of the first coating layer 21 and the second coating layer 22 may be composed of a plurality of coating layers.
  • the multi-core optical fiber 2 according to the present embodiment can also exhibit the same effects as the multi-core optical fiber 1 according to the first embodiment.
  • the multi-core optical fiber 2 according to the present embodiment can be manufactured by forming a second coating layer by a second coating device further provided after the micro-bending imparting portion forming device 53 in FIG.
  • FIG. 6 is a perspective view showing the configuration of the multi-core optical fiber 3 according to the third embodiment.
  • the multi-core optical fiber 3 includes a plurality of (seven in FIG. 6) core portions 11 extending along the central axis AX, and a common clad portion surrounding each outer peripheral surface of the core portion 11. 12, a covering layer 20 that surrounds the outer peripheral surface of the common cladding portion 12, and a microbending imparting portion 33 provided on the outer peripheral surface (outer surface) of the covering layer 20.
  • the microbending imparting portion 33 is continuously provided in a spiral shape on the outer peripheral surface of the coating layer 20, and has a radial thickness d that is equal to or greater than a predetermined value.
  • the microbending portion 33 having such a structure can impart a microbending to the glass region 10.
  • the thickness, width, spiral pitch, or twist direction of the micro-bending imparting portion 33 may change at each site along the fiber longitudinal direction.
  • the microbending provision part 33 may be provided in the interface of a 1st coating layer and a 2nd coating layer like 2nd Embodiment.
  • the spiral is not limited to a spiral having a constant pitch in one direction, and may be a spiral in which the rotation direction is periodically reversed or a spiral in which the pitch varies in the fiber longitudinal direction.
  • the position of the minute bending imparting portion in the circumferential direction around the central axis may change along the fiber longitudinal direction.
  • the multi-core optical fiber 3 according to the present embodiment can also exhibit the same effects as the multi-core optical fiber 1 according to the first embodiment.
  • the multi-core optical fiber 3 according to the present embodiment can be manufactured by twisting the optical fiber when the optical fiber passes through the microbending imparting portion forming apparatus in FIG. 3 or FIG.
  • FIG. 7 is a perspective view showing the configuration of the multi-core optical fiber 4 according to the fourth embodiment.
  • the multi-core optical fiber 4 includes a plurality of (seven in FIG. 7) core portions 11 extending along the central axis AX, a common clad portion 12 surrounding each outer peripheral surface of the core portion 11, and a common clad
  • the coating layer 20 surrounding the outer peripheral surface of the part 12 and the microbending imparting portion 34 provided on the outer peripheral surface (outer surface) of the coating layer 20 are provided.
  • the micro-bending imparting portion 34 is intermittently provided on the outer peripheral surface of the coating layer 20 along the fiber longitudinal direction, and has a radial thickness d that is equal to or greater than a predetermined value.
  • a radial thickness d that is equal to or greater than a predetermined value.
  • the thickness, width, or arrangement pitch of the minute bending imparting portions 34 may change along the fiber longitudinal direction.
  • the microbending imparting portion 34 may be provided between the first coating layer and the second coating layer.
  • the multi-core optical fiber 4 according to the present embodiment can also exhibit the same operational effects as the multi-core optical fiber 1 according to the first embodiment. Note that the multi-core optical fiber 4 according to the present embodiment intermittently forms the micro bend imparting portion 34 with respect to the optical fiber when the optical fiber passes through the micro bend imparting portion forming apparatus in FIG. 3 or FIG. Can be manufactured.
  • FIG. 8 is a perspective view showing the configuration of the multi-core optical fiber 5 according to the fifth embodiment.
  • the multi-core optical fiber 5 includes a plurality of (seven in FIG. 8) core parts 11 extending along the central axis AX, a common clad part 12 surrounding each outer peripheral surface of the core part 11, and a common clad
  • the coating layer 20 surrounding the outer peripheral surface of the part 12 and the microbending imparting portion 35 provided on the outer peripheral surface (outer surface) of the coating layer 20 are provided.
  • these micro bending provision parts 35 may be arrange
  • the microbending imparting portion 35 is provided intermittently on the outer peripheral surface of the coating layer 20 and has a radial thickness d that is equal to or greater than a predetermined value.
  • the microbending portion 35 having such a structure can impart a microbending to the glass region 10.
  • the thickness, width, or arrangement density of the microbending imparting portions 35 may change in the fiber longitudinal direction.
  • a microbending imparting portion 35 may be provided between the first coating layer and the second coating layer.
  • the multi-core optical fiber 4 according to the present embodiment can also exhibit the same operational effects as the multi-core optical fiber 1 according to the first embodiment. Note that the multi-core optical fiber 4 according to the present embodiment intermittently forms the micro-bending applicator 35 with respect to the optical fiber when the optical fiber passes through the micro-bending applicator forming device in FIG. 3 or FIG. Can be manufactured.
  • the minute bend imparting portion changes along the fiber longitudinal direction, so that a finer bend is imparted to the glass region 10. Can do.
  • FIG. 9A is a perspective view showing the configuration of the multi-core optical fiber 6 according to the sixth embodiment.
  • a multi-core optical fiber 6 includes a plurality of (seven in FIG. 9A) core portions 11 extending along the central axis AX, and a common clad that surrounds each of the outer peripheral surfaces of the core portion 11.
  • the microbending imparting portion 36 includes a granular material that is discretely and randomly arranged inside the coating layer 20. In this case, as shown in FIG. 9B, the microbending imparting portion 36 exists near the interface between the common cladding portion 12 and the coating layer 20, inside the coating layer 20, and near the outer peripheral surface of the coating layer 20. .
  • the particulate material as the microbending imparting portion 36 is made of a material having a Young's modulus higher than that of the coating layer 20, that is, a material harder than the material of the coating layer 20.
  • the particulate material as the microbending imparting portion 36 may be a gel or a solid material.
  • the multi-core optical fiber 6 according to the present embodiment can also exhibit the same effects as the multi-core optical fiber 1 according to the first embodiment.
  • the multi-core optical fiber 6 according to the present embodiment can be manufactured as follows. A resin material to be the coating layer 20 mixed with a substance to be the minute bend imparting portion 36 is applied to the spun optical fiber and cured. As a result, the multi-core optical fiber 6 can be manufactured. Alternatively, the resin material to be the coating layer 20 and the resin material to be the microbending portion 36 are simultaneously applied to the spun optical fiber and cured. Also in this case, the multi-core optical fiber 6 can be manufactured.
  • the micro-bending portion is provided over the entire length of the multi-core optical fiber.
  • a minute bend can be applied over the entire length of the multi-core optical fiber, which is more effective in reducing crosstalk.
  • the coating layer of a general optical fiber has a two-layer structure, and a soft resin is used for the inner first coating layer, and a resin harder than the first coating layer is used for the outer second coating layer. Since the Young's modulus of the resin of the second coating layer is about 1 GPa, the Young's modulus of the microbending portion in each of the above embodiments is 1 GPa or more (that is, harder than the resin of the second coating layer) However, the micro-bending can be efficiently applied to the multi-core optical fiber.
  • the loss of each core may increase due to the microbend applied to the glass region by the microbending application portion.
  • Microbend loss occurs due to coupling from a fundamental mode propagating a signal to a higher order mode or a cladding mode.
  • the refractive index distribution shown in FIG. 10 is a so-called depressed type.
  • a depressed type refractive index profile a depressed layer having a refractive index lower than the refractive index of the cladding part (corresponding to the common cladding 12) is provided around each core part (corresponding to the core part 11).
  • the refractive index distribution shown in FIG. 11 is a so-called trench type.
  • a trench layer having a refractive index lower than the refractive index of the cladding part (corresponding to the common cladding part 12) is provided around each core part (corresponding to the core part 11), and further, the core part
  • An inner cladding layer having a refractive index lower than that of the trench layer and higher than that of the trench layer is provided between the core portion and the trench layer.
  • the multi-core optical fiber As described above, by using a multi-core optical fiber having a micro-bending imparting portion that imparts micro-bending to a glass region composed of a core portion and a cladding portion, the multi-core optical fiber is used as it is, or bending is imparted. Even when a multi-core optical fiber is accommodated and used in a cord or cable that does not have a structure, the crosstalk between cores of the multi-core optical fiber can be kept low without controlling the bending of the fiber, cord, or cable.
  • FIG. 12 is a diagram showing a schematic structure of the multi-core optical fiber tape according to the present embodiment.
  • the multi-core optical fiber tape 100 shown in FIG. 12 employs four multi-core optical fibers 3 according to the third embodiment shown in FIG.
  • each of the four multi-core optical fibers 3 employed in the multi-core optical fiber tape 100 has a glass region 10 composed of seven core portions 11 and a clad portion 12, and a glass region as described above.
  • a coating layer 20 provided on the outer circumferential surface and a microbending imparting portion 33 spirally provided on the outer circumferential surface of the coating layer 20 along the fiber longitudinal direction are provided.
  • the buffer layer 110 provided on the outer peripheral surface of each of the four multi-core optical fibers 3 having the structure as described above and the four multi-core optical fibers 3 are separated from each other by a predetermined distance.
  • a resin coat 120 integrally covered with the state is provided.
  • FIG. 13 is a diagram illustrating an example of a multi-core optical fiber cable according to the present embodiment.
  • FIG. 13A illustrates a schematic structure of a loose cable
  • FIG. 13B illustrates a schematic structure of a tight cable.
  • FIG. 13A illustrates a schematic structure of a loose cable
  • FIG. 13B illustrates a schematic structure of a tight cable.
  • three multi-core optical fibers 1 according to the first embodiment shown in FIG. 1 are employed as an example.
  • each of the three multi-core optical fibers 1 employed in the loose cable 200 includes a glass region 10 composed of seven core portions 11 and a clad portion 12, and a glass region, as described above.
  • the coating layer 20 provided on the outer peripheral surface of the optical fiber and the microbending imparting portion 31 provided continuously on the outer peripheral surface of the coating layer 20 along the fiber longitudinal direction.
  • the loose cable 200 includes a sheath 210 having a space 220 for accommodating the three multicore optical fibers 1 without applying a lateral pressure to the outer peripheral surfaces of the three multicore optical fibers 1.
  • the multi-core optical fiber 4 according to the fourth embodiment shown in FIG. 7 is employed in the tight cable 300 shown in FIG.
  • the multi-core optical fiber 4 employed in the tight cable 300 includes, as described above, the glass region 10 composed of the seven core portions 11 and the cladding portion 12, and the outer peripheral surface of the glass region. And a microbending imparting portion 34 provided intermittently on the outer peripheral surface of the coating layer 20 along the longitudinal direction of the fiber.
  • the tight cable 300 includes a cable jacket closely attached to the outer peripheral surface of the multicore optical fiber 4 in order to apply a side pressure to the outer peripheral surface of the multicore optical fiber 4.
  • the cable jacket includes an inner jacket 310 that is in direct contact with the outer circumferential surface of the multi-core optical fiber 4 and an outer jacket 320 provided on the outer circumferential surface of the inner jacket 310. It is configured.

Abstract

 本発明は、簡易かつ安価にクロストークの抑制を実現できるマルチコア光ファイバに関する。当該マルチコア光ファイバは、中心軸に沿って延在する複数のコア部と、その内部にコア部を一体的に保持する共通クラッド部と、共通クラッド部を取り囲む被覆層と、曲げ付与部を備える。曲げ付与部は、一例として、被覆層の外周面の一部領域に設けられ、ガラス領域に曲げ応力を付与する。

Description

マルチコア光ファイバ
 本発明は、マルチコア光ファイバに関するものである。
 中心軸に沿って延在する複数のコア部を共通のクラッド部中に有するマルチコア光ファイバは、大容量の情報を伝送することができる光伝送路として期待されている。このようなマルチコア光ファイバにおいて、共通のクラッド中の複数のコア部のうち隣り合う二つのコア部の間のクロストークの低減が求められている。クロストークが低減されれば、より長距離のマルチコア光ファイバによる信号光伝送が可能となる。或いは、クロストーク低減により、隣り合う二つのコア部の間隔を小さくして共通のクラッド中に更に多くの本数のコア部を設けることができ、その結果、更に大容量の情報を伝送することが可能になる。
 マルチコア光ファイバの曲げ(マクロベンドまたはマイクロベンド)とクロストークとの関係に関する報告が非特許文献1~3に記載されている。非特許文献1には、共通クラッド中の複数のコア部が同種構造を有するマルチコア光ファイバにおける曲げとクロストークとの関係が報告されている。非特許文献2,3には、共通クラッド中の複数のコア部のうち隣り合う二つのコア部が異種構造を有するマルチコア光ファイバにおける曲げとクロストークとの関係が報告されている。
Tetsuya Hayashi, et al, Optics Express, Vol.19, No.17,pp.16576-16592 (2011). Tetsuya Hayashi, et al, ECOC2011, Mo.1.LeCervin.3 Tetsuya Hayashi, et al, ECOC2010, We.8.F.6
 発明者は、従来のマルチコア光ファイバについて検討した結果、以下のような課題を発見した。
 すなわち、上記非特許文献1~3によれば、マルチコア光ファイバの曲げを適切に設定することで、そのマルチコア光ファイバのクロストーク低減が期待される。しかしながら、例えばマルチコア光ファイバが敷設されている場合、そのマルチコア光ファイバに適切な曲げを付与する為の機構を設けることは、容易ではなく、また、コスト上昇の要因となるという課題があった。
 本発明は、上述のような課題を解決するためになされたものであり、簡易かつ安価にクロストークの抑制を実現できるマルチコア光ファイバを提供することを目的としている。
 本実施形態に係るマルチコア光ファイバは、第1の態様として、複数のコア部と、共通クラッド部と、被覆層と、曲げ付与部を備える。複数のコア部それぞれは、当該マルチコア光ファイバの中心軸に沿って延在している。共通クラッド部は、コア部を互いに所定間隔離れた状態でその内部に一体的に保持する。また、クラッド部は、コア部それぞれの屈折率より低い屈折率を有する。被覆層は、共通クラッド部の外周面を取り囲むように設けられている。曲げ付与部は、コア部および共通クラッド部を含むガラス領域に曲げ応力を付与するため、被覆層の外周面および内部の少なくとも何れかに設けられている。
 上記第1の態様に適用可能な第2の態様として、被覆層は、複数の層を含んでもよい。この場合、曲げ付与部は、複数の層のうち隣接する層間の界面に設けられてもよい。
 上記第1および第2の態様のうち少なくとも何れかの態様に適用可能な第3の態様として、中心軸に垂直な当該マルチコア光ファイバの断面上において、中心軸に沿って異なる位置の断面それぞれにおける曲げ付与部の位置は、中心軸に沿って変化している。すなわち、中心軸上の第1点において該中心軸と直交する当該マルチコア光ファイバの断面における曲げ付与部の位置は、中心軸上の第1点とは異なる第2点において該中心軸と直交する当該マルチコア光ファイバの断面における曲げ付与部の位置と異なっている。
 上記第1~第3の態様のうち少なくとも何れかの態様に適用可能な第4の態様として、曲げ付与部は、被覆層の内部に設けられるとともに、該被覆層のヤング率より高いヤング率を有する材料からなる粒状物質を含んでもよい。
 更に、上記第1~第4の態様のうち少なくとも何れかの態様に適用可能な第5の態様として、被覆層の外周面上に設けられた構成において、曲げ付与部の、当該マルチコア光ファイバの径方向の厚みが、77.5μm以下であるのが好ましい。上記第1~第5の態様のうち少なくとも何れかの態様に適用可能な第6の態様において、曲げ付与部は、前記中心軸に沿った方向に連続して伸びた形状を有するのが好ましい。この場合、曲げ付与部は、周方向に互いに離間した複数の曲げ付与要素を含んでもよい。また、上記第1~第5の態様のうち少なくとも何れかの態様に適用可能な第7の態様として、曲げ付与部は、それぞれが中心軸に沿った方向に互いに離間した状態で被覆層の外周面および内部の少なくとも何れかに設けられた複数の曲げ付与要素を含んでもよい。
 上記第1~第7の態様のうち少なくとも何れかの態様に適用可能な第8の態様として、当該マルチコア光ファイバは、複数のコア部および共通クラッド部の他、複数のディプレスト層を更に備えてもよい。この場合、複数のディプレスト層は、コア部それぞれに対応して該コア部それぞれの外周面上に設けられる。また、ディプレスト層それぞれは、対応するコア部と共通クラッド部との間に位置するとともに、共通クラッド部の屈折率より低い屈折率を有するのが好ましい。
 上記第1~第7の態様のうち少なくとも何れかの態様に適用可能な第9の態様として、当該マルチコア光ファイバは、複数のコア部および共通クラッド部の他、複数のトレンチ層と、複数の内側クラッド層を更に備えてもよい。この場合、複数のトレンチ層は、コア部それぞれに対応して該コア部それぞれの外周面上に設けられる。このとき、トレンチ層それぞれは、対応するコア部と共通クラッド部との間に位置するとともに、共通クラッド部の屈折率より低い屈折率を有する。複数の内側クラッド層は、コア部それぞれに対応して該コア部それぞれの外周面上に設けられる。内側クラッド層それぞれは、対応するコア部と対応するトレンチ層との間に位置するとともに、対応するコア部の屈折率より低くかつ対応するトレンチ層の屈折率より高い屈折率を有するのが好ましい。
 上述のような構造を有するマルチコア光ファバは種々の光学部品、例えば、マルチコア光ファイバテープやマルチコア光ファイバケーブルなどへの適用が可能である。第10の態様に係るマルチコア光ファイバテープは、複数のマルチコア光ファイバ要素と、樹脂コートを備える。複数のマルチコア光ファイバ要素は、上記第1~第9の態様のうち少なくとも何れかの態様に係るマルチコア光ファイバと同じ構造を有する。樹脂コートは、マルチコア光ファイバ要素を互いに所定間隔離れた状態で一体的に覆っている。
 第11の態様に係るマルチコア光ファイバケーブルは、上記第1~第9の態様のうち少なくとも何れかの態様に係るマルチコア光ファイバを内蔵するケーブルであって、タイトケーブルとルースケーブルの何れにも適用可能である。そこで、第11の態様に適用可能な第12の態様として、タイトケーブルは、マルチコア光ファイバの外周面に側圧が付与されるよう、該マルチコア光ファイバの外周面に密着したケーブル外被を更に備える。なお、ケーブル外被は、複数の層で構成されても良い。また、第11の態様に適用可能な第13の態様として、ルースケーブルは、マルチコア光ファイバの外周面に側圧を付与することなく、該マルチコア光ファイバを収納する空間を有するシースを更に備える。
 本発明に係るマルチコア光ファイバによれば、簡易かつ安価にクロストークの抑制が実現できる。
は、第1実施形態に係るマルチコア光ファイバの構成を示す斜視図である。 は、第1実施形態に係るマルチコア光ファイバの構成を示す断面図である。 は、第1実施形態に係るマルチコア光ファイバの製造方法の一例を説明する図である。 は、第1実施形態に係るマルチコア光ファイバの製造方法の他の例を説明する図である。 は、第2実施形態に係るマルチコア光ファイバの構成を示す斜視図である。 は、第3実施形態に係るマルチコア光ファイバの構成を示す斜視図である。 は、第4実施形態に係るマルチコア光ファイバの構成を示す斜視図である。 は、第5実施形態に係るマルチコア光ファイバの構成を示す斜視図である。 は、第6実施形態に係るマルチコア光ファイバの構成を示す斜視図である。 は、各実施形態に係るマルチコア光ファイバにおける各コア部周囲の屈折率分布の好適例を示す図である。 は、各実施形態に係るマルチコア光ファイバにおける各コア部周囲の屈折率分布の他の好適例を示す図である。 本実施形態に係るマルチコア光ファイバテープの概略構造を示す図である。 本実施形態に係るマルチコア光ファイバケーブルの例として、ルースケーブルとタイトケーブルの概略構造を示す図である。
 1~6…マルチコア光ファイバ、10…ガラス領域、11…コア部、12…クラッド部(共通クラッド部)、13…ディプレスト層、14…内側クラッド層、15…トレンチ層、20~22…被覆層、31~36…微小曲げ付与部、41…光ファイバ母材、42…裸光ファイバ、43~45…光ファイバ、51…線引炉、52…被覆装置、53…微小曲げ付与部形成装置、54…ガイドローラ、55…第2ボビン、61…第1ボビン、62…ガイドローラ、63…微小曲げ付与部形成装置、64…ガイドローラ、65…第2ボビン、100…マルチコア光ファイバテープ、200…マルチコア光ファイバケーブル(ルースケーブル)、300…マルチコア光ファイバケーブル(タイトケーブル)。
 以下、添付図面を参照して、本発明を実施するための形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
 (第1実施形態)
  図1は、第1実施形態に係るマルチコア光ファイバ1の構成を示す斜視図である。また、図2(a)は、第1実施形態に係るマルチコア光ファイバ1の構成を示す断面図である。なお、図2(b)は、図2(a)の一部(破線で囲まれた領域)の拡大図であり、図2(c)は、各コア部周辺の屈折率分布の好適例を示す図である。図1に示されたように、第1実施形態に係るマルチコア光ファイバ1は、その中心軸AX(ファイバ軸)に沿って延在する複数(図1では7個)のコア部11と、コア部11の外周面それぞれを取り囲む共通クラッド部12と、共通クラッド部12の外周面を取り囲む被覆層20と、被覆層20の外周面(外表面)上に設けられた微小曲げ付与部31と、を備える。
 図2(a)に示されたように、マルチコア光ファイバ1の断面(中心軸AXに垂直な面)において、7個のコア部11のうち1個のコア部11は中心位置に配置され、これを中心とする円の周上に等間隔に他の6個のコア部11が配置されている。すなわち、7個のコア部11は三角格子の各格子点に配置されている。各コア部11は、クラッド部12の屈折率より高い屈折率を有し、光を導波させることができる(図2(c)参照)。7個のコア部11は、コア径および屈折率分布に関して実質的に同種の構造を有し、実質的に等しい光伝送特性を有する。
 コア部11およびクラッド部12を含むガラス領域10は石英ガラスからなる。クラッド部12の外周面を取り囲む被覆層20は樹脂からなる。被覆層20は、1層構造であってもよいし多層構造であってもよく、また、着色層を含んでいてもよい。第1実施形態において、微小曲げ付与部31は、被覆層20の外周面上の一部領域に、当該マルチコア光ファイバ1の長手方向(中心軸AXに沿った方向、以下、ファイバ長手方向という)に連続して伸びた形状を有する。また、微小曲げ付与部31の厚みdは、図2(b)に示されたように、当該マルチコア光ファイバ1の径方向に沿った厚みを意味し、該径方向の厚みdは所定値以上ある。このような構造を有する微小曲げ付与部31により、ガラス領域10に微小曲げを付与することができる。ガラス領域10におけるコア配置(中心軸AXに垂直な断面上のコア配置)は、ファイバ長手方向に沿って中心軸AXを中心に捻回していてもよい。微小曲げ付与部31の径方向の厚みdまたは周方向の幅は、ファイバ長手方向に沿って伸びた微小曲げ付与部31の各部位で変化していてもよい。
 微小曲げ付与部31によりガラス領域10に微小曲げ(マイクロベンド)が付与されると、ガラス領域10において小径マクロベンドがファイバ長手方向に一定割合で生じる。そして、このマクロベンドにより、複数のコア部11のうち隣り合う2つのコア部11それぞれの導波光の伝搬定数の差が大きくなることから、これら2つのコア部11の間のクロストークが低減される。このようなコア間クロストークの低減により、より長距離のマルチコア光ファイバによる信号光伝送が可能になる。或いは、コア間クロストークの低減により、隣り合う二つのコア部の間隔を小さくして共通のクラッド中に更に多くの本数のコア部を設けることができ、その結果、更に大容量の情報を伝送することが可能になる。
 本実施形態によれば、マルチコア光ファイバに適切な曲げを付与する為の機構を微小曲げ付与部とは別に設けなくてもよい。そのため、簡易かつ安価にクロストークの抑制が実現できる。本実施形態に係るマルチコア光ファイバを内蔵するマルチコア光ファイバケーブルを構成する場合において、マルチコア光ファイバは、微小曲げ応力が付与されるので、マルチコア光ファイバに適切な曲げを付与する為の機構を微小曲げ付与部とは別に設けなくてもよい。なお、ケーブルは、マルチコア光ファイバの外周を覆う部材を有すれば、コードのような形態であってもよい。
 本実施形態に係るマルチコア光ファイバ1は以下のようにして製造され得る。図3は、マルチコア光ファイバ1の製造方法の一例を説明する図である。線引炉51内に挿入された光ファイバ母材41の下端部が加熱溶融されて、紡糸された裸光ファイバ42が作成される。裸光ファイバ42は、被覆装置52および微小曲げ付与部形成装置53を順に経て、光ファイバ43が得られる。被覆装置52では、裸光ファイバ42のクラッドの周囲に樹脂が塗布され、その樹脂が硬化されて、被覆層が形成される。微小曲げ付与部形成装置53では、被覆層の外周面上に微小曲げ付与部が形成される。そして、光ファイバ43は、ガイドローラ54を経て、第2ボビン55により巻き取られる。このようにして製造された光ファイバ43が本実施形態に係るマルチコア光ファイバ1となる。
 或いは、本実施形態に係るマルチコア光ファイバ1は以下のようにしても製造され得る。図4は、マルチコア光ファイバ1の製造方法の他の例を説明する図である。この例では、被覆層まで形成された光ファイバ44が第1ボビン61に巻かれている。この第1ボビン61から繰り出された光ファイバ44は、ガイドローラ62および微小曲げ付与部形成装置63を順に経て、光ファイバ45とされる。微小曲げ付与部形成装置63では、被覆層の外周面上に微小曲げ付与部が形成される。そして、光ファイバ45は、ガイドローラ64を経て、第2ボビン65により巻き取られる。このようにして製造された光ファイバ45が本実施形態に係るマルチコア光ファイバ1となる。
 なお、微小曲げ付与部形成装置の前または後に、着色層を形成する着色装置が設けられてもよい。また、微小曲げ付与部形成装置により形成される微小曲げ付与部は、ファイバ毎に異なる色がつけられてもよく、或いは、ファイバ毎に異なる形状とされてもよい。このようにすることで、複数本のマルチコア光ファイバを格納した光ケーブルにおいて、個々のマルチコア光ファイバを識別することができる。
 ボビンにマルチコア光ファイバが巻かれる際に、微小曲げ付与部の厚みdが大きすぎると、マルチコア光ファイバが綺麗に巻き取れない可能性がある。例えば、ボビンにマルチコア光ファイバを巻き付けるときの1巻き毎のファイバ間隔が0.4mm(つまり、400μm)であってファイバ被覆径が245μmである場合、微小曲げ付与部の厚さdは77.5μm(=(400-245)/2)以下であることが望ましい。
 (第2実施形態)
   図5は、第2実施形態に係るマルチコア光ファイバ2の構成を示す斜視図である。図5に示されたように、マルチコア光ファイバ2は、中心軸AXに沿って延在する複数(図5では7個)のコア部11と、コア部11の外周面それぞれを取り囲む共通クラッド部12と、共通クラッド部12の外周面を取り囲む被覆層20と、被覆層20の内部に設けられた微小曲げ付与部32と、を備える。被覆層20は、共通クラッド部12の外周面を取り囲む第1被覆層21と、第1被覆層21の外周面を取り囲む第2被覆層22と、からなる2層構造を備え、微小曲げ付与部32は、これら第1被覆層21と第2被覆層22との間(界面)に設けられている。
 本実施形態において、微小曲げ付与部32は、第1被覆層21と第2被覆層22との界面の一部領域に設けられ、ファイバ長手方向に連続して伸びた形状を有する。微小曲げ付与部32の径方向の厚みd(図2(b)参照)は、所定値以上である。このような構造の微小曲げ付与部32により、ガラス領域10に微小曲げを付与することができる。ガラス領域10におけるコア配置(中心軸AXに垂直な断面上におけるコア配置)は、ファイバ長手方向に沿って中心軸AXを中心に捻回していてもよい。微小曲げ付与部32の径方向の厚みd又は周方向の幅は、ファイバ長手方向に沿って伸びた微小曲げ付与部31の各部位で変化していてもよい。第1被覆層21と第2被覆層22はそれぞれ複数の被覆層により構成されても良い。
 本実施形態に係るマルチコア光ファイバ2も、第1実施形態に係るマルチコア光ファイバ1と同様の作用効果を奏することができる。なお、本実施形態に係るマルチコア光ファイバ2は、図3において微小曲げ付与部形成装置53の後に更に設けられた第2被覆装置により第2被覆層が形成されることで製造され得る。
 (第3実施形態)
  図6は、第3実施形態に係るマルチコア光ファイバ3の構成を示す斜視図である。図6に示されたように、マルチコア光ファイバ3は、中心軸AXに沿って延在する複数(図6では7個)のコア部11と、コア部11の外周面それぞれを取り囲む共通クラッド部12と、共通クラッド部12の外周面を取り囲む被覆層20と、被覆層20の外周面(外表面)上に設けられた微小曲げ付与部33と、を備える。
 本実施形態において、微小曲げ付与部33は、被覆層20の外周面上に螺旋状に連続して設けられ、所定値以上の径方向の厚みdを有する。このような構造の微小曲げ付与部33により、ガラス領域10に微小曲げを付与することができる。微小曲げ付与部33の厚み,幅,螺旋ピッチまたは捻れ方向はファイバ長手方向に沿った各部位で変化していてもよい。また、第2実施形態のような第1被覆層と第2被覆層との界面に微小曲げ付与部33が設けられてもよい。なお、螺旋は、一方向に一定のピッチでの螺旋に限定されず、回転方向が周期的に反転する螺旋や、ピッチがファイバ長手方向に変動する螺旋であってもよい。微少曲げ付与部の、中心軸を中心とした周方向の位置がファイバ長手方向に沿って変化してもよい。
 本実施形態に係るマルチコア光ファイバ3も、第1実施形態に係るマルチコア光ファイバ1と同様の作用効果を奏することができる。なお、本実施形態に係るマルチコア光ファイバ3は、図3または図4において微小曲げ付与部形成装置を光ファイバが通過する際に該光ファイバを捻回させることで製造され得る。
 (第4実施形態)
  図7は、第4実施形態に係るマルチコア光ファイバ4の構成を示す斜視図である。図7において、マルチコア光ファイバ4は、中心軸AXに沿って延在する複数(図7では7個)のコア部11と、コア部11の外周面それぞれを取り囲む共通クラッド部12と、共通クラッド部12の外周面を取り囲む被覆層20と、被覆層20の外周面(外表面)上に設けられた微小曲げ付与部34と、を備える。
 本実施形態において、微小曲げ付与部34は、ファイバ長手方向に沿って、被覆層20の外周面上に間欠的に設けられ、所定値以上の径方向の厚みdを有する。このような構造の微小曲げ付与部34により、ガラス領域10に微小曲げを付与することができる。微小曲げ付与部34の厚み,幅または配置ピッチは、ファイバ長手方向に沿って変化していてもよい。また、第2実施形態と同様に、第1被覆層と第2被覆層との間に微小曲げ付与部34が設けられてもよい。
 本実施形態に係るマルチコア光ファイバ4も、第1実施形態に係るマルチコア光ファイバ1と同様の作用効果を奏することができる。なお、本実施形態に係るマルチコア光ファイバ4は、図3または図4において微小曲げ付与部形成装置を光ファイバが通過する際に該光ファイバに対して間欠的に微小曲げ付与部34を形成することで製造され得る。
 (第5実施形態)
  図8は、第5実施形態に係るマルチコア光ファイバ5の構成を示す斜視図である。図8において、マルチコア光ファイバ5は、中心軸AXに沿って延在する複数(図8では7個)のコア部11と、コア部11の外周面それぞれを取り囲む共通クラッド部12と、共通クラッド部12の外周面を取り囲む被覆層20と、被覆層20の外周面(外表面)上に設けられた微小曲げ付与部35と、を備える。なお、被覆層20の外周面上において、これら微小曲げ付与部35はランダムに配置されても良い(規則的に配置する必要はない)。この場合、微小曲げ付与部35の間隔は任意に設定される。
 本実施形態において、微小曲げ付与部35は、被覆層20の外周面上に間欠的に設けられていて、所定値以上の径方向の厚みdを有する。このような構造の微小曲げ付与部35により、ガラス領域10に微小曲げを付与することができる。微小曲げ付与部35の厚み,幅または配置密度はファイバ長手方向に変化していてもよい。また、第2実施形態と同様に、第1被覆層と第2被覆層との間に微小曲げ付与部35が設けられてもよい。
 本実施形態に係るマルチコア光ファイバ4も、第1実施形態に係るマルチコア光ファイバ1と同様の作用効果を奏することができる。なお、本実施形態に係るマルチコア光ファイバ4は、図3または図4において微小曲げ付与部形成装置を光ファイバが通過する際に該光ファイバに対して間欠的に微小曲げ付与部35を形成することで製造され得る。
 上記の第3~第5の実施形態に係るマルチコア光ファイバ3~5では、微小曲げ付与部は、ファイバ長手方向に沿って変化しているので、より微細な曲げをガラス領域10に付与することができる。
 (第6実施形態)
  図9(a)は、第6実施形態に係るマルチコア光ファイバ6の構成を示す斜視図である。図9(a)において、マルチコア光ファイバ6は、中心軸AXに沿って延在する複数(図9(a)では7個)のコア部11と、コア部11の外周面それぞれを取り囲む共通クラッド部12と、共通クラッド部12の外周面を取り囲む被覆層20と、被覆層20の内部に設けられた微小曲げ付与部36と、を備える。
 本実施形態において、微小曲げ付与部36は、被覆層20の内部に離散的にランダムに配置された粒状物質を含む。この場合、微小曲げ付与部36は、図9(b)に示されたように、共通クラッド部12と被覆層20の界面付近、被覆層20の内部、被覆層20の外周面付近に存在する。微小曲げ付与部36としての粒状物質は、被覆層20のヤング率より高いヤング率を有する材料、すなわち、被覆層20の材料より固い材料からなる。微小曲げ付与部36としての粒状物質は、ゲル状のものであってもよいし、固体状のものであってもよい。本実施形態に係るマルチコア光ファイバ6も、第1実施形態に係るマルチコア光ファイバ1と同様の作用効果を奏することができる。
 本実施形態に係るマルチコア光ファイバ6は以下のようにして製造され得る。被覆層20となるべき樹脂材料に微小曲げ付与部36となるべき物質が混入されたものが、紡糸された光ファイバに塗布され硬化される。その結果、マルチコア光ファイバ6が製造され得る。或いは、被覆層20となるべき樹脂材料に微小曲げ付与部36となるべき樹脂材料が混入されたものが、紡糸された光ファイバに同時に塗布され硬化される。この場合も、マルチコア光ファイバ6が製造され得る。
 上記第1~第6の実施形態の何れにおいても、マルチコア光ファイバの全長に亘って微小曲げ付与部が設けられている方が好ましい。このような構成により、マルチコア光ファイバの全長に亘って微小曲げを付与することができるので、クロストーク低減により効果がある。ただし、ファイバ全長に亘って微小曲げが付与されると、コア構造によってはマイクロベンドロス増が発生する可能性もある。したがって、微小曲げ付与部をファイバ長手方向に間欠的に設けても良い。
 一般的な光ファイバの被覆層は2層構造であり、内側の第1被覆層には柔らかい樹脂が使用され、外側の第2被覆層には第1被覆層より硬めの樹脂が用いられる。第2被覆層の樹脂のヤング率は1GPa程度であるので、上記の各実施形態における微小曲げ付与部のヤング率は1GPa以上ある(つまり、第2被覆層の樹脂と同程度以上に硬い)方が、マルチコア光ファイバに効率的に微小曲げを付与することができる。
 上記第1~第6の実施形態それぞれにおいて、微小曲げ付与部によりガラス領域に付与されるマイクロベンドにより、各コアのロスが大きくなる可能性がある。マイクロベンドロスは、信号を伝搬している基底モードから高次モードやクラッドモードへの結合により発生する。基底モードと高次モードやクラッドモードとの間の伝搬定数差(実効屈折率差に置き換えることもできる)が小さい程、マイクロベンドロスは大きくなる。そこで、本実施形態にマルチモードコア光ファイバにおいて、各コア部近傍の屈折率分布は、図10または図11に示されるような屈折率分布であるのが好適である。
 図10に示された屈折率分布は、いわゆるディプレスト型である。このディプレスト型屈折率分布では、クラッド部(共通クラッド12に相当)の屈折率より低い屈折率を有するディプレスト層が各コア部(コア部11に相当)の周囲に設けられている。図11に示された屈折率分布は、いわゆるトレンチ型である。このトレンチ型屈折率分布では、クラッド部(共通クラッド部12に相当)の屈折率より低い屈折率を有するトレンチ層が各コア部(コア部11に相当)の周囲に設けられ、更に、コア部の屈折率より低くトレンチ層の屈折率より高い屈折率を有する内側クラッド層がコア部とトレンチ層との間に設けられている。このようなコア構造を採用することにより、ディプレスト層またはトレンチ層の屈折率までクラッドモードの実効屈折率を下げることができので、マイクロベンドロスを抑制することができる。
 以上のように、コア部およびクラッド部からなるガラス領域に微小曲げを付与する微小曲げ付与部を有するマルチコア光ファイバを用いることによって、マルチコア光ファイバをそのままの状態で用いる場合や、曲げを付与する構造を備えていないコードやケーブルにマルチコア光ファイバを収容して用いる場合でも、ファイバ、コードまたはケーブルの曲げをコントロールしなくても、マルチコア光ファイバのコア間クロストークを低く抑えることができる。
 なお、以下に本実施形態に係るマルチコア光ファイバの応用例として、当該マルチコア光ファイバを利用したテープおよびケーブルについて、図12および図13を用いて説明する。
 図12は、本実施形態に係るマルチコア光ファイバテープの概略構造を示す図である。図12に示されたマルチコア光ファイバテープ100には、一例として、図6に示された第3実施形態に係るマルチコア光ファイバ3が4本採用されている。
 図12において、マルチコア光ファイバテープ100に採用された4本のマルチコア光ファイバ3それぞれは、上述のように、7本のコア部11とクラッド部12で構成されたガラス領域10と、ガラス領域の外周面上に設けられた被覆層20と、ファイバ長手方向に沿って被覆層20の外周面上に螺旋状に設けられた微小曲げ付与部33を備える。当該マルチコア光ファイバテープ100は、上述のような構造を有する4本のマルチコア光ファイバ3それぞれの外周面上に設けられたバッファ層110と、4本のマルチコア光ファイバ3を、互いに所定間隔離れた状態で一体的に覆った樹脂コート120を備える。
 また、本実施形態に係るマルチコア光ファイバケーブルは、上述のような構造を備えたマルチコア光ファイバを内蔵する。図13は、本実施形態に係るマルチコア光ファイバケーブルの例を示す図であり、図13(a)は、ルースケーブルの概略構造を示し、図13(b)は、タイトケーブルの概略構造を示す図である。
 図13(a)に示されたルースケーブル200には、一例として、図1に示された第1実施形態に係るマルチコア光ファイバ1が3本採用されている。
 図13(a)において、ルースケーブル200に採用された3本のマルチコア光ファイバ1それぞれは、上述のように、7本のコア部11とクラッド部12で構成されたガラス領域10と、ガラス領域の外周面上に設けられた被覆層20と、ファイバ長手方向に沿って被覆層20の外周面上に連続して設けられた微小曲げ付与部31を備える。当該ルースケーブル200は、3本のマルチコア光ファイバ1それぞれの外周面に側圧を付与することなく、これら3本のマルチコア光ファイバ1を収納する空間220を有するシース210を備える。
 一方、図13(b)に示されたタイトケーブル300には、一例として、図7に示された第4実施形態に係るマルチコア光ファイバ4が採用されている。
 図13(b)において、タイトケーブル300に採用されたマルチコア光ファイバ4は、上述のように、7本のコア部11とクラッド部12で構成されたガラス領域10と、ガラス領域の外周面上に設けられた被覆層20と、ファイバ長手方向に沿って被覆層20の外周面上に間欠的に設けられた微小曲げ付与部34を備える。当該タイトケーブル300は、このようなマルチコア光ファイバ4の外周面に側圧を付与するため、マルチコア光ファイバ4の外周面に密着したケーブル外被を備える。なお、図13(b)の例では、ケーブル外被は、マルチコア光ファイバ4の外周面に直接密着した内側外被310と、内側外被310の外周面上に設けられた外側外被320から構成されている。

Claims (13)

  1.  中心軸に沿って延在する複数のコア部と、
     互いに所定間隔離れた状態で前記コア部をその内部に一体的に保持する共通クラッド部であって、前記コア部それぞれの屈折率より低い屈折率を有する共通クラッド部と、
     前記共通クラッド部の外周面を取り囲む被覆層と、
     前記被覆層の外周面および内部の少なくとも何れかに設けられた曲げ付与部であって、前記コア部および前記共通クラッド部を含むガラス領域に曲げ応力を付与する曲げ付与部と、
     を備えたマルチコア光ファイバ。
  2.  請求項1に記載のマルチコア光ファイバにおいて、
     前記被覆層は、複数の層を含み、
     前記曲げ付与部は、前記複数の層のうち隣接する層間の界面に設けられている。
  3.  請求項1または2に記載のマルチコア光ファイバにおいて、
     前記中心軸上の第1点において前記中心軸と直交する当該マルチコア光ファイバの断面における前記曲げ付与部の位置は、前記中心軸上の前記第1点とは異なる第2点において前記中心軸と直交する当該マルチコア光ファイバの断面における前記曲げ付与部の位置と異なっている。
  4.  請求項1~3の何れか一項に記載のマルチコア光ファイバにおいて、
     前記曲げ付与部は、前記被覆層の内部に設けられるとともに、前記被覆層のヤング率より高いヤング率を有する材料からなる粒状物質を含む。
  5.  請求項1~4の何れか一項に記載のマルチコア光ファイバにおいて、
     前記曲げ付与部は、前記被覆層の外周面上に設けられ、
     前記曲げ付与部の、当該マルチコア光ファイバの径方向の厚みは、77.5μm以下である。
  6.  請求項1~5の何れか一項に記載のマルチコア光ファイバにおいて、
     前記曲げ付与部は、前記中心軸に沿った方向に連続して伸びた形状を有する。
  7.  請求項1~5の何れか一項に記載のマルチコア光ファイバにおいて、
     前記曲げ付与部は、それぞれが前記中心軸に沿った方向に互いに離間した状態で前記被覆層の外周面および内部の少なくとも何れかに設けられた複数の曲げ付与要素を含む。
  8.  請求項1~7の何れか一項に記載のマルチコア光ファイバは、
     前記コア部それぞれに対応して前記コア部それぞれの外周面上に設けられた複数のディプレスト層を更に備え、
     前記ディプレスト層それぞれは、対応するコア部と前記共通クラッド部との間に位置するとともに、前記共通クラッド部の屈折率より低い屈折率を有する。
  9.  請求項1~7の何れか一項に記載のマルチコア光ファイバは、
     前記コア部それぞれに対応して前記コア部それぞれの外周面上に設けられた複数のトレンチ層であって、それぞれが対応するコア部と前記共通クラッド部との間に位置するとともに、前記共通クラッド部の屈折率より低い屈折率を有する複数のトレンチ層と、
     前記コア部それぞれに対応して前記コア部それぞれの外周面上に設けられた複数の内側クラッド層であって、それぞれが対応するコア部と対応するトレンチ層との間に位置するとともに、前記対応するコア部の屈折率より低くかつ前記対応するトレンチ層の屈折率より高い屈折率を有する複数の内側クラッド層と、
     を更に備える。
  10.  それぞれが請求項1~9の何れか一項に記載のマルチコア光ファイバと同じ構造を有する複数のマルチコア光ファイバ要素と、
     互いに所定間隔離れた状態で前記マルチコア光ファイバ要素を一体的に覆った樹脂コートと、
     を備えたマルチコア光ファイバテープ。
  11.  請求項1~9の何れか一項に記載のマルチコア光ファイバを内蔵するマルチコア光ファイバケーブル。
  12.  請求項11に記載のマルチコア光ファイバケーブルは、
     前記マルチコア光ファイバの外周面に側圧が付与されるよう、前記マルチコア光ファイバの外周面に密着したケーブル外被を更に備える。
  13.  請求項11に記載のマルチコア光ファイバケーブルは、
     前記マルチコア光ファイバの外周面に側圧を付与することなく、前記マルチコア光ファイバを収納する空間を有するシースを更に備える。
PCT/JP2012/081689 2011-12-28 2012-12-06 マルチコア光ファイバ WO2013099555A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DK12861073.0T DK2799920T3 (da) 2011-12-28 2012-12-06 Flerkernet optisk fiber
CN201280065221.6A CN104024903B (zh) 2011-12-28 2012-12-06 多芯光纤
EP12861073.0A EP2799920B1 (en) 2011-12-28 2012-12-06 Multicore optical fiber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011288494A JP5867076B2 (ja) 2011-12-28 2011-12-28 マルチコア光ファイバ
JP2011-288494 2011-12-28

Publications (1)

Publication Number Publication Date
WO2013099555A1 true WO2013099555A1 (ja) 2013-07-04

Family

ID=48694867

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081689 WO2013099555A1 (ja) 2011-12-28 2012-12-06 マルチコア光ファイバ

Country Status (6)

Country Link
US (1) US9547122B2 (ja)
EP (1) EP2799920B1 (ja)
JP (1) JP5867076B2 (ja)
CN (2) CN108089259B (ja)
DK (1) DK2799920T3 (ja)
WO (1) WO2013099555A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015052704A (ja) * 2013-09-06 2015-03-19 住友電気工業株式会社 光ファイバテープ心線、光ケーブル、光ファイバコード、及びテープ心線接続方法
WO2022138761A1 (ja) * 2020-12-25 2022-06-30 住友電気工業株式会社 光ファイバリボン、光ファイバ接続部品、及び光ファイバ接続部品の製造方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9696513B2 (en) * 2013-11-22 2017-07-04 Corning Optical Communications LLC Multicore optical fibers and methods of manufacturing the same
JP6034344B2 (ja) * 2014-08-29 2016-11-30 株式会社フジクラ 光ファイバケーブル
JP6658506B2 (ja) * 2014-10-22 2020-03-04 住友電気工業株式会社 マルチコア光ファイバ、光ケーブル、及び光コネクタ
US10224457B2 (en) 2014-11-06 2019-03-05 Lumileds Llc Light emitting device with trench beneath a top contact
JP6636273B2 (ja) * 2015-07-10 2020-01-29 三菱電線工業株式会社 マルチコア光ファイバの接続方法
US9835812B2 (en) * 2015-08-04 2017-12-05 Corning Incorporated Multi-optical fiber aggregate
US10001597B2 (en) 2015-09-22 2018-06-19 Corning Incorporated Multicore optical fibers and interconnection methods for the same
US10564372B2 (en) 2015-11-06 2020-02-18 CommScope Connectivity Belgium BVBA Optical fiber alignment mechanisms using key elements
CN111479534B (zh) * 2017-12-12 2023-02-17 爱尔康公司 热鲁棒性激光探针组件
WO2022020430A1 (en) * 2020-07-22 2022-01-27 Corning Incorporated Multicore optical fiber
CN113325510B (zh) * 2021-06-23 2022-03-18 长飞光纤光缆股份有限公司 一种多芯光纤及其易分支光缆
CN113589422A (zh) * 2021-06-23 2021-11-02 长飞光纤光缆股份有限公司 一种易于识别的多芯光纤

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5525643B2 (ja) * 1973-06-07 1980-07-08
JPS5652706A (en) * 1979-10-08 1981-05-12 Nippon Telegr & Teleph Corp <Ntt> Single mode optical fiber with intermediate layer
JPS5720707A (en) * 1980-07-14 1982-02-03 Nippon Telegr & Teleph Corp <Ntt> Single mode optical fiber with groove having different refractive index
JPH0312614A (ja) * 1989-06-12 1991-01-21 Sumitomo Electric Ind Ltd 樹脂被覆光ファイバ
JPH07102186A (ja) * 1993-10-01 1995-04-18 Kansai Paint Co Ltd 活性エネルギー線硬化型組成物
JPH0943465A (ja) * 1995-07-28 1997-02-14 Furukawa Electric Co Ltd:The テープ状光ファイバ心線
JP2001183558A (ja) * 1999-12-24 2001-07-06 Sumitomo Electric Ind Ltd 光ファイバ及び光ファイバの製造方法
JP2001294449A (ja) * 2000-04-11 2001-10-23 Shin Etsu Chem Co Ltd 光ファイバ用電子線硬化性着色被覆材組成物及び光ファイバの着色方法
JP2004086026A (ja) * 2002-08-28 2004-03-18 Fujikura Ltd イメージファイバおよびこれを用いた光学機器
WO2009107414A1 (ja) * 2008-02-27 2009-09-03 古河電気工業株式会社 光伝送システムおよびマルチコア光ファイバ
WO2011114795A1 (ja) * 2010-03-16 2011-09-22 古河電気工業株式会社 マルチコア光ファイバおよびその製造方法
JP2011197661A (ja) * 2010-02-26 2011-10-06 Sumitomo Electric Ind Ltd 光ファイバケーブル

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3997241A (en) 1973-06-07 1976-12-14 Hitachi, Ltd. Optical waveguide transmitting light wave energy in single mode
JPS5525643A (en) 1978-08-11 1980-02-23 Mitsubishi Heavy Ind Ltd Method of carrying article
EP0137203B1 (en) * 1983-08-11 1993-12-29 Mitsubishi Cable Industries, Ltd. Waterproof optical fiber cable
FR2701571B1 (fr) * 1993-02-15 1995-03-17 Georges Le Noane Guides optiques multicÓoeurs de grande précision et de petites dimensions et procédé de fabrication de ces guides.
DE19810812A1 (de) * 1998-03-12 1999-09-16 Siemens Ag Optisches Übertragungselement sowie Verfahren zur Reduzierung dessen Polarisationsmoden-Dispersion
BR9913334A (pt) * 1998-09-16 2002-06-18 Corning Inc Fibras de núcleos múltiplos e gerenciadas para dispersão de multimodo
US6853780B1 (en) * 1999-03-31 2005-02-08 Pirelli Cavi E Sistemi S.P.A. Optical cable for telecommunications
GB0222252D0 (en) * 2002-09-25 2002-10-30 Southampton Photonics Ltd An optical fibre
GB0607572D0 (en) * 2006-04-18 2006-05-24 Dunlop Oil & Marine Ltd Leak detector
US7916989B2 (en) * 2008-07-31 2011-03-29 Corning Cable Systems Llc Optical fiber assemblies having a powder or powder blend at least partially mechanically attached
JP2010286548A (ja) * 2009-06-09 2010-12-24 Sumitomo Electric Ind Ltd マルチコアファイバ及びそれを含む光コネクタ
US9195000B2 (en) * 2009-12-02 2015-11-24 Ofs Fitel, Llc. Techniques for reducing crosstalk in multicore fibers
JP5654611B2 (ja) * 2009-12-02 2015-01-14 オーエフエス ファイテル,エルエルシー マルチコアファイバにおけるクロストークの操作技術
JP2011209702A (ja) * 2010-03-10 2011-10-20 Sumitomo Electric Ind Ltd マルチコア光ファイバ

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5525643B2 (ja) * 1973-06-07 1980-07-08
JPS5652706A (en) * 1979-10-08 1981-05-12 Nippon Telegr & Teleph Corp <Ntt> Single mode optical fiber with intermediate layer
JPS5720707A (en) * 1980-07-14 1982-02-03 Nippon Telegr & Teleph Corp <Ntt> Single mode optical fiber with groove having different refractive index
JPH0312614A (ja) * 1989-06-12 1991-01-21 Sumitomo Electric Ind Ltd 樹脂被覆光ファイバ
JPH07102186A (ja) * 1993-10-01 1995-04-18 Kansai Paint Co Ltd 活性エネルギー線硬化型組成物
JPH0943465A (ja) * 1995-07-28 1997-02-14 Furukawa Electric Co Ltd:The テープ状光ファイバ心線
JP2001183558A (ja) * 1999-12-24 2001-07-06 Sumitomo Electric Ind Ltd 光ファイバ及び光ファイバの製造方法
JP2001294449A (ja) * 2000-04-11 2001-10-23 Shin Etsu Chem Co Ltd 光ファイバ用電子線硬化性着色被覆材組成物及び光ファイバの着色方法
JP2004086026A (ja) * 2002-08-28 2004-03-18 Fujikura Ltd イメージファイバおよびこれを用いた光学機器
WO2009107414A1 (ja) * 2008-02-27 2009-09-03 古河電気工業株式会社 光伝送システムおよびマルチコア光ファイバ
JP2011197661A (ja) * 2010-02-26 2011-10-06 Sumitomo Electric Ind Ltd 光ファイバケーブル
WO2011114795A1 (ja) * 2010-03-16 2011-09-22 古河電気工業株式会社 マルチコア光ファイバおよびその製造方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
KATSUHIRO TAKENAGA ET AL.: "Characteristics of Trench-Assisted Multi-Core Fiber", IEICE TECHNICAL REPORT, vol. 111, no. 181, 18 August 2011 (2011-08-18), pages 7 - 10, XP008171837 *
See also references of EP2799920A4
TETSUYA HAYASHI ET AL., ECOC, 2010
TETSUYA HAYASHI ET AL., ECOC, 2011
TETSUYA HAYASHI ET AL., OPTICS EXPRESS, vol. 19, no. 17, 2011, pages 165 76 - 16592

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015052704A (ja) * 2013-09-06 2015-03-19 住友電気工業株式会社 光ファイバテープ心線、光ケーブル、光ファイバコード、及びテープ心線接続方法
WO2022138761A1 (ja) * 2020-12-25 2022-06-30 住友電気工業株式会社 光ファイバリボン、光ファイバ接続部品、及び光ファイバ接続部品の製造方法

Also Published As

Publication number Publication date
CN108089259A (zh) 2018-05-29
CN104024903A (zh) 2014-09-03
DK2799920T3 (da) 2024-03-11
JP2013137430A (ja) 2013-07-11
EP2799920A1 (en) 2014-11-05
CN104024903B (zh) 2018-01-19
EP2799920B1 (en) 2024-02-21
EP2799920A4 (en) 2015-08-12
JP5867076B2 (ja) 2016-02-24
US20130170804A1 (en) 2013-07-04
CN108089259B (zh) 2020-06-26
US9547122B2 (en) 2017-01-17

Similar Documents

Publication Publication Date Title
WO2013099555A1 (ja) マルチコア光ファイバ
JP4619424B2 (ja) 光ファイバケーブル
JP5595888B2 (ja) マルチコアファイバ
JP5708015B2 (ja) 光ファイバケーブル
JP5678679B2 (ja) マルチコアファイバ
JP5224403B2 (ja) 光ファイバユニット及び光ファイバケーブル
JP3001117B2 (ja) 光ケーブルとその製造方法
JP5819682B2 (ja) 通信用マルチコアファイバ
JP2018526687A (ja) ロール可能な光ファイバリボン
WO2017022531A1 (ja) 光ファイバケーブル
JP6034344B2 (ja) 光ファイバケーブル
JP2019105833A (ja) 意図した撚り合わせのない、セントラルチューブに含まれるロール可能リボンを有する光ファイバケーブル
WO2014080953A1 (ja) 光導波路、光ファイバケーブル、および光モジュール
JP2016532137A (ja) 延伸適性のある光ファイバケーブル
WO2013114770A1 (ja) マルチコア光ファイバテープ
JP7099525B2 (ja) 光ファイバケーブル
JP2012211964A (ja) マルチコアファイバ
JP6459833B2 (ja) 光ファイバケーブル
JP7253272B2 (ja) モードコントローラ
JP5261265B2 (ja) バンドルファイバ
WO2012036031A1 (ja) プラスチック光ファイバユニット、およびそれを用いたプラスチック光ファイバケーブル
JP2021157154A (ja) 光ファイバユニットおよび光ファイバケーブル
JP5990616B2 (ja) 通信用マルチコアファイバ
JP2014134672A (ja) 複合光ファイバ
JP4550092B2 (ja) イメージファイバおよびイメージファイバの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12861073

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012861073

Country of ref document: EP