WO2005046834A1 - Verfahren zur herstellung von monolithischen formkörpern - Google Patents

Verfahren zur herstellung von monolithischen formkörpern Download PDF

Info

Publication number
WO2005046834A1
WO2005046834A1 PCT/EP2004/011627 EP2004011627W WO2005046834A1 WO 2005046834 A1 WO2005046834 A1 WO 2005046834A1 EP 2004011627 W EP2004011627 W EP 2004011627W WO 2005046834 A1 WO2005046834 A1 WO 2005046834A1
Authority
WO
WIPO (PCT)
Prior art keywords
gelling
mold
gelling mold
particles
sol
Prior art date
Application number
PCT/EP2004/011627
Other languages
English (en)
French (fr)
Inventor
Karin Cabrera
Peter Knoell
Original Assignee
Merck Patent Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Patent Gmbh filed Critical Merck Patent Gmbh
Priority to AT04765974T priority Critical patent/ATE555834T1/de
Priority to CA2541284A priority patent/CA2541284C/en
Priority to JP2006537115A priority patent/JP5052894B2/ja
Priority to EP04765974A priority patent/EP1680201B1/de
Priority to US10/578,193 priority patent/US7666336B2/en
Publication of WO2005046834A1 publication Critical patent/WO2005046834A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3007Moulding, shaping or extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28023Fibres or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28042Shaped bodies; Monolithic structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28047Gels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/282Porous sorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/80Aspects related to sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J2220/82Shaped bodies, e.g. monoliths, plugs, tubes, continuous beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/80Aspects related to sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J2220/84Capillaries

Definitions

  • the invention relates to a process for the production of monolithic moldings, such as chromatography columns or capillaries with monolithic sorbents, which are produced directly in their
  • the invention further relates to moldings, such as chromatography columns or capillaries with monolithic sorbents, which were produced by the process according to the invention.
  • Monolithic sorbents are becoming increasingly important in the field of chromatography, in particular HPLC, micro-LC or electrochromatography. They show significantly better mass transport properties than columns or capillaries with particulate sorbents. For this reason, columns with monolithic
  • Sorbents can be operated at a higher linear flow rate with constant performance.
  • Monolithic sorbents can be formed on the basis of organic or inorganic polymers. Due to the different properties of the polymers, different processes are currently used to manufacture chromatography columns based on monolithic sorbents.
  • Polymers with low shrinkage rates can be produced directly in the tubes used for chromatography as a gelling mold.
  • Hjerten et al. (Nature, 356, pp. 810-811, 1992) describe, for example, monoliths made of a polyacrylamide material, which are produced within a chromatographic tube.
  • Frechet et al. (Anal. Chem., 64, pp. 820-822, 1992) describe the preparation of polyacrylate materials and polystyrene / divinylbenzene copolymers which are described in The presence of porogens become monolithic materials with a macroporous structure and can remain in the form used after production.
  • Monolithic porous inorganic moldings or, in some cases, strongly cross-linked, hard organic polymer gels show significantly better separation properties.
  • these materials shrink during their manufacture so that they cannot be manufactured directly in the chromatography tubes.
  • the resulting dead volume between the molded body and the chromatography tube would reduce the separation performance too much.
  • the shrinkage after aging is, for example, up to 20% of the starting diameter. Therefore, the materials must be removed from the gelling molds after they have been manufactured and then covered with tight-fitting tubes.
  • WO 99/38006 and WO 99/50654 disclose processes for the production of capillaries which are filled with monolithic silica material. This material can remain directly in the capillary after manufacture. However, the methods disclosed there are only suitable for the production of capillary columns with a smaller diameter.
  • the object of the present invention was therefore to provide a method for
  • the method should be particularly suitable for inorganic materials and allow the filling of column tubes with a diameter between 0.05 mm and 100 mm.
  • monolithic shaped articles can be produced in their gelling form without shrinkage resulting in a dead volume between the shaped article and the gelling form if the inner surface of the gelling form is activated before the synthesis.
  • Suitable activation methods are e.g. Etching, enlargement or chemical modification of the inner surface of the gelling mold. In this way, the monolith can remain in the original gelling form and be used directly for the chromatographic separation.
  • the present invention therefore relates to a process for producing monolithic porous moldings which completely fill their gelling mold, characterized by the following process steps: a) providing a gelling mold; b) activation of the gelling mold by etching, enlarging the surface and / or chemical modification; c) filling the gelling mold with monomer sol; d) polymerizing the monomer sol and aging the resulting gel to form pores.
  • a gelling mold made of glass, glass-coated stainless steel or fused silica is provided in step a).
  • the activation takes place in step b) by enlarging the inner surface of the gelling mold by treating the inner surface with alkoxysilanes and / or organoalkoxysilanes and / or slurries of particles.
  • the activation takes place in step b) by chemical modification of the inner surface of the gelling mold by treating the surface with bifunctional reagents.
  • a sol-gel process is used to produce the monolithic porous moldings.
  • a monomer sol is used in step c), the particles and / or fibers and / or
  • the present invention also relates to monolithic porous moldings which are polymerized into their gelling mold and can be produced by the process according to the invention.
  • the present invention relates to the use of the moldings according to the invention in the gelling mold for the chromatographic separation of at least two substances.
  • the process according to the invention is particularly suitable for the production of inorganic porous monolithic moldings by a sol-gel process.
  • WO 95/03256 and particularly WO 98/29350 disclose preferred methods according to the invention for the production of inorganic monolithic moldings by a sol-gel process.
  • This Materials contain mesopores with a diameter between 2 and 100 nm and macropores with an average diameter of over 0.1 ⁇ m and are therefore particularly well suited for chromatographic applications.
  • the method according to the invention is also suitable for the production of materials with a different pore distribution.
  • materials with a monomodal pore distribution can also be produced, e.g. Materials with an average pore diameter between 10 nm and 200 nm.
  • the shaped articles can be produced, for example, by using alkoxysilanes in a gelling mold under acidic conditions in the presence of a pore-forming phase, e.g. an aqueous solution of an organic polymer, hydrolysed to a porous gel body and polycondensed.
  • a pore-forming phase e.g. an aqueous solution of an organic polymer
  • the gel is then aged and the pore-forming substance is finally separated off.
  • the polymerization or polycondensation leads to a change in the gel structure and to a shrinking of the gel. This results in a dead volume between the gelling mold and the shaped body in the prior art methods.
  • pore formers Depending on the type of monomers used and, if appropriate, pore formers, the specific implementation of the process according to the invention can vary. For example, when organoalkoxysilanes are used, an additional mesopore former (eg urea) can be dispensed with. In such cases, it is often not possible to differentiate between a gelling step and an aging step carried out independently of it, since aging takes place during the gelling step. According to the invention "Polymerizing the monomer sol and aging the resulting gel to form pores" therefore means that gelling and aging can take place in succession, for example under different temperature conditions, or also virtually in parallel, in that no further changes in the gelation conditions
  • the gelling mold is the form into which the monolithic moldings are completely, i.e. polymerized with a perfect fit without dead volume. Since the molded bodies copolymerized according to the invention are preferably used as separation columns for chromatography, the gelling mold also represents the sheathing of the chromatography column. According to the invention, it is no longer necessary to remove the shaped bodies from the gelling mold for chromatographic use and to provide them with a new sheathing.
  • the gelling form is therefore typically of a size and shape customary for capillaries, analytical or preparative chromatography columns.
  • the gelling mold can also be used for other applications
  • Shapes e.g. Have a conical or cuboid shape.
  • the method according to the invention is also suitable for providing monolithic moldings for use in SPE (Solid Phase Extraction) or SPME (Solid Phase Microextraction) or generally for sample preparation.
  • the gelling form is, for example, a cartridge or pipette tip.
  • the gelling mold can consist of metal (eg stainless steel) or plastic or preferably of materials that are coated on the inside with glass (eg stainless steel with glass inliner), ceramic, glass or other silica materials, such as fused silica. Those skilled in the art will be able to choose from these materials based on the intended application To meet conditions for the activation of the surface of the gelling mold, the reaction conditions and the reactants used.
  • completely means i.e. polymerized in a precisely fitting manner without dead volume, so that the gelling mold is filled by the molded body in such a way that the chromatographic separation performance is no longer impaired by cavities which occur in the edge regions between the monolithic molded body and the gelling mold due to shrinkage processes.
  • the method according to the invention can be used for the production of chromatography columns with internal diameters of 50 ⁇ m to 100 mm, preferably between 0.5 mm and 50 mm.
  • the inventive activation of the inner surface of the gelling mold intensifies the contact between the monomer sol or the resulting monolithic shaped body and the surface of the gelling mold. This is preferably done by increasing the formation of chemical bonds between the molded body and the gelling mold. It has been found that various types of activation of the surface of the gelling mold are suitable. Which type of activation is suitable for the particular synthesis depends on the material of the gelling mold and the composition of the monomer sol.
  • This method is particularly suitable for gelling molds made of ceramic, glass or other silica-based materials or for molds coated with such materials. At least the inner surface of the gelling molds is etched with strong acids or strong bases. In this way, e.g. increasingly activated
  • Silanol groups on the inner surface of the mold, which are associated with the monomer sol can react. Furthermore, strong bases partially dissolve the silicate structure of the glass, which results in an increase in surface area. Examples of suitable strong acids or bases are HF, HCl, HN0 3 or H 2 S0 4) NaOH, KOH, NH 4 OH, preferably HF and HCl or NaOH. The duration of the
  • Treatment depends on the material of the gelling mold. As a rule, the molds are treated at temperatures between 25 ° C and 80 ° C between 5 minutes and 24 hours. The treatment can be carried out by immersing the entire mold or rinsing or filling the inside of the gelling mold. Finally, when using a base with dilute acid (for neutralization), with water and finally with an organic solvent, e.g. Rinsed ethanol or, in the case of acid, rinsed with water and an organic solvent and the mold filled with monomer sol.
  • a base with dilute acid for neutralization
  • an organic solvent e.g. Rinsed ethanol or, in the case of acid, rinsed with water and an organic solvent and the mold filled with monomer sol.
  • Another very effective method for the production of monolithic chromatography columns according to the invention is the enlargement of the inside surface of the mold.
  • the gelling mold is pretreated with a solution or slurry.
  • the solution consists of a monomer sol similar to that which will later be used to form the monolithic shaped body, ie, like the monomer sol, it contains alkoxysilanes. These alkoxysilanes can react with the inner surface of the gelling mold and be polymerized and / or sintered there. In this way, a coating of the inner surface of the gelling mold is formed, which increases the inner surface due to its structure and structure.
  • Suitable alkoxysilanes are tetraalkoxysilanes (RO) 4 Si, where R is typically an alkyl, alkenyl or aryl radical, such as C1 to C20 alkyl, C2 to C20 alkenyl or C5 to C20 aryl, preferably a C1 to C8 alkyl radical. Tetraethoxy and in particular tetramethoxysilane are particularly preferred.
  • the tetraalkoxysilane can also contain various alkyl radicals.
  • organoalkoxysilanes or mixtures of organoalkoxysilanes with tetraalkoxysilanes can be used.
  • Suitable organoalkoxysilanes are those in which one to three, preferably one, alkoxy groups of a tetraalkoxysilane are replaced by organic radicals, such as preferably C1 to C20 alkyl, C2 to C20 alkenyl or C5 to C20 aryl.
  • Further organoalkoxysilanes are disclosed, for example, in WO 03/014450 or US 4,017,528.
  • the alkoxysilanes or organoalkoxysilanes can also be used in prepolymerized form, for example as oligomers.
  • the tetraalkoxysilanes or organoalkoxysilanes are typically used as a 2 to 25%, preferably 5 to 10% (wt.%) Solution in an organic solvent such as e.g. Toluene used.
  • the treatment of the gelling mold is preferably carried out at an elevated temperature between 50 and 150 ° C, e.g. is refluxed in toluene.
  • the duration of the treatment is usually between 1 to 40 hours, typically 10 to 25 hours.
  • the solution additionally contains particles and is therefore a particle suspension or slurry.
  • the particles typically have a diameter between 25 nm and 10 ⁇ m, preferably between 50 nm and 1 ⁇ m and typically consist of plastic, ceramic, glass or inorganic oxides, such as Ti, Al, Zr or Si oxides. They preferably have a hydrophilic surface.
  • hydrophobically derivatized particles for example with C1-C20 alkyl residues, are also particularly suitable if the monomer sol consists of organoalkoxysilanes and or mixtures of organoalkoxysilanes with alkoxysilanes. Due to hydrophobic interactions, the polymerization takes place at the beginning, preferably on the inner surface.
  • the particles can be non-porous or porous. Spherical or irregularly shaped particles are suitable. Are particularly preferred
  • the gels are treated with the solution or slurry at temperatures between 25 ° C and 100 ° C for 1 to 24 hours.
  • the treatment can be carried out by immersing the entire mold or rinsing or filling the inside of the gelling mold. Then the gelling molds from the
  • the gelling molds can still be heated.
  • Tetraalkoxysilanes or purely inorganic particles can be calcined up to 600 ° C. If organoalkoxysilanes or particles with organic components were used, the temperatures should be between 100 and 300 ° C, unless the organic residues are to be burned out.
  • the inner surface of the gelling mold is treated with reagents that have at least two, preferably three or four, functionalities.
  • suitable reagents with at least two functionalities are referred to as bifunctional reagents.
  • the reduction in shrinkage after treatment of the surface with these reagents is believed to result from the fact that at least one functionality reacts with the surface of the gelling mold and at least one functionality is available for reaction with the monomer sol.
  • Alkoxysilanes or organoalkoxysilanes are suitable. Are particularly preferred
  • R is typically an alkyl, alkenyl or aryl radical, such as C1 to C20 alkyl, C2 to C20 alkenyl or C5 to C20 aryl, preferably a C1 to C8 alkyl radical and n is preferably 1 to 8.
  • bis (triethoxysilyl) ethane bis (triethoxysilyl) methane and bis (triethoxysilyl) octane.
  • R and R ' are typically independently of one another an alkyl, alkenyl or aryl radical, preferably a C1 to C8 alkyl radical, and R * has a Si-OH-reactive group, such as an amino or an epoxy group. That is, R * is, for example, alkylamino, alkenylamino or arylamino, preferably a C1 to C8 alkylamino or glycidoxyalkyl, glycidoxyalkenyl or glycidoxyaryl, preferably C1 to C8 glycidoxyalkyl.
  • m is 0, 1 or 2
  • n + m gives 3.
  • Examples of suitable compounds of the formula II are 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane or 3-glycidoxypropylmethyldiethoxysilane as well as 3-aminopropylmethyldiethoxysilane, 3-aminopropyldimethylethoxysilane-3-aminopropyl-aminopropyl-3-aminoxysiloxysilane-3-aminopropyl-3-aminoxysiloxysilane ,
  • the bifunctional reagents are typically used as a 2 to 25%, preferably 5 to 10% (% by weight) solution in an organic solvent such as toluene.
  • the gelling mold is preferably treated at an elevated temperature between 50 and 150 ° C .; For example, the mixture is boiled under reflux in toluene.
  • the duration of the treatment is usually between 1 to 40 hours, typically 10 to 25 hours.
  • the treatment can be carried out by immersing the entire mold or rinsing or filling the inside of the gelling mold. Finally, it is rinsed with an organic solvent and the mold is filled with monomer sol.
  • the process according to the invention for the production of monolithic moldings in the gelling mold is further supported by the choice of the monomer sol.
  • Another possibility of reducing or suppressing the shrinkage of the shaped bodies during their production is the choice of a particular composition of the monomer sol. For example, it has been found that adding particles to the monomer sol greatly reduces the rate of shrinkage.
  • Japanese published patent application JP (A) 2002-293657 discloses the addition of particles in sol-gel processes for the production of porous moldings. Here, however, the goal of adding particles is to reduce them the energy expenditure in the production. There is no indication that a similar principle can also be used, under certain conditions, to reduce the shrinkage rate of the shaped bodies during aging.
  • silica particles are preferably used in the present invention, which due to their chemical structure can also form a chemical bond with the monomer sol.
  • JP (A) 2002-293657 e.g. Polymerized aluminum oxide particles using a sol-gel process with alkoxysilanes, i.e. here there is only an inclusion of particles but no chemical bond with the silicate network.
  • the particles are preferably added at a later point in time, namely when the hydrolysis and polycondensation of the monomer sol has already taken place for about 5 to 120 minutes, preferably 15 to 45 minutes. At this point in time there are already oligomers or a loose network consisting of Si0 2 , into which the particles are then incorporated and mechanically stabilize the network due to their rigid properties. It has been found that with an addition preferred according to the invention in the prepolymerized state of the monomer sol, the particles then added are better distributed and suspended. In addition, this process control has the effect that the macropore size remains largely unaffected by the addition of particles.
  • the method according to JP (A) 2002-293657 shows a dependence of the macro pore size on the amount of particles added, for example a macro pore size of 1 ⁇ m for 0.25 g aluminum oxide particles or a size of 0.7 ⁇ m for 0.5 g of the same particles.
  • the macroporous size remains largely unaffected by the synthesis guide according to the invention.
  • the macro-pore size is not changed for particle quantities of up to 1 g (on 50 ml of tetramethoxysilane).
  • fibers are elongated structures whose length is at least 5 times greater than their average diameter.
  • the fibers can be round, oval, irregularly shaped or even flat in diameter.
  • Suitable fibers are mineral fibers or chemical fibers, such as in particular glass ceramic or particularly preferably glass fibers. It has been found that when fibers are added, the gel or the monolithic shaped body is effectively stabilized and the shrinkage is greatly reduced. This process is also particularly well suited for the production of shaped articles with larger diameters (> 3 mm).
  • the fibers are added to the monomer sol in amounts between 1 and 50% by weight, preferably 2-30%.
  • the stabilizing effect can be adjusted by choosing the fibers (for example glass fibers with a length of 0.1-5 mm (preferably 0.3-3 mm) and a diameter of 1-25 ⁇ m (preferably 5-10 ⁇ m)).
  • the fibers for example glass fibers with a length of 0.1-5 mm (preferably 0.3-3 mm) and a diameter of 1-25 ⁇ m (preferably 5-10 ⁇ m)
  • long fibers length> 3 mm
  • long fibers for molded articles with larger diameters or a combination of long and shorter fibers.
  • the shrinkage rate in the production of monolithic moldings can be reduced if the monomer sol contains not only alkoxysilanes but also at least 10%, preferably 20 to 100%, organoalkoxysilanes.
  • Organoalkoxysilanes are silanes in which one to three alkoxy groups, preferably one alkoxy group, of a tetraalkoxysilane by organic
  • Residues such as C1 to C20 alkyl, C2 to C20 alkenyl or C5 to C20 aryl, particularly preferably C1 to C8 alkyl, are replaced.
  • Further organoalkoxysilanes are disclosed, for example, in WO 03/014450 or US 4,017,528. These documents also disclose the production of particles or monolithic moldings from organoalkoxysilanes. However, there is no indication that the use of Organoalkoxysilanes brings a reduction in shrinkage with aging.
  • the concentration of certain substances must be varied slightly, since organoalkoxysilanes show a different polarity, reactivity or solubility than alkoxysilanes and thus influence, for example, the phase separation or the formation of the gel body.
  • a water-miscible organic solvent e.g. Ethanol or preferably methanol, the molar ratio of water to solvent typically being between 10: 1 and 1: 5, preferably between 3: 1 and 1: 2.
  • the formation of the pores can be influenced in different ways.
  • a porogen such as polyethylene glycol
  • a detergent can be added (eg cationic detergents such as CTAB (CH 3 (CH 2 ) ⁇ 5 N + (CH 3 ) 3 Br " ), non-ionic detergents such as PEG
  • a calcination step is often carried out after the gelation and aging of the gel. This removes all organic compounds or residues remaining in the molded body. Also when using organoalkoxysilanes in the monomer sol
  • ' ⁇ can be calcined in the last synthesis step, so that the organic residues are removed from the shaped body and a completely inorganic shaped body is obtained.
  • this can be used to create pores.
  • Calcination is usually carried out at temperatures between 300 and 600 ° C. However, it is also possible to dispense with the calcination step or to choose the temperature so that the organic residues are not attacked. In this way, there is the possibility of the material properties of the shaped bodies 5 e.g. with regard to their chromatographic separation properties.
  • the temperatures in this case are typically between 100 and 300 ° C.
  • organoalkoxysilanes influences the stability and porosity of the shaped bodies, it can be used for certain applications e.g. be advantageous not only to use organoalkoxysilanes but also mixtures of alkoxysilanes and organoalkoxysilanes. Then a treatment of the gelling mold according to the invention can optionally additionally reduce the shrinkage.
  • Particles or fibers are particularly preferably added to a monomer sol containing organoalkoxysilanes.
  • a gelling mold is first activated by etching and then filled with a mixture of an organoalkoxysilane (e.g. MTMS), a detergent, an acid (e.g. dilute nitric acid) and methanol. After gelation and parallel aging at elevated temperature, a sorbent which is well suited for chromatography is obtained.
  • an organoalkoxysilane e.g. MTMS
  • a detergent e.g. dilute nitric acid
  • acid e.g. dilute nitric acid
  • the shaped articles are also used after aging or calcination for use in chromatography Separation effectors provided.
  • the various separation effectors and methods for their introduction are known to the person skilled in the art. Examples can be found, for example, in WO 98/29350.
  • the method according to the invention can be used to produce monolithic, homogeneous, porous molded articles which completely fill their gelling mold.
  • the shaped bodies can remain in the gelling mold for chromatographic purposes and show an equally homogeneous pore structure and equally good separation performance as subsequently coated shaped bodies.
  • the method according to the invention therefore greatly simplifies the production of the monolithic moldings.
  • Capillaries which are produced by the method according to the invention show significantly better separation performances than capillaries from the prior art. The reason for this is that through
  • the present invention accordingly also relates to monolithic porous moldings which are polymerized into their gelling mold, can be produced by the process according to the invention by activating the surface of the gelling mold and / or adding particles, fibers or organoalkoxysilanes to the monomer sol.
  • the moldings according to the invention are distinguished by a structure which is homogeneous over the entire cross section. Furthermore, the activation of the inner surface of the gelling mold forms chemical bonds between the molded body and the gelling mold, which bring about particularly effective stabilization.
  • the cartridge was connected to an HPLC system and first washed in overnight with about 200 ml of ethanol (flow rate: 0.2 ml / min). The remaining pore former (polyethylene glycol) was rinsed out. Two substances could be separated. The cartridge was subsequently added to
  • the glass cartridge was pretreated with the reaction mixture before filling. Glass cartridges were placed in 1 M HCl solution and treated at 40 ° C. for at least 24 hours. The tubes were then rinsed with water and ethanol and dried in a drying cabinet for 24 hours.
  • the mixture thus obtained is then filled into pretreated glass cartridges (3 mm generally, 12.5 cm in length) and kept at 30 ° C. overnight in a water bath. During this time, the monolithic molded body is completely polymerized. It is then dried in a drying cabinet for 2 days and then used directly for chromatography. The monolith sits firmly in the glass cartridge and cannot be removed.
  • the glass cartridges were pretreated with the reaction mixture before filling. Three variants were chosen: a) 5% TMOS (tetramethoxysilane) b) 5% BTME (bis (trimethoxysiiyl) ethane) c) 5% glymo (3-glycidoxypropyltrimethoxysilane) 5% solutions of a) -c) in toluene were each prepared. The glass cartridges were dipped into these and boiled under reflux overnight. The tubes were then rinsed with ethanol and dried in a drying cabinet for 24 hours.
  • Aerosil Aerosil OX50, Degussa
  • 3g particles Monospher ® 500 (monodisperse, non-porous particles, 500 nm, Fa. Merck KGaA) are stirred into the mixture.
  • the mixture is then treated with a disperser (Diax 900) for better distribution of the particles.
  • the resulting mixtures are filled into the pretreated glass cartridges (3 mm id, 12.5 cm long) and kept at 30 ° C. overnight in a water bath.
  • the monolithic molded body is completely polymerized. It is then dried in a drying cabinet for 2 days. The monolith sits firmly in the glass cartridge and cannot be removed.
  • the glass cartridges were pretreated as described in Example 2 before filling with the reaction mixture. Three variants were chosen for this:
  • the glass cartridges were pretreated as described in Example 2 before filling with the reaction mixture. Three variants were chosen for this:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Silicon Compounds (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung von monolithischen Formkörpern z.B. als Sorbenzien für Chromatographiesäulen oder Kapillaren, wobei die Formkörper nach der Herstellung direkt in ihrer Gelierform verbleiben können. Dies wird realisiert durch das erfindungsgemässe Verfahren, bei dem die Oberfläche der Gelierform vor Befüllen mit dem Monomersol durch Anätzen, Vergrösserung der Oberfläche oder chemische Modifikation der Oberfläche aktiviert wird.

Description

Verfahren zur Herstellung von monolithischen Formkörpern
Die Erfindung betrifft ein Verfahren zur Herstellung von monolithischen Formkörpern, wie Chromatographiesäulen oder Kapillaren mit monolithischen Sorbenzien, die nach der Herstellung direkt in ihrer
Gelierform verbleiben können. Weiterhin betrifft die Erfindung Formkörper, wie Chromatographiesäulen oder Kapillaren mit monolithischen Sorbenzien, die nach dem erfindungsgemäßen Verfahren hergestellt wurden.
Monolithische Sorbenzien gewinnen im Bereich der Chromatographie, insbesondere der HPLC, Mikro-LC oder der Elektrochromatographie, immer mehr an Bedeutung. Sie zeigen wesentlich bessere Massentransporteigenschaften als Säulen oder Kapillaren mit partikulären Sorbenzien. Aus diesem Grund können Säulen mit monolithischen
Sorbenzien mit höherer linearer Fließgeschwindigkeit bei gleichbleibender Leistung betrieben werden.
Monolithische Sorbenzien können auf Basis von organischen oder anorganischen Polymeren gebildet werden. Aufgrund der unterschiedlichen Eigenschaften der Polymere werden derzeit zur Herstellung von Chromatographiesäulen auf Basis von monolithischen Sorbenzien unterschiedliche Verfahren eingesetzt.
Polymere mit geringen Schrumpfungsraten, d.h. weiche Polymergele, können direkt in den zur Chromatographie verwendeten Rohren als Gelierform hergestellt werden. Hjerten et al. (Nature, 356, S. 810-811 , 1992) beschreiben z.B. Monolithen aus einem Polyacrylamid-Material, die innerhalb eines chromatographischen Rohres hergestellt werden. Frechet et al. (Anal. Chem., 64, S. 820-822, 1992) beschreiben die Herstellung von Polyacrylat-Materialien und Polystyrol/Divinylbenzol Copolymeren, die in Anwesenheit von Porogenen zu monolithischen Materialien mit einer makroporösen Struktur werden und nach der Herstellung in der verwendeten Form verbleiben können.
Derartige Polymere weisen jedoch für die Chromatographie einige
Nachteile auf. Beispielsweise besitzen sie häufig eine zu geringe mechanische Stabilität. Weiterhin ist die Porenverteilung der Materialien oft ungünstig, da zu viele Mikroporen auftreten. Dadurch wird die Effizienz und die Symmetrie der Säulen negativ beeinflußt. Auch zeigen die Materialien oft ein ungünstiges Quellverhalten.
Wesentlich bessere Trenneigenschaften zeigen monolithische poröse anorganische Formkörper oder, in einigen Fällen, stark quervernetzte, harte organische Polymergele. Diese Materialien schrumpfen jedoch während ihrer Herstellung, so daß sie nicht direkt in den Chromatographierohren hergestellt werden können. Das entstehende Totvolumen zwischen dem Formkörper und dem Chromatographierohr würde die Trennleistung zu stark herabsetzen. Bei anorganischen Monolithen, die über einen Sol- Gel Prozeß hergestellt werden, beträgt die Schrumpfung nach der Alterung beispielsweise bis zu 20% des Ausgangsdurchmessers. Daher müssen die Materialien nach ihrer Herstellung aus den Gelierformen entfernt werden und anschließend mit dicht-schließenden Rohren ummantelt werden.
WO 99/38006 und WO 99/50654 offenbaren Verfahren zur Herstellung von Kapillaren, die mit monolithischem Silica-Material gefüllt sind. Dieses Material kann nach der Herstellung direkt in der Kapillare verbleiben. Jedoch sind die dort offenbarten Methoden nur zur Herstellung von Kapillarsäulen mit kleinerem Durchmesser geeignet.
Aufgabe der vorliegenden Erfindung war es daher, ein Verfahren zur
Herstellung von monolithischen Chromatographiesäulen bereitzustellen, bei dem das Sorbens nach der Herstellung in der Gelierform, d.h. dem Säulenrohr, verbleiben kann. Das Verfahren sollte insbesondere für anorganische Materialien geeignet sein und das Füllen von Säulenrohren mit einem Durchmesserzwischen 0,05 mm und 100 mm ermöglichen.
Es wurde gefunden, daß monolithische Formkörper in ihrer Gelierform hergestellt werden können, ohne dass durch Schrumpfung ein Totvolumen zwischen Formkörper und Gelierform entsteht, wenn die innere Oberfläche der Gelierform vor der Synthese aktiviert wird. Geeignete Aktivierungsverfahren sind z.B. Anätzen, Vergrößerung oder chemische Modifikation der inneren Oberfläche der Gelierform. Auf diese Weise kann der Monolith in der ursprünglichen Gelierform verbleiben und direkt zur chromatographischen Trennung eingesetzt werden.
Gegenstand der vorliegenden Erfindung ist daher ein Verfahren zur Herstellung von monolithischen porösen Formkörpern, die ihre Gelierform vollständig ausfüllen, gekennzeichnet durch folgende Verfahrensschritte: a) Bereitstellen einer Gelierform; b) Aktivierung der Gelierform durch Anätzen, Vergrößerung der Oberfläche und/oder chemische Modifikation; c) Befüllen der Gelierform mit Monomersol; d) Polymerisieren des Monomersols und Altern des entstandenen Gels zur Bildung von Poren.
In einer bevorzugten Ausführungsform wird in Schritt a) eine Gelierform aus Glas, mit Glas beschichtetem Edelstahl oder Fused Silica bereitgestellt.
In einer weiteren bevorzugten Ausführungsform erfolgt in Schritt b) die Aktivierung durch Vergrößerung der Innenoberfläche der Gelierform, indem die Innenoberfläche mit Alkoxysilanen und/oder Organoalkoxysilanen und/oder Aufschlämmungen von Partikeln behandelt wird. In einer anderen bevorzugten Ausführungsform erfolgt in Schritt b) die Aktivierung durch chemische Modifikation der Innenoberfläche der Gelierform, indem die Oberfläche mit bifunktionellen Reagenzien behandelt wird.
In einer bevorzugten Ausführungsform wird zur Herstellung der monolithischen porösen Formkörper ein Sol-Gel-Verfahren verwendet.
In einerweiteren bevorzugten Ausführungsform wird in Schritt c) ein Monomersol verwendet, das Partikel und/oder Fasern und/oder
Organoalkoxysilane enthält und dadurch geringe Schrumpfungsraten zeigt.
Gegenstand der vorliegenden Erfindung sind auch monolithische poröse Formkörper, die in ihre Gelierform einpolymerisiert sind, herstellbar nach dem erfindungsgemäßen Verfahren.
Gegenstand der vorliegenden Erfindung ist die Verwendung der erfindungsgemäßen Formkörper in der Gelierform zur chromatographischen Auftrennung mindestens zweier Substanzen.
Zur Herstellung der Formkörper können verschiedene dem Fachmann bekannte Verfahren, wie Verfahren zur z.B. radikalischen Polymerisation oder auch Sol-Gel-Verfahren, eingesetzt werden. Die Lösungen, die die Ausgangssubstanzen zur Herstellung der Monolithen enthalten, werden erfindungsgemäß, unabhängig von der Art wie sie polymerisiert oder geliert werden, als Monomersol bezeichnet.
Das erfindungsgemäße Verfahren eignet sich insbesondere zur Herstellung anorganischer poröser monolithischer Formkörper nach einem Sol-Gel Prozeß. In WO 95/03256 und besonders in WO 98/29350 werden erfindungsgemäß bevorzugte Verfahren zur Herstellung anorganischer monolithischer Formkörper nach einem Sol-Gel Prozeß offenbart. Diese Materialien enthalten Mesoporen mit einem Durchmesser zwischen 2 und 100 nm und Makroporen mit einem mittleren Durchmesser von über 0,1 μm und sind somit für eine chromatographische Anwendung besonders gut geeignet.
Das erfindungsgemäße Verfahren eignet sich auch zur Herstellung von Materialien mit anderer Porenverteilung. Beispielsweise können auch Materialien mit monomodaler Porenverteilung erzeugt werden, z.B. Materialien mit einem mittleren Porendurchmesser zwischen 10 nm und 200 nm.
Die Herstellung der Formkörper kann beispielsweise erfolgen, indem man in einer Gelierform Alkoxysilane unter sauren Bedingungen in Gegenwart einer porenbildenden Phase, z.B. einer wässrigen Lösung eines organischen Polymers, zu einem porösen Gelkörper hydrolysiert und polykondensiert. Danach wird das Gel gealtert und schließlich die porenbildene Substanz abgetrennt. Ohne die erfindungsgemäße Behandlung der Gelierform kommt es durch die Polymerisation bzw. Polykondensation zu einer Veränderung der Gelstruktur und zum Schrumpfen des Gels. Dadurch entsteht bei den Verfahren nach dem Stand der Technik ein Totvolumen zwischen der Gelierform und dem Formkörper.
Je nach der Art der eingesetzten Monomere und gegebenenfalls Porenbildner kann die konkrete Durchführung des erfindungsgemäßen Verfahrens variieren. Beispielsweise kann z.B. beim Einsatz von Organoalkoxysilanen auf den Einsatz eines zusätzlichen Mesoporenbildners (z.B. Harnstoff) verzichtet werden. In derartigen Fällen kann häufig nicht zwischen einem Gelierschritt und einem unabhängig davon durchgeführten Alterungsschritt unterschieden werden, da die Alterung schon während des Gelierschrittes erfolgt. Erfindunggemäß bedeutet daher „Polymerisieren des Monomersols und Altern des entstandenen Gels zur Bildung von Poren", dass Gelieren und Altern nacheinander z.B. unter unterschiedlichen Temperaturbedingungen erfolgen können oder auch quasi parallel, indem nach den Gelierungsbedingungen keine weiteren Änderungen der
Reaktionsbedingungen erfolgen und somit auch kein gesondert erkennbarer Alterungsschritt durchgeführt wird.
Als Gelierform wird erfindungsgemäß die Form bezeichnet, in die die monolithischen Formkörper während der erfindungsgemäßen Herstellung vollständig, d.h. paßgenau ohne Totvolumen, einpolymerisiert werden. Da die erfindungsgemäß einpolymerisierten Formkörper bevorzugt als Trennsäulen für die Chromatographie eingesetzt werden, stellt die Gelierform zugleich die Ummantelung der Chromatographiesäule dar. Es ist erfindungsgemäß nicht mehr notwendig, die Formkörper für einen chromatographischen Einsatz aus der Gelierform zu entfernen und mit einer neuen Ummantelung zu versehen. Die Gelierform besitzt daher typischerweise eine für Kapillaren, analytische oder präparative Chromatographiesäulen übliche Größe und Form. Genauso kann die Gelierform für andere Anwendungen auch andere
Formen, z.B. Kegelform oder Quaderform besitzen. Beispielsweise ist das erfindungsgemäße Verfahren auch geeignet, monolithische Formkörper für den Einsatz in SPE (Solid Phase Extraction) oder SPME (Solid Phase Microextraction) oder generell zur Proben Vorbereitung bereitzustellen. In diesem Fall ist die Gelierform beispielsweise eine Kartusche oder Pipettenspitze.
Die Gelierform kann aus Metall (z.B. Edelstahl) oder Kunststoff oder bevorzugt aus Materialien, die innen mit Glas beschichtet sind (z.B. Edelstahl mit Glas-Inliner), Keramik, Glas oder anderen Silica-Materialien, wie z.B. Fused Silica, bestehen. Der Fachmann ist in der Lage, die Auswahl aus diesen Materialien aufgrund der geplanten Anwendung, der Bedingungen für die Aktivierung der Oberfläche der Gelierform, der Reaktionsbedingungen und der eingesetzten Reaktanden zu treffen.
Erfindungsgemäß bedeutet vollständig, d.h. paßgenau ohne Totvolumen einpolymerisiert, daß die Gelierform derart von dem Formkörper ausgefüllt wird, daß die chromatographische Trennleistung nicht mehr von Hohlräumen beeinträchtigt wird, die in den Randbereichen zwischen monolithischem Formkörper und Gelierform durch Schrumpfungsprozesse entstehen.
Das erfindungsgemäße Verfahren kann zur Herstellung von Chromatographiesäulen mit Innendurchmessern von 50 μm bis 100 mm, bevorzugt zwischen 0.5 mm bis 50 mm, eingesetzt werden.
Durch die erfindungsgemäße Aktivierung der Innenoberfläche der Gelierform wird der Kontakt zwischen dem Monomersol bzw. dem entstehenden monolithischen Formkörper und der Oberfläche der Gelierform intensiviert. Bevorzugt erfolgt dies durch verstärkte Ausbildung von chemischen Bindungen zwischen Formkörper und Gelierform. Es wurde gefunden, dass verschiedene Arten der Aktivierung der Oberfläche der Gelierform geeignet sind. Welche Art der Aktivierung für die jeweilige Synthese geeignet ist, hängt vom Material der Gelierform und der Zusammensetzung des Monomersols ab.
1. Anätzen
Dieses Verfahren ist insbesondere für Gelierformen aus Keramik, Glas oder anderen Materialien auf Silica-Basis oder für Formen, die mit derartigen Materialien beschichtet sind, geeignet. Hierbei wird zumindest die Innenoberfläche der Gelierformen mit starken Säuren oder starken Basen angeätzt. Auf diese Weise entstehen z.B. vermehrt aktivierte
Silanolgruppen an der Innenoberfläche der Form, die mit dem Monomersol reagieren können. Desweiteren kommt es mit starken Basen zu einer partiellen Anlösung der Silikatstruktur des Glases, die eine Oberflächenvergrösserung zur Folge hat. Als starke Säuren oder Basen sind z.B. HF, HCl, HN03 oder H2S04) NaOH, KOH, NH4OH, bevorzugt HF und HCl bzw. NaOH, geeignet. Die Dauer der
Behandlung hängt vom Material der Gelierform ab. In der Regel werden die Formen bei Temperaturen zwischen 25°C und 80 °C zwischen 5 Minuten und 24 Stunden behandelt. Die Behandlung kann durch Eintauchen der gesamten Form oder Spülen bzw. Befüllen des Inneren der Gelierform erfolgen. Abschließend wird bei Verwendung einer Base mit verdünnter Säure (zur Neutralisation), mit Wasser und schließlich mit einem organischen Lösungsmittel, wie z.B. Ethanol gespült bzw. im Falle der Säure mit Wasser und einem organischen Lösungsmittel gespült und die Form mit Monomersol befüllt.
2. Vergrößerung der Oberfläche
Eine weitere sehr effektive Methode zur erfindungsgemäßen Herstellung von monolithischen Chromatographiesäulen ist die Vergrößerung der Innenoberfläche der Gefierform. Hierbei wird die Gelierform mit einer Lösung oder Aufschlämmung vorbehandelt. Die Lösung besteht aus einem Monomersol ähnlich dem, das später zur Bildung des monolithischen Formkörpers verwendet wird, d.h. es enthält ebenso wie das Monomersol Alkoxysilane. Diese Alkoxysilane können mit der Innenoberfläche der Gelierform reagieren und dort auspolymerisiert und/oder aufgesintert werden. Auf diese Weise bildet sich eine Beschichtung der Innenoberfläche der Gelierform, die durch ihren Aufbau und ihre Struktur die Innenoberfläche vergrößert. Geeignete Alkoxysilane sind Tetraalkoxysilane (RO)4Si, wobei R typischerweise ein Alkyl, Alkenyl oder Aryl- Rest ist, wie C1 bis C20 Alkyl, C2 bis C20 Alkenyl oder C5 bis C20 Aryl, bevorzugt ein C1 bis C8 Alkylrest. Besonders bevorzugt sind Tetraethoxy- und insbesondere Tetramethoxysilan. Genauso kann das Tetraalkoxysilan verschiedene Alkylreste enthalten. In einer anderen Ausführungsform können statt eines Alkoxysilans oder Mischungen zweier oder mehrerer Alkoxysilane Organoalkoxysilane oder Mischungen von Organoalkoxysilanen mit Tetraalkoxysilanen eingesetzt werden. Geeignete Organoalkoxysilane sind solche, in denen ein bis drei, bevorzugt eine Alkoxygruppen eines Tetraalkoxysilans durch organische Reste, wie bevorzugt C1 bis C20 Alkyl, C2 bis C20 Alkenyl oder C5 bis C20 Aryl ersetzt sind. Weitere Organoalkoxysilane sind z.B. in WO 03/014450 oder US 4,017,528 offenbart. Statt in ihrer monomeren Form können die Alkoxysilane bzw. Organoalkoxysilane auch vorpolymerisiert als z.B. Oligomere eingesetzt werden.
Die Tetraalkoxysilane bzw. Organoalkoxysilane werden typischerweise als 2 bis 25%ige, bevorzugt 5 bis 10%ige (Gew.%) Lösung in einem organischen Lösungsmittel wie z.B. Toluol eingesetzt. Die Behandlung der Gelierform erfolgt bevorzugt bei erhöhter Temperatur zwischen 50 und 150°C, z.B. wird in Toluol unter Rückfluß gekocht. Die Dauer der Behandlung beträgt in der Regel zwischen 1 bis 40 Stunden, typischerweise 10 bis 25 Stunden.
In einer anderen bevorzugten Ausführungsform enthält die Lösung zusätzlich Partikel und ist somit eine Partikelsuspension bzw. Aufschlämmung. Die Partikel haben typischerweise einen Durchmesser zwischen 25 nm und 10 μm, bevorzugt zwischen 50 nm und 1μm und bestehen typischerweise aus Kunststoff, Keramik, Glas oder anorganischen Oxiden, wie z.B. Ti-, AI-, Zr- oder Si-Oxiden. Bevorzugt besitzen sie eine hydrophile Oberfläche. Aber auch hydrophob derivatisierte Partikel, z.B. mit C1 - C20 Akylresten sind besonders geeignet, wenn das Monomersol aus Organoalkoxysilanen und oder Mischungen von Organoalkoxysilanen mit Alkoxysilanen besteht. Hier findet bedingt durch hydrophobe Wechselwirkungen die Polymerisation zu Beginn bevorzugt an der Innenoberfläche statt. Die Partikel können unporös oder porös sein. Geeignet sind sphärische oder auch unregelmässig geformte Partikel. Besonders bevorzugt sind
Silica-Partikel mit einem Durchmesser zwischen 50nm und 1μm.
In der Regel werden die Gelierformen bei Temperaturen zwischen 25°C und 100° C zwischen 1 und 24 Stunden mit der Lösung oder Aufschlämmung behandelt. Die Behandlung kann durch Eintauchen der gesamten Form oder Spülen bzw. Befüllen des Inneren der Gelierform erfolgen. Anschließend werden die Gelierformen aus der
Partikelsuspension bzw. Aufschlämmung genommen und ohne weitere Behandlung über mehrere Stunden getrocknet.
Falls gewünscht bzw. für die spätere Anwendung notwendig, können die Gelierformen noch erhitzt werden. Bei einer Beschichtung mit
Tetraalkoxysilanen bzw. rein anorganischen Partikeln kann bis 600°C calziniert werden. Falls Organoalkoxysilane oder Partikel mit organischen Bestandteilen eingesetzt wurden, sollten die Temperaturen zwischen 100 und 300°C liegen, es sei denn die organischen Reste sollen ausgebrannt werden.
3. chemische Modifikation
Hierbei wird die innere Oberfläche der Gelierform mit Reagenzien behandelt, die zumindest zwei, bevorzugt drei oder vier, Funktionalitäten aufweisen. Erfindungsgemäß werden geeignete Reagenzien mit mindestens zwei Funktionalitäten als bifunktionelle Reagenzien bezeichnet. Es wird angenommen, dass die Verminderung des Schrumpfens nach Behandlung der Oberfläche mit diesen Reagenzien daher rührt, dass mindestens eine Funktionalität mit der Oberfläche der Gelierform reagiert und mindestens eine Funktionalität zur Reaktion mit dem Monomersol zur Verfügung steht. Geeignet sind dabei z.B. Alkoxysilane oder Organoalkoxysilane. Besonders bevorzugt sind
- bis-funktionelle Silane der Formel I (RO)ι-3-Si-(CH2)n -Si-(OR)1-3 I
wobei R typischerweise ein Alkyl, Alkenyl oder Aryl- Rest ist, wie C1 bis C20 Alkyl, C2 bis C20 Alkenyl oder C5 bis C20 Aryl, bevorzugt ein C1 bis C8 Alkylrest und n bevorzugt 1 bis 8 ist.
Beispiele für bevorzugte Verbindungen sind BTME (Bis(trirnethoxysjlyl) ethan mit R = Methyl und n = 2)), Bis(triethoxysilyl)ethan, Bis(triethoxysilyl)methan und Bis(triethoxysilyl)octan.
- mono, di- oder trifunktionelle Alkoxysilane mit einer vierten endständigen Funktion der Formel II
(RO)nR'mSi-R* II
wobei R und R' typischerweise unabhängig voneinander ein Alkyl, Alkenyl oder Aryl- Rest ist, bevorzugt ein C1 bis C8 Alkylrest, und R* eine Si-OH- reaktive Gruppe, wie eine Amino- oder eine Epoxy-Gruppe aufweist. Das heißt, R* ist z.B. Alkylamino, Alkenylamino oder Arylamino, bevorzugt ein C1 bis C8 Alkylamino oder Glycidoxyalkyl, Glycidoxyalkenyl oder Glycidoxyaryl, bevorzugt C1 bis C8-Glycidoxyalkyl. m ist 0, 1 oder 2, n + m ergibt 3. Beispiele für geeignete Verbindungen der Formel II sind 3- Glycidoxypropyltrimethoxysilan, 3-Glycidoxypropylmethyldimethoxysilan oder 3-Glycidoxypropylmethyldiethoxysilan sowie 3- Aminopropylmethyldiethoxysilan, 3-Aminopropyldimethylethoxysilan oder bevorzugt 3-Aminopropyltriethoxysilan oder 3-Aminopropyltrimethoxysilan. Die bifunktionellen Reagenzien werden typischerweise als 2 bis 25%ige, bevorzugt 5 bis 10%ige (Gew.%) Lösung in einem organischen Lösungsmittel wie z.B. Toluol eingesetzt. Die Behandlung der Gelierform erfolgt bevorzugt bei erhöhter Temperatur zwischen 50 und 150°C; z.B. wird in Toluol unter Rückfluß gekocht. Die Dauer der Behandlung beträgt in der Regel zwischen 1 bis 40 Stunden, typischerweise 10 bis 25 Stunden. Die Behandlung kann durch Eintauchen der gesamten Form oder Spülen bzw. Befüilen des Inneren der Gelierform erfolgen. Zum Abschluß wird mit einem organischen Lösungsmittel gespült und die Form mit Monomersol befüllt.
Weiterhin ist es möglich, die genannten Möglichkeiten der Oberflächenaktivierung zu kombinieren. Beispielsweise kann es vorteilhaft sein, zunächst die Oberfläche der Gelierform durch Anätzen zu aktivieren und anschließend zusätzlich durch Behandlung mit Alkoxysilanen, bifunktionellen Reagenzien oder Partikel-Aufschlämmungen zu vergrößern.
In einer bevorzugten Ausführungsform wird das erfindungsgemäße Verfahren zur Herstellung von monolithischen Formkörpern in der Gelierform noch durch die Wahl des Monomersols unterstützt.
Eine weitere Möglichkeit, das Schrumpfen der Formkörper während ihrer Herstellung zu verringern oder zu unterdrücken, ist die Wahl einer bestimmten Zusammensetzung des Monomersols. Beispielsweise wurde gefunden, dass der Zusatz von Partikeln zu dem Monomersol die Schrumpfungsrate stark vermindert.
Dabei entsprechen die, verwendeten Monomersole ansonsten den aus dem Stand der Technik bekannten Monomersolen (z.B. aus US 5,869,152, WO 95/03256 und besonders in WO 98/29350). In der japanischen Offenlegungsschrift JP(A) 2002-293657 wird der Zusatz von Partikeln bei Sol-Gel Verfahren zur Herstellung poröser Formkörper offenbart. Hier ist jedoch das Ziel des Partikel-Zusatzes die Verminderung des Energie-Aufwandes bei der Herstellung. Es gibt keinen Hinweis darauf, dass ein ähnliches Prinzip unter bestimmten Voraussetzungen auch dazu verwendet werden kann, die Schrumpfungsrate der Formkörper bei der Alterung zu verringern.
Im Gegensatz zu JP(A) 2002-293657 werden bei der vorliegenden Erfindung bevorzugt Silica-Partikel verwendet, die in Folge ihrer chemischen Struktur auch eine chemische Bindung mit dem Monomersol eingehen können. In JP(A) 2002-293657 werden dagegen z.B. Aluminiumoxidpartikel über einen Sol-Gel Prozess mit Alkoxysilanen einpolymerisiert, d.h. hier liegt nur ein Einschluss von Partikeln vor aber keine chemische Bindung mit dem Silikatnetzwerk.
Desweiteren werden die Partikel im Gegensatz zu JP(A) 2002-293657 bevorzugt zu einem späteren Zeitpunkt zugeführt, nämlich dann, wenn die Hydrolyse und Polykondensation des Monomersols bereits ca. 5 - 120 Minuten bevorzugt 15 - 45 Minuten stattgefunden hat. Zu diesem Zeitpunkt gibt es schon Oligomere bzw. ein lockeres Netzwerk bestehend aus Si02, in das die Partikel dann eingebaut werden und wegen ihrer rigiden Eigenschaften das Netzwerk mechanisch stabilisieren. Es wurde gefunden, dass bei einer erfindungsgemäß bevorzugten Zugabe im vorpolymerisierten Zustand des Monomersols die dann zugesetzten Teilchen besser verteilt und suspendiert werden. Zudem bewirkt diese Verfahrensführung, dass die Makroporengrösse von der Partikelzugabe weitgehend unbeeinflusst bleibt.
In dem Verfahren nach JP(A) 2002-293657 zeigt sich eine Abhängigkeit der Makroporengrösse von der Menge der zugesetzten Teilchen, z.B. bei 0.25g Aluminiumoxidteilchen eine Makroporengrösse von 1μm bzw. bei o.5g derselben Partikel eine Grosse von 0.7 μm. Durch die erfindungsgemäße Syntheseführung dagegen bleibt die Makroporengrösse weitgehend unbeeinflusst. Beispielsweise wird die Makroporengröße bei Partikel-Mengen von bis zu 1g (auf 50 ml Tetramethoxysilan) nicht verändert.
Es wurde gefunden, dass der oben beschriebene Zusatz von Partikeln die Schrumpfungsrate effektiv verringert. Werden beispielsweise einem Monomersol enthaltend 50 ml Tetramethoxysilan (TMOS) verschiedene Mengen von Partikeln mit einem Durchmesser von 50 nm (Aerosil 50 nm) zugesetzt, ergibt sich folgender Effekt auf die Schrumpfungsrate:
Figure imgf000015_0001
Bei Zugabe von 15 bis 20 g poröser sphärischer Silika-Partikel mit einem Durchmesser von 0,1 bis 3 μm (pro 50 ml TMOS) kann die Schrumpfung nahezu vollständig unterdrückt werden (analog Beispiel 1 ).
REM-Aufnahmen von Formkörpern, die durch Zugabe von Partikeln zum Monomersol hergestellt wurden, zeigen, dass kleinere Partikel (50 bis 250 nm) vollständig in das Silika-Gerüst eingebaut werden und keinen sichtbaren Effekt auf die Beschaffenheit und Form des Gerüstes haben. Dagegen zeigt sich bei Verwendung von Partikeln mit einem Durchmesser von 0.1 bis 3 μm eine Veränderung der Oberflächenstruktur. Die Oberfläche erscheint durch die einpolymerisierten Partikel aufgerauht; es sind deutlich Partikel in der REM-Auf nähme zu erkennen.
Eine weitere Möglichkeit, zur Verminderung der Schrumpfungsrate bei der Herstellung von monolithischen Formkörpern insbesondere nach Sol-Gel Verfahren ist der Zusatz von Fasern. Fasern sind erfindungsgemäß länglich geformte Strukturen, deren Länge zumindest 5 mal größer ist als ihr mittlerer Durchmesser. Die Fasern können im Durchmesser rund, oval, unregelmäßig geformt oder auch flach sein. Geeignete Fasern sind Mineralfasern oder Chemiefasern, wie insbesondere Glaskeramik- oder besonders bevorzugt Glasfasern. Es wurde gefunden, dass bei Zugabe von Fasern eine effektive Stabilisierung des Gels bzw. des monolithischen Formkörpers erfolgt und so die Schrumpfung stark verringert wird. Dieses Verfahren ist auch besonders gut geeignet zur Herstellung von Formkörpern mit größeren Durchmessern (> 3 mm). Die Fasern werden dem Monomersol in Mengen zwischen 1 und 50 Gew.%, bevorzugt 2-30% zugesetzt. Durch die Wahl der Fasern (z.B. Glasfasern mit einer Länge von 0,1-5mm (bevorzugt 0,3-3mm) und einem Durchmesser von 1-25 μm (bevorzugt 5-10 μm)) kann die stabilisierende Wirkung angepasst werden. Beispielsweise kann es vorteilhaft sein, für Formkörper mit größeren Durchmessern lange Fasern (Länge > 3 mm) zu wählen oder eine Kombination aus langen und kürzeren Fasern.
Es wurde weiter gefunden, dass die Schrumpfungsrate bei der Herstellung monolithischer Formkörper verringert werden kann, wenn das Monomersol nicht nur Alkoxysilane sondern auch zumindest 10%, bevorzugt 20 bis 100% Organoalkoxysilane enthält.
Organoalkoxysilane sind Silane, in denen ein bis drei Alkoxygruppen, bevorzugt eine Alkoxygruppe, eines Tetraalkoxysilans durch organische
Reste, wie bevorzugt C1 bis C20 Alkyl, C2 bis C20 Alkenyl oder C5 bis C20 Aryl, besonders bevorzugt C1 bis C8 Alkyl, ersetzt sind. Weitere Organoalkoxysilane sind z.B. in WO 03/014450 oder US 4,017,528 offenbart. Diese Dokumente offenbaren zudem die Herstellung von Partikeln bzw. monolithischen Formkörpern aus Organoalkoxysilanen. Es findet sich jedoch kein Hinweis darauf, dass die Verwendung von Organoalkoxysilanen eine Reduktion der Schrumpfung bei der Alterung mit sich bringt.
Die weiteren Bestandteile des Monomersols entsprechen in der Regel denen des Standes der Technik. Es kann jedoch möglich sein, dass die
Konzentration bestimmter Stoffe leicht variiert werden muss, da Organoalkoxysilane eine andere Polarität, Reaktivität oder auch Löslichkeit zeigen als Alkoxysilane und so beispielsweise die Phasentrennung bzw. die Ausbildung des Gelkörpers beeinflussen. So kann es beispielsweise vorteilhaft sein, dem Monomersol ein mit Wasser mischbares organisches Lösungsmittel zuzusetzen, um diese Effekte auszugleichen. Geeignet sind z.B. Ethanol oder bevorzugt Methanol, wobei das molare Verhältnis von Wasser zu Lösungsmittel typischerweise zwischen 10:1 und 1:5, bevorzugt zwischen 3:1 und 1 :2 liegt.
Weiterhin hat es sich als vorteilhaft erwiesen, wenn dem Monomersol zur Hydrolyse statt üblicherweise Essigsäure eine stärkere Säure zugesetzt wird. Besonders geeignet ist 1 M HNO3.
Bei der Verwendung von Organoalkoxysilanen kann weiterhin je nachdem welche Porenverteilung der monolithische Formkörper aufweisen soll, auf verschiedene Weise auf die Ausbildung der Poren Einfluß genommen werden. Beispielsweise kann gegebenenfalls auf die Zugabe eines Porogens wie z.B. Polyethylenglycol verzichtet werden, da Organoalkoxysilane durch die organischen, nicht hydrolysierbaren Reste selbst die Ausbildung von makroporösen Strukturen im Formkörper bewirken. Werden zusätzlich Mesoporen gewünscht, so kann ein Detergenz zugegeben werden (z.B. kationische Detergentien wie CTAB (CH3(CH25N+(CH3)3Br"), nicht ionische Detergentien wie PEG
(Polyethylenglykol), Brij 56 (CH3(CH2)i5-(OCH2CH2)ιo-OH), Brij 58 (CH3(CH2)i5-(OCH2CH2)2o-OH) und Triton® X-Detergentien (CH3)3CCH2CH(CH3)-C6H40(CH2CH2θ)χH mit x=8 (TX-114) oder x=10 (TX-100) oder Blockcopolymere wie Pluronic® P-123 (EO)2o(propylene oxide, PO)70(EO)20 oder Tween® 85 (Polyoxyethylene sorbitan trioleate)) 5 oder aber ein Alterungsverfahren durchgeführt werden wie z.B. in WO 95/03256 und besonders in WO 98/29350 (Zugabe einer thermisch zersetzbaren Substanz wie Harnstoff) offenbart. Auch die Zugabe von hydrophilen oder hydrophoben Partikeln wie oben beschrieben ist möglich.
^ Unabhängig von der Art der Aktivierung der Oberfläche der Gelierform oder des verwendeten Monomersols wird nach dem Ausgelieren und dem Altern des Gel häufig ein Calzinierungsschritt durchgeführt. Dadurch werden alle im Formkörper verbliebenen organischen Verbindungen oder Reste entfernt. Auch bei dem Einsatz von Organoalkoxysilanen im Monomersol
'^ kann im letzten Syntheseschritt calziniert werden, so dass die organischen Reste aus dem Formkörper entfernt werden und ein komplett anorganischer Formkörper erhalten wird. Insbesondere bei der Verwendung von Organoalkoxysilanen mit sterisch großen organischen Resten kann dies zur Erzeugung von Poren genutzt werden. Die
20 Calzinierung erfolgt in der Regel bei Temperaturen zwischen 300 und 600°C. Genauso ist es aber auch möglich, auf den Calzinierungsschritt zu verzichten oder aber die Temperatur so zu wählen, dass die organischen Reste nicht angegriffen werden. Auf diese Weise besteht die Möglichkeit, durch die organischen Reste die Materialeigenschaften der Formkörper 5 z.B. bezüglich ihrer chromatographischen Trenneigenschaften zu beeinflussen. Typischerweise liegen die Temperaturen in diesem Fall zwischen 100 und 300°C.
Die folgende Tabelle II zeigt, dass die Verwendung von ^ Organoalkoxysilanen eine wirksame Methode zur Verringerung der Schrumpfungsrate ist. Je höher der Anteil von Methyltrimethoxysilan (MTMS) desto geringer ist die Schrumpfungsrate. Die Synthese erfolgte analog der Beispiele 1 und 3.
Figure imgf000019_0001
Da jedoch die Verwendung von Organoalkoxysilanen die Stabilität und Porosität der Formkörper beeinflusst, kann es für bestimmte Anwendungen z.B. vorteilhaft sein, nicht nur Organoalkoxysilane sondern Mischungen aus Alkoxysilanen und Organoalkoxysilanen zu verwenden. Dann kann gegebenenfalls eine erfindungsgemäße Behandlung der Gelierform zusätzlich die Schrumpfung verringern.
Besonders bevorzugt werden einem Monomersol, das Organoalkoxysilane enthält, zusätzlich Partikel oder Fasern zugesetzt.
Besonders vorteilhaft ist erfindungsgemäß die Kombination der Aktivierung der Oberfläche der Gelierform mit einer oder mehrerer der genannten besonderen Zusammenstellungen des Monomersols, d.h. Zusatz von Partikeln, Zusatz von Fasern und/oder Verwendung von Organoalkoxysilanen.
In einer bevorzugten Ausführungsform wird eine Gelierform zunächst durch Anätzen aktiviert und dann mit einem Gemisch aus einem Organoalkoxysilan (z.B. MTMS), einem Detgergenz, einer Säure (z.B. verdünnte Salpetersäure) und Methanol befüllt. Nach der Gelierung und parallelen Alterung bei erhöhter Temperatur erhält man ein für die Chromatographie gut geeignetes Sorbens.
In der Regel werden die Formkörper nach der Alterung bzw. Calzinierung für den Einsatz in der Chromatographie zusätzlich mit Separationseffektoren versehen. Die verschiedenen Separationeffektoren und Methoden zu ihrer Einführung sind dem Fachmann bekannt. Beispiele finden sich z.B. in WO 98/29350.
Mithilfe des erfindungsgemäßen Verfahrens können monolithische homogene poröse Formkörper hergestellt werden, die ihre Gelierform vollständig ausfüllen. Die Formkörper können für chromatographische Zwecke in der Gelierform verbleiben und zeigen eine ebenso homogene Porenstruktur und ebenso gute Trennleistungen wie nachträglich ummantelte Formkörper. Durch das erfindungsgemäße Verfahren wird daher die Herstellung der monolithischen Formkörper stark vereinfacht.
Kapillaren, die nach dem erfindungsgemäßen Verfahren hergestellt werden, zeigen im Durchschnitt wesentlich bessere Trennleistungen als Kapillaren aus dem Stand der Technik. Grund dafür ist, daß durch
Schrumpfungsprozesse unmerklich auftretende Totvolumina bei dem erfindungsgemäßen Verfahren noch effektiver verhindert werden.
Gegenstand der voriiegenden Erfindung sind demnach auch monolithische poröse Formkörper, die in ihre Gelierform einpolymerisiert sind, herstellbar nach dem erfindungsgemäßen Verfahren mittels Aktivierung der Oberfläche der Gelierform und/oder Zusatz von Partikeln, Fasern oder Organoalkoxysilanen zum Monomersol. Die erfindungsgemäßen Formkörper zeichnen sich durch eine über den gesamten Querschnitt homogene Struktur aus. Weiterhin bilden sich durch die Aktivierung der Innenoberfläche der Gelierform chemische Bindungen zwischen dem Formkörper und der Gelierform aus, die eine besonders effektive Stabilisierung bewirken.
Auch ohne weitere Ausführungen wird davon ausgegangen, daß ein Fachmann die obige Beschreibung im weitesten Umfang nutzen kann. Die bevorzugten Ausführungsformen und Beispiele sind deswegen lediglich als beschreibende, keineswegs als in irgendeiner Weise limitierende Offenbarung aufzufassen.
Die vollständige Offenbarung aller vor- und nachstehend aufgeführten Anmeldungen, Patente und Veröffentlichungen, insbesondere der korrespondierenden Anmeldung DE 10351798.7, eingereicht am 06.11.2003, ist durch Bezugnahme in diese Anmeldung eingeführt.
Beispiele Beispiel 1
In ein Reaktionsgefäss werden 100ml 0.01 N Essigsäure vorgelegt und unter Rühren 10.2g PEG (Polyethylenglykol zur Bildung der makroporösen Struktur ) gelöst. Danach werden 9.0g Harnstoff dazugegeben, welches später durch Bildung von NH OH Mesoporen auf der Oberfläche des Silikats verursacht. Die Lösung wird im Eisbad auf 4°C gekühlt. Beim Erreichen von 4°C werden 50ml TMOS unter Rühren zugegeben. Die Lösung wird weitere 30 Minuten bei 4°C gerührt. Anschließend wird die Lösung in einem Wasserbad auf 30°C erwärmt. Nach ca. 30 Minuten werden 15g sphärische, poröse Silikapartikel mit einer Größe von 0.1 - 3μm unter die Mischung gerührt. Anschließend wird die so erhaltene Mischung in eine vorbehandelte Glaskartusche (3mm i.d., 12.5 cm Länge) gefüllt und über Nacht im Wasserbad gehalten. In dieser Zeit ist der monolithische Formkörper fest auspolymerisiert. Er wird anschließend in einem Trockenschrank über 2 Tage getrocknet und dann direkt für die
Chromatographie eingesetzt. Hierzu wurde die Kartusche an eine HPLC- Anlage angeschlossen und zunächst über Nacht mit ca. 200ml Ethanol (Flussrate: 0.2ml/ Min) eingespült. Dabei wurde der verbliebene Porenbildner (Polyethylenglykol) herausgespült. Es konnten 2 Substanzen getrennt werden. Anschließend wurde die Kartusche nachträglich bei
300°C (ca. 4 Stunden) calciniert, um restliches PEG herauszubrennen. Die erneute chromatographische Testung ergab wiederum eine Auftrennung von zwei Substanzen, bei deutlich besserer Trennleistung.
Die Glaskartusche wurde vor der Befüllung mit der Reaktionsmischung vorbehandelt. Glaskartuschen wurden in 1 M HCI-Lösung gegeben und mind. 24 Std. bei 40°C behandelt. Anschließend wurden die Rohre mit Wasser und Ethanol gespült und 24 Std. im Trockenschrank getrocknet.
Beispiel 2
In ein Reaktionsgefäss werden 100ml 0.01 N Essigsäure vorgelegt und unter Rühren 10.2g PEG (Polyethylenglykol) und 9.0g Harnstoff gelöst. Die Lösung wird im Eisbad auf 4°C gekühlt. Beim Erreichen von 4°C werden 50ml TMOS unter Rühren zugegeben. Die Lösung wird weitere 30 Minuten bei 4°C gerührt. Anschließend wird die Lösung in einem Wasserbad auf 30°C erwärmt. Nach 14 Minuten werden 5g eines Aerosils (Aerosil OX50, Firma Degussa) mit einer Größe von 40nm unter die Mischung gerührt. Anschließend wird die so erhaltene Mischung in vorbehandelte Glaskartuschen (3mm i.d., 12.5 cm Länge) gefüllt und über Nacht im Wasserbad bei 30°C gehalten. In dieser Zeit ist der monolithische Formkörper fest auspolymerisiert. Er wird anschließend in einem Trockenschrank über 2 Tage getrocknet und dann direkt für die Chromatographie eingesetzt. Der Monolith sitzt fest in der Glaskartusche und lässt sich nicht mehr entfernen.
Die Glaskartuschen wurden vor der Befüllung mit der Reaktionsmischung vorbehandelt. Hierzu wurden 3 Varianten gewählt: a) 5% TMOS (Tetramethoxysilan) b) 5% BTME (Bis(trimethoxysiiyl) ethan ) c) 5% Glymo (3-Glycidoxypropyltrimethoxysilan) Es wurden jeweils 5%ige Lösungen von a) -c) in Toluol hergestellt. In diese wurden die Glaskartuschen getaucht und unter Rückfluss über Nacht gekocht. Anschließend wurden die Rohre mit Ethanol gespült und 24 Std. im Trockenschrank getrocknet.
Beispiel 3
In ein Reaktionsgefäss werden 100ml 0.01 N Essigsäure vorgelegt und unter Rühren 6.2g PEG (Polyethylenglykol) und 10.0g Harnstoff gelöst. Die Lösung wird im Eisbad auf 4°C gekühlt. Beim Erreichen von 4°C werden 37.5ml TMOS und 12.5ml MTMS (Vol.-Verhältnis 3:1 ) unter Rühren zugegeben. Die Lösung wird weitere 30 Minuten bei 4°C gerührt. Anschließend wird die Lösung in einem Wasserbad auf 30°C erwärmt und noch ca. 30 Minuten gerührt. Dann werden 1g eines Aerosils (Aerosil OX50, Firma Degussa) mit einer Größe von 40nm bzw. in einem zweiten Versuch 3g Partikel Monospher® 500 (monodisperse, nicht poröse Teilchen, 500nm, Fa. Merck KGaA) unter die Mischung gerührt. Anschließend wird die Mischung zur besseren Verteilung der Partikel mit einem Dispergierer (Diax 900) behandelt. Die resultierenden Mischungen werden in die vorbehandelten Glaskartuschen (3mm i.d., 12.5 cm Länge) gefüllt und über Nacht im Wasserbad bei 30°C gehalten. In dieser Zeit ist der monolithische Formkörper fest auspolymerisiert. Er wird anschließend in einem Trockenschrank über 2 Tage getrocknet. Der Monolith sitzt fest in der Glaskartusche und lässt sich nicht mehr entfernen.
Die Glaskartuschen wurden vor der Befüllung mit der Reaktionsmischung wie unter Beispiel 2 beschrieben vorbehandelt. Hierzu wurden 3 Varianten gewählt:
a) 5% TMOS (Tetramethoxysilan) b) 5% BTME (Bis(trimethoxysjiyl) ethan ) c) 5% Glymo (3-Glycidoxypropyltrimethoxysilan)
Es wurden jeweils 5%ige Lösungen von a) -c) in Toluol hergestellt. In diese wurden die Glaskartuschen getaucht und unter Rückfluss über Nacht gekocht. Anschließend wurden die Rohre mit Ethanol gespült und 24 Std. im Trockenschrank getrocknet.
Beispiel 4
In ein Reaktionsgefäss werden 100ml 0.01 N Essigsäure vorgelegt und unter Rühren 6.2g PEG (Polyethylenglykol) und 10.0g Harnstoff gelöst. Die Lösung wird im Eisbad auf 4°C gekühlt. Beim Erreichen von 4°C werden 37.5ml TMOS und 12.5ml MTMS (Vol.-Verhältnis 3:1 ) unter Rühren zugegeben. Die Lösung wird weitere 30 Minuten bei 4°C gerührt. Anschliessend wird die Lösung in einem Wasserbad auf 30°C erwärmt und noch 14 Minuten gerührt. Dann werden 1g sphärische, poröse Silikapartikel mit einer Größe von 0.1 - 3μm (Purospher®STAR <3μm, Fa. Merck KGaA) bzw. in einem zweiten Versuch 3g Partikel Monospher® 500 (monodisperse, nicht poröse Teilchen, 500nm, Fa. Merck KGaA) unter die Mischung gerührt. Anschließend werden die so erhaltenen Mischungen in vorbehandelte Glaskartuschen (3mm i.d., 12.5 cm Länge) gefüllt und über Nacht im Wasserbad bei 30°C gehalten. In dieser Zeit ist der monolithische Formkörper fest auspoiymerisiert. Er wird anschließend in einem Trockenschrank über 2 Tage getrocknet. Der Monolith sitzt fest in der Glaskartusche und lässt sich nicht mehr entfernen.
Die Glaskartuschen wurden vor der Befüllung mit der Reaktionsmischung wie unter Beispiel 2 beschrieben vorbehandelt. Hierzu wurden 3 Varianten gewählt:
a) 5% TMOS (Tetramethoxysilan) b) 5% BTME (Bis(trimethoxysiiyl) ethan ) c) 5% Glymo (3-Glycidoxypropyltrimethoxysilan)
Es wurden jeweils 5%ige Lösungen von a) -c) in Toluol hergestellt. In diese wurden die Glaskartuschen getaucht und unter Rückfluss über Nacht gekocht. Anschließend wurden die Rohre mit Ethanol gespült und 24 Std. im Trockenschrank getrocknet.

Claims

Ansprüche
1. Verfahren zur Herstellung von monolithischen porösen Formkörpern, die ihre Gelierform vollständig ausfüllen, gekennzeichnet durch folgende Verfahrensschritte: a) Bereitstellen einer Gelierform; b) Aktivierung der Gelierform durch Anätzen, Vergrößerung der Oberfläche und/oder chemische Modifikation; c) Befüllen der Gelierform mit Monomersol; d) Polymerisieren des Monomersols und Altern des entstandenen Gels zur Bildung von Poren;
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass in Schritt a) eine Gelierform aus Glas, mit Glas beschichtetem Edelstahl oder Fused Silica bereitgestellt wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass in Schritt b) die Aktivierung durch Vergrößerung der Innenoberfläche der Gelierform erfolgt, indem die Innenoberfläche mit Alkoxysilanen und/oder Organoalkoxysilanen oder Aufschlämmungen von Partikeln behandelt wird.
4. Verfahren nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass in Schritt b) die Aktivierung durch chemische Modifikation der Innenoberfläche der Gelierform erfolgt, indem die Oberfläche mit bifunktionellen Reagenzien behandelt wird.
5. Verfahren nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass zur Herstellung der monolithischen porösen Formkörper ein Sol-Gel-Verfahren verwendet wird.
6. Verfahren nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass in Schritt c) ein Monomersol verwendet wird, das durch Zusatz von Partikeln, Fasern und/oder Verwendung von Organoalkoxysilanen geringe Schrumpfungsraten zeigt.
7. Monolithische poröse Formkörper, die in ihre Gelierform einpolymerisiert sind, herstellbar nach dem Verfahren entsprechend einem oder mehrerer der Ansprüche 1 bis 6.
8. Verwendung der Formkörper nach Anspruch 7 zur chromatographischen Auftrennung mindestens zweier Substanzen.
PCT/EP2004/011627 2003-11-06 2004-10-15 Verfahren zur herstellung von monolithischen formkörpern WO2005046834A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AT04765974T ATE555834T1 (de) 2003-11-06 2004-10-15 Verfahren zur herstellung von monolithischen formkörpern
CA2541284A CA2541284C (en) 2003-11-06 2004-10-15 Process for the production of monolithic mouldings
JP2006537115A JP5052894B2 (ja) 2003-11-06 2004-10-15 モノリシック成形品の製造方法
EP04765974A EP1680201B1 (de) 2003-11-06 2004-10-15 Verfahren zur herstellung von monolithischen formkörpern
US10/578,193 US7666336B2 (en) 2003-11-06 2004-10-15 Process for the production of monolithic mouldings

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10351798A DE10351798A1 (de) 2003-11-06 2003-11-06 Verfahren zur Herstellung von monolithischen Formkörpern
DE10351798.7 2003-11-06

Publications (1)

Publication Number Publication Date
WO2005046834A1 true WO2005046834A1 (de) 2005-05-26

Family

ID=34559383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/011627 WO2005046834A1 (de) 2003-11-06 2004-10-15 Verfahren zur herstellung von monolithischen formkörpern

Country Status (7)

Country Link
US (1) US7666336B2 (de)
EP (1) EP1680201B1 (de)
JP (2) JP5052894B2 (de)
AT (1) ATE555834T1 (de)
CA (1) CA2541284C (de)
DE (1) DE10351798A1 (de)
WO (1) WO2005046834A1 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1688402A1 (de) * 2003-11-28 2006-08-09 Ngk Insulators, Ltd. Poröser formkörper, poröser sinterkörper, herstellungsverfahren dafür und verbundelement damit
JP2007139652A (ja) * 2005-11-21 2007-06-07 Pentax Corp カラムの製造方法およびカラム
JP2008501961A (ja) * 2004-06-09 2008-01-24 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング 連結層を有する開管状毛細管
ES2302649A1 (es) * 2007-01-11 2008-07-16 Instituto Nacional De Investigacion Y Tecnologia Agraria Y Alimentacion (Inia) Procedimiento para la preparacion de fibras polimericas para micro-extraccion en fase solida y producto obtenido.
EP2125196A1 (de) * 2007-03-13 2009-12-02 Varian, Inc. Verfahren und vorrichtungen mit schrumpfbarem träger für poröse monolithische materialien
WO2016026923A1 (de) 2014-08-20 2016-02-25 Seal-Tec Gmbh Poröse monolithische oder faserförmige produkte aus anorganischen polymeren und deren herstellung
US10092859B2 (en) * 2003-05-28 2018-10-09 Waters Technologies Corporation Nanocomposites and their application as monolith columns

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070181479A1 (en) * 2005-11-21 2007-08-09 Pentax Corporation Column and method of manufacturing the column
KR100828575B1 (ko) * 2007-01-22 2008-05-13 인하대학교 산학협력단 짧은 수직 채널의 메조 세공을 갖는 소평판형 실리카
FR2912400B1 (fr) * 2007-02-14 2009-04-17 Univ Paris Curie Materiau alveolaire hybride,procede pour sa preparation.
JP4714789B2 (ja) 2008-02-01 2011-06-29 ジーエルサイエンス株式会社 シリカモノリス体クラッド方法及び分離媒体
US8105513B2 (en) * 2008-06-06 2012-01-31 Alexander Bonn Pipette tip containing particle-filled polymer monolith
GB2466024A (en) * 2008-12-08 2010-06-09 Univ Dublin City Making a stationary phase for separations from electrochemically polymerised monomer
KR101191270B1 (ko) * 2009-07-13 2012-10-16 인하대학교 산학협력단 아민 담지 계층 세공 구조를 갖는 실리카 모노리스, 이의 제조방법 및 이를 이용한 건식 이산화탄소 흡수제
JP5583551B2 (ja) * 2009-11-04 2014-09-03 三星電子株式会社 有機シリケ−ト化合物を含む組成物およびフィルム
WO2012170755A1 (en) * 2011-06-09 2012-12-13 Waters Technologies Corporation A porous material and devices for performing separations, filtrations, and catalysis and ek pumps, and methods of making and using the same
SE537053C2 (sv) * 2012-08-23 2014-12-16 Helse Stavanger Hf Förfarande för framställning av monolitkolonner
CN112757658B (zh) * 2020-12-25 2023-03-17 乐庸一 一种多孔性封装组件及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995003256A1 (en) 1993-07-19 1995-02-02 Merck Patent Gmbh Inorganic porous material and process for making same
WO1998029350A2 (en) 1996-12-26 1998-07-09 Merck Patent Gmbh Inorganic porous material and process for making same
WO1999038006A1 (en) 1998-01-23 1999-07-29 Merck Patent Gmbh Process for producing inorganic porous material in a capillary
WO1999050654A1 (en) 1998-04-01 1999-10-07 Merck Patent Gmbh Capillary columns
US6210570B1 (en) 1998-08-21 2001-04-03 Agilent Technologies, Inc. Monolithic silica column
US20030155676A1 (en) * 2000-06-14 2003-08-21 Dieter Lubda Method for producing monolithic chromatography columns

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2357184A1 (de) 1973-11-16 1975-05-22 Merck Patent Gmbh Verfahren zur herstellung von organisch modifizierten siliciumdioxiden
US4169790A (en) * 1975-05-02 1979-10-02 South African Inventions Development Corporation Solid surface texture suitable for a stationary phase for chromatography
US4376641A (en) * 1981-12-14 1983-03-15 The Dow Chemical Company Coated capillary chromatographic column
US4865707A (en) * 1986-10-21 1989-09-12 Northeastern University Capillary gel electrophoresis columns
JPH0735257B2 (ja) * 1987-09-30 1995-04-19 信越化学工業株式会社 石英ガラスの製造方法
JP2790486B2 (ja) * 1988-11-08 1998-08-27 日東紡績株式会社 シランカップリング剤及び積層板用ガラス繊維製品
NL8902151A (nl) * 1989-08-25 1991-03-18 Philips Nv Werkwijze voor de vervaardiging van een scheidingskolom en scheidingskolom.
JP3477724B2 (ja) * 1992-10-06 2003-12-10 セイコーエプソン株式会社 強誘電体膜の形成方法
JP2861702B2 (ja) * 1993-01-19 1999-02-24 日本鋼管株式会社 加工性および耐熱性に優れた絶縁皮膜を有する方向性電磁鋼板およびその製造方法
US5637135A (en) * 1995-06-26 1997-06-10 Capillary Technology Corporation Chromatographic stationary phases and adsorbents from hybrid organic-inorganic sol-gels
US5869152A (en) 1996-03-01 1999-02-09 The Research Foundation Of State University Of New York Silica materials
JPH11172000A (ja) * 1997-12-16 1999-06-29 Nippon Unicar Co Ltd ポリシロキサンおよびそれを含有する組成物
KR100322132B1 (ko) * 1999-01-29 2002-01-29 윤종용 졸-겔 공정용 실리카 글래스 조성물
DE60038059D1 (de) * 2000-12-07 2008-03-27 Sun Plastics Co Ltd Material zum auffangen chemischer substanzen und verfahren zur herstellung desselben sowie rohr zum auffangen chemischer substanzen
US6457329B1 (en) * 2000-12-14 2002-10-01 Fitel Usa Corp. Process for fabricating sol-gel article involving low-shrinkage formulation
JP4784719B2 (ja) 2001-04-02 2011-10-05 直弘 曽我 分散粒子を含む無機系多孔質複合体の製造方法
JP2002301367A (ja) * 2001-04-05 2002-10-15 Gl Sciences Inc クロマトグラフィー用多孔質体の製造方法
EP1417366A4 (de) * 2001-08-09 2010-10-27 Waters Technologies Corp Poröse anorganisch-organisch hybridartige monolithmaterialien für chromatographische trennungen sowie verfahren zu deren herstellung
JP2005233941A (ja) * 2004-01-23 2005-09-02 Ngk Insulators Ltd 固相抽出用担体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995003256A1 (en) 1993-07-19 1995-02-02 Merck Patent Gmbh Inorganic porous material and process for making same
WO1998029350A2 (en) 1996-12-26 1998-07-09 Merck Patent Gmbh Inorganic porous material and process for making same
WO1999038006A1 (en) 1998-01-23 1999-07-29 Merck Patent Gmbh Process for producing inorganic porous material in a capillary
WO1999050654A1 (en) 1998-04-01 1999-10-07 Merck Patent Gmbh Capillary columns
US6210570B1 (en) 1998-08-21 2001-04-03 Agilent Technologies, Inc. Monolithic silica column
US20030155676A1 (en) * 2000-06-14 2003-08-21 Dieter Lubda Method for producing monolithic chromatography columns

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUBER ET AL., J. CHROMATOGRAPHY A, vol. 893, 2000, pages 23 - 35
HUBER ET AL: "Preparation and evaluation of packed capillary columns for the separation of nucleic acids by ion-pair reversed-phase high-performance liquid chromatography", J. CHROMATOGRAPPHY A, vol. 893, 2000, pages 23 - 35, XP004210371 *
R. SWART ET AL., TRENDS IN ANALYTICAL CHEMISTRY, vol. 16, no. 6, 1997, pages 332 - 342

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10092859B2 (en) * 2003-05-28 2018-10-09 Waters Technologies Corporation Nanocomposites and their application as monolith columns
EP1688402A4 (de) * 2003-11-28 2010-07-07 Ngk Insulators Ltd Poröser formkörper, poröser sinterkörper, herstellungsverfahren dafür und verbundelement damit
JPWO2005051864A1 (ja) * 2003-11-28 2007-06-21 日本碍子株式会社 多孔質成形体、多孔質焼結体、その製造方法及びその複合部材
EP1688402A1 (de) * 2003-11-28 2006-08-09 Ngk Insulators, Ltd. Poröser formkörper, poröser sinterkörper, herstellungsverfahren dafür und verbundelement damit
JP4683554B2 (ja) * 2003-11-28 2011-05-18 日本碍子株式会社 多孔質チタニア成形体の製造方法
JP2008501961A (ja) * 2004-06-09 2008-01-24 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング 連結層を有する開管状毛細管
JP4732869B2 (ja) * 2005-11-21 2011-07-27 Hoya株式会社 カラムの製造方法およびカラム
JP2007139652A (ja) * 2005-11-21 2007-06-07 Pentax Corp カラムの製造方法およびカラム
WO2008084117A1 (es) * 2007-01-11 2008-07-17 Instituto Nacional De Investigación Y Tecnología Agraria Y Alimentaria, Inia Procedimiento para la preparación de fibras poliméricas para micro-extracción en fase sólida y producto obtenido
ES2302649A1 (es) * 2007-01-11 2008-07-16 Instituto Nacional De Investigacion Y Tecnologia Agraria Y Alimentacion (Inia) Procedimiento para la preparacion de fibras polimericas para micro-extraccion en fase solida y producto obtenido.
EP2125196A1 (de) * 2007-03-13 2009-12-02 Varian, Inc. Verfahren und vorrichtungen mit schrumpfbarem träger für poröse monolithische materialien
WO2016026923A1 (de) 2014-08-20 2016-02-25 Seal-Tec Gmbh Poröse monolithische oder faserförmige produkte aus anorganischen polymeren und deren herstellung
DE102014216500A1 (de) 2014-08-20 2016-02-25 Hochschule Offenburg Poröse monolithische oder faserförmige Produkte aus anorganischen Polymeren und deren Herstellung

Also Published As

Publication number Publication date
JP2007516821A (ja) 2007-06-28
ATE555834T1 (de) 2012-05-15
EP1680201B1 (de) 2012-05-02
JP2012153893A (ja) 2012-08-16
US20070065356A1 (en) 2007-03-22
JP5052894B2 (ja) 2012-10-17
CA2541284A1 (en) 2005-05-26
DE10351798A1 (de) 2005-06-09
CA2541284C (en) 2012-07-24
US7666336B2 (en) 2010-02-23
EP1680201A1 (de) 2006-07-19

Similar Documents

Publication Publication Date Title
EP1680201B1 (de) Verfahren zur herstellung von monolithischen formkörpern
DE69716126T2 (de) Anorganisches, poröses material und verfahren zu dessen herstellung
DE69407295T2 (de) Anorganisches, poröses material und verfahren zu dessen herstellung
Nakanishi et al. Tailoring mesopores in monolithic macroporous silica for HPLC
DE112005001838B4 (de) Poröse anorganische/organische Hybridmaterialien mit geordneten Domänen für chromatographische Auftrennungen, Verfahren für deren Herstellung sowie Auftrennvorrichtung und chromatographische Säule
DE69732758T2 (de) Verfahren zur Herstellung eines Aerogels
EP2501652B1 (de) PORÖSES SiO2-XEROGEL MIT CHARAKTERISTISCHER PORENGRÖSSE, DESSEN TROCKNUNGSSTABILE VORSTUFEN UND DESSEN ANWENDUNG
DE69926060T2 (de) Anorganische verbundmetalloxidkugeln mit grossen porenvolumen, ihre herstellung und ihre verwendungen bei adsorption und chromatographie
DE112004000231B4 (de) In situ-Fritte und Verfahren zum Herstellen einer Chromatographievorrichtung
EP2829873B1 (de) Poröses kieselsäurepulver
EP1297332B1 (de) Verfahren zur herstellung von monolithischen chromatographiesäulen
DE2946688A1 (de) Verfahren zur herstellung von poroesem kohlenstoff sowie poroeser kohlenstoff
DE4223539C1 (de) Geformte Sulfonatgruppen-haltige Organopolysiloxane, Verfahren zu ihrer Herstellung und Verwendung
EP1324959B1 (de) ELEKTROPHORETISCH NACHVERDICHTETE SiO2 -FORMKÖRPER, VERFAHREN ZU IHRER HERSTELLUNG UND VERWENDUNG
EP0416272A1 (de) Geformte Organosiloxanamin-Copolykondensate, Verfahren zu ihrer Herstellung und Verwendung
DE10003079C2 (de) Zusammensetzung zur Herstellung von Quarzglas unter Anwendung eines Sol-Gel-Verfahrens
DE112016000366T5 (de) Chromatographisches Material mit verbesserter pH-Stabilität, Verfahren zu dessen Herstellung und dessen Verwendungen
WO2001057516A2 (de) Monolithische fritte für eine kapillarsäule
DE19946674A1 (de) Poröse organische Polymerformkörper
EP1754053B1 (de) Open tubular kapillaren mit verbindungsschicht
EP3288896B1 (de) Hydrophobe aerogele mit einer geringen belegung an monofunktionellen einheiten
DE102015102858B4 (de) Verfahren zur Herstellung eines Licht absorbierenden Quarzglases
EP1843155B1 (de) Herstellung von monolithischen trennsäulen
EP1294649B1 (de) Gelierform zur herstellung von formkörpern
DE1925700C3 (de) Verfahren zur Herstellung von nicht dekrepitierendem Kieselgel

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004765974

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2541284

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2006537115

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007065356

Country of ref document: US

Ref document number: 10578193

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004765974

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10578193

Country of ref document: US