WO2005044894A1 - 脂肪族ポリエステルの製造方法 - Google Patents

脂肪族ポリエステルの製造方法 Download PDF

Info

Publication number
WO2005044894A1
WO2005044894A1 PCT/JP2004/016706 JP2004016706W WO2005044894A1 WO 2005044894 A1 WO2005044894 A1 WO 2005044894A1 JP 2004016706 W JP2004016706 W JP 2004016706W WO 2005044894 A1 WO2005044894 A1 WO 2005044894A1
Authority
WO
WIPO (PCT)
Prior art keywords
ester
cyclic ester
concentration
carboxylic acid
water
Prior art date
Application number
PCT/JP2004/016706
Other languages
English (en)
French (fr)
Inventor
Hiroyuki Sato
Fumio Akutsu
Fuminori Kobayashi
Yasushi Okada
Original Assignee
Kureha Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corporation filed Critical Kureha Corporation
Priority to JP2005515363A priority Critical patent/JP4711828B2/ja
Priority to US10/577,379 priority patent/US7538179B2/en
Priority to EP04799600A priority patent/EP1686145A4/en
Priority to CN2004800397190A priority patent/CN1902253B/zh
Publication of WO2005044894A1 publication Critical patent/WO2005044894A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids

Definitions

  • the present invention relates to a method for producing an aliphatic polyester such as polyglycolic acid by ring-opening polymerization of a cyclic ester such as glycolide, and more particularly, to an initiator or / and a molecular weight regulator using water and alcohol.
  • the present invention relates to a method for producing an aliphatic polyester by ring-opening polymerization of a cyclic ester which is actively used as a polyester. Background technology _
  • Aliphatic polyesters such as polydalicholic acid and polylactic acid have been attracting attention as biodegradable polymer materials that have a small environmental impact because they are decomposed by microorganisms or enzymes existing in nature such as soil and the sea. Aliphatic polyesters are also used as medical polymer materials such as surgical sutures and artificial skin because they have biodegradable and absorbable properties.
  • polyglycolic acid has excellent gas barrier properties such as oxygen gas barrier properties, carbon dioxide gas barrier properties, and water vapor barrier properties, as well as excellent heat resistance and mechanical strength. Applications are being developed singly or in combination with other resin materials.
  • Aliphatic polyesters can be synthesized, for example, by dehydration polycondensation of ⁇ -hydroxycarboxylic acid such as glycolic acid or lactic acid.
  • a method has been adopted in which a bimolecular cyclic ester of a hydroxycarboxylic acid is synthesized, and the cyclic ester is subjected to ring-opening polymerization.
  • ring-opening polymerization of glycolide a bimolecular cyclic ester of glycolic acid
  • Polylactic acid is obtained by ring-opening polymerization of lactide, which is a bimolecular cyclic ester of lactic acid.
  • Cyclic esters were generally used as a raw material alpha - has free carboxylic acid compounds, such as hydroxycarboxylic acids oligomer, it contains impurities such as water - hydroxycarboxylic acids and linear alpha. Even small amounts of impurities such as water adversely affect the ring-opening polymerization of cyclic esters.Therefore, it has been proposed to use high-purity cyclic esters from which impurities have been removed as much as possible during ring-opening polymerization. I have. On the other hand, in order to control the molecular weight of the aliphatic polyester, alcohols such as higher alcohols are used as a molecular weight regulator in ring-opening polymerization of a cyclic ester. A method of determining the amount of alcohol to be added based on the amount of free carboxylic acid compound contained in the cyclic ester has also been proposed.
  • a method for producing an aliphatic polyester by ring-opening polymerization of a cyclic ester wherein the amount of the hydroxyl compound to be added to the reaction system is determined based on the amount of the free carboxylic acid compound contained in the cyclic ester.
  • Patent Document 4 discloses ⁇ 3 ⁇ 4-hydroxycarboxylic acid or linear ⁇ -hydroxycarboxylic acid oligomer used in the production of cyclic ester as a free carboxylic acid compound. It is stated that monovalent linear, saturated aliphatic alcohols of numbers 12 to 18 are preferred.
  • the document states that if the cyclic ester contains impurities such as water and free carboxylic acid compounds, it adversely affects the polymerization reaction and produces a polymer having a target molecular weight even under the same polymerization conditions.
  • C It is pointed out that it is impossible to obtain the target.According to the document, it is difficult to control the molecular weight of the aliphatic polyester when the water content is large, so that the molecular weight is controlled accurately. For this reason, it is described that the water content in the cyclic ester is preferably set to 100 ppm or less.
  • Patent Document 1 U.S. Pat. No. 3,444,871
  • Patent Document 2 Japanese Patent Application Laid-Open No. H8-310816
  • Patent Document 3 Japanese Patent Application Laid-Open No. H10-1588371
  • Patent Document 4 Patent No. 3 0 7 5 6 65
  • the present inventors have conducted a detailed study on the role of water in the ring-opening polymerization system of a cyclic ester, and as a result, have found that a proton source compound containing water is used as an initiator or Z and a molecular weight regulator, and that all of the By controlling the proton concentration, the ring-opening polymerization of the cyclic ester proceeds smoothly, and it has been found that the molecular weight of the aliphatic polyester produced can be controlled.Based on this finding, a method for producing an aliphatic polyester has already been proposed. (WO 2004/033352 7). Disclosure of the invention
  • a main object of the present invention is to provide a novel method for producing an aliphatic polyester, which is an extension of the method for producing an aliphatic polyester described above.
  • the proton source compound containing water and alcohol exhibits an almost uniform effect as an initiator or Z and a molecular weight regulator in ring-opening polymerization of a cyclic ester.
  • the former increases the hydrolyzability of the aliphatic polyester to be produced (the water resistance is increased). It has been found that the latter exhibits a contrasting effect of reducing (improving water resistance) the latter.
  • the molecular weight that governs the initial properties of the resulting aliphatic polyester and the change with time in properties are governed. It has been found that the hydrolysis property (the molecular weight reduction property over time) can be controlled well.
  • the present invention provides a cyclic ester containing a proton source compound containing water and alcohol as an initiator or z and a molecular weight regulator, a total ester concentration in a cyclic ester, and water.
  • the compound is characterized in that ring-opening polymerization is carried out using the ratio of the molar concentration of the carboxyl (carboxylic acid) source compound to the molar concentration of the alkoxycarbonyl (ester) source compound containing alcohol (ie, the molar ratio of carboxylic acid / ester) as an index. It is intended to provide a method for producing an aliphatic polyester.
  • an aliphatic polyester with controlled initial properties and aging properties in accordance with the present invention requires, for example, a balance between initial strength and biodegradability (or absorption), such as sutures, artificial skin, It is considered to be extremely useful in promoting the use of aliphatic polyesters for applications such as agricultural films and fishing lines.
  • FIG. 1 is a data plot showing a correlation between the weight average molecular weight (M w) of the aliphatic polyester obtained by the production method of the present invention and the total proton concentration in the cyclic ester.
  • FIG. 2 shows a data plot showing the correlation between the hydrolyzability of the aliphatic polyester produced and the carboxylic acid / ester molar ratio.
  • a bimolecular cyclic ester of ⁇ -hydroxycarboxylic acid and a lactone are preferable.
  • ⁇ -Hydroxycarboxylic acids that form bimolecular cyclic esters include, for example, glycolic acid, L- and / or D-lactic acid, ⁇ -hydroxybutyric acid, ⁇ -hydroxyisobutyric acid, ⁇ -hydroxyvaleric acid, ⁇ -hydroxycaproic acid, ⁇ -hydroxyisocaproic acid, ⁇ -hydroxyheptanoic acid, a-hydroxyoctanoic acid, ⁇ -hydroxydecanoic acid, ⁇ -hydroxymyristate, ⁇ -hydroxy Stearic acid and alkyl-substituted products thereof can be mentioned.
  • Lactones include, for example,] 3—propiolactone,] 3—petitolactone, viva lactone, ⁇ -lactose lacton, ⁇ —valerolacton, ⁇ —methyl- ⁇ -valerolactone, ⁇ —force Prolacton is an example. Also referred to as cyclic ether esters For example, dioxanone and the like can be mentioned.
  • the cyclic ester having an asymmetric carbon may be any of D-form, L-form, meso-form and racemic-form. These cyclic esters can be used alone or in combination of two or more. If two or more cyclic esters are used, any aliphatic copolyester can be obtained.
  • the cyclic ester can be copolymerized with other copolymerizable comonomers, if desired. Examples of the other comonomers include cyclic monomers such as trimethylene carbonate and 1,3-dioxane.
  • glycolide which is an intermolecular cyclic ester of glycolic acid, L- and / or D-lactic acid which is an intermolecular cyclic ester of L- and / or D-lactic acid, and a mixture thereof are preferable. And glycolide are more preferred.
  • Glycolide can be used alone, but it can also be used in combination with other cyclic monomers to produce a polydalicholate copolymer (copolyester).
  • the copolymerization ratio of glycolide is preferably 60% by weight from the viewpoint of physical properties such as crystallinity and gas barrier properties of the produced copolyester.
  • cyclic monomer to be copolymerized with the glycolide lactide, ⁇ -force prolatatone, dioxane, and trimethylene carbonate are preferred.
  • glycolide can be obtained by a method of depolymerizing a glycolic acid oligomer.
  • the depolymerization method of glycolic acid oligomer include, for example, the melt polymerization method described in US Pat. No. 2,668,162 and JP-A-2000-11992.
  • the solid phase depolymerization method described in the official gazette, the solution phase depolymerization method described in Japanese Patent Application Laid-Open No. 9-328841, and the international publication No. 0 2Z14430 A1 pamphlet are employed. be able to. It can be obtained as a cyclic condensate of acetoacetate reported in K. Chujo et al., Die Ma kromo 1 eku 1 are Cheme, 100 (1 967), 262-26-66. Dalicollide can also be used.
  • a solution phase depolymerization method is preferable among the above depolymerization methods.
  • (1) a mixture containing a glycolic acid oligomer and at least one high-boiling polar organic solvent having a boiling point in the range of 230 to 450 ° C. is subjected to normal pressure or reduced pressure.
  • the oligomer is heated to a temperature at which depolymerization of the oligomer occurs, and (2) the oligomer is dissolved in the solvent until the residual ratio (volume ratio) of the melt phase of the oligomer becomes 0.5 or less.
  • the oligomer is depolymerized by further heating at the same temperature, and (4) The generated dimeric cyclic ester (ie, glycolide) is distilled out together with the high boiling polar organic solvent, (5) Collect glycolide from distillate.
  • dimeric cyclic ester ie, glycolide
  • high-boiling polar organic solvents include, for example, phenolic diglycols such as di (2-methoxethyl) phthalate such as bis (anolexoxyalkyl ester), diethylene glycol dibenzoate, etc.
  • phenolic diglycols such as di (2-methoxethyl) phthalate such as bis (anolexoxyalkyl ester), diethylene glycol dibenzoate, etc.
  • aromatic carboxylate esters such as phthalate and dibutyl phthalate
  • aromatic phosphate esters such as triglyceryl phosphate
  • polyalkylene glycol ethers such as polyethylene dialkyl ether. , 0.3 to 50 times the weight (weight ratio).
  • polypropylene glycol, polyethylene glycol, tetraethylene dalicol, or the like can be used as a solubilizing agent for the oligomer together with the high boiling point polar organic solvent.
  • the depolymerization temperature of the glycolic acid oligomer is usually 230 ° C. or higher, and preferably 230 to 320 ° C.
  • the depolymerization is carried out under normal pressure or reduced pressure, but it is preferable to carry out depolymerization by heating under reduced pressure of 0.1 to 90 kPa (1 to 90 Ombar).
  • cyclic ester it is preferable to use a purified cyclic ester having a water content of 6 Oppm (weight basis) or less, preferably 50 ppm or less, more preferably 40 ppm or less. If the initial moisture content in the cyclic ester used is too high, the range of the produced aliphatic polyester molecular weight that can be controlled by adding water as a molecular weight regulator is suppressed.
  • the content of the hydroxycarboxylic acid compound contained as an impurity in the cyclic ester is preferably as low as possible.
  • the content of ⁇ -hydroxycarboxylic acid in the cyclic ester is preferably at most 200 ppm (by weight), more preferably at most 150 ppm, further preferably at most 130 ppm, particularly preferably at most lppm. OO ppm or less.
  • Cyclic esters usually contain linear hydroxycarboxylic acid oligomers. This oligomer is mostly a linear a-hydroxycarboxylic acid dimer.
  • the content of the linear ⁇ -hydroxycarboxylic acid oligomer in the cyclic ester is preferably at most 2,000 ppm, more preferably at most 1,500 ppm, and even more preferably at most 1,500 ppm. It is at most 200 ppm, particularly preferably at most 1, OOO ppm.
  • Cyclic esters such as glycolide and lactide, undergo hydrolysis and polymerization reactions during storage due to trace amounts of water contained as impurities, resulting in a- hydroxycarboxylic acid.
  • the content of acids and linear ⁇ -hydroxycarboxylic acid oligomers tends to increase. Therefore, the cyclic ester immediately after purification has a water content of 50 ppm or less, a hydroxycarboxylic acid content of 100 ppm, and a linear ⁇ -hydroxycarboxylic acid oligomer content of 1 ppm. , 000 ppm or less.
  • Purification of the cyclic ester can be performed by combining recrystallization treatment and drying treatment of the crude cyclic ester in accordance with a conventional method.
  • This ring-opening polymerization method is substantially a ring-opening polymerization method using bulk.
  • the ring-opening polymerization is carried out in the presence of a catalyst, usually at a temperature in the range from 100 to 270 ° C, preferably from 120 to 260 ° C.
  • the catalyst is not particularly limited as long as it is used as a ring-opening polymerization catalyst for various cyclic esters.
  • a catalyst include, for example, tin (Sn), titanium (Ti), aluminum (A1), antimony (Sb), zirconium (Zr), and zinc (Zn).
  • preferred catalysts include, for example, tin halides (eg, tin dichloride, tin tetrachloride, etc.), and organocarboxylates (eg, tin octoate such as tin 2-ethylhexanoate).
  • Tin compounds; Titanium compounds such as alkoxy titanates; Aluminum compounds such as alkoxyaluminum; Zirconium compounds such as zirconium acetyl acetate; Antimony halides; Not a thing.
  • the amount of the catalyst used may be a small amount with respect to the cyclic ester, and is usually 0.0001 to 0.5% by weight, preferably 0.0001 to 0.1 times, based on the cyclic ester.
  • the amount is selected from the range of%.
  • the content of the water / hydroxycarboxylic acid compound contained as an impurity in the cyclic ester is measured, and the total amount of impurities is calculated based on the respective contents. I do.
  • the water content in the cyclic ester is measured using a Ritz-Ruitschier moisture meter.
  • ⁇ -Hydroxycarbonic acid contained in the cyclic ester ⁇ The linear ⁇ -hydroxycarboxylic acid oligomer is quantified by gas chromatography analysis after converting each carboxyl group into an alkyl ester group.
  • the total proton concentration of the impurities contained in the cyclic ester is calculated based on the total amount of the hydroxycarboxylic acid compound and the water contained as impurities in the cyclic ester.
  • a trace amount of water and a hydroxycarboxylic acid compound composed of dalicholate and a linear dalicholate oligomer are contained as impurities.
  • Most of the linear glycolic acid oligomers contained in the purified glycolide are glycomonomeric dimers.
  • lactide water, lactic acid, and linear lactic acid oligomers are contained as impurities.
  • the proton concentration (mol%) based on these hydroxycarboxylic acid compounds is calculated based on the respective contents, molecular weights, and the number of hydroxyl groups (usually one).
  • Pro-ton water concentration (mol. / 0) is calculated on the basis of the content and molecular weight of water.
  • the proton concentration is calculated as mol% based on the total amount of cyclic ester and impurities.
  • the total proton concentration of impurities contained in the cyclic ester is preferably from 0.01 to 0.5 mol 0 /. , More preferably 0. 0 2 to 0.4 mole 0/0, and particularly preferably 0 - 0 3 to 0.3 5 mole%. It is difficult to reduce the total impurity concentration of impurities to an extremely low level because there is a limit to the reduction of hydroxycarboxylic acid compounds by purification. If the total impurity concentration is too high, it becomes difficult to control the melt viscosity and molecular weight accurately by adding water and alcohol.
  • alcohol and optionally additional water are added to the purified cyclic ester having a water content of 60 ppm or less to obtain the total proton concentration in the cyclic ester and the carboxyl (carboxylic acid containing water).
  • the molecular weight of the aliphatic polyester to be produced is controlled by adjusting the molar ratio of the source compound to the alkoxycarbonyl (ester) source compound mole concentration containing alcohol (hereinafter referred to as "carboxylic acid / ester 'molar ratio").
  • Alcohol and optionally additional water are added to the purified cyclic ester to make the total proton concentration in the cyclic ester preferably 0.09 mol. /.
  • Excess is adjusted to less than 2.0 mol%, more preferably in the range of 0.1 to 1.0 mol%.
  • concentration in the cyclic ester 8 0 ppm (approximately 0. 0 5 2 mol as a molar concentration in Dali coli de. / 0), even 1 0 0 ppm (Gurikori de in moles It is characteristic that water in a range of more than about 0.064 mol% (concentration: about 0.064 mol%) is positively used as an initiator or / and a molecular weight regulator and a carboxyl (carboxylic acid) source compound.
  • the carboxylic acid / ester molar ratio is preferably 100/0 to 2/98, more preferably.
  • the adjustment is preferably within a range of 99 / ;! to 5/95, and more preferably 99/90.
  • the carboxylic acid ester / molar ratio is less than 2/98, the amount of the alcohol species used in the polymerization reaction increases, and it is likely to remain unreacted, resulting in a decrease in the molecular weight and melt viscosity of the resulting polymer during melt processing. Fluctuations increase, making it difficult to obtain molded products having the desired physical properties (molecular weight, melt viscosity, etc.), and the reaction with stabilizers and end-capping agents added during melting becomes non-uniform. Variations in physical properties and hydrolysis rate are also likely to increase.
  • Examples of the alcohol used as the proton source compound and the alkoxycarbonyl (ester) source compound include lower and middle alcohols, which are chain alcohols having 1 to 5 carbon atoms, or chain alcohols having 6 or more carbon atoms. And higher alcohols. Further, these aliphatic alcohols may have a branched structure. In addition, alicyclic alcohols, unsaturated alcohols, aromatic alcohols, polyols and the like can be mentioned. In addition, hydroxycarboxylic acids and saccharides having a hydroxyl group can also be used.
  • intermediates with 3 or more carbon atoms such as propanol, 2-pronoxanol, butanol, 2-butaneol, t-butyl alcohol, octyl / leanorecol, dodecinolenolecole (laurinole alcohol), and myristyl alcohol
  • alicyclic alcohols such as cyclohexanol, diols such as ethylene glycol, butane diol, and hexane diol
  • triols such as glycerin
  • These alcohols may be used in combination of two or more.
  • Fig. 1 shows the same polymerization conditions (reaction vessel, polymerization temperature, polymerization time, monomer type and degree of purification, etc.) except that the total proton concentration in the cyclic ester was changed by changing the amount of water and alcohol added.
  • 7) is a plot showing the relationship with the weight average molecular weight (M w) of the aliphatic polyester obtained by changing the above.
  • FIG. 2 is a plot showing the correlation between the hydrolyzability of the resulting aliphatic polyester and the molar ratio of carboxylic acid / ester in the cyclic ester. Again, good correlations have been obtained.
  • the ring-opening polymerization of the cyclic ester can be carried out in a polymerization vessel or in an extruder depending on the type of monomer, but it is optional. Is preferred. For example, when glycolide is heated, it melts and turns into a liquid, but when heating is continued for ring-opening polymerization, a polymer is formed. When the polymerization temperature is lower than the crystallization temperature of the polymer, the polymer precipitates during the polymerization, and finally a solid polymer is obtained.
  • the polymerization time varies depending on the ring-opening polymerization method and the polymerization temperature, but in the ring-opening polymerization method in a container, it is usually 10 minutes to 100 hours, preferably 30 minutes to 50 hours, more preferably 1-3 hours.
  • the polymerization conversion is usually 95% or more, preferably 98% or more, and more preferably 99% or more, which is sufficient for reducing residual unreacted monomer and increasing production efficiency. Conversion is most preferred.
  • the alcohol and, if necessary, additional water are added to the purified cyclic ester to adjust the total proton concentration and the carboxylic acid Z ester mole ratio in the cyclic ester.
  • a method of heating and melting in the presence of a catalyst and then subjecting the cyclic ester in a molten state to ring-opening polymerization is a bulk ring-opening polymerization method. Ring-opening polymerization of a cyclic ester in a molten state can be carried out batchwise or continuously using a reactor, a tube type or a tower type, or an extruder type reactor.
  • the cyclic ester in a molten state is transferred to a polymerization apparatus having a plurality of tubes (preferably a tube whose both ends can be opened and closed), and is produced by ring-opening polymerization in each tube in an airtight state.
  • a method of precipitating the polymer is more preferable.
  • the produced polymer is taken out, and the polymer is once cooled and solidified, and then subjected to solid-state polymerization at a temperature lower than the melting point of the polymer.
  • the method of continuing the above is also preferable.
  • a method of controlling the polymerization temperature in an airtight state ie, a reaction system without a gas phase
  • a polymer having physical properties such as target molecular weight and melt viscosity can be stably and reproduced. It can be manufactured with good performance.
  • the ring-opening polymerization of a cyclic ester for example, glycolide or a cyclic ester mainly composed of glycolide
  • polydaricholic acid of 50-6, OOOPa's, more preferably 100-5, OOOPa's can be obtained.
  • the weight average molecular weight is preferably 500000 or more, more preferably Can produce an aliphatic polyester having a high molecular weight of at least 800,000, particularly preferably at least 100,000.
  • the upper limit of the weight average molecular weight is about 500,000.
  • an aliphatic polyester having a yellowness (YI) of about 4 to 30 can be obtained, and the yellowness can be controlled by adjusting the molecular weight. For example, by setting the weight average molecular weight to 200,000 or less, or 180,000 or less, a polymer having a yellowness (Y I) of 20 or less can be obtained.
  • a carboxyl group-capping agent to the aliphatic polyester produced as described above to further increase the water resistance of the produced aliphatic polyester (further reduce the hydrolyzability).
  • the use of such a carboxyl group-capping agent has an effect of reducing the load on the effect of inhibiting hydrolysis of the alcohol used during the polymerization, and is preferable for the production of an aliphatic polyester having higher water resistance.
  • the carboxyl group-capping agent those known as water-resistance improvers for aliphatic polyesters such as polylactic acid (for example, JP-A-2001-261977) can be generally used.
  • carbodiimide compounds including mono- and polycarbodiimide compounds such as N, N—2,6-diisopropylphenylcarbodiimide, 2,2 ′ 1 m-phenylenebis (2-oxazoline), 2 Oxazoline compounds such as, 2'-p-phenylenebis (2-oxazoline), 2_phenyl-2-oxazoline, styrene-isoprobenyl-l-oxazoline; Examples include oxazine compounds such as dro-4H_1,3-oxazine; epoxy compounds such as N-daricidylphthalimide and cyclohexenoxide.
  • mono- and polycarbodiimide compounds such as N, N—2,6-diisopropylphenylcarbodiimide, 2,2 ′ 1 m-phenylenebis (2-oxazoline), 2 Oxazoline compounds such as, 2'-p-phenylenebis (2-oxazoline), 2_pheny
  • a carpoimide compound is preferable, and a compound having a particularly high purity gives a water-resistant stabilizing effect.
  • the amount is preferably from 0.01 to 10 parts by weight, more preferably from 0.1 to 10 parts by weight, based on 100 parts by weight of the aliphatic polyester. It is preferred that the compounding be made in a proportion of 0.5 to 2.5 parts by weight, particularly 0.1 to 1.8 parts by weight.
  • the aliphatic polyester preferably has a heat stabilizer content of preferably not more than 3 parts by weight, more preferably 0.003 to 1 part by weight based on 100 parts by weight. Can also be blended.
  • a heat stabilizer phosphate esters and / or alkyl phosphates having a pentaerythritol skeletal structure are preferably used.
  • a synergistic effect can be obtained in suppressing coloring of the obtained aliphatic polyester and suppressing hydrolysis.
  • carboxyl group-capping agent (and a heat stabilizer added as necessary) may be added during the polymerization reaction, but is preferably added when the aliphatic polyester produced by polymerization is pelletized. Some of them can be added during the polymerization.
  • Evaporation chamber temperature 2 90 ° C
  • F ID flame ionization detector
  • temperature 300 ° C.
  • impurities can be quantified by the same method as for glycolide.
  • Dry air was flowed into the monomer dissolution tank in advance, and the relative humidity of the atmosphere was determined with a hygrometer.
  • the absolute temperature was calculated from the temperature of the atmosphere, and the water content in the tank was calculated from the absolute temperature and the tank volume.
  • the total carboxyl concentration in the cyclic ester is calculated based on the total amount of the hydroxycarboxylic acid compound and water contained in the cyclic ester.
  • Pro ton concentration based on hydroxycarboxylic acid compound (mol. / 0) is calculated based on the respective content and the molecular weight and the number of hydroxyl groups.
  • the concentration of protons based on water is calculated based on the water content of impurities contained in the cyclic ester, the water content in the atmosphere of the treatment tank, etc., and the total weight and molecular weight of the added water. .
  • Glycolic acid dimer 1 3 4.09
  • the impurity concentrations (by weight) in the charged dalicolide were 30 ppm of dalicholic acid, 31 ppm of glycolic acid dimer, and 20 ppm of water. Since the molecular weight of the glycoside is 11.6.07, the concentration of each given proton is calculated as follows. It is.
  • the water content in the melting tank with an internal volume of 56 liters was 5.0 X 0.056 0.28 g.
  • the polymer sample was placed in a dryer at 120 ° C. and contacted with dry air to reduce the water content to less than 100 ppm. Then, it was sufficiently dried in a dryer.
  • the melt viscosity was measured using a Toyo Seiki Capillograph 11C equipped with a capillary (lmm ⁇ Xl OmmL). The heating to the set temperature 240 ° C device, introducing a sample of about 2 0 g, was held for 5 minutes, it was boss measure the melt viscosity at a shear rate of 1 2 1 sec one 1.
  • An amorphous polymer is obtained to dissolve the polymer sample in the solvent used for molecular weight measurement. That is, about 5 g of a sufficiently dried polymer was sandwiched between aluminum plates, placed on a heat press at 275 ° C., heated for 90 seconds, and then pressurized at 2 MPa for 60 seconds. After that, it was immediately cooled in iced water. Thus, a transparent amorphous press sheet was produced.
  • a 1 Omg sample was cut out from the press sheet prepared by the above operation, and this sample was dissolved in a solution of 5 mM sodium trifluoroacetate in hexafluoroisopropanol (HF IP) to give 10 m l of solution. After the sample solution was filtered through a membrane filter, it was injected into a gel permeation chromatography (GPC) apparatus, and the molecular weight was measured. The sample was injected into the GPC device within 30 minutes after dissolution.
  • GPC gel permeation chromatography
  • the pellet was sufficiently dried with dry air at 120 ° C, placed on a heat press at 250 ° C, heated for 3 minutes, and then pressurized at 8 MPa for 1 minute. Then, it was immediately transferred to a press in which water was circulating, pressurized to 5 MPa, held for about 5 minutes, cooled, and a transparent amorphous press sheet was prepared.
  • the press sheet created by the above operation is cut out to a fixed size, fixed to a frame, put in a dryer heated to 70 ° C and heated, and after 1 minute, air is sent, and the area becomes 10 to 15 times. Blow-stretched as follows.
  • the film was heat-treated under tension at 200 ° C for 1 minute.
  • Approximately 1 Omg of the film sample produced by the above operation was cut out, placed in a thermo-hygrostat maintained at a temperature of 80 ° C. and a relative humidity of 95%, and left for a predetermined time. After a predetermined time, after taking out, the molecular weight of the sample was measured by GPC.
  • the degree of polymerization was calculated from the obtained number average molecular weight value, the reciprocal of the degree of polymerization was plotted logarithmically with respect to the exposure time, and the slope of the approximate straight line of the plot was defined as the hydrolysis rate constant.
  • a 70% by weight aqueous solution of glycolic acid is charged into a stirred tank with a jacket (also called “reactor”), and the heating medium oil is circulated through the jacket while stirring at normal pressure.
  • the aqueous solution was heated to 200 ° C. and heated, and a condensation reaction was carried out while distilling the produced water out of the system. Then, while maintaining the inner temperature of the vessel at 200 ° C, while gradually reducing the internal pressure of the vessel to 3 kPa, low-boiling substances such as generated water and unreacted raw materials were distilled off, and glycol was removed. An acid oligomer was obtained.
  • the dalicholate oligomer prepared above was charged into a stirred tank made of SUS304, and diethylene glycol dibutyl ether was added as a solvent, and polyethylene dalicol was added as a solubilizing agent.
  • a mixture of the glycolic acid oligomer and the solvent was subjected to a depolymerization reaction under heating and reduced pressure to co-distill the produced dalicollide and the solvent.
  • the distillate was condensed in a double tube condenser circulating hot water. The condensate was received in a room temperature receiver. In order to keep the amount of the solvent in the reaction solution constant, a solvent corresponding to the amount of the distilled solvent was continuously supplied to the reaction tank.
  • the reaction was continued and the mixture of glycolide and solvent was distilled off and condensed.
  • the glycolide precipitated from the condensate was separated into solid and liquid, recrystallized with 2-propanol, and then dried under reduced pressure.
  • the purity of glycolide measured by a differential scanning calorimeter (DSC) was 99.99%.
  • a condensate was obtained in the same manner as in Synthesis Example 1 except that the solubilizing agent was changed from polyethylene daricol to octyltetratriethylene daricol.
  • the condensate was received in a receiver that circulated hot water through the jacket.
  • the condensate in the receiver was separated into two layers, with the upper layer being the solvent and the lower layer being the glycolide liquid. If the depolymerization reaction is continued after the formation of the two-liquid layer and co-distillation is continued, the glycolide cooled by the condenser will pass through the solvent layer as droplets and will form on the lower glycolide layer. It was condensed.
  • the upper solvent layer was continuously returned into the reaction tank.
  • the pressure in the reaction system was temporarily returned to normal pressure, liquid glycolide was withdrawn from the bottom of the receiver, and the pressure was returned to the original value to continue the depolymerization reaction. This operation was repeated several times.
  • Dry air was blown in advance into a 56-liter SUS container (monomer dissolution tank), which had a steam jacket structure and a stirrer and was sealable, to remove water in the container as much as possible.
  • the atmosphere in the container was at a temperature of 21.5 ° C and a relative temperature of 27%. Absolute temperature of the atmosphere becomes 5.
  • the glycolide produced in Monomer Synthesis Example 1 (glycolic acid 30 ppm, daricholic acid dimer 310 ppm, water 20 ppm, and thus the total impurity concentration of impurities 0. 044 mol%] 2250 000 g, tin dichloride dihydrate 0.68 g (30 ppm), and 0.26 g of water (moisture) contained in the atmosphere in the dissolution tank
  • 28.2 g of 1-dodecyl alcohol was adjusted so that the total concentration of the proteins (set concentration of the proteins) was adjusted to 0.13 mol%.
  • the molar concentration (ratio) of the dodecyl alcohol to the total proton concentration (set proton concentration) in the preparation is 60%, and the molar ratio of the carboxylic acid ester is 40/60.
  • the vessel was sealed, steam was circulated through the jacket with stirring, and the contents were heated until the temperature reached 100 ° C. The contents became a uniform liquid during heating. While maintaining the temperature of the contents at 100 ° C., the contents were transferred to a device made of a metal (SUS 304) tube having an inner diameter of 24 mm.
  • This device consists of a main body in which the pipes are installed and upper and lower plates made of metal (SUS304). Both the main body and the upper and lower plates have a jacket structure. It has a circulating structure.
  • the atmosphere (moisture) contained in the dissolution tank is 0 ⁇ 28 g (21 ° C, relative humidity 25%), and 1 g of water instead of 28 g of 1-dodecyl alcohol. And the same operation as in Polymerization Example 1a above, except that 17.0'g of It was.
  • the molar concentration (ratio) of dodecyl alcohol 11 to the total proton concentration (set proton concentration) in the preparation is 42%, and the molar ratio of the carboxylic acid Z ester 'is 36/64.
  • the sample of the polymerization and crusher was designated as PGA sample 1b.
  • the atmosphere (moisture) contained in the dissolution tank is 0.28 g (21 ° C, relative humidity 27%), and 2.7 g of water is used instead of 28.2-g of 1-dodecyl alcohol.
  • the molar concentration (ratio) of 1-dodecyl alcohol relative to the total proton concentration (set proton concentration) in the preparation is 0%, and the carboxylic acid / ester molar ratio is 100Z0.
  • the sample after polymerization and pulverization was designated as PG II sample 1c.
  • Table 1 shows the polymerization conditions, the physical properties of the obtained polymer, and the hydrolyzability of the film.
  • the water (humidity) contained in the atmosphere in the dissolution tank is 0.35 g (22.5 ° C, relative humidity 31%), and the total proton concentration (set proton concentration) is 0.22 mo.
  • the same operation as in Example 1 was carried out except that the charge was changed by adjusting the ratio of dodecyl alcohol to water so as to adjust to 1%.
  • the molar concentration (ratio) of 1-dodecyl alcohol relative to the total concentration of the protons in the preparation was 75%, 57%, 44%, and 0% (25/75, 43 as the carboxylic acid Z ester molar ratio).
  • the samples prepared as / 57, 56/44, 100000) were designated as PGA samplers 2a, 2b, 2c, and 2d.
  • Table 2 shows the polymerization conditions, the physical properties of the obtained polymer, and the hydrolyzability of the film.
  • Glycolide produced in Monomer Synthesis Example 2 [glycolic acid 40 ppm, glycolic acid dimer 400 ppm, water 30 ppm, and thus total impurity concentration of 0.06 0 mo 1%] 2 2 5 0
  • the atmosphere (moisture) contained in the melting tank is 0.40 g (23 ° C, relative humidity 35%), and the total proton concentration (set proton concentration) is 0.
  • the charge was changed by changing the ratio of monobutyl alcohol to water so as to adjust to 40 mo 1%.
  • the molar concentration (ratio) of t-butyl alcohol relative to the total concentration of protons in the preparation was 82%, 64%, 47%, and 0% (the molar ratio of carboxylic acid / ester was 18%)
  • No. 82, 36/64, 53/47, 100/0) were designated as PGA samples 3a, 3b, 3c and 3d.
  • Example 1 Each sample prepared in Example 1 was sufficiently dried, and 0.03 parts by weight of ADK STAB AX-71 (mono and distearyl acid phosphate manufactured by Asahi Denka Kogyo Co., Ltd.) was added to 100 parts by weight of each sample.
  • the pellets were blended and melt-kneaded using a twin-screw extruder (LT-120 manufactured by Toyo Seiki Seisaku-sho, Ltd.) with the maximum cylinder temperature set at 240 ° C to obtain pellets.
  • LT-120 manufactured by Toyo Seiki Seisaku-sho, Ltd.
  • Table 4 shows the extrusion conditions, the physical properties of the obtained pellets, and the hydrolyzability of the film.
  • Example 1 Each sample prepared in Example 1 was sufficiently dried, and 100 parts by weight of Adekastab AX-71 (manufactured by Asahi Denka Kogyo Co., Ltd., mono- and di-steryl phosphate) 0.03 parts by weight Were blended, and 0.03 parts by weight of a cylinder having a maximum temperature of 240 ° C. were blended and melt-kneaded using a twin-screw extruder (LT-20, manufactured by Toyo Seiki Seisaku-sho, Ltd.) to obtain a pellet.
  • Adekastab AX-71 manufactured by Asahi Denka Kogyo Co., Ltd., mono- and di-steryl phosphate
  • a cylinder having a maximum temperature of 240 ° C. were blended and melt-kneaded using a twin-screw extruder (LT-20, manufactured by Toyo Seiki Seisaku-sho, Ltd.) to obtain a pellet.
  • LT-20 twin-screw extruder
  • Table 5 shows the extrusion conditions, the physical properties of the obtained pellets, and the hydrolyzability of the film.
  • Example 1 Each sample produced in Example 1 was sufficiently dried, and Adekastab AX-71 (Mono and Distearyl Acid Phosphate manufactured by Asahi Denka Kogyo Co., Ltd.) was added to each 100 parts by weight. 0.5 or 1 part by weight of high-purity (94.8%) N, N—2,6-diisopropylphenylcarboimide (Kawaguchi Chemical Co., Ltd. DIPC) is blended, and the maximum cylinder temperature is 240 ° C. The pellets were obtained while melt-kneading using a twin-screw extruder (LT-20, manufactured by Toyo Seiki Seisakusho) set in the following manner.
  • LT-20 twin-screw extruder
  • Table 6 shows the extrusion conditions, the physical properties of the pellets obtained, and the hydrolyzability of the film. -
  • Adekastab AX-71 (Mono and Distearyl Acid Phosphate manufactured by Asahi Denka Kogyo Co., Ltd.) was added to 100 parts by weight of each sample.
  • Table 7 shows the extrusion conditions, the physical properties of the pellets obtained, and the hydrolyzability of the film.
  • Example 3 Each sample produced in Example 3 was sufficiently dried, and 100 parts by weight of each was blended with 0.03 parts by weight of ADK STAB AX-71 (mono and distearyl acid phosphate manufactured by Asahi Denka Kogyo Co., Ltd.). 0.03 parts by weight of N, N-2,6-diisopropylphenylcarbodiimide (DIPC manufactured by Kawaguchi Chemical Co., Ltd.) of 0.03 parts by weight and high purity (94.8%) with the cylinder maximum temperature set to 240 ° C.
  • ADK STAB AX-71 mono and distearyl acid phosphate manufactured by Asahi Denka Kogyo Co., Ltd.
  • DIPC N, N-2,6-diisopropylphenylcarbodiimide
  • Table 8 shows the extrusion conditions, the physical properties of the pellets obtained, and the hydrolyzability of the film.
  • Heat stabilizer mono and cy'-stearyl acid phosphate
  • Heat stabilizer Mono and cy'-stearyl acid phosphate AdekaStuff 'AX manufactured by Asahi Denka Kogyo Co., Ltd.
  • Heat stabilizer mono and cy'-stearyl acid phosphate
  • Heat stabilizer mono- and sialyl-acid phosphate
  • Heat stabilizer mono- and s'-saryl acid phosphate
  • Encapsulant N, N-2,6-di-isopropylphene :: Rucarpho'di'imide Industrial applicability

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

アルコールおよび水を積極的に開始剤または/及び分子量調節剤として、環状エステルの開環重合を行い、生成する脂肪族ポリエステルの初期特性および経時特性を制御する。より詳しくは、水およびアルコールを含むプロトン源化合物を開始剤または/及び分子量調節剤として含む環状エステルを、環状エステル中の、全プロトン濃度、および水を含むカルボキシル(カルボン酸)源化合物モル濃度とアルコールを含むアルコキシカルボニル(エステル)源化合物モル濃度との比、を指標として、開環重合することにより脂肪族ポリエステルを製造する。

Description

明 細 書 脂肪族ポリエステルの製造方法 技術分野
本発明は、 グリコリ ドなどの環状エステルを開環重合して、 ポリグリコール酸な どの脂肪族ポリエステルを製造する方法に関し、 さらに詳しくは、 水およびアルコ ールを開始剤または/及び分子量調節剤、 として積極的に使用する環状エステルの 開環重合による脂肪族ポリエステルの製造方法に関する。 背景技術 _
ポリダリコール酸やポリ乳酸等の脂肪族ポリエステルは、 土壌や海中などの自然 界に存在する微生物または酵素により分解されるため、 環境に対する負荷が小さい 生分解性高分子材料として注目されている。 また、 脂肪族ポリエステルは、 生体内 分解吸収性を有しているため、 手術用縫合糸や人工皮膚などの医療用高分子材料と しても利用されている。
脂肪族ポリエステルの中でも、 ポリグリコール酸は、 酸素ガスバリア性、 炭酸ガ スバリア性、 水蒸気バリア性などのガスバリア性に優れ、 耐熱性や機械的強度にも 優れているので、 包装材料などの分野において、 単独で、 あるいは他の樹脂材料な どと複合化して用途展開が図られている。
脂肪族ポリエステルは、 例えば、 グリコール酸や乳酸などの α—ヒ ドロキシカル ボン酸の脱水重縮合により合成することができるが、 高分子量の脂肪族ポリエステ ルを効率よく合成するには、 一般に、 α—ヒ ドロキシカルボン酸の二分子間環状ェ ステルを合成し、 該環状エステルを開環重合する方法が採用されている。 例えば、 グリコール酸の二分子間環状エステルであるグリコリ ドを開環重合すると、 ポリグ リコール酸が得られる。 乳酸の二分子間環状エステルであるラクチドを開環重合す ると、 ポリ乳酸が得られる。
環状エステルは、 一般に、 原料として使用した α—ヒ ドロキシカルボン酸や直鎖 状の α —ヒ ドロキシカルボン酸オリゴマーなどの遊離カルボン酸化合物、 水などの 不純物を含んでいる。 水などの不純物は、 微量であっても、 環状エステルの開環重 合に悪影響を及ぼすので、 開環重合に際して、 可能な限り不純物を除去した高純度 の環状エステルを使用することが提案されている。 他方、 脂肪族ポリエステルの分子量を制御するために、 環状エステルの開環重合 に際し、 分子量調整剤として高級アルコールなどのアルコール類が使用されている。 環状エステルに含まれている遊離カルボン酸化合物の量に基づいて、 アルコール類 の添加量を定める方法も提案されている。
例えば、 従来、 グリコリ ドを開環重合するに際し、 再結晶などで精製した実質的 に純粋なグリコリ ドを使用し、 かつ、 分子量調整剤としてラウリルアルコールなど の高級アルコールを使用する方法が採用されている (例えば、 下記特許文献 1参 照。 ) 。
また、 環状エステルから水などの不純物を除去するための精製方法が提案されて いる (例えば、 下記特許文献 2参照。 ) 。 この文献には、 環状エステルに含まれて いる水、 α—ヒ ドロキシカルボン酸やその低分子量オリゴマーなどの不純物は、 開 始剤、 連鎖移動剤、 触媒失活剤等の様々な作用を及ぼして、 開環重合を阻害するの で、 これらの不純物を除去すべきことが指摘されている。
水分含有量が 8 0 p p m以下で、 酸価が 0 . 1 O m g K O HZ g以下の環状エス テルを開環重合させる脂肪族ポリエステルの製造方法が提案されている (例えば、 下記特許文献 3参照。 ) 。 この文献には、 環状エステル中の水分量を減少させると、 重合速度を速く して、 高分子量のポリマーが得られること、 また、 アルコールを重 合系に存在させると、 水分の作用を抑制して、 品質のよい脂肪族ポリエステルを製 造できることが記載されている。
環状エステルを開環重合して脂肪族ポリエステルを製造する方法において、 環状 エステル中に含まれる遊離カルボン酸化合物の量に基づいて、 反応系に添加する水 酸基化合物の量を定めることを特徴とする製造方法が提案されている (例えば、 下 記特許文献 4参照。 ) 。 該文献には、 遊離カルボン酸化合物として、 環状エステル の製造時に用いた <¾—ヒ ドロキシカルボン酸や直鎖状の α—ヒ ドロキシカルボン酸 オリゴマーが示されており、 水酸基化合物として、 炭素数 1 2 〜 1 8の一価の直鎖 状飽和脂肪族アルコールが好ましいことが記載されている。
該文献には、 環状エステル中に水分や遊離カルボン酸化合物などの不純物が含ま れていると、 重合反応に悪影響を及ぼして、 同一重合条件下でも、 狙った分子量の ポリマーを製造するといぅタ一ゲッティングが不可能であることが指摘されている c 該文献には、 水分の含有量が多いと脂肪族ポリエステルの分子量の制御が困難とな る傾向を示すので、 分子量を精度良く制御するために、 環状エステル中の水分を 1 0 0 p p m以下にすることが好ましいと記載されている。 さらに、 該文献には、 環状エステル中の水分については、 重合直前の精製 '乾燥 工程において除去することが容易であるが、 遊離カルボン酸化合物は、 除去するこ とが困難であり、 重合反応に与える影響も大きく、 しかも貯蔵中に微量の水分によ り環状エステルが開環して新たな遊離カルボン酸化合物を生成し易いことが指摘さ れている。 該文献には、 環状エステルに含まれる遊離カルボン酸化合物を定量して、 それに見合う量の水酸基化合物 (例えば、 高級アルコール) を添加することにより、 目標どおりの分子量を有する脂肪族ポリエステルを製造する方法が提案されている。
特許文献 1:米国特許第 3 , 4 4 2 , 8 7 1号明細書
特許文献 2:特開平 8— 3 0 1 8 6 4号公報
特許文献 3:特開平 1 0— 1 5 8 3 7 1号公報
特許文献 4:特許第 3 0 7 5 6 6 5号明細書
上述したように、 従来、 水は環状エステルの開環重合を阻害する不純物として可 能な限り除去することが必要であるとされていた。 しかし、 水は自然界に存在する 最も普遍的な化合物であり、 これを不純物として排除することには限界がある。 本 発明者等は、 環状エステルの開環重合系における水の役割について詳細な検討を行 つた結果、 水を含むプロトン源化合物を開始剤または Z及び分子量調節剤として用 い、 環状エステル中の全プロトン濃度を制御することにより環状エステルの開環重 合を円滑に進行させ、 生成する脂肪族ポリエステルの分子量制御が可能であること を見出し、 この知見に基づき脂肪族ポリエステルの製造方法を既に提案している (W O 2 0 0 4 / 0 3 3 5 2 7号公報) 。 発明の開示
本発明は、 上記した脂肪族ポリエステルの製造方法を発展させた、 新規な脂肪族 ポリエステルの製造方法を与えることを主要な目的とする。
本発明者等の更なる研究の結果、 水およびアルコールを含むプロトン源化合物は、 環状ェステルの開環重合においてほぼ一様な開始剤または Z及び分子量調節剤とし ての作用効果を示すことが確認され、 但し、 水をカルボキシル (カルボン酸) 源化 合物とアルコ一ルを含むアルコキシカルボニル (エステル) 源化合物とでは、 生成 する脂肪族ポリエステルの加水分解性に関し、 前者は増大させ (耐水性を低下さ せ) 、 後者は低下させる (耐水性を向上する) という対照的な作用の差異を示すこ とが見出された。 したがって、 両者の総量および比を制御するこ ·とにより、 生成す る脂肪族ポリエステルの初期特性を支配する分子量および経時的特性変化を支配す る加水分解性 (経時的分子量低減性) を良好に制御し得ることが見出された。
すなわち、 本発明は、 上述の知見に基づき、 水およびアルコールを含むプロ トン 源化合物を開始剤または z及び分子量調節剤として含む環状エステルを、 環状エス テル中の、 全プロ トン濃度、 および水を含むカルボキシル (カルボン酸) 源化合物 モル濃度とアルコールを含むアルコキシカルボニル (エステル) 源化合物モル濃度 との比 (すなわちカルボン酸/エステル ' モル比) 、 を指標として、 開環重合する ことを特徴とする脂肪族ポリエステルの製造方法を提供するものである。
本発明に従い、 初期特性と経時特性の制御された脂肪族ポリエステルを得ること は、 例えば初期強度と生 (体内) 分解 (ないし吸収) 性の調和を要求される、 例え ば縫合糸、 人工皮膚、 農業用フィルム、 釣り糸等の用途への脂肪族ポリエステルの 利用促進を図る上で、 極めて有用と解される。 図面の簡単な説明
第 1図は、 本発明の製造方法により得られる脂肪族ポリエステルの重量平均分子 量 (M w ) と環状エステル中の全プロ トン濃度との相関を示すデータ .プロットを 示す。
第 2図は、 生成する脂肪族ポリエステルの加水分解性とカルボン酸 /エステル · モル比との相関を示すデータ ·プロットを示す。 発明を実施するための最良の形態
1 . 環状エステル
本発明で用いる環状エステルとしては、 α —ヒ ドロキシカルボン酸の二分子間環 状エステル及びラク トンが好ましい。 二分子間環状エステルを形成する α —ヒ ドロ キシカルボン酸としては、 例えば、 グリコール酸、 L—及び/または D—乳酸、 α —ヒ ドロキシ酪酸、 α—ヒ ドロキシイソ酪酸、 α —ヒ ドロキシ吉草酸、 α —ヒ ドロ キシカプロン酸、 α —ヒ ドロキシイソカプロン酸、 α—ヒ ドロキシヘプタン酸、 a —ヒ ドロキシオクタン酸、 α—ヒ ドロキシデカン酸、 α —ヒ ドロキシミ リスチン酸、 α—ヒ ドロキシステアリン酸、 及びこれらのアルキル置換体などを挙げることがで きる。
ラク トンと しては、 例えば、 ]3 —プロピオラク トン、 ]3 —プチロラク トン、 ビバ ロラク トン、 γ 一プチ口ラク トン、 δ —バレロラク トン、 β —メチル一 δ 一バレロ ラク トン、 ε—力プロラク トンなどが挙げられる。 また環状ェ一テルエステルとし ては、 例えばジォキサノンなどが挙げられる。
環状エステルは、 不斉炭素を有する物は、 D体、 L体、 メソ体及びラセミ体のい ずれでもよい。 これらの環状エステルは、 それぞれ単独で、 あるいは 2種以上を組 み合わせて使用することができる。 2種以上の環状エステルを使用すると、 任意の 脂肪族コポリエステルを得ることができる。 環状エステルは、 所望により、 共重合 可能なその他のコモノマーと共重合させることができる。 他のコモノマーとしては、 例えば、 トリメチレンカーボネート、 1 , 3—ジォキサンなどの環状モノマーなど が挙げられる。
環状エステルの中でも、 グリコール酸の二分子間環状エステルであるグリコリ ド、 L一及びノまたは D—乳酸の二分子間環状エステルである L一及び/または D—ラ クチド、 及びこれらの混合物が好ましく、 グリコリ ドがより好ましい。 グリコリ ド は、 単独で使用することができるが、 他の環状モノマーと併用してポリダリコール 酸共重合体 (コポリエステル) を製造することもできる。 ポリグリコール酸共重合 体を製造する場合、 生成コポリエステルの結晶性、 ガスバリア性などの物性上の観 点から、 グリコリ ドの共重合割合は、 好ましくは 6 0重量。 /0、 より好ましくは 7 0 重量。 /。以上、 特に好ましくは 8 0重量%以上とすることが望ましい。 また、 グリコ リ ドと共重合させる環状モノマーとしては、 ラクチド、 ε—力プロラタ トン、 ジォ キサン、 トリメチレンカーボネートが好ましい。
環状エステルの製造方法は、 特に限定されない。 例えば、 グリコリ ドは、 グリコ ール酸オリゴマーを解重合する方法により得ることができる。 グリコール酸オリゴ マ一の解重合法として、 例えば、 米国特許第 2, 6 6 8, 1 6 2号明細書に記載の溶 融解重合法、 特開 2 0 0 0— 1 1 9 2 6 9号公報に記載の固相解重合法、 特開平 9 - 3 2 8 4 8 1号公報や国際公開第 0 2Z 1 4 3 0 3 A 1パンフレッ トに記載の溶 液相解重合法等を採用することができる。 K. C h u j oらの D i e Ma k r o m o 1 e k u 1 a r e C h e m e , 1 0 0 ( 1 9 6 7) , 2 6 2— 2 6 6に報告 されているクロ口酢酸塩の環状縮合物として得られるダリコリ ドも用いることがで さる。
グリコリ ドを得るには、 上記解重合法の中でも、 溶液相解重合法が好ましい。 溶 液相解重合法では、 (1 ) グリコール酸オリゴマーと 2 3 0〜4 5 0°Cの範囲内の 沸点を有する少なくとも一種の高沸点極性有機溶媒とを含む混合物を、 常圧下また は減圧下に、 該オリゴマーの解重合が起こる温度に加熱して、 (2 ) 該オリゴマー の融液相の残存率 (容積比) が 0. 5以下にな まで、 該オリ ゴマーを該溶媒に溶 解させ、 (3) 同温度で更に加熱を継続して該オリゴマーを解重合させ、 (4) 生 成した 2量体環状エステル (すなわち、 グリコリ ド) を高沸点極性有機溶媒と共に 溜出させ、 (5) 溜出物からグリコリ ドを回収する。
高沸点極性有機溶媒としては、 例えば、 ジ (2—メ トキシェチル) フタレートな どのフタル酸ビス (ァノレコキシアルキルエステノレ) 、 ジエチレングリ コールジベン ゾエートなどのァノレキレングリ コー < /レジべンゾエート、 ペンジノレブチノレフタレート やジブチルフタレートなどの芳香族カルボン酸エステル、 ト リ ク レジルホスフエー トなどの芳香族リン酸エステル、 ポリエチレンジアルキルエーテルなどのポリアル キレングリコールエーテル等を挙げることができ、 該オリ ゴマーに対して、 通常、 0. 3〜5 0倍量 (重量比) の割合で使用する。 高沸点極性有機溶媒と共に、 必要 に応じて、 該オリゴマーの可溶化剤として、 ポリプロピレングリコール、 ポリェチ レングリコール、 テトラエチレンダリコールなどを併用することができる。 グリコ ール酸オリ ゴマーの解重合温度は、 通常、 2 3 0°C以上であり、 好ましくは 2 30 〜3 2 0°Cである。 解重合は、 常圧下または減圧下に行うが、 0. 1〜 9 0. O k P a (1〜90 Omb a r) の減圧下に加熱して解重合させることが好ましい。
環状エステルとしては、 水分含有率が 6 O p pm (重量基準) 以下、 好ましくは 5 0 p pm以下、 より好ましくは 4 0 p p m以下の精製した環状エステルを使用す ることが好ましい。 使用する環状エステル中の初期水分含有率が高すぎると、 分子 量調整剤として水を添加して制御できる生成脂肪族ポリエステル分子量の幅が抑制 される。
環状エステル中に不純物として含まれるヒ ドロキシカルボン酸化合物の含有率は、 できるだけ低い方が好ましい。 環状エステル中の α—ヒ ドロキシカルボン酸の含有 率は、 好ましくは 200 p p m (重量基準) 以下、 より好ましくは 1 5 0 p pm以 下、 さらに好ましくは 1 3 0 p p m以下、 特に好ましくは l O O p p m以下である。 環状エステル中には、 通常、 直鎖状のひーヒ ドロキシカルボン酸オリ ゴマーが含 まれている。 このオリ ゴマーは、 殆どが直鎖状の a—ヒ ドロキシカルボン酸二量体 である。 環状エステル中の直鎖状の α—ヒ ドロキシカルボン酸オリゴマーの含有率 は、 好ましくは 2, 0 0 0 p pm以下、 より好ましくは 1 , 5 0 0 p pm以下 さ らに好ましくは 1 , 2 0 0 p p m以下、 特に好ましくは 1, O O O p pm以下であ る。
グリ コリ ドゃラクチドなどの環状エステルは、 不純物として含まれている微量の 水分によって、 貯蔵中に加水分解反応や重合反応が起り、 a —ヒ ドロキシカルボン 酸や直鎖状の α—ヒ ドロキシカルボン酸オリゴマーの含有率が上昇傾向を示す。 そ のため、 精製直後の環状エステルは、 水分含有率が 5 0 p p m以下、 ひーヒ ドロキ シカルボン酸含有率が 1 00 p p m、 直鎖状の α—ヒ ドロキシカルボン酸オリゴマ 一含有率が 1 , 0 00 p pm以下であることが望ましい。 なお, 環状エステルの精 製は、 常法に従って、 粗環状エステルの再結晶処理や乾燥処理などを組み合わせる ことによって行うことができる。
2. 脂肪族ポリエステルの製造方法
環状エステルを用いて脂肪族ポリエステルを製造するには、 環状エステルを加熱 して開環重合させる方法を採用することが好ましい。 この開環重合法は、 実質的に 塊状による開環重合法である。 開環重合は、 触媒の存在下に、 通常 1 0 0〜 2 7 0°C、 好ましくは 1 20〜 2 6 0°Cの範囲内の温度で行われる。
触媒としては、 各種環状エステルの開環重合触媒として使用されているものであ ればよく、 特に限定されない。 このような触媒の具体例と しては、 例えば、 スズ (S n) 、 チタン (T i ) 、 アルミニウム (A 1 ) 、 アンチモン (S b) 、 ジルコ ニゥム (Z r ) 、 亜鉛 (Z n) など金属化合物の酸化物、 塩化物、 カルボン酸塩、 アルコキシドなどが挙げられる。 より具体的に、 好ましい触媒としては、 例えば、 ハロゲン化スズ (例えば、 二塩化スズ、 四塩化スズなど) 、 有機カルボン酸スズ (例えば、 2—ェチルへキサン酸スズなどのォクタン酸スズ) などのスズ系化合 物 ; アルコキシチタネートなどのチタン系化合物 ; アルコキシアルミニウムなどの アルミニウム系化合物 ; ジルコニウムァセチルァセ トンなどのジルコニウム系化合 物 ; ハロゲン化アンチモンなどを挙げることができるが、 これらに限定されるもの ではない。
触媒の使用量は、 一般に、 環状エステルに対して少量でよく、 環状エステルを基 準として、 通常 0. 0 0 0 1〜 0. 5重量%、 好ましくは 0. 0 0 1〜 0. 1重 量%の範囲内から選択される。
本発明では、 開環重合に先立って、 環状エステル中に不純物として含まれる水分 ゃヒ ドロキシカルボン酸化合物の含有量を測定し、 それぞれの含有量に基づいて、 不純物の全プロ トン量を算出する。 環状エステル中の水分含有率は、 力一ルフイ ツ シヤー水分計を用いて測定する。 環状エステル中に含まれる α—ヒ ドロキシカルボ ン酸ゃ直鎖状の α—ヒ ドロキシカルボン酸オリゴマーは、 それぞれのカルボキシル 基をアルキルエステル基に変換した後、 ガスクロマトグラフィ分析などにより定量 する。 環状エステル中に含まれる不純物の全プロトン濃度は、 環状ヱステル中に不純物 として含まれるヒ ドロキシカルボン酸化合物と水分との合計量に基づいて算出する。 例えば、 ダリコリ ドの場合は、 微量の水分と、 ダリコール酸及び直鎖状のダリコー ル酸オリゴマーからなるヒ ドロキシカルボン酸化合物とが不純物として含まれてい る。 精製グリコリ ドに含まれる直鎖状のグリコール酸オリ ゴマーの殆どは、 グリコ 一ル酸ニ量体である。 ラクチドの場合には、 水分、 乳酸、 直鎖状の乳酸オリゴマー が不純物として含まれている。 これらのヒ ドロキシカルボン酸化合物に基づくプロ トン濃度 (モル%) は、 それぞれの含有量と分子量と水酸基数 (通常 1個) とに基 づいて算出される。 水分のプロ トン濃度 (モル。 /0) は、 水分の含有量と分子量とに 基づいて算出される。 プロ トン濃度は、 環状エステルと不純物との合計量を基準と するモル%として算出される。
環状エステル中に含まれる不純物の全プロ トン濃度は、 好ましくは 0 . 0 1〜0 . 5モル0 /。、 より好ましくは 0 . 0 2〜0 . 4モル0 /0、 特に好ましくは 0 · 0 3〜0 . 3 5モル%である。 不純物全プロ トン濃度は、 精製によるヒ ドロキシカルボン酸化 合物の低減化に限界があり、 極度に低くすることは困難である。 不純物全プロ トン 濃度が高すぎると、 水およびアルコールの添加による溶融粘度や分子量などの正確 な制御が困難になる。
本発明では、 望ましくは水分含有率が 6 0 p p m以下の精製した環状エステルに アルコールおよび必要に応じて追加の水を添加して、 環状エステル中の全プロ トン 濃度および水を含むカルボキシル (カルボン酸) 源化合物モル濃度とアルコールを 含むアルコキシカルボニル (エステル) 源化合物モル濃度比 (以下 「カルボン酸/ エステル ' モル比」 と称する) を調整することにより、 生成する脂肪族ポリエステ ルの分子量を制御する。 精製した環状エステルにアルコールおよび必要に応じて追 加の水を添加して、 環状エステル中の全プロトン濃度を好ましくは 0 . 0 9モル。 /。 超過 2 . 0モル%未満、 より好ましくは 0 . 1〜1 . 0モル%の範囲内に調整する。 この際に、 本発明においては、 環状エステル中の濃度として、 8 0 p p m (ダリ コリ ド中モル濃度として約 0 . 0 5 2モル。 /0) 、 更には 1 0 0 p p m (グリコリ ド 中モル濃度として約 0 . 0 6 4モル%) を超える範囲の水をも積極的に開始剤また は/及び分子量調節剤ならびにカルボキシル (カルボン酸) 源化合物として使用す ることが特徴的である。
また添加するアルコールおよび必要に応じて追加する水の量を制御することによ り、 カルボン酸/エステル · モル比を、 好ましくは 1 0 0 / 0〜 2 / 9 8、 より好 ましくは 9 9 /;!〜 5 / 9 5、 更に好ましくは 9 9 1 1 0ノ9 0の範囲内に調 整する。
カルボン酸 Ζエステル · モル比が 2 / 9 8より小さいと、 重合反応に使用するァ ルコール種の量が多くなり、 未反応で残存しやすくなり、 生成ポリマーの溶融加工 中の分子量、 溶融粘度の変動が大きくなり所望の物性 (分子量、 溶融粘度など) を 有する成形物を得るのが困難になったり、 溶融時に添加する安定剤、 末端封止剤と の反応が不均一になり、 成形物の物性、 加水分解速度のばらつきも大きくなりやす レ、。
プロ トン源化合物ならびにアルコキシカルボニル (エステル) 源化合物として用 いられるアルコールの例としては、 炭素数が 1〜 5の鎖式アルコールである低級及 び中級アルコール類、 又は炭素数 6以上の鎖式アルコールである高級アルコール類 が挙げられる。 またこれらの脂肪族アルコール類は、 分岐構造を有していてもよい。 また脂環式アルコール類、 不飽和アルコール類、 芳香族アルコール類、 ポリオール 類等が挙げられる。 また、 水酸基を有するヒ ドロキシカルボン酸類、 糖類等も用い られる。
これらの中で、 プロパノール、 2—プロノくノール、 ブタノール、 2—ブタンォー ル、 t _ブチルアルコール、 ォクチ/レアノレコール、 ドデシノレァノレコール (ラウリノレ アルコール) 、 ミリスチルアルコールなど炭素数 3以上の中級及び高級アルコール · 類、 シクロへキサノールなどの脂環式アルコール類、 エチレングリコール、 ブタン ジオール、 へキサンジオールなどのジオール類、 グリセリンなどのトリオール類が モノマ一^■の溶解性、 反応性 (開始剤効率) 、 沸点の観点及び工業的入手性の観点 から好ましい。 これらのアルコール類は、 二種以上併用してもよい。
水およびアルコールならびに原料モノマー中の不純物等を含めて重合時の環状ェ ステル中に存在する全プロ トン濃度と生成する脂肪族ポリエステルの分子量との間 に良好な相関関係が得られている。 例えば、 第 1図は水およびアルコールの添加量 を変化させて環状エステル中の全プロトン濃度を変化させた以外は、 同じ重合条件 (反応容器、 重合温度、 重合時間、 モノマーの種類と精製度など) を変化させて得 られた脂肪族ポリエステルの重量平均分子量 (M w ) との関係を示すプロッ トであ る。
また、 第 2図は、 生成する脂肪族ポリエステルの加水分解性と、 環状エステル中 のカルボン酸/エステル 'モル比との相関を示すプロッ トである。 ここでも、 良好 な相関が得られている。 環状エステルの開環重合は、 重合容器を用いて行うか、 モノマーの種類によって は押出機の中で行うなど任意であるが、 通常は、 重合容器内で塊状開環重合する方 法を揉用することが好ましい。 例えば、 グリコリ ドを加熱すると溶融して液状にな るが、 加熱を継続して開環重合させると、 ポリマーが生成する。 重合温度がポリマ 一の結晶化温度以下の場合は、 重合途中でポリマ一が析出し、 最終的には固体のポ リマーが得られる。 重合時間は、 開環重合法や重合温度などによって変化するが、 容器内での開環重合法では、 通常 1 0分間〜 1 0 0時間、 好ましくは 3 0分間〜 5 0時間、 より好ましくは 1〜3 0時間である。 重合転化率は、 通常 9 5 %以上、 好 ましくは 9 8 %以上、 より好ましくは 9 9 %以上であり、 未反応モノマーの残留を 少なくし、 かつ、 生産効率を高める上で、 フル ' コンバージョンとすることが最も 好ましい。
したがって、 本発明では、 精製した環状エステルにアルコールおよび必要に応じ て追加の水を添加して、 環状エステル中の全プロ トン濃度およびカルボン酸 Zエス テル ·モル比を調整した後、 環状エステルを触媒の存在下に加熱溶融させ、 次いで、 溶融状態の環状エステルを開環重合する方法を採用することが好ましい。 この重合 法は、 塊状での開環重合法である。 溶融状態の環状エステルの開環重合は、 反応缶 や管型あるいは塔型、 押出機型反応装置を用い、 バッチ式あるいは連続式で行うこ とができる。
さらに、 本発明によれば、 溶融状態の環状エステルを複数の管 (両端が開閉可能 な管も好ましく用いられる) を備えた重合装置に移送し、 各管内で気密状態で開環 重合して生成ポリマーを析出させる方法がより好ましい。 また溶融状態の環状エス テルを攪拌機付き反応缶中で開環重合を進行させた後、 生成したポリマ一を取り出 し、 一度ポリマーを冷却固化させた後、 ポリマーの融点以下で固相重合反応を継続 する方法も好ましい。 これらの方法は、 バッチ式または連続式のいずれの方法によ つても行うことができる。 いずれにしても、 気密状態 (すなわち、 気相の無い反応 系) で重合温度を制御する方法をとることにより、 目標とする分子量、 溶融粘度な どの物性を有するポリマーを安定的に、 かつ、 再現性良く製造することができる。 本発明の方法では、 環状エステル (例えば、 グリコリ ドまたはグリコリ ドを主成 分とする環状エステル) の開環重合により、 温度 2 4 0 °C及び剪断速度 1 2 1 s e c 'で測定した溶融粘度が好ましくは 5 0〜6, O O O P a ' s、 より好ましくは 1 0 0〜5, O O O P a ' sのポリダリコール酸を得ることができる。 また、 本発 明の方法によれば、 重量平均分子量が好ましくは 5 0, 0 0 0以上、 より好ましく は 8 0, 0 0 0以上、 特に好ましくは 1 0 0 , 0 0 0以上の高分子量の脂肪族ポリ エステルを製造することができる。 重量平均分子量の上限は、 5 0 0 , 0 0 0程度 である。
さらに、 本発明の方法によれば、 黄色度 (Y I ) が 4〜3 0程度の脂肪族ポリエ ステルを得ることができ、 分子量を調整することによって、 黄色度を制御すること ができる。 例えば、 重量平均分子量を 2 0 0, 0 0 0以下、 さらには、 1 8 0 , 0 0 0以下にすることにより、 黄色度 (Y I ) が 2 0以下のポリマーを得ることがで きる。
上記のようにして生成した脂肪族ポリエステルに、 カルボキシル基封止剤を配合 して生成する脂肪族ポリエステルの耐水性を更に増大する (加水分解性を更に低減 する) ことも好ましい。 このようなカルボキシル基封止剤の使用は、 重合時に使用 されるアルコールへの加水分解性抑制効果に対する負荷を低減する効果があり、 よ り高度の耐水性を有する脂肪族ポリエステルの製造には好ましい。 カルボキシル基 封止剤としては、 ポリ乳酸等の脂肪族ポリエステルの耐水性向上剤として知られて いるもの (例えば特開 2 0 0 1— 2 6 1 7 9 7号公報) を一般に用いることができ、 例えば、 N, N— 2 , 6 —ジイソプロピルフエニルカルボジイ ミ ドなどのモノカル ポジイミ ドおよびポリカルポジイミ ド化合物を含むカルボジィミ ド化合物、 2 , 2 ' 一 m—フエ二レンビス ( 2—ォキサゾリン) 、 2 , 2 ' — p—フエ二レンビス ( 2—ォキサゾリ ン) 、 2 _フエ二ルー 2—ォキサゾリ ン、 スチレン ·ィソプロべ ニル一 2—ォキサゾリンなどのォキサゾリン化合物; 2 —メ トキシ一 5, 6—ジヒ ドロ一 4 H _ 1, 3—ォキサジンなどのォキサジン化合物; N—ダリシジルフタル イミ ド、 シクロへキセンォキシドなどのエポキシ化合物などが挙げられる。
なかでもカルポジイミ ド化合物が好ましく、 特に純度の高いものが耐水安定化効 果を与える。
これらカルボキシル基封止剤は、 必要に応じて 2種以上を併用することが可能で あり、 脂肪族ポリエステル 1 0 0重量部に対して、 0 . 0 1〜1 0重量部、 更には 0 . 0 5〜2 . 5重量部、 特に 0 . 1〜1 . 8重量部の割合で配合することが好ま しレ、。
また脂肪族ポリエステルには、 上記カルボキシル基封止剤に加えて、 その 1 0 0 重量部に対して、 好ましくは 3重量部以下、 より好ましくは 0 . 0 0 3〜1重量部 の熱安定剤を配合することもできる。 熱安定剤としては、 ペンタエリスリ トール骨 格構造を有するリン酸エステル及び 又はリン酸アルキルエステルが好ましく用い られる。 これらカルボキシル基封止材および熱安定剤の配合により、 得られる脂肪 族ポリエステルの着色を抑え、 加水分解を抑制する上で、 相乗的効果が得られる。 上記したカルボキシル基封止剤 (及び必要に応じて加えられる熱安定剤) は、 重 合反応中に加えてもよいが、 重合により生成した脂肪族ポリエステルのペレツト化 に際して配合することが好ましい。 その一部は重合中に加えることもできる。
[実施例]
以下に、 合成例、 実施例、 及び比較例を挙げて、 本発明についてより具体的に説 明する。 分析法、 測定法、 計算法などは、 以下の通りである。
( 1 ) 不純物定量分析:
高純度ァセトン 1 0m lの中に、 約 l gを精秤したダリコリ ドと内部標準物質と して 4一クロ口べンゾフエノン 2 5 m gとを加え、 十分に溶解させた。 その溶液約 l m lを採取し、 該溶液にジァゾメタンのェチルエーテル溶液を添加した。 添加量 の目安は、 ジァゾメタンの黄色が残るまでとする。 黄色く着色した溶液に 2 μ 1を ガスクロマトグラフ装置に注入し、 内部標準物質の面積比とグリコリ ド及び内部標 準物質の添加量を基にメチルエステル化されたダリコール酸及びダリコール酸二量 体を定量した。
<ガスクロマ トグラフィ分析条件 >
装置: 日立 G— 3 00 0、
カラム: TC— 1 7 (0. 2 5 mm X 30 m) 、
気化室温度: 2 90°C、
カラム温度: 5 0 °Cで 5分間保持後、 20 °CZ分の昇温速度で 2 70 °Cまで昇温し、 2 7 0°Cで 4分間保持、
検出器: F I D (水素炎イオン化検出器) 、 温度: 3 00°C。
ラクチドについても、 グリコリ ドと同様の方法により、 不純物を定量できる。
(2) 水分測定:
気化装置付カールフィ ッシャー水分計 〔三菱化学社製 CA— 1 00 (気化装置 V A— 1 0 0) 〕 を用い、 予め 1 40°Cに設定した気化装置に、 精密に秤量した約 2 gのモノマーサンプルを入れた。 気化装置からカールフィ ッシヤー水分測定器に流 速 2 5 Om 1 /分で乾燥窒素ガスを流した。 サンプルを気化装置に導入した後、 気 化した水分をカールフィ ッシャー液に導入し、 電気伝導度がバックグラウンドより + 0. 0 5 μ gZSまで下がった時点を終点とした。 ポリマーの水分測定について は、 気化装置の温度を 2 2 0°Cにし、 電気伝導度がバックグラウンドより + 0. 1 g /Sまで下がった時点を終点とした。
( 3 ) モノマー溶解槽内の水分測定:
モノマー溶解槽内部に予め乾燥空気を流しておき、 その雰囲気の相対湿度を湿度 計で求めた。 その雰囲気の温度から絶対温度を算出し、 それと槽容積から、 槽内部 の水分量を算出した。
(4 ) カルボキシル (カルボン酸) 源化合物濃度の算出法:
環状エステル中の全カルボキシル濃度は、 環状エステル中に含まれるヒ ドロキシ カルボン酸化合物と水との合計量に基づいて算出する。 ヒ ドロキシカルボン酸化合 物に基づくプロ トン濃度 (モル。 /0) は、 それぞれの含有量と分子量と水酸基数とに 基づいて算出される。 他方、 水に基づくプロ トン濃度は、 環状エステル中に含まれ ている不純物の水分、 処理槽などの雰囲気中に含まれている水分、 及び添加水の合 計量と分子量とに基づいて算出される。
( 5 ) アルコキシカルボニル (エステル) 源化合物濃度
重合に際して添加されるアルコールのモノマーに対するモル濃度として計算され る。
( 6 ) 全プロ トン濃度およびカルボン酸/エステル · モル比
上記 (4 ) , ( 5 ) のカルボキシル (カルボン酸) 源化合物濃度およびアルコキ シカルボニル (エステル) 源化合物濃度から、 両者の合計として全プロ トン濃度が、 両者の比としてカルボン酸 /エステル ·モル比が求められる。
後記重合例 1 bについての計算法の詳細は次の通りである :
<分子量 >
グリコリ ド (環状エステル) モノマー中の各成分の分子量については下記の値を 用いた、
グリ コリ ド: 1 1 6. 0 7、
グリ コール酸: 7 6. 0 5、
グリ コール酸二量体: 1 3 4. 0 9、
水 : 1 8. 0 2、
ドデシルアルコール : 1 8 6. 3 4。
<仕込みモノマ一中不純物のカルボキシル (カルボン酸) 源化合物濃度 >
仕込みダリコリ ド中の不純物濃度 (重量基準) は、 ダリコール酸 3 0 p p m、 グ リ コール酸二量体: 3 l 0 p p m、 水 : 2 0 p p mであった。 グリコ リ ド分子量は 1 1 6. 0 7であるから、 それぞれの与えるプロ トン濃度は、 以下のように計算さ れる。
ダリコール酸 : 3 0 p pm
1 1 6. 0 7 X 3 0 X 1 0— 6÷ 7 6. 0 5 X 1 0 0 = 0. 0 04 6 m o 1 %
…… ( i ) ダリコール酸二量体: 3 1 0 p p m
1 1 6. 0 7 X 3 1 0 X 1 0一6 + 1 34. 0 9 X 1 0 0 = 0. 0 2 7 m o 1 %
…… (ii) 水: 2 0 p p m
1 1 6. 0 7 X 2 0 X 1 0— 6÷ 1 8. 0 2 X 1 0 0 = 0. 0 1 3 m o 1 %
…… (iii) 不純物の与える全カルボキシル (カルボン酸) 源化合物濃度
( i ) + (ii) + (iii) = 0. 0 04 6 + 0. 0 2 7 + 0. 0 1 3 = 0. 4 4m o 1 % …… (iv) くモノマー溶解槽中水分 >
乾燥空気を吹き込んでできるだけ水分を除去した後の溶解槽 (容積 : 5 6 リ ッ ト ル) 中の雰囲気は、 温度: 2 1 °C、 相対湿度 : 2 5 %であった。 この雰囲気の絶対 湿度は 5. 0 g / c m 3になり、 内容積 5 6 リ ッ トルの溶解槽中の水分量としては、 5. 0 X 0. 0 5 6 = 0. 2 8 g。 後から仕込むグリ コリ ドモノマー 2 2, 5 0 0 g (= 1 9 4. O m o l ) に対しては、
0 , 2 8/ 2 2 5 0 0 X 1 06= 1 2 p p m
(0. 2 8/ 1 8. 0 2) ÷ 1 9 4 X 1 0 0 = 0. 0 0 8 m o 1 %
…… (v) ぐ添加水 >
水 1. 1 gを添加。 グリ コリ ドモノマ一 2 2 5 0 0 g (= 1 9 4. O m o l ) に 対しては、
1. 1 /2 2 5 0 0 X 1 06 = 4 8. 8 9 p p m
( 1. 1 / 1 8. 0 2) + 1 9 4 X 1 0 0 = 0. 0 3 1 m o 1 % …… (vi) <カルボキシル (カルボン酸) 源化合物濃度 >
(iv) + (V) + (vi) = 0 - 0 4 4 + 0. 0 8 + 0. 0 3 1 = 0. 0 8 3 m o 1 % (vii) なお、 モノマー溶解槽にグリ コリ ドを仕込み更に添加水を加え過熱し均一になつ た後に一部をサンプリングし不純物 (水及ぴグリコール酸、 グリコール酸二量体) を分析した結果に基づく仕込み溶解後のグリコリ ド中の全プロ トン濃度は、 仕込み 前のグリコリ ドの不純物 (水及びダリ コール酸、 グリコール酸二量体) 、 添加水量 から計算された全プロ トン濃度と良好な一致を示した。
<アルコキシカルボニル (エステル) 源化合物濃度 >
ドデシルアルコール 1 7. 0 8 gを添加。 グリ コリ ドモノマー 2 2 50 0 g (= 1 94 1 0 m o 1 ) に対しては、
( 1 7. 0/ 1 8 6. 34) + 1 94 X 1 00 = 0. 04 7 m o 1 %
(viii;
<全プロ トン濃度 >
(vii) + (viii) = 0. 08 3 + 0. 047 = 0. 1 3 0 m o 1 %
<カノレポキシル (カルボン酸) ァノレコキシカルボ二ノレ (エステノレ) モル比 >
(vii) / (viii) = 0. 08 3/0. 047 = 1. 7 7
( 7 ) 溶融粘度:
ポリマーサンプルを 1 20°Cの乾燥器に入れ、 乾燥空気を接触させて、 水分含有 量を 1 0 0 p p m以下にまで低減させた。 その後、 乾燥器で十分に乾燥した。 溶融 粘度測定は、 キヤビラリ一 ( l mm^ X l OmmL) を装着した東洋精機製キヤピ ログラフ 1一 Cを用いて測定した。 設定温度 240°Cに加熱した装置に、 サンプル 約 2 0 gを導入し、 5分間保持した後、 剪断速度 1 2 1 s e c一1での溶融粘度を測 定した。
(8) 分子量測定:
ポリマーサンプルを分子量測定で使用する溶媒に溶解させるために、 非晶質のポ リマーを得る。 すなわち、 十分乾燥したポリマ一約 5 gをアルミニウム板に挟み、 2 7 5°Cのヒートプレス機にのせて 9 0秒加熱した後、 2MP aで 6 0秒間加圧し た。 その後、 直ちに氷水にいれ急冷した。 このようにして、 透明な非晶質のプレス シートを作製した。
上記操作により作製したプレスシー卜からサンプル 1 Omgを切り出し、 このサ ンプルを 5 mMのトリフルォロ酢酸ナトリ ゥムを溶解させたへキサフルォロイソプ ロパノール (HF I P) 溶液に溶解させて、 1 0m lの溶液とした。 サンプル溶液 をメンブレンフィルターで濾過後、 ゲルパ一ミエーシヨンクロマトグラフィ (G P C) 装置に注入し、 分子量を測定した。 なお、 サンプルは、 溶解後 3 0分以内に G P C装置に注入した。
<G P C測定条件 > 装置: S h i ma z u LC— 9 A、
カラム : HF I P— 806M、 2本 (直列接続) プレカラム、
カラム温度: 40°C、
溶離液: 5mMのトリフルォロ酢酸ナトリゥムを溶解させた HF I P溶液、 流速: 1m l /分、
検出器: R I (Re f r a c t i v e I n d e x :示差屈折率計) 、
分子量校正:分子量の異なる標準 P MM A 5種を用いた。
(9) カルボン酸濃度
分子量測定用サンプルと同様に作成したプレスシートから、 サンプル約 0. 3 g を精秤して、 特級ジメチルスルホキシド 1 0m lに 1 50 °Cのオイルバス中で約 3 分かけて完全に溶解する。 その溶液に指示薬 (プロモチモールブルー/アルコール 溶液) を 2, 3滴加えた後、 0. 02規定の水酸化ナトリウム Zベンジルアルコー ル溶液を加えていき、 目視で溶液の色が黄色から緑色に変わった点を終点とした。 その時の滴下量よりカルボン酸濃度を算出した。
(10) 耐水性評価
ペレッ トを 120°Cの乾燥空気で十分に乾燥し、 250°Cのヒ一トプレス機にの せ、 3分間加熱後、 8MP aで 1分間加圧した。 その後、 直ちに、 水が循環してい るプレス機に移し、 5MP aに加圧し、 約 5分間保持し、 冷却し透明な非晶質のプ レスシートを作成した。
上記操作により作成したプレスシートを一定大きさに切り出し、 枠に固定し、 7 0°Cに加熱した乾燥機に入れ加熱し、 1分後、 空気を送り、 面積で 10— 1 5倍に なるようにブロー延伸した。 このフィルムを緊張下 200°Cで 1分間熱処理した。 上記操作により作製したフィルム状のサンプルを約 1 Omg切り出し、 温度 8 0°C、 相対湿度 95%に維持した恒温恒湿器に入れ、 所定時間放置した。 所定時間 後、 取り出した後、 サンプルの分子量を G P Cにより測定した。
得られた数平均分子量値から重合度を算出し、 その重合度の逆数を暴露時間に対 して対数プロットし、 そのプロットの近似直線の傾きを加水分解速度定数とした。 また、 数量平均分子量 (Μη) が 2万までに到達 (低下) する時間をグラフから
¾tみ取つた。
[モノマ一合成例 1]
ジャケッ ト付き撹拌槽 ( 「反応缶」 ともいう) に 70重量%グリコール酸水溶液 を仕込み'、 常圧で攪拌しながら、 ジャケット内に熱媒体油を循環することにより缶 內液を 2 0 0 °Cまで加熱昇温し、 生成水を系外に留出させながら縮合反応を行った。 次いで、 缶内液を 2 0 0 °Cに維持した状態で、 缶内圧を段階的に 3 k P aまで減圧 しながら、 生成水、 未反応原料などの低沸点物質を留去し、 グリ コール酸オリゴマ 一を得た。
上記で調製したダリコール酸オリゴマ一を S U S 3 0 4製ジャケット付き攪拌槽 に仕込み、 溶媒としてジエチレングリコールジブチルエーテルを加え、 さらに、 可 溶化剤としてポリエチレンダリコールを加えた。 グリコール酸オリゴマーと溶媒と の混合物を加熱及び減圧下、 解重合反応させて、 生成ダリコリ ドと溶媒とを共留出 させた。 留出物は、 温水を循環させた二重管式コンデンサーで凝縮した。 凝縮液は、 常温の受器に受けた。 反応液中の溶媒量を一定に保っために、 留出した溶媒量に見 合う分の溶媒を連続的に反応槽に供給した。
前記反応を継続し、 グリコリ ドと溶媒との混合物を留出させ、 凝縮させた。 凝縮 液から析出しているグリコリ ドを固液分離し、 2—プロパノ一ルで再結晶し、 次い で、 減圧乾燥した。 示差走査熱量計 (D S C ) で測定したグリコリ ドの純度は、 9 9 . 9 9 %であった。
[モノマー合成例 2 ]
可溶化剤をポリエチレンダリ コールからォクチルテトラ トリエチレンダリコール に代えたこと以外は、 合成例 1と同様にして、 凝縮液を得た。 凝縮液は、 温水をジ ャケットに循環させた受器に受けた。 受器内の凝縮液は、 二液に層分離し、 上層が 溶媒で、 下層がグリコリ ド液体であった。 二液の層を形成後も解重合反応を続け、 かつ、 共留出を続けると、 コンデンサ一により冷却されたグリコリ ドは、 液滴とな つて溶媒層を通過し、 下層のグリコリ ド層に凝縮されていった。 反応液中の溶媒量 を一定に保っため、 上層の溶媒層を反応槽内に連続的に戻した。 反応系の圧力を一 時的に常圧に戻し、 受器の底部から液状グリコリ ドを抜き出し、 再び圧力を元に戻 し、 解重合反応を続けた。 この操作を数回繰り返した。
さらに、 合成例 1においては、 解重合反応系から回収したグリコリ ドを再結晶に より精製したのに対し、 塔型精製装置を用いて精製した。 解重合後、 塔型精製装置 の下部に設けた原料結晶の仕込み口へ固液分離した粗ダリコリ ド結晶を一定速度で 連続的に投入した。 塔型精製装置内部に装着された撹拌装置で該グリコリ ドを上昇 させながら撹拌し、 精製装置内での精製結晶成分の降下融解液と上昇粗グリコリ ド 結晶との向流接触により精製した。 この精製装置の上部に設けられた取出口から精 製後の結晶を、 一定速度で連続的に取り出した。 回収した精製グリコリ ドは、 D S C測定による純度が 9 9. 99%以上であった。
(例 1 (重合例) ) サンプル l a, l b, 1 cの製造例
く重合例 1 a >
スチームジャケット構造、 撹拌機を有し、 密閉可能な 5 6リットルの S US製容 器 (モノマー溶解槽) に、 予め乾燥空気を吹き込みできるだけ容器内の水分を除去 した。 所定時間後 (3時間後) 、 容器内雰囲気は温度 2 1. 5°C、 相対温度 2 7% であった。 この雰囲気の絶対温度は 5. 1 gZm3になり、 槽容積から、 槽内部の 水分量を算出したところ (5. 1 g/m3 X 0. 0 5 6 m3 = 0. 2 6 g) 0. 2 6 gになつた。 溶解槽の水分を考慮しながらモノマー合成例 1で製造したグリコリ ド [グリコール酸 3 0 p p m、 ダリコール酸 2量体 3 1 0 p pm、 水 2 0 p pm、 従 つて不純物全プロ トン濃度 0. 044mo l %] 2 2 5 0 0 g、 二塩化スズ 2水和 塩 0. 6 8 g ( 3 0 p p m) 、 さらに溶解槽内の雰囲気に含まれる水分 (湿気) 0. 2 6 gを考慮し全プロ トン濃度 (設定プロ トン濃度) を 0. 1 3 m o l %に調整す るように 1—ドデシルアルコール 2 8. 2 gを仕込み直ぐに密閉した。 仕込みにお ける全プロ トン濃度 (設定プロ トン濃度) に対する 1一 ドデシルアルコールのモル 濃度 (比率) は 6 0%であり、 カルボン酸 エステル ' モル比は 4 0/6 0である。 容器を密閉し、 撹拌しながらジャケットにスチームを循環させ、 内容物の温度が 1 0 0°Cになるまで加熱した。 この内容物は、 加熱途中で均一な液体になった。 内 容物の温度を 1 0 0°Cに保持したまま、 内径 24mmの金属 (SU S 304) 製管 からなる装置に移した。 この装置は、 管が設置されている本体部と金属 (SUS 3 04) 製の上下板からなり、 本体部と上下板のいずれもジャケット構造を備えてお り、 このジャケット部に熱溶媒油を循環する構造になっている。 内容物を該装置に 移送の際には、 下板を取り付けてあり、 各管内に移送が終了したら、 直ちに上板を 取り付けた。 本体部および上下板のジャケッ ト部に 1 Ί 0°C熱媒体油を循環させ、 7時間保持した。 所定時間後、 ジャケットに循環させている熱媒体油を冷却するこ とにより、 重合装置を冷却した。 室温付近まで冷却し、 下板を取り外し、 生成ポリ グリコール酸の塊状物を取り出した。 収率は、 ほぼ 1 0 0%であった。 塊状物を、 粉砕機により粉砕し、 P G Aサンプル 1 aとした。
<重合例 1 b >
溶解槽内の雰囲気に含まれる水分 (湿気) が 0 · 2 8 g ( 2 1 °C、 相対湿度 2 5%) であり、 1ードデシルアルコール 2 8. 2 gの代りに水 1. 1 gと 1ードデ シルアルコール 1 7. 0'gを仕込んだこと以外は上記重合例 1 aと同じ操作を行つ た。 仕込みにおける全プロ トン濃度 (設定プロトン濃度) に対する 1一ドデシルァ ルコールのモル濃度 (比率) は 4 2 %であり、 カルボン酸 Zエステル ' モル比は 3 6 / 6 4である。 重合、 粉砕機のサンプルを P G Aサンプル 1 bとした。
<重合例 1 c >
溶解槽内の雰囲気に含まれる水分 (湿気) が 0 . 2 8 g ( 2 1 °C、 相対湿度 2 7 %) であり、 1―ドデシルアルコール 2 8. 2 gの代りに水 2. 7 gを仕込んだ こと以外は上記重合例 1 aと同じ操作を行った。 仕込みにおける全プロ トン濃度 (設定プロ トン濃度) に対する 1ー ドデシルアルコールのモル濃度 (比率) は 0% であり、 カルボン酸/エステル .モル比は 100Z0である。 重合、 粉砕後のサン プルを P G Αサンプル 1 c とした。
重合条件と得られたポリマーの物性及びそのフィルムの加水分解性を表 1に示す。
(例 2 (重合例) ) サンプル 2 a, 2 b , 2 c, 2 dの製造例
溶解槽内の雰囲気に含まれる水分 (湿気) が 0. 3 5 g ( 2 2. 5 °C、 相対湿度 3 1 %) であり、 全プロ トン濃度 (設定プロトン濃度) を 0. 2 2 m o 1 %に調整 するように 1一ドデシルアルコールと水の比率を変えて仕込んだこと以外は例 1と 同じ操作を行った。 仕込みにおける全プロ トン濃度に対する 1ードデシルアルコー ルのモル濃度 (比率) を 7 5 %、 5 7 %、 4 4 %、 0 % (カルボン酸 Zエステル ' モル比として 2 5 / 7 5、 4 3 / 5 7、 5 6 /4 4、 1 00 0) にしたサンプル を P GAサンプノレ 2 a , 2 b , 2 c , 2 dとした。
重合条件と得られたポリマーの物性及びそのフィルムの加水分解性を表 2に示す。 (例 3 (重合例) ) サンプル 3 a, 3 b , 3 c, 3 dの製造例
モノマー合成例 2で製造したグリコリ ド [グリコール酸 4 0 p p m、 グリコール 酸 2量体 4 0 0 p p m、 水 3 0 p p m、 従って不純物全プロ トン濃度 0. 0 6 0 m o 1 %] 2 2 5 0 0 gを用い、 溶解槽内の雰囲気に含まれる水分 (湿気) が 0. 4 0 g ( 2 3 °C 相対湿度 3 5 %) であり、 全プロ トン濃度 (設定プロ トン濃度) を 0. 4 0 m o 1 %に調整するように 一ブチルアルコールと水の比率を変えて仕込 んだこと以外は例 1と同じ操作を行った。 仕込みにおける全プロ トン濃度 (設定プ 口 トン濃度) に対する t一ブチルアルコールのモル濃度 (比率) を 8 2 %、 6 4 %、 4 7 %、 0 % (カルボン酸/エステル · モル比として 1 8ノ 8 2、 3 6 / 6 4 , 5 3 / 4 7、 1 0 0 / 0 ) にしたサンプルを P G Aサンプル 3 a, 3 b , 3 c , 3 d とした。
重合条件と得られたポリマーの物性及びそのフィルムの加水分解性を表 3に示す c (例 4 (配合例) ) サンプル 4 a, 4 b, 4 cの製造例
例 1で製造した各サンプルを十分に乾燥し、 各 1 00重量部に対して、 アデカス タブ AX— 71 (旭電化工業株式会社製のモノ及びジーステアリルァシッ ドホスフ エート) 0. 03重量部をブレンドし、 シリンダー最高温度を 240°Cに設定した 2軸押出機 (東洋精機製作所製 LT一 20) を用いて溶融混練しながらペレッ トを 得た。
押出し条件と得られたペレツ 卜の物性及びそのフィルムの加水分解性を表 4に示 す。
(例 5 (配合例) ) サンプル 5 a, 5 b, 5 c, 5 dの製造例
例 1で製造した各サンプルを十分に乾燥し、 各 1 00重量部に対して、 アデカス タブ AX— 71 (旭電化工業株式会社製のモノ及びジ―ステ了リルァシッ ドホスフ エート) 0. 03重量部をブレンドし、 シリ ンダー最高温度を 240°Cに設定した 0. 03重量部ブレンドし 2軸押出機 (東洋精機製作所製 L T一 20) を用いて溶 融混練しながらペレッ トを得た。
押出し条件と得られたペレツ トの物性及びそのフィルムの加水分解性を表 5に示 す。
(例 6 (配合例) ) サンプル 6 a, 6 b, 6 cの製造例
例 1で製造した各サンプルを十分に乾燥し、 各 1 00重量部に対して、 アデカス タブ AX— 7 1 (旭電化工業株式会社製のモノ及びジーステアリルァシッ ドホスフ ェ一ト) 0. 03重量部、 高純度 (94. 8 %) の N, N— 2, 6—ジイソプロピ ルフ ニルカルポジイミ ド (川口化学株式会社製 D I P C) を 0. 5または 1重量 部ブレンドし、 シリンダー最高温度を 240°Cに設定した 2軸押出機 (東洋精機製 作所製 LT— 20) を用いて溶融混練しながらペレツ トを得た。
押出し条件と得られたペレツ トの物性及びそのフィルムの加水分解性を表 6に示 す。 -
(例 7 (配合例) ) サンプル 7 a, 7 b, 7 c, 7 dの製造例
例 2で製造した各サンプルを十分に乾燥し、 各 1 00重量部に対して、 アデカス タブ AX— 7 1 (旭電化工業株式会社製のモノ及びジ一ステアリルァシッ ドホスフ ヱ一ト) 0. 03重量部ブレンドし、 シリ ンダー最高温度を 240°Cに設定した 0 · 03重量部、 高純度 (94. 8%) の N, N— 2, 6—ジイソプロピルフエ二ルカ ルボジイミ ド (川口化学株式会社製 D I P C) を 0. 5または 1重量部ブレンドし、 シリンダー最高温度を 240°Cに設定した 2軸押出機 (東洋精機製作所製 LT一 2 0) を用いて溶融混練しながらペレッ トを得た。
押出し条件と得られたペレツ トの物性及びそのフィルムの加水分解性を表 7に示 す。
(例 8 (配合例) ) サンプル 8 a, 8 b, 8 c 8 dの製造例
例 3で製造した各サンプルを十分に乾燥し、 各 100重量部に対して、 アデカス タブ AX— 71 (旭電化工業株式会社製のモノ及びジーステアリルァシッ ドホスフ ト) 0. 03重量部ブレンドし、 シリンダー最高温度を 240°Cに設定した 0. 03重量部、 高純度 (94. 8%) の N, N- 2 , 6—ジイソプロピルフエ二ルカ ルボジイミ ド (川口化学株式会社製 D I P C) を 0. 5または 1重量部ブレンドし、 シリンダー最高温度を 240°Cに設定した 2軸押出機 (東洋精機製作所製 LT— 2 0) を用いて溶融混練しながらペレツ トを得た。
押出し条件と得られたペレツ トの物性及びそのフィルムの加水分解性を表 8に示 す。
ほ 1]
Figure imgf000023_0001
DoOH :1—ド亍"シルアルコール 2]
Figure imgf000024_0001
DoOH :1-ト τ'シルアルコール
ほ 3 ]
Figure imgf000025_0001
tBuOH:t -フ'チルアルコール
[¾4]
Figure imgf000025_0002
熱安定剤:モノ及びシ'-ステアリルアシッドホスフェート
旭電化工業株式会社製ァテ 'カスタフ' AX- 71 [表 5 ]
Figure imgf000026_0001
熱安定剤:モノ及びシ'-ステアリルアシッドホスフエ-ト 旭電化工業株式会社製アデカスタフ 'AX
[¾ 6 ]
Figure imgf000026_0002
熱安定剤:モノ及びシ' -ステアリルアシッドホスフェ-ト
旭電化工業株式会社製ァ Tカスタブ AX-71
封止剤: N,N-2,6 -シ'イソプロピルフエニルカルホ'シ'ィミト'
[表 7 ]
Figure imgf000027_0001
熱安定剤:モノ及びシ' -ス亍ァリルアシッドホスフェート
旭電化工業株式会社製アデカスタブ AX- 71
封止剤: Ν,Ν - 2,6 - yイソプロピルフエ二ルカルホ'シ'ィミト'
川口化学工業株式会社製 DIPG
[表 8 ]
Figure imgf000027_0002
熱安定剤:モノ及びシ'-ス亍ァリルアシッドホスフェ-ト
旭電化工業株式会社製ァ τカスタブ AX- 71
封止剤: N,N- 2,6 -シ'イソプロピルフエ;:ルカルホ'シ'イミド 産業上の利用可能性
上述したように本発明によれば、 環状エステルの開環重合に際して、 アル コールおよび水を開始剤または/及び分子量調節剤として積極的に利用し、 環状ェ ステル中の全プロ トン濃度およびカルボン酸/エステル · モル比を指標として開環 重合することにより、 初期特性を支配する分子量と経時特性を支配する加水分解性 を制御された脂肪族ポリエステルが得られる。

Claims

請 求 の 範 囲
1. 水およびアルコールを含むプロ トン源化合物を開始剤または/及び分子量調節 剤として含む環状エステルを、 環状エステル中の、 全プロ トン濃度、 および水を 含むカルボキシル (カルボン酸) 源化合物モル濃度とアルコールを含む了ルコキ シカルボニル (エステル) 源化合物モル濃度との比 (カルボン酸/エステル . モ ル比) 、 を指標として、 開環重合することを特徴とする脂肪族ポリエステルの製 造方法。
2. カルボン酸 Zエステル · モル比が 1 0 0ZO〜2Z98の範囲である言青求項 1 に記載の製造方法。
3. カルボン酸 /エステル · モル比が 9 9Zl〜5Z9 5の範囲である請求項 1に 記載の製造方法。
4. 環状エステル中の全プロ トン濃度を 0. 0 9モル%超過 2. 0モル0/。未満の範 囲内に調整する請求項 1〜 3のいずれかに記載の製造方法。
5. 環状エステルが、 グリ コリ ド単独またはグリ コ リ ド 6 0重量%以上とグリ コリ ドと開環共重合可能な他の環状モノマー 40重量%以下との混合物である請求項 1〜 5のいずれかに記載の製造方法。
6. 環状エステル中の全プロ トン濃度およびカルボン酸/エステル 'モル _tヒを調整 した後、 環状エステルを触媒の存在下に加熱溶融させ、 次いで、 溶融状態の環状 エステルを開環重合して生成ポリマーを析出させる請求項 1〜 5のいずれかに記 載の製造方法。
7. 環状エステル中の全プロ トン濃度およびカルボン酸/エステル ' モル ヒを調整 した後、 環状エステルを触媒の存在下に溶融槽内で加熱溶融させ、 次いで、 溶融 状態の環状エステルを複数の管を備えた重合装置に移送し、 各管内で密閉状態で 開環重合して生成ポリマーを析出させる請求項 6に記載の製造方法。
8 . 前記重合装置の複数の管が、 両端が開閉可能な管である請求項 7に記載の製造 方法。
9 . 環状エステル中の全プロ トン濃度およびカルボン酸 Zエステル · モル比を調整 した後、 環状エステルを触媒の存在下に溶融槽内で加熱溶融させ、 次いで、 溶融 状態の環状エステルを攪拌機付き反応缶中で開環重合を進行させた後、 精製した ポリマーを取り出し、 一度ポリマーを冷却固化させた後、 ポリマーの融点以下で 固相重合反応を継続する請求項 9に記載の製造方法。
1 0 . 開環重合により生成する脂肪族ポリエステルにカルボキシル基封止剤を作用 させる請求項 1〜 9のいずれかに記載の製造方法。
1 1 . 脂肪族ポリエステル 1 0 0重量部に対し、 0 . 1〜 1 . 8重量部のカルボキ シル基封止剤を作用させる請求項 1 0に記載の製造方法。
1 2 . カルボキシル基封止剤がモノカルボジィミ ド、 ポリカルボジィ ミ ド、 ォキサ ゾリン、 ォキサジンおよびエポキシ化合物よりなる群よ り選ばれる請求項 1 0ま たは 1 1に記載の製造方法。
1 3 . カルボキシル基封止剤がモノカルポジイミ ドである請求項 1 0または 1 1に 記載の製造方法。
1 4 . 開環重合により生成した脂肪族ポリエステル 1 0 0重量部に対し、 3重量部 以下の熱安定剤を作用させる請求項 1〜 1 3のいずれかに記載の製造方法。
PCT/JP2004/016706 2003-11-05 2004-11-04 脂肪族ポリエステルの製造方法 WO2005044894A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005515363A JP4711828B2 (ja) 2003-11-05 2004-11-04 脂肪族ポリエステルの製造方法
US10/577,379 US7538179B2 (en) 2004-11-04 2004-11-04 Process for producing aliphatic polyester
EP04799600A EP1686145A4 (en) 2003-11-05 2004-11-04 PROCESS FOR PREPARING ALIPHATIC POLYESTER
CN2004800397190A CN1902253B (zh) 2003-11-05 2004-11-04 脂肪族聚酯的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003376221 2003-11-05
JP2003-376221 2003-11-05

Publications (1)

Publication Number Publication Date
WO2005044894A1 true WO2005044894A1 (ja) 2005-05-19

Family

ID=34567105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/016706 WO2005044894A1 (ja) 2003-11-05 2004-11-04 脂肪族ポリエステルの製造方法

Country Status (5)

Country Link
EP (1) EP1686145A4 (ja)
JP (1) JP4711828B2 (ja)
CN (1) CN1902253B (ja)
TW (1) TW200533693A (ja)
WO (1) WO2005044894A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007126653A (ja) * 2005-10-31 2007-05-24 Kureha Corp 脂肪族ポリエステル組成物の製造方法
WO2008015885A1 (fr) 2006-08-02 2008-02-07 Kureha Corporation Procédé de purification d'acide hydroxycarboxylique, procédé de production d'ester cyclique et procédé de production de poly(acide hydroxycarboxylique)
WO2008102607A1 (ja) 2007-02-20 2008-08-28 Kureha Corporation 環状エステルの精製方法
US20100216948A1 (en) * 2009-01-23 2010-08-26 Tipton Arthur J Polymer mixtures comprising polymers having different non-repeating units and methods for making and using same
WO2010090496A3 (ko) * 2009-02-09 2010-11-25 주식회사 엘지화학 폴리락타이드 수지 및 이의 제조 방법
US8304500B2 (en) 2005-10-28 2012-11-06 Kureha Corporation Polyglycolic acid resin particle composition and process for production thereof
US8318837B2 (en) 2005-11-24 2012-11-27 Kureha Corporation Method for controlling water resistance of polyglycolic acid resin
US8362158B2 (en) 2005-12-02 2013-01-29 Kureha Corporation Polyglycolic acid resin composition
JP2014169356A (ja) * 2013-03-01 2014-09-18 Wintech Polymer Ltd ポリブチレンテレフタレート樹脂組成物
US8899317B2 (en) 2008-12-23 2014-12-02 W. Lynn Frazier Decomposable pumpdown ball for downhole plugs
US9062522B2 (en) 2009-04-21 2015-06-23 W. Lynn Frazier Configurable inserts for downhole plugs
US9109428B2 (en) 2009-04-21 2015-08-18 W. Lynn Frazier Configurable bridge plugs and methods for using same
US9127527B2 (en) 2009-04-21 2015-09-08 W. Lynn Frazier Decomposable impediments for downhole tools and methods for using same
US9163477B2 (en) 2009-04-21 2015-10-20 W. Lynn Frazier Configurable downhole tools and methods for using same
US9181772B2 (en) 2009-04-21 2015-11-10 W. Lynn Frazier Decomposable impediments for downhole plugs
US9309744B2 (en) 2008-12-23 2016-04-12 Magnum Oil Tools International, Ltd. Bottom set downhole plug
US9562415B2 (en) 2009-04-21 2017-02-07 Magnum Oil Tools International, Ltd. Configurable inserts for downhole plugs
US9775681B2 (en) 2002-03-06 2017-10-03 Mako Surgical Corp. Haptic guidance system and method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101961540B1 (ko) * 2017-04-05 2019-03-22 강남제비스코 주식회사 코팅 작업성 향상을 위한 저점도형 절연 전선용 폴리에스테르 바니시 및 그 제조방법
JP2022506554A (ja) * 2018-10-29 2022-01-17 プージン ケミカル インダストリー カンパニー リミテッド 耐高温性、耐老化性ポリグリコライドコポリマーおよびその組成
CN114518418B (zh) * 2022-01-17 2024-03-22 内蒙古久泰新材料有限公司 一种环状交酯中有机羧酸含量的定量检测方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1025288A (ja) * 1996-07-12 1998-01-27 Shimadzu Corp ラクチドの精製法および重合法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2945012A (en) * 1958-01-08 1960-07-12 Goodrich Co B F Polymerizable polyesters and polymers thereof
US5412067A (en) * 1993-05-10 1995-05-02 Mitsui Toatsu Chemicals, Inc. Preparation process of polyester
JPH10109983A (ja) * 1996-10-04 1998-04-28 Mitsubishi Gas Chem Co Inc 環状エステルの製造方法および精製方法
JP3547275B2 (ja) * 1996-12-02 2004-07-28 ダイセル化学工業株式会社 脂肪族ポリエステルの製造方法
JP3681291B2 (ja) * 1998-10-29 2005-08-10 三井化学株式会社 ポリマーの製造方法
EP1048683B1 (en) * 1998-11-13 2005-05-25 DAICEL CHEMICAL INDUSTRIES, Ltd. Aliphatic copolymer, production process, aliphatic polyester resin composition, various uses, coating composition, and agricultural or horticultural particulate composition comprising degradable coating film
JP2000159865A (ja) * 1998-12-01 2000-06-13 Mitsui Chemicals Inc 生体吸収性ポリエステルの製造方法
JP3440915B2 (ja) * 2000-03-14 2003-08-25 東レ株式会社 ポリ乳酸樹脂および成形品
JP4486887B2 (ja) * 2002-10-08 2010-06-23 株式会社クレハ 脂肪族ポリエステルの製造方法
US7538178B2 (en) * 2003-10-15 2009-05-26 Kureha Corporation Process for producing aliphatic polyester

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1025288A (ja) * 1996-07-12 1998-01-27 Shimadzu Corp ラクチドの精製法および重合法

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9775681B2 (en) 2002-03-06 2017-10-03 Mako Surgical Corp. Haptic guidance system and method
US8304500B2 (en) 2005-10-28 2012-11-06 Kureha Corporation Polyglycolic acid resin particle composition and process for production thereof
JP5224815B2 (ja) * 2005-10-28 2013-07-03 株式会社クレハ ポリグリコール酸樹脂粒状体組成物およびその製造方法
EP1790677A1 (en) * 2005-10-31 2007-05-30 Kureha Corporation Process for producing aliphatic polyester composition
US7501464B2 (en) 2005-10-31 2009-03-10 Kureha Corporation Process for producing aliphatic polyester composition
JP2007126653A (ja) * 2005-10-31 2007-05-24 Kureha Corp 脂肪族ポリエステル組成物の製造方法
US8318837B2 (en) 2005-11-24 2012-11-27 Kureha Corporation Method for controlling water resistance of polyglycolic acid resin
US8362158B2 (en) 2005-12-02 2013-01-29 Kureha Corporation Polyglycolic acid resin composition
WO2008015885A1 (fr) 2006-08-02 2008-02-07 Kureha Corporation Procédé de purification d'acide hydroxycarboxylique, procédé de production d'ester cyclique et procédé de production de poly(acide hydroxycarboxylique)
CN101495440B (zh) * 2006-08-02 2015-06-03 株式会社吴羽 羟基羧酸的纯化方法、环状酯的制造方法和聚羟基羧酸的制造方法
WO2008102607A1 (ja) 2007-02-20 2008-08-28 Kureha Corporation 環状エステルの精製方法
US8899317B2 (en) 2008-12-23 2014-12-02 W. Lynn Frazier Decomposable pumpdown ball for downhole plugs
US9309744B2 (en) 2008-12-23 2016-04-12 Magnum Oil Tools International, Ltd. Bottom set downhole plug
JP2012515837A (ja) * 2009-01-23 2012-07-12 サーモディクス ファーマシューティカルズ, インコーポレイテッド 異なる非反復単位を有するポリマーを含むポリマー混合物、ならびにそれを作製および使用するための方法
US20100216948A1 (en) * 2009-01-23 2010-08-26 Tipton Arthur J Polymer mixtures comprising polymers having different non-repeating units and methods for making and using same
WO2010090496A3 (ko) * 2009-02-09 2010-11-25 주식회사 엘지화학 폴리락타이드 수지 및 이의 제조 방법
US9415382B2 (en) 2009-02-09 2016-08-16 Lg Chem, Ltd. Polylactide resin and preparation method thereof
US9163477B2 (en) 2009-04-21 2015-10-20 W. Lynn Frazier Configurable downhole tools and methods for using same
US9127527B2 (en) 2009-04-21 2015-09-08 W. Lynn Frazier Decomposable impediments for downhole tools and methods for using same
US9181772B2 (en) 2009-04-21 2015-11-10 W. Lynn Frazier Decomposable impediments for downhole plugs
US9109428B2 (en) 2009-04-21 2015-08-18 W. Lynn Frazier Configurable bridge plugs and methods for using same
US9062522B2 (en) 2009-04-21 2015-06-23 W. Lynn Frazier Configurable inserts for downhole plugs
US9562415B2 (en) 2009-04-21 2017-02-07 Magnum Oil Tools International, Ltd. Configurable inserts for downhole plugs
JP2014169356A (ja) * 2013-03-01 2014-09-18 Wintech Polymer Ltd ポリブチレンテレフタレート樹脂組成物

Also Published As

Publication number Publication date
CN1902253A (zh) 2007-01-24
TW200533693A (en) 2005-10-16
EP1686145A1 (en) 2006-08-02
TWI372155B (ja) 2012-09-11
EP1686145A4 (en) 2007-03-14
CN1902253B (zh) 2010-10-20
JP4711828B2 (ja) 2011-06-29
JPWO2005044894A1 (ja) 2007-05-17

Similar Documents

Publication Publication Date Title
JP5030585B2 (ja) 残留環状エステルの少ない脂肪族ポリエステルの製造方法
WO2005044894A1 (ja) 脂肪族ポリエステルの製造方法
EP1550682B1 (en) Process for producing aliphatic polyester
WO2005035623A1 (ja) 脂肪族ポリエステルの製造方法
US7067611B2 (en) Polyhydroxycarboxylic acid and its production process
US7538179B2 (en) Process for producing aliphatic polyester
WO2004029129A1 (ja) グリコール酸共重合体及びその製造方法
EP0664309A2 (en) Method for producing polylactic acid
JPH09124778A (ja) ポリ乳酸の製造法
JP3162544B2 (ja) ポリヒドロキシカルボン酸の製造方法
JP3127770B2 (ja) ポリ乳酸の製造法
EP0986599A2 (en) Process for the preparation of copolyesters
JPH07102053A (ja) ポリヒドロキシカルボン酸およびその精製方法
JPH0616790A (ja) 脂肪族ポリエステルおよびその製造方法
JPH08301864A (ja) α−オキシ酸の分子間環状ジエステルの精製方法
Wang Stereopure functionalized poly (lactic acid)
JPH03277628A (ja) 脂肪族ポリエステルの低分子量化方法およびその成型方法
Kundys et al. BIODEGRADATION OF LINEAR BLOCK COPOLYMERS CONTAINING POLY (LACTIC ACID) SEGMENTS
JPH0616791A (ja) 脂肪族ポリエステルの製造方法
JPH072989A (ja) ポリヒドロキシカルボン酸の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480039719.0

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005515363

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007073033

Country of ref document: US

Ref document number: 10577379

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004799600

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004799600

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10577379

Country of ref document: US