WO2005040886A1 - 光学モジュール - Google Patents

光学モジュール Download PDF

Info

Publication number
WO2005040886A1
WO2005040886A1 PCT/JP2004/015017 JP2004015017W WO2005040886A1 WO 2005040886 A1 WO2005040886 A1 WO 2005040886A1 JP 2004015017 W JP2004015017 W JP 2004015017W WO 2005040886 A1 WO2005040886 A1 WO 2005040886A1
Authority
WO
WIPO (PCT)
Prior art keywords
cam
lens
lens holder
lens barrel
optical module
Prior art date
Application number
PCT/JP2004/015017
Other languages
English (en)
French (fr)
Inventor
Shinji Morinaga
Toshihiko Nakagawara
Original Assignee
Seiko Precision Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Precision Inc. filed Critical Seiko Precision Inc.
Publication of WO2005040886A1 publication Critical patent/WO2005040886A1/ja
Priority to US11/408,422 priority Critical patent/US7330648B2/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/026Mountings, adjusting means, or light-tight connections, for optical elements for lenses using retaining rings or springs

Definitions

  • the present invention relates to an optical module included in a small camera or the like using an image sensor such as a CCD.
  • the optical module is provided with a lens holder for holding a lens, a lens barrel for movably storing the lens holder, and a force groove for engaging an engaging pin that also extends the side force of the lens holder.
  • a structure including a cylindrical cam for moving the lens holder in the optical axis direction and an actuator for driving the cylindrical cam has been employed.
  • Even a miniaturized optical module has the same basic structure as above, and it is necessary to accurately assemble these components.
  • the cylindrical cam in the case of an optical module mounted on a mobile phone, etc., the cylindrical cam must be positioned after accurately positioning the lens barrel with respect to the CCD disposed on the substrate, and the driving force can be efficiently transmitted to the cylindrical cam. Therefore, it is important to arrange factories. In the case of a small optical module, even a slight misalignment can cause deterioration of the captured image, so that it is necessary to pay sufficient attention to the assembly.
  • Patent Document 1 discloses an optical module.
  • This Patent Document 1 discloses an arrangement relationship between a general lens barrel included in an optical module and an actuator (motor).
  • a method has been adopted in which a lens barrel and a motor are separately manufactured and these are assembled to a frame.
  • a small optical module in which a lens barrel and a small motor are separately manufactured, and these are combined on a substrate to form one optical module.
  • holes and pins for positioning or a guide pin for positioning are arranged on the substrate side to set the motor at a predetermined position. Place.
  • Patent Document 1 JP-A-7-63972
  • the lens barrel In a mode in which the lens barrel side and the motor side are individually assembled while applying force, the lens barrel is first fixed to the base plate, and the position of the lens barrel becomes a reference.
  • the lens barrel is fixed to the substrate while positioning with respect to the CCD.
  • the lens barrel is arranged so as to focus on the CCD on the substrate.
  • the planned position of the lens barrel is shifted. If this misalignment is beyond the allowable range of error, adjust the position of the lens barrel so that it is aligned with the center of the CCD, or adjust the position of the lens barrel based on the external shape of the CCD to eliminate the error. Is required.
  • the arrangement position of the actuator is that the lens barrel is disposed at a predetermined position on the substrate. It has been determined as a premise. However, during actual assembly, the lens barrel position often shifts. When the position of the lens barrel shifts in this way, the position of the cylindrical force set in the lens barrel also shifts. As a result, if the relative position between the cylindrical cam and the motor is out of the designed range, a situation may occur. As described above, the optical module including the displacement at the time of assembly cannot efficiently transmit the driving force of the motor to the cylindrical cam side and cannot maintain the predetermined performance.
  • the present invention solves the above problems and provides an optical module having a configuration capable of assembling and maintaining a positional relationship between a lens barrel and a driving unit side as designed.
  • the object is to provide a lens barrel including a substrate including an imaging element, a lens holder fixed to the substrate and including a lens that forms an image on an imaging surface of the imaging element so as to be movable in an optical axis direction;
  • a cylindrical cam for moving the lens holder with a cam surface which is disposed outside the lens barrel and engages with a projection member extended from a side force of the lens holder, and an actuator via a train wheel.
  • An optical module comprising: a driving unit for driving the cylindrical cam, and an optical module comprising a positioning member for setting a positional relationship between the lens barrel and the driving unit. Achievable with modules.
  • the positional relationship between the lens barrel and the drive unit is set by the positioning member, if the position of the lens barrel shifts during assembly, the position on the drive unit side also corresponds to this. Lag. Since there is no change in the positional relationship between the two, the positional relationship between the cylindrical cam set on the basis of the lens barrel and the wheel train included in the drive unit is similarly maintained. Therefore, the optical module realizes a structure that can drive the cylindrical cam as designed.
  • the actuator and the wheel train are assembled in advance to the positioning member.
  • the positional relationship between the lens barrel, the actuator, and the wheel train can be determined only by setting the positioning member at a predetermined position of the lens barrel.
  • the positioning member may be a cover integrally covering the lens barrel and the actuator. In this case, since the cover for the lens barrel and the cover for the actuator are also used, the space and cost can be further reduced.
  • the cover can be positioned by forming a through hole for positioning the lens barrel.
  • a lens barrel that houses a substrate including an image sensor and a lens holder that is fixed to the substrate and includes a lens that forms an image on an imaging surface of the image sensor in an optical axis direction; Assembling an imaging unit having a cam surface which is disposed outside the lens barrel and engages with a projection member extended from a side force of the lens holder and which moves the lens holder; and Assembling a drive unit including a cover having a through-hole penetrating the lens barrel, an actuator set on the cover, and a wheel train arranged on the cover and transmitting a driving force of the actuator; Inserting the lens barrel into the hole, engaging the cylindrical cam with the wheel train, and assembling the imaging unit and the driving unit. It can be.
  • a portable electronic device including the above-described optical module is a highly accurate device because the driving force is efficiently transmitted.
  • an optical module in which the positional relationship between the lens barrel side and the drive unit side is maintained as designed is obtained.
  • FIG. 1 is an exploded perspective view showing the inside of an optical module according to an embodiment so that it can be confirmed.
  • FIG. 2 is an enlarged view of a third lens holder and a second lens holder shown in FIG. 1.
  • FIG. 3 is a diagram showing a cross-sectional configuration of the optical module in a state where the components shown in FIG. 1 are assembled.
  • FIG. 4 is an enlarged view showing a state where the cylindrical cam shown in FIG. 3 is divided into two components.
  • FIG. 5 This is a development view showing the cam groove formed on the inner wall of the cylindrical cam so that it can be confirmed more clearly.
  • FIG. 6 is a view schematically showing a modified example of a cylindrical cam formed by a plurality of cam parts.
  • FIGS. 7 (A) and (B) are diagrams showing cam curves (profiles) preferable for defining a cam groove formed on the inner wall of a cylindrical cam.
  • FIG. 8 is a diagram showing a driving unit for driving the optical system unit and a cover set on the optical system unit.
  • FIG. 9 is a diagram showing an optical module in a completed state in which an optical system unit and a motor are assembled so that a cross-sectional configuration can be confirmed.
  • FIG. 1 is an exploded perspective view showing the inside of the optical module according to the embodiment so that the inside can be confirmed.
  • filters, diaphragms, and the like intervening are not shown so that the characteristic configuration can be easily understood.
  • a CCD 2 serving as an image sensor is fixed on a substrate 1 on which a predetermined wiring pattern is formed.
  • the substrate 1 for example, a flexible wiring substrate (FPC substrate) can be adopted.
  • the optical system unit 3 is arranged so that a photographed image is formed on the CCD 2 arranged on the substrate 1.
  • the optical module referred to in the present specification may be understood as a structure including the optical system unit 3 and an actuator described later, or may be understood as a structure including the substrate 1.
  • the structure included in the optical system unit, the cylindrical cam preferably used in the optical system unit, and the optical module are preferably used.
  • the LV and the positioning configuration will be described in order.
  • the optical system unit 3 includes, from the substrate 1 side, a lens barrel 11, a ring-shaped conical coil spring 12 as an elastic member, a third lens holder 13, a third lens 14, a cylindrical cam 15, a second lens holder 16, and a second lens holder. It includes a lens 17, a first lens 18, and a first lens holder 19.
  • the lens barrel 11 has a bottom plate 110 on the bottom side.
  • the lens barrel 11 has a substantially cylindrical shape, and is arranged so as to surround the CCD 2 fixed to the substrate 1 as a center.
  • An opening (not shown) having a shape corresponding to the shape of the CCD 2 is formed in the bottom plate 110.
  • the CCD 2 is fitted into the opening of the bottom plate 110.
  • the bottom plate 110 is formed in a disk shape larger than the cylindrical portion of the main body of the lens barrel 11, and its outer peripheral portion projects outward to form a flange portion 115.
  • the coil panel 12 is mounted on the flange 115 as described later.
  • a plurality of guide grooves 11A-11H are formed on the side wall of the lens barrel 11.
  • four guide grooves 11A, 11B, 11E, and 11F are formed as grooves that extend in the optical axis direction LD by partially notching the side wall of the lens barrel 11.
  • Other guide grooves are formed on the inner surface of the side wall.
  • the four guide grooves 11A, 11C, 11E, and 11G are formed to guide the third lens holder 13, and the other four guide grooves 11B, 11D, and 11F.
  • 11H are formed for guiding the second lens holder 16.
  • the coil panel 12 is formed in a ring shape and has a conical shape in which a winding radius is increased toward a lower portion.
  • the coil panel 12 is fitted on the outer periphery of the main body cylindrical portion of the lens barrel 11, and is mounted on the flange 115 as described above. If the relative positional relationship between the CCD 2 disposed on the substrate 1 and the lens shifts in the manufacturing process, the focus position (back focus) of the lens also shifts the light receiving surface power of the CCD 2, so that a clear image cannot be obtained.
  • the cylindrical cam 15 for guiding the lens is urged against the first lens holder 19 so that the focal position is adjusted to the light receiving surface of the CCD 2 by adjusting the lens position, and the pushing force ⁇ is also reduced by the first lens.
  • the structure that can adjust the position of the holder is adopted. More specifically, the bottom of the cylindrical cam 15 is supported by the coil panel 12 and is positioned upwardly toward the first lens holder 19. Energize. With such a structure, the lens position in the optical axis direction LD of the cylindrical cam 15 is stabilized.
  • the structure in which the upper surface of the cylindrical cam 15 is brought into contact with the lower surface of the first lens holder 19 as described above to stabilize the lens position will be described in more detail.
  • the upper surface of the cylindrical cam 15 is formed flat as shown in FIG.
  • the lower surface of the first lens holder 19 with which the upper surface of the cylindrical cam 15 abuts is also formed flat. Since the cylindrical cam 15 rotates as will be described later, the lower surface of the first lens holder 19 with which the upper surface of the cylindrical cam 15 contacts is a sliding surface.
  • the first lens holder 19 is fixed to the upper part of the lens barrel 11 when the present optical module is assembled. More specifically, a female screw portion (not shown) that is screwed to a male screw portion 117 formed on the outer periphery of the upper part of the lens barrel 11 is formed on the inner wall of the first lens holder 19.
  • the lens barrel 11 is set on the substrate 1.
  • the first lens holder 19 is fixed to the top of the lens barrel 11. Therefore, the position of the first lens holder 19 in the optical axis direction LD can be kept constant from the substrate 1.
  • the position of the cylindrical cam 15 in the optical axis direction LD can be stabilized.
  • lens holders 13 and 16 that hold lenses 14 and 17 are engaged with the cylindrical cam 15 and control the movement of these lenses. Therefore, by keeping the position of the cylindrical cam 15 stable, the positions of the plurality of lenses 14 and 17 in the optical axis direction are held at the desired positions via the cylindrical cam 15.
  • the height position of the cylindrical cam 15 can be simplified by rotating the first lens holder 19. Can be changed to Therefore, even if the back focus shifts due to an error in assembling the CCD 2 to the substrate, the back force can be easily corrected by rotating the first lens holder 19.
  • the optical system unit 3 by rotating the first lens holder 19 on the upper part of the lens barrel 11, errors in parts and assembly can be easily eliminated.
  • the present optical module performs accurate positioning with respect to the reference first lens holder 19 by simply devising the arrangement of the coil panel 12 under the cylindrical cam 15, thereby achieving the conventional positioning.
  • the coil panel 12 since the coil panel 12 is formed in a conical shape, the coil panel 12 comes into wide contact with the bottom of the cylindrical cam 15 and urges it upward. Since the coil panel 12 has a conical shape, no coil exists immediately below the coil, and the coil panel 12 has an arrangement configuration, so that the contact height during compression can be reduced. That is, the coil panel 12 has a shape that can be arranged in a small space. Then, when a load is applied to the coil panel 12, the raised portion sinks down and deforms so as to flatten it, so that it can be further lowered during operation. Therefore, the coil panel 12 has a feature that it can withstand a relatively large load with a small volume.
  • a power plate panel employing a conical coil panel 12 may be spirally wound V, and a so-called bamboo shoot panel may be similarly employed.
  • the cylindrical cam 15 is disposed so as to surround the outer periphery of the lens barrel 11.
  • a plurality of cam grooves (cam surfaces) 151 are formed on the inner wall of the cylindrical cam 15.
  • An engagement pin is provided on the third lens holder 13 and the second lens holder 16 as a projection member that engages with the cam groove 151.
  • the third lens holder 13 includes two engagement pins 131-1 and 131-2 that protrude in the radial direction.
  • the second lens holder 16 includes the engagement pin 161-1 that protrudes in the radial direction. , 161-2.
  • the shape of the cam groove 151 is defined so that these engagement pins are used as cam followers and move on a predetermined trajectory. The relationship between the cam groove 151 of the cylindrical cam 15 and the engagement pins 131-1, 131-2 and the engagement pins 161-1, 161-2 will be described later in detail.
  • a rack 159 indicated by reference numeral 159 is formed on the outer periphery of the cylindrical cam 15.
  • the rack portion 159 is engaged with a driving gear not shown in FIG.
  • the cylindrical force 15 rotates around the optical axis direction LD.
  • the third lens holder 13 and the second lens holder 16 are moved along the optical axis direction LD.
  • the third lens 14 is a correction lens disposed closest to the substrate 1, and is held by the third lens holder 13.
  • the second lens 17 is a variable power lens disposed in the middle, and is held by the second lens holder 16.
  • the first lens 18 is an objective lens located on the object side, and is held by a first lens holder 19. No. 3
  • the lens holder 13 and the second lens 17 are moved to desired positions on the LD in the optical axis direction by a cam groove 151 formed in the inner wall of the cylindrical cam 15 while being housed in the lens barrel 11.
  • the distance between the third lens 14 and the substrate 1 and the distance between the lenses 14, 17, and 18 are changed, so that the image can be captured with the focal length changed from wide (WIDE) to tele (TELE). It is possible.
  • FIG. 2 is an enlarged view of the third lens holder 13 and the second lens holder 16 shown in FIG.
  • the two lens holders are set in the lens barrel 11 in a state where the vertical forces are close to each other and overlap as shown.
  • the two engagement pins 131-1 and 131-2 projecting radially from the third lens holder 13 project outward from the guide grooves 11A and 11E formed in the lens barrel 11, and are cam grooves of the cylindrical cam 15. Engage with 151.
  • the two engaging pins 161-1 and 161-2 projecting from the second lens holder 16 in the radial direction also project outward in the guide grooves 11 C and 11 F formed in the lens barrel 11, and the cam grooves 151 of the cylindrical cam 15 are formed. Engage with.
  • the third lens holder 13 and the second lens holder 16 will be described in order based on FIG. 2 with reference to FIG.
  • Four guide rods 132-1-132-4 are formed at substantially equal intervals around the third lens holder 13. These guide rods 132-1 and 132-4 are formed to be in sliding contact with the guide grooves 11 A, 11 C, 11 E, and 11 G formed inside the lens barrel 11. From the two guide rods 132-1 and 132-3, the engagement pins 131-1 and 131-2 protrude in the radial direction. Further, four receiving grooves 133-1-133 4 are formed in the peripheral portion of the third lens holder 13 so as to be located between the guide rods 132. These receiving grooves 133-1 to 133-4 are formed so as to receive the guide rods 162-1 to 164-2 of the second lens holder 16 having the same structure!
  • the second lens holder 16 has a structure similar to that of the third lens holder 13. That is, four guide rods 162-1-162-4 are formed around the second lens holder 16. These guide rods 162-1—162-4 are formed so as to be in sliding contact with the remaining guide grooves 11B, 11D, 11F, and 11H formed inside the lens barrel 11. Pins 161-1 and 161-2 protrude radially from two of the guide rods 162-1 and 162-1.
  • a receiving groove 163-1-1-163-4 is formed in the peripheral portion of the second lens holder 16. These receiving grooves 16 3-1-1-163-4 are designed to receive the guide rods 132-1-1-132-4 of the third lens holder 13. Is formed.
  • the third lens holder 13 and the second lens holder 16 form a mutually slidable state by engaging a guide rod and a receiving groove of each other. Then, the guide rods (132 and 162) of the lens holders 13 and 16 in this state are engaged with the guide grooves 11A-11H formed on the inner surface of the lens barrel 11, and are slidably housed. That is, in this optical module, the guide rods (132 and 162) of the lens holders 13 and 16 are the first guide member, and the guide grooves 11A-11H formed on the sliding surface of the lens barrel 11 are the second guide part.
  • a guide structure for slidably holding the lens holders 13 and 16 within the lens barrel 11 is realized. Therefore, the second lens holder 16 and the third lens holder 13 can move relative to each other in the optical axis direction without interfering with each other.
  • the engagement pins 161-1 and 161-2 projecting from the second lens holder 16 are arranged in the opposite direction on the straight line 16L.
  • the third lens holder 13 disposed below the second lens holder 16 has the same structure.
  • Engagement pins 131-1, 131-2 from the third lens holder 13 are also arranged in the opposite direction on the straight line 13L. The force is also set so that the straight line 16L and the straight line 13L cross each other.
  • the second lens holder 16 and the third lens holder 13 form a four-point support state by engaging the guide rod and the receiving groove with each other. Therefore, the inclination of the optical axis of the lens held by both lens holders with respect to the optical axis direction LD on the substrate side can be suppressed more reliably.
  • the structure can be made to disperse stress and have excellent shock resistance when dropped.
  • the lens rods 13 and 16 have a guide rod and a receiving groove, they can be brought closer to each other. In addition, since one lens holder does not interfere with the guide rod extending, the guide rod can be set longer.
  • the second lens holder 16 and the third lens holder are set.
  • the rudder 13 does not tilt with respect to the optical axis direction LD.
  • the guide rods 132 and 162 it is possible to block light that enters the lens barrel from a guide groove (11A or the like) provided on the lens barrel 11 side. These also provide dustproof properties for preventing dust from entering the lens barrel 11.
  • FIG. 3 is a diagram showing a cross-sectional configuration of the optical module in a state where the components shown in FIG. 1 are assembled.
  • FIG. 3 illustrates a cover 40 that covers the outer peripheral portion of the optical system unit 3. The cover 40 will be described later.
  • FIG. 3 the structure in which the above-described cylindrical cam 15 is urged upward can be more clearly confirmed. That is, a male screw part 117 formed on the upper part of the lens barrel 11 and a female screw part 197 formed on the inner wall of the first lens holder 19 corresponding thereto are shown.
  • the uppermost first lens holder 19 is disposed above the lens barrel 11, and the cylindrical cam 15 is brought into contact with the first lens holder 19 by the urging force of the coil panel 12. Is determined. Therefore, the position of the third lens 14 can be set by the position of the first lens holder 19. Then, by rotating the first lens holder 19 with respect to the lens barrel 11, the knock focus position can be positioned so as to match the light receiving surface of the CCD 2.
  • FIG. 3 shows an engagement pin 131 projecting radially from the third lens holder 13 and an engagement pin 161 projecting radially from the second lens holder 16.
  • each of the lens holders 13 and 16 has two engagement pins, and FIG. 3 shows one of them.
  • the engaging pins 131 and 161 engage with the cam grooves 151 formed on the inner wall of the cylindrical cam 15 disposed outside the lens barrel 11. Since the cylindrical cam 15 is urged upward by the coil panel 12 arranged at the lower part, the lens holders 13 and 16 move accordingly, and the position of the first lens holder 19 is used as a reference in the optical axis direction LD. Position is determined accurately.
  • the cylindrical cam 15 employed in the optical system unit 3 exemplified in the present embodiment has a configuration in which a cam groove formed in the inner wall thereof is characteristic. Further, this point will be described.
  • FIG. 3 shows a more detailed configuration of the cylindrical cam 15.
  • the cylindrical cam 15 incorporated in the optical system unit 3 is formed by two cam parts, an upper cam 15U and a lower cam 15L. It is. In order to reduce the size of the optical module, the cylindrical cam 15 also needs to be reduced in size. However, a cam groove 151 for accurately guiding the third lens holder 13 and the second lens holder 16 in the optical axis direction LD must be formed on the inner wall of the cylindrical cam 15 as described above. For this reason, the optical system unit 3 is manufactured by combining cam parts obtained by dividing the cylindrical cam 15.
  • FIG. 4 is an enlarged view showing a state where the cylindrical cam 15 shown in FIG. 3 is divided into two components, an upper cam 15U and a lower cam 15L.
  • the cylindrical cam 15 is vertically divided at a cam groove 151 formed in the inner wall.
  • the engaging pin 131 of the third lens holder 13 and the engaging pin 161 of the second lens holder 16 engage with the cam groove 151.
  • a cam groove 151 is formed based on a cam curve (profile) for guiding these engaging pins.
  • a dividing line 152 between the upper cam 15U and the lower cam 15L is set so that the shape of the force curve appears at the end.
  • the cam groove 151 is formed at a portion where the upper and lower cams 15U and 15L are connected.
  • a half of the cam groove 151 is formed on the end face of one cam 15U to be connected, and the other half of the cam groove 151 is formed on the end face of the other cam 15L.
  • the upper cam 15U and the lower cam 15L are manufactured using two molds, respectively, and by combining these, the cylindrical cam 15 can be manufactured with high accuracy. Therefore, even if the cam groove 151 is a thin groove, the cylindrical cam 15 can be manufactured relatively easily.
  • the cylindrical cam 15 can be manufactured by combining thin and small cam parts by plastic injection molding using a mold or the like.
  • the heads of the engaging pins 131 and 161 have a substantially triangular cross section, and this portion serves as a cam follower to engage with the cam groove 151.
  • the cam groove 151 has a V-shaped cross section corresponding to the shape of the engagement pin.
  • the shape of the cam groove 151 is also shown in FIG. 4, and the cam groove 151 is formed to include the short vertical portion 153 at the center and the inclined portions 154 provided above and below the vertical portion.
  • the engaging pins 131 and 161 are inclined cams having an inclined head force.
  • a cam groove 151 is formed to guide the engagement pin as a cam follower!
  • the diameter of the cylindrical cam 15 can be reduced while securing the thickness of the cylindrical cam 15.
  • a flat cam having a rectangular cross section may be employed at the head of the engaging pin. In this case, the position accuracy during the zoom operation can be increased.
  • a recess 158 is formed from the upper surface of the upper cam 15U to the cam groove 151.
  • the recess 158 is a guide groove for guiding the engagement pin 161 of the second lens holder 16 to the cam groove 151 in the cylindrical cam. Since the engaging pins 161 are arranged in the opposite direction on a straight line, two concave portions 158 are formed in the upper cam 15U. However, when the third lens holder 13 and the second lens holder 16 are set on the lower cam 15L and then assembled so as to cover the upper cam 15U, it is not necessary to form the recess 158. Absent. FIG.
  • FIG. 4 shows that the cam groove corresponding to the second lens holder and the cam groove corresponding to the third lens holder are connected by a guide groove for guiding the lens holder.
  • the third lens holder is guided from the recess 158 to the cam groove for guiding the second lens holder, and further passes through the connected guide groove to reach the cam groove for guiding the third lens holder.
  • the second lens holder is guided from the recess 158 and set in the corresponding cam groove.
  • the upper cam 15U has a downward projection 156
  • the lower cam 15L has a receiving portion 157 for receiving the projection.
  • These concavities and convexities are similarly formed at the opposite positions.
  • the cylindrical cam 15 is manufactured by connecting the upper and lower cams 15U and 15L with these concave and convex portions 156 and 157 as reference positions. Therefore, the cylindrical cam 15 can be assembled with high accuracy, and the cam groove can be arranged on the inner surface with high positional accuracy.
  • the upper cam 15U and the lower cam 15L have a structure that can be driven integrally by fitting, they can be formed integrally by an adhesive, laser welding, or the like.
  • FIG. 5 is a developed view showing the shape of the cam groove 151 formed on the inner wall of the cylindrical cam 15 so that the shape can be confirmed. According to FIG. 5, the state of the cam groove 151 formed on the inner wall of the cylindrical cam 15 can be more clearly confirmed.
  • the cam groove 151 includes a cam groove 151-1 and a cam groove 151-2 defined by different cam curves.
  • the cam groove 151-1 regulates the operation of the zoom lens system corresponding to the second lens holder 16.
  • Cam groove 151-2 corresponds to third lens holder 13
  • the lens operation of the correction system is defined. That is, the engaging pins 161-1 and 161-2 of the second lens holder 16 engage with the cam grooves 151-1.
  • the engagement pins 131-1 and 131-2 of the third lens holder 13 are engaged with the cam grooves 151-2.
  • the dividing line 152 between the upper cam 15U and the lower cam 15L is set to be divided along the cam grooves 151-1 and 151-2. Also, according to FIG. 5, the relationship between the vertical portion 153 and the inclined portion 154 of the cam groove 151 can be confirmed.
  • the division line 152 is a straight line in the uncured region where no cam groove is formed, in which the cam curve portion is curved. By thus forming a straight line, the generation of useless space is suppressed.
  • a parallel dividing line portion 152LD parallel to the optical axis direction LD in the dividing line 152 useless space in the circumferential direction of the cylindrical cam 15 can be suppressed. However, if there is some margin in the circumferential direction, the dividing line portion 152LD may be inclined.
  • one division line 152 is formed so as to include different cam curves as shown in FIG. 5, cam grooves 151-1 and 151-2 having different shapes are formed at the connection parts of the cam parts. You. With such an arrangement of the cam grooves, a configuration is realized in which the height of the cylindrical cam can be kept low and a plurality of lens holders can be moved in the optical axis direction. Therefore, miniaturization of the optical module can be promoted.
  • FIG. 6 is a diagram schematically showing a modified example of the cylindrical cam 15 formed by a plurality of cam parts.
  • the cylindrical cam 15 shown in FIGS. 4 and 5 is composed of two upper and lower cams 15U and 15L.
  • FIG. 6 shows an example in which three components are used.
  • the cylindrical cam 15 also has three cam component forces of an upper cam 15U, an intermediate cam 15M, and a lower cam 15L.
  • the upper cam 15U and the intermediate cam 15M are separated by a division line 152-1 and the lower cam 15L and the intermediate cam 15M are separated by a division line 152-2.
  • the division lines 152-1 and 152-2 are set based on different cam curves. These dividing lines also include a parallel dividing line portion 152LD that is parallel to the optical axis direction LD, thereby suppressing unnecessary space in the circumferential direction.
  • the curved portion 152-1CA is the original cam curve.
  • the inclined straight portion 152-2CA is the original cam curve.
  • FIG. 6 shows only the division lines, a cam groove is formed with the cam curve at the center as in the case of FIG. That is, this modification Also, the cam parts are divided along the cam curve, and the cam grooves are formed so as to face the end faces of the respective cam parts.
  • cam grooves are formed between the upper cam 15U and the intermediate cam 15M and between the lower cam 15L and the intermediate cam 15M.
  • the engagement pin having the lens holder force of the correction system is set so as to engage with the curved portion 152-1 CA.
  • the engagement pin of the lens holder of the variable power system is set so as to engage with the curved portion 152-2CA.
  • the upper cam surface and the lower cam surface may also be V-shaped in cross section to guide the projection of the lens holder to arrange the lens holder on the cam surface.
  • a concave portion (groove portion) for guiding the lens holder is provided at the optical axis end of the cam 15 via a cam surface on which the other lens holder is disposed or a concave portion for guiding the other lens holder. It is also possible to guide the lens holder.
  • FIG. 6 shows an example in which a cylindrical cam is constituted by three cam parts, it may be constituted by more divided parts.
  • the degree of freedom of the lens holder is limited, so that the angle of the lens holder with respect to the optical axis direction is stabilized. Have. For this reason, the number of guide grooves can be reduced.
  • FIG. 7 is a diagram showing a cam curve (profile) that is preferable for defining a cam groove formed on the inner wall of the cylindrical cam 15.
  • FIG. 7 (A) shows a cam curve 151-1CA that defines a cam groove 151-1 for a variable power lens!
  • (B) shows a cam curve 151-2CA defining a cam groove 151-2 for the correction system lens. That is, the second lens holder 16 is moved in the optical axis direction based on the cam curve 151-1CA. The third lens holder 13 is moved in the optical axis direction based on the other cam curve 151-2CA.
  • the engagement pins 161 — 1 and 161 — 2 force protruding in the radial direction of the second lens holder 16 are formed in the optical axis direction by the cam groove 151 — 1 defined by the cam curve 151 — 1 CA. It is moved in the direction.
  • the engagement pins 131-1, 131-2 projecting in the radial direction of the third lens holder 13 are moved in the optical axis direction by the cam groove 151-2 defined by the cam curve 151-2CA.
  • FIG. 7 illustrates a cam curve when a macro function is added to the telephoto side in addition to the zoom function.
  • the optical module is miniaturized so that it can be mounted on a mobile phone or the like.
  • a zoom function is provided as described above, it is important to accurately move each lens holder to a desired position.
  • a method of arranging a position detecting member for confirming that the lens holder is at a wide-angle position or a telephoto position is conventionally generally employed.
  • the position detecting member is separately provided as described above, the size of the optical module becomes large, which contradicts the demand for miniaturization.
  • the optical module used for a mobile phone or the like has a circumference that is short with respect to the circumferential angle of the extremely small cylindrical cam.
  • the cam curves shown in FIG. 7 can achieve desired characteristics without position detection at the wide-angle end and the telephoto end by providing flat portions in the cam curves of the variable power system and the correction system.
  • a rack 159 is formed on the outer periphery of the cylindrical cam 15, and the driving force of the actuator is transmitted by a gear that matches the rack 159. Even if a gear with high dimensional accuracy is adopted, it is difficult to eliminate the effect of backlash. There is also the effect of other components and assembly errors. In the present optical unit 3, the position of the rotating cam cannot be detected with high accuracy because there is no position detecting member. When the cylindrical cam 15 is rotated between the wide-angle end and the telephoto end in the zoom operation, despite the fact that the cylindrical cam 15 is rotated by a predetermined angle with the actuator, the desired wide-angle end or There is a possibility that the cylindrical cam rotates at the telephoto end.
  • both ends of the curved portion (zoom portion) for zooming the lens that is, the wide-angle end (wide end) and the telephoto end (tele end)
  • a cam curve with a flat part of a predetermined length orthogonal to the LD is adopted. That is, in the present embodiment, a cam curve having such a flat portion is adopted as a cam curve of the variable power system and the correction system of the cylindrical cam 15.
  • the actuator is driven in consideration of the distance of the flat part, so that even if the imaging distance is shifted, it moves to the flat part at the telephoto end By doing so, the performance at the telephoto end can be maintained. Therefore, it is possible to eliminate the influence of the butt lash and the assembly error, and to stably achieve the predetermined performance at the wide-angle and telephoto positions.
  • the cylindrical cam in order to detect the initial position, the cylindrical cam is moved to the wide-angle end side, and drive pulses are sent to the actuator by a predetermined number of pulses from the position where the cylindrical cam stops at the rotation limit of the cylindrical cam.
  • the position on the flat part where the rotary cam is returned to the telephoto side is set as the initial position. Therefore, it is expected that the initial position has a position error. For example, assume that the rotation angle from the wide-angle end to the telephoto end is 500 pulses, and the rotation angle of the flat portion is 50 pulses.
  • a 550-pulse drive pulse should be added to the position on the flat part of 25 pulses from the telephoto end to move to the telephoto end. If it moves within 25 pulses before and after the target value, it means that the cylindrical cam has been driven to rotate at the telephoto end, and the desired movement has been achieved.
  • the cam curve illustrated in FIG. 7 has a macro shooting curve and a flat portion added to the telephoto side. In this case, too, the force enters the macro state via the flat part at the telephoto end, so focusing is performed with high accuracy. Further, since a predetermined function can be achieved in the flat portion, stable operation is possible.
  • the macro function can be stably achieved on the macro side by absorbing the positional deviation of the cylindrical cam. Can be used.
  • the macro function is It is not essential, so it doesn't include the curve part for the macro.
  • the present optical module has an excellent configuration for accurately positioning the drive unit side with respect to the lens barrel 11 side.
  • the drive section of the optical module includes a train wheel composed of actuators and gears. The driving force of the actuator is transmitted to the cylindrical cam via a wheel train, and the cylindrical cam is driven. When the cylindrical cam 15 is driven by the actuator in this way, the third lens holder 13 and the second lens holder 16 move in the optical axis direction. Then, in the present optical module, a configuration is adopted in which the optical system unit 3 and the drive unit side are positioned via a cover that covers the optical system unit 3.
  • the configuration becomes easy.
  • the cover for the optical system unit 3 and the cover for the actuator can be integrated, so that space can be saved.
  • FIG. 8 is a diagram showing a driving unit for driving the optical system unit 3 and a cover set on the optical system unit 3.
  • FIG. 8 shows the first lens 18 and the first lens holder 19 located at the top so that the relationship with the optical system unit 3 can be confirmed.
  • FIG. 9 is a diagram showing a completed optical module in which the optical system unit 3 and the motor 30 as an actuator are assembled so that the cross-sectional configuration can be confirmed.
  • FIG. 8 shows the components of the motor 30 in an exploded state.
  • the motor 30 is assembled using a cover 40 and a substrate 31, and the cover 40 is set on the substrate 1 of the optical system unit 3.
  • the motor 30 includes a pair of coils 32 and a stator 33, and has a rotor 35 at the center.
  • a shaft 41 fixed to a predetermined position of the cover 40 and a shaft for the rotor 35 are coaxially arranged, and the rotor 35 is set to rotate about the shaft 41.
  • the shaft 41 is set in a hole 51 formed in the cover 40.
  • a gear 36 that rotates integrally with the rotor 35 is provided. Yes.
  • a shaft 42 is fixed to another position of the cover 40.
  • the shaft 42 is provided with a gear 43 that engages with the gear 36 and a gear 44 that rotates integrally with the gear 43.
  • a rack 159 formed on the outer periphery of the cylindrical cam 15 is engaged with the gear 44.
  • the shaft 42 is set in a hole 52 formed in the cover 40.
  • FIG. 9 shows a state in which the components shown in FIG. 8 are assembled.
  • the first lens holder 19 is fitted in an opening 45 formed in the cover 40. Since the first lens holder 19 is fixed to the top of the lens barrel 11, if the opening 45 (through hole) of the force bar 40 is set on the first lens holder 19, The position is determined. That is, the positions of the lens barrel 11 and the cylindrical force 15 with respect to the cover 40 are determined via the first lens holder 19.
  • the shafts 41 and 42 are positioned at predetermined positions on the cover 40.
  • the motor 30 is positioned with respect to the axis 41. Therefore, in the structure shown in FIGS. 8 and 9, the relative positions of the lens barrel 11 and the cylindrical cam 15 and the motor 30 and the gear train connected thereto are fixed through the cover 40. Therefore, even if the set position of the lens barrel 11 is shifted, the position of the drive unit including the motor 30 via the cover 40 also moves in accordance with the position of the optical system unit 3. That is, the relative positional relationship between the cylindrical cam 15 and the motor 30 and the gear train is maintained, and no displacement occurs.
  • the optical module since the optical system unit 3 and the drive unit are positioned with reference to the lens barrel position via the cover 40, the optical module is provided on the outer periphery of the cylindrical cam 15. There is no displacement between the rack portion 159 and the gear train (wheel train) 36, 43, 44 for transmitting the driving force of the motor 30. Therefore, the optical module employing the above configuration can efficiently transmit the driving force of the motor to the cylindrical cam 15.
  • the motor 30 and the wheel trains 36, 43, 44 are pre-assembled on the cover 40 side.
  • the relative position between the motor 30 side and the lens barrel 11 side can be set as a designed relationship only by setting the optical system unit 3 at a predetermined position of the cover 40.
  • the present embodiment shows an example of an optical module using a substrate, but the effect of using the cover is not limited to this structure. In the case of an optical module that does not use a substrate, the lens barrel and actuator The same effect as described above can be obtained by assembling the data.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lens Barrels (AREA)
  • Studio Devices (AREA)

Abstract

 撮像素子を含む基板1と、前記基板に固定されると共に前記撮像素子の撮像面に結像するレンズを含むレンズホルダを光軸方向LDに移動自在に収納する鏡筒11と、前記鏡筒の外側に配置され前記レンズホルダの側面から延在させた突起部材に係合するカム面を備えて前記レンズホルダを移動させる円筒カム15と、アクチュエータ30が輪列36,43,44を介して前記円筒カムを駆動する駆動部とを備えた光学モジュールであって、前記鏡筒と前記駆動部との位置関係を設定する位置決め部材40を備えている。    

Description

明 細 書
光学モジュール 技術分野
[0001] 本発明は、 CCD等の撮像素子を用いた小型カメラ等に含まれる光学モジュール 関する。
背景技術
[0002] 近年、微小なカメラを搭載した携帯電話やノート型パソコン等の電子機器が広く提 供されるようになっている。これらの電子機器は小型化及び軽量ィ匕の要請が大きぐ これらに内蔵するカメラをより小型軽量ィ匕することが求められる。よって、カメラの光学 系部品である光学モジュールについてもより一層の小型軽量ィ匕を図る必要がある。
[0003] 光学モジュールについては、レンズを保持するレンズホルダ、このレンズホルダを移 動自在に収納する鏡筒、レンズホルダの側面力も延在させた係合ピンに係合する力 ム溝を備えてレンズホルダを光軸方向へ移動させる円筒カム、及びこの円筒カムを 駆動するァクチユエータを備えた構造が従来力 採用されている。小型化した光学モ ジュールであっても、上記基本構造は同様でありこれら複数の構成部品を精度よく組 付けることが必要となる。特に、携帯電話等に搭載される光学モジュールでは、基板 に配置した CCDに対して鏡筒を精度良く位置決めしてから円筒カムを配置すること、 また、円筒カムに効率良く駆動力が伝達されるようにァクチユエータを配置すること等 が重要となる。小型の光学モジュールの場合には、僅かな位置ずれであっても撮影 画像の劣化の原因となるので十分な注意を払って組付けを行う必要がある。
[0004] 特許文献 1は光学モジュールについて開示している。この特許文献 1では、光学モ ジュールに含まれる一般的な鏡筒とァクチユエータ (モータ)との配置関係が示されて いる。従来においては、鏡筒とモータとを個別に作製し、これらをフレームに組付ける という手法が採用されている。小型の光学モジュールを作製する場合にもこれと同様 であり、鏡筒と小型モータを個別に作製し、これらを基板上で合体させて 1個の光学 モジュールが形成される。このような組付け形態を採用する場合は、基板側に位置決 め用の穴やピン、或 ヽは位置決め用のガイドピンを配置してモータを所定位置に設 置する。
[0005] 特許文献 1 :特開平 7— 63972号 公報
発明の開示
発明が解決しょうとする課題
[0006] し力しながら、鏡筒側とモータ側とを個々に組付けする形態では、鏡筒が最初に基 板に固定され、鏡筒の位置が基準となる。鏡筒は CCDに対して位置決めしながら基 板に固定される。具体的には、基板上の CCDに焦点が合うように鏡筒が配置される 。ところが、実際の組付け作業では予定した位置力 鏡筒の位置がずれる場合が多 々ある。この位置ずれが誤差許容範囲を越えている場合には、 CCD中心に合うよう に鏡筒の位置を調整したり、 CCDの外形を基準に鏡筒の位置を調整して誤差を解 消することが必要となる。
[0007] 上記のように鏡筒側とモータ側とを個別に構成して基板に組付ける形態を採用した 場合、ァクチユエータの配置位置は鏡筒が基板上の所定位置に配置されていること を前提として決定されている。し力しながら、実際の組付け時には鏡筒位置がずれて しまう場合が多い。このように鏡筒の位置がずれると、この鏡筒にセットされる円筒力 ムの位置もずれることになる。その結果、円筒カムとモータとの相対位置が設計した 範囲から外れると!、う事態が発生する。このように組付け時のずれを含んで 、る光学 モジュールは、モータの駆動力が円筒カム側へ効率的に伝達できず所定の性能が 維持できない。
[0008] 本発明は、上記課題を解決し、鏡筒と駆動部側との位置関係を設計通りに組立維 持できる構成を備えた光学モジュールを提供する。
課題を解決するための手段
[0009] 上記目的は、撮像素子を含む基板と、前記基板に固定されると共に前記撮像素子 の撮像面に結像するレンズを含むレンズホルダを光軸方向に移動自在に収納する 鏡筒と、前記鏡筒の外側に配置され前記レンズホルダの側面力ゝら延在させた突起部 材に係合するカム面を備えて前記レンズホルダを移動させる円筒カムと、ァクチユエ 一タが輪列を介して前記円筒カムを駆動する駆動部とを備えた光学モジュールであ つて、前記鏡筒と前記駆動部との位置関係を設定する位置決め部材を備えた光学 モジュールにより達成できる。
[0010] 本発明によると、位置決め部材によって鏡筒と駆動部との位置関係が設定されるの で、組付け時に鏡筒の位置がずれた場合には駆動部側の位置もこれに対応してず れる。両者の位置関係に変更が生じないので、鏡筒を基準にセットされる円筒カムと 駆動部に含まれる輪列との位置関係も同様に維持される。よって、所期の設計通りに 円筒カムを駆動できる構造を実現した光学モジュールとなる。
[0011] また、前記位置決め部材には、前記ァクチユエータ及び前記輪列が予め組付けら れていることが望ましい。このように準備しておけば、位置決め部材を鏡筒の所定位 置にセットするだけで、鏡筒とァクチユエータ及び輪列との位置関係を確定できる。そ して、前記位置決め部材は、前記鏡筒及びァクチユエータを一体的の覆うカバーで とすることができる。この場合には、鏡筒用及びァクチユエータ用のカバーが兼用とな るので、さらに省スペース及びコスト低減を図ることもできる。なお、前記カバーには 前記鏡筒を位置決めする貫通穴を形成することで位置決めできる。
[0012] そして、撮像素子を含む基板と、前記基板に固定されると共に前記撮像素子の撮 像面に結像するレンズを含むレンズホルダを光軸方向に移動自在に収納する鏡筒と 、前記鏡筒の外側に配置され前記レンズホルダの側面力ゝら延在させた突起部材に係 合するカム面を備えて前記レンズホルダを移動させる円筒カムとを備える撮像部を組 み立てるステップと、前記鏡筒を貫通する貫通穴を有するカバーと、前記カバー上に 設定するァクチユエータと、前記カバー上に配置し前記ァクチユエータの駆動力を伝 達する輪列とを備える駆動部を組み立てるステップと、前記貫通穴に前記鏡筒を押 入し、前記円筒カムと前記輪列を係合し、前記撮像部と前記駆動部とを組合わせる ステップとを有する方法により、光学モジュールを組立てることができる。また、前述し た光学モジュールを備える携帯用電子機器は駆動力が効率良く伝達されるので、高 精度名装置となる。
発明の効果
[0013] 本発明によると、鏡筒側と駆動部側との位置関係を設計通りに維持した光学モジュ ールが得られる。
図面の簡単な説明 [0014] [図 1]実施形態に係る光学モジュールの内部が確認できるように示した分解斜視図で ある。
[図 2]図 1に示した第 3レンズホルダ及び第 2レンズホルダを拡大して示した図である。
[図 3]図 1で示した各部を組付けた状態の光学モジュールの断面構成を示した図であ る。
[図 4]図 3に示した円筒カムを 2つの構成部品に分割した状態を示した拡大図である
[図 5]円筒カムの内壁に形成したカム溝をより明確に確認できるように示した展開図で める。
[図 6]複数のカム部品により形成される円筒カムの変形例を模式的に示した図である
[図 7] (A)および (B)は、円筒カムの内壁に形成するカム溝を規定するのに好ましい カム曲線 (プロファイル)を示した図である。
[図 8]光学系ユニットを駆動する駆動部及び光学系ユニット上にセットされるカバーに ついて示した図である。
[図 9]光学系ユニット及びモータを組付けた完成状態の光学モジュールを断面構成 が確認できるように示した図である。
発明を実施するための最良の形態
[0015] 以下、本発明に係る一実施形態を図面を参照して説明する。図 1は、実施形態に 係る光学モジュールの内部が確認できるように示した分解斜視図である。なお、図 1 では特徴的な構成が理解し易くなるように途中に介在するフィルタや絞り等を省略し て示している。所定の配線パターンが形成された基板 1上に撮像素子となる CCD2 が固定されている。基板 1としては、例えばフレキシブル配線基板 (FPC基板)を採用 することができる。この基板 1に配置された CCD2上に撮影画像が結像するように光 学系ユニット 3が配置される。なお、本明細書でいう光学モジュールとは、上記光学 系ユニット 3及び後述するァクチユエータを含む構造と理解してもよいし、さらに、基 板 1をも含んだ構造と理解してもよい。以下、光学系ユニットに含まれる構造、光学系 ユニットで採用するのが好ましい円筒カム、また光学モジュールで採用するのが好ま LV、位置決め構成を順に説明する。
[0016] (光学系ユニットの構造)
光学系ユニット 3は、基板 1側から、鏡筒 11、弾性部材としてのリング状の円錐コィ ルバネ 12、第 3レンズホルダ 13、第 3レンズ 14、円筒カム 15、第 2レンズホルダ 16、 第 2レンズ 17、第 1レンズ 18及び第 1レンズホルダ 19を含んでいる。
[0017] 鏡筒 11は、底部側に底板 110を備えている。鏡筒 11は略円筒形状を成し、基板 1 に固定された CCD2を中心にして囲むように配置される。底板 110には CCD2の形 状に対応した形状の開口(図示せず)が形成されている。基板 1上に鏡筒 11をセット したときには、底板 110の開口に CCD2が嵌合した状態となる。また、底板 110は鏡 筒 11の本体筒状部分より大きな円盤状に形成され、その外周部分が外方へ突出し てフランジ部 115となって!/、る。後述するようにこのフランジ部 115上にコイルパネ 12 が載置される。
[0018] 鏡筒 11の側壁には複数のガイド溝 11A— 11Hが形成されている。これらガイド溝 中で 4つのガイド溝 11A、 11B、 11E及び 11Fは、鏡筒 11の側壁を一部切欠いて光 軸方向 LDに延びる長 、溝部として形成されて 、る。これら以外のガイド溝は側壁の 内面に形成されている。これらガイド溝 11A— 11Fについては後に詳述する力 4つ のガイド溝 11A、 11C、 11E、 11Gは第 3レンズホルダ 13を案内するために形成され 、他の 4つのガイド溝 11B、 11D、 11F、 11Hは第 2レンズホルダ 16を案内するため に形成されている。
[0019] コイルパネ 12は、リング状で下部に向うに従って巻き半径を拡大させた円錐型とな るように形成されて ヽる。このコイルパネ 12は鏡筒 11の本体円筒部分の外周に嵌め られ、前述したようにフランジ部 115上に載置される。製造工程において基板 1上に 配置される CCD2とレンズとの相対的な位置関係がずれるとレンズの合焦位置 (バッ クフォーカス)が CCD2の受光面力もずれるため鮮明な画像が得られなくなる。そこで 、レンズ位置を調整して焦点位置が CCD2の受光面に合うように、本光学モジュール では、レンズを案内する円筒カム 15を第 1レンズホルダ 19に付勢し、し力ゝも第 1レン ズホルダの位置を調整できる構造が採用されている。具体的には、円筒カム 15の底 部をコイルパネ 12で支持して、上方に位置して!/、る第 1レンズホルダ 19へ向けて付 勢する。このような構造とすることで、円筒カム 15の光軸方向 LDでのレンズ位置を安 定ィ匕させている。
[0020] 上記のように円筒カム 15の上面を第 1レンズホルダ 19の下面に当接させ、レンズ位 置を安定ィ匕させている構造についてより詳細に説明する。上記円筒カム 15の上面は 、図 1に示すように平坦に形成されている。円筒カム 15の上面が当接する第 1のレン ズホルダ 19の下面も平坦に形成されている。なお、後述するように円筒カム 15は回 転するので、この円筒カム 15の上面が当接する第 1レンズホルダ 19の下面は摺動面 となる。一方、第 1のレンズホルダ 19は、本光学モジュールが組立てられたときには 鏡筒 11の上部に固定される。より具体的には、鏡筒 11の上部外周に形成された雄 螺子部 117に螺合する雌螺子部(図示せず)が第 1のレンズホルダ 19の内壁に形成 されている。
[0021] 鏡筒 11は基板 1に設置される。この鏡筒 11の頂部に第 1レンズホルダ 19が固定さ れる。よって、第 1レンズホルダ 19の光軸方向 LDの位置は、基板 1から一定に保つこ とができる。この第 1のレンズホルダ 19に対して、コイルパネ 12を用いて円筒カム 15 を押付けることで、その光軸方向 LDでの円筒カム 15の位置を安定ィ匕できる。後述す るように、この円筒カム 15にはレンズ 14、 17を保持するレンズホルダ 13、 16が係合 しており、これらの移動を制御する。よって、円筒カム 15の位置を安定に保つことで、 複数のレンズ 14、 17の光軸方向での位置は円筒カム 15を介して所期位置に保持さ れる。
[0022] 特に、本実施形態では第 1レンズホルダ 19を鏡筒 11の上部にネジにより螺合して いるので、第 1のレンズホルダ 19を回転することにより円筒カム 15の高さ位置を簡単 に変更できる。よって、仮に CCD2の基板への組付け誤差によりバックフォーカスが ずれた場合でも、第 1のレンズホルダ 19を回転させることにより簡単にバックフォー力 スを補正することができる。本光学系ユニット 3では、鏡筒 11上部の第 1レンズホルダ 19を回転することにより、部品や組付け時の誤差を簡単に解消できる。
[0023] 上記のように、本光学モジュールは円筒カム 15の下にコイルパネ 12を配置すると いう簡単な工夫で、基準となる第 1レンズホルダ 19に対して精度良く位置決めを行い これにより従来のようにカム曲線の変更等を行うことなぐ基板に配置した CCD2上 に確実に焦点が合う構造を実現して 、る。
[0024] また、上記コイルパネ 12は円錐状に形成されていることで、円筒カム 15の底部に 広く接して上方へ付勢する。このコイルパネ 12は円錐状であるので、コイル直下にコ ィルが存在しな 、配置構成となるため圧縮時の密着高さを低くすることができる。す なわち、コイルパネ 12は狭いスペースでの配置が可能な形状となっている。そして、 このコイルパネ 12に負荷が加わったときに盛り上がり部分が下に沈んで平坦ィ匕する ように変形するので、稼動時には更に低く変形させることができる。よって、このコイル パネ 12は、小さい容積で比較的大きな荷重に耐えられるという特徴をもっている。な お、本実施形態では円錐状のコイルパネ 12を採用している力 板パネを螺旋状に卷 V、た 、わゆる竹の子パネを同様に採用することができる。
[0025] 上記円筒カム 15は鏡筒 11の外周を囲むように配置される。円筒カム 15の内壁に は複数のカム溝 (カム面) 151が形成されている。第 3レンズホルダ 13及び第 2レンズ ホルダ 16には、このカム溝 151に係合する突起部材として係合ピンが設けられて!/ヽ る。具体的には、第 3レンズホルダ 13は半径方向に突出する 2つの係合ピン 131— 1 、 131— 2を備え、同様に第 2レンズホルダ 16は半径方向に突出する係合ピン 161— 1、 161— 2を備えている。これら係合ピンをカムフォロアとして、所定軌跡で移動する ようにカム溝 151の形状が規定されている。円筒カム 15のカム溝 151と、係合ピン 13 1—1、 131— 2及び係合ピン 161— 1、 161— 2との関係については後に詳しく説明す る。
[0026] なお、円筒カム 15の外周には符号 159で示すラック部 159が形成されている。この ラック部 159は、図 1では図示していない駆動側のギアに嚙合する。これにより円筒力 ム 15が光軸方向 LDを中心に回動する。この動作に基づいて、第 3レンズホルダ 13 及び第 2レンズホルダ 16が光軸方向 LDに沿って移動されることになる。
[0027] 次に、光学系ユニット 3に含まれるレンズ及びこれらを保持するレンズホルダについ て説明する。第 3レンズ 14は基板 1に最も近 、位置に配置された補正系のレンズで あり、第 3レンズホルダ 13により保持されている。第 2レンズ 17は中間に配置された変 倍系のレンズであり、第 2レンズホルダ 16により保持されている。第 1レンズ 18は被写 体側に位置する対物レンズであり、第 1レンズホルダ 19により保持されている。第 3レ ンズホルダ 13及び第 2レンズ 17は、鏡筒 11内に収納された状態で円筒カム 15の内 壁に形成したカム溝 151により光軸方向 LD上の所望位置へ移動される。これにより 、第 3レンズ 14と基板 1との距離や各レンズ 14, 17, 18間の距離が変更されるので、 ワイド (WIDE)からテレ (TELE)まで焦点距離を変化させて撮像することが可能とな る。
[0028] 図 2は、図 1に示した第 3レンズホルダ 13及び第 2レンズホルダ 16を拡大して示した 図である。この 2つのレンズホルダは、図示するように互いに上下力も接近して重なる 状態で鏡筒 11内にセットされる。第 3レンズホルダ 13から半径方向に突出する 2つの 係合ピン 131— 1、 131— 2は鏡筒 11に形成したガイド溝 11 A、 11Eカゝら外側に突出 して円筒カム 15のカム溝 151と係合する。同様に、第 2レンズホルダ 16から半径方向 に突出する 2つの係合ピン 161— 1、 161— 2は鏡筒 11に形成したガイド溝 11C、 11F 力も外側に突出して円筒カム 15のカム溝 151と係合する。
[0029] 図 1も参照して図 2に基づいて、第 3レンズホルダ 13及び第 2レンズホルダ 16を順 に説明する。第 3レンズホルダ 13の周部には、 4つのガイド棒 132— 1— 132— 4がほ ぼ等間隔で形成されている。これらガイド棒 132— 1一 132— 4は、鏡筒 11の内部に形 成したガイド溝 11 A、 11C、 11E、 11Gと摺接するように形成されている。この内の 2 つのガイド棒 132— 1と 132— 3からは、前述した係合ピン 131—1, 131— 2が半径方 向に突出している。さらに、第 3レンズホルダ 13の周部には 4つの受溝 133— 1— 133 4が、上記ガイド棒 132の間に位置するように形成されている。これら受溝 133— 1— 133— 4は、同様の構造を有する第 2レンズホルダ 16のガイド棒 162—1— 162— 4を 受入れるように形成されて!、る。
[0030] 第 2レンズホルダ 16は、上記第 3レンズホルダ 13と同様の構造を有している。すな わち、第 2レンズホルダ 16の周部には、 4つのガイド棒 162— 1— 162— 4が形成され ている。これらガイド棒 162-1— 162-4は、鏡筒 11の内部に形成した残りのガイド 溝 11B、 11D、 11F、 11Hと摺接するように形成されている。この内の 2つのガイド棒 162-1、 162— 3からはピン 161— 1, 161— 2が半径方向に突出している。また、第 2 レンズホルダ 16の周部には受溝 163— 1— 163— 4が形成されている。これら受溝 16 3—1— 163— 4は、第 3レンズホルダ 13のガイド棒 132— 1— 132— 4を受入れるように 形成されている。
[0031] 上記第 3レンズホルダ 13と第 2レンズホルダ 16とは、互いのガイド棒と受溝とを係合 させることで、相互にスライド可能な状態を形成する。そして、この状態のレンズホル ダ 13、 16の各ガイド棒(132と 162)力 鏡筒 11の内面に形成したガイド溝 11 A— 1 1Hに係合することで、摺動自在に収納される。すなわち、本光学モジュールでは、レ ンズホルダ 13、 16の各ガイド棒(132と 162)が第 1のガイド部材、鏡筒 11の摺動面 に形成したガイド溝 11 A— 11Hが第 2のガイド部となり、これらレンズホルダ 13、 16を 鏡筒 11内で摺動自在に保持するガイド構造を実現する。よって、第 2レンズホルダ 1 6と第 3レンズホルダ 13とは、お互いに干渉することなく光軸方向への相対移動が可 能である。
[0032] さらに、図 2に示した第 2レンズホルダ 16及び第 3レンズホルダ 13の特徴的な構造 について説明する。第 2レンズホルダ 16から突出する係合ピン 161— 1、 161— 2は直 線 16L上で反対向きに配置されている。まず、このように異なる向きとなる係合ピンを 複数配置することで、第 2レンズホルダ 16の位置が光軸方向 LDに対して傾くことが 抑制されている。そして、この第 2レンズホルダ 16の下に配置した第 3レンズホルダ 1 3も同様の構造を備えている。第 3レンズホルダ 13からも係合ピン 131— 1、 131-2が 直線 13L上で反対向きに配置されている。し力も、直線 16Lと直線 13Lとは互いに交 差するように設定されている。
[0033] よって、第 2レンズホルダ 16及び第 3レンズホルダ 13は、互いにガイド棒と受溝とを 係合させることで 4点支持の状態を形成する。そのため、両レンズホルダで保持する レンズの光軸が、基板側の光軸方向 LDに対し傾くことをより確実に抑制できる。また 、上記のようにレンズホルダを複数の係合ピンで支持したので、応力を分散でき落下 時の耐衝撃性に優れた構造となる。また、各レンズホルダ 13、 16〖こはガイド棒と受溝 とが形成されているので、これらを互いに接近させることができる。また、一方のレンズ ホルダ力 延びるガイド棒に干渉しな 、ので、ガイド棒を長めに設定することが可能 である。
[0034] 例えば、互いのガイド棒 132、 162の長さを、第 2レンズホルダ 16及び第 3レンズホ ルダ 13が移動する範囲に設定しておくことで、第 2レンズホルダ 16及び第 3レンズホ ルダ 13が光軸方向 LDに対して傾くことがなくなる。また、ガイド棒 132、 162を長め に設定することで、鏡筒 11側に設けたガイド溝( 11 A等)から鏡筒内に進入する光を 遮光することができる。また、これらにより鏡筒 11内へのチリの進入を防ぐ防塵性をも 得ることができる。
[0035] 図 3は、図 1で示した各部を組付けた状態の光学モジュールの断面構成を示した図 である。この図 3では光学系ユニット 3の外周部を覆うカバー 40が図示されている。こ のカバー 40については後述する。この図 3により、前述した円筒カム 15を上方へ付 勢した構造をより明確に確認できる。すなわち、鏡筒 11の上部に形成した雄螺子部 117と、これに嚙合する第 1レンズホルダ 19の内壁に形成した雌螺子部 197が示さ れている。このように最上部の第 1レンズホルダ 19が鏡筒 11の上部に配置され、この 第 1レンズホルダ 19に円筒カム 15がコイルパネ 12の付勢力によって当接されるので 光軸方向 LDのレンズ位置が決定する。よって、第 3レンズ 14の位置を第 1レンズホ ルダ 19の位置により設定できる。そして、第 1レンズホルダ 19を鏡筒 11に対して回転 させることで、ノ ックフォーカス位置を CCD2の受光面に合わせるように位置決めでき る。
[0036] また、この図 3では、第 3レンズホルダ 13から半径方向に突出した係合ピン 131及 び第 2レンズホルダ 16から半径方向に突出した係合ピン 161を確認できるよう示して いる。前述したように、各レンズホルダ 13, 16はそれぞれ 2個ずつの係合ピンを有し ているが、図 3ではその 1つずつを図示している。この図 3によると、係合ピン 131及 び係合ピン 161が鏡筒 11の外側に配置した円筒カム 15の内壁に形成したカム溝 15 1に係合する様子が確認できる。この円筒カム 15が下部に配置したコイルパネ 12に より上方へ付勢されているので、レンズホルダ 13, 16がこれに伴って移動し第 1レン ズホルダ 19の位置を基準にして光軸方向 LDでの位置が正確に定まる。
[0037] (円筒カム)
本実施形態で例示する光学系ユニット 3で採用する円筒カム 15は、その内壁に形 成するカム溝が特徴的な構成を有している。更にこの点について説明する。上記図 3 では、円筒カム 15のより詳細な構成が示されている。本光学系ユニット 3に組み込ま れている円筒カム 15は、上カム 15Uと下カム 15Lとの 2個のカム部品によって形成さ れている。光学モジュールの小型化を図るためには、円筒カム 15についても小型に する必要がある。しかし、この円筒カム 15の内壁には上記のように、第 3レンズホルダ 13及び第 2レンズホルダ 16を光軸方向 LDに精度良く案内するためのカム溝 151を 形成しなければならない。そのため、本光学系ユニット 3では円筒カム 15を分割した カム部品を組合せて作製して 、る。
[0038] 図 4は、図 3に示した円筒カム 15を 2つの構成部品、上カム 15Uと下カム 15Lとに 分割した状態を示した拡大図である。円筒カム 15は内壁に形成したカム溝 151の部 分で上下に分割されている。このカム溝 151には、前述したように、第 3レンズホルダ 13の係合ピン 131と第 2レンズホルダ 16の係合ピン 161が係合する。これらの係合ピ ンを案内するカム曲線 (プロファイル)に基づいて、カム溝 151が形成されている。力 ム曲線の形状が端部に現れるように、上カム 15Uと下カム 15Lとの分割ライン 152が 設定されている。
[0039] よって、上下のカム 15U, 15Lが接続される部分にカム溝 151が形成される。接続 される一方のカム 15Uの端面にカム溝 151の半分が形成され、他方のカム 15Lの端 面にカム溝 151の残りの半分が形成された状態となる。このような構成であれば、 2つ の金型を用 ヽて上カム 15U及び下カム 15Lをそれぞれ作製し、これを合わせること で精度良く円筒カム 15を作製できる。したがって、カム溝 151が細い溝であっても円 筒カム 15を比較的容易に作製できる。この本円筒カム 15は、金型を用いたプラスチ ック射出成型等により、薄ぐ小型のカム部品を組合せて作製できる。また、アンダー カット等の処理が不要となるので、簡単な金型構成とすることができる。し力も、分割ラ イン 152はカム曲線に沿って設定されるので、設計したカム曲線が分断されることが ない。よって、一体に成形したカム溝と同様に精度よく係合ピン 131及び係合ピン 16 1を案内できる。
[0040] また、図 3に示すように係合ピン 131, 161の頭部は、横断面が略三角形状であり、 この部分がカムフォロアとなってカム溝 151に係合する。カム溝 151は、この係合ピン の形状に対応するように横断面が「V字」状に形成されて!、る。このカム溝 151の形 状は図 4でも確認できるように示され、中央部の短い垂直部 153と、この上下に設け た傾斜部 154とを含んでカム溝 151が形成されて!、る。 [0041] 上記のように係合ピン 131、 161は頭部力 傾斜した傾斜カムとなっている。この係 合ピンをカムフォロアとして案内するようにカム搆 151が形成されて!、る。このように係 合ピンの頭部に傾斜カムを採用した場合には、円筒カム 15の肉厚を確保しながら小 径ィ匕を図ることができる。また、係合ピンの頭部に断面が矩形となる平面カムを採用し てもよい。この場合にはズーム動作中の位置制度を高めることができる。
[0042] なお、上カム 15Uの上面からカム溝 151まで凹部 158が形成されている。図 4では 上カム 15Uの凹部 158のみが確認できる。この凹部 158は第 2レンズホルダ 16の係 合ピン 161を円筒カム内のカム溝 151へ誘導するための案内溝である。係合ピン 16 1は直線上で逆向きに配置されているので、 2個の凹部 158が上カム 15Uに形成さ れている。ただし、第 3レンズホルダ 13及び第 2レンズホルダ 16を下カム 15L上にセ ットしてから、上カム 15Uを被せるようにして組付けを行う場合には、この凹部 158を 形成する必要はない。図 4は、第 2レンズホルダに対応するカム溝と第 3レンズホルダ に対応するカム溝は、レンズホルダを誘導する案内溝で連結されている。第 3レンズ ホルダを凹部 158から第 2レンズホルダを案内するカム溝に誘導し、さらに連結され ている案内溝を通過して第 3レンズホルダを案内するカム溝に到達する。次に、第 2 レンズホルダを凹部 158から誘導して対応するカム溝に設定する。
[0043] また、上カム 15Uには下向きの凸部 156が形成され、一方の下カム 15Lにはこれを 受ける受け部 157が形成されている。これらの凹凸は反対位置にも同様に形成され ている。円筒カム 15は、これらの凹凸部 156, 157を基準位置にして上下カム 15U、 15Lが接続されて、作製される。よって、円筒カム 15は精度良く組上げることができ、 内面には位置精度よくカム溝を配置できる。上カム 15U及び下カム 15Lは、嵌合に より一体に駆動可能な構造となっているが、接着剤あるいは、レーザ溶着等により一 体に形成することも可能である。
[0044] 図 5は、円筒カム 15の内壁に形成したカム溝 151の形状を確認できるように示した 展開図である。この図 5によると、円筒カム 15の内壁に形成したカム溝 151の状態を より明確に確認できる。カム溝 151は異なるカム曲線によって規定されるカム溝 151— 1とカム溝 151—2とを含んでいる。カム溝 151— 1は、第 2レンズホルダ 16に対応した 変倍系のレンズ動作を規定している。カム溝 151— 2は、第 3レンズホルダ 13に対応 した補正系のレンズ動作を規定している。すなわち、第 2レンズホルダ 16の係合ピン 161— 1、 161— 2がカム溝 151— 1に係合する。第 3レンズホルダ 13の係合ピン 131— 1、 131— 2がカム溝 151—2に係合する。
[0045] この図 5により、上カム 15Uと下カム 15Lとの分割ライン 152力 上記カム溝 151— 1 、 151— 2に沿ってを分割するように設定されていることが確認できる。また、この図 5 によると、カム溝 151の垂直部 153と傾斜部 154との関係も確認できる。また、上記分 割ライン 152はカム曲線の部分は曲線となる力 カム溝を形成しない未カ卩ェ領域で は直線となって 、る。このように直線とすることで無駄なスペースの発生を抑制して ヽ る。特に分割ライン 152に光軸方向 LDと平行となる平行分割線部分 152LDを形成 することで円筒カム 15の周方向での無駄なスペースを抑制できる。ただし、周方向に 幾分かの余裕がある場合には、この分割線部分 152LDを斜めにしてもよい。
[0046] なお、図 5に示したように 1つの分割ライン 152が異なるカム曲線を含むように形成 すれば、カム部品の接続部分に異なる形状のカム溝 151-1、 151-2が形成される。 このようなカム溝の配置では、円筒カムの高さを低く抑えて複数のレンズホルダを光 軸方向へ移動できる構成が実現される。よって、光学モジュールの小型化を促進で きる。
[0047] 図 6は、複数のカム部品により形成される円筒カム 15の変形例を模式的に示した図 である。図 4、 5で示した円筒カム 15は上下 2個のカム 15U、 15Lで構成されていた 力 図 6は構成部品を 3個とした場合の例を示している。この円筒カム 15は上カム 15 U、中間カム 15M、下カム 15Lの 3個のカム部品力も構成されている。上カム 15Uと 中間カム 15Mとは分割ライン 152— 1により分離され、下カム 15Lと中間カム 15Mと は分割ライン 152-2により分離される。
[0048] 上記分割ライン 152-1、分割ライン 152-2は、異なるカム曲線に基づいて設定さ れている。これらの分割ラインも光軸方向 LDと平行となる平行分割線部分 152LDを 含んで周方向での無駄なスペースを抑制している。分割ライン 152-1では曲線部 1 52— 1CAが本来のカム曲線である。同様に分割ライン 152— 2では傾斜した直線部 1 52— 2CAが本来のカム曲線である。この図 6では分割ラインのみを図示しているが、 図 5の場合と同様にカム曲線を中央にしてカム溝が形成される。すなわち、本変形例 についてもカム部品がカム曲線に沿って分割され、各カム部品の端面にカム溝が対 向するように形成されている。よって、これらをセットすると上カム 15Uと中間カム 15 Mとの間、及び下カム 15Lと中間カム 15Mとの間にカム溝が形成される。この図 6に 示す円筒カム 15の場合は、補正系のレンズホルダ力もの係合ピンが曲線部 152-1 CAに係合するように設定される。同様に変倍系のレンズホルダ力もの係合ピンが曲 線部 152— 2CAに係合するよう設定される。
[0049] また、上カム面および下カム面も断面 V字形状として、レンズホルダの突起部を誘 導してカム面上にレンズホルダを配置することもできる。この場合には、カム 15の光 軸側端部にはレンズホルダを誘導する凹部 (溝部)、他方のレンズホルダが配置され るカム面あるいは他方のレンズホルダを誘導するための凹部を経由して当該レンズホ ルダを誘導することも可能である。
[0050] 図 6で示した円筒カム 15の場合には、高さ方向に重ねて異なるカム溝を形成できる 。よって、図 5で示した 1つの円周上に異なる形状のカム溝を同時に配置していた場 合と比較すると 1種類のカム溝を余裕をもって周方向に配置することができる。よって 、カムの回転角を大きく設定できるので、ァクチユエータのトルクを小さくできる。この 図 6では 3個のカム部品から円筒カムを構成する例を示したが、さらに多くの分割部 品から構成するようにしてもよい。この図 6に示した円筒カム 15では、カム曲線を 3組 同一面上に配置したものであるので、レンズホルダの自由度が制限されるためレンズ ホルダの光軸方向に対する角度が安定する利点を有する。このためガイド溝の数を 減らすことも可能である。
[0051] 図 7は、上記円筒カム 15の内壁に形成するカム溝を規定するのに好ましいカム曲 線 (プロファイル)を示した図である。図 7 (A)は変倍系レンズ用のカム溝 151— 1を規 定するカム曲線 151— 1CAを示して!/、る。同(B)は補正系レンズ用のカム溝 151—2 を規定するカム曲線 151— 2CAを示している。すなわち、カム曲線 151— 1CAに基づ いて、第 2レンズホルダ 16が光軸方向に移動される。他方のカム曲線 151— 2CAに 基づ 、て、第 3レンズホルダ 13が光軸方向に移動される。
[0052] より具体的に説明すると、第 2レンズホルダ 16の半径方向へ突出した係合ピン 161 —1、 161— 2力 カム曲線 151— 1CAによって規定されたカム溝 151— 1により光軸方 向へ移動される。第 3レンズホルダ 13の半径方向へ突出した係合ピン 131— 1、 131 —2が、カム曲線 151— 2CAによって規定されたカム溝 151— 2により光軸方向へ移動 される。なお、この図 7ではズーム機能に加えて望遠側にマクロ機能を付加した場合 のカム曲線を例示して ヽる。
[0053] 本光学モジュールは携帯電話等にも搭載できるように小型化される。上記のように ズーム機能を備えた場合には、各レンズホルダを精度良く所期位置へ移動させること が重要である。そのために、従来においてレンズホルダが広角位置や望遠位置にあ ることを確認するための位置検出部材を配置するという手法が一般的に採用される。 しかし、このように位置検出部材を別途に設けると、光学モジュールが大型化してしま うので小型化の要請に反することになる。また、携帯電話等に用いる光学モジュール は極めて小さぐ円筒カムの円周角に対して周長が短い。よって、回転角度に対する レンズホルダの光軸方向の位置検出には高い精度が必要となる。しかし、位置検出 部材を設けることが困難である。図 7で示すカム曲線は、変倍系および補正系のカム 曲線に平坦部を設けることで、広角端および望遠端において、位置検出なしで所望 の特性を達成可能とする。
[0054] 本光学系ユニット 3では、円筒カム 15の外周にはラック部 159が形成されており、ァ クチユエータの駆動力はこのラック部 159に嚙合するギアにより伝達される。寸法精 度の高いギアを採用してもバックラシュの影響を除くことは困難である。また、他部品 や組付け誤差の影響もある。本光学ユニット 3では、位置検出部材がないために、高 い精度で回転カムの位置検出はできない。ズーム動作で円筒カム 15を広角端と望 遠端の間で回転したときに、所定角度分ァクチユエータで回転させたにもかかわらず 、初期位置のずれやバックラッシュの影響で、所望の広角端あるいは望遠端の位置 に円筒カムが回転して 、な 、可能性がある。
[0055] そこで、本実施形態では図 7に示したように、レンズをズーム移動させる曲線部分( ズーム部)の両端、すなわち広角端 (ワイド端)及び望遠端 (テレ端)に、光軸方向 LD に直交する所定長の平坦部を備えたカム曲線を採用する。すなわち、本実施形態で は円筒カム 15の変倍系および補正系のカム曲線として、このような平坦部を備えた カム曲線を採用する。これにより、位置検出部材で高精度の位置検出を行わなくても 、平坦部にレンズホルダがあれば、広角端或いは望遠端の性能を達成することがで きる。レンズホルダの位置を考えると、広角端の平坦部にレンズホルダがあるときに、 平坦部の距離を考慮してァクチユエータを駆動することで、結像距離がずれても望遠 端の平坦部に移動させることで望遠端での性能を維持することができる。よって、バッ タラシュや組付け誤差等による影響を解消し、広角及び望遠位置で所定の性能を安 定して達成することができる。
[0056] 広角端から望遠端へ移動させる場合を例として説明する。本光学系では、初期位 置を検出するために、広角端側に円筒カムを移動させて、円筒カムの回転限界で円 筒カムが停止した位置から、所定のパルス数だけァクチユエータに駆動パルスを与え て望遠側に回転カムを戻した平坦部上の位置を初期位置と設定している。従って、 初期位置は位置誤差を有していることが予想される。例えば、広角端から望遠端まで の回転角度を 500パルス、平坦部の回転角度を 50パルスあるものとする。初期位置 が広角端から 25パルスの位置とする場合、望遠端に移動させるため、望遠端から 25 パルスの平坦部上の位置を目標として、 550パルス駆動パルスをカ卩えることとする。さ すれば、目標値の前後 25パルス以内に移動すれば、望遠端に円筒カムを回転駆動 したこととなり、所望の移動は達成されたこととなる。
[0057] さらに、図 7で例示するカム曲線は望遠側にマクロ撮影用の曲線と平坦部が付加さ れている。この場合も、望遠端の平坦部を経て力もマクロ状態に入るので精度良く合 焦する。さらに、平坦部で所定の機能を達成できるため、安定した動作が可能となる
[0058] 上記のようにカム曲線の所定位置に、所定長さの平坦部を付加するという改良で広 角位置、望遠位置及びマクロ位置でのレンズ位置のずれを抑制できる。本構成では 、広角位置、望遠位置及びマクロ位置にレンズがあることを確認するための位置検出 部材を新たに設ける必要がない。よって、小型化及び低コストィ匕を図った簡単な構成 で、広角及び望遠で安定してズーム機能またはマクロ機能を使った撮影が可能な光 学モジュールを提供できる。なお、図 7に示すように望遠側の平坦部に連続してマク 口用のカム曲線を形成すると、マクロ側につ 、ても円筒カムの位置ズレを吸収するこ とにより安定してマクロ機能を利用できる。ただし、マクロ機能は本光学モジュールに 必須のものではな 、ので、マクロ用の曲線部分を含まな 、カム曲線としてもよ!/、。
[0059] (位置決め構造)
更に、本光学モジュールは、鏡筒 11側に対して駆動部側を精度良く位置決めする 優れた構成を備えている。以下では、この点ついて説明する。本光学モジュールの 駆動部はァクチユエータ及びギアによって構成する輪列を含んでいる。ァクチユエ一 タの駆動力は輪列を介して前記円筒カムに伝達され、前記円筒カムが駆動される。 このように円筒カム 15がァクチユエータにより駆動されると、第 3レンズホルダ 13と第 2 レンズホルダ 16とが光軸方向に移動する。そして、本光学モジュールでは光学系ュ ニット 3を覆うカバーを介して、光学系ユニット 3及び駆動部側を位置決めする構成を 採用する。このような構成を採用すると、鏡筒 11の位置がずれた場合でも、これに伴 つて駆動部側の位置が鏡筒 11との相対位置関係を維持して移動するので、駆動系 に関して所期の性能を実現するために容易な構成となる。また、この構成を採用する と光学系ユニット 3用のカバーとァクチユエータ用のカバーとを一体化できるので省ス ペース化を図ることもできる。
[0060] 図 8及び図 9を参照して、本光学モジュールで採用している位置決め部材としての カバー 40を利用した位置決めの構造を説明する。図 8は、光学系ユニット 3を駆動す る駆動部及び光学系ユニット 3の上にセットされるカバーについて示した図である。こ の図 8は、前述した光学系ユニット 3との関係が確認できるように上部に位置する第 1 レンズ 18及び第 1レンズホルダ 19を示している。図 9は、光学系ユニット 3及びァクチ ユエータとしてのモータ 30を組付けた完成状態の光学モジュールを断面構成が確認 できるように示した図である。
[0061] 本光学モジュールでは、モータ 30によって円筒カム 15が駆動される。図 8ではモー タ 30の各要素を分解状態で示している。モータ 30はカバー 40と基板 31を用いて組 立てられ、このカバー 40が光学系ユニット 3の基板 1上にセットされる。このモータ 30 は、 1対のコイル 32、ステータ 33を備え、中央部にはロータ 35を有している。
[0062] カバー 40の所定位置に固定される軸 41とロータ 35用の軸とが同軸に配置され、軸 41を中心としてロータ 35が回転するように設定されている。軸 41はカバー 40に形成 した穴 51にセットされている。また、ロータ 35と一体に回転するギア 36が配設されて いる。また、カバー 40の他の位置に軸 42が固定されており、この軸 42には前記ギア 36と嚙合するギア 43及びこのギア 43と一体に回転するギア 44が設けられている。こ のギア 44に円筒カム 15の外周に形成したラック部 159が嚙合する。軸 42はカバー 4 0に形成した穴 52にセットされる。
[0063] 図 8に示した各部が組付けられた状態を示したのが図 9である。図 9で示すように、 第 1レンズホルダ 19はカバー 40に形成した開口 45に嵌合した状態となる。第 1レン ズホルダ 19は鏡筒 11の頂部に固定されているので、第 1レンズホルダ 19に対して力 バー 40の開口 45 (貫通穴)をセットすれば、カバー 40に対して鏡筒 11の位置が定ま る。すなわち、第 1レンズホルダ 19を介して、カバー 40に対する鏡筒 11及び円筒力 ム 15の位置が定まることになる。
[0064] 一方、軸 41, 42はカバー 40の所定位置に位置決めされている。図 8に示したよう に、モータ 30は軸 41を基準に位置決めされる。よって、図 8及び図 9に示す構造で はカバー 40を介して、鏡筒 11及び円筒カム 15側とモータ 30及びこれに接続さたギ ァ列側との相対位置が固定関係になる。よって、仮に鏡筒 11の設定位置がずれた 場合でも、カバー 40を介してモータ 30を含んだ駆動部側の位置も光学系ユニット 3 の位置に対応して移動する。つまり、円筒カム 15とモータ 30及びギア列との相対位 置関係は維持されズレが発生しない。
[0065] 以上のように、本光学モジュールではカバー 40を介して、鏡筒位置を基準とする光 学系ユニット 3側と駆動部側との位置決めを行うので、円筒カム 15の外周に設けたラ ック部 159とモータ 30の駆動力を伝達するギア列(輪列) 36、 43, 44との間に位置 ずれが発生することがない。よって、上記構成を採用した本光学モジュールはモータ の駆動力を効率的に円筒カム 15に伝達できる。
[0066] 上記実施形態では、図 8に示したように、カバー 40側に予めモータ 30及び輪列 36 、 43, 44を組付けている。このように準備しておくと、カバー 40の所定箇所に光学系 ユニット 3をセットするだけで、モータ 30側と鏡筒 11側との相対位置を設計通りの関 係とすることができる。なお、本実施形態は基板を用いた光学モジュールについて例 示して 、るが上記カバーを用いたことによる効果はこの構造に限るものではな 、。基 板を採用しない光学モジュールの場合には、カバーに直接、鏡筒及びァクチユエ一 タを組付ければ上記と同様の効果を得ることができる。
以上本発明の好ましい一実施形態について詳述した力 本発明は係る特定の実 施形態に限定されるものではなぐ特許請求の範囲に記載された本発明の要旨の範 囲内において、種々の変形 ·変更が可能である。

Claims

請求の範囲
[1] 撮像素子を含む基板と、前記基板に固定されると共に前記撮像素子の撮像面に結 像するレンズを含むレンズホルダを光軸方向に移動自在に収納する鏡筒と、前記鏡 筒の外側に配置され前記レンズホルダの側面力ゝら延在させた突起部材に係合する力 ム面を備えて前記レンズホルダを移動させる円筒カムと、ァクチユエ一タが輪列を介 して前記円筒カムを駆動する駆動部とを備えた光学モジュールであって、
前記鏡筒と前記駆動部との位置関係を設定する位置決め部材を備えたことを特徴 とする光学モジュール。
[2] 前記位置決め部材には、前記ァクチユエータ及び前記輪列が予め組付けられている ことを特徴とする請求項 1に記載の光学モジュール。
[3] 前記位置決め部材は、前記鏡筒及びァクチユエータを一体的の覆うカバーであるこ とを特徴とする請求項 1又は 2に記載の光学モジュール。
[4] 前記カバーには、前記鏡筒を位置決めする貫通穴が形成されていることを特徴とす る請求項 3に記載の光学モジュール。
[5] 撮像素子を含む基板と、
前記基板に固定されると共に前記撮像素子の撮像面に結像するレンズを含むレン ズホルダを光軸方向に移動自在に収納する鏡筒と、
前記鏡筒の外側に配置され前記レンズホルダの側面力 延在させた突起部材に係 合するカム面を備えて前記レンズホルダを移動させる円筒カムとを備える撮像部を組 み立てるステップと、
前記鏡筒を貫通する貫通穴を有するカバーと、
前記カバー上に設定するァクチユエータと、
前記カバー上に配置し前記ァクチユエータの駆動力を伝達する輪列とを備える駆 動部を み立てるステップと、
前記貫通穴に前記鏡筒を押入し、前記円筒カムと前記輪列を係合し、前記撮像部 と前記駆動部とを組合わせるステップとを有することを特徴とする光学モジュールの 組立て方法。
[6] 請求項 1乃至 4のいずれか一項に記載の光学モジュールを備える携帯用電子機器。
PCT/JP2004/015017 2003-10-22 2004-10-12 光学モジュール WO2005040886A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/408,422 US7330648B2 (en) 2003-10-22 2006-04-21 Optical module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-361444 2003-10-22
JP2003361444A JP2005128116A (ja) 2003-10-22 2003-10-22 光学モジュール

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/408,422 Continuation US7330648B2 (en) 2003-10-22 2006-04-21 Optical module

Publications (1)

Publication Number Publication Date
WO2005040886A1 true WO2005040886A1 (ja) 2005-05-06

Family

ID=34509938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/015017 WO2005040886A1 (ja) 2003-10-22 2004-10-12 光学モジュール

Country Status (4)

Country Link
US (1) US7330648B2 (ja)
JP (1) JP2005128116A (ja)
CN (1) CN1871535A (ja)
WO (1) WO2005040886A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1841209A1 (en) * 2006-03-31 2007-10-03 Sony Corporation Image pickup apparatus and mobile phone

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI240845B (en) * 2004-06-30 2005-10-01 Benq Corp Camera
CN101107555B (zh) * 2005-01-31 2010-10-06 柯尼卡美能达精密光学株式会社 摄像装置以及电子设备
KR20070110275A (ko) * 2005-01-31 2007-11-16 코니카 미놀타 옵토 인코포레이티드 촬상 장치 및 전자 기기
US7715129B2 (en) * 2005-07-29 2010-05-11 Flextronics Ap, Llc Method for aligning and assembling two lens pieces, and a machine to accomplish this task
US7573011B2 (en) * 2005-09-08 2009-08-11 Flextronics Ap, Llc Zoom module using actuator and lead screw with translating operation
US7590505B2 (en) * 2005-09-08 2009-09-15 Flextronics Ap, Llc Manufacturable micropositioning system employing sensor target
US7531773B2 (en) 2005-09-08 2009-05-12 Flextronics Ap, Llc Auto-focus and zoom module having a lead screw with its rotation results in translation of an optics group
US7469100B2 (en) * 2005-10-03 2008-12-23 Flextronics Ap Llc Micro camera module with discrete manual focal positions
JP4748679B2 (ja) * 2006-06-29 2011-08-17 キヤノン株式会社 カム筒およびレンズ鏡筒
JP4237790B2 (ja) * 2006-08-24 2009-03-11 シャープ株式会社 レンズユニットおよび撮像装置
CN100555018C (zh) * 2006-08-25 2009-10-28 鸿富锦精密工业(深圳)有限公司 镜头模组及其间隔环
US8112128B2 (en) * 2006-08-31 2012-02-07 Flextronics Ap, Llc Discreetly positionable camera housing
US7580209B2 (en) * 2006-09-15 2009-08-25 Flextronics Ap, Llc Auto-focus and zoom module with vibrational actuator and position sensing method
EP1912427B1 (en) * 2006-10-13 2009-12-09 STMicroelectronics (Research & Development) Limited Camera module lens cap
US7983556B2 (en) * 2006-11-03 2011-07-19 Flextronics Ap Llc Camera module with contamination reduction feature
JP4897535B2 (ja) 2007-03-29 2012-03-14 セイコープレシジョン株式会社 レンズ駆動装置
US20090015706A1 (en) * 2007-04-24 2009-01-15 Harpuneet Singh Auto focus/zoom modules using wafer level optics
JP2010525412A (ja) 2007-04-24 2010-07-22 フレックストロニクス エーピー エルエルシー 底部にキャビティを備えるウエハーレベル光学部品とフリップチップ組立を用いた小型フォームファクタモジュール
CN101295121B (zh) * 2007-04-27 2011-04-06 百隆光电股份有限公司 小型化的自动对焦镜头模块
US7798730B2 (en) * 2007-05-07 2010-09-21 Flextronics Ap, Llc Camera blade shutter module
US8083421B2 (en) * 2007-05-07 2011-12-27 Flextronics Ap, Llc AF/zoom shutter with two blades function
US7825985B2 (en) 2007-07-19 2010-11-02 Flextronics Ap, Llc Camera module back-focal length adjustment method and ultra compact components packaging
JPWO2009050967A1 (ja) * 2007-10-16 2011-03-03 セイコープレシジョン株式会社 レンズ駆動装置
US8488046B2 (en) * 2007-12-27 2013-07-16 Digitaloptics Corporation Configurable tele wide module
KR101591954B1 (ko) * 2009-12-21 2016-02-04 엘지이노텍 주식회사 이동통신 단말기
KR101430634B1 (ko) * 2010-11-19 2014-08-18 한국전자통신연구원 광 모듈
KR101822399B1 (ko) * 2010-12-17 2018-01-30 삼성전자주식회사 광학계 렌즈의 위치 조정유닛
WO2012161802A2 (en) 2011-02-24 2012-11-29 Flextronics Ap, Llc Autofocus camera module packaging with circuitry-integrated actuator system
US8545114B2 (en) 2011-03-11 2013-10-01 Digitaloptics Corporation Auto focus-zoom actuator or camera module contamination reduction feature with integrated protective membrane
US8982267B2 (en) 2011-07-27 2015-03-17 Flextronics Ap, Llc Camera module with particle trap
US8811814B2 (en) * 2011-12-05 2014-08-19 Flextronics Ap, Llc Method and system for camera module alignment
TWI571666B (zh) * 2012-04-02 2017-02-21 鴻海精密工業股份有限公司 鏡筒及鏡頭模組
US9746636B2 (en) 2012-10-19 2017-08-29 Cognex Corporation Carrier frame and circuit board for an electronic device
US9513458B1 (en) * 2012-10-19 2016-12-06 Cognex Corporation Carrier frame and circuit board for an electronic device with lens backlash reduction
JP6270370B2 (ja) * 2013-08-08 2018-01-31 キヤノン株式会社 レンズ鏡筒および撮像装置
USD805078S1 (en) 2015-05-07 2017-12-12 Datalogic Ip Tech S.R.L. Barcode reading module
JP6481944B2 (ja) * 2015-09-18 2019-03-13 パナソニックIpマネジメント株式会社 撮像装置
WO2017218206A1 (en) * 2016-06-13 2017-12-21 CapsoVision, Inc. Method and apparatus of lens alignment for capsule camera
JP7418082B2 (ja) * 2019-11-11 2024-01-19 キヤノン株式会社 撮像装置
JP2022038144A (ja) * 2020-08-26 2022-03-10 株式会社コシナ 光学機器のレンズ装置
CN114745493A (zh) * 2022-04-29 2022-07-12 北京可利尔福科技有限公司 摄像模组和电子设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003090950A (ja) * 2001-09-18 2003-03-28 Nidec Copal Corp レンズ駆動装置
JP2003279827A (ja) * 2002-03-22 2003-10-02 Ricoh Co Ltd ズーム鏡胴

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4799073A (en) * 1986-12-15 1989-01-17 Fuji Photo Film Co., Ltd. Lens shifting mechanism
JP3019179B2 (ja) 1993-08-24 2000-03-13 キヤノン株式会社 レンズ鏡筒
JP3380049B2 (ja) * 1994-06-21 2003-02-24 ペンタックス株式会社 撮像装置
JP3641333B2 (ja) * 1996-11-29 2005-04-20 ペンタックス株式会社 ズームレンズ及びズームレンズを有するカメラ
KR20050067081A (ko) * 2003-12-26 2005-06-30 교세라 가부시키가이샤 카메라 모듈 및 이 카메라 모듈을 구비한 휴대 단말기
JP2005300606A (ja) * 2004-04-06 2005-10-27 Smk Corp カメラモジュール

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003090950A (ja) * 2001-09-18 2003-03-28 Nidec Copal Corp レンズ駆動装置
JP2003279827A (ja) * 2002-03-22 2003-10-02 Ricoh Co Ltd ズーム鏡胴

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1841209A1 (en) * 2006-03-31 2007-10-03 Sony Corporation Image pickup apparatus and mobile phone
US7719601B2 (en) 2006-03-31 2010-05-18 Sony Corporation Image pickup apparatus and mobile phone

Also Published As

Publication number Publication date
JP2005128116A (ja) 2005-05-19
US7330648B2 (en) 2008-02-12
US20060216014A1 (en) 2006-09-28
CN1871535A (zh) 2006-11-29

Similar Documents

Publication Publication Date Title
WO2005040886A1 (ja) 光学モジュール
JP5779179B2 (ja) レンズユニット
US7414802B2 (en) Lens apparatus and camera
JP5281139B2 (ja) レンズ鏡筒、撮像装置およびレンズ鏡筒の製造方法
JP4953874B2 (ja) レンズ鏡胴、撮像装置および情報端末装置
US7777976B2 (en) Imaging device
US7780362B2 (en) Retracting mechanism of a lens barrel
JPH02220014A (ja) ズームレンズ鏡筒
WO2013114901A1 (ja) レンズ鏡筒
WO2013114908A1 (ja) レンズ鏡筒
JP2015083999A (ja) レンズ鏡筒
KR102573058B1 (ko) 카메라 모듈 및 전자기기
KR20140036648A (ko) 경통 조립체 및 이를 구비한 촬영장치
JP2011221244A (ja) レンズ組立体及びそのレンズの組立方法
JP5272579B2 (ja) レンズ鏡筒及び撮像装置
WO2005040888A1 (ja) 光学モジュール
JP2006203616A (ja) イメージセンサモジュール
JP2005128115A (ja) 円筒カム及びこれを含む光学モジュール
JP4831985B2 (ja) ズームレンズ駆動装置、ズームレンズ撮像装置、ファインダ、カメラ
JP2005128117A (ja) 円筒カム及びこれを含む光学モジュール
KR20050021953A (ko) 줌 렌즈 유닛
JP4163996B2 (ja) 光学モジュール
JP3597291B2 (ja) 移動機構
JP2592510Y2 (ja) 鏡枠駆動機構
JP2005227617A (ja) 光学モジュール

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480031393.7

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11408422

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 11408422

Country of ref document: US

122 Ep: pct application non-entry in european phase