WO2005035667A1 - 異方性色素膜用色素、異方性色素膜用色素組成物、異方性色素膜および偏光素子 - Google Patents

異方性色素膜用色素、異方性色素膜用色素組成物、異方性色素膜および偏光素子 Download PDF

Info

Publication number
WO2005035667A1
WO2005035667A1 PCT/JP2004/015450 JP2004015450W WO2005035667A1 WO 2005035667 A1 WO2005035667 A1 WO 2005035667A1 JP 2004015450 W JP2004015450 W JP 2004015450W WO 2005035667 A1 WO2005035667 A1 WO 2005035667A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituent
dye
film
anisotropic dye
Prior art date
Application number
PCT/JP2004/015450
Other languages
English (en)
French (fr)
Inventor
Tomio Yoneyama
Ryuichi Hasegawa
Hideo Sano
Junichi Oizumi
Masaaki Nishimura
Masami Kadowaki
Original Assignee
Mitsubishi Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corporation filed Critical Mitsubishi Chemical Corporation
Priority to KR1020067007088A priority Critical patent/KR101135415B1/ko
Priority to EP20040792616 priority patent/EP1679350A1/en
Publication of WO2005035667A1 publication Critical patent/WO2005035667A1/ja
Priority to US11/403,982 priority patent/US7527862B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/60Pleochroic dyes
    • C09K19/601Azoic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B31/00Disazo and polyazo dyes of the type A->B->C, A->B->C->D, or the like, prepared by diazotising and coupling
    • C09B31/16Trisazo dyes
    • C09B31/20Trisazo dyes from a coupling component"D" containing a directive hydroxyl group
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B31/00Disazo and polyazo dyes of the type A->B->C, A->B->C->D, or the like, prepared by diazotising and coupling
    • C09B31/16Trisazo dyes
    • C09B31/22Trisazo dyes from a coupling component "D" containing directive hydroxyl and amino groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B31/00Disazo and polyazo dyes of the type A->B->C, A->B->C->D, or the like, prepared by diazotising and coupling
    • C09B31/30Other polyazo dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B43/00Preparation of azo dyes from other azo compounds
    • C09B43/12Preparation of azo dyes from other azo compounds by acylation of amino groups
    • C09B43/136Preparation of azo dyes from other azo compounds by acylation of amino groups with polyfunctional acylating agents
    • C09B43/16Preparation of azo dyes from other azo compounds by acylation of amino groups with polyfunctional acylating agents linking amino-azo or cyanuric acid residues
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/60Pleochroic dyes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/03Viewing layer characterised by chemical composition
    • C09K2323/031Polarizer or dye
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31725Of polyamide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31786Of polyester [e.g., alkyd, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers

Definitions

  • the present invention particularly relates to an anisotropic dye film exhibiting high dichroism useful for a polarizing plate or the like provided in a display device such as a light control device, a liquid crystal device, and an organic electroluminescent device (OLED).
  • the present invention relates to a polarizing element using an anisotropic dye film, and a dye composition for an anisotropic dye film for obtaining the anisotropic dye film.
  • the present invention also relates to a novel azo dye useful for an anisotropic dye film.
  • a linear polarizer or a circular polarizer is used to control the optical rotation / birefringence in the display.
  • OLEDs also use circularly polarizing plates to prevent reflection of external light.
  • these polarizers have been prepared by dissolving or adsorbing iodine or an organic dye having dichroism into a polymer material such as polyvinyl alcohol and stretching the film in one direction into a film.
  • Anisotropic dye films obtained by orienting dyes have been widely used (for example, JP-A-3-12606, JP-A-11-161202, and JP-A-11-252904).
  • the conventional anisotropic dye film manufactured in this manner has insufficient heat resistance and light resistance depending on the dye or polymer material used; The yield was poor;
  • iodine was used as a polarizing plate because of its high sublimability, its heat resistance and light resistance were not sufficient. The extinction color became deep blue, and it could not be said that it was an ideal achromatic polarizer over the entire visible spectrum region.
  • a film containing a dichroic dye is formed on a substrate such as glass or a transparent film by a wet film-forming method in which a solution containing the dichroic dye is applied, and a film containing dichroic dye is formed by utilizing intermolecular interaction.
  • a method for producing an anisotropic dye film by orienting a chromatic dye for example, US Pat. No. 2,400,877, JP-A-8-511109, JP-A-2002-528758, JP 2002-180052, JP 2002-338838, WO 02/09 9480 and Dreyer, JF, Phys.
  • anisotropic dye films with high dichroism are required to obtain higher polarization performance, but these conventional anisotropic dye films are inferior in dichroism, For this reason, a polarizing element having excellent polarization performance could not be obtained.
  • various dyes have been used for anisotropic dye films, and the selection of the dye is one of the important factors.
  • Japanese Patent Application Laid-Open No. 3-126606 discloses that a dichroic dye represented by the following structural formula is used.
  • Japanese Patent Application Laid-Open No. H11-162202 describes that a dichroic dye represented by the following structural formula is used.
  • Japanese Patent Application Laid-Open Publication No. 2002-528758 describes that a dichroic dye represented by the following structural formula is used.
  • WO 02/099480 discloses that an anisotropic dye film produced by a wet film formation method is produced, and as an example of a dichroic dye that can be used, Those represented by the following structural formula are described.
  • the above compound is a disazo compound, and has a problem that it is easily decomposed because a halogen atom is bonded on the triazine ring. Disclosure of the invention
  • An object of the present invention is to provide an anisotropic dye film having high dichroism and a polarizing element using the anisotropic dye film, which is excellent in heat resistance, luminescence, and polarization performance.
  • Another object of the present invention is to provide a novel dichroic dye and a dye composition for an anisotropic dye film, which can realize an anisotropic dye film having heat resistance and light resistance.
  • the anisotropic dye film of the present invention is characterized in that the period derived from the molecular lamination is 3.445 A or less, and the lamination length is 105 A or more.
  • a novel dichroic azo dye has a triazidinyl group represented by the following formula (1) and has three or more azo bonds in one molecule. It has been found that a dichroic azo dye having a specific structure has a high affinity for a substrate. Further, by forming a film by a wet film forming method using a composition containing such a dye, the dichroic dye molecules exhibit a high-order molecular orientation state, that is, a high anisotropy is obtained. It has been found that it is possible to form a dye film having the same.
  • the azo dye of the present invention is characterized in that the free acid form contains an azo dye represented by the following formula (1).
  • a Q , B Q , ⁇ ° and 13 ° each independently represent an aromatic hydrocarbon ring which may have a substituent
  • a r ° represents a hydrogen atom or an optional substituent
  • X Q and Y 0 each independently represent any substituent other than a halogen atom.
  • an azo dye represented by the following formula (2) provides an achromatic color, high dichroism, It has been found that the degree of molecular orientation can be shown.
  • the azo dye of the present invention is an azo dye for an anisotropic dye film formed by a wet film formation method, wherein the form of the free acid is represented by the following formula (2). I do.
  • Oyobi £ 1 represents an optionally substituted phenylene group or an optionally substituted naphthylene group
  • G 1 represents a hydroxyl group, a sulfo group, or a phosphate group
  • Q 1 is an octylogen atom, a hydroxyl group, a nitro group, an amino group which may have a substituent, an alkyl group having 1 to 4 carbon atoms which may have a substituent, Represents an alkoxy group having 1 to 3 carbon atoms, a carboxyl group, or a sulfo group,
  • Q 2 and Q 3 each independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms which may have a substituent, or a phenyl group which may have a substituent;
  • the dye composition for an anisotropic dye film of the present invention is characterized by containing the azo dye of the present invention.
  • the anisotropic dye film of the present invention is also characterized by containing the azo dye of the present invention.
  • the anisotropic dye film of the present invention is also characterized by being formed using the dye composition for an anisotropic dye film of the present invention.
  • the polarizing element of the present invention is characterized by using the above-mentioned anisotropic dye film of the present invention.
  • FIG. 1 is a schematic diagram showing an anisotropic color film having a molecular arrangement in which a dye molecule plane is inclined from a direction perpendicular to a molecular stacking axis.
  • FIG. 2 is a schematic diagram showing an anisotropic dye film having a molecular arrangement in which the dye molecule plane is perpendicular to the molecular stacking axis.
  • Fig. 3 (a) is a schematic diagram showing the anisotropic dye film in a state where the degree of orientation of the molecular lamination axis is low, and (b) is a figure showing the anisotropic dye film in a state where the degree of orientation of the molecular lamination axis is high. It is a schematic diagram which shows a dye film.
  • FIG. 4 is a chart showing an X-ray diffraction profile of the anisotropic dye film formed in Example 1.
  • FIG. 5 is a chart showing an in-plane locking profile of the anisotropic dye film formed in Example 1.
  • FIG. 6 is a graph showing the light transmittance of the anisotropic dye film obtained in Example 7 in the absorption axis direction and the polarization axis direction.
  • FIG. 7 is a graph showing the light transmittance of the anisotropic dye film obtained in Example 10 in the absorption axis direction and the polarization axis direction.
  • FIG. 8 is a graph showing the light transmittance of the anisotropic dye film obtained in Comparative Example 2 in the absorption axis direction and the polarization axis direction.
  • the anisotropic dye film referred to in the present invention is anisotropic in the electromagnetic properties in any two directions selected from a total of three directions in a three-dimensional coordinate system in two directions in the thickness direction of the dye film and in any two orthogonal planes.
  • a dye film having Electromagnetic properties include optical properties such as absorption and refraction, and electrical properties such as resistance and capacitance.
  • Examples of the film having optical anisotropy such as absorption and refraction include a linearly polarizing film, a circularly polarizing film, a retardation film, and a resistivity anisotropic film.
  • the anisotropic dye film of the present invention can be used for a polarizing film, a retardation film or a resistivity anisotropic film.
  • the anisotropic dye film of the present invention is useful for a polarizing film because it has absorption in the visible light region.
  • the anisotropic dye film of the present invention has a period derived from molecular lamination (hereinafter also referred to as a molecular lamination period) of 3.445 A or less and a lamination length of 105 A or more.
  • anisotropic dye film of the present invention having a molecular lamination period of 3.45 A or less and a molecular lamination length of 105 A or more exhibits high dichroism is as follows. Is done.
  • dye molecules generally have a planar molecular structure formed by aromatic rings, and that due to strong intermolecular interactions such as C- ⁇ interaction, they become crystals with a laminated structure in which the molecular planes overlap. I have.
  • a diffraction peak derived from the stacking cycle of the dye molecule stack structure is observed along with other diffraction peaks by X-ray diffraction measurement as described in the following references 1 and 2. .
  • the molecular stacking period obtained from the X-ray diffraction peak analysis indicates a value reflecting the stacking and arrangement state of the dye molecules in the crystal.
  • the inclination of the dye molecule plane with respect to the stacking axis is considered to be important for the molecular stacking period.
  • Figures 1, 2, and 3 are schematic diagrams showing the arrangement of dichroic dye molecules in the anisotropic dye film viewed from above the surface of the anisotropic dye film.
  • the broken line indicates the molecular stacking axis
  • the thick black line indicates a dye molecule having a planar molecular structure.
  • d indicates the molecular stacking period
  • dm indicates the shortest distance between the stacked molecules
  • L indicates the stacking length.
  • Fig. 1 shows an anisotropic dye film in which molecules are arranged in a state where the plane of the dye molecules is inclined from the perpendicular to the molecular stacking axis. Anisotropic dye films are shown.
  • ⁇ - ⁇ interaction due to intermolecular interaction such as ⁇ - ⁇ interaction, 2004/015450
  • the closest distance d m that can be assumed to be 7 is assumed to be almost constant.
  • the molecular stacking period d becomes d> dm and accordingly becomes a larger value.
  • d dm
  • the value of the molecular stacking period d is expected to be small.
  • the dichroic ratio of the anisotropic dye film is determined by the ratio between the absorption coefficient in the absorption direction and the absorption coefficient in the polarization direction. Therefore, assuming that the absorption direction in the plane of the anisotropic dye film is the X axis and the polarization direction is the y axis, in order to increase the dichroic ratio, the X axis component of the extinction coefficient k x of the dichroic dye used is k x It is preferable that a large number of aligned molecular sequences be used so that the molecular weight is as large as possible.
  • the absorption axis of the dichroic dye should be almost coincident with the direction of the molecular stacking axis (supervised by Masahiro Irie, “Application of functional dyes” CMC Publishing Co., Ltd., published on April 15, 1996, 9 Page 6), it exists in the molecular plane.
  • molecules flat surface inclination is closer to the vertical relative stacking axes, that is, the value of the molecular stacking period d is a smaller anisotropy color Motomaku absorption coefficient k x becomes larger, from the viewpoint of enhancing the dichroic preferable.
  • the stacking length (L in Figs. 1 and 2), which is the stacking distance of periodically arranged molecules, can be estimated at the same time.
  • the number of dye molecules included in the stack length and arranged in the same direction is L / d.
  • the present inventors have found that, as a parameter, by using a portion having a molecular stacking period of 3.445 A or less and a stacking length of 105 A or more, high two-color It has been found that an anisotropic dye film having a molecular arrangement capable of expressing a ratio can be obtained.
  • the conventional anisotropic dye film a film which is out of the above-mentioned parameters is usually used. That is, it is assumed that a high dichroic ratio could not be obtained in the conventional anisotropic dye film because a large number of dichroic dye molecules were not arranged in a direction optimal for dichroic ratio expression. .
  • the orientation of the molecular stacking axis shown in FIG. 3 is also important for the development of high dichroism. That is, in order to arrange more molecules in the same direction, it is desirable that the degree of orientation of the molecular stacking axis is also high. For this reason, the anisotropic dye film of the present invention preferably has an orientation degree estimated by X-ray diffraction measurement described later of 85% or more.
  • the molecular stacking period of the anisotropic dye film of the present invention is preferably 3.30 OA or more, more preferably 3.380 or more, most preferably 3.40 OA or more, and 3.4 or more. It is 45 A or less, preferably 3.444 A or less, and more preferably 3.435 A or less. If the molecular lamination period of the anisotropic dye film exceeds this upper limit, the tilt of the molecules in the molecular lamination increases, and the dichroic ratio may decrease, which is not preferable. On the other hand, when the value is below the lower limit, the molecules are too close to each other, which may hinder the molecular lamination, which is not preferable.
  • the molecular stacking length of the anisotropic dye film of the present invention is 105 A or more, preferably 115 A or more, more preferably 14 OA or more, preferably 1 im or less, more preferably 500 nm or less, and most preferably. Is less than 100 nm. If the molecular stacking length of the anisotropic dye film exceeds this upper limit, the crystal structure is likely to be distorted, and the degree of orientation of the molecular stacking axis may be undesirably reduced. If the value is below the lower limit, the number of molecules arranged in the same direction is small, and a high dichroic ratio may not be exhibited, which is not preferable.
  • the above parameters of the anisotropic dye film that is, the value of the molecular stacking period and the stacking length, can be determined by an X-ray diffractometer for thin film evaluation (“RI NT 2000 PC” in-plane optical system manufactured by Rigaku Corporation) It can be obtained from an X-ray diffraction profile measured by an equivalent device (for example, see the above-mentioned references 1 and 2).
  • the above parameters are obtained, for example, by the following procedures (1) to (3).
  • in-plane measurement is performed on the anisotropic dye film from two directions for observing the diffraction plane perpendicular to the absorption axis and the diffraction plane perpendicular to the polarization axis.
  • a strong diffraction peak derived from the molecular stacking cycle is intensely diffracted with respect to CuCa (in a range from about 24.7 ° to about 27 °, in-plane from two directions). It is usually observed only in one of the measurements.
  • a C 2 are the coefficients, 20 and 20 2 the peak position, sigma iota and sigma 2 represent the standard deviation.
  • ⁇ (2 ⁇ ⁇ ) Namib represents an Surain, here, the X-ray diffraction profile of a direction that is not observations diffraction peak derived from a molecular lamination to baseline. However, if this diffraction peak has a diffraction peak from another diffraction surface, remove the peak and interpolate it to obtain the baseline.
  • the peak position of the diffraction peak is 20 or half of the peak at 1 and 2
  • the degree of orientation of the molecular stacking axis of the anisotropic dye film can also be obtained from the measurement by the above-mentioned apparatus, for example, as follows (for example, see the above-mentioned references 1 and 2). That is, when the in-plane rocking scan measurement is performed over 360 ° with respect to the diffraction peak observed in the in-plane measurement, the peak corresponding to the orientation of the molecular stacking axis is 2 in the anisotropic dye film of the present invention. One is usually observed.
  • the rocking profile is optimally fitted by the following equation g ( ⁇ ).
  • the degree of orientation ⁇ (unit:%) of the molecular lamination axis in the present invention is defined by the following equation.
  • the orientation degree of the molecular stacking axis defined as described above is preferably
  • Such a degree of orientation is more preferably at least 88%, most preferably
  • the degree of orientation is lower than the lower limit, the number of molecules arranged in the same direction is small, so that a high dichroic ratio may not be exhibited, which is not preferable.
  • the anisotropic dye film of the present invention satisfying these parameters exhibits a high dichroic ratio.
  • the dichroic ratio is preferably 11 or more, more preferably 13 or more, and most preferably 15 or more.
  • the film thickness of the anisotropic dye film of the present invention is usually 10 nm or more, more preferably 50 nm or more, preferably 30 m or less, more preferably 1 ⁇ or less, after drying. . If the thickness of the anisotropic dye film exceeds 30 im, it may be difficult to obtain uniform orientation of the dye molecules in the film, and if it is less than 10 nm, it is difficult to obtain a uniform film thickness. It is not preferable because there is a possibility.
  • An anisotropic dye film with a molecular stacking period of 3.445 A or less and a stacking length of 105 A or more can be obtained by selecting a combination of dyes and additives contained in the anisotropic dye film. I can do it.
  • the method of producing the anisotropic dye film is also one of the important factors for obtaining the anisotropic dye film, and a wet film forming method is used to obtain the anisotropic dye film. Is preferred.
  • the dye used in the anisotropic dye film of the present invention include azo dyes, stilbene dyes, cyanine dyes, phthalocyanine dyes, and condensed polycyclic dyes (perylene-based, oxazine-based). .
  • azo-based dyes that can have a high molecular arrangement in the anisotropic dye film are particularly preferable as the optimum dye for obtaining the anisotropic dye film of the present invention.
  • Dyes represented by the following formula (1) or (2) are particularly preferred.
  • An azo dye refers to a dye having at least one azo group.
  • the number of azo groups in one molecule is preferably 1 or more, more preferably 2 or more, preferably 6 or less, more preferably 4 or less, from the viewpoint of color tone and production.
  • Such a dye is preferably water-soluble in order to be subjected to a wet film formation method described later. Therefore, as a substituent that imparts water solubility, a dye having an acidic group such as a sulfo group, a carbonyl group, a phosphoric acid group, a basic group such as an amino acid group, or a soluble group such as a hydroxyl group is preferable. It is particularly preferred that the compound has a sulfo group or a sulfoxy group.
  • the molecular weight of such a dye is usually at least 200, particularly at least 350, and usually at most 50,000, and especially at most 3,000 in a free state without taking a salt form. It is preferable from the point of view.
  • Such dyes include the aforementioned U.S. Pat. No. 2,400,877, Dreyer, JF, Phys. And Colloid Chem., 1948, 52, 808., "The Fixing of Molecular. Orientat ion ", Dreyer, JF, Journal de Physique, 1969, 4, 114.," Light Polarizat ion From Films of Lyotropic Nematic Li uid Crystals “and J. Lyndon,” Chroionics in “Handbook of Liquid Crystals Vol. 2B: Lo Molecular Weight Liauid Crystals ⁇ ", D. Demus, J.
  • the anisotropic dye film of the present invention preferably contains a novel azo dye whose free acid form is represented by the following formula (1).
  • a Q , B Q , ⁇ ° and 0 ° each independently represent an aromatic hydrocarbon ring which may have a substituent
  • a r ° represents a hydrogen atom or an optional substituent
  • X Q and Y 0 each independently represent any substituent other than a halogen atom.
  • k 1 or 2
  • m 1 or 2.
  • a plurality of B ° s contained in one molecule may be the same or different.
  • This azo dye exhibits dichroism, is excellent in color tone and solubility in a solvent, and has high stability in a solution. Therefore, it can be used for various applications, but when used for an anisotropic dye film, a particularly high effect can be obtained. That is, the anisotropic dye film of the present invention using this dye exhibits high dichroism and high heat resistance and light resistance as compared with a conventional iodine-based polarizing film. Particularly, as described above, since the solubility in a solvent and the stability in a solution are high, the storage stability of a dye composition for an anisotropic dye film containing the dye is high. Therefore, the azo dye of the present invention will be described later.
  • an anisotropic dye film by a wet film forming method.
  • the wet film forming method it is possible to form an anisotropic dye film on a highly heat-resistant substrate such as glass, and a polarizing plate having high heat resistance can be obtained. It can be used for applications requiring high heat resistance, such as display panels.
  • the aromatic hydrocarbon ring A Q to D Q include aromatic hydrocarbon ring having 6 to 2 about 0 carbon atoms, and preferably a benzene ring or a naphthalene ring each independently. Of these, D. About D. When is a benzene ring, it is more preferably a 1,4-phenylene group, and when it is a naphthalene ring, it is preferably a 2,6-naphthylene group.
  • a divalent group derived from a 1-naphthol ring or a 2-naphthol ring is more preferable, and a group derived from a 11-naphthol ring is particularly preferable from the viewpoint of obtaining a deep-colored dye.
  • Examples of the substituent that the aromatic hydrocarbon ring of A G to D Q may have include a group appropriately selected from an electron-withdrawing group and an electron-donating group that are introduced to adjust the color tone, and a solution in a solvent.
  • hydrophilic groups introduced to enhance the properties there may be mentioned, for example, the groups mentioned as substituents which may be possessed by A 1 to C 1 in formula (11a).
  • Examples of the optional substituent of A r D include a group appropriately selected from an electron-withdrawing group and an electron-donating group introduced to adjust color tone, and a hydrophilic group introduced to enhance solubility in a solvent. And the like. Specific examples include the groups exemplified as Ar 1 in the formula (11a) described below.
  • Examples of the optional substituent other than the halogen atom at X 0 and Y ° include a hydrophilic group and a hydrophobic group introduced for adjusting the solubility in a solvent. Specific examples include the groups exemplified as X 1 and Y 1 in formula (1-a) described below.
  • the azo dye of the present invention represented by the formula (1) preferably has a free acid form represented by the following formula (1-1a).
  • a 1 represents a phenyl group which may have a substituent, or a naphthyl group which may have a substituent
  • B 1 and C 1 each independently represent a phenylene group which may have a substituent, or a naphthylene group which may have a substituent,
  • a r 1 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms which may have a substituent
  • X 1 and Y 1 each independently represent — NR i R 2 group, 1 OR 3 group, Or one represents four SR groups.
  • RR 2 , R 3 and R 4 may each independently have a hydrogen atom or a substituent.
  • Alkyl group having 1 to 18 carbon atoms, alkenyl group having 2 to 18 carbon atoms which may have a substituent, hydrocarbon ring group having 3 to 15 carbon atoms which may have a substituent or substituted Represents a 5- or 6-membered monocyclic or 2 to 3 condensed heterocyclic group which may have a group, or R 1 and R 2 are bonded to each other and contain a nitrogen atom Form a 5- or 6-membered ring.
  • the ring to which R 1 and R 2 are bonded may have a substituent.
  • k 1 or 2
  • m 1 or 2.
  • a plurality of B 1 contained in one molecule may be the same or different.
  • a 1 represents a phenyl group which may have a substituent or a naphthyl group which may have a substituent.
  • the substituent of the phenyl group includes a sulfo group, a carbonyl group, a hydroxyl group, a nitro group, a halogen atom, an amino group which may have a substituent, and a substituent. And an alkoxy group which may have a substituent.
  • halogen atom an amino group, an alkyl group and an alkoxy group, specifically, a halogen atom which is a fluorine atom, a chlorine atom, a bromine atom or an iodine atom;
  • alkylamino group having 1 to 18 (preferably 1 to 8) carbon atoms such as an N-methylamino group, an N, N-dimethylamino group, an N, N-ethylamino group;
  • Arylamino groups having 6 to 18 carbon atoms such as N-phenylamino group and N-naphthylamino group;
  • An acetylamino group having 2 to 18 (preferably 2 to 11) carbon atoms such as an acetylamino group or a benzoylamino group;
  • An alkyl group having 1 to 18 (preferably 1 to 12) carbon atoms such as a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, an n-dodecyl group;
  • alkoxy groups having 1 to 18 (preferably 1 to 12) carbon atoms such as methoxy group, ethoxy group, i-propoxy group, n-butoxy group and n-dodecyloxy group.
  • the above-mentioned various amino groups, alkyl groups and alkoxy groups may have a substituent. Examples of the substituent include a hydroxyl group and an alkoxy group.
  • a 1 is a phenyl group which may have a substituent
  • the substituent of the phenyl group is preferably a sulfo group, a carbonyl group, a halogen atom, or a substituent from the viewpoint of solubility in a solvent and color tone.
  • An amino group optionally having an alkyl group, an alkyl group optionally having a substituent, or an alkoxy group optionally having a substituent is more preferable.
  • Particularly preferred are a sulfo group, a sulfoxyl group, an acylamino group, and an alkyl group.
  • the phenyl group preferably has 1 to 3 substituents selected from these substituents.
  • a 1 is a naphthyl group, preferably a sulfo group as a substituent of the naphthyl group, Karupokishi group, hydroxyl group and the like, the naphthyl group, Yes 1 to 3 substituents selected from these substituents Preferably.
  • Particularly preferred substituents include a sulfo group.
  • B 1 and C 1 each independently represent a phenylene group which may have a substituent or a substituent It represents a naphthylene group which may be present, and the phenylene group is preferably a 1,4-phenylene group, and the naphthylene group is preferably a 1,4-naphthylene group.
  • the substituents which may be present include a sulfo group, a carboxyl group, an alkyl group which may have a substituent, an alkoxy group which may have a substituent or An amino group which may have a substituent is preferable.
  • alkyl group examples include, for example,
  • 1 carbon atom such as methyl, ethyl, n-propyl, i-propyl, n-butyl, etc.
  • An alkoxy group having 1 to 4 carbon atoms such as a methoxy group, an ethoxy group, a hydroxyethoxy group, an n-propoxy group, an i-propoxy group, an n-butoxy group;
  • alkylamino group having 1 to 8 carbon atoms such as an N-methylamino group, an N, N-dimethylamino group, an N, N-ethylamino group;
  • Arylamino groups such as N-phenylamino group
  • the above-mentioned alkyl group, alkoxy group and various amino groups may have a substituent.
  • substituents include a hydroxyl group, an alkoxy group and a halogen atom.
  • B 1 and C 1 are a phenylene group which may have a substituent
  • the phenylene group may have a sulfo group, a carboxyl group, or a substituent among the above-mentioned substituents.
  • Preferred are an alkyl group, an optionally substituted alkoxy group, and an optionally substituted acylamino group.
  • an alkyl group, an alkoxy group, and an acylamino group are preferable.
  • B 1 and C 1 are phenylene groups, they preferably have 1 to 3 substituents represented by the above substituents, and have 1 to 2 substituents Is more preferred.
  • B 1 and C 1 are a naphthylene group
  • substituent of the naphthylene group include a hydroxyl group, a sulfo group, and an alkoxy group which may have a substituent.
  • alkoxy group examples include an alkoxy group having 1 to 4 carbon atoms such as a methoxy group and an ethoxy group.
  • the substituent which the alkoxy group may have is preferably a hydroxyl group, a hydroxyalkyl group or an alkoxy group.
  • the naphthylene group of B 1 and C 1 preferably has 1 to 6 substituents selected from these substituents, and more preferably has 1 to 3 substituents.
  • substituent on the naphthylene group of B 1 and C 1 a sulfo group or an alkoxy group which may have a substituent is particularly preferable.
  • a r 1 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms which may have a substituent, preferably, a hydrogen atom or an alkyl group having 1 to 4 carbon atoms which may have a substituent.
  • Group for example, a methyl group, an ethyl group, an ethyl group, etc., or a group obtained by further substituting these groups).
  • the Particularly preferred is a hydrogen atom.
  • a substituent which the alkyl group may have a hydroxyl group, a sulfo group, a carboxyl group and the like can be mentioned.
  • X 1 and Y 1 are each independently one NRiR 2 group, represents an OR 3 group, or a SR 4 group, wherein R 1, R 2, R 3 and R 4 are each independently a hydrogen atom, a substituted
  • An alkyl group which may have a group, an alkenyl group which may have a substituent, a hydrocarbon ring group (an aryl group or an alicyclic group) which may have a substituent, or a substituent Represents a heterocyclic group which may have
  • An alkyl group having 1 to 18 (preferably 1 to 12) carbon atoms such as a methyl group, an ethyl group, an i-propyl group, an n-butyl group, an n-octyl group, an n-dodecyl group;
  • alkenyl group having 2 to 18 (preferably 2 to 8) carbon atoms such as a vinyl group and an aryl group
  • an aryl group having 6 to 18 (preferably 6 to 12) carbon atoms such as a phenyl group and a naphthyl group
  • An alicyclic group having 6 to 18 (preferably 6 to 10) carbon atoms such as a cyclohexyl group and a cyclohexenyl group;
  • Aromatic or non-aromatic heterocyclic group consisting of a 5- or 6-membered monocyclic or 2-3 condensed ring such as a pyridyl group, thiadiazolyl group, benzothiazolyl group, morpholinyl group, piperidinyl group, piperazinyl group, etc. ,
  • alkyl group, alkenyl group, aryl group, alicyclic group, and heterocyclic group may have include a hydroxyl group, a propyloxyl group, a sulfo group, and an aryl group, and more preferably a hydroxyl group.
  • R 1 and R 2 are more preferably a hydrogen atom, an alkyl group which may have a substituent, or an aryl group which may have a substituent, and an aryl group which may have a substituent.
  • One radical is particularly preferred.
  • one of R 1 and R 2 is a hydrogen atom and the other is other than a hydrogen atom.
  • R 3 and R 4 a hydrogen atom or an alkyl group which may have a substituent is preferable.
  • X 1 and Y 1 are both —NR 1 ! ⁇ 2 groups (provided that R 1 and R 2 may be the same or different), or one is an NRiR 2 group There, the other is Ru one OR 3 Motodea more preferred.
  • X 1 and Y 1 may be bonded to each other to form a nitrogen-containing ring which may have a substituent, and R 1 and R 2 are bonded to each other to contain a nitrogen atom 5 or 6
  • the ring is preferably a morpholine ring, a piperazine ring, or a piperidine ring.
  • k represents 1 or 2
  • m represents 1 or 2. If k is 2, it is included in one molecule
  • a plurality of B 1 may be the same or different.
  • the azo dye of the present invention represented by the above formula (1) has a free acid form represented by the following formula (1-b).
  • a 2 represents a phenyl group which may have a substituent, or a naphthyl group which may have a substituent
  • B 2 and C 2 each independently represent a phenylene group which may have a substituent, or a naphthylene group which may have a substituent,
  • a r 2 represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms which may have a substituent,
  • X 2 and Y 2 each independently represent — NR 5 R 6 , one OR 7 or one SR 8 ;
  • R 5 , R 6 , R 7 and R 8 are each independently a hydrogen atom, an alkyl group having 1 to 18 carbon atoms which may have a substituent or a carbon atom which may have a substituent.
  • An alkenyl group having 2 to 18 carbon atoms, an optionally substituted hydrocarbon ring group having 3 to 15 carbon atoms, or an optionally substituted 5- or 6-membered monocyclic or 2- to 5-membered ring Represents a heterocyclic group consisting of three condensed rings, or R 5 and R 6 combine with each other to form a 5- or 6-membered ring containing a nitrogen atom.
  • the ring formed by bonding R 5 and R 6 may have a substituent.
  • k 1 or 2
  • n 0 or 1.
  • a plurality of B 2 contained in one molecule may be the same or different.
  • Examples of preferred substituents for A 2 , B 2 , C 2 , Ar 2 , X 2 and Y 2 in the above formula (1-1b) include A 1 B 1 , Preferred examples of the substituent for C 1 , Ar ⁇ X 1 and Y 1 are the same as those exemplified above.
  • the azo dye of the present invention represented by the formula (1) is characterized in that the form of the free acid is represented by any of the formulas (1), (1-1a) and (1-b).
  • the molecular weight in the form of free acid is usually 500 or more, preferably 550 or more, and usually 5000 or less, preferably 4000 or less, More preferably, it is preferably at most 350. If the molecular weight exceeds the above upper limit, there is a possibility that a problem of lowering of the coloring property may occur. If the molecular weight is lower than the above lower limit, the absorption spectrum peak may have a shorter wavelength (color tone becomes shallower).
  • azo dye of the present invention represented by the formula (1) include, in the form of free acid, dyes having the following structures (I-11) to (1-31). However, the present invention is not limited to this.
  • the azo dye represented by the formula (1) can be produced according to a method known per se.
  • the dye represented by (1-1) can be produced by the following steps (A) to (E).
  • step (D) To the disazo compound obtained in step (B), add water and N-methyl-2-pyrrolidone, dissolve the mixture at pH 9 with a 25% by weight aqueous sodium hydroxide solution, cool the mixture to 0 to 5, and so on. Diazotized by the method. This is subjected to a coupling reaction with the condensation reaction product obtained in the step (C) to produce a trisazo compound. After completion of the reaction, add 3-amino-1,2-propanediol, raise the temperature to 60 :, add 25% by weight aqueous sodium hydroxide, and add strong alkalinity.
  • the anisotropic dye film of the present invention contains an azo dye for an anisotropic dye film formed by a wet film formation method, wherein the form of the free acid is represented by the following formula (2). Is preferred.
  • Oyopi £ 1 represents an optionally substituted phenylene group or an optionally substituted naphthylene group
  • G 1 represents a carboxy group, a sulfo group, or a phosphate group
  • Q 1 may have a halogen atom, a hydroxyl group, a nitro group, an amino group which may have a substituent, an alkyl group having 1 to 4 carbon atoms which may have a substituent, and a substituent Represents an alkoxy group having 1 to 3 carbon atoms, a carbonyl group, or a sulfo group
  • Q 2 and Q 3 each independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms which may have a substituent, or a phenyl group which may have a substituent;
  • the trisazo dye is a water-soluble black dichroic dye.
  • the trisazo dye has a molecular structure in which substituents that give strong attraction to other molecules are arranged at specific positions at both ends of the molecular long axis, and D 1 and E 1 have hydrophobicity. Interaction (hydrophobic interaction), making it easier for molecules to form an association state.
  • each dye molecule has substituents at both ends of the molecular long axis that give strong attraction to other molecules, so that they are easily attracted to each other to form an associated state. Further, (ii) each molecule has hydrophobicity at D 1 and E 1, and thus the hydrophobic parts in the aqueous solution are attracted to each other, and it is thought that it is easy to form an association state .
  • the substituents that give strong attraction to other molecules are located at specific positions at both ends of the molecular long axis (a phenyl group having a substituent at the 3-position and a naphthyl group having an amino group at the 7-position). However, during salt formation, the substituent at the 3-position and the amino group at the 7-position can be closely approached from each other due to their positional relationship.
  • the azo dye represented by the above formula (2) forms a high lyotropic liquid crystal state due to the above three constitutions (i) to (iii) that easily form an association state.
  • the azo dye represented by the formula (2) is not only black, but the composition containing the dye and the dye is a process unique to the wet film forming method, that is, the surface of the base material.
  • a high-order molecular orientation state can also be exhibited by a lamination process such as coating. That means that it is possible to form an achromatic dye film having high anisotropy. .
  • anisotropic dye films formed by a conventional wet film forming method often have obtained an achromatic anisotropic dye film by combining a plurality of dyes.
  • the azo dye represented by (2) has a specific dye structure as described above, it can form a high lyotropic liquid crystal state, exhibit a high-order molecular orientation state, and have one type of dye. But it is possible to show black. Accordingly, the composition containing the azo dye represented by the formula (2) can provide an anisotropic dye film exhibiting high dichroism.
  • D 1 and E 1 represent a phenylene group which may have a substituent or a naphthylene group which may have a substituent.
  • a 1,4-phenylene group is preferable
  • a 1,4-naphthylene group is preferable because of exhibiting hydrophobic interaction.
  • Examples of the substituent of this phenylene group include an alkyl group having 1 to 4 carbon atoms which may have a substituent (for example, methyl group, ethyl group, n-propyl group, n-butyl group, etc.), An alkoxy group having 1 to 4 carbon atoms which may have a group (for example, a methoxy group, Low-polarity groups such as a toxic group, a .n-propoxy group, an n-butoxy group) and an optionally substituted phenylamino group having 2 to 7 carbon atoms (eg, an acetylamino group, a benzoylamino group, etc.). It is preferable in terms of improving the associative property by hydrophobic interaction in forming a lyotropic liquid crystal.
  • a group having a small polarity such as an alkoxy group having 1 to 4 carbon atoms which may have a substituent (for example, a methoxy group, an ethoxy group, etc.) may form a lyotropic liquid crystal. Is preferred from the viewpoint of improving the association property by the hydrophobic interaction.
  • substituents which the alkyl group, alkoxy group, and acylamino group may have include a hydroxy group, an alkyl group, an alkoxy group and the like.
  • G 1 is preferably a sulfo group, a carboxy group, or a phosphate group because it is a substituent that gives a strong attraction as described above, and is particularly preferably a sulfo group because it gives an attraction over a wide pH range. No.
  • Q 1 is a halogen atom, a hydroxyl group, a nitro group, an optionally substituted amino group (preferably an acetylamino group or a benzoylamino group, etc.), an optionally substituted carbon atom 1 Represents an alkyl group having 1 to 4 (eg, a methyl group, an ethyl group, etc.), an alkoxy group having 1 to 3 carbon atoms which may have a substituent, a carbonyl group, or a sulfo group. Particularly preferred are a hydrogen atom, a hydroxyl group, a carboxyl group, and a sulfo group. Examples of the substituent which the alkyl group and the alkoxy group may have include a hydroxy group, an alkyl group and an alkoxy group.
  • Q 2 and Q 3 may each independently have a hydrogen atom, an alkyl group having 1 to 4 carbon atoms which may have a substituent (eg, a methyl group, an ethyl group, etc.), and a substituent It is a phenyl group, and particularly preferably, either Q 2 or Q 3 is a hydrogen atom.
  • substituent which the alkyl group and the phenyl group may have include a hydroxy group, a sulfoxy group, and a sulfo group.
  • P represents 0 or 1
  • t represents a number of 1 or 2.
  • the azo dye represented by the above formula (2) includes, in the dye structure, a substituent at both ends of the molecular long axis and a substitution position (a phenyl group having a substituent at the 3-position and a naphthyl having an amino group at the 7-position). Group) and D 1 and E 1 having a hydrophobic interaction can improve the association property and form a high lyotropic liquid crystal state as described in detail above. Therefore, the azo dye represented by the formula (2) is suitable as a dye for an anisotropic dye film formed by a wet film formation method, and has a high dichroic ratio. Therefore, when a dye composition using the dye is used for an anisotropic dye film, an anisotropic dye film having high dichroism can be obtained.
  • the azo dye represented by the above formula (2) shows black, but is preferably a dye having an excitation purity of 0% to 12%. That is, when a dye having a stimulus purity of 0% to 12% is used, high dichroism can be exhibited, especially without disturbing the molecular orientation due to mixing different molecules. '
  • the stimulus purity is defined as the chromaticity coordinate N of the standard light and the chromaticity coordinate C of the dye obtained from the chromaticity diagram.
  • the wavelength corresponding to the intersection with the extended spectrum locus is defined as the main wavelength, and the ratio is calculated from the ratio of each point.
  • the chromaticity coordinate C is obtained by adding a dye to water to form a dye aqueous solution, measuring the visible light transmittance of this aqueous solution with a spectrophotometer, and calculating the chromaticity xy under the CIE 1964 XYZ color system and the D65 standard light source. Can be obtained.
  • the stimulating purity of the dye referred to in the present invention refers to a value measured and calculated as an aqueous dye solution by adding the dye to water.
  • the azo dye represented by the above formula (2) is preferably a dye having a stimulating purity of 0% or more and 12% or less, but the stimulating purity is 0% or more, more preferably 9% or less, and most preferably 6%. It is as follows.
  • the molecular weight of the dye represented by the formula (2) is usually 595 or more, usually 1500 or less, preferably 1200 or less in the form of a free acid.
  • dye represented by the formula (2) include, but are not limited to, dyes having structures represented by (II-1) to (II-15).
  • the azo dye represented by the formula (2) can be produced according to a method known per se.
  • the dye represented by (II-1) can be produced by the following steps (a) to (c).
  • the dye represented by the structural formula (II-11) shown above forms a lyotropic liquid crystal in an aqueous solution, an anisotropic dye film having high dichroism can be produced. It is a suitable useful dye.
  • the anisotropic dye film of the present invention contains the dyes represented by (I-11), (1-31), (II-3) and (11-15) among the above-mentioned exemplary dyes. Is preferred.
  • a dye having an acidic group may be used as it is in its free acid form, or a part of the acidic group may be in a salt form.
  • a salt type dye and a free acid type dye may be mixed.
  • when obtained in a salt form at the time of production it may be used as it is or may be converted to a desired salt form.
  • any known method can be used, and examples thereof include the following methods.
  • a strong acid such as hydrochloric acid is added to an aqueous solution of the dye obtained in the salt form, and the dye is acid-precipitated in the form of a free acid. Then, an alkaline solution having a desired counter ion (for example, lithium hydroxide or hydroxide) A method of neutralizing the acidic group of the dye with sodium and exchanging the salt.
  • a desired counter ion for example, lithium hydroxide or hydroxide
  • the acidic group takes the free acid form or the salt form depends on the pKa of the dye and the pH of the aqueous dye solution.
  • Examples of the above salt forms include salts of alkali metals such as Na, Li, and K, even when substituted with an alkyl group having 1 to 16 carbon atoms or a hydroxyalkyl group having 1 to 12 carbon atoms.
  • Good ammonium salts or salts of organic amines examples include a lower alkylamine having 1 to 6 carbon atoms, a lower alkylamine having 1 to 6 carbon atoms substituted with a hydroxy group, and a lower alkylamine having 1 to 6 carbon atoms substituted with a carboxy group.
  • the type is not limited to one type, and plural types may be mixed.
  • the above-mentioned dyes can be used alone, but two or more of these may be used in combination, and a dye other than the above-described dyes is blended and used to the extent that the orientation is not reduced.
  • a dye other than the above-described dyes is blended and used to the extent that the orientation is not reduced.
  • a film having a deep color tone is preferable, and as a hue, a neutral color in the visible wavelength region of 380 to 780 nm (neutral black.
  • ⁇ ( a *) 2 + (b *) 2 ⁇ ⁇ 5.) is preferable as a display element, particularly a polarizer for a color display element.
  • Examples of compounding dyes when other dyes are compounded include C.I.DirecctYellow 12, C.I.DirecctYellow 34, C.I.DirecctYe
  • the anisotropic dye film of the present invention is preferably produced by a dry film forming method or a wet film forming method described later using a dye composition for an anisotropic dye film containing at least a dye.
  • the above dyes can be used alone, but they can be used together or mixed with other dyes to the extent that the alignment is not reduced.
  • anisotropic dye films having various hues can be manufactured.
  • the dye composition for an anisotropic dye film of the present invention usually contains a solvent, and usually the dye is dissolved or dispersed in the solvent.
  • the dye contained in the dye composition for an anisotropic dye film the dye represented by the above formula (1) or (2) is preferable from the viewpoint of solubility in a solvent and the like.
  • additives such as a surfactant and a pH adjuster may be blended in the composition. These additives are also usually used by dissolving in a solvent.
  • Suitable solvents include water, water-miscible organic solvents, and mixtures thereof.
  • the organic solvent include alcohols such as methyl alcohol, ethyl alcohol, isopropyl alcohol, and glycerin; dalicols such as ethylene glycol and diethylene glycol; cellosolves such as methyl sorb and ethyl sorb; Alternatively, a mixed solvent of two or more kinds may be used.
  • the concentration of the dye in the dye composition for an anisotropic dye film may be determined by a film forming method, solubility of the dye, lyotropic Although it depends on the formation concentration of the supramolecular structure such as a liquid crystal state, it is usually 0.01% by weight or more, preferably 0.1% by weight or more, more preferably 0.5% by weight or more, usually 50% by weight Preferably 30 % By weight, more preferably 25% by weight or less, particularly preferably 20% by weight or less, and most preferably 15% by weight or less. If the dye concentration is too low, sufficient dichroism cannot be obtained in the obtained anisotropic dye film, and if it is too high, the dye may precipitate.
  • additives such as a surfactant can be added to the dye composition for an anisotropic dye film in order to improve wettability and coatability to a substrate.
  • a surfactant any of anionic, ionic and nonionic surfactants can be used.
  • concentration of the additive is sufficient to obtain the desired effect, and is usually not less than 0.05% by weight as the concentration in the dye composition for an anisotropic dye film, as long as it does not inhibit the orientation of the dye molecules. , 5% by weight or less, more preferably 0.5% by weight or less.
  • a commonly known pH adjuster such as an acid or an alkali is used.
  • the pH may be adjusted by adding before, during, or after the mixing of the components of the dye composition for an anisotropic dye film.
  • the pH of the dye composition is preferably adjusted to 3 or more, more preferably 4 or more, preferably 13 or less, and more preferably 12 or less. It is preferred in terms of the point.
  • additives other than those described above, known additives described in "Additive for Coating”. Edited by J. Bieleman, Wiley-VCH (2000) can also be used.
  • the anisotropic dye film of the present invention is preferably prepared by a dry film forming method or a wet film forming method described below using a dye composition for an anisotropic dye film containing at least a dye.
  • This anisotropic dye film enhances the molecular alignment in the anisotropic dye film and obtains high dichroism by utilizing the intermolecular interaction between dye molecules.
  • An anisotropic dye film formed by a wet film forming method is preferable to a dry film forming method such as the method described above.
  • the azo dye represented by the above formula (1) and particularly the dye which forms a lyotropic liquid crystal in an aqueous solution, such as the one shown by the structural formula (1-1) shown above, has a high two-color by a wet film forming method.
  • azo dye film can be produced and is useful.
  • the trisazo dye represented by the formula (2) has a specific dye structure, so that it can form a high lyotropic liquid crystal state, exhibit a higher molecular orientation state, and have one type of color. Since elementary black can be shown, high dichroism can be shown.
  • the wet film forming method can also form an anisotropic dye film on a high heat-resistant substrate such as glass, and can obtain a high heat-resistant polarizing element. It is preferable that it can be used for applications requiring high heat resistance, such as display panels.
  • a dry film forming method is a method in which a polymer is formed into a film and then dyed with a dye composition for an anisotropic dye film, or An unstretched film obtained by adding a dye composition for an anisotropic dye film to the combined solution, dyeing the undiluted solution, and forming a film.
  • a method of evaporating the dye composition for an anisotropic dye film by heating under vacuum conditions and vacuum-depositing it on various substrates such as glass such as a constituent material of the film to be dyed with the dye composition for an anisotropic dye film.
  • a polymer material having a high affinity for the dye such as polyvinyl alcohol
  • Examples of the wet film forming method include a method of preparing the above-described dye composition for an anisotropic dye film as a coating solution, applying the dye composition to various substrates such as a glass plate, drying, and orienting and laminating the dye. Known methods can be used.
  • the temperature at the time of applying the dye composition for an anisotropic dye film on a substrate is usually 0 ° C. or more, 80 ° C. or less, and preferably 40 ° C. or less.
  • the humidity is usually at least 10% RH, preferably at least 30% RH, and usually at most 80 RH%.
  • a dye film is formed through a coating process of a dye composition for an anisotropic dye film on a base material and a drying process.
  • a dye composition for an anisotropic dye film on a base material and a drying process.
  • the drying temperature is usually 0 ° C. or higher.
  • the temperature is 10 ° C. or higher, usually 120 ° C. or lower, preferably 110 ° C. or lower.
  • the humidity is usually 10% RH or more, preferably 30% RH or more, and usually 80% RH or less.
  • the substrate examples include glass, triacetate, acrylic, polyester, triacetyl cellulose or urethane resin films.
  • “Liquid Crystal Handbook” Maruzen Co., Ltd., issued on October 30, 2012
  • pages 26 to 23 in order to control the orientation direction of dichroic dyes
  • An orientation treatment layer, a fluororesin layer, or the like may be provided by a known method described on page 9 or the like.
  • the surface energy state and the like may be modified by a combination of light irradiation, corona treatment, plasma treatment and the like.
  • the anisotropic dye film of the present invention is preferably used after providing a protective layer on the surface.
  • the protective layer is formed by laminating a transparent polymer film such as a film of triacetate, acrylic, polyester, polyimide, triacetyl cellulose or urethane, and is put into practical use.
  • Such an anisotropic dye film of the present invention exhibits a high dichroic ratio, but preferably has a dichroic ratio of 9 or more, more preferably 12 or more, particularly preferably 15 or more. You.
  • the thickness of the anisotropic dye film formed on the substrate by the wet film forming method is usually the thickness after drying. Preferably, it is at least 50 nm, more preferably at least 100 nm, preferably at most 50, more preferably at most 10 wm, particularly preferably at most 1.
  • the anisotropic dye film of the present invention is used as a polarizing film or the like for various display devices such as LCD and OLED, the anisotropic dye film is directly applied to an electrode substrate or the like constituting these display devices.
  • a dye film may be formed, or a substrate on which the anisotropic dye film is formed may be used as a constituent member of these display elements.
  • the anisotropic dye film of the present invention functions as a polarizing film that obtains linearly polarized light, circularly polarized light, elliptically polarized light, etc. by utilizing the anisotropy of light absorption.
  • a polarizing film that obtains linearly polarized light, circularly polarized light, elliptically polarized light, etc. by utilizing the anisotropy of light absorption.
  • the polarizing element of the present invention uses the anisotropic dye film of the present invention as described above.
  • the polarizing element of the present invention is formed by forming the anisotropic dye film of the present invention on a base material
  • the formed anisotropic dye film itself may be used.
  • a layer having various functions such as an adhesive layer and an antireflection layer may be laminated and used as a laminate. The stacking order at that time can be appropriately selected according to the application.
  • the molecular lamination period, its lamination length, and the degree of orientation of the molecular lamination axis are measured by an in-plane analyzer using an X-ray diffractometer for thin film evaluation (“RI NT2000 PC” in-plane optical system manufactured by Rigaku Corporation).
  • RI NT2000 PC in-plane optical system manufactured by Rigaku Corporation.
  • the diffraction profile obtained by the measurement and the locking profile obtained by the in-plane rocking scan measurement were obtained by analyzing the above method. Both measurements were performed at an incident angle of 1 ° for CuKa.
  • the dichroic ratio (D) was measured by measuring the transmittance of the anisotropic dye film using a spectrophotometer (Otsuka Electronics Co., Ltd. “MCPD2000”, an instantaneous multi-photometry system) with an iodine-based polarizing element arranged in the incident optical system. It was calculated by the following equation.
  • Dichroic ratio (D) Az / Ay
  • T z transmittance for polarized light in the absorption axis direction of the dye film
  • Ty transmittance of the dye film for polarized light in the polarization axis direction
  • the chromaticity xy (CIE 1964 XYZ color system, D65 standard light source) of the anisotropic dye film was calculated by introducing the above Tz and Ty into the method of JIS-Z-8701-1995.
  • For the degree of polarization measure the transmittance of the dye film with a spectrophotometer, and then determine the tristimulus values X, ⁇ , and Z of the transmitted object color in the field of view twice according to JIS-Z-8701-1995, and calculate It was calculated by the formula.
  • the standard light spectral distribution used for calculation of the tristimulus values X, ⁇ , and Z used a D65 light source.
  • Degree of polarization ( ⁇ ) ⁇ (Y2-Y1) Z (Y2 + Y1) ⁇ 1/2 ⁇ 100
  • ⁇ 1 Tristimulus value when two polarizing axes of the dye film are orthogonally stacked ⁇
  • a substrate (polyimide film thickness of about 80 OA), on which a polyimide orientation film was formed on a glass substrate (75 mm x 25 mm, thickness lmm) by silk printing, was prepared by rubbing with a cloth in advance.
  • the dye composition for an anisotropic dye film is applied thereto by Barco Ichiyu (using "No. 3" manufactured by Tes Yuichi Sangyo Co., Ltd.), and then naturally dried to obtain a film thickness of about 0.4 / Am. An anisotropic dye film was obtained.
  • FIG. 4 shows the X-ray diffraction profile of the obtained anisotropic dye film
  • Fig. 5 shows the in-plane locking profile.
  • FIG. 4 shows the results of in-plane measurement performed on the anisotropic dye film from two directions for observing the diffraction plane perpendicular to the polarization axis and the diffraction plane perpendicular to the absorption axis.
  • the solid line is the X-ray diffraction profile obtained from the direction observing the diffraction plane perpendicular to the polarization axis
  • the dotted line is the direction perpendicular to the absorption axis.
  • FIG. 5 shows an in-plane rocking curve measurement result of a diffraction peak derived from molecular stacking of the anisotropic dye film.
  • Table 1 shows the obtained molecular stacking period, stacking length, molecular stacking axis orientation, and dichroic ratio. From these results, it was confirmed that the anisotropic dye film of this example had a molecular arrangement suitable for expressing the dichroic ratio and exhibited a high dichroic ratio.
  • This dye composition for an anisotropic dye film was coated on a glass substrate on which a polyimide alignment film was formed in the same manner as in Example 1 except that Barco Isuzu (“No. 2” manufactured by Tester Sangyo Co., Ltd.) was used. The resulting mixture was air-dried to obtain an anisotropic dye film.
  • the anisotropic dye film of this example had a molecular arrangement suitable for expressing the dichroic ratio and exhibited a high dichroic ratio.
  • a dye composition for an anisotropic dye film was prepared in the same manner as in Example 1 except that Apliquet Ichiichi (Imoto Seisakusho) having a gap of 10 / im was used. The resulting mixture was air-dried to give an anisotropic dye film.
  • the molecular stacking cycle, stacking length, molecular stacking axis orientation and dichroic ratio of the obtained anisotropic dye film were examined. The results are shown in Table 1. From Table 1, it was confirmed that the anisotropic dye film of this example had a molecular arrangement suitable for expressing the dichroic ratio and exhibited a high dichroic ratio.
  • This dye composition for an anisotropic dye film was applied to a glass substrate on which a polyimide alignment film was formed in the same manner as in Example 1 except that an applicator (manufactured by Imoto Seisakusho) having a gap of 10 Am was used. And air-dried to obtain an anisotropic dye film.
  • the molecular stacking cycle, stacking length, molecular stacking axis orientation and dichroic ratio of the obtained anisotropic dye film were examined. The results are shown in Table 1. From Table 1, it was confirmed that the anisotropic dye film of this example had a molecular arrangement suitable for expressing the dichroic ratio and exhibited a high dichroic ratio.
  • a polyimide alignment film was formed using this dye composition for an anisotropic dye film in the same manner as in Example 1 except that Barco Izuyu (“No. 2” manufactured by Tess Yuichi Sangyo Co., Ltd.) was used.
  • An anisotropic dye film was obtained by coating on a glass substrate and drying naturally.
  • the anisotropic dye film of this example had a molecular arrangement suitable for expressing the dichroic ratio and exhibited a high dichroic ratio.
  • a polyimide alignment film was formed using this anisotropic dye film dye composition in the same manner as in Example 1 except that Barco Izuyu (“No. 2” manufactured by Tess Yuichi Sangyo Co., Ltd.) was used.
  • An anisotropic dye film was obtained by coating on a glass substrate and drying naturally.
  • the anisotropic dye film of this example had a molecular arrangement suitable for expressing the dichroic ratio and exhibited a high dichroic ratio.
  • This dye composition for anisotropic dye was applied to a slide glass (“Slide glass white edge frost No. 1” manufactured by Matsunami Glass Industry Co., Ltd.) using “Berco No. 2j” (Coating Tester Ichigyo Co., Ltd.). Thereafter, the film was air-dried to obtain an anisotropic dye film.
  • Table 1 suggests that the anisotropic dye film of this comparative example has a lamination length of less than 105 A and a low dichroic ratio because the number of arranged molecules suitable for dichroic ratio expression is not sufficient.
  • the dye of the following dye No. (1-31) was synthesized according to the following methods (A) to (E). (I-31)
  • step (B) The monoazo compound obtained in the step (A) was similarly diazotized by a conventional method, and subjected to a coupling reaction with 2-methoxy-5-methylaniline to produce a disazo compound.
  • step (D) The disazo compound obtained in step (B) was similarly diazotized by a conventional method, and a coupling reaction was carried out with the compound obtained in step (C) to produce a trisazo compound. After the reaction was completed, 3-amino-1,2-propanediol was added, the temperature was raised to 60, and a 25% by weight aqueous sodium hydroxide solution was added to adjust the pH to 9 to 9.5, thereby completing the reaction.
  • a substrate (polyimide film thickness of about 80 OA), on which a polyimide alignment film was formed on a glass substrate by silk printing, was prepared by rubbing with a cloth in advance.
  • the aqueous solution of the dye was applied to this with a bar coater (No. 3 manufactured by Tester Sangyo Co., Ltd.), and dried at room temperature to obtain an anisotropic dye film.
  • FIG. 6 shows the transmittance characteristics of the dye film in the absorption axis and polarization axis directions.
  • the maximum absorption wavelength (Amax) of the obtained anisotropic dye film was 555 nm, and the dichroic ratio was 12.
  • polyvinyl alcohol (PVA) film was obtained by adding 10 parts of polyvinyl alcohol having an average polymerization degree of 1750 to 90 parts of water, dissolving with stirring in a water bath, developing to a thickness of lmm, and drying.
  • This PVA film was immersed in a dyeing solution and stretched three times to obtain an anisotropic dye film.
  • the tristimulus values of this dye film were as shown in Table 2, and the degree of polarization was 79.9%.
  • This dye aqueous solution was applied to a glass substrate prepared in the same manner as in Example 7 using a spin coater, and then dried at room temperature to obtain an anisotropic dye film.
  • the dichroic ratio of the obtained dye film was 20.
  • FIG. 5 shows the transmittance characteristics of the dye film in the absorption axis and polarization axis directions.
  • the maximum absorption wavelength (Amax) of the obtained dye film was 570 nm, and the dichroic ratio was 15.
  • a dye aqueous solution was prepared in the same manner as in Example 8 except that the dye used was changed to the dye of No. (1-25), and the PVA film was stained to obtain a dye film.
  • the tristimulus values of the obtained dye film were as shown in Table 2, and the degree of polarization was 64%.
  • a glass substrate 75 mm ⁇ 25 mm, 1.1 mm thick, polyimide film thickness of about 800 A
  • a polyimide alignment film formed on a glass substrate by spin coating on a glass substrate as a base material.
  • the dye solution was applied to this with a spin coater (SC-200 manufactured by Oshigane Co., Ltd.) (after 5 seconds at 1000 rpm, and 5 seconds at 2500 rpn), and then naturally dried, whereby the anisotropy in which the dye was oriented in the rubbing direction was obtained. A color film was obtained.
  • the obtained anisotropic dye film had a high dichroic ratio (light absorption anisotropy) that could sufficiently function as a polarizing film.
  • a dye composition for an anisotropic dye film was prepared in the same manner as in Example 12, except that the dye used was changed to a sodium salt of the dye No. (II-9) shown below.
  • An anisotropic dye film was obtained by coating under the conditions.
  • Table 3 shows the chromaticity xy (XYZ color system), maximum absorption wavelength ( ⁇ ), and dichroic ratio (D) of the obtained anisotropic dye film.
  • the obtained anisotropic dye film was an anisotropic dye film having a high dichroic ratio and capable of functioning sufficiently as a polarizing film.
  • Table 3 shows chromaticity xy (XYZ color system), maximum absorption wavelength ( ⁇ ), and dichroic ratio (D) of the obtained anisotropic dye film.
  • the obtained anisotropic dye film was an anisotropic dye film having a high dichroic ratio and capable of functioning sufficiently as a polarizing film.
  • Table 3 shows the chromaticity xy (XYZ color system), maximum absorption wavelength ( ⁇ ), and dichroic ratio (D) of the obtained anisotropic dye film.
  • the obtained anisotropic dye film was an anisotropic dye film having a high dichroic ratio and capable of functioning sufficiently as a polarizing film.
  • Table 3 shows the chromaticity xy (XYZ color system), maximum absorption wavelength ( ⁇ ), and dichroic ratio (D) of the obtained anisotropic dye film.
  • the obtained anisotropic dye film was an anisotropic dye film having a high dichroic ratio and capable of functioning sufficiently as a polarizing film.
  • the obtained anisotropic dye film was an anisotropic dye film having a high dichroic ratio and capable of functioning sufficiently as a polarizing film.
  • a dye aqueous solution and a dye film were prepared in the same manner as in Example 8, except that the dye of the following structural formula was used instead of the dye of (I-11).
  • FIG. 8 shows the transmittance characteristics of the dye film in the absorption axis and polarization axis directions.
  • the maximum absorption wavelength (Amax) of the obtained dye film was 585 nm, and the dichroic ratio was 3.
  • Example 12 instead of the dye of No. (II-1), a sodium salt of the dye ( ⁇ _1) in which the substituent G 1 of No. (II-1) is in the para-position to the azo group was used.
  • a dye composition for a dye film was prepared in the same manner except that the dye composition was used, and coated on a similar substrate under the same conditions to obtain a dye film.
  • Example 12 is the same as Example 12 except that the dye of No. (II-1) was replaced with the dye of the following (III-2) in which the substituent G 1 of No. (II-1) was in the ortho position.
  • a dye composition for a dye film was prepared, and was applied to a similar substrate under the same conditions to obtain a dye film.
  • a dye composition for a dye film was prepared in the same manner as in Example 12 except that the dye (III-4) shown below was used instead of the dye of No. (II-1), and a similar substrate was used. The coating was performed under the following conditions to obtain a dye film.
  • a dye film-forming dye composition was prepared in the same manner as in Example 12, except that the sodium salt of the following dye ( ⁇ -5) was used instead of the dye of No. (II-1). Coating was performed on the substrate under the same conditions to obtain a dye film.
  • aqueous dye solution was injected into a quartz square cell (cuvet) having an optical path length of 0.1 mm.
  • the visible light transmittance of the dye aqueous solution injected into this cuvette and the anisotropic dye film obtained in Example 12 were measured with a spectrophotometer, respectively, and the chromaticity under a CIE 1964 XYZ color system and a D65 standard light source was measured. X y was calculated.
  • the chromaticity coordinates N of the D65 standard light source, the chromaticity coordinates C1 of the obtained aqueous dye solution, and the chromaticity coordinates C2 of the anisotropic dye film are connected by straight lines from the chromaticity diagram.
  • the wavelength corresponding to the intersection with the vector trace was defined as the main wavelength, and the stimulus purity of the aqueous dye solution (pe1) and the stimulus purity of the anisotropic dye film (pe2) were calculated from the ratio of each point.
  • Table 5 shows the stimulus purity of the dye solution and the stimulus purity of the anisotropic dye film.
  • the stimulation purity of the dye (aqueous dye solution) of this example was 12% or less. Also use this dye The stimulus purity of the resulting anisotropic dye film was also less than 12%, and was useful as a low chroma achromatic anisotropic dye film.
  • Dyes used in Examples 13 to 17 The stimulation purity of the anisotropic dye film obtained in Examples 13 to 17 was measured and calculated by the same method as in Example 18. did. Table 5 shows the stimulus purity of the aqueous solution of each dye and the stimulus purity of the anisotropic dye film.
  • the stimulus purity of the dye (aqueous dye solution) of this example was 12% or less.
  • the anisotropic dye film produced using this dye also had an excitation purity of 12% or less, and was useful as a low-saturation achromatic anisotropic dye film.
  • an anisotropic dye film having high dichroism can be provided.
  • a polarizing element having excellent heat resistance and light resistance and excellent polarization performance can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

二色性の高い異方性色素膜を提供する。 分子積層に由来した周期dが3.445Å以下であり、その積層長Lが105Å以上である異方性色素膜。この異方性色素膜は、分子積層軸の配向度は85%以上、膜厚は30μm以下で、湿式成膜法で形成されることが好ましい。二色比発現に適した分子配列を持つことにより、高い二色性を示す。この異方性色素膜を有する偏光素子は、耐熱性、耐光性、偏光性能に優れる。

Description

明 細 書 異方性色素膜用色素、 異方性色素膜用色素組成物、 異方性色素膜および偏光素子 技術分野
本発明は、 特に、 調光素子や液晶素子、 有機エレクト口ルミネッセンス素子 (OLE D) の表示素子に具備される偏光板等に有用な高い二色性を示す異方性色素膜、 該異方性 色素膜を用いた偏光素子、 および該異方性色素膜を得るための異方性色素膜用色素組成物 に関する。 また、 本発明は、 異方性色素膜に有用な新規なァゾ色素に関する。 背景技術
LCD (液晶表示ディスプレイ) では、 表示における旋光性ゃ複屈折性を制御するため に直線偏光板や円偏光板が用いられている。 OLEDにおいても、 外光の反射防止のため に円偏光板が使用されている。
従来、 これらの偏光板には、 ヨウ素や二色性を有する有機色素を、 ポリビニルアルコー ル等の高分子材料に溶解または吸着させ、 その膜を一方向にフィルム状に延伸して、 二色 性色素を配向させることにより得られる異方性色素膜が広く使用されてきた (例えば、 特 開平 3— 12606号公報、 特開平 1一 161202号公報、 特開平 1一 252904号 公報) 。 しかしながら、 このようにして製造される従来の異方性色素膜では、 用いる色素 や高分子材料によっては耐熱性ゃ耐光性が十分でない;液晶装置製造時における異方性色 素膜の貼り合わせの歩留りが悪い;等の問題があった。 また、 ヨウ素は昇華性が大きいた めに偏光板として使用した場合、 その耐熱性ゃ耐光性が十分ではなかった。 また、 その消 光色が深い青になり、 全可視スぺクトル領域にわたって理想的な無彩色偏光板とは言えな かった。
そのため、 ガラスや透明フィルムなどの基板上に、 二色性色素を含む溶液を塗布する湿 式成膜法にて二色性色素を含む膜を形成し、 分子間相互作用などを利用して二色性色素を 配向させることにより異方性色素膜を製造する方法 (例えば、 米国特許第 2, 400, 8 77号明細書、 特表平 8— 511109号公報、 特表 2002— 528758号公報、 特 開 2002— 180052号公報、 特開 2002— 338838号公報、 WO02/09 9480号公報および Dreyer, J. F. , Phys. And Colloid Chem. , 1948, 52, 808., "The Fixing of Molecular Orientation" Dreyer, J. F. , Journal de Phys i Que, 1969, 4, 114., "Light Polarization From Fills of Lyo tro ic Nematic Li uid Crystals"、 入江正浩監修 「機能性色素の応用」 株式会社シーエムシー出版、 199 6年 4月 15日発行、 96ページから 106ページ参照) が検討されている。
偏光素子としての用途においては、 より高い偏光性能を得るために、 二色性の高い異方 性色素膜が求められているが、 これら従来の異方性色素膜は、 二色性に劣り、 このため、 偏光性能に優れた偏光素子を得ることができなかった。 従来、 異方性色素膜には様々な色素が使用されており、 色素の選択も重要な要素の 1つ である。 例えば、 特開平 3— 1 2 6 0 6号公報には、 下記構造式で表される二色性色素を 使用する旨、 記載されている。
Figure imgf000004_0001
また、 特開平 1一 1 6 1 2 0 2号公報には、 下記構造式で表される二色性色素を使用す る旨、 記載されている。
Figure imgf000004_0002
しかし、 上記特開平 3— 1 2 6 0 6号公報および特開平 1一 1 6 1 2 0 2号公報に記載 される化合物はいずれも二色性が不十分であり、 特に特開平 3— 1 2 6 0 6号公報記載の 化合物は各種溶剤への溶解性も低いことから、 湿式成膜法にて製造される異方性色素膜の 材料として十分であるとは言えない。
さらに、 特表 2 0 0 2— 5 2 8 7 5 8号公報にも、 下記構造式で表される二色性色素を 使用する旨、 記載されている。
Figure imgf000005_0001
しかし、 上記化合物はいずれもジスァゾ化合物であり、 湿式成膜法にて製造される異方 性色素膜の材料としては、 二色性や溶剤への溶解性が不十分であるという問題があった。
WO 0 2 / 0 9 9 4 8 0号公報には、 湿式成膜法にて製造される異方性色素膜を作製す る旨、 記載されており、 使用できる二色性色素の一例として、 下記構造式で表されるもの が記載されている。
Figure imgf000005_0002
しかし、 上記化合物はジスァゾ化合物であり、 またトリアジン環上にハロゲン原子が結 合しているため分解しやすいという問題があつた。 発明の開示
本発明は、 二色性の高い異方性色素膜と、 この異方性色素膜を用いてなる耐熱性、 謝光 性、 偏光性能に優れた偏光素子を提供することを課題とする。 また、 耐熱性や耐光性を有 する異方性色素膜として機能する異方性色素膜を実現し得る、 新規な二色性色素および異 方性色素膜用色素組成物を提供することを課題とする。
本発明者らは鋭意検討した結果、 異方性色素膜の結晶構造パラメ一夕を特定することに より、 二色性の高い異方性色素膜を確実に実現することができることを見出し、 本発明に 到達した。 即ち、 本発明の異方性色素膜は、 分子積層に由来した周期が 3 . 4 4 5 A以下であり、 その積層長が 1 0 5 A以上であることを特徵とする。
また、 本発明者らは、 新規な二色性ァゾ色素としては、 下記式 ( 1 ) で表される、 トリ アジ二ル基を有し、 1分子中にァゾ結合を 3個以上有する、 特定構造の二色性ァゾ色素が、 基材との高い親和性を有することを見出した。 また、 このような色素を含有する組成物を 用い、 湿式成膜法にて膜形成することにより、 二色性色素分子が高次の分子配向状態を示 すこと、 即ち、 高い異方性を有する色素膜を形成することが可能であるということを見出 した。
即ち、 本発明のァゾ色素は、 遊離酸の形が下記式 (1 ) で表されるァゾ色素を含有する ことを特徴とする。
Figure imgf000006_0001
…い)
(式中、 AQ、 B Q、 〇°ぉょび13 °は、 それぞれ独立に、 置換基を有していてもよい芳香族 炭化水素環を表し、
A r °は水素原子、 または任意の置換基を表し、
X Qおよび Y 0はそれぞれ独立に、 ハロゲン原子以外の任意の置換基を表す。
• kは 1または 2を表し、 mは 1または 2を表す。 なお、 kが 2の場合、 1分子中に含ま れる複数の B。は、 同一であっても異なっていてもよい。 )
更にまた、 本発明者らは、 下記式 (2 ) で表されるァゾ色素を用いることにより、 湿式 成膜法で形成される異方性色素膜において無彩色で、 高い二色性、 高い分子配向度を示す ことができることを見出した。
即ち、 本発明のァゾ色素は、 湿式成膜法により形成される異方性色素膜用のァゾ色素で あって、 遊離酸の形が下記式 (2 ) で表されることを特徴とする。
Figure imgf000006_0002
(式中、 0 1ぉょび£ 1は、 置換基を有していてもよいフエ二レン基、 または置換基を有し ていてもよいナフチレン基を表し、
G 1は力ルポキシル基、 スルホ基、 またはリン酸基を表し、
Q 1は八ロゲン原子、 水酸基、 ニトロ基、 置換基を有していてもよいアミノ基、 置換基 を有していてもよい炭素数 1〜4のアルキル基、 置換基を有していてもよい炭素数 1〜 3 のアルコキシ基、 カルボキシル基、 或いはスルホ基を表し、
Q 2および Q 3はそれぞれ独立に、 水素原子、 置換基を有していてもよい炭素数 1〜4の アルキル基、 或いは置換基を有していてもよいフエ二ル基を表し、
pは 0または 1を表し、 tは 1または 2を表す。 )
本発明の異方性色素膜用色素組成物は、 上記本発明のァゾ色素を含有することを特徴と する。
本発明の異方性色素膜はまた、 上記本発明のァゾ色素を含有することを特徴とする。 本発明の異方性色素膜はまた、 上記本発明の異方性色素膜用色素組成物を用いて形成さ れたことを特徴とする。
本発明の偏光素子は、 上記本発明の異方性色素膜を用いたことを特徴とする。 図面の簡単な説明
図 1は、 分子積層軸に対して色素分子面が垂直から傾いた分子配列を有する異方性色 素膜を示す模式図である。
図 2は、 分子積層軸に対して色素分子面が垂直な分子配列を有する異方性色素膜を示 す模式図である。
図 3は、 (a ) 図は分子積層軸の配向度が低い状態の異方性色素膜を示す模式図であ り、 (b ) 図は分子積層軸の配向度が高い状態の異方性色素膜を示す模式図である。
図 4は、 実施例 1で形成した異方性色素膜の X線回折プロフアイルを示すチヤ一トで ある。
図 5は、 実施例 1で形成した異方性色素膜のィンプレーンロッキングプロファイルを 示すチヤ一卜である。
図 6は、 実施例 7にて得られた異方性色素膜の、 吸収軸方向および偏光軸方向の光透 過率を表すグラフである。
図 7は、 実施例 1 0にて得られた異方性色素膜の、 吸収軸方向および偏光軸方向の光 透過率を表すグラフである。
図 8は、 比較例 2にて得られた異方性色素膜の、 吸収軸方向および偏光軸方向の光透 過率を表すグラフである。 発明を実施するための最良の形態
以下に本発明の実施の形態を詳細に説明する。
以下に記載する構成要件の説明は、 本発明の実施態様の一例 (代表例) であり、 本発明 はその要旨を超えない限り、 これらの内容に特定はされない。
本発明でいう異方性色素膜とは、 色素膜の厚み方向および任意の直交する面内 2方向の 立体座標系における合計 3方向から選ばれる任意の 2方向における電磁気学的性質に異方 性を有する色素膜である。 電磁気学的性質としては、 吸収、 屈折などの光学的性質、 抵抗、 容量などの電気的性質などが挙げられる。 吸収、 屈折などの光学的異方性を有する膜とし ては、 例えば、 直線偏光膜、 円偏光膜、 位相差膜、 抵抗率異方性膜などがある。 すなわち、 本発明の異方性色素膜は、 偏光膜、 位相差膜あるいは抵抗率異方性膜に使用できる。 特に、 本発明の異方性色素膜は、 可視光領域に吸収を持っため、 偏光膜に有用である。
本発明の異方性色素膜は、 分子積層に由来した周期 (以下、 分子積層周期ともいう) が 3 . 4 4 5 A以下であり、 その積層長が 1 0 5 A以上のものである。
分子積層周期が 3. 4 4 5 A以下で、 分子積層長が 1 0 5 A以上である本発明の異方性 色素膜が、 高い二色性を示す理由は、 以下の通りであると推測される。
色素分子は、 一般に芳香環により形成された平面分子構造を持ち、 その C— π相互作用 等の強い分子間相互作用により、 分子平面が重なり合つた積層構造をもつ結晶となること が知られている。 異方性色素膜の場合には、 下記の文献 1、 2にあるように、 X線回折測 定により、 他の回折ピークとともに、 色素分子積層構造の積層周期に由来した回折 ピークが観察される。
文献 l : M. 0fuj i et. al. , Jpn. J. Appl. Phys. 2002, 41, 5467 "Grazing Incidence In- Plane X-Ray Diffract ion Study on Oriented Copper Phthalocyanine Thin Films
文献 2 : M. 0iuj i et. al. , Jpn. J. Appl. Phys. 2003, 42, 7520 "Growth Process of Vacuum Deposi ted Copper Phthalocyanine Thin Films on Rubbing-Treated Substrates"
この X線回折ピーク解析より得られる分子積層周期は、 結晶内での色素分子の積層、 配 列状態を反映した値を示す。 特に、 色素分子平面の積層軸に対する傾きが、 分子積層周期 に重要と推定される。
以下に、 異方性色素膜の分子積層周期および積層長と異方性色素膜の二色性について、 図 1〜 3を参照して説明する。
図 1、 図 2、 図 3 ( a ) , (b ) は、 いずれも異方性色素膜の膜面上方から見た異方性 色素膜の二色性色素分子の配列を示す模式図であり、 図 1〜 3において、 破線は分子積層 軸を示し、 黒太線分は平面分子構造の色素分子を示す。 図 1 , 2において、 dは分子積層 周期、 d mは積層分子間の最短距離、 Lは積層長を示す。 また、 異方性色素膜の平面内の 吸収方向を X軸、 偏光方向を y軸にとったとき、 k。は x y平面に投影した色素の持つ吸 収係数、 k xと k yは吸収係数の X軸と y軸方向成分となる。
図 1は、 分子積層軸に対して色素分子平面が垂直から傾いた状態で分子配列している異 方性色素膜、 図 2は分子積層軸に対して分子平面が垂直な状態で分子配列した異方性色素 膜をそれぞれ示す。 ここで、 π— π相互作用などの分子間相互作用により、 分子平面同士 2004/015450
7 が取ることができる最近接間隔 d mは、 ほぼ一定と想定される。 このとき、 図 1に示され るように、 分子積層軸に対して分子平面が垂直から大きく傾くと、 それに応じて分子積層 周期 dは d〉dmとなり、 より大きな値となる。 また、 図 2のように、 分子積層軸に対し て分子平面が垂直な場合には、 d = d mとなり、 分子積層周期 dの値は小さくなることが 予想される。
一方、 異方性色素膜の二色比は、 吸収方向と偏光方向の吸収係数の比で決まる。 従って、 異方性色素膜の平面内の吸収方向を X軸、 偏光方向を y軸とすると、 二色比を高める目的 には、 用いられる二色性色素の持つ吸光係数の X軸成分 k xができるだけ大きくなるよう に、 数多く揃えた分子配列となることが好ましい。
一般に、 二色性色素の吸収軸は、 ほぼ分子積層軸方向と一致すること (入江正浩監修 「機能性色素の応用」 株式会社シーエムシー出版、 1 9 9 6年 4月 1 5日発行、 9 6 ページ) から、 分子平面内に存在している。 ここで、 x y平面に投影した二色性色素の吸 収係数を k。とすると、 分子積層軸に対して分子平面が垂直な場合 (図 2 ) は k x= k 0と なり、 分子平面が傾いた場合 (図 1 ) の k x « k 0) よりも大きくなる。 従って、 分子平 面が積層軸に対する傾きが垂直により近い、 つまり分子積層周期 dがより小さい異方性色 素膜が吸収係数 k xの値がより大きくなるために、 二色性を高める観点から好ましい。
また、 X線回折ピーク解析から、 周期的に並んだ分子の積層距離である積層長 (図 1、 2における L ) も同時に見積もられる。 このとき、 積層長に含まれ、 同方向に配列した色 素分子の個数は、 L/ dとなる。 前述の通り、 高二色比を得るには、 最適な配列に数多く 分子を揃える必要があることから、 積層分子個数 L Z dが多い、 つまり積層長 Lがより大 きい異方性色素膜が好ましいと考えられる。
以上の考察から、 本発明者らは、 パラメ一夕として、 3 . 4 4 5 A以下の分子積層周期 を持ち、 その積層長が 1 0 5 A以上である部分を用いることで、 高い二色比を発現できる 分子配列を持つた異方性色素膜が得られることを見出した。
一方、 従来の異方性色素膜は、 通常、 上記パラメ一夕を外れるものが使用されてきた。 即ち、 従来の異方性色素膜では、 二色性色素分子が二色比発現に最適な方向に数多く配列 していないために、 高い二色比を得ることができなかったものと推測される。
上記パラメ一夕で規定される本発明の異方性色素膜は、 図 3で示される分子積層軸の配 向度も高二色性の発現に重要となる。 つまり、 より多くの分子を同じ方向に配列させるに は、 分子積層軸の配向度も高いことが望ましい。 このため、 本発明の異方性色素膜は、 後 述する X線回折測定により見積もられる配向度が 8 5 %以上であることが好ましい。
本発明の異方性色素膜の分子積層周期は、 好ましくは 3 . 3 0 O A以上、 さらに好まし くは 3 . 3 8 0以上、 最も好ましくは 3 . 4 0 O A以上であり、 3 . 4 4 5 A以下、 好ま しくは 3 . 4 4 0 A以下、 さらに好ましくは 3 . 4 3 5 A以下である。 異方性色素膜の分 子積層周期がこの上限を超えると、 分子積層内での分子の傾きが大きくなり、 二色比が低 下する恐れがあり好ましくない。 また、 下限を下回ると分子同士が近接しすぎて、 分子積 層を阻害する恐れがあり好ましくない。 また、 本発明の異方性色素膜の分子積層長は、 105 A以上、 好ましくは 115 A以上、 さらに好ましくは 14 OA以上であり、 好ましくは 1 im以下、 さらに好ましくは 500 nm以下、 最も好ましくは 100 nm以下である。 異方性色素膜の分子積層長がこの上限 を超えると、 結晶構造のひずみが生じ易くなり、 分子積層軸の配向度が低下する恐れがあ り好ましくない。 また、 下限を下回ると、 同方向に配列した分子数が少ないために、 高い 二色比が発現されないおそれがあり、 好ましくない。
異方性色素膜の上記パラメ一夕、 即ち、 分子積層周期とその積層長の値は、 薄膜評価用 X線回折装置 (理学電機 (株) 製 「R I NT 2000 PC」 インプレーン光学系) 或いは これと同等の装置で測定される X線回折プロファイルから得られる (例えば、 上記文献 1、 2参照) 。
本発明の異方性色素膜では、 上記のパラメータは例えば次の手順 (1)〜(3) により 求められる。
(1) まず、 異方性色素膜について、 その吸収軸に垂直な回折面および偏光軸に垂直な回 折面をそれぞれ観察する 2方向からィンプレーン測定を実施する。 本発明の異方性色素膜 では、 分子積層周期に由来した強度の強い回折ピークが、 CuCaに対して回折角 (20 約24. 7° から約 27° の間に、 2方向からのインプレーン測定のうちいずれか一 方向からの測定においてのみ通常観測される。
(2) 分子積層由来のピークが観測された方向の X線回折プロファイルを、 20χが 2 0° から 30° までの範囲について、 次の数式 f (20¾)で最適当てはめを行う。
f (2 θχ) =Β (2 θζ) +C!e xp [一 ( (2 θ χ- 2 θ χ) Ζ2 σ 2]
+ C2e χρ [- ( (2 θζ-2 θ2) Ζ2 σ2) 2] 即ち、 本発明の異方性色素膜では、 周期的に積層した結晶部分とランダムに積層した非 結晶部分が共存しているとして、 2つのガウス関数で記述される上式を用いる。
但し、 と C2はその係数、 20 と 202はピーク位置、 σ ιと σ2は標準偏差を表し ている。
また、 Β (2 ΘΧ) はべ一スラインを表し、 ここでは、 分子積層由来の回折ピークが観 測されない方向の X線回折プロファイルをベースラインとする。 但し、 この回折ピークに 別の回折面からの回折ピークがある場合は、 ピークを取り除き補間してベースラインとす る。
(3) 本発明で求めるパラメ一夕は、 分子が周期的に積層した結晶部分の構造パラメ一夕 であることから、 び 1くび 2のとき、 回折ピークのピーク位置は 20い ピークの半値幅は βχ=2 σ xf{21 n 2)となる。 ピーク位置 2 Θ から分子積層周期 dが次の B r agg 条件より見積もられる。
ά = λ/ (2 s ϊ χιθ x)
但し、 λは X線波長 (=1. 54 Α) である。
また、 積層長 Lは半値幅 j8 (=]3 iX Tt l 80 r a d) から次の S c h e r r e r 式より見積もられる。 L-ΚλΖ (j3 c o s )
但し、 Kは S c h e r r e r定数であり、 ここでは K= 1の値を用いる。
異方性色素膜の分子積層軸の配向度も上記装置による測定から、 例えば次のようにして 得られる (例えば、 上記文献 1、 2参照) 。 即ち、 インプレーン測定で観測された上記回 折ピークに関して、 360° にわたつてインプレーンロッキングスキャン測定を行うと、 本発明の異方性色素膜では分子積層軸の配向性に応じたピークが 2つ通常観測される。
そのロッキングプロファイルを次の数式 g (φ)で最適当てはめを行う。
g (Φ) =C0 + C1e xp [― ( (Φ- /2 σ ) 2]
+ C2exp [― ( (φ-φ2) /2 σ2) 2] 但し、 C0、 。い C2は係数、 φは回転角、 (ί^と φ2はピーク位置、 と σ2は標準偏 差を表す。
本発明における分子積層軸の配向度 Ρ (単位: %) は次式で定義する。
Ρ= (360-2 aj-2 σ 2) /360 X 100
本発明の異方性色素膜は、 このようにして定義される分子積層軸の配向度が好ましくは
85%以上のものである。 かかる配向度はさらに好ましくは 88%以上、 最も好ましくは
90%以上、 特に好ましくは 94%以上である。 この配向度が上記下限を下回ると、 同じ 方向に配列した分子数が少ないために、 高い二色比が発現されないおそれがあり、 好まし くない。
これらのパラメータを満たす本発明の異方性色素膜は高い二色比を示すが、 その二色比 は 1 1以上が好ましく、 さらに好ましくは 1 3以上、 最も好ましくは 15以上である。 本発明の異方性色素膜の膜厚は、 通常乾燥後の膜厚で、 好ましくは 10 nm以上、 さら に好ましくは 50 nm以上で、 好ましくは 30 m以下、 さらに好ましくは 1 μιη以下で ある。 異方性色素膜の膜厚が 30 imを超えると、 膜内で色素分子の均一な配向を得るこ とが難しくなるおそれがあり、 10 nmを下回ると均一な膜厚とすることが難しくなるお それがあるため、 好ましくない。
分子積層に由来した周期が 3. 445A以下であり、 その積層長が 105 A以上である 異方性色素膜は、 異方性色素膜に含まれる色素や添加剤の組合せを選ぶことにより、 得る ことが出来る。 もちろん、 異方性色素膜の製法も、 該異方性色素膜を得るための重要な要 素の 1つであり、 該異方性色素膜を得るためには、 湿式成膜法を使用することが好ましい。 本発明の異方性色素膜に用いられる色素としては、 例えばァゾ系色素、 スチルベン系色 素、 シァニン系色素、 フタロシアニン系色素、 縮合多環系色素 (ペリレン系、 ォキサジン 系) 等が挙げられる。 これら色素の中でも、 本発明の異方性色素膜を得るために最適な色 素としては、 異方性色素膜中で高い分子配列をとりうるァゾ系色素が特に好ましい。 後述 の式 (1) あるいは (2) で表される色素が特に好ましい。
ァゾ系色素とは、 ァゾ基を少なくとも 1個以上持つ色素をいう。 その一分子中のァゾ基 の数は、 色調および製造面の観点から、 1以上が好ましく、 さらに好ましくは 2以上で、 6以下が好ましく、 さらに好ましくは 4以下である。 かかる色素は、 後述する湿式成膜法に供するためには水溶性であることが好ましい。 従って、 水溶性を与える置換基として、 スルホ基、 力ルポキシル基、 リン酸基等の酸性基、 アミノ酸基等の塩基性基、 水酸基等の可溶性基を有する色素が好ましく、 水溶性の高さか ら、 特にスルホ基、 力ルポキシル基を有することが好ましい。
かかる色素の分子量は、 塩型をとらない遊離の状態で通常 2 0 0以上、 特に 3 5 0以上 で、 通常 5 0 0 0以下、 特に 3 5 0 0以下であることが、 色調および製造面の観点から好 ましい。
このような色素の具体例としては、 前述の米国特許第 2, 4 0 0 , 8 7 7号、 Dreyer, J. F. , Phys. And Col loid Chem. , 1948, 52, 808. , "The Fixing of Molecular Orientat ion" 、 Dreyer, J. F. , Journal de Phys i que, 1969, 4, 114. , " Light Polarizat ion From Fi lms of Lyotropic Nematic Li uid Crystals" および J. Lyndon, "Chroionics in "Handbook of Liquid Crystals Vol. 2B:Lo Molecular Weight Liauid Crystals Π" , D. Demus, J.
Goodby, G. W. Gray, H. W. Spiessm, V. Vil led. , Wi l ley-VCH, P. 981-1007, (1998)に記載の色素 が挙げられる。
また、 特に、 本発明の異方性色素膜は、 遊離酸の形が下記式 (1 ) で表される、 新規な ァゾ色素を含有することが好ましい。
Figure imgf000012_0001
"(1 )
(式中、 AQ、 B Q、 〇°ぉょび0 °は、 それぞれ独立に、 置換基を有していてもよい芳香族 炭化水素環を表し、
A r °は水素原子、 または任意の置換基を表し、
X Qおよび Y 0はそれぞれ独立に、 ハロゲン原子以外の任意の置換基を表す。
kは 1または 2を表し、 mは 1または 2を表す。 なお、 kが 2の場合、 1分子中に含ま れる複数の B °は、 同一であっても異なっていてもよい。 )
このァゾ色素は、 二色性を示し、 色調、 溶剤に対する溶解性に優れ、 溶液中での安定性 の高い色素である。 従って、 様々な用途に使用することができるが、 異方性色素膜に使用 すると特に高い効果を得る事ができる。 即ち、 この色素を用いた本発明の異方性色素膜は、 高い二色性を示すと同時に、 従来のヨウ素系偏光膜に比べて高い耐熱性、 耐光性を有する。 特に、 前述の通り、 溶剤に対する溶解性、 溶液中での安定性が高いため、 該色素を含有 する異方性色素膜用色素組成物の保存安定'性が高い。 従って、 本発明のァゾ色素は、 後述 の湿式成膜法による異方性色素膜の形成に適用することが好ましい。 湿式成膜法によると、 ガラスなどの高耐熱性基材上に異方性色素膜を形成することが可能であり、 高耐熱性の偏 光素子を得ることができる点から、 液晶プロジェクタや車載用表示パネル等、 高耐熱性が 求められる用途に使用できる点が好ましい。
上記式 (1 ) において、 AQ〜D Qの芳香族炭化水素環としては、 炭素数 6〜2 0程度の 芳香族炭化水素環が挙げられ、 好ましくはそれぞれ独立にベンゼン環またはナフタレン環 ある。 このうち、 D。については、 D。がベンゼン環の場合、 1, 4一フエ二レン基であ ることがより好ましく、 ナフタレン環の場合には、 2 , 6—ナフチレン基であることが好 ましい。 また、 1—ナフトール環または 2—ナフ! ル環由来の 2価の基であることがよ り好ましく、 色目が深い色素が得られる点から 1一ナフトール環由来の基が特に好ましい。
A G〜D Qの芳香族炭化水素環が有しうる置換基としては、 色調を調節するために導入さ れる電子吸引性基や電子供与性基から適宜選択された基や、 溶剤への溶解性を高めるため に導入される親水性基などが挙げられる。 具体的には、 後述する式 (1一 a ) における A 1〜 C 1が有しうる置換基として挙げた基等が挙げられる。
A r Dの任意の置換基としては、 色調を調節するために導入される電子吸引性基や電子 供与性基から適宜選択された基や、 溶剤への溶解性を高めるために導入される親水性基な どが挙げられる。 具体的には、 後述する式 (1一 a ) における A r 1として例示された基 などが挙げられる。
X 0および Y °のハロゲン原子以外の任意の置換基としては、 溶剤への溶解性を調節する ために導入される親水性基や疎水性基などが挙げられる。 具体的には、 後述する式 (1— a ) における X 1および Y 1として例示された基などが挙げられる。
前記式 (1 ) で表される本発明のァゾ色素は、 好ましくは、 遊離酸の形が下記式 (1一 a ) で表されるものである。
Figure imgf000013_0001
…("!一 a)
(式中、 A 1は、 置換基を有していてもよいフエニル基、 または置換基を有していてもよ いナフチル基を表し、
B 1および C 1はそれぞれ独立に、 置換基を有していてもよいフエ二レン基、 または置換 基を有していてもよいナフチレン基を表し、
A r 1は水素原子、 または置換基を有していてもよい炭素数 1〜 5のアルキル基を表し、 X 1および Y 1はそれぞれ独立に、 — N R i R 2基、 一 O R 3基、 または一 S R 4基を表す。 但し、 R R 2、 R 3および R 4はそれぞれ独立に、 水素原子、 置換基を有していてもよ い炭素数 1~18のアルキル基、 置換基を有していてもよい炭素数 2 ~18のアルケニル 基、 置換基を有していてもよい炭素数 3~15の炭化水素環基、 または置換基を有してい てもよい 5または 6員環の、 単環または 2〜 3縮合環からなる複素環基を表すか、 あるい は R1と R2とが互いに結合し、 窒素原子を含む 5または 6員環を形成する。 R1および R2 が結合してなる環は、 置換基を有していてもよい。
kは 1または 2を表し、 mは 1または 2を表す。 なお、 kが 2の場合、 1分子中に含ま れる複数の B1は、 同一であっても異なっていてもよい。 )
上記式 (1一 a) において、 A1は置換基を有していてもよいフエニル基、 または置換 基を有していてもよいナフチル基を表す。
A1がフエニル基の場合、 フエニル基の置換基としてはスルホ基、 力ルポキシル基、 水 酸基、 ニトロ基、 ハロゲン原子、 置換基を有していてもよいアミノ基、 置換基を有してい てもよいアルキル基、 置換基を有していてもよいアルコキシ基などが挙げられる。
ハロゲン原子、 アミノ基、 アルキル基およびアルコキシ基として、 具体的には、 フッ素原子、 塩素原子、 臭素原子またはヨウ素原子であるハロゲン原子;
アミノ基;
N—メチルァミノ基、 N、 N—ジメチルァミノ基、 N、 N—ジェチルァミノ基などの、 炭素数 1〜18 (好ましくは 1〜8) のアルキルアミノ基;
N—フエニルァミノ基、 N—ナフチルァミノ基などの、 炭素数 6〜18 (好ましくは 6 〜: L 0) のァリ一ルァミノ基;
ァセチルァミノ基、 ベンゾィルァミノ基などの、 炭素数 2〜18 (好ましくは 2~1 1) のァシルァミノ基;
メチル基、 ェチル基、 n—プロピル基、 i一プロピル基、 n—ブチル基、 n—ドデシル 基などの、 炭素数 1~18 (好ましくは 1〜 12) のアルキル基;
メトキシ基、 エトキシ基、 i一プロポキシ基、 n—ブトキシ基、 n—ドデシルォキシ基 などの、 炭素数 1〜18 (好ましくは 1〜12) のアルコキシ基、 などが挙げられる。 上記した各種アミノ基、 アルキル基およびアルコキシ基は、 置換基を有していてもよぐ 該置換基としては、 水酸基、 またはアルコキシ基などが挙げられる。
A 1が置換基を有していてもよいフエニル基の場合、 該フエニル基が有する置換基とし ては、 溶剤に対する溶解性および色調の観点から、 スルホ基、 力ルポキシル基、 ハロゲン 原子、 置換基を有していてもよいアミノ基、 置換基を有していてもよいアルキル基、 又は 置換基を有していてもよいアルコキシ基がより好ましい。 スルホ基、 力ルポキシル基、 ァ シルァミノ基、 およびアルキル基が特に好ましい。 A1がフエニル基の場合、 フエニル基 はこれらの置換基から選ばれる 1〜 3個の置換基を有していることが好ましい。
A 1がナフチル基の場合、 ナフチル基の置換基として好ましくはスルホ基、 カルポキシ ル基、 水酸基等が挙げられ、 このナフチル基は、 これらの置換基から選ばれる 1〜 3個の 置換基を有していることが好ましい。 特に好ましい置換基としてはスルホ基が挙げられる。
B1, C1はそれぞれ独立に、 置換基を有していてもよいフエ二レン基、 または置換基を 有していてもよいナフチレン基を表すが、 フエ二レン基は 1, 4 _フエ二レン基が好まし く、 ナフチレン基は 1 , 4—ナフチレン基が好ましい。
B 1および C 1がフエ二レン基の場合、 有しうる置換基としてはスルホ基、 カルボキシル 基、 置換基を有していてもよいアルキル基、 置換基を有していてもよいアルコキシ基又は 置換基を有していてもよいアミノ基が好ましい。
アルキル基、 アルコキシ基およびアミノ基の具体例としては、 例えば、
メチル基、 ェチル基、 n—プロピル基、 i 一プロピル基、 n—ブチル基等の、 炭素数 1
~ 4のアルキル基;
メトキシ基、 エトキシ基、 ヒドロキシエトキシ基、 n—プロポキシ基、 i 一プロポキシ 基、 n—ブトキシ基等の、 炭素数 1〜4のアルコキシ基;
アミノ基;
N—メチルァミノ基、 N、 N—ジメチルァミノ基、 N、 N—ジェチルァミノ基などの、 炭素数 1〜 8のアルキルアミノ基;
N—フエニルァミノ基などのァリールアミノ基;
ァセチルァミノ基、 ベンゾィルァミノ基などの、 炭素数 2〜 8のァシルァミノ基、 など が挙げられる。
上記したアルキル基、 アルコキシ基、 および各種アミノ基は置換基を有していてもよぐ 該置換基としては、 水酸基、 アルコキシ基、 ハロゲン原子等が挙げられる。
B 1および C 1が置換基を有していてもよいフエ二レン基の場合、 フエ二レン基の置換基 としては、 上記の中でもスルホ基、 カルボキシル基、 置換基を有していてもよいアルキル 基、 置換基を有していてもよいアルコキシ基、 置換基を有していてもよいァシルァミノ基 が好ましい。 特に疎水結合性 (分子間の相互作用) および色調の観点から、 アルキル基、 アルコキシ基、 ァシルァミノ基が好ましい。
B 1および C 1がフエ二レン基の場合、 上記置換基に代表される、 1〜 3個の置換基を有 していることが好ましく、 1 ~ 2個の置換基を有していることがより好ましい。
B 1および C 1がナフチレン基である場合、 ナフチレン基の置換基としては水酸基、 スル ホ基、 または置換基を有していてもよいアルコキシ基等が挙げられる。
アルコキシ基として、 具体的には、 例えば、 メトキシ基、 エトキシ基等の炭素数 1〜4 のアルコキシ基が挙げられる。 該アルコキシ基が有しうる置換基としては、 水酸基、 ヒド ロキシアルキル基、 またはアルコキシ基が好ましい。
B 1 , C 1のナフチレン基は、 これらの置換基から選ばれる 1〜 6個の置換基を有してい ることが好ましく、 1〜3個有していることが、 より好ましい。 B 1 , C 1のナフチレン基 が有する置換基としては、 特にスルホ基または置換基を有していてもよいアルコキシ基が 好ましい。
A r 1は水素原子または置換基を有していてもよい炭素数 1〜 5のアルキル基であるが、 好ましくは、 水素原子または置換基を有していてもよい炭素数 1〜4のアルキル基 (例え ば、 メチル基、 ェチル基、 ェチル基等、 或いはこれらが更に置換されてなる基など) であ る。 特に好ましくは、 水素原子である。 なお、 該アルキル基が有しうる置換基としては、 水酸基、 スルホ基、 カルボキシル基などが挙げられる。
X1および Y1はそれぞれ独立に、 一 NRiR2基、 一 OR3基、 または一 SR4基を表し、 ここで R1, R2, R 3および R 4はそれぞれ独立に、 水素原子、 置換基を有していてもよい アルキル基、 置換基を有していてもよいアルケニル基、 置換基を有していてもよい炭化水 素環基 (ァリール基またはアリサイクリック基) 、 または置換基を有していてもよい複素 環基を表す。
具体的には、
水素原子;
メチル基、 ェチル基、 i一プロピル基、 n—ブチル基、 n—ォクチル基、 n—ドデシル 基等の、 炭素数 1〜18 (好ましくは 1~12) のアルキル基;
ビニル基、 ァリル基、 などの、 炭素数 2〜18 (好ましくは 2~8) のアルケニル基; フエニル基、 ナフチル基などの、 炭素数 6〜18 (好ましくは 6〜12) のァリール 基;
シクロへキシル基、 シクロへキセニル基等の、 炭素数 6〜18 (好ましくは 6~10) のアリサイクリック基;
ピリジル基、 チアジアゾリル基、 ベンゾチアゾリル基、 モルホリニル基、 ピペリジニル 基、 ピペラジニル基等の、 5または 6員環の、 単環または 2〜 3縮合環からなる、 芳香族 または非芳香族のへテロサイクリック基、
などを表す。
上記アルキル基、 アルケニル基、 ァリール基、 アリサイクリック基、 およびへテロサイ クリック基が有しうる置換基としては、 水酸基、 力ルポキシル基、 スルホ基、 ァリール基 などが挙げられ、 より好ましくは、 水酸基、 カルボキシル基、 またはスルホ基である。
R1および R2としては、 水素原子、 置換基を有していてもよいアルキル基、 または置換 基を有していてもよいァリール基がより好ましく、 置換基を有していてもよいァリ一ル基 が特に好ましい。
また、 R1および R 2のうち、 一方が水素原子であり、 他方が水素原子以外である場合が 好ましい。
R 3および R4としては、 水素原子または置換基を有していてもよいアルキル基が好まし い。
X1および Y1は、 いずれも— NR1!^2基である (但し R1, R2は、 同一であっても異 なっていてもよい) 場合か、 あるいは一方が一 NRiR2基であり、 他方が一 OR3基であ る場合が、 より好ましい。
なお、 X1および Y1は互いに結合し、 置換基を有していてもよい含窒素環を形成してい てもよく、 R 1と R 2とが互いに結合して窒素原子を含む 5または 6員環を形成する場合、 この環としては、 モルホリン環、 ピぺラジン環、 ピぺリジン環が好ましい。
kは 1または 2を表し、 mは 1または 2を表す。 なお、 kが 2の場合、 1分子中に含ま れる複数の B1は、 同一であっても異なっていてもよい。
前記式 (1) で表される本発明のァゾ色素は、 より好ましくは、 遊離酸の形が下記式 (1 -b) で表されるものである。
Figure imgf000017_0001
…("!ー b)
(式中、 A2は置換基を有していてもよいフエニル基、 または置換基を有していてもよい ナフチル基を表し、
B 2および C 2はそれぞれ独立に、 置換基を有していてもよいフエ二レン基、 または置換 基を有していてもよいナフチレン基を表し、
A r 2は水素原子、 置換基を有していてもよい炭素数 1〜4のアルキル基を表し、
X2および Y2はそれぞれ独立に、 — NR5R6基、 一 OR7基、 または一 SR8基を表す。 但し、 R5、 R6、 R 7および R 8はそれぞれ独立に、 水素原子、 置換基を有していてもよ い炭素数 1〜18のアルキル基、 置換基を有していてもよい炭素数 2〜18のアルケニル 基、 置換基を有していてもよい炭素数 3~15の炭化水素環基、 または置換基を有してい てもよい 5または 6員環の、 単環または 2〜3縮合環からなる複素環基を表すか、 あるい は R 5と R 6とが互いに結合し、 窒素原子を含む 5または 6員環を形成する。 なお、 R5お よび R 6が結合してなる環は、 置換基を有していてもよい。
kは 1または 2を表し、 nは 0または 1を表す。 なお、 kが 2の場合、 1分子中に含ま れる複数の B 2は、 同一であっても異なっていてもよい。 )
上記式 (1一 b) における、 A2、 B2、 C2、 Ar2、 X2、 Y2の好ましい置換基の例 としては、 それぞれ、 前記式 (1一 a) における A1 B1, C1, A r ^ X1、 Y1で好 ましい置換基として例示したものと同様である。
前記式 (1) で表される本発明のァゾ色素は、 例えば前記式 (1) , (1一 a) , (1 一 b) において、 k= 1の場合はトリスァゾ色素であり、 k = 2の場合はテトラキスァゾ 色素である。 合成しやすさ、 工業的生産における原料の入手しやすさの点からは、 k=l、 即ちトリスァゾ色素であることが好ましい。 後述するように異方性色素膜に使用した場合 に、 分子間相互作用がより強く働くと考えられる点からは、 k = 2、 即ちテトラキスァゾ 色素であることが好ましい。
前記式 (1) で表される本発明のァゾ色素は、 遊離酸の形が、 前記式 (1) , (1一 a) , (1 -b) のいずれで表される場合であっても、 遊離酸の形で分子量が通常 500 以上、 好ましくは 550以上であり、 また通常 5000以下、 好ましくは 4000以下、 さらに好ましくは 3 5 0 0以下であることが好ましい。 分子量が上記上限値を超えると、 発色性の低下という問題が生じるおそれがあり、 また上記下限値を下回ると、 吸収スぺク トルピークが短波長化する (色調が浅くなる) おそれがある。
前記式 (1 ) で表される本発明のァゾ色素の具体例としては、 遊離酸の形で例えば以下 の (I一 1 ) から (1—3 1 ) に示す構造の色素が挙げられるが、 これに限定されるもの ではない。
( I一 1)
Figure imgf000019_0001
I -2)
Figure imgf000019_0002
Figure imgf000020_0001
OS STO/ OO∑df/I3d L99SC0/S00Z: OAV
Figure imgf000021_0001
s
Figure imgf000021_0002
( 1 - 7)
Figure imgf000022_0001
to o
Figure imgf000022_0002
Figure imgf000023_0001
OSW請 OOZdf/ェ:) d .99SC0/S00Z OAV
Figure imgf000024_0001
請 OOZdf/ェ:) d .99SC0/S00Z OAV
Figure imgf000025_0001
請 OOZdf/ェ:) d .99SC0/S00Z OAV //: O ssoI>d L99ssAV
Figure imgf000026_0001
( τ - I )
Figure imgf000027_0001
(1 - 19)
Figure imgf000028_0001
(1 - 20)
Figure imgf000028_0002
Figure imgf000029_0001
Figure imgf000029_0002
Figure imgf000030_0001
請 OOZdf/ェ:) d .99SC0/S00Z OAV
Figure imgf000031_0001
請 OOZdf/ェ:) d .99SC0/S00Z OAV
Figure imgf000032_0001
d .99SC0/S00Z OAV
2)(2HH0CHOHCHCH N
Figure imgf000033_0001
請 OOZdf/ェ:) d .99SC0/S00Z OAV 前記式 (1) で表されるァゾ色素は、 それ自体周知の方法に従って製造することができ る。 例えば (1— 1) で示される色素は、 下記 (A) 〜 (E) の工程で製造することがで きる。
(A) 4ーァミノベンゼンスルホン酸 (スルファニル酸) と 2—メトキシー 5—メチル ァニリンとから常法 [例えば、 細田豊著 「新染料化学」 (昭和 48年 12月 21日、 技報 堂発行) 第 396頁第 409頁参照] に従って、 ジァゾ化、 カップリング工程を経てモノ ァゾ化合物を製造する。
(B) 得られたモノァゾ化合物を同様に、 常法によりジァゾ化し、 2—メトキシ一 5— メチルァニリンとカツプリング反応反応を行って、 ジスァゾ化合物を製造する。
(C) 6—アミノー 1一ナフト一ルー 3—スルホン酸 (J酸) を水に pH6として溶か し、 0〜5°Cに冷却する。 このものに塩化シァヌルを加え、 温度 0〜5°Cを保持して、 2 時間反応を行い、 反応を完結させる。 次いで室温にて、 3—ァミノベンゼンスルホン酸
(メタニル酸) 水溶液を加えて、 pH6~ 7で数時間縮合反応を行う。
(D) 工程 (B) で得た、 ジスァゾ化合物に水と N—メチルー 2—ピロリドンを加えて、 25重量%苛性ソーダ水溶液で pHを 9として溶かし、 0〜 5でに冷却するなどして、 常 法によりジァゾ化する。 このものと、 工程 (C) で得た縮合反応物とカップリング反応を 行ってトリスァゾ化合物を製造する。 反応終了後、 3 -アミノー 1, 2—プロパンジォ一 ルを添加し、 60 :に昇温し、 25重量%水酸化ナトリウム水溶液を加え、 強アルカリ性
(pH9〜9. 5程度) とし、 加水分解反応を行い、 反応を完結させる。
(E) 冷却後、 塩化ナトリウムで塩析することにより目的の色素 No. (1 -1) が得 られる。
また、 特に、 本発明の異方性色素膜は、 遊離酸の形が下記式 (2) で表される、 湿式成 膜法により形成される異方性色素膜用のァゾ色素を含有することが好ましい。
Figure imgf000034_0001
-(2)
(式中、 01ぉょぴ£1は、 置換基を有していてもよいフエ二レン基、 または置換基を有し ていてもよいナフチレン基を表し、
G1はカルボキシ基、 スルホ基、 またはリン酸基を表し、
Q1はハロゲン原子、 水酸基、 ニトロ基、 置換基を有していてもよいアミノ基、 置換基 を有していてもよい炭素数 1 ~4のアルキル基、 置換基を有していてもよい炭素数 1 ~ 3 のアルコキシ基、 力ルポキシル基、 或いはスルホ基を表し、 Q 2および Q 3はそれぞれ独立に、 水素原子、 置換基を有していてもよい炭素数 1 ~ 4の アルキル基、 或いは置換基を有していてもよいフエ二ル基を表し、
pは 0または 1を表し、 tは 1または 2を表す。 )
ここで、 上記式 (2 ) で表されるトリスァゾ色素について説明する。
該トリスァゾ色素は水溶性の黒色の二色性色素である。 該トリスァゾ色素は、 分子長軸 の両端の特定位置に他の分子に強い引力を与える置換基を配した分子構造、 および D 1 , E 1に疎水性を有するため、 互いの分子同士が疎水性による相互作用 (疎水性相互作用) を有し、 分子同士が会合状態を作りやすくなつている。
即ち、 (i)それぞれの色素分子が分子長軸の両端に他の分子に強い引力を与える置換基 を有しているため、 互いに引き合い会合状態を作りやすくなつていると考えられる。 更に は、 (i i)それぞれの分子が、 D 1 , E 1に疎水性を有しているため、 水溶液中で疎水性を有 する部分同士が引き合い、 会合状態を作りやすくなつていると考えられる。 また、 (i i i) 分子長軸の両端に他の分子に強い引力を与える置換基が特定位置にあるため ( 3位に置換 基を有するフエニル基おょぴ 7位にアミノ基を有するナフチル基) 、 造塩の際、 前記 3位 の置換基と 7位のアミノ基が、 その位置関係からよく接近できるため、 強く引き合うなど して、 安定的に会合状態を作りやすくなつていると考えられる。
会合状態を作り易い前記(i) ~ (i i i)の 3点の構成により、 上記式 (2 ) で表されるァゾ 色素は高いリオトロピック液晶状態を形成しているものと考えられる。
また、 前記式 (2 ) で表されるァゾ色素は、 黒色であるということだけでなく、 この色 素および色素を含有した組成物は、 湿式成膜法特有のプロセス、 即ち、 基材表面に塗布な どの積層プロセスを経ることによつても、 高次の分子配向状態を示すことができる。 それ は、 即ち、 高い異方性を有する無彩色の色素膜を形成することが可能であることを意味す る。 .
これまで、 一種類の二色性色素を用いて無彩色な異方性色素膜を得ようとすると、 色素 分子に導入された置換基の立体反発により分子配向が乱れやすく、 高い二色性を得ること が困難であった。 そのため、 従来の湿式成膜法による異方性色素膜は、 複数種の色素の組 合せにより無彩色な異方性色素膜を得ていることが多くあった。 しかしながら、 前記式
( 2 ) で表されるァゾ色素は、 上記のように特定の色素構造を有するため、 高いリオトロ ピック液晶状態を形成し、 高次の分子配向状態を示すことができ、 かつ 1種類の色素でも 黒色を示すことが可能である。 従って、 前記式 (2 ) で表されるァゾ色素を含有した組成 物は、 高い二色性を示す異方性色素膜を提供することができる。
前記式 (2 ) において、 D 1および E 1は、 置換基を有していてもよいフエ二レン基また は置換基を有していてもよいナフチレン基を表す。 フエ二レン基としては 1 , 4—フエ二 レン基が好ましく、 ナフチレン基としては 1 , 4一ナフチレン基が、 疎水性相互作用を示 すために好ましい。 このフエ二レン基の置換基としては、 置換基を有していてもよい炭素 数 1〜4のアルキル基 (例えば、 メチル基、 ェチル基、 n—プロピル基、 n—プチル基 等) 、 置換基を有していてもよい炭素数 1〜4のアルコキシ基 (例えば、 メトキシ基、 ェ トキシ基、. n—プロポキシ基、 n—ブトキシ基等) 、 置換基を有していてもよい炭素数 2 〜 7のァシルァミノ基 (例えばァセチルァミノ基、 ベンゾィルァミノ基等) 等の極性の小 さい基がリオトロピック液晶を形成する上での疎水性相互作用による会合性向上の点で好 ましい。
ナフチレン基の置換基としては、 置換基を有していてもよい炭素数 1〜4のアルコキシ 基 (例えば、 メトキシ基、 ェトキシ基等) 等の極性の小さい基がリオトロピック液晶を形 成する上での疎水性相互作用による会合性向上の点で好ましい。 前記アルキル基、 アルコ キシ基、 ァシルァミノ基の有し得る置換基としては、 ヒドロキシ基、 アルキル基、 アルコ キシ基等が挙げられる。
G 1としては、 スルホ基、 カルボキシ基、 リン酸基が上記のように強い引力を与える置 換基であることから好ましく、 広い p H範囲で引力を与えるという点で特に好ましくはス ルホ基が挙げられる。
Q 1は、 ハロゲン原子、 水酸基、 ニトロ基、 置換基を有していてもよいアミノ基 (好ま しくはァセチルァミノ基、 ベンゾィルァミノ基等のァシルァミノ基) 、 置換基を有してい てもよい炭素数 1 ~ 4のアルキル基 (例えば、 メチル基、 ェチル基等) 、 置換基を有して いてもよい炭素数 1 ~ 3のアルコキシ基、 力ルポキシル基又はスルホ基を表す。 特に好ま しくは水素原子、 水酸基、 カルボキシル基、 スルホ基が挙げられる。 前記アルキル基、 ァ ルコキシ基の有し得る置換基としては、 ヒドロキシ基、 アルキル基、 アルコキシ基等が挙 げられる。
Q 2および Q 3はそれぞれ独立に、 水素原子、 置換基を有していてもよい炭素数 1〜4の アルキル基 (例えば、 メチル基、 ェチル基等) 、 置換基を有していてもよいフエニル基で あり、 特に好ましくは Q 2あるいは Q 3のいずれかが水素原子であることが挙げられる。 前 記アルキル基およびフエニル基の有し得る置換基としては、 ヒドロキシ基、 力ルポキシル 基、 又はスルホ基が挙げられる。
Pは 0または 1を表し、 tは 1または 2の数を表す。
前記式 (2 ) で表されるァゾ色素は、 色素構造中、 分子長軸の両端置換基および置換位 置 (3位に置換基を有するフエニル基おょぴ 7位にアミノ基を有するナフチル基) を特定 し、 かつ疎水性相互作用を有する D 1 , E 1を特定することで上記詳説のように会合性が向 上し、 高いリオトロピック液晶状態を形成することができる。 従って、 前記式 (2 ) で表 されるァゾ色素は、 湿式成膜法により形成される異方性色素膜用の色素として適しており、 またその二色比も高い。 従って、 該色素を用いた色素組成物を異方性色素膜に使用すれば、 二色性の高い異方性色素膜を得ることが出来る。
前記式 (2 ) で表されるァゾ色素は黒色を示すものであるが、 中でも刺激純度 0 %〜1 2 %の色素であることが好ましい。 即ち、 刺激純度 0 %~ 1 2 %の色素を使用すれば、 特 に、 異なる分子を混合することによる分子配向の乱れがなく、 高い二色性を示すことがで きる。 '
ここで、 刺激純度とは、 色度図より標準の光の色度座標 Nと求めた色素の色度座標 Cを 直線で結び、 その延長のスペクトル軌跡との交点に対応する波長を主波長とし、 各点の比 率からを算出する。 色度座標 Cは、 水に色素を加え色素水溶液とし、 この水溶液の可視光 透過率を分光光度計で測定し、 C I E 1964 XYZ表色系、 D 65標準光源下での色 度 xyを算出して得ることができる。
本発明でいう色素の刺激純度とは、 色素を水に加えて色素水溶液として測定、 算出され たものをいう。
また、 その算出法としては、 日本色彩学会編 「新編 色彩科学ハンドブック」 (財団法 人東京大学出版会、 1989年 11月 25日 (第 2回改訂) 発行、 ) 104ページから 1 05ページなどに記載の公知の方法により求めることができる。
前記式 (2) で表されるァゾ色素は、 刺激純度 0%以上 12%以下の色素であれば好ま しいが、 刺激純度は 0%以上、 更に好ましくは 9%以下、 最も好ましくは 6%以下である。 また、 前記式 (2) で表される色素の分子量は、 遊離酸の形で、 通常 595以上、 通常 1500以下、 好ましくは 1200以下である。
前記式 (2) で表される色素の具体例としては、 (II— 1) 〜 (II一 15) に示す構造 の色素力挙げられるが、 これらに限定されるものでない。
Figure imgf000038_0001
Figure imgf000038_0002
Figure imgf000038_0003
Figure imgf000038_0004
(II一 5)
,CH3 CH3 OH
O 2005/035667
Figure imgf000039_0001
(Π-9)
Figure imgf000039_0002
Figure imgf000039_0003
Figure imgf000040_0001
Figure imgf000040_0002
Figure imgf000040_0003
前記式 (2) で表されるァゾ色素は、 それ自体周知の方法に従って製造することができ る。 例えば (II— 1) で示される色素は、 下記 (a) 〜 (c) の工程で製造することがで きる。
(a) 3—ァミノベンゼンスルホン酸 (メタ二ル酸) と 2—メトキシァニリン (o—ァ ニシジン) とから常法 (例えば、 細田豊著 「新染料化学」 (昭和 48年 12月 21日、 技 報堂発行) 第 396頁第 409頁参照) に従って、 ジァゾ化、 カップリング工程を経てモ ノアゾ化合物を製造する。 ( b ) 得られたジスァゾ化合物を同様に、 常法によりジァゾ化し、 3—メチルァニリン (m—トルイジン) とカップリング反応を行って、 ジスァゾ化合物を製造する。
( c ) 得られたジスァゾ化合物を同様に、 常法によりジァゾィヒし、 7—ァミノ一 1ーナ フトール一 3, 6—ジスルホン酸 (R R酸) とカップリング反応を行い、 塩化ナトリウム で塩析することにより、 目的の色素 N o . (II— 1 ) が得られる。
特に、 前示構造式 (II一 1 ) で示される色素は、 水溶液中でリオトロピック液晶を形成 するため、 高い二色性を示す異方性色素膜を作製可能であり、 特に湿式成膜法に適した有 用な色素である。
本発明の異方性色素膜においては、 前述の例示色素の中でも、 ( I一 1 ) 、 (1—3 1 )、 (II- 3 ) および (11—1 5 ) に示される色素が含有されていることが好ましい。 本発明で使用される色素のうち、 酸性基を有する色素は、 その遊離酸型のまま使用して もよく、 酸性基の一部が塩型を取っているものであってもよい。 また、 塩型の色素と遊離 酸型の色素が混在していてもよい。 また、 製造時に塩型で得られた場合はそのまま使用し てもよいし、 所望の塩型に変換してもよい。 塩型の交換方法としては、 公知の方法を任意 に用いることができ、 例えば以下の方法が挙げられる。
1 ) 塩型で得られた色素の水溶液に塩酸等の強酸を添加し、 色素を遊離酸の形で酸析せ しめた後、 所望の対イオンを有するアルカリ溶液 (例えば水酸化リチウムや水酸化ナトリ ゥム) で色素酸性基を中和し塩交換する方法。
2 ) 塩型で得られたの色素の水溶液に、 所望の対イオンを有する大過剰の中性塩 (例え ば、 塩化リチウムや塩化ナトリウム) を添加し、 塩析ケーキの形で塩交換を行う方法。
3 ) 塩型で得られた色素の水溶液を、 強酸性イオン交換樹脂で処理し、 色素を遊離酸の 形で酸析せしめた後、 所望の対イオンを有するアルカリ溶液 (例えば水酸化リチウムや水 酸化ナトリゥム) で色素酸性基を中和し塩交換する方法。
4) 予め所望の対イオンを有するアルカリ溶液 (例えば水酸化リチウムや水酸化ナトリ ゥム) で処理した強酸性イオン交換樹脂に、 塩型で得られた色素の水溶液を作用させ、 塩 交換を行う方法。
酸性基が遊離酸型をとるか、 塩型をとるかは、 色素の p K aと色素水溶液の p Hに依存 する。
上記の塩型の例としては、 N a、 L i、 K等のアルカリ金属の塩、 炭素数 1〜1 6のァ ルキル基もしくは炭素数 1 ~ 1 2のヒドロキシアルキル基で置換されていてもよいアンモ 二ゥムの塩、 または有機ァミンの塩が挙げられる。 有機ァミンの例として、 炭素数 1〜6 の低級アルキルァミン、 ヒドロキシ基で置換された炭素数 1〜 6の低級アルキルァミン、 カルポキシ基で置換された炭素数 1〜6の低級アルキルアミン等が挙げられる。 これらの 塩型である場合、 その種類は 1種類に限られず複数種混在していてもよい。
本発明において、 上述したような色素は単独で使用することができるが、 これらの 2種 以上を併用してもよく、 また、 配向を低下させない程度に上記例示色素以外の色素を配合 して用いることもでき、 これにより各種の色相を有する異方性色素膜を製造することがで きる。 特に、 偏光膜に使用する際には深い色調の膜が好ましく、 色相として、 380〜7 80 nmの可視波長領域において中性色 (ニュートラルブラック。 例えば! a*b*表色系 において、 { (a*) 2+ (b*) 2} ≤5を満たすものを表す。 ) を示す配合が表示素子、 特に力ラー表示素子用偏光子として好ましい。
他の色素を配合する場合の配合用色素の例としては、 C. I . D i r e c t Ye l l o w 12、 C. I . D i r e c t Ye l l ow 34、 C . I. D i r e c t Ye
1 1 ow 86、 C. I . D i r e c t Ye l l ow 1 4 2、 C. I . D i r e c t
Ye l l ow 132、 C. I. Ac i d Ye 1 1 o w 2 5、 C. I . D i r e c t
Or ange 39、 C. I . D i r e c t Or a n g e 72、 C I . D i r e c t Or ange 79、 C. I. Ac i d 〇r a n g e 28、 C I. D i r e c t Red 39、 C. I. D i r e c t Re d 79、 C . I. D i r e c t Re d
81、 C. I. D i r e c t Red 83、 C. I. D i r e c t R e d 89、 C.
I. Ac i d Re d 37、 C. I. D i r e c t V i o 1 e t 9 、 C. I. D i r e c t V i o l e t 35、 C. I. D i r e c t V i o 1 e t 48、 C. I.
D i r e c t V i o l e t 57、 C. I. D i r e c t B l ue 1、 c . I. D i r e c t B l ue 67、 C. I. D i r e c t B 1 u e 83 、 C. I . D i r e c t B l ue 90、 C. I. D i r e c t G r e e n 42、 C . I . D i r e c t Gr e en 51、 C. I. D i r e c t Gr e en 59等が挙げられる。 本発明の異方性色素膜は、 色素を少なくとも含む、 異方性色素膜用色素組成物を用いて、 後述の乾式成膜法もしくは湿式成膜法により作製されることが好ましい。 本発明の異方性 色素膜用色素組成物は、 上記の色素を単独で使用できるが、 これら同士、 あるいは配向を 低下させない程度に他の色素と混合して用いることができる。 これにより、 各種の色相を 有する異方性色素膜を製造することができる。
本発明の異方性色素膜用色素組成物は、 通常、 溶剤が含まれており、 通常、 色素が溶剤 に溶解もしくは分散されたものである。 異方性色素膜用色素組成物に含有される色素とし ては、 溶剤への溶解性等の観点からも前記式 (1) 又は式 (2) で表される色素が好まし い。 また、 組成物中には、 界面活性剤、 pH調整剤等の添加剤が配合されていてもよい。 これらの添加剤も、 通常、 溶剤に溶解することにより使用される。
溶剤としては、 水、 水混和性のある有機溶剤、 或いはこれらの混合物が適している。 有 機溶剤の具体例としては、 メチルアルコール、 エチルアルコール、 イソプロピルアルコ一 ル、 グリセリン等のアルコール類、 エチレングリコール、 ジエチレングリコール等のダリ コール類、 メチルセ口ソルブ、 ェチルセ口ソルブ等のセロソルブ類などの単独または 2種 以上の混合溶剤が挙げられる。
異方性色素膜用色素組成物がこのような溶剤を含む溶液である場合、 異方性色素膜用色 素組成物中の色素の濃度としては、 成膜法や、 色素の溶解性、 リオトロピック液晶状態な どの超分子構造の形成濃度にも依存するが、 通常 0. 01重量%以上、 好ましくは 0. 1 重量%以上、 より好ましくは 0. 5重量%以上で、 通常 50重量%以下、 好ましくは 30 重量%以下、 より好ましくは 2 5重量%以下、 特に好ましくは 2 0重量%以下、 最も好ま しくは 1 5重量%以下である。 色素濃度が低過ぎると得られる異方性色素膜において十分 な二色性を得ることができず、 高すぎると色素が析出する恐れがある。
異方性色素膜用色素組成物には、 基材への濡れ性、 塗布性を向上させるため、 必要に応 じて界面活性剤等の添加物を加えることができる。 界面活性剤としては、 ァニオン性、 力 チオン性、 ノニオン性のいずれも使用可能である。 その添加濃度は、 目的の効果を得るた めに十分であって、 かつ色素分子の配向を阻害しない量として、 異方性色素膜用色素組成 物中の濃度として通常 0 . 0 5重量%以上、 5重量%以下が好ましく、 0 . 5重量%以下 がより好ましい。
また、 異方性色素膜用色素組成物中での色素の造塩や凝集などの不安定性を抑制する等 の目的のために、 通常公知の酸、 アルカリ等の p H調整剤などを、 異方性色素膜用色素組 成物の構成成分の混合の前後或いは混合中のいずれかで添加して p H調整を行ってもよい。 色素組成物の p Hとしては好ましくは 3以上、 更に好ましくは 4以上、 好ましくは 1 3以 下、 更に好ましくは 1 2以下に調整されていることが、 溶液の安定性と製造上の取り扱い やすさの点で好ましい。
さらに、 上記以外の添加物として、 " Addit ive for Coat ing" . Edited by J. Biel eman, Wi 1 ley-VCH (2000)記載の公知の添加物を用いることもできる。
本発明の異方性色素膜は、 色素を少なくとも含む、 異方性色素膜用色素組成物を用いて、 後述の乾式成膜法もしくは湿式成膜法により作製されることが好ましいが、 本発明の異方 性色素膜は、 異方性色素膜中の分子配列性を高め、 色素分子間の分子間相互作用を利用し て高い二色性を得るものであるため、 成膜フィルムの延伸を行う等の乾式成膜法よりも、 湿式成膜法で形成された異方性色素膜であることが好ましい。
前記式 (1 ) で表されるァゾ色素、 特に前示構造式 ( 1 - 1 ) で示される'ような、 水溶 液中でリオトロピック液晶を形成する色素は、 湿式成膜法により高い二色性を示す偏光膜
(異方性色素膜) を作製可能であり、 有用である。 遊離酸の形が前記式 (1 ) で表される 本発明のァゾ色素には、 高い二色性を示し、 また水溶液中でリオトロピック液晶を形成す るものが多く、 また各種基材面との親和性が高いものが多いため、 このような成膜法に好 適である。
また、 前記式 (2 ) で表されるトリスァゾ色素は、 特定の色素構造を有するため高いリ オト口ピック液晶状態を形成し、 高次の分子配向状態を示すことができ、 かつ 1種類の色 素でも黒色を示すことが可能であるため高い二色性を示すことができる。
湿式成膜法はまた、 ガラスなどの高耐熱性基材上に異方性色素膜を形成することが可能 であり、 高耐熱性の偏光素子を得ることができる点から、 液晶プロジェクタや車載用表示 パネル等、 高耐熱性が求められる用途に使用できる点が好ましい。
異方性色素膜の成膜法のうち、 乾式成膜法としては、 高分子重合体を成膜してフィルム とした後に異方性色素膜用色素組成物で染色する方法、 または高分子重合体の溶液に異方 性色素膜用色素組成物を添加し原液染色後成膜する方法等により得られた未延伸フィルム を延伸する方法、 あるいは真空条件下での加熱により異方性色素膜用色素組成物を蒸発さ せてガラス等の各種基材に真空蒸着させる方法などを挙げることができる。 なお、 ここで、 異方性色素膜用色素組成物で染色するフィルムの構成材料としては、 ポリビニルアルコ一 ルなど、 色素との親和性の高い高分子材料が挙げられる。
湿式成膜法としては、 前述のような異方性色素膜用色素組成物を塗布液として調製後、 ガラス板などの各種基材に塗布、 乾燥し、 色素を配向、 積層して得る方法など公知の方法 が挙げられる。
例えば、 原崎勇次著 「コーティング工学」 (株式会社朝倉書店、 1 9 7 1年 3月 2 0日 発行) 2 5 3頁〜 2 7 7頁ゃ巿村國宏監修 「分子協調材料の創製と応用」 (株式会社シ一 ェムシ一出版、 1 9 9 8年 3月 3日発行) 1 1 8頁〜 1 4 9頁などに記載の公知の方法や、 予め配向処理を施した基材上に、 スピンコート法、 スプレーコート法、 バ一コート法、 ロールコ一ト法、 ブレードコ一ト法などで塗布する方法が挙げられる。
異方性色素膜用色素組成物の基材上への塗布時の温度は、 通常 0 °C以上、 8 0 °C以下、 好ましくは 4 0 °C以下である。 また、 湿度は、 通常 1 0 % RH以上、 好ましくは 3 0 % R H以上で、 通常 8 0 RH%以下である。
湿式成膜法は、 基材上への異方性色素膜用色素組成物の塗布工程、 および乾燥工程を経 て色素膜を形成するが、 これらの工程の操作条件は、 色素の自己組織化による高いリオト 口ピック液晶性に基づいて形成される高次の分子配向状態を維持し、 前述の分子積層周期 および分子積層長を満たす本発明の異方性色素膜が得られるように制御することが好まし い。
このため、 特に乾燥工程でも急速な温度上昇は好ましくなく、 一般的には自然乾燥とす ることが好ましいが、 好ましい条件を挙げるならば、 乾燥時の温度は、 通常 0 °C以上、 好 ましくは 1 0 °C以上、 通常 1 2 0 °C以下、 好ましくは 1 1 0 以下である。 また、 湿度は、 通常 1 0 % RH以上、 好ましくは 3 0 % RH以上、 通常 8 0 % RH以下である。
基材としては、 ガラスやトリアセテート、 アクリル、 ポリエステル、 卜リァセチルセル ロースまたはウレタン系の樹脂フィルム等が挙げられる。 また、 この基材表面には、 二色 性色素の配向方向を制御するために、 「液晶便覧」 (丸善株式会社、 平成 1 2年 1 0月 3 0日発行) 2 2 6頁〜 2 3 9頁などに記載の公知の方法により、 配向処理層やフッ素樹脂 層等を施しておいてもよい。 さらに、 光照射、 コロナ処理、 プラズマ処理等の併用により、 表面エネルギー状態等の改質を行つてもよい。
本発明の異方性色素膜は、 表面に保護層を設けて使用することが好ましい。 この保護層 は、 例えば、 トリアセテート、 アクリル、 ポリエステル、 ポリイミド、 トリァセチルセル ロースまたはウレタン系のフィルム等の透明な高分子膜によりラミネ一シヨンして形成さ れ、 実用に供される。
このような本発明の異方性色素膜は高い二色比を示すが、 二色比は 9以上のものが好ま しく、 より好ましくは 1 2以上、 特に好ましくは 1 5以上のものが使用される。
また、 特に湿式成膜法で基材上に形成される異方性色素膜の膜厚は、 通常乾燥後の膜厚 で、 好ましくは 50 nm以上、 更に好ましくは 100 nm以上、 好ましくは 50 以下、 更に好ましくは 10 wm以下、 特に好ましくは 1 以下である。
また、 本発明の異方性色素膜を LCDや OLE Dなどの各種の表示素子に偏光フィル 夕一等として用いる場合には、 これらの表示素子を構成する電極基板などに直接、 該異方 性色素膜を形成したり、 該異方性色素膜を形成した基材をこれら表示素子の構成部材とし て用いればよい。
本発明の異方性色素膜は、 光吸収の異方性を利用し直線偏光、 円偏光、 楕円偏光等を得 る偏光膜として機能する他、 膜形成プロセスと基材ゃ色素を含有する組成物の選択により、 屈折異方性や伝導異方性などの各種異方性膜として機能化が可能となり、 様々な種類の、 多様な用途に使用可能な偏光素子とすることができる。
本発明の偏光素子は、 このような本発明の異方性色素膜を用いたものであるが、 本発明 の異方性色素膜を基材上に形成して本発明の偏光素子とする場合、 形成された異方性色素 膜そのものを使用してもよい。 また上記の様な保護層のほか、 粘着層、 反射防止層など、 様々な機能の有する層を積層形成し、 積層体として使用してもよい。 その際の積層順序は、 用途に応じて適宜選択することができる。
実施例
次に、 実施例により本発明をさらに具体的に説明するが、 本発明はその要旨を超えない 限り以下の実施例に限定されるものではない。
なお、 以下において、 分子積層周期およびその積層長と分子積層軸の配向度は、 薄膜評 価用 X線回折装置 (理学電機 (株) 製 「R I NT2000 PC」 インプレーン光学系) を 用いたィンプレーン測定による回折プロファイルとィンプレーンロッキングスキヤン測定 によるロッキングプロフアイルを前述の方法で解析することから求めた。 両測定ともに、 CuKaについて入射角 1° で実施した。
また、 二色比 (D) はヨウ素系偏光素子を入射光学系に配した分光光度計 (大塚電子社 製 「瞬間マルチ測光システム MCPD2000」 ) で異方性色素膜の透過率を測定した後、 次式により計算した。
二色比 (D) =Az/Ay
Az =~ 1 o g (T z)
Ay = - 1 o g (Ty)
T z :色素膜の吸収軸方向の偏光に対する透過率
Ty:色素膜の偏光軸方向の偏光に対する透過率
また、 異方性色素膜の色度 xy (C I E 1964 XYZ表色系、 D 65標準光源下) は上記 T zおよび Tyを J I S— Z— 8701— 1995の方法に導入して計算した。 また、 偏光度は分光光度計で色素膜の透過率を測定した後、 J I S— Z— 8701— 1 995により 2度視野における透過物体色の三刺激値 X, Υ, Zを求め、 次の計算式によ り計算した。 なお、 三刺激値 X, Υ, Zの計算に用いる標準の光の分光分布は D 65光源 を用いた。 偏光度 (ιθ) = { (Y2-Y1) Z (Y2+Y1) } 1/2Χ 100
Υ 2 :色素膜の偏光軸を平行に 2枚重ねた時の三刺激値 Υ
Υ 1 :色素膜の偏光軸を直交に 2枚重ねた時の三刺激値 Υ
以下において 「部」 は 「重量部」 を示す。
[1] 積層周期および積層長 (実施例 1~6、 比較例 1)
(実施例 1 )
水 89. 8部に下記に示す例示色素 Ν ο. (I— 31) 10部とノ二オン系界面活性剤 ェマルゲン 109Ρ (花王社製) 0. 2部を撹拌溶解させて異方性色素膜用色素組成物を 得た。
(1-31)
Figure imgf000046_0001
一方、 ガラス製基板 (75mmX25mm、 厚さ lmm) 上にシルク印刷法によりボリ イミドの配向膜が形成された基板 (ポリイミド膜厚 約 80 OA) を、 予め布でラビング 処理を施したものを用意した。 これに前記異方性色素膜用色素組成物をバーコ一夕 (テス 夕一産業社製 「No. 3」 使用) で塗布した後、 自然乾燥することにより膜厚約 0. 4/A mの異方性色素膜を得た。
得られた異方性色素膜の X線回折プ口ファイルを図 4に、 インプレーンロッキングプロ ファイルを図 5に示す。 図 4は、 この異方性色素膜に関して、 その偏光軸に垂直な回折面 および吸収軸に垂直な回折面をそれぞれ観察する 2方向から実施したィンプレーン測定結 果を示す。 実線は偏光軸に、 点線は吸収軸にそれぞれ垂直な回折面を観察する方向から得 られた X線回折プロファイルである。 図 5は、 この異方性色素膜の分子積層由来の回折 ピークのインプレーンロッキングカーブ測定結果を示す。
また、 求められた分子積層周期、 積層長、 分子積層軸の配向度と二色比を表 1に示す。 これらの結果から、 本実施例の異方性色素膜は、 二色比発現に適した分子配列を持ち、 高い二色比を示すことが確認された。
(実施例 2)
水 90部に下記に示す例示色素 N o. (II- 15) 10部を撹禅溶解させて異方性色素 膜用色素組成物を得た。 1
Figure imgf000047_0001
バーコ一夕 (テスター産業社製 「No. 2」 ) を使用したこと以外は実施例 1と同様に して、 この異方性色素膜用色素組成物をポリイミド配向膜が形成されたガラス製基板に塗 布して自然乾燥することにより異方性色素膜を得た。
得られた異方性色素膜の分子積層周期、 積層長、 分子積層軸の配向度と二色比を調べ、 結果を表 1に示した。
表 1より、 本実施例の異方性色素膜は、 二色比発現に適した分子配列を持ち、 高い二色 比を示すことが確認された。
(実施例 3)
水 92部に下記に示す例示色素 N o. (1 -1) 8部を撹拌溶解させて異方性色素膜用 色素組成物を得た。
Figure imgf000047_0002
ギャップ 10 /imのアプリケ一夕一 (井元製作所社製) を使用したこと以外は実施例 1 と同様にして、 この異方性色素膜用色素組成物をポリイミド配向膜が形成されたガラス製 基板に塗布して自然乾燥することにより異方性色素膜を得た。
得られた異方性色素膜の分子積層周期、 積層長、 分子積層軸の配向度と二色比を調べ、 結果を表 1に示した。 . 表 1より、 本実施例の異方性色素膜は、 二色比発現に適した分子配列を持ち、 高い二色 比を示すことが確認された。
(実施例 4)
水 80部に前記例示色素 N o. (1 -31) 12部を撹拌溶解させた後、 グリセリン 8 部を加えて異方性色素膜用色素組成物を得た。
ギャップ 10 Amのアプリケ一ター (井元製作所社製) を使用したこと以外は実施例 1 と同様にして、 この異方性色素膜用色素組成物をポリイミド配向膜が形成されたガラス製 基板に塗布して自然乾燥することにより異方性色素膜を得た。
得られた異方性色素膜の分子積層周期、 積層長、 分子積層軸の配向度と二色比を調べ、 結果を表 1に示した。 表 1より、 本実施例の異方性色素膜は、 二色比発現に適した分子配列を持ち、 高い二色 比を示すことが確認された。
(実施例 5 )
水 7 6部に下記に示す前記例示色素 N o . (11—3 ) 1 5部を撹拌溶解させた後、 ダリ セリン 9部を加えて異方性色素膜用色素組成物を得た。
(II一 3 )
Figure imgf000048_0001
バーコ一夕 (テス夕一産業社製 「N o . 2」 ) を使用したこと以外は実施例 1と同様に して、 この異方性色素膜用色素組成物をポリイミド配向膜が形成されたガラス製基板に塗 布して自然乾燥することにより異方性色素膜を得た。
得られた異方性色素膜の分子積層周期、 積層長、 分子積層軸の配向度と二色比を調べ、 結果を表 1に示した。
表 1より、 本実施例の異方性色素膜は、 二色比発現に適した分子配列を持ち、 高い二色 比を示すことが確認された。
(実施例 6 )
水 8 5部に前記例示色素 N o . (11—3 ) 1 5部を撹拌溶解させて異方性色素膜用色素 組成物を得た。
バーコ一夕 (テス夕一産業社製 「N o . 2」 ) を使用したこと以外は実施例 1と同様に して、 この異方性色素膜用色素組成物をポリイミド配向膜が形成されたガラス製基板に塗 布して自然乾燥することにより異方性色素膜を得た。
得られた異方性色素膜の分子積層周期、 積層長、 分子積層軸の配向度と二色比を調べ、 結果を表 1に示した。
表 1より、 本実施例の異方性色素膜は、 二色比発現に適した分子配列を持ち、 高い二色 比を示すことが確認された。
(比較例 1 )
水 9 4部に下記構造式の色素を 6部加え、 撹拌溶解後濾過して、 異方性色素膜用色素組 成物を得た。
Figure imgf000049_0001
スライドガラス (松浪硝子工業製 「スライドグラス白縁磨フロスト No. 1」 ) にこの 異方性色素用色素組成物をバーコ一夕 (コーティングテスタ一工業 (株) 製 「No. 2j ) で塗布した後、 自然乾燥することにより異方性色素膜を得た。
得られた異方性色素膜の分子積層周期、 積層長、 分子積層軸の配向度と二色比を調べ、 結果を表 1に示した。
表 1より、 この比較例の異方性色素膜は、 積層長が 105 A未満であり、 二色比発現に 適した配列分子数が十分でないために、 二色比が低いと推測される。
表 1
Figure imgf000049_0002
[2] 式 (2) で表されるァゾ色素の合成 (合成例 1)
(合成例 1 )
以下の (A) 〜 (E) の方法に従って、 下記の色素 No. (1-31) の色素を合成し た。 (I - 31)
Figure imgf000050_0001
(A) 4ーァミノベンゼンスルホン酸 (スルファニル酸) と 2—メトキシー 5—メチル ァニリンとから常法 [例えば、 細田豊著 「新染料化学」 (昭和 48年 12月 21日、 技報 堂発行) 第 396頁第 409頁参照] に従って、 ジァゾ化、 カップリング工程を経てモノ ァゾ化合物を製造した。
(B) 工程 (A) で得られたモノァゾ化合物を同様に、 常法によりジァゾ化し、 2—メ トキシー 5—メチルァニリンとカツプリング反応を行い、 ジスァゾ化合物を製造した。
(C) 別に、 6—アミノー 1一ナフ! ^一ルー 3—スルホン酸 (J酸) を水に pH 6とし て溶かし、 0~5°Cに冷却した。 このものに塩化シァヌルを加え、 温度 0〜5°Cを保持し て、 2時間反応を行い、 反応を完結させた。 次いで、 室温にて、 3—ァミノベンゼンスル ホン酸 (メタ二ル酸) 水溶液を加えて、 pH6〜7で数時間縮合反応を行った。
(D) 工程 (B) で得られたジスァゾ化合物を同様に常法によりジァゾ化し、 工程 (C) で得られた化合物とカップリング反応を行って、 トリスァゾ化合物を製造した。 反 応終了後、 3—ァミノ— 1, 2—プロパンジオールを添加し、 60でに昇温し、 25重 量%水酸化ナトリウム水溶液を加え、 pH9〜9. 5とし、 反応を完結させた。
(E) 冷却後、 塩化ナトリウムで塩析することにより目的の色素 No. (1 -31) を 得た。
[3] 異方性色素膜の作製 (実施例 7~17、 比較例 2~7)
(実施例 7)
水 100部に、 N o . (1 -1) の色素を 10部、 ノ二オン系界面活性剤ェマルゲン 1 09 P (花王社製) を 0. 2部加え、 5重量%水酸化リチウム水溶液で pHを 8. 0に中 和後、 撹捽溶解し、 次いで濾過して色素水溶液 (異方性色素膜形成用組成物) を得た。 こ の色素水溶液をスライドガラス上に滴下し、 偏光顕微鏡下において、 乾燥濃縮過程を観察 したところ、 初期は等方性溶液であつたが、 乾燥濃縮によりリオトロピック液晶状態をと ることが確認された。
一方、 ガラス基板上にシルク印刷法によりポリイミドの配向膜が形成された基板 (ポリ イミド膜厚 約 80 OA) を、 予め布でラビング処理を施したものを用意した。 これに前 記色素水溶液をバーコ一ター (テスタ一産業社製 No. 3) で塗布した後、 室温下で乾 燥することにより異方性色素膜を得た。
この色素膜の吸収軸および偏光軸方向の透過率特性を図 6に示す。 得られた異方性色素 膜の極大吸収波長 (Ama x) は 555 nm、 二色比は 12であった。
Figure imgf000051_0001
(実施例 8 )
水 100部に、 前記 No. (1 -1) の色素を 5部加え、 5重量%水酸化リチウム水溶 液で pHを 8. 0に中和後、 撹捽溶解し、 次いで濾過して色素水溶液を た。 さらに、 こ の色素水溶液 96部に硼酸を 4部加えて染色液を得た。
別に、 水 90部に平均重合度 1750のポリビニルアルコール 10部を加えて、 水浴中 で撹拌溶解後、 厚さ lmmに展開、 乾燥することによりポリビニルアルコール (PVA) フィルムを得た。
この PV Aフィルムを染色液に浸漬後、 3倍に引き伸ばして異方性色素膜を得た。 この 色素膜の三刺激値は表 2に示す通りであり、 偏光度は 79. 9%であった。
(実施例 9 )
水 100部に、 前記 N o. (1 -1) の色素を 5部、 ノ二オン系界面活性剤ェマルゲン 109 P (花王社製) を 0. 2部加え、 5重量%水酸化リチウム水溶液で p Hを 8. 0に 中和後、 撹摔溶解し、 次いで濾過して色素水溶液を得た。
実施例 7と同様な方法により準備されたガラス基板に、 この色素水溶液をスピンコ一 ターで塗布した後、 室温下で乾燥することにより異方性色素膜を得た。 得られた色素膜の 二色比は 20であった。
(実施例 10)
水 100部に、 下記に示す N o . (1 -25) の色素を 25部、 ノ二オン系界面活性剤 ェマルゲン 109P (花王社製) を 0. 2部加え、 5重量%水酸化リチウム水溶液で pH を 8. 0に中和後、 撹拌溶解し、 次いで濾過して色素水溶液を得た。 この色素水溶液は実 施例 7と同様な方法により、 偏光顕微鏡下で観察したところリオトロピック液晶状態であ ることが確認された。
(1-25)
Figure imgf000051_0002
さらに、 実施例 7と同様な方法により準備されたガラス基板に、 この色素水溶液をブ レードコ一ト法で塗布した後、 室温下で乾燥することにより異方性色素膜を得た。 この色素膜の吸収軸および偏光軸方向の透過率特性を図 Ίに示す。 得られた色素膜の極 大吸収波長 (Amax) は 570 nm、 二色比は 1 5であった。
(実施例 1 1 )
実施例 8において、 使用した色素を、 前記 No. (1 -25) の色素に変えた以外は、 同様な方法により色素水溶液を調製し、 P V Aフィルムを染色して色素膜を得た。
得られた色素膜の三刺激値は表 2に示す通りであり、 偏光度は 64 %であった。
表 2
Figure imgf000052_0002
(実施例 12 )
水 95部に下記に示す色素 No. (II— 1) のナトリウム塩を 5部、 ノニオン系界面活 性剤ェマルゲン 109 P (花王 (株) 社製) を 0. 2部加え、 撹拌溶解後濾過して色素水 溶液 (異方性色素膜用色素組成物) を得た。
(II一 1)
Figure imgf000052_0001
一方、 基材としてガラス基板上にスピンコート法によりポリイミドの配向膜が形成され たガラス製基板 (75mmX 25mm、 厚さ 1. 1 mm、 ポリイミド膜厚約 800 Aのポ リイミド配向膜をあらかじめ布でラビング処理を施したもの) を用意した。 これに前記色 素水溶液をスピンコ一ター (押鐘社製 S C— 2 0 0 ) で塗布 (1000rpm5 秒後、 2500rpn 5秒) した後、 自然乾燥することによりラビング方向に色素が配向した異方性色 素膜を得た。
得られた異方性色素膜における色素膜面内の吸収軸方向に振動面を有する偏光に対する 透過光 (Tz) の色度 xy (C I E 1964 XYZ表色系、 D 65標準光源下) および 色素膜面内の偏光軸方向に振動面を有する偏光に対する透過光 (Ty) の色度 xy (C I E 1964 XYZ表色系、 D65標準光源下) 、 極大吸収波長 (λΜΧ) とその二色比 (D) は表 3に示す。
得られた異方性色素膜は偏光膜として充分機能し得る高い二色比 (光吸収異方性) を有 していた。
(実施例 13)
実施例 12において、 使用した色素を下記に示す色素 No. (II— 9) のナトリウム塩 に変えた以外は、 同様に異方性色素膜用色素組成物を作成し、 同様の基板に同様の条件で 塗布する事により異方性色素膜を得た。
得られた異方性色素膜の色度 xy (XYZ表色系) 、 極大吸収波長 (λ Χ) 、 二色比 (D) を表 3に示す。 得られた異方性色素膜は偏光膜として充分機能し得る高い二色比を 有する異方性色素膜であつた。
(II— 9)
Figure imgf000053_0001
(実施例 14)
水 90部に下記に示す色素 Ν ο. (II一 2 ) のナトリゥム塩 10部を加え、 撹拌溶解後 濾過して異方性色素膜用色素組成物を得た。 このものを実施例 12で用いた基板に No.3 のバーコ一夕— (テス夕一産業社製) で塗布した後、 自然乾燥することにより異方性色素 膜を得た。
得られた異方性色素膜の色度 xy (XYZ表色系) 、 極大吸収波長 (λωχ) 、 二色比 (D) を表 3に示す。 得られた異方性色素膜は偏光膜として充分機能し得る高い二色比を 有する異方性色素膜であつた。
(Π-2)
Figure imgf000053_0002
(実施例 15)
水 90部に下記に示す色素 N o. (Π— 3 ) のナトリゥム塩を 10部加え、 撹拌溶解後 濾過して異方性色素膜用色素組成物を得た。 このものを実施例 12で用いた基板にギヤッ プ 10/Amのアプリケ一夕一(井元製作所社製) で塗布した後、 自然乾燥することにより 異方性色素膜を得た。
得られた異方性色素膜の色度 xy (XYZ表色系) 、 極大吸収波長 (λ Χ) 、 二色比 (D) を表 3に示す。 得られた異方性色素膜は偏光膜として充分機能し得る高い二色比を 有する異方性色素膜であった。
(II一 3)
Figure imgf000054_0001
(実施例 16)
水 91部に下記に示す色素 No. (II-4) のナトリウム塩を 9部加え、 撹拌溶解後瀘 過して異方性色素膜用色素組成物を得た。 実施例 15と同様の条件で塗布する事により異 方性色素膜を得た。
得られた異方性色素膜の色度 xy (XYZ表色系) 、 極大吸収波長 (λΜΧ) 、 二色比 (D) を表 3に示す。 得られた異方性色素膜は偏光膜として充分機能し得る高い二色比を 有する異方性色素膜であった。
(II一 4)
Figure imgf000054_0002
(実施例 17)
水 93部に色素 No. (Π-6) のナトリウム塩を 7部加え、 撹拌溶解後濾過して異方 性色素膜用色素組成物を得た。 実施例 15と同様の条件で塗布する事により異方性色素膜 を得た。
得られた異方性色素膜の色度 xy (XYZ表色系) 、 極大吸収波長 (λΜΧ) 、 二色比 2004/015450
53
(D) を表 3に示す。 得られた異方性色素膜は偏光膜として充分機能し得る高い二色比を 有する異方性色素膜であつた。
(II一 6)
Figure imgf000055_0001
表 3
Figure imgf000055_0002
(比較例 2 )
実施例 8において前記 (I一 1) の色素の代わりに、 下記構造式の色素を用いた以外は、 同様な方法により色素水溶液および色素膜を作製した。
Figure imgf000056_0001
この色素膜の吸収軸および偏光軸方向の透過率特性を図 8に示す。 得られた色素膜の極 大吸収波長 (Amax) は 585 nm、 二色比は 3であった。
(比較例 3 )
実施例 12において前記 No. (II- 1) の色素の代わりに、 No. (II— 1) の置換 基 G1がァゾ基に対してパラ位にある色素 (ΙΠ_ 1) のナトリウム塩を使用した以外は同 様にして色素膜用色素組成物を作成し、 同様の基板に同様の条件で塗布を行い色素膜を得 た。
得られた色素膜について、 実施例 12と同様にして各種試験を行った。 結果を表 4に示 す。 得られた色素膜の二色比 (吸収異方性) は 2以下であり、 充分な異方性を示さなかつ た。
Figure imgf000056_0002
(比較例 4)
実施例 12において前記 No. (II- 1) の色素の代わりに、 No. (II— 1) の置換 基 G1がオルト位にある下記の (III— 2) の色素を使用した以外は同様にして色素膜用色 素組成物を作成し、 同様の基板に同様の条件で塗布を行い色素膜を得た。
得られた色素膜について、 実施例 12と同様にして各種試験を行った。 結果を表 4に示 す。 得られた色素膜の二色比 (吸収異方性〉 は 2以下であり、 充分な異方性を示さなかつ た。
(ill一 2)
Figure imgf000056_0003
(比較例 5)
水 95部に下記に示す No. (III-3) の色素 5部を加え、 撹拌溶解後濾過して色素 膜用色素組成物を得た。 このものを実施例 12で用いた基板に No.3のバーコ一ター (テ ス夕一産業社製) で塗布した後、 自然乾燥することにより異方性色素膜を得た。
得られた色素膜について、 実施例 12と同様にして各種試験を行った。 結果を表 4に示 す。 得られた色素膜の二色比 (吸収異方性) は 2以下であり、 充分な異方性を示さなかつ た。
(III一 3)
Figure imgf000057_0001
(比較例 6 )
実施例 12において前記 No. (II- 1) の色素の代わりに、 下記に示す色素 (III— 4) を使用した以外は同様にして色素膜用色素組成物を作成し、 同様の基板に同様の条件 で塗布を行い色素膜を得た。
得られた色素膜について、 実施例 12と同様にして各種試験を行った。 結果を表 4に示 す。 得られた色素膜の二色比 (吸収異方性) は 2以下であり、 充分な異方性を示さなかつ た。
(III一 4)
Figure imgf000057_0002
(比較例 7)
実施例 12において前記 No. (II- 1) の色素の代わりに、 下記に示す色素 (ΠΙ— 5) のナトリウム塩を使用した以外は同様にして色素膜用色素組成物を作成し、 同様の基 板に同様の条件で塗布を行い色素膜を得た。
得られた色素膜について、 実施例 12と同様にして各種試験を行った。 結果を表 4に示 す。 得られた色素膜の二色比 (吸収異方性) は 2以下であり、 充分な異方性を示さなかつ た。
Figure imgf000058_0001
表 4
Figure imgf000058_0002
[4] 刺激純度 (実施例 18, 19)
(実施例 18)
水 99. 9部に前記色素 No. (II— 1) のナトリウム塩を 0. 1部加え、 攪拌溶解後 濾過して色素水溶液を得た。 この水溶液を光路長 0. 1mmの石英製角セル (キュべッ ト) に注入した。 このキュベットに注入した色素水溶液および実施例 12で得られた異方 性色素膜の可視光透過率を各々分光光度計で測定し、 C I E 1964 XYZ表色系、 D 65標準光源下での色度 X yを算出した。
さらに、 色度図より D 65標準光源の色度座標 Nと求めた色素水溶液の色度座標 C 1お よび異方性色素膜の色度座標 C 2を各々直線で結び、 その延長のスぺクトル軌跡との交点 に対応する波長を主波長とし、 各点の比率から色素水溶液の刺激純度 (pe l) および異 方性色素膜の刺激純度 (pe 2) を算出した。 色素水溶液の刺激純度および異方性色素膜 の刺激純度を表 5に示す。
本実施例の色素 (色素水溶液) の刺激純度は 12%以下であった。 また、 この色素を用 いて作成された異方性色素膜の刺激純度もまた 1 2 %以下であり、 低彩度無彩色の異方性 色素膜として有用であった。
(実施例 1 9 )
実施例 1 3から実施例 1 7に用いた色素おょぴ実施例 1 3から実施例 1 7で得られた異 方性色素膜の刺激純度を実施例 1 8と同様な方法により測定、 算出した。 各々の色素の水 溶液の刺激純度および異方性色素膜の刺激純度を表 5に示す。
本実施例の色素 (色素水溶液) の刺激純度は 1 2 %以下であった。 また、 この色素を用 いて作成された異方性色素膜の刺激純度もまた 1 2 %以下であり、 低彩度無彩色の異方性 色素膜として有用であった。
表 5
Figure imgf000059_0001
産業上の利用可能性
本発明によれば、 二色性の高い異方性色素膜を提供することができる。 そして、 この二 色性の高い異方性色素膜を用いて、 耐熱性、 耐光性に優れ、 しかも偏光性能に優れた偏光 素子を提供することができる。 なお、 本発明の明細書の開示として、 本出願の優先権主張の基礎となる日本特許特願 2 003— 353832号 (2003年 10月 14日に出願) 、 日本特許特願 2003 -3 78399号 (2003年 11月 7日に出願) 及び日本特許特願 2004-234415 号 (2004年 8月 11日に出願) の全明細書の内容をここに引用し取り入れるものであ る。

Claims

請求 の 範 囲
1. 分子積層に由来した周期が 3. 445A以下であり、 その積層長が 105 A以上であ る
ことを特徴とする異方性色素膜。
2. 分子積層軸の配向度が 85%以上である、 請求項 1に記載の異方性色素膜。
3. 膜厚が 30^ m以下である、 請求項 1または 2に記載の異方性色素膜。
4. 基材上に形成された異方性色素膜である、 請求項 1ないし 3のいずれかに記載の異方 性色素膜。
5. 湿式成膜法で形成された異方性色素膜である、 請求項 4に記載の異方性色素膜。
6. 基材がガラスまたは樹脂フィルムである、 請求項 4または 5に記載の異方性色素膜。
7. 更に保護層が形成される、 請求項 1ないし 6のいずれかに記載の異方性色素膜。
8. 遊離酸の形が下記式 (1) で表されるァゾ色素を含有する請求項 1ないし 7のいずれ かに記載の異方性色素膜。
Figure imgf000061_0001
■(1)
(式中、 AQ BQ C°および D。は、 それぞれ独立に、 置換基を有していてもよい芳香族 炭化水素環を表し、
A!"。は水素原子、 または任意の置換基を表し、
XQおよび YQはそれぞれ独立に、 ハロゲン原子以外の任意の置換基を表す。
kは 1または 2を表し、 mは 1または 2を表す。 なお、 kが 2の場合、 1分子中に含ま れる複数の BQは、 同一であっても異なっていてもよい。 )
9. 遊離酸の形が前記式 (1) で表されるァゾ色素が、 遊離酸の形が下記式 (1一 a) で 表されるァゾ色素である、 請求項 8に記載の異方性色素膜。
Figure imgf000061_0002
(1-a) (式中、 A1は、 置換基を有していてもよいフエニル基、 または置換基を有していてもよ いナフチル基を表し、
B1および C1はそれぞれ独立に、 置換基を有していてもよいフエ二レン基、 または置換 基を有していてもよいナフチレン基を表し、
A r 1は水素原子、 または置換基を有していてもよい炭素数 1〜 5のアルキル基を表し、 X1および Y1はそれぞれ独立に、 —NRiR2基、 一 OR3基、 または一 SR4基を表す。 但し、 R1, R2、 R 3および R4はそれぞれ独立に、 水素原子、 置換基を有していてもよ い炭素数 1〜18のアルキル基、 置換基を有していてもよい炭素数 2〜18のアルケニル 基、 置換基を有していてもよい炭素数 3〜15の炭化水素環基、 または置換基を有してい てもよい 5または 6員環の、 単環または 2〜 3縮合環からなる複素環基を表すか、 あるい は R1と R2とが互いに結合し、 窒素原子を含む 5または 6員環を形成する。 R1および R2 が結合してなる環は、 置換基を有していてもよい。
kは 1または 2を表し、 mは 1または 2を表す。 なお、 kが 2の場合、 1分子中に含ま れる複数の B1は、 同一であっても異なっていてもよい。 )
10. 遊離酸の形が下記式 (2) で表されるァゾ色素を含有する、 請求項 1ないし 7のい ずれかに記載の異方性色素膜。
Figure imgf000062_0001
■-(2)
(式中、 01ぉょび£1は、 それぞれ独立に、 置換基を有していてもよいフエ二レン基、 ま たは置換基を有していてもよいナフチレン基を表し、
G1は力ルポキシル基、 スルホ基、 またはリン酸基を表し、 ·
Q1はハロゲン原子、 水酸基、 ニトロ基、 置換基を有していてもよいアミノ基、 置換基 を有していてもよい炭素数 1 ~4のアルキル基、 置換基を有していてもよい炭素数 1〜 3 のアルコキシ基、 力ルポキシル基、 或いはスルホ基を表し、
Q 2および Q 3はそれぞれ独立に、 水素原子、 置換基を有していてもよい炭素数 1〜4の アルキル基、 或いは置換基を有していてもよいフエ二ル基を表し、
pは 0または 1を表し、 tは 1または 2を表す。 )
11. 遊離酸の形が下記式 (1) で表される、 ァゾ色素。
Figure imgf000063_0001
…(
(式中、 AQ、 B CQおよび D。は、 それぞれ独立に、 置換基を有していてもよい芳香族 炭化水素環を表し、
A rQは水素原子、 または任意の置換基を表し、
X flおよび Y Dはそれぞれ独立に、 ハロゲン原子以外の任意の置換基を表す。
kは 1または 2を表し、 mは 1または 2を表す。 なお、 kが 2の場合、 1分子中に含ま れる複数の BQは、 同一であっても異なっていてもよい。 )
12. 遊離酸の形が下記式 (1一 a) で表される、 請求項 11に記載のァゾ色素。
Figure imgf000063_0002
(式中、 A1は、 置換基を有していてもよいフエニル基、 または置換基を有していてもよ いナフチル基を表し、
B1および C1はそれぞれ独立に、 置換基を有していてもよいフエ二レン基、 または置換 基を有していてもよいナフチレン基を表し、
A r 1は水素原子、 または置換基を有していてもよい炭素数 1〜 5のアルキル基を表し、 X1および Y1はそれぞれ独立に、 —NRiR2基、 —OR3基、 または一 SR 4基を表す。 但し、 R1 R2、 R 3および R 4はそれぞれ独立に、 水素原子、 置換基を有していてもよ い炭素数 1〜18のアルキル基、 置換基を有していてもよい炭素数 2 ~18のアルケニル 基、 置換基を有していてもよい炭素数 3~ 15の炭化水素環基、 または置換基を有してい てもよい 5または 6員環の、 単環または 2〜 3縮合環からなる複素環基を表すか、 あるい は R1と R2とが互いに結合し、 窒素原子を含む 5または 6員環を形成する。 R1および R2 が結合してなる環は、 置換基を有していてもよい。
kは 1または 2を表し、 mは 1または 2を表す。 なお、 kが 2の場合、 1分子中に含ま れる複数の B1は、 同一であっても異なっていてもよい。 )
13. 分子量が 500〜 5000である、 請求項 11または 12に記載のァゾ色素。
14. 湿式成膜法により形成される異方性色素膜用のァゾ色素であって、 遊離酸の形が下 記式 (2) で表される、 ァゾ色素。
Figure imgf000064_0001
•••(2)
(式中、 01ぉょび£1は、 それぞれ独立に、 置換基を有していてもよいフエ二レン基、 ま たは置換基を有していてもよいナフチレン基を表し、
G1はカルポキシ基、 スルホ基、 またはリン酸基を表し、
Q1は八ロゲン原子、 水酸基、 ニトロ基、 置換基を有していてもよいアミノ基、 置換基 を有していてもよい炭素数 1〜4のアルキル基、 置換基を有していてもよい炭素数 1〜 3 のアルコキシ基、 力ルポキシル基、 或いはスルホ基を表し、
Q 2および Q 3はそれぞれ独立に、 水素原子、 置換基を有していてもよい炭素数 1〜4の アルキル基、 或いは置換基を有していてもよいフエ二ル基を表し、
pは 0または 1を表し、 tは 1または 2を表す。 ) '
15. 刺激純度が 0〜 12 %の色素である請求項 14に記載の、 'ァゾ色素。
16. 請求項 11ないし 15のいずれかに記載のァゾ色素を含有する、 異方性色素膜用色 素組成物。
17. 請求項 11ないし 15のいずれかに記載のァゾ色素を含有する、 異方性色素膜。
18. 請求項 16に記載の異方性色素膜用色素組成物を用いて形成された、 異方性色素膜。
19. 請求項 1ないし 10、 17および 18のいずれかに記載の異方性色素膜を用いた、 偏光素子。
PCT/JP2004/015450 2003-10-14 2004-10-13 異方性色素膜用色素、異方性色素膜用色素組成物、異方性色素膜および偏光素子 WO2005035667A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020067007088A KR101135415B1 (ko) 2003-10-14 2004-10-13 이방성 색소막용 색소, 이방성 색소막용 색소 조성물,이방성 색소막 및 편광소자
EP20040792616 EP1679350A1 (en) 2003-10-14 2004-10-13 Dye for anisotropic dye film, dye composition for anisotropic dye film, anisotropic dye film and polarizing device
US11/403,982 US7527862B2 (en) 2003-10-14 2006-04-14 Dyes for anisotropic dye films, dye compositions for anisotropic dye films, anisotropic dye films and polarizing elements

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2003353832 2003-10-14
JP2003-353832 2003-10-14
JP2003378399 2003-11-07
JP2003-378399 2003-11-07
JP2004234415 2004-08-11
JP2004-234415 2004-08-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/403,982 Continuation US7527862B2 (en) 2003-10-14 2006-04-14 Dyes for anisotropic dye films, dye compositions for anisotropic dye films, anisotropic dye films and polarizing elements

Publications (1)

Publication Number Publication Date
WO2005035667A1 true WO2005035667A1 (ja) 2005-04-21

Family

ID=34437602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/015450 WO2005035667A1 (ja) 2003-10-14 2004-10-13 異方性色素膜用色素、異方性色素膜用色素組成物、異方性色素膜および偏光素子

Country Status (5)

Country Link
US (1) US7527862B2 (ja)
EP (1) EP1679350A1 (ja)
KR (1) KR101135415B1 (ja)
TW (1) TWI365306B (ja)
WO (1) WO2005035667A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI396719B (zh) * 2005-07-19 2013-05-21 Mitsubishi Chem Corp 異向性色素膜用組成物,異向性色素膜及偏光元件
US8472115B2 (en) 2008-12-08 2013-06-25 Konica Minolta Opto, Inc. Anistropic dye layer, coordination polymer for anistropic dye layer and polarization element, and polarization control film, polarization control element, multi-layer polarization control element, ellipse polarization plate, light emission element, and method for controlling polarization properties employing the anistropic dye layer
US8734918B2 (en) 2007-12-28 2014-05-27 Nitto Denko Corporation Liquid crystal coating solution, and polarizing film
WO2017146212A1 (ja) * 2016-02-26 2017-08-31 日本化薬株式会社 アゾ化合物又はその塩及びこれを含有する偏光膜
WO2018079651A1 (ja) * 2016-10-31 2018-05-03 日本化薬株式会社 偏光素子、並びにこれを用いた偏光板及び液晶表示装置
WO2019189345A1 (ja) * 2018-03-30 2019-10-03 富士フイルム株式会社 偏光子および画像表示装置

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4876549B2 (ja) * 2004-12-16 2012-02-15 三菱化学株式会社 アゾ色素、これを用いた異方性色素膜用組成物、異方性色素膜および偏光素子
JP5200325B2 (ja) * 2005-04-04 2013-06-05 三菱化学株式会社 湿式成膜法により形成された異方性色素膜及び偏光素子
TWI384033B (zh) * 2005-04-21 2013-02-01 Mitsubishi Chem Corp 異向性色素膜用組成物,異向性色素膜及偏光元件
US20090053516A1 (en) * 2007-08-24 2009-02-26 Jerome Vivien Davidovits Durable light-polarizing articles and method of making the same
WO2009156784A1 (en) * 2008-06-27 2009-12-30 Corning Incorporated Aqueous polarizing dye solution and method of making a polarized article
US8927070B2 (en) * 2008-09-30 2015-01-06 Fujifilm Corporation Dichroic dye composition, light absorption anisotropic film, and polarizing element
US20100302481A1 (en) * 2009-06-01 2010-12-02 Baum Alexandra Absorbing wire grid polarizer
JP5623154B2 (ja) 2009-07-10 2014-11-12 日東電工株式会社 液晶性コーティング液および偏光膜
JP5351060B2 (ja) * 2010-01-05 2013-11-27 日東電工株式会社 偏光膜
JP5442518B2 (ja) 2010-03-31 2014-03-12 富士フイルム株式会社 光吸収異方性膜、偏光フィルム及びその製造方法、並びにそれを用いた表示装置
JP5300776B2 (ja) 2010-03-31 2013-09-25 富士フイルム株式会社 偏光フィルム、表示装置、及びその製造方法
EP2674460B1 (en) 2011-02-07 2016-04-20 Nippon Kayaku Kabushiki Kaisha Azo compound, salt thereof, and dye-based polarizing film and polarizing plate containing same
KR101932467B1 (ko) 2011-02-07 2018-12-26 니폰 가야꾸 가부시끼가이샤 아조 화합물, 염료계 편광막 및 편광판
JP6317334B2 (ja) * 2013-04-03 2018-04-25 日本化薬株式会社 無彩色な染料系偏光素子、及び偏光板
WO2014208653A1 (ja) * 2013-06-27 2014-12-31 三菱化学株式会社 偏光素子、及び偏光素子の製造方法
EP3540482A4 (en) 2016-11-14 2020-07-08 Nippon Kayaku Kabushiki Kaisha DYE-BASED POLARIZER PLATE FOR INFRARED WAVELENGTH RANGE

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63220203A (ja) * 1987-03-10 1988-09-13 Mitsubishi Kasei Corp カラ−フイルタ−
JPH02209974A (ja) * 1989-02-09 1990-08-21 Canon Inc インク及びインクジェット記録方法
JPH0378703A (ja) * 1989-08-23 1991-04-03 Nippon Kayaku Co Ltd 偏光板
JPH03294366A (ja) * 1990-02-09 1991-12-25 Canon Inc インク、これを用いたインクジェット記録方法及び機器
JPH0892494A (ja) * 1994-09-27 1996-04-09 Orient Chem Ind Ltd トリスアゾ染料およびこれらを含有する水性インキ組成物
JPH10509247A (ja) * 1994-09-08 1998-09-08 住友化学工業株式会社 配向した染料を含有するフィルム、その製造方法、ならびに偏光板およびそれを用いる液晶ディスプレイユニット

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2400877A (en) 1941-03-21 1946-05-28 John F Dreyer Optical device and method and manufacture thereof
JPH0619042B2 (ja) * 1985-12-05 1994-03-16 三菱化成株式会社 テトラアゾ化合物及びそれを用いた染料組成物
JPH0193703A (ja) * 1987-10-05 1989-04-12 Mitsubishi Kasei Corp 偏光膜
US5135570A (en) 1989-02-09 1992-08-04 Canon Kabushiki Kaisha Ink, and recording process making use of it
US5178671A (en) 1990-02-09 1993-01-12 Canon Kabushiki Kaisha Ink, and ink-jet recording method and apparatus employing the ink
JPH06228476A (ja) * 1993-02-01 1994-08-16 Canon Inc 記録液及びこれを用いたインクジェット記録方法
RU2047643C1 (ru) 1993-05-21 1995-11-10 Хан Ир Гвон Материал для поляризующих покрытий
EP0753542B1 (de) * 1995-07-14 2000-02-09 Bayer Ag Polyazofarbstoffe
US6404472B1 (en) 1995-09-08 2002-06-11 Alejandro Andreatta Film containing oriented dye, method of manufacturing the same, and polarizer and liquid crystal display unit utilizing the same
US6133973A (en) 1995-09-08 2000-10-17 Andreatta; Alejandro Film containing oriented dye, method of manufacturing the same, and polarizer and liquid crystal display unit utilizing the same
DE19648939A1 (de) * 1996-11-26 1998-05-28 Basf Ag Polyazofarbstoffe
RU2155978C2 (ru) 1998-10-28 2000-09-10 ОПТИВА, Инк. Дихроичный поляризатор и способ его изготовления
DE50002976D1 (de) * 1999-11-05 2003-08-28 Ciba Sc Holding Ag Reaktivfarbstoffe, Verfahren zu deren Herstellung und deren Verwendung
JP2002003742A (ja) * 2000-06-21 2002-01-09 Kiriya Kagaku Kk 染料組成物の製造方法
JP2002090526A (ja) * 2000-09-19 2002-03-27 Fuji Photo Film Co Ltd 二色性偏光素子およびその製造方法
JP2002180052A (ja) 2000-12-14 2002-06-26 Fuji Photo Film Co Ltd 水溶性二色性色素、光学フイルム、偏光素子、二色性色素のミセルを配向させる方法および光学フイルムの製造方法
JP2002338838A (ja) 2001-05-16 2002-11-27 Sumitomo Chem Co Ltd 色素配向薄膜
RU2207603C2 (ru) 2001-06-04 2003-06-27 Хан Ир Гвон Оптическое устройство для получения и/или преобразования поляризованного электромагнитного излучения и оптическое устройство в виде жидкокристаллического дисплея
KR20050025650A (ko) * 2002-07-24 2005-03-14 시바 스페셜티 케미칼스 홀딩 인크. 섬유 반응성 아조 염료, 이의 제조방법 및 이의 용도
JP2004300339A (ja) * 2003-03-31 2004-10-28 Canon Inc ブラックインク

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63220203A (ja) * 1987-03-10 1988-09-13 Mitsubishi Kasei Corp カラ−フイルタ−
JPH02209974A (ja) * 1989-02-09 1990-08-21 Canon Inc インク及びインクジェット記録方法
JPH0378703A (ja) * 1989-08-23 1991-04-03 Nippon Kayaku Co Ltd 偏光板
JPH03294366A (ja) * 1990-02-09 1991-12-25 Canon Inc インク、これを用いたインクジェット記録方法及び機器
JPH10509247A (ja) * 1994-09-08 1998-09-08 住友化学工業株式会社 配向した染料を含有するフィルム、その製造方法、ならびに偏光板およびそれを用いる液晶ディスプレイユニット
JPH0892494A (ja) * 1994-09-27 1996-04-09 Orient Chem Ind Ltd トリスアゾ染料およびこれらを含有する水性インキ組成物

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI396719B (zh) * 2005-07-19 2013-05-21 Mitsubishi Chem Corp 異向性色素膜用組成物,異向性色素膜及偏光元件
US8734918B2 (en) 2007-12-28 2014-05-27 Nitto Denko Corporation Liquid crystal coating solution, and polarizing film
US8472115B2 (en) 2008-12-08 2013-06-25 Konica Minolta Opto, Inc. Anistropic dye layer, coordination polymer for anistropic dye layer and polarization element, and polarization control film, polarization control element, multi-layer polarization control element, ellipse polarization plate, light emission element, and method for controlling polarization properties employing the anistropic dye layer
JP2021101237A (ja) * 2016-02-26 2021-07-08 日本化薬株式会社 アゾ化合物又はその塩及びこれを含有する偏光膜
WO2017146212A1 (ja) * 2016-02-26 2017-08-31 日本化薬株式会社 アゾ化合物又はその塩及びこれを含有する偏光膜
JP7230079B2 (ja) 2016-02-26 2023-02-28 日本化薬株式会社 アゾ化合物又はその塩及びこれを含有する偏光膜
JPWO2017146212A1 (ja) * 2016-02-26 2019-01-17 日本化薬株式会社 アゾ化合物又はその塩及びこれを含有する偏光膜
JPWO2018079651A1 (ja) * 2016-10-31 2019-09-19 日本化薬株式会社 偏光素子、並びにこれを用いた偏光板及び液晶表示装置
WO2018079651A1 (ja) * 2016-10-31 2018-05-03 日本化薬株式会社 偏光素子、並びにこれを用いた偏光板及び液晶表示装置
JPWO2019189345A1 (ja) * 2018-03-30 2020-07-27 富士フイルム株式会社 偏光子および画像表示装置
JP2021012386A (ja) * 2018-03-30 2021-02-04 富士フイルム株式会社 偏光子および画像表示装置
WO2019189345A1 (ja) * 2018-03-30 2019-10-03 富士フイルム株式会社 偏光子および画像表示装置
JP7280229B2 (ja) 2018-03-30 2023-05-23 富士フイルム株式会社 偏光子および画像表示装置
US11921369B2 (en) 2018-03-30 2024-03-05 Fujifilm Corporation Polarizer and image display device
JP7492062B2 (ja) 2018-03-30 2024-05-28 富士フイルム株式会社 偏光子および画像表示装置

Also Published As

Publication number Publication date
KR20060126956A (ko) 2006-12-11
US7527862B2 (en) 2009-05-05
TWI365306B (en) 2012-06-01
TW200525188A (en) 2005-08-01
EP1679350A9 (en) 2006-10-11
US20060182902A1 (en) 2006-08-17
EP1679350A1 (en) 2006-07-12
KR101135415B1 (ko) 2012-04-23

Similar Documents

Publication Publication Date Title
US7527862B2 (en) Dyes for anisotropic dye films, dye compositions for anisotropic dye films, anisotropic dye films and polarizing elements
JP5200325B2 (ja) 湿式成膜法により形成された異方性色素膜及び偏光素子
JP5422864B2 (ja) トリスアゾ色素、該色素を含む異方性色素膜用組成物、異方性色素膜及び偏光素子
JP2010026024A (ja) 異方性膜用組成物、異方性膜、偏光素子及びアゾ化合物
JP4622434B2 (ja) 異方性色素膜用色素、異方性色素膜用色素組成物、異方性色素膜および偏光素子
JP4736823B2 (ja) 異方性色素膜用組成物、異方性色素膜、偏光素子及び異方性色素膜用色素
KR100832759B1 (ko) 이방성 색소막용 색소 조성물, 이방성 색소막 및 편광 소자
JP2006047966A (ja) 異方性色素膜用色素、異方性色素膜用色素組成物、異方性色素膜及び偏光素子
JP4547946B2 (ja) アゾ色素、異方性色素膜用二色性アゾ色素並びにこれを用いた異方性色素膜形成用組成物、異方性色素膜および偏光素子
TWI640580B (zh) Composition for anisotropic pigment film, anisotropic pigment film, and optical element
JP2007302807A (ja) 異方性色素膜用アゾ色素、該アゾ色素を含有する組成物及び異方性色素膜並びに偏光素子
JP4581627B2 (ja) ペリレン系色素、異方性色素膜形成用組成物、異方性色素膜および偏光素子
JP2007148179A (ja) 異方性色素膜用色素組成物、異方性色素膜用膜形成組成物、異方性色素膜及び偏光素子
JP2008102417A (ja) 異方性色素膜用のアゾ色素、該アゾ色素を含有する異方性色素膜用組成物、異方性色素膜、および偏光素子
JP5477411B2 (ja) アゾ色素
JP5076308B2 (ja) 水溶性色素並びにそれを用いた色素組成物、異方性色素膜及び偏光素子
JP2007121458A (ja) 異方性色素膜用基板、異方性色素膜及びその製造方法、並びに偏光素子
JP6107352B2 (ja) 異方性色素膜用色素、該色素を含む組成物、異方性色素膜及び偏光素子
JP5521408B2 (ja) 化合物、該化合物を含有する組成物、異方性膜、および偏光素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480029954.X

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004792616

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020067007088

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 11403982

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004792616

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11403982

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020067007088

Country of ref document: KR