WO2005027309A1 - クローポール型モータのステータ - Google Patents

クローポール型モータのステータ Download PDF

Info

Publication number
WO2005027309A1
WO2005027309A1 PCT/JP2004/013502 JP2004013502W WO2005027309A1 WO 2005027309 A1 WO2005027309 A1 WO 2005027309A1 JP 2004013502 W JP2004013502 W JP 2004013502W WO 2005027309 A1 WO2005027309 A1 WO 2005027309A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
phase
claw
teeth
type motor
Prior art date
Application number
PCT/JP2004/013502
Other languages
English (en)
French (fr)
Inventor
Nobuyuki Imai
Shin Aoki
Hiroyuki Kikuchi
Masahiro Seki
Tadanobu Takahashi
Shigeru Tajima
Original Assignee
Honda Motor Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co., Ltd. filed Critical Honda Motor Co., Ltd.
Priority to EP04773161A priority Critical patent/EP1667310A1/en
Priority to CA002535716A priority patent/CA2535716C/en
Priority to US10/568,959 priority patent/US7466057B2/en
Publication of WO2005027309A1 publication Critical patent/WO2005027309A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/145Stator cores with salient poles having an annular coil, e.g. of the claw-pole type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/04Machines with one rotor and two stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/06Magnetic cores, or permanent magnets characterised by their skew

Definitions

  • the present invention relates to a stator of a claw-pole type motor in which a plurality of windings wound in a plane perpendicular to the axis are accommodated in a plurality of slots formed between a plurality of teeth arranged in the axial direction. .
  • a stator of this type of a claw-pole type motor is known from Patent Document 1 below.
  • This unit has three unit stators corresponding to each of the U, V and W phases.Each unit stator has two teeth spaced apart in the axial direction and these teeth. It has a U-shaped cross section with a return path connected at the radially outer end. By energizing the annular winding housed inside the unit stator having a U-shaped cross section, an independent magnetic path is formed so that the radially inner ends of the two teeth face the rotor.
  • the two types of protrusions having different polarities are arranged to be magnetized.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 7-227075
  • each unit stator has a winding inside thereof.
  • the axial thickness is increased due to the provision of an annular slot for storage and the provision of two teeth and two types of protrusions, and the axial dimension of a stator with three unit stators stacked on each other.
  • the size became large.
  • the magnetic paths of the unit stator of each phase are independent, there is a problem that these magnetic paths cannot be used effectively.
  • the present invention has been made in view of the above circumstances, and has been made in consideration of the output torque of a claw-pole type motor. It is an object of the present invention to reduce the axial thickness of the stator as much as possible while ensuring the thickness.
  • K windings arranged continuously are provided.
  • a stator of a cross-pole type motor in which wires are connected in series is proposed.
  • each of the teeth has a step of a claw-pole type motor having projections that are out of phase by 360 ° ZN. Data is suggested.
  • a claw-pole type motor stator in addition to the fourth aspect, is proposed in which the protrusion extends in the axial direction along the outer peripheral surface of the rotor.
  • each of the teeth has the same phase with respect to a rotor having a magnetic pole phase shifted by 360 ° ZN.
  • a claw-pole type motor stator having projections is proposed.
  • the first teeth and And 2m + lth teeth are proposed for a claw-pole type motor stator having projections of the same length extending axially along the outer peripheral surface of the rotor.
  • a stator of a claw-pole type motor having a cooling structure is proposed.
  • the cooling structure includes a claw-pole motor stator provided in at least one of the inside and the periphery of the stator. Suggested.
  • the cooling structure provided on the periphery of the stator has at least one concave portion and at least one convex portion.
  • a claw-pole type motor stator having a plurality of cooling fin forces is proposed.
  • the cooling structure provided inside the stator has a claw-pole type motor having at least one cooling space. Is proposed.
  • the cooling space is
  • the cooling space is formed by a cooperation of a stator, a holder of the stator, and a reinforcing ring sandwiched between the stator and the holder.
  • a stator of a claw-pole type motor constituted by an operation is proposed.
  • the cooling structure includes a claw-pole type motor for cooling a stator by at least one of cooling water and cooling air. Suggested. The invention's effect
  • 2m + l teeth and 2m slots are alternately arranged in the axial direction, and the windings of the slots housed in each slot that are m apart from each other are arranged.
  • the phases of the magnetic flux passing through each tooth are shifted by 360 ° ZN each, and the Since the magnetic flux passing through the other teeth is reduced to half, the winding part (crossover part) that does not contribute to torque is abolished, and the magnetic path of each phase is shared via a return path.
  • a thin, high-output motor can be obtained, and the magnetic force of the wave motor is configured. Therefore, the output torque can be increased as compared with the salient pole concentrated motor.
  • K windings arranged in series are connected in series, thereby realizing a magnetomotive force distribution of distributed windings. Torque ripple and iron loss.
  • each tooth has a projection whose phase is shifted by 360 ° ZN, the phase of the magnetic poles of the rotor is aligned to simplify the structure, and an air gap between the projection and the rotor is provided. And the output torque of the rotor can be increased.
  • the projection extends in the axial direction along the outer peripheral surface of the rotor, the output torque can be increased by effectively utilizing the magnetic flux generated by the rotor.
  • the structure is simplified by aligning the phases of the stator projections.
  • the output torque of the rotor can be increased by reducing the air gap between the protrusion and the rotor.
  • the first tooth and the 2m + 1th tooth have the same length of protrusion extending in the axial direction along the outer peripheral surface of the rotor, so that the first tooth and the 2m + 1 tooth have the same length.
  • the sum of the magnetic flux passing through the 2m + 1 first tooth can be equalized with the magnetic flux passing through each of the other teeth.
  • the stator since the stator has the cooling structure, it is possible to prevent a temperature rise due to heat generation of the coil during operation of the motor. [0028] According to the ninth feature, the cooling structure is provided in at least one of the inside and the peripheral portion of the stator, so that the stator can be cooled effectively.
  • the cooling structure in the peripheral portion of the stator is configured by the concave portions, the convex portions, or the plurality of cooling fins, the contact area between the refrigerant and the stator is increased to enhance the cooling effect. be able to.
  • the cooling structure inside the stator is constituted by the cooling space, it is possible to enhance the cooling effect of the stator by flowing the refrigerant through the cooling space.
  • the cooling space is formed by the cooperation of the stator and the holder, so that a large-volume cooling space can be formed without deteriorating the strength of the stator.
  • the cooling space is formed by cooperation of the stator, the holder, and the reinforcing ring sandwiched between the stator and the holder, so that a large-volume cooling can be performed without deteriorating the strength of the stator.
  • the stator can be effectively reinforced with a reinforcing ring that can only form a space.
  • stator is cooled by the cooling water or the cooling air, a special cooling medium is not required and cost can be reduced.
  • FIG. 1 is a diagram showing a power unit of a hybrid vehicle including a claw-pole type motor. (Example 1)
  • FIG. 2 is an enlarged sectional view taken along line 2-2 of FIG. 1. (Example 1)
  • FIG. 3 is a sectional view taken along line 3-3 in FIG. (Example 1)
  • FIG. 4 is a cross-sectional view taken along line 44 of FIG. (Example 1)
  • FIG. 5 is a sectional view taken along line 5-5 in FIG. 2. (Example 1)
  • FIG. 6 is a sectional view taken along line 6-6 in FIG. (Example 1)
  • FIG. 7 is a partially broken perspective view of a stator and a rotor. (Example 1)
  • FIG. 8 is an exploded perspective view of a stator and a rotor. (Example 1)
  • FIG. 9 is an equivalent circuit diagram of an m-phase wave wound claw pole type motor.
  • FIG. 10 is a partially cutaway perspective view of a stator and a rotor of a two-phase claw pole type motor.
  • Example 2 is a partially cutaway perspective view of a stator and a rotor of a two-phase claw pole type motor.
  • FIG. 11 is an exploded perspective view of a stator and a rotor. (Example 2)
  • FIG. 12 is a sectional view taken along line 12-12 of FIG. (Example 2)
  • FIG. 13A is a schematic diagram of a stator and a rotor of a two-phase claw pole type motor according to a third embodiment of the present invention. (Example 3)
  • FIG. 13B is a schematic diagram of a stator and a rotor of a two-phase claw pole type motor according to a third embodiment of the present invention. (Example 3)
  • FIG. 14 is a partially cutaway perspective view of a stator and a rotor of a two-phase claw pole type motor. (Example 4)
  • FIG. 15 is an exploded perspective view of a stator and a rotor. (Example 4),
  • FIG. 16 is a sectional view taken along line 16-16 of FIG. (Example 4)
  • FIG. 17 is an equivalent circuit diagram of an m-phase wave wound claw pole type motor. (Example 4)
  • FIG. 18 is a partially cutaway perspective view of a stator and a rotor of a two-phase claw pole type motor. (Example 5)
  • FIG. 19 is an exploded perspective view of a stator and a rotor. (Example 5)
  • FIG. 20 is a sectional view taken along the line 20-20 in FIG. 18. (Example 5)
  • FIG. 21A is a schematic diagram of a stator and a rotor of a two-phase claw pole type motor according to a sixth embodiment of the present invention. (Example 6)
  • FIG. 21B is a schematic diagram of a stator and a rotor of a two-phase claw pole type motor according to a sixth embodiment of the present invention. (Example 6)
  • FIG. 22 is a diagram showing a winding distribution of short-section concentrated windings (salient pole concentrated windings).
  • FIG. 23A is an explanatory diagram of electromotive force of a winding of a short concentrated winding (a salient pole concentrated winding).
  • FIG. 23B is an explanatory diagram of the electromotive force of the winding of the short concentrated winding (salient pole concentrated winding).
  • Fig. 24 is a diagram showing a winding distribution of all sections concentrated winding (wave winding).
  • FIG. 25A is an explanatory diagram of the electromotive force of the winding of the concentrated winding (wave winding) of all sections.
  • FIG. 25B is an explanatory diagram of the electromotive force of the winding of the whole section concentrated winding (wave winding).
  • FIG. 26A is an explanatory diagram of a magnetomotive force distribution of concentrated winding.
  • FIG. 26B is an explanatory diagram of the magnetomotive force distribution of the distributed winding.
  • FIG. 27A is an equivalent circuit diagram of an m-phase wave wound motor.
  • FIG. 27B is an equivalent circuit diagram of the m-phase wave wound motor.
  • FIG. 28A is a diagram showing another embodiment of the refrigerant passage.
  • FIG. 28B is a diagram showing another embodiment of the refrigerant passage.
  • FIG. 29A is a diagram showing still another embodiment of the refrigerant passage.
  • FIG. 29B is a diagram showing still another embodiment of the refrigerant passage.
  • FIG. 29C is a diagram showing still another embodiment of the refrigerant passage.
  • FIG. 29D is a view showing still another embodiment of the refrigerant passage.
  • FIG. 30A is a diagram showing an embodiment including cooling fins.
  • FIG. 30B is a diagram showing an embodiment including cooling fins.
  • FIG. 30C is a diagram showing an embodiment including cooling fins. Explanation of symbols
  • FIGS. 1 to 9, FIGS. 27A and 27B a first embodiment of the present invention will be described with reference to FIGS. 1 to 9, FIGS. 27A and 27B.
  • FIG. 27A shows a magnetic circuit of a conventional general m-phase winding motor.
  • m is a natural number of 2 or more, and the winding of each phase passes through the m-shifted slots in a wavy shape so that the excitation direction is reversed.
  • the interlinkage magnetic flux of the k-th (l ⁇ k ⁇ m) winding is represented by ⁇ ⁇ — ⁇ k + m.
  • Figs. 9 (A) and 9 (B) show an m-phase wave winding motor in which the above-described general m-phase wave motor is developed in the axial direction and provided with 2m teeth and 2m-1 slot.
  • the figure shows the magnetic circuit of a claw-pole type motor.
  • the windings other than the m-th phase have two slots each, whereas the m-th winding has only one slot.
  • the power unit of the hybrid vehicle includes a two-phase wave claw-pole type motor M arranged between engine E and transmission T.
  • a motor case 13, a torque converter case 14 and a transmission case 15 are coupled to the right side of the cylinder block 11 and the crankcase 12 of the engine E, and the crankcase 16 is supported between the cylinder block 11 and the crankcase 12 at the shaft end.
  • the rotor 17 of the motor M is fixed.
  • An annular stator 19 is opposed to a plurality of permanent magnets 18 fixed to the outer periphery of the rotor 17 via a predetermined air gap, and a stator holder 20 supporting the stator 19 includes a cylinder block 11 and a crankcase 12. Between the motor case 13 and the split surface.
  • the torque converter 21 housed in the torque converter case 14 includes a turbine runner 22 and a pump impeller 23.
  • a side cover 24 that is coupled to the turbine runner 22 and covers the pump impeller 23 has a drive plate 25 interposed therebetween.
  • the pump impeller 23 of the torque converter 14 is connected to a left end of a main shaft 26 supported on the transmission case 15.
  • stator 19 of the two-phase wave claw-pole type motor M will be described with reference to FIGS.
  • the stator 19 includes a first stator ring 31, a second stator ring 32, a third stator ring 33, and a fourth stator ring 34, which are integrally formed of a powder material.
  • the first stator ring 31—the fourth stator ring 34 are overlapped in the direction of the axis L.
  • the first stator ring 31 includes a return path 31a formed in an annular shape, and a circumferentially equally spaced position force of the return path 31a. , And nine projections 31c extending further radially inward from the radially inner ends of the teeth 31b.
  • the radially inner end of each projection 31c is bent in an L-shape and tapered and extends to one side in the direction of the axis L.
  • the tooth 31b is a portion corresponding to the radial height of the windings 36, 37, and 38, and a portion radially inward from the tooth 31b is a projection 31c.
  • the second stator ring 32 includes a return path 32a formed in an annular shape, and a circumferentially equally spaced position force of the return path 32a. Extending nine teeth 32b ', and nine projections 32c extending further radially inward from radially inner ends of these teeth 32b. A radially inner end of each projection 32c is tapered in an asymmetric T-shape and extends to both sides in the axis L direction.
  • the case 32b is a portion corresponding to the radial height of the windings 36, 37, and 38, and a portion radially inward from the portion is a projection 32c.
  • the third stator ring 33 is a member that is mirror-symmetrical to the second stator ring 32, and is interchangeable with the second stator ring 32 by being turned upside down. It has one shape.
  • the reference numerals of the respective portions of the third stator ring 33 are obtained by changing the reference numerals “32” of the respective portions of the second stator ring 32 to “33”.
  • the fourth stator ring 34 is a member that is mirror-symmetrical to the first stator ring 31, and is interchangeable with the first stator ring 31 by being turned upside down. It has one shape.
  • the reference numeral of each part of the fourth stator ring 34 is obtained by changing the reference numeral “31” of each part of the first stator ring 31 to “34”.
  • each permanent magnet 18 of the rotor 17 is A + phase, B + phase, A-phase and B —Phase projections 31c "', 32c---, 33c---, 34c ... are shared and generate the same phase magnetic flux.
  • the projections 31c "', 32c---, 33c---, 34... Of each phase can generate a uniform output torque on the rotor 17.
  • each permanent magnet 18 is also A + phase, B + phase, A ⁇ phase. , 32c--, 33c--, 34c ..., so that each phase protrusion 31c- ", 32c--, 33c-, 34c ... Accordingly, it is not necessary to divide the permanent magnets 18 in the direction of the axis L, and the number of the permanent magnets 18 can be reduced.
  • An annular slot 41 is formed between the teeth 31 b of the first stator ring 31 and the teeth 32 b of the second stator ring 32, and the A + phase winding 36 pre-wound in the slot 41. Is stored.
  • An annular slot 42 is formed between the teeth 32b of the second stator ring 32 and the teeth 33b of the third stator ring 33, and the B + phase winding 37 previously wound in the slot 42 is housed. Is done.
  • An annular slot 43 is formed between the teeth 33b of the third stator ring 33 and the teeth 34b of the fourth stator ring 34, and the A-phase winding 38 wound in advance in the slot 43 is housed. Is done.
  • Each of the windings 36, 37, and 38 has a rectangular cross section as a conducting wire, and is wound in four layers in the radial direction and in two layers in the direction of the axis L. Then, the direction of the magnetomotive force of the A + phase winding 36 and the direction of the magnetomotive force of the B + phase winding 37 are set to be the same direction, and the direction of the magnetomotive force of the A phase winding 38 is set to be the opposite direction. .
  • the A + phase A rotating magnetic field is formed between the protrusions 31c "'of the B + phase, the protrusions 32c"' of the B + phase, the protrusions 33c of the A "phase and the protrusions 34c of the B phase, and the rotor 17 is driven by the magnetic force generated between the permanent magnets 18 ... Can be driven to rotate.
  • the A + phase winding 36, B + phase winding 37 and A- phase winding 38 do not contribute to the output torque arranged so as to surround the axis L in a cylindrical shape.
  • a small and high-output motor M can be obtained by effectively utilizing the first stator ring 31-the fourth stator ring 34.
  • the thickness of the motor M it can be easily arranged in a narrow space between the engine E and the transmission T.
  • the first to fourth stator rings 31 to 34 of this embodiment are made of a powder magnetic material. That is, after the surface of a magnetic material powder of an iron-based alloy manufactured by Höganäs is covered with a coating of an inorganic material, a pressed material is press-molded into a predetermined shape by a metal mold, and a sizing process is performed thereon to adjust the shape.
  • the first to fourth stator rings 31 to 34 are manufactured by performing a thermosetting treatment. As described above, by using the dust magnetic material, the first to fourth stator rings 31 to 34 having a complicated shape can be easily manufactured.
  • An annular refrigerant passage J ′ is formed on the outer peripheral portion of each of the first to fourth stator rings 31 to 34 of the stator 19 at the time of compacting by using a core.
  • the refrigerant passages J are provided directly inside the stator 19, the cooling effect by the refrigerant is sufficiently ensured, the refrigerant is prevented from leaking, and the force increases the degree of freedom of the holding method of the stator 19. It comes out.
  • the teeth 31b "', 32b ---, 33b ---, 34b ... of the A + phase, B + phase, A-phase and B-phase of the stator 19 of the first embodiment are shifted in phase in the circumferential direction.
  • the radially inner end forces of the teeth 31 b--, 32b--, 33b--, 34b ... also extend in the direction of the axis L. .., 32 c- ", 33c --, 34c... Have the same width as the thickness of the stator 19 in the direction of the axis L.
  • the width of the permanent magnets 18 of the rotor 17 is the same as the width of the projections 31c "-, 32c ---, 33c ---, 34c ..., and the projections 31c"-, 32c-- -, 33c ---, 34c- ⁇ [This is shared!
  • the A + phase, B + phase, A-phase and B-phase teeth 31b "-, 32b ---, 33b ---, 34b ... of the stator 19 of the second embodiment have the same phase.
  • Roosters are placed and teeth 31b "-, 3 2b ---, 33b ---, 34b ... force, projections extending approximately the same thickness as radial inner jaw 31c-", 32c ---, 33c ---, 34c ... are also arranged in the same phase
  • the permanent magnets 18 ... arranged on the outer periphery of the rotor 17 are projections 31c "', 32c ---, 33c --- of each phase.
  • the thickness of the stator 19 in the direction of the axis L can be reduced similarly to the first embodiment described above, but the permanent magnets 18 are divided into four stages. However, the number of parts increases, and the protrusions of each corner 31c "-, 32c ---, 33c ---, 34c... force S The area of the rotor facing the permanent magnet 18 However, the output torque of the stator 17 decreases, but the protrusions 31c "-, 32c ---, 33c ---, 34c... of the stator 19 can be removed.
  • the structure can be simplified.
  • FIGS. 13A and 13B Next, a third embodiment of the present invention will be described with reference to FIGS. 13A and 13B.
  • the third embodiment is a modification of the above-described second embodiment.
  • the phases of the permanent magnets 18 of each phase are aligned.
  • This third embodiment also has the same operation and effect as the second embodiment. If the permanent magnets 18 are not divided into four stages and the same permanent magnets 18 as the rotor 19 of the first embodiment are employed, the number of parts can be reduced.
  • a third embodiment is a force having three slots 41, 42, 43 between the first stator ring 31 and the fourth stator ring 34 stacked in the direction of the axis L.
  • four slots 41, 42, 43, and 44 are provided between the first stator ring 31 and the fifth stator ring 35 stacked in the direction of the axis L.
  • the fourth stator ring 34 is a mirror-symmetrical member that is interchangeable with each other, and includes protrusions 32c and 34c that are asymmetrical in the direction of the axis L.
  • the first stator ring 31 and the fifth stator ring 35 located on both sides of the second stator ring 32 and the fourth stator ring 34 are mutually interchangeable mirror symmetric members, and are asymmetric in the direction of the axis L.
  • Protrusions 31c and 35c are provided. Both projections 31c and 35c are located at the same position in the circumferential direction of the stator 19, and extend in a direction approaching each other. Therefore, the width of the projections 31c, 35c of the first stator ring 31 and the fifth stator ring 35 in the direction of the axis L is approximately equal to the width of the projections 32c-34c of the second stator ring 32—the fourth stator ring 34 in the direction of the axis L. Half Minutes.
  • each slot 41, 42, 43, and 4 force S are formed between the first stator ring 31 and the fifth stator ring 35, and each slot 41, 42, 43, and 44 has an A + screw.
  • the winding 36, the B + winding 37, the A "winding 38 and the B- winding 39 are accommodated respectively.
  • the directions of the magnetomotive forces of the A + winding 36 and the B + winding 37 are mutually opposite.
  • the direction of the magnetomotive force of the A-phase winding 38 and the direction of the magnetomotive force of the B-phase winding 39 are mutually the same, and the direction of the magnetomotive force of the A + phase winding 36 and the B + phase winding 37 is It is set to be in the opposite direction.
  • a + phase projections 31c '35c "-, B + phase projections 32c"', A "phase projections 33c... and B phase projections 34c... create a rotating magnetic field between the permanent magnets 18 ...
  • the rotor 17 can be driven to rotate by the electromagnetic force generated during the rotation.
  • the magnetic flux passing through the teeth 3 lb, 35b of the first stator ring 31 and the fifth stator ring 35 at both ends in the direction of the axis L is applied to the other second stator ring 32, the third stator ring 33 and the third stator ring 33.
  • 4 Force that becomes half of the magnetic flux passing through the teeth 32b, 33b, and 34b of the stator ring 34 The teeth 31b and 35b of the first stator ring 31 and the fifth stator ring 35 are arranged in the same phase and function substantially integrally Therefore, no imbalance of the magnetic flux between the phases occurs.
  • a + phase winding 36, B + phase winding 37, A "phase winding 38 and B—phase winding 39 are arranged so as to surround axis L in a cylindrical shape. Therefore, the first stator ring 31—fifth stator ring 35 is effectively used by eliminating the winding part (crossover part) that does not contribute to the output torque and sharing the magnetic path of each phase.
  • a small and high-output motor M can be obtained, and especially by reducing the thickness of the motor M, it can be easily arranged in a narrow space between the engine E and the transmission T.
  • the teeth 31b "of the A + phase, B + phase, A-phase and B-phase of the stator 19 of the fourth embodiment are represented by (35b ⁇ ), 32b--, 33b--, 34b ... Are placed out of phase with each other.
  • Projections 31c "-(35c"-), 32c ---, extending in the direction of the axis L from the radial inner end forces of the bases 31b "-(35b"-), 32b ---, 33b ---, 34b ... 33c ---, 34c ... have the same width as the thickness of the stator 19 in the direction of the axis L.
  • the width of the permanent magnets 18 of the rotor 17 is the same as the width of the protrusions 31cr "(35-), 32c ---, 33c ---, 34c ..., and the protrusions 31c-" (35c- " ), 32c ---, 33c ---, 34c- ⁇ [This is shared!
  • the A + phase, B + phase, A-phase and B-phase teeth 31b "-(35b"-), 32b ---, 33b ---, 34b of the stator 19 of the fifth embodiment. ... Are placed in the same phase, and teeth 3 lb-"(35b ---), 32b ---, 33b ---, 34b... Force, projection 31c --- extending radially inward 35c ---), 32c ---, 33c ---, 34c- ⁇ are also placed at the same position.
  • the magnets 18 are arranged in five stages in the direction of the axis L corresponding to the projections 31c "-(35c"-), 32c ---, 33c ---, 34c ... of each phase.
  • the thickness of the stator 19 in the direction of the axis L can be reduced, but the permanent magnets 18 are divided into five stages.
  • the number of parts increases, and the protrusions of each phase 31c --- (35c ---), 32c ---, 33c ---, 34c ... Force S
  • the output torque of the rotor 17 decreases as much as possible.
  • the projections 31c "-(35c"-) 32c ---, 33c ---, 34c ... of the stator 19 can be removed, the structure of the stator 19 is simplified. be able to.
  • FIGS. 21A and 21B Next, a sixth embodiment of the present invention will be described with reference to FIGS. 21A and 21B.
  • the sixth embodiment is a modification of the fifth embodiment described above.
  • the phases of the permanent magnets 18... of each phase are aligned.
  • the same operation and effect as those of the fifth embodiment can be achieved.
  • the permanent magnets 18 were not divided into five stages, The number of parts can be reduced by using the same permanent magnets 18 as the rotor 19 of the embodiment.
  • the claw-pole type motor M of each embodiment described above employs wave windings (whole-section concentrated windings) for the windings 36, 37, 38, and 39, thereby forming salient pole concentrated windings (short-section concentrated windings). It is possible to increase the torque compared to winding. Hereinafter, the reason will be described.
  • the magnetomotive force of the winding is represented by two vectors whose directions are shifted by 120 ° and whose magnitude is 1, as shown in FIG. 23A. Since the excitation directions of “a” and “b” are opposite, the magnetic flux change vector linking to “b” is in the opposite direction as shown in FIG. 23B, and the magnitude of the electromotive force, which is the resultant vector, is “3”.
  • the winding magnetomotive force is represented by two vectors whose directions are 180 ° shifted and whose magnitude is 1 as shown in FIG. 25A. Is done. Since the excitation directions of a and b are opposite, the magnetic flux change vector linked to b is in the opposite direction as shown in Fig. 25B, and the magnitude of the electromotive force, which is the resultant vector, is 2.
  • the maximum value of the short-coil winding coefficient kp is 1 in the case of a wave winding with a coil pitch of
  • 8 ⁇ 180 °.
  • the wave winding is adopted as a concentrated winding, the magnetomotive force becomes as shown in Fig. 26 ⁇ . Since the distribution is rectangular, the number of slots is increased to make the magnetomotive force distribution closer to a sine wave. Can be reduced.
  • This coefficient kd is called a distributed winding coefficient.
  • a common refrigerant passage J is provided so as to straddle the first to fourth stator rings 31 to 34 of the stator 19, and it is necessary to consider the sealing of the mating surface of the stator 19.
  • the cost can be reduced by the amount that the core is not required at the time of compacting.
  • the force can also increase the cross-sectional area of the passage and simplify the piping for supplying the refrigerant.
  • the refrigerant passages J are formed by embedding copper pipes 51 having high thermal conductivity at the time of compacting the stator 19, and the refrigerant passages J are formed using a core.
  • the cost can be reduced as compared with the case of forming.
  • FIG. 29A is a modification of the embodiment shown in FIG. 28A, in which the space between the outer peripheral surface of the stator 19 and the inner peripheral surface of the annular stator holder 20 holding the stator 19 is provided.
  • a single refrigerant passage J is formed.
  • a core is not required to form the force refrigerant passage J in which the sealing of the mating surface between the stator 19 and the stator holder 20 needs to be considered, and the cost can be reduced.
  • the embodiment shown in FIG. 29B is a modification of the embodiment shown in FIG. 29A, in which the refrigerant passage J is formed by the cooperation of concave portions formed on both the outer peripheral surface of the stator 19 and the inner peripheral surface of the stator holder 20. It is constituted by.
  • the refrigerant passage J is formed by the cooperation of the concave portion of the stator 19 and the concave portion of the stator holder 20, so that the concave portion on the stator 19 side is reduced to secure the strength and the magnetic path of the stator 19, It is possible to secure the passage cross-sectional area of passage J.
  • the outer peripheral surface of the stator 19 is a simple cylindrical surface, and two reinforcing rings 52, 52 are provided on the outer peripheral surfaces of the first and fourth stator rings 31, 34 on both axial sides. And the stator holder 20 is further press-fitted to the outer peripheral surfaces of the reinforcing rings 52, 52.
  • the refrigerant passage J having a large cross-sectional area is formed by the cooperation of the stator 19, the reinforcing rings 52, 52 and the stator holder 20. Can also be used to reinforce the stator 19 with the reinforcing rings 52, 52 be able to.
  • FIG. 29D is a modification of the embodiment shown in FIG. 29A, in which two refrigerants are provided between two grooves on the outer peripheral surface of the stator 19 and the inner peripheral surface of the stator holder 20. Passages J and J are formed. According to this embodiment, the same operation and effect as those of the embodiment of FIG. 29A can be achieved.
  • a plurality of annular cooling fins F ⁇ are protruded from the outer peripheral surface of the stator 19. Since the outer peripheral surface of the stator 19 cannot be held by the annular stator holder 20 because of interference with the cooling fins F ', the both side surfaces of the stator 19 are held by the plate-shaped stator holders 20, 20.
  • cooling fins F are formed at the same time when the first to fourth stator rings 31 to 34 are compacted, the cooling fins formed of separate members are fixed later. The cost is low, and both the force and the body force of the stator 19 are high, and the heat transfer efficiency to the cooling fins F is high, so the cooling effect is improved. Furthermore, since the cooling air is used as the refrigerant, pumps, piping, radiators, etc., which are required when using a liquid refrigerant, can be eliminated, and consideration for refrigerant leakage becomes unnecessary.
  • a plurality of annular cooling fins F ' are protruded from the first stator ring 31 and the fourth stator ring 34 constituting both side surfaces of the stator 19. .
  • the stator 19 can be held by the annular stator holder 20, and the holding structure is simplified.
  • cooling fins F are projected on the outer peripheral surface and both side surfaces of stator 19, and the number of cooling fins F can be increased to increase the cooling effect.
  • the cooling fins F are cut out at several places in the circumferential direction of the stator 19, and It is necessary to hold the stator 19 at
  • the present invention can be applied to various powers without departing from the gist of the present invention. Can be changed.
  • the two-phase claw-pole type motor M is illustrated, but the present invention can be applied to a three-phase or more claw-pole type motor.
  • the claw-pole type motor M is used as a traveling motor of a hybrid vehicle, but the use is arbitrary.
  • the force in which the stator rings 31, 32, 33, 34, 35 of each phase are made of a powder material, and other various materials can be adopted. That is, if the stator rings 31, 32, 33, 34, 35 are made of a solid magnetic material, a sintered material, or a compacted material, the forming is easier than when they are made of a laminated steel plate. The cost can be reduced by using a solid magnetic material or a sintered material, and the loss of magnetic flux can be reduced by using a dust material.
  • the force formed by integrally molding the first to fifth stator rings 31, 32, 33, 34, and 35 of each phase, and return noses 31a, 32a, 33a, and 34a, 35a, teeth 3 lb---, 32b---, 33b---, 34b---, 35b... and projections 31c- ", 32c---, 33.
  • 35c ... are divided and configured, their design flexibility can be increased.
  • a rectangular wire with a rectangular cross section is used as the conductor of the windings 36, 37, 38, and 39 of each phase. Can be adopted. If a conductor having a rectangular cross section or a regular polygonal cross section is employed, the space factor of the windings 36, 37, 38, and 39 can be increased, and if a conductor having a circular cross section is employed, it can contribute to cost reduction.
  • the lowest cost cooling water and cooling air are illustrated as the coolant for cooling the stator 19, but any other coolant can be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Windings For Motors And Generators (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Synchronous Machinery (AREA)

Abstract

 mを2以上の自然数とし(実施例ではm=2)、2m個のティース(31b~34b)および2m−1個のスロット(41,42,43)を軸線方向に交互に配置し、各スロット(41,42,43)に収納された巻線(36,37,38)のうちの互いにmだけ離れたスロット(41,42,43)の巻線(36,37,38)を励磁方向が逆になるように直列接続し、各ティース(31b~34b)を通過する磁束の位相を各々360°/2mずつずらしたので、トルクに寄与しない巻線部分(渡り部分)を廃止し、かつ各相の磁路をリターンパス(31a~34a)を介して共用化することにより薄型で高出力のクローポール型モータを得ることができ、しかも波巻モータの磁気回路が構成されるので、突極集中巻モータに比べて出力トルクを増加させることができる。

Description

明 細 書
クローポーノレ型モータのステータ
技術分野
[0001] 本発明は、軸線方向に並置した複数のティース間に形成された複数のスロットに、 軸線に直交する平面内で卷回された複数の卷線を収納したクローポール型モータの ステータに関する。
背景技術
[0002] この種のクローポール型モータのステータは、下記特許文献 1により公知である。こ のものは、 U相、 V相および W相の各相に対応して 3個の単位ステータを備えており、 各々の単位ステータは軸線方向に離間した 2個のティースと、それらのティースを径 方向外端で接続するリターンパスとを有して断面コ字状に形成されて ヽる。そして断 面コ字状の単位ステータの内部に収納した環状の卷線に通電して独立した磁路を構 成することで、その 2個のティースの径方向内端にロータに対向するように突設した極 性の異なる 2種類の突起を磁ィ匕するようになって 、る。
特許文献 1:日本特開平 7 - 227075号
発明の開示
発明が解決しょうとする課題
[0003] ところで上記従来のものは、 U相、 V相および W相の 3個の単位ステータを軸線方 向に積み重ねてステータを構成している力 各々の単位ステータが、その内部に卷 線を収納する環状のスロットを備え、かつ 2個のティースおよび 2種類の突起を備えて いるために軸線方向の厚さが厚くなり、それらの単位ステータを 3個積み重ねたステ ータの軸線方向の寸法が大型化する問題があった。しかも各相の単位ステータの磁 路が独立しているため、それらの磁路を有効に利用できないという問題があった。
[0004] 特に、この種のモータをハイブリッド車両のエンジンとトランスミッションとの間に配置 する場合、その厚さを極力薄くすることが望まれるが、上記従来のものはステータが 厚くなるためにその要望に応えることが困難であった。
[0005] 本発明は前述の事情に鑑みてなされたもので、クローポール型モータの出力トルク を確保しながらステータの軸線方向の厚さを極力薄くすることを目的とする。
課題を解決するための手段
[0006] 上記目的を達成するために、本発明の第 1の特徴によれば、 mを 2以上の自然数と して軸線方向に交互に配置された 2m個のティースおよび 2m— 1個のスロットと、各テ ィースを相互に接続するリターンノ スと、各スロットに収納された卷線とを備え、互い に mだけ離れたスロットに収納された卷線は励磁方向が逆になるように直列接続され 、各ティースを通過する磁束の位相は、 N=2mとして各々 360° ZNずつずれてい るクローポール型モータのステータが提案される。
[0007] また本発明の第 2の特徴によれば、 mを 2以上の自然数として軸線方向に交互に配 置された 2m+ 1個のティースおよび 2m個のスロットと、各ティースを相互に接続する リターンパスと、各スロットに収納された卷線とを備え、互いに mだけ離れたスロットに 収納された卷線は励磁方向が逆になるように直列接続され、各ティースを通過する 磁束の位相は、 N= 2mとして各々 360° ZNずつずれており、 1番目のティースおよ び 2m+ 1番目のティースを通過する磁束は同位相でその他のティースを通過する磁 束の 2分の 1となるクローポール型モータのステータが提案される。
[0008] また本発明の第 3の特徴によれば、上記第 1または第 2の特徴に加えて、 Kを 2以上 の自然数として N = 2Kmのとき、連続して配置された K個の卷線を直列接続したクロ 一ポール型モータのステータが提案される。
[0009] また本発明の第 4の特徴によれば、上記第 1または第 2の特徴に加えて、前記各テ ィースは、 360° ZNずつ位相がずれた突起を有するクローポール型モータのステ ータが提案される。
[0010] また本発明の第 5の特徴によれば、上記第 4の特徴に加えて、前記突起は、ロータ の外周面に沿って軸線方向に延びるクローポール型モータのステータが提案される
[0011] また本発明の第 6の特徴によれば、上記第 1または第 2の特徴に加えて、前記各テ ィースは、磁極の位相が 360° ZNずつずれたロータに対して、同一位相の突起を 有するクローポール型モータのステータが提案される。
[0012] また本発明の第 7の特徴によれば、上記第 2の特徴に加えて、 1番目のティースお よび 2m+ l番目のティースは、ロータの外周面に沿って軸線方向に延びる同じ長さ の突起を有するクローポール型モータのステータが提案される。
[0013] また本発明の第 8の特徴によれば、上記第 1または第 2の特徴にカ卩えて、前記ステ ータは冷却構造を備えるクローポール型モータのステータが提案される。
[0014] また本発明の第 9の特徴によれば、上記第 8の特徴に加えて、前記冷却構造は、ス テータの内部および周辺部の少なくとも一方に設けられるクローポール型モータのス テータが提案される。
[0015] また本発明の第 10の特徴によれば、上記第 9の特徴にカ卩えて、前記ステータの周 辺部に設けられた冷却構造は、少なくとも一つの凹部、少なくとも一つの凸部あるい は複数の冷却フィン力もなるクローポール型モータのステータが提案される。
[0016] また本発明の第 11の特徴によれば、上記第 9の特徴にカ卩えて、前記ステータの内 部に設けられた冷却構造は、少なくとも一つの冷却空間を持つクローポール型モー タのステータが提案される。
[0017] また本発明の第 12の特徴によれば、上記第 11の特徴に加えて、前記冷却空間は
、ステータと該ステータのホルダとの協働により構成されるクローポール型モータのス テータが提案される。
[0018] また本発明の第 13の特徴によれば、上記第 11の特徴に加えて、前記冷却空間は 、ステータと、該ステータのホルダと、ステータおよびホルダに挟まれた補強リングとの 協働により構成されるクローポール型モータのステータが提案される。
[0019] また本発明の第 14の特徴によれば、上記第 8の特徴に加えて、前記冷却構造は、 冷却水および冷却風の少なくとも一方によりステータを冷却するクローポール型モー タのステータが提案される。 発明の効果
[0020] 第 1の特徴によれば、 2m個のティースおよび 2m— 1個のスロットを軸線方向に交互 に配置し、各スロットに収納された卷線のうちの互いに mだけ離れたスロットの卷線を 励磁方向が逆になるように直列接続し、各ティースを通過する磁束の位相を各々 36 0° ZNずつずらしたので、トルクに寄与しない卷線部分 (渡り部分)を廃止し、かつ 各相の磁路をリターンノ スを介して共用化することにより薄型で高出力のモータを得 ることができ、し力も波卷モータの磁気回路が構成されるので、突極集中卷モータに 比べて出力トルクを増加させることができる。
[0021] 第 2の特徴によれば、 2m+ l個のティースおよび 2m個のスロットを軸線方向に交 互に配置し、各スロットに収納された卷線のうちの互いに mだけ離れたスロットの卷線 を励磁方向が逆になるように直列接続し、各ティースを通過する磁束の位相を各々 3 60° ZNずつずらし、 1番目のティースおよび 2m+ l番目のティースを通過する磁 束を同位相でその他のティースを通過する磁束の 2分の 1としたので、トルクに寄与し な 、卷線部分 (渡り部分)を廃止し、かつ各相の磁路をリターンパスを介して共用化 することにより薄型で高出力のモータを得ることができ、し力も波卷モータの磁気回路 が構成されるので、突極集中卷モータに比べて出力トルクを増カロさせることができる。
[0022] 第 3の特徴によれば、 Kを 2以上の自然数として N = 2Kmのとき、連続して配置され た K個の卷線を直列接続したので、分布巻の起磁力分布を実現してトルクリップルお よび鉄損を低減することができる。
[0023] 第 4の特徴によれば、各ティースが 360° ZNずつ位相がずれた突起を有するの で、ロータの磁極の位相を揃えて構造を簡素化するとともに、突起とロータとのエアギ ヤップを小さくしてロータの出力トルクを増加させることができる。
[0024] 第 5の特徴によれば、突起がロータの外周面に沿って軸線方向に延びているので、 ロータが発生する磁束を有効に利用して出力トルクを増加させることができる。
[0025] 第 6の特徴によれば、磁極の位相が 360° ZNずつずれたロータに対して、各ティ ースが同一位相の突起を有するので、ステータの突起の位相を揃えて構造を簡素化 するするとともに、突起とロータとのエアギャップを小さくしてロータの出力トルクを増 カロさせることができる。
[0026] 第 7の特徴によれば、 1番目のティースおよび 2m+ 1番目のティースがロータの外 周面に沿って軸線方向に延びる同じ長さの突起を有するので、 1番目のティースおよ び 2m+ 1番目のティースを通過する磁束の総和を、他のティースをそれぞれ通過す る磁束と均一化することができる。
[0027] 第 8の特徴によれば、ステータが冷却構造を備えて 、るので、モータの運転時にコ ィルの発熱による温度上昇を防止することができる。 [0028] 第 9の特徴によれば、ステータの内部および周辺部の少なくとも一方に冷却構造を 設けたので、ステータを効果的に冷却することができる。
[0029] 第 10の特徴によれば、ステータの周辺部の冷却構造を凹部、凸部あるいは複数の 冷却フィンで構成したので、冷媒とステータとの接触面積を増加させて冷却効果を高 めることができる。
[0030] 第 11の特徴によれば、ステータの内部の冷却構造を冷却空間で構成したので、冷 却空間に冷媒を流してステータの冷却効果を高めることができる。
[0031] 第 12の特徴によれば、ステータとホルダとの協働により冷却空間を構成したので、 ステータの強度を損なうことなく大容積の冷却空間を形成することができる。
[0032] 第 13の特徴によれば、ステータと、ホルダと、ステータおよびホルダに挟まれた補 強リングとの協働により冷却空間を構成したので、ステータの強度を損なうことなく大 容積の冷却空間を形成することができるだけでなぐ補強リングでステータを効果的 に補強することができる。
[0033] 第 14の特徴によれば、冷却水または冷却風でステータを冷却するので、特別な冷 媒が不要になってコスダウンが可能である。
[0034] 本発明における上記、その他の目的、特徴および利点は、添付の図面に沿って以 下に詳述する好適な実施例の説明から明らかとなろう。
図面の簡単な説明
[0035] [図 1]図 1はクローポール型モータを備えたハイブリッド車両のパワーユニットを示す 図である。(実施例 1)
[図 2]図 2は図 1の 2— 2線拡大断面図である。(実施例 1)
[図 3]図 3は図 2の 3— 3線断面図である。(実施例 1)
[図 4]図 4は図 2の 4 4線断面図である。(実施例 1)
[図 5]図 5は図 2の 5— 5線断面図である。(実施例 1)
[図 6]図 6は図 2の 6— 6線断面図である。(実施例 1)
[図 7]図 7はステータおよびロータの一部破断斜視図である。(実施例 1)
[図 8]図 8はステータおよびロータの分解斜視図である。(実施例 1)
[図 9]図 9は m相波卷クローポール型モータの等価回路図である。(実施例 1) [図 10]図 10は 2相クローポール型モータのステータおよびロータの一部破断斜視図 である。 (実施例 2)
[図 11]図 11はステータおよびロータの分解斜視図である。(実施例 2)
[図 12]図 12は図 10の 12-12線断面図である。(実施例 2)
[図 13A]図 13Aは本発明の第 3実施例の 2相クローポール型モータのステータおよび ロータの模式図である。(実施例 3)
[図 13B]図 13Bは本発明の第 3実施例の 2相クローポール型モータのステータおよび ロータの模式図である。(実施例 3)
[図 14]図 14は 2相クローポール型モータのステータおよびロータの一部破断斜視図 である。 (実施例 4)
[図 15]図 15はステータおよびロータの分解斜視図である。(実施例 4)、
[図 16]図 16は図 14の 16— 16線断面図である。(実施例 4)
[図 17]図 17は m相波卷クローポール型モータの等価回路図である。(実施例 4)
[図 18]図 18は 2相クローポール型モータのステータおよびロータの一部破断斜視図 である。 (実施例 5)
[図 19]図 19はステータおよびロータの分解斜視図である。(実施例 5)
[図 20]図 20は図 18の 20-20線断面図である。(実施例 5)
[図 21A]図 21Aは本発明の第 6実施例の 2相クローポール型モータのステータおよび ロータの模式図である。(実施例 6)
[図 21B]図 21Bは本発明の第 6実施例の 2相クローポール型モータのステータおよび ロータの模式図である。(実施例 6)
[図 22]図 22は短節集中卷 (突極集中卷)の卷線分布を示す図である。
[図 23A]図 23Aは短節集中卷 (突極集中卷)の卷線の起電力の説明図である。
[図 23B]図 23Bは短節集中卷 (突極集中卷)の卷線の起電力の説明図である。
[図 24]図 24は全節集中卷 (波卷)の卷線分布を示す図である。
[図 25A]図 25Aは全節集中卷 (波卷)の卷線の起電力の説明図である。
[図 25B]図 25Bは全節集中卷 (波卷)の卷線の起電力の説明図である。
[図 26A]図 26Aは集中巻の起磁力分布の説明図である。 [図 26B]図 26Bは分布巻の起磁力分布の説明図である。
[図 27A]図 27Aは m相波卷モータの等価回路図である。
[図 27B]図 27Bは m相波卷モータの等価回路図である。
[図 28A]図 28Aは冷媒通路の他の実施例を示す図である。
[図 28B]図 28Bは冷媒通路の他の実施例を示す図である。
[図 29A]図 29Aは冷媒通路の更に他の実施例を示す図である。
[図 29B]図 29Bは冷媒通路の更に他の実施例を示す図である。
[図 29C]図 29Cは冷媒通路の更に他の実施例を示す図である。
[図 29D]図 29Dは冷媒通路の更に他の実施例を示す図である。
[図 30A]図 30Aは冷却フィンを備えた実施例を示す図である。
[図 30B]図 30Bは冷却フィンを備えた実施例を示す図である。
[図 30C]図 30Cは冷却フィンを備えた実施例を示す図である。 符号の説明
17 ロータ
31a リターンパス
31b ティース
31c
32a リターンパス
32b ティース
32c
33a リターンパス
33b ティース
33c
34a リターンパス
34b ティース
34c
35a リターンパス
35b ティース 35c
36
37
38
39
41 スロット
42 スロット
43 スロット
44 スロット
52 補強リング
F 冷却フィン
J 冷媒通路
L 軸
発明を実施するための最良の形態
[0037] 以下、本発明の第 1実施例を図 1一図 9、図 27Aおよび図 27Bに基づいて説明す る。
実施例 1
[0038] 図 27Aは、従来の一般的な m相波卷モータの磁気回路を示すものである。 mは 2 以上の自然数であり、各相の卷線は m個ずれたスロットを励磁方向が逆方向になるよ うに波状に通過している。この場合、 k相目(l≤k≤m)の卷線の鎖交磁束は、 φ ΐί— φ k+mで表される。
[0039] 図 9 (A)、 (B)は、上述した一般的な m相波卷モータを軸線方向に展開し、 2m個 のティースと 2m— 1個のスロットとを設けた m相波卷クローポール型モータの磁気回 路を示しており、この場合も各相の鎖交磁束は変化しないことが分かる。即ち、 k相目 (l≤k≤m— 1)の卷線の鎖交磁束は、 φ ΐί— φ 2πι— ( () k+m— φ 2πι) = k - k+m となり、図 27Αのものと一致する。また m相目以外の卷線はそれぞれ 2スロット分ずつ 存在するのに対し、 m相目の卷線は 1スロット分だけしか存在しない。
[0040] 以上の構成をまとめると、 2m個のティースと 2m— 1個のスロットとを軸線方向に交互 に配置し、相互に mだけ離れたスロットに収納された卷線を励磁方向が逆になるよう に直列接続し、かつ各ティースを通過するロータ磁束を 360° Z2mずつずらした構 成により、図 27Aに示す一般的な m相波卷クローポール型モータと等価な磁気回路 を構成することができる。尚、 N = 2'K'm (Kは 2以上の自然数)のとき、連続して配 置された K個の卷線を直列接続した構造 (分布卷)としても、同様にして等価な磁気 回路を構成することができる。
[0041] 図 1に示すように、ハイブリッド車両のパワーユニットは、エンジン Eおよびトランスミ ッシヨン T間に配置された 2相波卷クローポール型のモータ Mを備える。エンジン Eの シリンダブロック 11およびクランクケース 12の右側面にモータケース 13、トルクコンバ ータケース 14およびミッションケース 15が結合されており、シリンダブロック 11および クランクケース 12間に支持されたクランクシャフト 16の軸端にモータ Mのロータ 17が 固定される。ロータ 17の外周に固定した複数の永久磁石 18· ··に環状のステータ 19 が所定のエアギャップを介して対向しており、ステータ 19を支持するステータホルダ 2 0がシリンダブロック 11およびクランクケース 12とモータケース 13との割り面に挟まれ て固定される。
[0042] トルクコンバータケース 14に収納されたトルクコンバータ 21は、タービンランナー 22 とポンプインペラ 23とを備えており、タービンランナー 22に結合されてポンプインペラ 23を覆うサイドカバー 24がドライブプレート 25を介してモータ Mのロータ 17に接続さ れる。トルクコンバータ 14のポンプインペラ 23は、ミッションケース 15に支持されたメ インシャフト 26の左端に結合される。
[0043] 次に、図 2—図 8を参照して二相波卷クローポール型のモータ Mのステータ 19の構 造を説明する。
[0044] 図 8から明らかなように、ステータ 19は圧粉材で一体成形された第 1ステータリング 31、第 2ステータリング 32、第 3ステータリング 33および第 4ステータリング 34と、 A+ 相卷線 36、 B+相卷線 37および A—相卷線 38とを備える。第 1ステータリング 31—第 4ステータリング 34は軸線 L方向に重ね合わされる。
[0045] 図 3、図 7および図 8から明らかなように、第 1ステータリング 31は、環状に形成され たリターンパス 31aと、このリターンパス 31aの周方向等間隔位置力 径方向内向き に延びる 9個のティース 31b…と、これらのティース 31b…の径方向内端から更に径 方向内向きに延びる 9個の突起 31c…とを備える。そして各々の突起 31cの径方向 内端は、 L字状に屈曲してテーパーしながら軸線 L方向片側に延びている。ティース 31bは卷線 36, 37, 38の径方向の高さに対応する部分であり、それよりも径方向内 側の部分は突起 31cとなる。
[0046] 図 4、図 7および図 8から明らかなように、第 2ステータリング 32は、環状に形成され たリターンパス 32aと、このリターンパス 32aの周方向等間隔位置力 径方向内向き に延びる 9個のティース 32b' · ·と、これらのティース 32b…の径方向内端から更に径 方向内向きに延びる 9個の突起 32c…とを備える。そして各々の突起 32cの径方向 内端は、非対称な T字状をなしてテーパーしながら軸線 L方向両側に延びている。テ ィース 32bは卷線 36, 37, 38の径方向の高さに対応する部分であり、それよりも径方 向内側の部分は突起 32cとなる。
[0047] 図 5、図 7および図 8から明らかなように、第 3ステータリング 33は第 2ステータリング 32と鏡面対称な部材であり、かつ裏返すことで第 2ステータリング 32と互換可能な同 一形状を有している。第 3ステータリング 33の各部の符号は、第 2ステータリング 32の 各部の符号の「32」を「33」に変更したものである。
[0048] 図 6、図 7および図 8から明らかなように、第 4ステータリング 34は第 1ステータリング 31と鏡面対称な部材であり、かつ裏返すことで第 1ステータリング 31と互換可能な同 一形状を有している。第 4ステータリング 34の各部の符号は、第 1ステータリング 31の 各部の符号の「31」を「34」に変更したものである。
[0049] 本実施例のモータ Mは二相交流で作動するものであり、 A+相、 B+相、 A—相およ び B—ネ目の突起 31c- ", 32c- - -, 33c- - -, 34c- ··【ま電気角で 360° /4 = 90° ずつ 周方向にずれて配置される。それに対してロータ 17の各永久磁石 18は A+相、 B+相 、 A—相および B—相の突起 31c" ', 32c- - -, 33c- - -, 34c…に対して共用されていて 同一位相の磁束を発生する。これにより各相の突起 31c" ', 32c- - -, 33c- - -, 34 · · はロータ 17に均一な出力トルクを発生させることができる。
[0050] 図 3—図 7から明らかなように、 A+相の 9個の突起 31c" '、 B+相の 9個の突起 32c · · ·、 A"相の 9個の突起 33c…および B—相の 9個の突起 34c…がロータ 17に対向す る面は略長方形の同一形状をなし、ステータ 19の内周面に沿って円周方向に順番 に酉己置される。これらの突起 31c- ", 32c- --, 33c- --, 34c…の軸線 L方向の幅は、口 ータ 17の永久磁石 18· ··の軸線 L方向の幅に略等しくなつているため、ステータ 19お よびロータ 17間の鎖交磁束を最大限に増加させてロータ 17の出力トルクを増カロさせ ることができる。し力も各永久磁石 18は A+相、 B+相、 A—相および B—相の突起 31c · ··, 32c- --, 33c- --, 34c…に対して共用されるので、各相の突起 31c- ", 32c- --, 3 3c-, 34c…に対応して永久磁石 18…を軸線 L方向に分割する必要をなくし、永久 磁石 18…の個数を削減することができる。
[0051] 第 1ステータリング 31のティース 31b…と第 2ステータリング 32のティース 32b…との 間に環状のスロット 41が形成されており、このスロット 41に予め卷回された A+相卷線 36が収納される。また第 2ステータリング 32のティース 32b…と第 3ステータリング 33 のティース 33b…との間に環状のスロット 42が形成されており、このスロット 42に予め 卷回された B+相卷線 37が収納される。また第 3ステータリング 33のティース 33b…と 第 4ステータリング 34のティース 34b…との間に環状のスロット 43が形成されており、 このスロット 43に予め卷回された A相卷線 38が収納される。
[0052] このように、第 1ステータリング 31—第 4ステータリング 34の間に形成された 3個のス ロット 41, 42, 43に 3個の卷線 36, 37, 38を挟んで固定たので、各卷線 36, 37, 3 8を固定するための特別の固定部材が不要になる。し力も各卷線 36, 37, 38はスロ ット 41, 42, 43の内部に収納されて外部部品と干渉する虞がないため、外部部品の 寸法管理が容易になる。
[0053] 各々の卷線 36, 37, 38は長方形断面の平角線を導線とするもので、径方向に 4層 に卷回され、軸線 L方向に 2層に卷回される。そして A+相卷線 36および B+相卷線 3 7の起磁力の方向は同方向になるように設定され、かつ A 相卷線 38の起磁力の方 向は逆方向になるように設定される。
[0054] しかして、 A+相および A—相卷線 36, 38と、 B+相卷線 37とに 2相交流電流を供給 することで、ステータ 19の内周面に順番に配置された A+相の突起 31c"'、 B+相の 突起 32c"'、 A"相の突起 33c…および B 相の突起 34c…に回転磁界を形成し、永 久磁石 18…との間に発生する磁力でロータ 17を回転駆動することができる。 [0055] 以上のように、 A+相卷線 36、 B+相卷線 37および A—相卷線 38が軸線 Lを円筒状 に囲むように配置される出力トルクに寄与しな 、卷線部分 (渡り部分)を廃止し、かつ 各相の磁路を共用化することにより、第 1ステータリング 31—第 4ステータリング 34を 有効に利用して小型で高出力のモータ Mを得ることができ、特にモータ Mの薄型化 を図ることで、エンジン Eおよびトランスミッション T間の狭い空間に容易に配置するこ とがでさる。
[0056] 次にモータ Mのステータ 19の冷却構造について説明する。
[0057] 本実施例の第 1一第 4ステータリング 31— 34は圧粉磁性材により構成される。即ち 、へガネス社製の鉄系合金の磁性材粉末の表面を無機質材の皮膜で覆った圧粉材 を金型で所定の形状にプレス成形し、それにサイジング処理を施して形状を整えた 後に熱硬化処理することで第 1一第 4ステータリング 31— 34を製造する。このように、 圧粉磁性材を用いることで、複雑な形状の第 1一第 4ステータリング 31— 34を容易に 製造することができる。
[0058] ステータ 19の第 1一第 4ステータリング 31— 34の各々の外周部には、その圧粉成 形時に中子を用いて環状の冷媒通路 J' ··が形成されており、これらの冷媒通路 J' · -に 冷媒としの冷却水や冷却風を流通させることにより、 A+相卷線 36、 B+相卷線 37お よび A—相卷線 38の発熱による温度上昇を抑制している。ステータ 19の第 1一第 4ス テータリング 31— 34の内部に冷媒通路 J…を設けたのでステータ 19の外形に影響が なぐステータホルダ 20によるステータ 19の保持に支障を来すことがない。またステ ータ 19の内部に直接冷媒通路 J…を設けたので、冷媒による冷却効果が充分に確保 されるとともに冷媒の漏れが防止され、し力もステータ 19の保持方法の自由度を増加 させることがでさる。
[0059] 次に、図 10—図 12に基づいて本発明の第 2実施例を説明する。
実施例 2
[0060] 第 1実施例のステータ 19の A+相、 B+相、 A—相および B—相のティース 31b"', 32 b- --, 33b- --, 34b…は周方向に位相をずらして配置されており、それらのティース 31 b- --, 32b- --, 33b- --, 34b…の径方向内端力も軸線 L方向に延びる突起 31。··, 32 c- ", 33c- --, 34c…は、ステータ 19の軸線 L方向の厚さと同じ幅を有している。そし てロータ 17の永久磁石 18···の幅は突起 31c"-, 32c---, 33c---, 34c…の幅と同じ であり、各々のネ目の突起 31c"-, 32c---, 33c---, 34c- ··【こ対して共有されて!ヽる。
[0061] それに対して第 2実施例のステータ 19の A+相、 B+相、 A—相および B—相のティー ス 31b"-, 32b---, 33b---, 34b…は同一位相に酉己置されており、ティース 31b"-, 3 2b---, 33b---, 34b…力、ら径方向内佃 Jに略同じ太さで延びる突起 31c-", 32c---, 3 3c---, 34c…も同一位相に配置されている。一方、ロータ 17の外周に配置される永 久磁石 18…は各相の突起 31c"', 32c---, 33c---, 34c…に対応して軸線 L方向に 4段に配置されており、かつ周方向に電気角で 360° /2m =90° ずつ位相をずら して配置される。 A+相、 B+相および A—相の卷線 36, 37, 38の構造は第 1実施例と 同じである。
[0062] この第 2実施例によっても上述した第 1実施例と同様にステータ 19の軸線 L方向の 厚さを薄くすることができるが、永久磁石 18···が 4段に分割される分だけ部品点数が 増カロし、また各々のネ目の突起 31c"-, 32c---, 33c---, 34c…力 S永久磁石 18···に対 向する面積が小さくなる分だけロータ 17の出力トルクが減少する。しかしながら、ステ ータ 19の突起 31c"-, 32c---, 33c---, 34c…の位ネ目を撤えること力 Sできるので、ステ ータ 19の構造を簡素化することができる。
[0063] 次に、図 13Aおよび図 13Bに基づいて本発明の第 3実施例を説明する。
実施例 3
[0064] 第 3実施例は上述した第 2実施例の変形であって、第 2実施例では各相の突起 31 c-", 32。··, 33。··, 34c…の位相を揃えて、各相の永久磁石 18···の位相を 360 ° Z2m=90° ずつずらしているのに対し、第 3実施例では各相の突起 31 ··, 32c ···, 33c---, 34c…の位相を 360° /2m=90° ずらして、各相の永久磁石 18···の 位相を揃えたものである。この第 3実施例によっても第 2実施例と同様の作用効果を 達成することができる。尚、永久磁石 18…を 4段に分割せず、第 1実施例のロータ 19 と同じ永久磁石 18…を採用すれば部品点数を削減することができる。
[0065] さて図 27Aに示す従来の一般的な m相波卷モータの磁気回路を、図 27Bに示すよ うに円周方向に分割すると、その分割面に磁束 Φ0が発生する。図 27Bの分割した 磁気回路を図 17(A)、(B)のように軸線方向に展開すると、 2m+l個のティースと 2 m個のスロットとを有する m相波卷クローポール型モータの磁気回路が得られ、その ノ ックヨーク部を磁束 φ 0が通過する。このとき、 k相目(l≤k≤m)の卷線の鎖交磁 束は、
Figure imgf000016_0001
となり、図 27Αのものと一致する。
[0066] 以上の構成をまとめると、 2m + l個のティースと 2m個のスロットとを軸線方向に交 互に配置し、相互に mだけ離れたスロットに収納された卷線を励磁方向が逆になるよ うに直列接続し、かつ各ティースを通過するロータ磁束を 360° Z2mずつずらし、 更に 1番目および 2m + 1番目のティースを通過する磁束を同位相でその他のティー スを通過する磁束の 2分の 1とすることで、図 27Aに示す一般的な m相波卷モータと 等価な磁気回路を構成することができる。尚、 N = 2 ' K ' m (Kは 2以上の自然数)のと き、連続して配置された K個の卷線を直列接続した構造 (分布卷)としても、同様にし て等価な磁気回路を構成することができる。
[0067] 次に、図 14一図 17に基づいて、上記 m相波卷クローポール型モータを具体化した 第 4実施例を説明する。
実施例 4
[0068] 第 1実施例一第 3実施例は軸線 L方向に積層された第 1ステータリング 31—第 4ス テータリング 34の間に 3個のスロット 41 , 42, 43を備えていた力 第 4実施例は軸線 L方向に積層された第 1ステータリング 31—第 5ステータリング 35の間に 4個のスロッ ト 41 , 42, 43, 44を備えている。中央の第 3ステータリング 33は、環状のリターンパス 33aの径方向内側にティース 33bを介して連なる突起 33cの形状が軸線 L方向に対 称であり、その両側に位置する第 2ステータリング 32および第 4ステータリング 34は相 互に互換可能な鏡面対称な部材であって、軸線 L方向に非対称な突起 32c, 34cを 備えている。
[0069] 第 2ステータリング 32および第 4ステータリング 34の両側に位置する第 1ステータリ ング 31および第 5ステータリング 35は相互に互換可能な鏡面対称な部材であって、 軸線 L方向に非対称な突起 31c, 35cを備えている。両突起 31c, 35cはステータ 19 の円周方向の同じ位置にあり、相互に接近する方向に延びている。従って、第 1ステ ータリング 31および第 5ステータリング 35の突起 31c, 35cの軸線 L方向の幅は、第 2 ステータリング 32—第 4ステータリング 34の突起 32c— 34cの軸線 L方向の幅の約半 分である。
[0070] 第 1ステータリング 31—第 5ステータリング 35の間には 4個のスロット 41, 42, 43, 4 4力 S形成されており、各々のスロット 41, 42, 43, 44に A+ネ目卷線 36、 B+ネ目卷線 37、 A"相卷線 38および B—相卷線 39がそれぞれ収納される。 A+相卷線 36および B+相 卷線 37の起磁力の方向は相互に同方向であり、かつ A 相卷線 38および B—相卷線 39の起磁力の方向は相互に同方向であり、前記 A+相卷線 36および B+相卷線 37 の起磁力の方向とは逆方向になるように設定される。
[0071] そして A+相、 A—相卷線 36, 38と、 B+、 B"相卷線 37, 39とに 2相交流電流を供給 することで、ステータ 19の内周面に順番に配置された A+相の突起 31c' 35c"-、 B+相の突起 32c"'、 A"相の突起 33c…および B 相の突起 34c…に回転磁界を形 成し、永久磁石 18· ··との間に発生する電磁力でロータ 17を回転駆動することができ る。
[0072] このとき軸線 L方向両端の第 1ステータリング 31および第 5ステータリング 35のティ ース 3 lb, 35bを通過する磁束は、他の第 2ステータリング 32、第 3ステータリング 33 および第 4ステータリング 34のティース 32b, 33b, 34bを通過する磁束の半分になる 力 第 1ステータリング 31および第 5ステータリング 35のティース 31b, 35bは同位相 に配置されていて実質的に一体に機能するため、各相間の磁束のアンバランスが発 生することはない。
[0073] しかして、この第 4実施例によっても、 A+相卷線 36、 B+相卷線 37、 A"相卷線 38 および B—相卷線 39が軸線 Lを円筒状に囲むように配置されるので、出力トルクに寄 与しない卷線部分 (渡り部分)を廃止し、かつ各相の磁路を共用化することにより、第 1ステータリング 31—第 5ステータリング 35を有効に利用して小型で高出力のモータ Mを得ることができ、特にモータ Mの薄型化を図ることで、エンジン Eおよびトランスミ ッシヨン T間の狭 、空間に容易に配置することができる。
[0074] 次に、図 18—図 20に基づいて本発明の第 5実施例を説明する。
実施例 5
[0075] 第 4実施例のステータ 19の A+相、 B+相、 A—相および B—相のティース 31b". (35b · ··) , 32b- --, 33b- --, 34b…は周方向に位相をずらして配置されており、それらのテ ィース 31b"-(35b"-), 32b---, 33b---, 34b…の径方向内端力ら軸線 L方向に延び る突起 31c"-(35c"-), 32c---, 33c---, 34c…は、ステータ 19の軸線 L方向の厚さ と同じ幅を有している。そしてロータ 17の永久磁石 18…の幅は突起 31cr" (35 -) , 32c---, 33c---, 34c…の幅と同じであり、各々の相の突起 31c-"(35c-"), 32c--- , 33c---, 34c- ··【こ対して共有されて!ヽる。
[0076] それに対して第 5実施例のステータ 19の A+相、 B+相、 A—相および B—相のティー ス 31b"-(35b"-), 32b---, 33b---, 34b…は同一位相に酉己置されており、ティース 3 lb-"(35b---), 32b---, 33b---, 34b…力、ら径方向内側に延びる突起 31c---(35c--- ), 32c---, 33c---, 34c- ··も同一位ネ目【こ酉己置されて!ヽる。一方、ロータ 17の外周【こ酉己 置される永久磁石 18···は各相の突起 31c"-(35c"-), 32c---, 33c---, 34c…に対 応して軸線 L方向に 5段に配置されており、かつ周方向に電気角で 360° /2m=9 0° ずつ位相をずらして配置される。但し、軸線 L方向の両端の突起 31。··, 35c〜 に対応する永久磁石 18…は、同一位相に配置される。 A+相、 B+相、 A—相および B ―相の卷線 36, 37, 38, 39の構造は第 4実施例と同じである。
[0077] この第 5実施例によっても上述した第 4実施例と同様にステータ 19の軸線 L方向の 厚さを薄くすることができるが、永久磁石 18···が 5段に分割される分だけ部品点数が 増カロし、また各々の相の突起 31c---(35c---), 32c---, 33c---, 34c…力 S永久磁石 1 8…に対向する面積が小さくなる分だけロータ 17の出力トルクが減少する。しかしな 力ら、ステータ 19の突起 31c"-(35c"-), 32c---, 33c---, 34c…の位ネ目を摘えること ができるので、ステータ 19の構造を簡素化することができる。
[0078] 次に、図 21Aおよび図 21Bに基づいて本発明の第 6実施例を説明する。
実施例 6
[0079] 第 6実施例は上述した第 5実施例の変形であって、第 5実施例では各相の突起 31 。··(35。··), 32。··, 33c---, 34c…の位相を揃えて、各相の永久磁石 18···の位 相を 360° /2m =90° ずつずらしているのに対し、第 6実施例では各相の突起 31 。··(35。··), 32。··, 33c---, 34c…の位相を 360° /2m =90° ずらして、各相 の永久磁石 18…の位相を揃えたものである。第 6実施例によっても第 5実施例と同 様の作用効果を達成することができる。尚、永久磁石 18…を 5段に分割せず、第 4実 施例のロータ 19と同じ永久磁石 18…を採用すれば部品点数を削減することができる
[0080] 以上説明した各実施例のクローポール型のモータ Mは、卷線 36, 37, 38, 39に波 卷 (全節集中卷)を採用したことにより、突極集中卷 (短節集中卷)に比べてトルクを 増加させることができる。以下、その理由を説明する。
[0081] 図 22に示す突極集中卷の卷線分布では、その卷線起磁力が図 23Aに示すように 方向が 120° ずれた大きさが 1の二つのベクトルで表される。 aと bとは励磁方向が逆 なので、図 23Bに示すように bに鎖交する磁束変化ベクトルは反対方向となり、その 合成ベクトルである起電力の大きさは 3となる。
[0082] それに対して図 24に示す本実施例の波卷の卷線分布では、その卷線起磁力が図 25Aに示すように方向が 180° ずれた大きさが 1の二つのベクトルで表される。 aと b とは励磁方向が逆なので、図 25Bに示すように bに鎖交する磁束変化ベクトルは反対 方向となり、その合成ベクトルである起電力の大きさは 2となる。
[0083] このように、卷線のピッチが 180° でない場合には、 180° である場合に比べて、 同一卷線ターン数、同一磁束変化でも起電力が小さくなり、その割合はコイルピッチ を β πとすると、
Figure imgf000019_0001
で与えられる。この係数 kpを短節卷係数と呼ぶ。
[0084] 短節卷係数 kpが最大値 1となるのはコイルピッチ |8 π = 180° の波巻の場合であ るが、波卷を集中巻として採用すると図 26Αに示すように起磁力分布が矩形波状と なるため、スロット数を増やして起磁力分布を正弦波に近づけることで、つまり図 26Β に示すように波卷を分布巻として採用することで、トルクリップルや高周波による鉄損 を低減することができる。
[0085] この分布卷を採用すると起磁力分布は正弦波に近くなるが、基本波成分の大きさ は、分布スロット数を q、分布ピッチを αとすると、
kd= sin (q a /2) / {qsin ( a /2) }
だけ小さくなる。この係数 kdを分布卷係数と呼ぶ。
[0086] 次に、図 28Aおよび図 28Bに基づいてステータ 19の冷媒通路 Jの他の実施例を説 明する。
[0087] 図 28Aの実施例は、ステータ 19の第 1一第 4ステータリング 31— 34に跨がる共通 の冷媒通路 Jを設けたもので、ステータ 19の合わせ面のシールを考慮する必要があ るが、第 1一第 4ステータリング 31— 34に各々独立した複数の冷媒通路 J…を設ける 場合に比べて、圧粉成形時に中子が不要になる分だけコストダウンが可能であり、し 力も通路断面積の増加や冷媒を供給する配管の簡素化が可能になる。
[0088] 図 28Bに示す実施例は、ステータ 19の圧粉成形時に熱伝導率の高い銅製のパイ プ 51…を埋め込むことで冷媒通路 J…を形成したもので、中子を用いて冷媒通路… を形成する場合に比べてコストダウンが可能である。
[0089] 次に、図 29A—図 29Dに基づいてステータ 19の冷媒通路 Jの更に他の実施例を説 明する。
[0090] 図 29Aに示す実施例は、前記図 28Aに示す実施例の変形であって、ステータ 19 の外周面と、このステータ 19を保持する環状のステータホルダ 20の内周面との間に 単一の冷媒通路 Jが形成される。この実施例によれば、ステータ 19とステータホルダ 2 0との合わせ面のシールを考慮する必要がある力 冷媒通路 Jを形成するのに中子が 不要になってコストダウンが可能である。
[0091] 図 29Bに示す実施例は、前記図 29Aに示す実施例の変形であって、冷媒通路 Jが ステータ 19の外周面およびステータホルダ 20の内周面の両方に形成した凹部の協 働によって構成される。この実施例は、ステータ 19の凹部およびステータホルダ 20 の凹部の協働によって冷媒通路 Jを構成するので、ステータ 19側の凹部を小さくして 該ステータ 19の強度および磁路を確保しながら、冷媒通路 Jの通路断面積を確保す ることがでさる。
[0092] 図 29Cに示す実施例は、ステータ 19の外周面が単純な円筒面であり、軸方向両側 の第 1、第 4ステータリング 31, 34の外周面に 2個の補強リング 52, 52を圧入し、更 に補強リング 52, 52の外周面にステータホルダ 20を圧入したものである。この実施 例によれば、ステータ 19およびステータホルダ 20の形状を最も単純ィ匕しながら、ステ ータ 19、補強リング 52, 52およびステータホルダ 20の協働によって大断面積の冷媒 通路 Jを構成することができ、し力も補強リング 52, 52によってステータ 19を補強する ことができる。
[0093] 図 29Dに示す実施例は、前記図 29Aに示す実施例の変形であって、ステータ 19 の外周面の 2本の溝とステータホルダ 20の内周面との間に 2個の冷媒通路 J, Jが形 成される。この実施例によっても、前記図 29Aの実施例と同様の作用効果を達成す ることがでさる。
[0094] 次に、図 30A—図 30Cに基づいてステータ 19を冷却フィン F…で冷却する実施例 を説明する。
[0095] 図 30Aに示す実施例は、ステータ 19の外周面に環状をなす複数の冷却フィン F - を突設したものである。冷却フィン F' · ·と干渉するためにステータ 19の外周面を環状 のステータホルダ 20で保持できな!/、ため、ステータ 19の両側面が板状のステータホ ノレダ 20, 20で保持される。
[0096] これらの冷却フィン F' · ·は第 1一第 4ステータリング 31— 34を圧粉成形する際に同 時に形成されるため、別部材で形成した冷却フィンを後から固定する場合に比べて 低コストであり、し力もステータ 19の本体部力も冷却フィン F…への熱伝達効率が良 いために冷却効果が向上する。更に、冷却風を冷媒とするので、液体の冷媒を使用 する場合に必要となるポンプ、配管、ラジェ一タ等を廃止できるだけでなぐ冷媒の漏 れに対する配慮も不要になる。
[0097] 図 30Bに示す実施例は、ステータ 19の両側面を構成する第 1ステータリング 31お よび第 4ステータリング 34に環状をなす複数の冷却フィン F' · ·を突設したものである。 この実施例によれば、ステータ 19の外周面に冷却フィン F…が存在しないので、その ステータ 19を環状のステータホルダ 20で保持することが可能となって保持構造が簡 素化される。
[0098] 図 30Cに示す実施例は、ステータ 19の外周面および両側面に冷却フィン F…を突 設したもので、冷却フィン F…の数を増カロさせて冷却効果を高めることができる。但し 、この実施例は図 30Aあるいは図 30Bに示すステータホルダ 20, 20でステータ 19を 保持することができないため、ステータ 19の円周方向の数力所で冷却フィン F…を切 欠き、その位置でステータ 19を保持する必要がある。
[0099] 以上、本発明の実施例を説明した力 本発明はその要旨を逸脱しない範囲で種々 の設計変更を行うことが可能である。
[0100] 例えば、実施例では 2相のクローポール型のモータ Mを例示したが、本発明は 3相 以上のクローポール型のモータに対して適用することができる。
[0101] また実施例ではクローポール型のモータ Mをハイブリッド車両の走行用モータとし て使用しているが、その用途は任意である。
[0102] また実施例では各相のステータリング 31, 32, 33, 34, 35を圧粉材で構成してい る力 その他の種々の材質を採用することができる。即ち、ステータリング 31, 32, 33 , 34, 35を無垢の磁性体、焼結材および圧粉材の何れかで構成すれば、それらを 積層鋼板で構成する場合に比べて成形が容易になり、無垢の磁性体あるいは焼結 材で構成すればコストを削減することができ、圧粉材で構成すれば磁束の損失を低 減することができる。
[0103] また実施例では各相の第 1一第 5ステータリング 31 , 32, 33, 34, 35をそれぞれ一 体成形して ヽる力 s、必要に応じてリターンノ ス 31a, 32a, 33a, 34a, 35a,ティース 3 lb- - -, 32b- - -, 33b- - -, 34b- - -, 35b…および突起 31c- ", 32c- - -, 33。· ·, 34。· ·,
35c…を分割して構成すれば、それらの設計自由度を高めることができる。
[0104] また実施例では各相の卷線 36, 37, 38, 39の導線に長方形断面の平角線を採用 しているが、正方形や正六角形等の正多角形断面あるいは円形断面の導線を採用 することができる。長方形断面あるいは正多角形断面の導線を採用すれば卷線 36, 37, 38, 39の占積率を増加させることができ、円形断面の導線を採用すればコスト ダウンに寄与することができる。
[0105] また実施例ではステータ 19を冷却する冷媒として最も低コストな冷却水および冷却 風を例示したが、他の任意の冷媒を使用することができる。

Claims

請求の範囲
[1] mを 2以上の自然数として軸線方向に交互に配置された 2m個のティースおよび 2 m— 1個のスロットと、各ティースを相互に接続するリターンパスと、各スロットに収納さ れた卷線とを備え、互いに mだけ離れたスロットに収納された卷線は励磁方向が逆に なるように直列接続され、各ティースを通過する磁束の位相は、 N = 2mとして各々 3 60° /Nずつずれているクローポール型モータのステータ。
[2] mを 2以上の自然数として軸線方向に交互に配置された 2m + 1個のティースおよ び 2m個のスロットと、各ティースを相互に接続するリターンパスと、各スロットに収納さ れた卷線とを備え、互いに mだけ離れたスロットに収納された卷線は励磁方向が逆に なるように直列接続され、各ティースを通過する磁束の位相は、 N = 2mとして各々 3 60° ZNずつずれており、 1番目のティースおよび 2m+ l番目のティースを通過す る磁束は同位相でその他のティースを通過する磁束の 2分の 1となるクローポール型 モータのステータ。
[3] Kを 2以上の自然数として N = 2Kmのとき、連続して配置された K個の卷線を直列 接続した、請求項 1または請求項 2に記載のクローポール型モータのステータ。
[4] 前記各ティースは、 360° ZNずつ位相がずれた突起を有する、請求項 1または請 求項 2に記載のクローポール型モータのステータ。
[5] 前記突起は、ロータの外周面に沿って軸線方向に延びる、請求項 4に記載のクロ 一ポーノレ型モータのステータ。
[6] 前記各ティースは、磁極の位相が 360° ZNずつずれたロータに対して、同一位 相の突起を有する、請求項 1または請求項 2に記載のクローポール型モータのステー タ。
[7] 1番目のティースおよび 2m+ 1番目のティースは、ロータの外周面に沿って軸線方 向に延びる同じ長さの突起を有する、請求項 2に記載のクローポール型モータのステ ータ。
[8] 前記ステータは冷却構造を備える、請求項 1または請求項 2に記載のクローポール 型モータのステータ。
[9] 前記冷却構造は、ステータの内部および周辺部の少なくとも一方に設けられる、請 求項 8に記載のクローポール型モータのステータ。
[10] 前記ステータの周辺部に設けられた冷却構造は、少なくとも一つの凹部、少なくとも 一つの凸部あるいは複数の冷却フィン力もなる、請求項 9に記載のクローポール型モ ータのステータ。
[11] 前記ステータの内部に設けられた冷却構造は、少なくとも一つの冷却空間を持つ、 請求項 9に記載のクローポール型モータのステータ。
[12] 前記冷却空間は、ステータと該ステータのホルダとの協働により構成される、請求項
11に記載のクローポール型モータのステータ。
[13] 前記冷却空間は、ステータと、該ステータのホルダと、ステータおよびホルダに挟ま れた補強リングとの協働により構成される、請求項 11に記載のクローポール型モータ のステータ。
[14] 前記冷却構造は、冷却水および冷却風の少なくとも一方によりステータを冷却する 、請求項 8に記載のクローポール型モータのステータ。
PCT/JP2004/013502 2003-09-16 2004-09-16 クローポール型モータのステータ WO2005027309A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP04773161A EP1667310A1 (en) 2003-09-16 2004-09-16 Stator of claw-pole shaped motor
CA002535716A CA2535716C (en) 2003-09-16 2004-09-16 Claw-pole motor stator
US10/568,959 US7466057B2 (en) 2003-09-16 2004-09-16 Claw pole motor stator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003322722A JP4041443B2 (ja) 2003-09-16 2003-09-16 クローポール型モータのステータ
JP2003-322722 2003-09-16

Publications (1)

Publication Number Publication Date
WO2005027309A1 true WO2005027309A1 (ja) 2005-03-24

Family

ID=34308678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/013502 WO2005027309A1 (ja) 2003-09-16 2004-09-16 クローポール型モータのステータ

Country Status (9)

Country Link
US (1) US7466057B2 (ja)
EP (1) EP1667310A1 (ja)
JP (1) JP4041443B2 (ja)
KR (1) KR100715715B1 (ja)
CN (1) CN100444500C (ja)
CA (1) CA2535716C (ja)
MY (1) MY137339A (ja)
TW (1) TWI275228B (ja)
WO (1) WO2005027309A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101253669A (zh) * 2005-08-26 2008-08-27 霍加纳斯股份有限公司 电机组件

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1699126A3 (en) * 2005-03-01 2006-10-04 HONDA MOTOR CO., Ltd. Stator, motor and method of manufacturing such stator
JP4654756B2 (ja) * 2005-04-28 2011-03-23 株式会社デンソー 交流モータ
JPWO2006118219A1 (ja) * 2005-04-28 2008-12-18 株式会社デンソー モータ及びその制御装置
CN101189782B (zh) 2005-05-24 2013-03-13 株式会社电装 电动机及其控制装置
JP2007049844A (ja) * 2005-08-11 2007-02-22 Shinano Kenshi Co Ltd アウターロータ型モータ
JP2007228677A (ja) * 2006-02-22 2007-09-06 Hitachi Ltd 発電装置及び回転電機
US7538467B2 (en) * 2006-06-05 2009-05-26 Burgess-Norton Mfg. Co., Inc Magnetic powder metal composite core for electrical machines
US20100295392A1 (en) * 2006-08-07 2010-11-25 Nidec Sankyo Corporation Motor
JP2008245484A (ja) * 2007-03-29 2008-10-09 Univ Of Fukui 動力変換用回転電機
US7989084B2 (en) 2007-05-09 2011-08-02 Motor Excellence, Llc Powdered metal manufacturing method and devices
WO2008141173A2 (en) 2007-05-09 2008-11-20 Motor Excellence, Llc. Powdered metal manufacturing method and devices
US8429816B2 (en) * 2008-09-12 2013-04-30 General Electric Company Stator ring configuration
US7868508B2 (en) 2008-11-03 2011-01-11 Motor Excellence, Llc Polyphase transverse and/or commutated flux systems
JP2010148267A (ja) * 2008-12-19 2010-07-01 Denso Corp モータ
DE102009005956A1 (de) * 2009-01-23 2010-07-29 Avantis Ltd. Magnetring
DE102009006017A1 (de) * 2009-01-23 2010-08-05 Avantis Ltd. Magnetrad
CN102549882B (zh) 2009-09-21 2014-09-17 霍加纳斯股份有限公司 电机及适于在电机中布置的定子设备
CN102959832B (zh) * 2010-03-15 2016-11-16 电扭矩机器股份有限公司 具有相偏移的横向和/或换向通量系统
EP2548288A1 (en) 2010-03-15 2013-01-23 Motor Excellence, LLC Transverse and/or commutated flux systems configured to provide reduced flux leakage, hysteresis loss reduction, and phase matching
CN102986115A (zh) 2010-03-15 2013-03-20 电扭矩机器股份有限公司 用于电动自行车的横向和/或换向通量系统
CN102905965B (zh) * 2010-05-11 2016-03-23 霍加纳斯股份有限公司 自行车电机毂
JP5182320B2 (ja) * 2010-05-11 2013-04-17 株式会社デンソー モータ
JP2011259532A (ja) * 2010-06-04 2011-12-22 Asmo Co Ltd クローポール型モータ
WO2012067895A2 (en) 2010-11-17 2012-05-24 Motor Excellence, Llc Transverse and/or commutated flux system coil concepts
US8405275B2 (en) 2010-11-17 2013-03-26 Electric Torque Machines, Inc. Transverse and/or commutated flux systems having segmented stator laminations
US8952590B2 (en) 2010-11-17 2015-02-10 Electric Torque Machines Inc Transverse and/or commutated flux systems having laminated and powdered metal portions
FR2969857B1 (fr) * 2010-12-22 2013-12-20 Francecol Technology Perfectionnements aux moteurs homopolaires.
CN103222154B (zh) * 2011-03-10 2016-03-02 浙江博望科技发展有限公司 铁氧体三段式三相永磁电机
CN103222155B (zh) * 2011-03-10 2016-06-01 浙江博望科技发展有限公司 铁氧体三段式三相永磁电机
TWI443258B (zh) 2011-10-12 2014-07-01 Ind Tech Res Inst 旋轉動能輸出裝置
JP2013138572A (ja) * 2011-12-28 2013-07-11 Sinfonia Technology Co Ltd リニアモータ
CN104272559A (zh) * 2012-03-12 2015-01-07 霍加纳斯股份有限公司 用于电机的定子和转子
JP2012139099A (ja) * 2012-04-16 2012-07-19 Sumitomo Electric Ind Ltd 超電導モータ
TWI505604B (zh) 2013-04-15 2015-10-21 Delta Electronics Inc 動力裝置
JP6096646B2 (ja) * 2013-11-26 2017-03-15 アスモ株式会社 モータ
FR3026246B1 (fr) 2014-09-18 2018-03-30 Moteurs Leroy-Somer Machine electrique tournante comportant au moins un stator et au moins deux rotors.
TWI575844B (zh) * 2016-03-29 2017-03-21 新日鐵住金股份有限公司 無方向性電磁鋼板及其製造方法與爪極式馬達
FR3053176B1 (fr) * 2016-06-23 2021-12-17 Valeo Equip Electr Moteur Inducteur bobine d’une machine electrique a griffes a entrefer axial
US20180205301A1 (en) * 2017-01-17 2018-07-19 Ronald J. Didier Stacked transflux electric motor
JP6551819B2 (ja) * 2017-05-11 2019-07-31 日本精工株式会社 多相クローポールモータと該多相クローポールモータを構成する固定子
CN113113980B (zh) * 2021-04-13 2022-09-13 刘晓艳 电机错槽分相组合定子绕组及绕组谐波错槽系数计算方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52100512U (ja) * 1976-01-23 1977-07-29
JPS60181178U (ja) * 1984-05-10 1985-12-02 三洋電機株式会社 パルスモ−タ
JPH1155928A (ja) * 1997-08-05 1999-02-26 Japan Servo Co Ltd 多相pm型ステッピングモータ

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3750151A (en) * 1971-08-25 1973-07-31 H Dill Three-phase rotating ring display
JPS6477458A (en) * 1987-09-17 1989-03-23 Tokyo Electric Co Ltd Synchronous motor
JP3250254B2 (ja) * 1992-04-13 2002-01-28 ダイキン工業株式会社 インバータ制御方法およびその装置
JP3073873B2 (ja) 1994-02-04 2000-08-07 日本サーボ株式会社 環状コイル式3相クロ−ポ−ル式永久磁石ステッピングモ−タ
JP3131403B2 (ja) * 1997-04-07 2001-01-31 日本サーボ株式会社 ステッピングモータ
TW476180B (en) * 1999-09-30 2002-02-11 Sanyo Electric Co Permanent magnet stepping motor
JP2001161054A (ja) * 1999-11-30 2001-06-12 Sanyo Denki Co Ltd 永久磁石型ステッピングモータ
US20020070627A1 (en) * 2000-09-06 2002-06-13 Ward Robert W. Stator core design
JP4113339B2 (ja) * 2001-06-18 2008-07-09 日本サーボ株式会社 3相環状コイル式永久磁石型回転電機
US6946771B2 (en) * 2002-07-10 2005-09-20 Quebec Metal Powders Limited Polyphase claw pole structures for an electrical machine
JP3944140B2 (ja) * 2003-06-04 2007-07-11 本田技研工業株式会社 クローポール型モータのステータ
EP1699126A3 (en) * 2005-03-01 2006-10-04 HONDA MOTOR CO., Ltd. Stator, motor and method of manufacturing such stator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52100512U (ja) * 1976-01-23 1977-07-29
JPS60181178U (ja) * 1984-05-10 1985-12-02 三洋電機株式会社 パルスモ−タ
JPH1155928A (ja) * 1997-08-05 1999-02-26 Japan Servo Co Ltd 多相pm型ステッピングモータ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101253669A (zh) * 2005-08-26 2008-08-27 霍加纳斯股份有限公司 电机组件
US8378545B2 (en) * 2005-08-26 2013-02-19 Hoganas Ab (Publ) Electrical rotary machine assembly with stator core sections
US8624458B2 (en) 2005-08-26 2014-01-07 Hoganas Ab (Publ) Electrical rotary machine assembly with stator core sections

Also Published As

Publication number Publication date
JP2005094876A (ja) 2005-04-07
KR20060036121A (ko) 2006-04-27
TW200516827A (en) 2005-05-16
KR100715715B1 (ko) 2007-05-08
CN100444500C (zh) 2008-12-17
JP4041443B2 (ja) 2008-01-30
CN1853329A (zh) 2006-10-25
EP1667310A1 (en) 2006-06-07
MY137339A (en) 2009-01-30
CA2535716A1 (en) 2005-03-24
US7466057B2 (en) 2008-12-16
TWI275228B (en) 2007-03-01
CA2535716C (en) 2010-02-02
US20070138900A1 (en) 2007-06-21

Similar Documents

Publication Publication Date Title
WO2005027309A1 (ja) クローポール型モータのステータ
JP3944140B2 (ja) クローポール型モータのステータ
KR101011396B1 (ko) 모터 및 모터 시스템
JP4865223B2 (ja) 電気機械用の多相爪型極構造
JP4709775B2 (ja) 電磁カプラー
JP4188425B2 (ja) ブラシレス多相電気機器、特に自動車用オルタネータ
US7569962B2 (en) Multi-phase brushless motor with reduced number of stator poles
US6975057B2 (en) Rotary electric machine having a stator made up of sectors assembled together
US20110163641A1 (en) Permanent-magnet synchronous motor
JP6048191B2 (ja) マルチギャップ型回転電機
KR20210120083A (ko) 축 방향 자속 전기 기계 및 보조 부품
JPWO2003098781A6 (ja) 回転電機
JP3635912B2 (ja) 永久磁石式回転電機
JP6536421B2 (ja) 回転電機
JP2016129447A (ja) 回転電機
JP2009095070A (ja) 回転電動機
JP4119343B2 (ja) クローポール型モータのステータ
US20210305861A1 (en) Stator, rotor and electric machine
JP4078279B2 (ja) クローポール型モータ
JP4206322B2 (ja) 3相ブラシレスモータ
JP4119342B2 (ja) クローポール型モータのステータ
JP2000078785A (ja) 永久磁石式モータ
JP2024086361A (ja) 固定子
JP2024042366A (ja) モータ
JP2009106045A (ja) 回転電機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480026733.7

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GM HR HU ID IL IN IS JP KE KG KP KZ LC LK LR LS LT LU LV MA MD MK MN MW MX MZ NA NI NO NZ PG PH PL PT RO RU SC SD SE SG SK SY TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IT MC NL PL PT RO SE SI SK TR BF CF CG CI CM GA GN GQ GW ML MR SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REEP Request for entry into the european phase

Ref document number: 2004773161

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004773161

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2535716

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1020067005127

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020067005127

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004773161

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007138900

Country of ref document: US

Ref document number: 10568959

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 1020067005127

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10568959

Country of ref document: US