WO2006118219A1 - モータ及びその制御装置 - Google Patents

モータ及びその制御装置 Download PDF

Info

Publication number
WO2006118219A1
WO2006118219A1 PCT/JP2006/308904 JP2006308904W WO2006118219A1 WO 2006118219 A1 WO2006118219 A1 WO 2006118219A1 JP 2006308904 W JP2006308904 W JP 2006308904W WO 2006118219 A1 WO2006118219 A1 WO 2006118219A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
stator
rotor
magnetic pole
motor
Prior art date
Application number
PCT/JP2006/308904
Other languages
English (en)
French (fr)
Inventor
Masayuki Nashiki
Original Assignee
Denso Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corporation filed Critical Denso Corporation
Priority to US11/919,440 priority Critical patent/US7816822B2/en
Priority to CN2006800237580A priority patent/CN101213729B/zh
Priority to DE112006001089.1T priority patent/DE112006001089B4/de
Priority to JP2007514822A priority patent/JPWO2006118219A1/ja
Publication of WO2006118219A1 publication Critical patent/WO2006118219A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/22Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating around the armatures, e.g. flywheel magnetos
    • H02K21/227Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating around the armatures, e.g. flywheel magnetos having an annular armature coil
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/145Stator cores with salient poles having an annular coil, e.g. of the claw-pole type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/24Rotor cores with salient poles ; Variable reluctance rotors
    • H02K1/246Variable reluctance rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • H02K1/2773Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect consisting of tangentially magnetized radial magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/145Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having an annular armature coil
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings

Definitions

  • the present invention relates to a motor mounted on an automobile, a truck, and the like and a control device thereof.
  • FIG. 141 is a longitudinal sectional view showing a schematic configuration of such a conventional brushless motor.
  • FIG. 143 is a cross-sectional view taken along line A1-A1 of FIG. In these figures, a 4-pole 6-slot brushless motor is shown, and the winding structure of the stator is a so-called concentrated winding, and coils of each phase are concentratedly wound around each stator pole.
  • FIG. 142 shows the arrangement relation of the U, V, W, and other windings in a state in which the stator is expanded once in the circumferential direction.
  • the horizontal axis is expressed in electrical angle and is 720 ° in one round.
  • N-pole permanent magnets and S-pole permanent magnets are alternately arranged in the circumferential direction.
  • U-phase windings WBU1 and WBU2 are wound around the U-phase stator magnetic poles TBU1 and TBU2, respectively.
  • V-phase wires WBV1 and WBV2 are wound around the V-phase stator poles TBV1 and TBV2, respectively.
  • W-phase windings WBW1 and WBW2 are wound around the W-phase stator poles TBW1 and TBW2, respectively.
  • Brushless motors having such a structure are now widely used for industrial and household appliances.
  • FIG. 144 is a cross-sectional view showing the configuration of another stator.
  • the stator shown in Fig. 144 has a 24-slot configuration and can be distributed in the case of a 4-pole motor, creating a relatively smooth sine wave shape in the circumferential magnetomotive force distribution of the stator. Therefore, it is widely used in brushless motors, winding field type synchronous motors, induction motors and the like.
  • synchronous reluctance motors that utilize reluctance torque and various motors or induction motors that use reluctance torque, it is desirable to generate a more precise rotating magnetic field by the stator. Is suitable.
  • Patent Document 1 Japanese Patent Laid-Open No. 6-261513 (Page 3, Fig. 1-3)
  • the conventional brushless motor disclosed in FIGS. 141, 142, 144 and Patent Document 1 has a complicated structure because it is necessary to wind the motor winding for each stator magnetic pole. There is a problem that productivity is reduced with respect to the winding of the motor winding because it is necessary to arrange the winding in the back of the slot. In addition, there is a problem that it is difficult to reduce the size, increase the efficiency, and reduce the cost because of such a structure.
  • stator salient poles have a structure that does not have a force of 360 degrees in terms of electrical angle, it is difficult to generate the rotating magnetic field precisely by generating the magnetomotive force generated by the stator in a sine wave shape, It was difficult to apply to synchronous reluctance motors, various motors using reluctance torque, or induction motors.
  • the present invention has been created in view of the above points, and an object of the present invention is to simplify the winding structure and improve productivity, and to reduce the size, increase the efficiency, and reduce the cost. It is an object of the present invention to provide a motor capable of controlling the motor and a control device for controlling the motor.
  • a first motor of the present invention includes a rotor having a rotor magnetic pole group in which N poles and S poles are alternately arranged in the circumferential direction, and a plurality of rotors for each phase.
  • 2N looped wires arranged along the axial direction and having the same phase arranged at both ends in the axial direction.
  • each of the (N + 1) stator magnetic pole groups described above changes the electrical angle position in order. It is desirable to arrange so that With such a configuration, motor torque can be effectively generated by the magnetomotive force generated by the current of each loop-shaped winding.
  • each of the (N + 1) stator magnetic pole groups be arranged so that the stator magnetic pole groups corresponding to two phases whose electrical angles differ from each other by approximately 180 ° are adjacent to each other! Yes.
  • the area of the stator magnetic pole shape of the air gap portion where the rotor and the stator face each other can be increased, and the magnetic flux linked from the rotor to the winding can be increased. The generated torque can be increased.
  • stator magnetic pole groups corresponding to two phases whose electrical angles differ from each other by approximately 180 ° are combined, the electric power of the adjacent stator magnetic pole groups included in each of the two adjacent sets It is desirable that each of the (N + 1) stator magnetic pole groups be arranged so that the phase difference of the angle is minimized. By adopting such a configuration, it is possible to reduce the current to be passed between them and to reduce the copper loss.
  • stator magnetic poles described above are two stator magnetic poles located at both ends, and the sum of the widths in the rotor axial direction of the surfaces facing the rotor is the other stator magnetic poles. It is desirable to set the width to be equal to the rotor axial width of the surface facing the rotor. With such a configuration, the electromagnetic action of the stator magnetic poles in the same phase at both ends in the axial direction is equivalent to the electromagnetic action of the other phases.
  • the second motor of the present invention includes a rotor having a rotor magnetic pole group in which N poles and S poles are alternately arranged in the circumferential direction, and a plurality of stator magnetic poles for each phase.
  • N stator magnetic pole groups arranged on the circumference of the top or the vicinity and at the rotational phase position of almost the same electrical angle, and on both sides of the stator magnetic pole group of each phase and along the axial direction And 2N looped wires with the same phase arranged at both ends in the axial direction.
  • the area force of the surface of the stator magnetic pole facing the rotor is desirably a sinusoidal area distribution or an area distribution approximated to a sine wave along the circumferential direction of the rotor.
  • the surface of the stator magnetic poles facing the rotor is larger in the rotor axial width than the interval between the stator magnetic poles adjacent along the rotor axis. In this way, the motor torque constant can be increased by forming a shape that passes through many magnetic flux force stator magnetic poles.
  • the total magnetic flux passing through any X-phase stator magnetic pole group is ⁇
  • the rotational variation ratio of this magnetic flux ⁇ is (1 ⁇ (10, in the air gap between the stator magnetic pole and the rotor magnetic pole).
  • the winding current that is the magnetomotive force acting is ⁇
  • the number of winding turns is WTx
  • the product of these (1 ⁇ (10 ⁇ ⁇ X WTx is the generated torque component ⁇
  • the total magnetic flux passing through the group is 0> y
  • the rotational change rate of this magnetic flux 0> y is dO> yZd ⁇
  • the winding current, which is the magnetomotive force acting on the air gap between this stator pole and rotor pole is The magnetic flux ⁇ , which is determined by the facing area between the stator magnetic pole and the rotor magnetic pole, when Iy, the number of winding lines is WTy, and the generated torque component calculated by the product dO> yZd 0 X ly X WT
  • stator magnetic poles of each phase described above are divided into K pieces in the rotor axial direction, and the same phase is provided on both sides or one side of each of the K stator magnetic poles of each phase along the rotor axial direction. It is desirable that there are K looped shorelines. This makes the circumference The direction magnetomotive force distribution can be made smoother and the distribution can be made closer to a sine wave, and the motor can be driven more smoothly.
  • a plurality of loop-shaped windings through which currents of different phases are passed are wound in slots formed by stator magnetic poles adjacent to each other in the rotor axial direction, and a combined current is obtained. It is desirable that the number of turns of each of the plurality of loop-shaped windings wound around is set so that the sum of the products of the current vectors flowing in the loops and the number of turns of each of them matches the vector of the combined current.
  • connection between the loop-shaped wires is connected in series with respect to the loop-shaped wires having the same phase in terms of electrical angle, and the loop-shaped wires having a phase difference of approximately 180 ° in terms of electrical angle. Therefore, it is desirable to connect in series in the opposite direction.
  • motor driving can be realized with a smaller number of current sources, so that the motor wiring can be simplified and the driving apparatus can be simplified.
  • a permanent magnet is disposed on the surface or a part of the inside, and at least a part of the surface is made of a soft magnetic material. Thereby, it becomes easy to realize rotors of various shapes that can also obtain reluctance torque.
  • the rotor described above is elongated in a direction from one rotor magnetic pole to another rotor magnetic pole. This facilitates the realization of a synchronous reluctance motor.
  • magnetic poles are constituted by salient poles of a soft magnetic material magnetically in the circumferential direction. Thereby, it becomes easy to constitute a reluctance motor.
  • the above-described rotor includes a winding capable of passing an induced current. Thereby, an induction torque can be obtained.
  • the stator magnetic pole described above is on the inner diameter side It is desirable to have a so-called outer rotor structure in which the rotor is disposed on the outer diameter side.
  • the motor is configured by combining two or more motors including the motors described above in combination.
  • the space inside the motor can be effectively used, and the motor components can be shared.
  • the required space for a system using these motors can be reduced.
  • the energization current inside the motor is unbalanced and a magnetomotive force is generated in the direction of the rotor axis of the motor, it is arranged so that the axial magnetomotive force generated by the two motors is canceled. As a result, the magnetomotive force in the axial direction of the combined motor can be eliminated.
  • At least a part of the surface facing the stator magnetic pole is made of a soft magnetic material, and the magnetic flux is guided to the surface or the inside in the rotor axial direction or radial direction. It is desirable to provide. This can reduce the number of stator magnetic paths that intersect the rotor axial direction of each phase of the stator.
  • the rotor described above includes at least a part of a surface facing the stator magnetic pole made of a soft magnetic material, and includes a gap or a non-magnetic material that restricts the freedom of rotation of the magnetic flux inside. desirable. As a result, the dependency of the rotor magnetic flux on the rotational direction can be increased.
  • the number of phases is N
  • the number of pole pairs is Pn
  • the number of poles is set to 2 X Pn.
  • the third motor of the present invention includes a rotor magnetic pole in which N poles and S poles are alternately arranged in the circumferential direction.
  • a rotor having a group, and P stator magnetic pole groups in which a plurality of stator magnetic poles for each phase are arranged on the circumference or in the vicinity of the circumference and arranged at rotational phase positions having substantially the same electrical angle.
  • Q loop-shaped windings arranged in the axial direction between the stator magnetic pole groups of each phase so that individual currents can be supplied to each of the Q loop-shaped windings.
  • the fourth motor of the present invention includes a rotor having a rotor magnetic pole group in which N poles and S poles are alternately arranged in the circumferential direction, and a plurality of stator magnetic poles for each phase on or around the circumference.
  • P stator magnetic pole groups arranged on the circumference and at the rotational phase positions of almost the same electrical angle, and Q arranged between the stator magnetic pole groups of each phase and in the axial direction The same current is applied in the opposite direction to two windings arranged between two or more stator magnetic pole groups, out of Q loop-shaped windings.
  • the fifth motor of the present invention includes a rotor having a rotor magnetic pole group in which N poles and S poles are alternately arranged in the circumferential direction, and a plurality of stator magnetic poles for each phase on or around the circumference.
  • the sixth motor of the present invention includes a rotor having a rotor magnetic pole group in which N poles and S poles are alternately arranged in the circumferential direction, and a plurality of stator magnetic poles for each phase on or around the circumference.
  • a seventh motor of the present invention includes a rotor having a rotor magnetic pole group in which N poles and S poles are alternately arranged in the circumferential direction, and a plurality of stator magnetic poles for each phase on or around the circumference.
  • N stator magnetic pole groups arranged at rotational phase positions of almost the same angle as electrical angles, and arranged along the axial direction between the stator magnetic pole groups of each phase (N-1) Loop-shaped feeders, and the (N-1) feeders are connected to a star, and the central connection portion of the star connection is also N input wires as motor inputs.
  • the eighth motor of the present invention includes a rotor having a rotor magnetic pole group in which N poles and S poles are alternately arranged in a circumferential direction, and a plurality of stator magnetic poles for each phase on or around the circumference.
  • a rotor magnetic pole group in which N poles and S poles are alternately arranged in a circumferential direction, and a plurality of stator magnetic poles for each phase on or around the circumference.
  • Four stator magnetic pole groups arranged on the circumference and at the same rotational angle of electrical angle, and loop windings of Nw times inside each of the stator magnetic pole groups at both ends. Between the two stator magnetic pole groups in the center, two loop-shaped windings with the number of windings NwZ2 are arranged, and these four windings are star-connected.
  • a ninth motor of the present invention includes a rotor having a rotor magnetic pole group in which N poles and S poles are alternately arranged in the circumferential direction, and a plurality of stator magnetic poles for each phase on or around the circumference.
  • Four stator magnetic pole groups arranged on the circumference and at the same rotational angle of electrical angle, and loop windings of Nw times inside each of the stator magnetic pole groups at both ends.
  • NwZ2 loop-shaped windings are arranged between the two stator pole groups at the center, and these three windings are star-connected.
  • the tenth motor of the present invention includes a rotor having a rotor magnetic pole group in which N poles and S poles are alternately arranged in the circumferential direction, and a plurality of stator magnetic poles for each phase on or around the circumference.
  • the stator magnetic pole groups corresponding to two phases are arranged adjacent to each other, and N loop windings are arranged between the stator magnetic pole groups of each phase.
  • the eleventh motor of the present invention includes a rotor having a rotor magnetic pole group in which N poles and S poles are alternately arranged in the circumferential direction, and a plurality of stator magnetic poles for each phase on or around the circumference. And N stator magnetic pole groups arranged at rotational phase positions having substantially the same electrical angle, and the order of arrangement of the N stator magnetic pole groups is that of the electrical angular phase. In this order, every other loop-shaped winding is arranged between the stator magnetic pole groups of each phase.
  • a twelfth motor of the present invention is a motor having six stator magnetic pole groups, and electrically includes a first component of the first, third, and fifth phase magnetic pole groups, and an electric angle.
  • the second component of the second, fourth, and six-phase stator magnetic pole groups is arranged in the rotor axial direction, and a loop-shaped winding is formed between the first, third, and fifth-phase stator magnetic pole groups.
  • loop-shaped windings are disposed between the second, fourth, and sixth phase stator magnetic pole groups, and the respective rotor magnetic poles that are opposed to the respective stator magnetic pole groups are disposed. It is characterized in that at least one of the two constituent parts or two pairs of rotor magnetic pole groups facing these stator magnetic pole groups is magnetically separated by a space or a non-magnetic material.
  • the thirteenth motor of the present invention includes a rotor having a rotor magnetic pole group in which N poles and S poles are alternately arranged in the circumferential direction, and a plurality of stator magnetic poles for each phase on or around the circumference.
  • N stator magnetic pole groups arranged at the rotational phase positions of substantially the same electrical angle, and the arrangement order of the N stator magnetic pole groups is the electrical angular phase. It is characterized in that every other loop-shaped winding is arranged between the stator magnetic pole groups of each phase.
  • a motor capable of reducing the size, increasing the efficiency, and reducing the cost, and the control device that controls the motor, with a simple winding structure and improved productivity. The effect that it can be provided is obtained.
  • the circumferential magnetomotive force distribution of the stator can be made in a relatively smooth sine wave shape by adopting the above-described configuration, so that vibration and noise can be prevented.
  • a small high-quality motor can be realized.
  • the motor since it is a loop-shaped winding, the motor has a simple winding and can be manufactured easily.
  • the second motor of the present invention is configured to move the stator pole group at one end of the stator pole group at both ends to a position adjacent to the stator pole group at the other end. By collecting on one side, the motor configuration can be simplified.
  • FIG. 1 is a longitudinal sectional view showing a schematic configuration of a three-phase motor having looped windings.
  • FIG. 2 is a diagram in which the surface shape of the rotor shown in FIG. 1 is linearly developed in the circumferential direction.
  • FIG. 3 is a cross-sectional view showing a schematic configuration of the stator shown in FIG. 1.
  • FIG. 4 is a diagram in which the shape of the inner peripheral surface of the stator shown in FIG. 1 is linearly expanded in the circumferential direction.
  • FIG. 5 is a front view and a side view showing one of the windings of the stator shown in FIG. 1.
  • FIG. 6 is a diagram in which each loop-shaped shoreline shown in FIG. 1 is linearly developed in the circumferential direction.
  • FIG. 7 is a diagram in which two shore lines shown in FIG. 6 are integrated.
  • FIG. 8 is a diagram showing the relationship between the stator magnetic poles and the winding shown in FIG.
  • FIG. 9 is a vector diagram showing the relationship between the current, voltage and torque of the motor shown in FIG.
  • FIG. 10 is a diagram showing a modification of the inner peripheral surface shape of the stator magnetic pole of the motor shown in FIG. 1.
  • FIG. 11 is a view showing a modification of the inner peripheral surface shape of the stator magnetic pole of the motor shown in FIG. 1.
  • FIG. 12 is a view showing a modification of the inner peripheral surface shape of the stator magnetic pole of the motor shown in FIG. 1.
  • FIG. 12 is a view showing a modification of the inner peripheral surface shape of the stator magnetic pole of the motor shown in FIG. 1.
  • FIG. 13 is a view showing a modification of the inner peripheral surface shape of the stator magnetic pole of the motor shown in FIG. 1.
  • FIG. 14 is a cross-sectional view of various rotors incorporating a permanent magnet.
  • FIG. 15 is a cross-sectional view of various rotors incorporating a permanent magnet.
  • FIG. 16 is a cross-sectional view of various rotors incorporating a permanent magnet.
  • FIG. 17 is a cross-sectional view of various rotors incorporating a permanent magnet.
  • FIG. 18 is a cross-sectional view showing an example of a rotor of a reluctance motor including salient pole type magnetic poles.
  • FIG. 19 is a cross-sectional view showing a schematic configuration of the rotor of the induction motor.
  • FIG. 20 is a diagram showing vectors of 2-phase, 3-phase, 4-phase, 5-phase, 6-phase, and 7-phase.
  • FIG. 21 is a view showing a motor of one embodiment provided with a six-phase stator magnetic pole and a six-phase winding.
  • FIG. 22 The layout of the inner circumferential surface of the stator shown in Fig. 21 that is linearly developed in the circumferential direction, with the arrangement of each loop-shaped winding line added, and the rotor outer circumferential surface shape that is linearly developed in the circumferential direction at the bottom. It is the figure which added.
  • FIG. 23 is a cross-sectional view of each part of the motor shown in FIG.
  • FIG. 24 is a cross-sectional view showing a 3-phase 2-pole synchronous reluctance motor.
  • FIG. 25 is a current and magnetic flux vector diagram showing a synchronous reluctance motor in dq-axis coordinates.
  • FIG. 26 is a longitudinal sectional view of a stator of a motor model having a 6-phase loop winding and infinitely long in the axial direction.
  • FIG. 27 is a diagram showing an example in which the arrangement of each loop-shaped winding is added to a diagram in which the inner peripheral surface shape of the stator is linearly developed in the circumferential direction.
  • FIG. 28 is a diagram showing an example in which the arrangement of each loop-shaped winding is appended to a diagram in which the shape of the inner peripheral surface of the stator is linearly expanded in the circumferential direction.
  • FIG. 29 is a longitudinal sectional view showing a part of the stator shown in FIG. 28.
  • FIG. 30 is a vector diagram showing each current of the winding shown in FIGS. 27 and 28.
  • FIG. 31 is an enlarged view of the stator core and the winding of the motor shown in FIG. 21.
  • FIG. 32 is a diagram showing vector composition.
  • FIG. 33 is a diagram showing a six-phase vector composed of synthesized vectors.
  • FIG. 34 is a diagram showing an example in which the arrangement of each loop-shaped winding is added to the diagram in which the inner peripheral surface shape of the stator is linearly developed in the circumferential direction.
  • FIG. 35 is a diagram showing an example in which the arrangement of each loop-shaped winding is added to a diagram in which the shape of the inner peripheral surface of the stator is linearly expanded in the circumferential direction.
  • FIG. 36 is a diagram showing an example of a rotation change rate of magnetic flux passing through each stator magnetic pole.
  • FIG. 37 is a view showing an example in which the arrangement of each loop-shaped winding is added to the diagram in which the inner peripheral surface shape of the stator is linearly expanded in the circumferential direction.
  • FIG. 38 is a longitudinal sectional view showing an example of a stator magnetic pole shape.
  • FIG. 39 is a view showing various examples of the inner diameter side shape of the stator magnetic pole.
  • FIG. 41 is a diagram showing an example in which the arrangement of each loop-shaped winding is added to the diagram in which the inner peripheral surface shape of the stator is linearly expanded in the circumferential direction.
  • FIG. 42 is a view showing an example in which the arrangement of each loop-shaped winding is added to a diagram in which the shape of the inner peripheral surface of the stator is linearly expanded in the circumferential direction.
  • FIG. 43 is a view showing an example in which the arrangement of each loop-shaped winding is added to a diagram in which the shape of the inner peripheral surface of the stator is linearly expanded in the circumferential direction.
  • FIG. 44 is a vector diagram showing the current of the winding shown in FIG. 43.
  • FIG. 45 is a vector diagram showing each current of the winding shown in FIG. 43.
  • FIG. 46 is a diagram showing the current, voltage, and connection relationship between the windings of the motor shown in FIG. 1.
  • FIG. 47 is a diagram showing the relationship between the current and voltage of the winding shown in FIG. 46 as a vector.
  • FIG. 48 is a diagram showing the winding, current, and voltage shown in FIG. 46.
  • FIG. 49 is a diagram showing an example of a connection relationship between the current, voltage, and the winding of the motor in which the winding of the motor shown in FIG. 1 is changed to the winding shown in FIG.
  • FIG. 50 is a diagram showing an example of a connection relationship between the current, voltage, and the winding of the motor in which the winding of the motor shown in FIG. 1 is changed to the winding shown in FIG.
  • FIG. 51 is a diagram showing the relationship between the current and voltage of the winding shown in FIG. 50 as a vector.
  • FIG. 52 is a diagram showing the winding, current, and voltage shown in FIG.
  • FIG. 53 is a diagram showing a connection relationship between the winding shown in FIG. 50 and a three-phase inverter.
  • FIG. 54 is a diagram showing a connection relationship between the winding shown in FIG. 21 and a connection to a three-phase inverter.
  • FIG. 55 is a diagram showing the connection relationship between the feeders shown in FIG. 35 and the connection to the three-phase inverter.
  • FIG. 56 is a diagram showing a connection relationship between the winding shown in FIG. 28 and a connection to a three-phase inverter.
  • FIG. 57 is a view in which a guide wire is added to the rotor shown in FIG.
  • FIG. 58 is a longitudinal sectional view showing a configuration of an induction motor in which both a primary winding on the stator side and a secondary winding on the rotor side are formed by looped windings.
  • FIG. 59 is a longitudinal sectional view of an outer rotor type motor in which a rotor is disposed on the outer diameter side.
  • FIG. 60 is a longitudinal sectional view showing an axial gap type motor in which a stator and a rotor are relatively arranged in the rotor axial direction.
  • FIG. 61 is a cross-sectional view in which the stator pole shape shown in FIG.
  • FIG. 62 is a transverse sectional view showing the rotor shown in FIG. 60.
  • FIG. 62 is a transverse sectional view showing the rotor shown in FIG. 60.
  • FIG. 63 is a longitudinal sectional view of the motor of the present invention in which two motors are combined.
  • FIG.64 A diagram of the inner peripheral surface of the stator shown in Fig. 63 linearly expanded in the circumferential direction. It is a figure which shows the example which added the arrangement
  • FIG. 65 is a cross sectional view of a rotor having an axial magnetic path inside the rotor.
  • ⁇ 66 A view showing an example of the shape of laminated electromagnetic steel sheets.
  • FIG. 67 is a diagram showing an example of a rotor having a gap portion that restricts the freedom of rotation of magnetic flux in the soft magnetic body portion of the rotor magnetic pole.
  • FIG. 68 is a diagram showing an example of a stator in which the leakage magnetic flux between the stator magnetic poles is reduced by increasing the distance between the stator magnetic poles.
  • FIG. 69 is a view showing an example of a stator in which the leakage magnetic flux between the stator magnetic poles is reduced by increasing the distance between the stator magnetic poles.
  • FIG. 70 is a diagram showing an example of a stator in which the leakage magnetic flux between the stator magnetic poles is reduced by increasing the distance between the stator magnetic poles.
  • FIG. 71 is a diagram showing a schematic configuration of a three-phase motor having looped windings.
  • FIG. 72 is a diagram showing current and voltage vectors of FIG. 71.
  • FIG. 73 is a diagram showing a schematic configuration of a three-phase motor having looped windings.
  • FIG. 74 is a diagram showing current and voltage vectors in FIG. 73.
  • FIG. 74 is a diagram showing current and voltage vectors in FIG. 73.
  • FIG. 75 is a diagram showing a cross-sectional shape of a stator magnetic pole of the motor shown in FIG. 73.
  • FIG. 76 is a diagram showing the shape of the winding and eddy current of the motor shown in FIG. 73.
  • FIG. 77 is a diagram showing a schematic configuration of a five-phase motor having looped windings.
  • FIG. 78 is a diagram showing a current vector of FIG. 77.
  • FIG. 79 is a diagram showing a current vector in FIG. 77.
  • FIG. 80 is a diagram showing a schematic configuration of a five-phase motor having looped windings.
  • FIG. 81 is a diagram showing a current vector of the motor of FIG.
  • FIG. 82 is a wire connection diagram in which the motor wire of FIG. 80 is a star connection.
  • FIG. 83 is a diagram showing a schematic configuration of a five-phase motor having looped windings.
  • FIG. 84 is a diagram showing a current vector of the motor of FIG. 83.
  • FIG. 85 is a wire connection diagram in which the motor wire of FIG. 83 is a star connection.
  • FIG. 86 is a diagram showing a schematic configuration of a five-phase motor having looped windings.
  • FIG. 87 is a diagram showing a current waveform of the motor of FIG. 83.
  • FIG. 88 is a diagram showing a voltage waveform of the winding of the motor in FIG. 83.
  • FIG. 89 is a diagram showing a voltage waveform at each terminal when the winding of the motor in FIG. 83 is a star connection.
  • FIG. 90 is a diagram showing a schematic configuration of a five-phase motor having looped windings.
  • FIG. 91 is a diagram showing a current vector of the motor of FIG. 90.
  • FIG. 92 is a diagram showing a current vector of the motor of FIG. 90.
  • FIG. 93 is a saddle wire connection diagram in which the saddle wire of the motor of FIG. 90 is a star connection and a delta connection.
  • FIG. 94 is a diagram showing a current waveform of the motor of FIG. 93.
  • FIG. 94 is a diagram showing a current waveform of the motor of FIG. 93.
  • FIG. 95 is a diagram showing a voltage waveform of the winding of the motor in FIG. 93.
  • FIG. 96 is a diagram showing a voltage waveform at each terminal when the winding of the motor in FIG. 93 is a star connection.
  • FIG. 97 is a diagram showing a schematic configuration of a five-phase motor having looped windings.
  • FIG. 98 is a diagram showing a cross-sectional shape of a stator magnetic pole of the motor shown in FIG. 97.
  • FIG. 99 is a diagram showing a schematic configuration of a four-phase motor having looped windings.
  • FIG. 100 is a diagram showing a current vector of FIG. 99.
  • FIG. 101 is a wire connection diagram in which the motor wire of FIG. 99 is a star connection.
  • FIG. 102 is a diagram showing a schematic configuration of a four-phase motor having looped windings.
  • FIG. 103 is a winding connection diagram in which the winding of the motor of FIG. 102 is a star connection.
  • FIG. 104 is a diagram showing a schematic configuration of a four-phase motor having looped windings.
  • FIG. 105 is a winding connection diagram in which the winding of the motor of FIG. 104 is a star connection.
  • FIG. 106 is a diagram showing a schematic configuration of a four-phase motor having a looped winding.
  • FIG. 107 is a diagram showing a current vector of the motor of FIG. 106.
  • FIG. 108 is a diagram showing a schematic configuration of a four-phase motor having looped windings.
  • FIG. 109 is a diagram showing a cross-sectional shape of a stator magnetic pole of the motor shown in FIG. 108.
  • FIG. 110 is a diagram showing a current vector of the motor of FIG. 108.
  • FIG. 111 is a wiring diagram in which the winding of the motor in FIG. 108 is a star connection and three-phase wiring is performed.
  • 112 is a diagram showing a current vector of the motor of FIG. 108.
  • FIG. 113 is a wire connection diagram in which the motor wire of FIG. 108 is a star connection and three-phase wire is used.
  • 114 is a diagram showing a current vector of the six-phase motor in FIG. 35.
  • FIG. 115 is a winding connection diagram in which the winding of the motor of FIG. 35 is a star connection.
  • FIG. 116 is a diagram showing a current waveform of the motor of FIG. 35.
  • FIG. 116 is a diagram showing a current waveform of the motor of FIG. 35.
  • FIG. 117 is a diagram showing a voltage waveform of the winding of the motor in FIG. 35.
  • FIG. 117 is a diagram showing a voltage waveform of the winding of the motor in FIG. 35.
  • FIG. 118 is a diagram showing a voltage waveform at each terminal when the winding of the motor in FIG. 35 is a star connection.
  • FIG. 119 is a vector diagram of two sets of three phases in which the phases are relatively changed by 30 °.
  • FIG. 120 is a winding diagram in which the winding of the motor of FIG. 119 is a star connection.
  • FIG. 121 is a diagram showing a schematic configuration of a four-phase motor having looped windings.
  • FIG. 122 is a diagram showing a schematic configuration of a four-phase motor having looped windings.
  • FIG. 123 is a diagram showing a schematic configuration of a six-phase motor having looped windings.
  • FIG. 124 is a diagram showing a schematic configuration of a six-phase motor having looped windings.
  • FIG. 125 is a diagram showing a schematic configuration of a six-phase motor having looped windings.
  • FIG. 126 is a diagram showing a current vector of the six-phase motor in FIG. 125.
  • FIG. 126 is a diagram showing a current vector of the six-phase motor in FIG. 125.
  • FIG. 127 is a diagram showing a current vector of the six-phase motor in FIG. 125.
  • FIG. 127 is a diagram showing a current vector of the six-phase motor in FIG. 125.
  • FIG. 128 is a diagram showing a schematic configuration of a four-phase motor having looped windings.
  • FIG. 129 is a diagram showing a current vector of the six-phase motor in FIG. 128.
  • FIG. 129 is a diagram showing a current vector of the six-phase motor in FIG. 128.
  • FIG. 130 is a diagram showing a schematic configuration of a four-phase motor having looped windings.
  • FIG. 131 is a diagram showing a schematic configuration of a rotor of a 4-pole reluctance motor.
  • FIG. 132 is a view showing the shape of an electromagnetic steel sheet used for the rotor of FIG. 131.
  • FIG. 133 is a diagram showing a configuration in which permanent magnets are arranged on the rotor of FIG. 131.
  • FIG. 134 is a diagram showing a configuration in which stator magnetic poles are shifted in the circumferential direction.
  • FIG. 135 is a diagram showing a stator magnetic pole shape and a rotor magnetic pole shape with irregularities in the radial direction.
  • FIG. 136 is an example using a pipe-shaped shoreline of a stator shoreline.
  • FIG. 137 is a diagram illustrating a configuration example of a control device that individually drives each winding of the motor.
  • FIG. 138 is a diagram showing a winding configuration of a 5-phase motor and its control device.
  • FIG. 139 is a diagram showing a winding configuration of a five-phase motor and its control device.
  • FIG. 140 is a diagram showing a winding configuration of a five-phase motor and its control device.
  • FIG. 141 is a longitudinal sectional view showing a schematic configuration of a conventional brushless motor.
  • FIG. 142 is a development view of the stator showing the relationship between the stator magnetic pole and the winding of the conventional brushless motor.
  • FIG. 143 is a sectional view taken along line A 1 -A 1 in FIG. 141.
  • FIG. 144 is a cross-sectional view of a conventional synchronous reluctance motor.
  • FIG. 1 is a cross-sectional view showing a basic configuration of a brushless motor as a motor according to the present embodiment.
  • a brushless motor 150 shown in FIG. 1 is an 8-pole motor that operates with a three-phase alternating current, and includes a rotor shaft 111, a permanent magnet 112, and a stator 114.
  • the rotor 110 includes a plurality of permanent magnets 112 arranged on the surface. These permanent magnets 112 are alternately arranged with N poles and S poles in the circumferential direction along the surface of the rotor 110.
  • FIG. 2 is a development view of the rotor 110 in the circumferential direction. The horizontal axis shows the mechanical angle. The position of 360 ° in mechanical angle is 1440 ° in electrical angle.
  • the stator 114 includes four U-phase stator poles 119, a V-phase stator pole 120, and a W-th stator pole 121, respectively.
  • Each of the stator magnetic poles 119, 120, 121 ⁇ and the rotor 110 has a salient pole shape.
  • FIG. 4 is a development view of the inner peripheral side shape of the stator 114 as seen from the rotor 110 side force.
  • the four U-phase stator magnetic poles 119 are arranged at equal intervals on the same circumference.
  • the four V-phase stator poles 120 are arranged at equal intervals on the same circumference.
  • Four W-phase stator poles 121 are arranged at equal intervals on the same circumference.
  • U-phase stator magnetic poles 119 are called a U-phase stator magnetic pole group
  • V-phase stator magnetic poles 120 are called a V-phase stator magnetic pole group
  • W-phase stator magnetic poles 121 are called a W-phase stator magnetic pole group.
  • the U-phase stator magnetic pole group and the W-phase stator magnetic pole group arranged at the end along the axial direction are used as the end stator magnetic pole group, and other V-phase stator magnetic poles are used.
  • the group is referred to as an intermediate stator magnetic pole group.
  • each of the U-phase stator magnetic pole 119, the V-phase stator magnetic pole 120, and the W-phase stator magnetic pole 121 is arranged with its axial position and circumferential position shifted from each other.
  • the stator magnetic pole groups are disposed so as to be shifted from each other in the circumferential direction so as to have a phase difference of 30 ° in mechanical angle and 120 ° in electrical angle.
  • the broken lines shown in FIG. 4 indicate the permanent magnets 112 of the rotor 110 facing each other!
  • the pitch of the rotor poles of the same polarity is 360 ° in electrical angle, and the pitch of the stator poles in the same phase is also 360 ° in electrical angle.
  • FIG. 6 is a diagram showing a circumferential development of the shoreline of each phase.
  • the U-phase winding wire 115 is provided between the U-phase stator magnetic pole 119 and the V-phase stator magnetic pole 120, and forms a loop shape along the circumferential direction.
  • the current Iu flowing through the U phase phase wire 115 is negative (one Iu).
  • the V-phase winding 116 is provided between the U-phase stator magnetic pole 119 and the V-phase stator magnetic pole 120, and forms a loop shape along the circumferential direction.
  • the current Iv flowing through the V phase wire 116 is positive (+ Iv).
  • the V-phase winding 117 is provided between the V-phase stator pole 120 and the W-phase stator pole 121, and forms a loop shape along the circumferential direction.
  • the current Iv flowing through the V-phase lead 117 is negative (-Iv).
  • the W-phase shield wire 118 is provided between the V-phase stator magnetic pole 120 and the W-phase stator magnetic pole 121, and forms a loop shape along the circumferential direction.
  • the current ⁇ flowing through the W-phase wire 118 is positive (+ ⁇ ).
  • These three types of currents Iu, Iv, and Iw are three-phase alternating currents that are out of phase with each other by 120 °.
  • FIG. 3 is a diagram showing a cross-sectional portion of the stator 114 of FIG. 1.
  • FIG. 3 (A) shows a cross-sectional view along line A—A
  • FIG. 3 (B) shows a cross-sectional view along line B—B
  • C) shows a cross-sectional view of the CC line.
  • each of the U-phase stator magnetic pole 119, the V-phase stator magnetic pole 120, and the W-phase stator magnetic pole 121 has a salient pole shape with respect to the rotor 110, and each of them is relatively mechanical.
  • FIG. 5 is a diagram showing a schematic shape of the U-phase wire 115
  • FIG. 5 (A) shows a front view
  • FIG. 5 (B) shows a side view
  • the U phase wire 115 has a winding start terminal U and a winding end terminal N.
  • the V phase wires 116 and 117 have a winding start terminal V and a winding end terminal N
  • the W phase winding wire 118 has a winding start terminal W and a winding end terminal N.
  • the winding end terminal N of each phase wire 115, 116, 117, 118 is connected.
  • Fig. 8 shows the development of each phase stator magnetic pole 119, 120, 121 (Fig. 4) as seen from the air gap surface side (port 110 side) with equivalent phase current windings added. .
  • each U-phase stator magnetic pole 119 is given a magnetomotive force in the same direction.
  • the U-phase wire wound around the second U-phase stator pole 119 from the left in FIG. 8 is formed by conducting wires (3), (4), (5), and (6). These conducting wires are wound around the phase stator magnetic pole 119 in this order a plurality of times. Conductors (2) and (7) are crossovers between adjacent U-phase stator poles 119, and have no electromagnetic effect!
  • the U-phase current Iu flowing in a loop on the circumference of the stator 114 corresponding to the conductors (10) and (6) and the stator 114 corresponding to the conductors (4) and (9) It can be considered that the U-phase current Iu, which flows in a loop on the circumference, is flowing at the same time.
  • the U-phase current Iu that flows in a loop shape on the circumference of the stator 114 so as to correspond to the conductive wires (10) and (6) described above is a current that flows in a loop shape outside the stator core. Since the outside of the stator core is air or the like and has a large magnetic resistance, there is almost no electromagnetic action on the brushless motor 150.
  • V-phase winding shown in FIG. 8 is wound in series so as to circulate around the four V-phase stator magnetic poles 120, like the U-phase winding.
  • the currents flowing in the conductors (11) and (13) are the same in magnitude and in opposite directions, and the magnetomotive ampere turn cancels out. It can be said that they are in the same state.
  • the magnetomotive force ampere turn is canceled for the currents of the conductors (15) and (18).
  • the V-phase current Iv flowing in a loop along the circumference of the stator 114 correspond to the conductors (20) and (16) and the conductors (14) and (19) It can be considered that the V-phase current Iv flowing in a loop on the circumference of the stator 114 is flowing at the same time. After all, it can be said that the action of the V-phase line shown in FIG. 1 is equivalent to the loop-shaped V-phase lines 116 and 117 shown in FIGS.
  • the W-phase winding shown in FIG. 8 is wound in series so as to circulate around the four W-phase stator magnetic poles 121, like the U-phase winding.
  • the currents flowing in the conductors (21) and (23) are the same in magnitude and in opposite directions, and the magnetomotive ampere turn cancels out. It can be said that they are in the same state. Similarly, the magnetomotive ampere turn is canceled for the currents of the conductors (25) and (28).
  • the W-phase current Iw flowing in a loop on the circumference of the stator 114 so as to correspond to the above-described conductor windings (24) and (29) is a current flowing in a loop outside the stator core.
  • the outside of the stator core is air or the like and has a large magnetic resistance, there is almost no electromagnetic action on the brushless motor 150. For this reason, it is possible to eliminate loop-shaped windings located outside the stator core that are not affected even if omitted. After all, it can be said that the action of the W phase wire shown in FIG. 8 is equivalent to the looped W phase wire 118 shown in FIGS.
  • the windings and currents that apply electromagnetic action to the stator magnetic poles 119, 120, and 121 of the stator 114 can be replaced with simple windings in the form of a loop, and the stator It is possible to eliminate loop-shaped ridges at both ends in the axial direction of 114. As a result, since the amount of copper used in the brushless motor 150 can be greatly reduced, higher efficiency and higher torque can be achieved. In addition, since there is no need to place a winding (conductor) between the stator poles in the circumferential direction of the same phase, it is possible to increase the number of poles compared to the conventional structure, and in particular, the winding structure is simple. The cost can be improved.
  • the conventional structure shown in FIGS. 71, 72, and 73 is a structure in which two of each phase salient pole 119, 120, and 121 shown in FIG. 8 are arranged on the same circumference.
  • the electromagnetic action and torque generation of each salient pole is the same as that of the brushless motor 150.
  • the conventional brushless motor as shown in Fig. 71 and Fig. 72 has a structure that eliminates part of the shoreline or simplifies the shoreline like the brushless motor 150 shown in Figs. It cannot be done.
  • FIG. 9 is a vector diagram of the current, voltage, and output torque of the brushless motor 150.
  • the X axis corresponds to the real axis and the Y axis corresponds to the imaginary axis.
  • the angle in the counterclockwise direction with respect to the X axis is the vector phase angle.
  • Vv WvXEvXSl --- (2)
  • Vw WwXEwXSl --- (3)
  • the U-phase unit voltage Eu is a voltage generated in one turn opposite to the U-phase winding 115 shown in FIG. 1 and FIG.
  • the U-phase voltage Vu is a voltage generated in the reverse direction of the U-phase winding 115.
  • V-phase unit voltage Ev is the value when one turn of V-phase lead 116 and one turn of V-phase lead 117 are connected in series.
  • V-phase voltage Vv is the voltage at both ends when V-phase wire 116 and V-phase wire 117 in the opposite direction are connected in series.
  • the W-phase unit voltage Ew is a voltage generated in one turn of the W-phase lead 118 shown in FIG. 1 and FIG. W-phase voltage Vw is the voltage generated in the opposite direction of W-phase wire 118.
  • each phase current Iu, Iv, Iw needs to be energized in the same phase as the unit voltages Eu, Ev, Ew of each phase wire.
  • I u, Iv, Iw and Eu, Ev, Ew are assumed to have the same phase, and in order to simplify the vector diagram, the in-phase voltage vector and current vector are represented by the same vector arrows. Yes.
  • Ta Tu + Tv + Tw
  • the U-phase winding wire 115 and the V-phase winding wire 116 are loop-shaped winding wires arranged adjacent to each other between the U-phase stator magnetic pole 119 and the V-phase stator magnetic pole 120, and combine them into a single winding wire. be able to.
  • the V-phase winding wire 117 and the W-phase winding wire 118 are loop-shaped winding wires arranged adjacent to each other between the V-phase stator pole 120 and the W-phase stator pole 121. Can be combined into a line.
  • FIG. 7 is a diagram showing a modification in which two shore lines are combined into a single shore line.
  • the U-phase wire 115 and the V-phase wire 116 are replaced by a single M-phase wire 138, and the V-phase wire 117 and the W-phase wire 118 has been replaced by a single N-phase wire 139.
  • the state of the magnetic flux generated by the M-phase winding 138 is the same as the combined state of the magnetic fluxes generated by the U-phase winding 115 and the V-phase winding 116, and is electromagnetically equivalent.
  • the state of the magnetic flux generated by the N-phase winding 139 is the same as the combined state of the magnetic fluxes generated by the V-phase winding 117 and the W-phase winding 118. Magnetically equivalent.
  • Vm WcXEmXSl ('12)
  • Vn WcXEnXSl '(13)
  • the torque equation represented by equation (11) is represented by three phases, and the torque equation represented by equation (19) is represented by two phases.
  • the expression method of these torque formulas becomes different formula (20) when different formulas (19) are developed, and it can be seen that these formulas are mathematically equivalent.
  • the value of torque Ta shown in equation (11) is constant.
  • Equation (19) is a representation of a two-phase AC motor
  • Equations (11) and (21) are representations of a three-phase AC motor, but these values are the same.
  • equation (19) (Iu When the current Im of + Iv) is supplied to the M-phase lead 138 and the current of ⁇ Iu and Iv are supplied to the U-phase lead 115 and the V-phase lead 116, respectively, they are electromagnetically the same. Copper loss is different. As shown in the vector diagram of Fig. 9, the real axis component of the current Im is reduced to a value obtained by multiplying Im by cos30 °. Therefore, if the copper loss is reduced by 25%, there will be a drought effect.
  • the magnetic pole shape of the stator 114 greatly affects the torque characteristics and is closely related to the cogging torque ripple and the torque ripple induced by the energized current.
  • the shape and amplitude of the unit voltage which is the rate of change of the rotation angle of the magnetic flux existing in each stator magnetic pole group, are substantially the same, and the phase difference of 120 ° in electrical angle is maintained between each stator magnetic pole group. Specific examples of deforming the shape of the corresponding stator magnetic pole will be described.
  • FIG. 10 is a developed circumferential view showing a modification of the stator magnetic pole.
  • the stator magnetic poles 122, 123, and 124 for each phase shown in FIG. 4 have a basic shape arranged in parallel with the rotor shaft 111.
  • the stator magnetic poles have the same shape for each phase, and are arranged so as to make a phase difference of 120 ° in electrical angle.
  • torque ripple becomes large.
  • force-bump-shaped irregularities in the radial direction of each stator pole 122, 123, 124 the electromagnetic action at the boundary can be smoothed, and torque ripple is reduced. It becomes possible.
  • a sinusoidal magnetic flux distribution can be realized in the circumferential direction by forming force bumpy irregularities on the surface of each pole of the permanent magnet 112 of the rotor 110.
  • torque ripple may be reduced.
  • the angle given to the horizontal axis in Fig. 10 is the mechanical angle along the circumferential direction, and the left end force is 360 ° to the right end.
  • FIG. 11 is a circumferential development view showing another modification of the stator magnetic pole.
  • the stator magnetic poles 125, 126, 127 of each phase shown in Fig. 11 have a shape that is skewed by about 60 ° in electrical angle with respect to the basic shape shown in Fig. 10 (circumferential with respect to the direction parallel to the rotor shaft 111). The shape is inclined 60 ° in electrical angle along the direction). This reduces torque ripple effective.
  • the width of the stator magnetic poles 125, 126, and 127 of each phase is narrower than 180 °, the maximum magnetic flux passing through the stator magnetic poles 125, 126, and 127 of each phase does not decrease. There are features.
  • stator magnetic pole shape shown in FIG. 10 and FIG. 11 in order to realize the air gap surface shape of the stator magnetic pole, the winding 115, 116, 117, 11 of each phase is realized.
  • stator magnetic pole tip of each phase In order to realize the magnetic pole shape between 8 and the air gap, the stator magnetic pole tip of each phase has a shape protruding in the rotor axial direction, and a space for the magnetic path to go out in the axial direction is necessary. There is a problem that the outer shape of the motor tends to be large in order to secure the space.
  • FIG. 12 is a circumferential development showing another modification of the stator magnetic pole, and shows the stator magnetic pole shape that reduces this problem.
  • the unit voltages Eu, Ev, Ew of each phase have the same shape and amplitude, and the phase of each phase is kept at 120 ° in electrical angle.
  • stator magnetic poles 128, 129, and 130 An example in which the shape of the stator magnetic poles 128, 129, and 130 is modified is shown in FIG.
  • These stator pole shapes are characterized by the fact that most of the air gap surface of each stator pole 128, 129, 130 is a short distance from the middle part of each stator pole tooth. The point is that the magnetic flux can easily pass through the surface, through the middle part of the tooth, and through the magnetic path to the back yoke of the stator 114. Therefore, the stator magnetic pole shape shown in FIG. 12 is different from the stator magnetic pole shape shown in FIG. 10 and FIG. 11 in the stator magnetic pole between each phase wire 115, 116, 117, 118 and the air gap. Space can be reduced. As a result, it is possible to reduce the outer shape of the brushless motor.
  • FIG. 13 is a circumferential development view showing another modified example of the stator magnetic pole, and shows a stator magnetic pole shape obtained by further modifying the stator magnetic pole shape shown in FIG.
  • the U and W-phase stator poles 134 and 136 at both ends of the rotor shaft 111 are arranged in the circumferential direction.
  • the pole width is expanded to 180 ° in electrical angle, and the remaining space is distributed so that it can be balanced with the V-phase stator pole 135.
  • the back yoke force of the U and W-phase stator poles 134 and 136 is also the distance to the tooth surface.
  • the distant parts are deleted because the tip of each part is thin and difficult to manufacture.
  • 135 is a V-phase stator pole.
  • the unit voltages Eu, Ev, and Ew of each phase which are the rotation angle change rate of the surface of the stator magnetic pole shape of each phase, are modified so as to have the same value although the phases are different. As a result, a relatively large effective magnetic flux can be passed, and the stator magnetic pole shape is relatively easy to manufacture.
  • This motor includes a configuration related to the stator structure exhibiting the characteristics according to the present invention and a configuration that obtains a unique effect by combining various rotors shown in FIGS. 14 to 19, 73, and 74. It is.
  • this motor has two-phase AC, three-phase AC, and multi-phase AC with four or more phases.
  • the number of poles of this motor can also be applied from 2 poles to multiple poles.
  • the three-phase AC motor shown in Fig. 1 corresponds to the three-phase AC motor represented in Fig. 20 (b).
  • FIG. 21 is a longitudinal sectional view of an 8-pole 6-phase motor of one embodiment.
  • FIG. 22 is a diagram in which the inner peripheral surface of the stator and the outer peripheral surface of the rotor are linearly developed in the circumferential direction.
  • a motor 100 shown in FIG. 21 includes a rotor 10, a rotor shaft 11, a permanent magnet 12, and a stator 14.
  • the permanent magnet 12 is attached to the outer peripheral side of the rotor 10.
  • N poles and S poles are alternately arranged along the outer peripheral surface of the rotor 10.
  • the horizontal axis in Fig. 22 (b) shows the position of the rotor rotation direction.
  • X 4 1440 °.
  • the stator 14 includes stator magnetic poles 53, 54, 55, 56, 57, 58, 59 up to the first phase force and the sixth phase on the inner peripheral side.
  • stator magnetic pole 53 and the stator magnetic pole 59 located at both ends in the axial direction have the same polarity and are first-phase stator magnetic poles.
  • Four stator poles of the same phase are arranged at a 360 ° pitch on the same circumference.
  • FIG. 23 is a diagram showing each cross-sectional shape of the motor 100 shown in FIG. Fig. 23 (a) shows the cross section along the D-D line and the JJ line, while Fig. 23 (b) shows the cross-sectional force along the EE line. Fig. 23 (c) shows the cross-sectional force along the FF line. — G-line cross-sectional force Figure 23 (e) shows the H-H line cross-section, and Fig. 23 (f) shows the II-line cross-section. Since the DD line section and the JJ line section correspond to the stator magnetic poles 53 and 59 having the same phase, they have the same shape as shown in FIG. 23 (a). As shown in the arrangement of the stator magnetic poles in FIG. 22, it can be seen that the circumferential positions of the stator magnetic poles shown in FIG. 23 are shifted by 60 °.
  • the stator 14 includes loop-shaped winding wires 41 to 52 with the rotor shaft 11 as the center.
  • winding wires 41 and 42 are wound.
  • winding wires 43 and 44 are wound around a slot between the stator magnetic poles 54 and 55.
  • winding wires 45 and 46 are wound.
  • winding wires 47 and 48 are wound.
  • winding lines 49 and 50 are wound.
  • Wires 51 and 52 are wound around the slot between the stator magnetic poles 58 and 59.
  • the shape in which the circumferential shape of each shoreline is developed into a straight line is a shape obtained by cutting out the looped shoreline, and is illustrated in a straight line as shown in FIG.
  • the electromagnetic action of the winding current of each winding is in a balanced six-phase magnetic circuit configuration, for example, as shown in FIG.
  • the winding number of 43 and 43 are the same, the current indicated by vector B in Fig. 20 (e) is applied to the winding 42, and the reverse current indicated by vector B is supplied to the winding 43, the magnetomotive force becomes the stator. It can be considered that it acts on the magnetic pole 54.
  • the winding wire 43 may be connected to the winding wire 42 with the winding direction of the winding wire 43 reversed, and the same current B may be applied.
  • the other stator magnetic poles are also arranged with the same relationship.
  • the currents energized to each of the winding lines 41 to 52 in FIG. 22 are the current vectors attached to the left end thereof, and are the currents indicated by the vectors having the same signs in FIG. 20 (e).
  • the stator magnetic poles 53 and 59 at both ends in the axial direction are somewhat special, and since both sides are air, the magnetic resistance is large. It exerts a magnetic action on theta magnetic poles 53 and 59.
  • the stator magnetic poles 53 and 59 correspond to the A phase, and the windings 52 and 41 are linked to the magnetic flux passing through these stator magnetic poles.
  • stator magnetic pole 54 corresponds to the B phase, and the windings 42 and 43 are linked to the magnetic flux passing through these stator magnetic poles.
  • the stator magnetic pole 55 corresponds to the C phase, and the windings 44 and 45 are linked to the magnetic flux passing through these stator magnetic poles.
  • the stator magnetic pole 56 corresponds to the D phase, and the windings 46 and 47 are interlinked with the magnetic flux passing through these stator magnetic poles.
  • the E phase corresponds to the stator pole 57, and the windings 48 and 49 are linked to the magnetic flux passing through these stator poles.
  • the F phase corresponds to the stator magnetic pole 58, and the windings 50 and 51 are linked to the magnetic flux passing through these stator magnetic poles.
  • stator magnetic poles 53 and 59 at both ends in the axial direction are affected by leakage magnetic flux from the periphery of each stator magnetic pole, and strictly speaking, errors that do not appear in the simple model are generated.
  • the torque ripple can be further reduced and a more precise motor can be realized.
  • the rotor 10 is a surface magnet type rotor having 8 poles.
  • ⁇ 1 ⁇ ( ⁇ 1) / ⁇
  • 0 is the rotational position of the rotor 10
  • 0 ⁇ is the electrical angle unit of the rotational position
  • 0 ⁇ 4 ⁇ 0.
  • Each winding 41, 52 winding number is W1
  • the voltage VI induced in the first phase winding 41, 52 can be expressed by the following equation.
  • Vl WlXd (1) / dt --- (23)
  • the machine output Pmec is the product of torque Tc and rotational angular frequency d ⁇ Zdt.
  • the torque Tc is proportional to the number of poles, the number of windings Wl, the current ⁇ , and the magnetic flux FLm linked to the windings of each phase.
  • Torque ripple does not occur in principle if the magnetic flux interlinked with the winding of each phase is sinusoidal with respect to the rotation angle.
  • the flux linkage ⁇ 1 often has many higher harmonic components than the sinusoidal distribution, and therefore includes cogging torque when the motor current is zero and torque ripple during energization.
  • the number of times of winding W1, the current Ip, and the magnetic flux FL interlinked with the winding of each phase can be modified as long as their product is the same.
  • the magnetomotive force generated by each loop-shaped winding current is the product of the number of windings and the current value, and the same magnetomotive force can be generated if the number of ampere X turns is the same. It is possible to change the current to 1Z2 and double the current, and the same electromagnetic effect can be obtained. Even if the magnetic pole width is reduced by 20% and the magnetic flux FL linked to the winding is reduced by 20%, the torque Tc does not change if the number of windings W1 or the current value Ip is increased by 20%. In this way, it is possible to change the internal parameters of the motor 100 without changing the output characteristics of the motor 100 for the convenience of motor design.
  • the force arrangement order is not limited to the phase order in which the axial arrangement of the stator magnetic poles of each phase is arranged in order.
  • An axial arrangement is possible.
  • the magnetic flux on the rotor surface is generated mainly depending on the permanent magnet 12, so the stator poles of each phase are arranged in the axial direction.
  • 20 Arranged in the order of vectors A, B, C, D, E, and F shown in (e), or arranged in other order, for example, in the order of A, C, E, B, D, and F There is no significant difference in the output torque of the motor 100.
  • stator magnetic pole of each phase the relationship between the stator magnetic pole of each phase and the current flowing through the winding of that phase must be the same as in FIGS.
  • the axial arrangement of the stator magnetic poles can be selected according to the convenience of the stator magnetic pole arrangement, the winding arrangement, the ease of assembly and manufacture, and the like.
  • the motor 100 shown in FIG. 21 has a winding 41 or the like of a loop-like simple structure, and there is no coil end of the conventional motor shown in FIGS. 71 to 74.
  • the motor having the conventional structure as shown in FIGS. 71 to 74 when the number of poles is increased, the number of poles increases and the rotational change rate of the magnetic flux interlinked with the winding increases, but at the same time the slot area decreases.
  • the conductor area decreased in inverse proportion, and as a result, the increase in the number of motor poles and the decrease in the amount of current per pole offset each other, so the torque could not be increased.
  • the stator 21 is provided with a loop-shaped winding 41 or the like, even if the number of windings (conducting wires) does not need to be arranged between the same-phase circumferential stator magnetic poles, Since there is no need to reduce the wire thickness, the principle is that the motor torque can be increased in proportion to the number of poles.
  • the rotor 10 is not a surface permanent magnet type rotor, and a rotor of a type that includes a lot of soft magnetic material in the vicinity of the rotor surface as shown in FIG. 74 or FIGS. 14 to 19, and FIGS.
  • the motor constructed by combining the stator 14 shown in Fig. 1 there is a strong phase between the current amplitude Ip and the magnetic flux interlinking with each phase wire, and the axial direction of the stator magnetic pole of each phase
  • the motor output torque greatly depends on the arrangement order.
  • a method for solving this problem and increasing the motor output torque is to arrange the stator poles of each phase in the axial direction.
  • the stator of the synchronous reluctance motor shown in FIG. 74 is an ordinary three-phase, four-pole, 24-slot stator that is also used for the stator of an induction motor.
  • the electromagnetic action of a motor that combines such a stator with a rotor as shown in Fig. 74 or Figs. 14 to 19 often expresses the motor by dq axis theory.
  • Fig. 24 shows an example of a cross-sectional view of a 3-phase, 2-pole, 6-slot synchronous reluctance motor as a general model example.
  • 211 is a slit provided in the direction of the magnetic pole of the rotor, which is an air gap or a non-magnetic material, and 212 is sandwiched by the slit 211 to guide the magnetic flux in the direction of the magnetic pole. It is a thin magnetic path.
  • the direction of the magnetic pole of the rotor is called the d axis, and the direction perpendicular to the d axis is called the q axis.
  • Reference numerals 219 to 223 denote stator teeth, which are referred to as stator magnetic poles in the present specification in the sense that each tooth has a magnetic individual function.
  • the U-phase current Iu is passed through the feeder 213, and the reverse current is passed through the feeder 216.
  • the V-phase current Iv is passed through the winding 215 and the reverse current is passed through the winding 218.
  • the W-phase current Iw is applied to the feeder line 217, and the reverse current is applied to the feeder line 214.
  • the current component of each phase is vector-decomposed into d-axis direction component and q-axis direction component, and d-axis current Id is obtained by adding the d-axis direction component of each phase, and q-axis current is obtained by adding the q-axis current component of each phase. And get.
  • the current Iu flowing in the windings 213 and 216 generates a negative magnetic flux in the d-axis direction, so Iu is all negative d-axis current component and its value is Iu is there.
  • the current Iv flowing through the windings 215 and 218 has a magnetomotive force direction of 60 ° in the d-axis direction.
  • the d-axis current component is 1Z2 X IV and the q-axis current component is 1.732Z2 X IV. .
  • the d-axis inductance of the motor is Ld
  • the q-axis inductance is Lq.
  • FIG. 25 shows the vector relationship of each value in an example in which each phase current is appropriately energized and controlled in such a configuration.
  • d-axis current Id induced in the d-axis direction d-axis direction magnetic flux ⁇ (1 is Ld X ld
  • q-axis current Iq induced in the q-axis direction q-axis direction magnetic flux 0> q is Lq X Iq
  • the magnetic flux ⁇ generated in the motor is a vector addition of the magnetic flux ⁇ (1 and 0> q.
  • the torque Tsyn generated at this time is expressed by the following equation.
  • the stator 14 included in the motor 100 shown in Figs. 21 and 22 has a configuration of 8 poles. Therefore, assuming that the stator magnetic poles of each phase have 4 poles arranged in the circumferential direction, 2 poles are assumed. Compared to the stator shown in Fig. 24, assuming that there is one stator pole for each phase. For the shoreline, the total current of the currents flowing through the shorelines 41 and 42 in FIG. 22 corresponds to the current flowing through the shoreline 213 in FIG.
  • stator 14 shown in FIG. 21 is a loop-like winding
  • stator shown in FIG. 24 is composed of an axial winding and a coil end portion, and has a greatly different shape.
  • stator magnetic poles 59 and 53 of FIG. 22 are the stator magnetic pole 219 of FIG.
  • stator magnetic pole 54 is the stator magnetic pole 220
  • stator magnetic pole 55 force S the stator magnetic pole 221
  • stator magnetic pole 56 is the stator magnetic pole 222.
  • the stator magnetic pole 57 corresponds to the stator magnetic pole 223
  • the stator magnetic pole 58 corresponds to the stator magnetic pole 224.
  • the shape of the stator magnetic pole shown in Fig. 22 has a width of 180 degrees in electrical angle in the circumferential direction, and the width in the direction of the shaft 11 is about 1Z6 of the axial width of the motor.
  • the 24 stator poles have a circumferential width of about 60 degrees, the rotor axial width is the same as the motor axial width, and the shapes of the two stator poles differ greatly.
  • the electromagnetic action of the motor as a whole is similar, and the motor composed of the rotor shown in Fig. 74 and Figs. 14 to 19 and the stator 14 shown in Figs. In other words, it is the same as that shown in Fig. 25 for the motor shown in Fig. 24.
  • a 3-phase, 8-pole synchronous reluctance motor can be configured by combining the 8-pole stator 14 of the motor 100 shown in FIG. 21 and the rotor shown in FIG. . At this time, if the total current of the windings 41 and 42 is supplied with the U-phase current Iu and Iu is supplied to the windings 47 and 48, the magnetomotive force corresponding to the current Iu is applied to the stator magnetic poles 54, 55, and 56.
  • the magnetomotive force from the inner diameter side to the outer diameter side of the stator in the opposite direction acts simultaneously on the stator magnetic poles 57, 58, 59, 53.
  • This relationship is observed when the U-phase current Iu is applied to the U-phase wires 213 and 216 in FIG. Magnetomotive force on the magnetic poles 220, 221, and 222.
  • the stator inner diameter side force acts on the stator magnetic poles 223, 224, and 219 at the same time.
  • the other winding currents in FIG. 21 work in the same way, and perform the same electromagnetic action as the motor in FIG. There are many structural differences.
  • the magnetomotive force and magnetic flux of the motor shown in Fig. 24 are in the circumferential and radial directions, whereas the motor shown in Fig. 21 also acts in the rotor axial direction.
  • Different stator magnetic poles are arranged in the circumferential direction, whereas in Fig. 21 they are arranged in the rotor axial direction, the winding 41 etc. in Fig. 21 has a loop shape, and the windings in different phases in Fig. 24 Are arranged in the order of phases in the circumferential direction, whereas the lines having different phases in FIG. 21 are arranged in the order of phases in the rotor axis direction.
  • the motor configuration is such that in the motor 100 shown in FIG. 21 and FIG. 22, the stator magnetic poles having different phases in the rotational direction are arranged in phase order in the rotor axial direction, and the axial directions of these stator magnetic poles Each loop-shaped winding is placed in each slot of the gap, and a current is passed through each winding in synchronization with the rotational phase.
  • the motor action can generate a d-axis current Id component that mainly generates field flux and a q-axis current Iq component that mainly generates torque by the motor configuration, and is shown in the vector diagram of FIG.
  • the motor field magnetic flux ⁇ can be efficiently generated as necessary, and the torque expressed by the equations (29) and (30) can be obtained.
  • Various modifications can be made to the shape of the stator magnetic pole 53 and the like shown in FIG. 21 and the form of each winding (described later).
  • Fig. 26 is a view showing a longitudinal sectional view of a stator that is infinitely long in the rotor axial direction.
  • the horizontal direction of the paper is the rotor axis direction
  • the vertical direction is the radial direction (radial direction perpendicular to the rotor axis).
  • the stator poles, slots, and windings of each phase are repeatedly arranged in the axial direction with the phase relationships indicated by A, B, C, D, E, and F as shown in Fig. 20 (e). Yes.
  • the stator 14 of the motor 100 shown in FIG. 21 can be considered to be a WDFF cut out of one set of the stator shown in FIG.
  • the width of WDFF is one electromagnetic cycle. In this way, it can be easily imagined that if the width of one cycle is not changed, a similar electromagnetic effect can be obtained even if it is cut out at other places such as WDFR.
  • Fig. 27 shows a configuration example in which stator poles with opposite phases are arranged next to each stator pole in the axial direction. It is a figure and the figure which linearly developed the inner peripheral surface of the stator in the circumferential direction is shown.
  • each stator magnetic pole has a phase difference of 180 ° in terms of electrical angle.
  • the current vectors that flow through the looped windings 82 to 93 are shown at the left end of the figure—A to A current vectors, and the relationship between each stator pole and each current shown in FIG. 22 is maintained. .
  • the adjacent stator magnetic poles have a phase difference of 180 ° from each other, so that the tips of the stator magnetic poles cross each other in the rotor axis direction in the vicinity of the boundary surface between the stator and the rotor. It is possible to increase the area of the stator magnetic pole that faces the rotor.
  • FIG. 28 is a diagram showing a stator in which the windings and both end magnetic poles of the stator shown in FIG. 27 are deformed, and the rest is the same as the stator shown in FIG. 29 is a cross-sectional view taken along line YY of FIG. Taking the stator magnetic poles 76 and 77 common to FIGS. 27 and 28 as an example, it can be seen that the tip 142 of the stator magnetic pole 76 in FIG. 29 protrudes toward the stator magnetic pole 77. Similarly, the tip 143 of the stator magnetic pole 77 protrudes toward the stator magnetic pole 76.
  • Fig. 27 the protrusion of the tip of the stator magnetic pole is indicated by a broken line. Since the stator magnetic poles 76 and 77 have a 180 ° phase difference in electrical angle, the stator magnetic poles are alternately combined and do not interfere with each other. In this way, by expanding the area of the stator magnetic pole that faces the rotor, more magnetic flux can be linked to the winding of each phase, and a larger torque can be generated.
  • the stator magnetic pole can be simplified and the loop-shaped winding can be simplified, and can be deformed as shown in FIG. Specifically, the stator magnetic pole 80 shown in FIG. 27 can move to a position adjacent to the stator magnetic pole 74 while maintaining an electromagnetically equivalent state.
  • the looped windings 82 and 83 can be changed to a single looped winding 96 on condition that the currents to be passed through both the windings are arithmetically added and energized.
  • ⁇ line 84 and 85 should be changed to 97line 97
  • ⁇ line 86 and 87 should be changed to ⁇ line 98
  • ⁇ line 88 and 89 should be changed to ⁇ line 99
  • ⁇ line 90 and 91 should be changed to ⁇ line 100.
  • the windings 9 2 and 93 must be placed outside the stator core by moving the stator poles 80. Therefore, since it hardly contributes to the generation of torque electromagnetically, it can be eliminated. As a result of these changes, the stator shown in FIG. 27 can be transformed into the stator shown in FIG. 28 while maintaining an electromagnetically equivalent state.
  • the shape of the stator taken along the line Y-Y of the stator shown in Fig. 28 is in the stator magnetic pole forces that are in opposite phase to each other and enter the leading end side of the stator magnetic pole. Therefore, the axial length WDR of each stator can be increased, more rotor magnetic flux is supplied to the stator magnetic pole side, and more magnetic flux can be linked to the winding, so torque Can be increased. If the thickness in the rotor axial direction at the base of each stator magnetic pole is WD T and the distance between the stator magnetic poles is WDP, the rotor axial length WDR at the tip of each stator magnetic pole is larger than WDP and is twice as large as WDP. It is possible to enlarge it to near.
  • a current represented by a current vector shown in FIG. 20 (e) can be applied to the stator winding shown in FIG.
  • the current 82 in the opposite phase of the current vector A that is, the current in the A phase is supplied to the feeder 82
  • the current of the current vector D is supplied to the feeder 83.
  • These two currents are the current vectors D and -A shown in Fig. 30 (a), and the added value is the current vector H.
  • This current vector H has the same phase as the current A and has twice the amplitude, and this current is applied to the winding 96 shown in FIG.
  • the current of the current vector D phase is applied to the ⁇ wire 84, and the current of the current vector E is supplied to the ⁇ wire 85.
  • These two currents are the current vectors D and E shown in FIG. 30 (b), and the added value is the current vector I.
  • the current vector I has the same amplitude in the middle phase between the current vectors D and E, and this current is applied to the wire 97 shown in FIG.
  • the current indicated by current vectors J, K, and L shown in Fig. 30 (c) is energized.
  • the current vector to be energized is added to the left end of the shoreline. Since the amplitude of the current applied to each winding in FIG. 28 is different, it is possible to optimize the dimensions of each part such as the stator magnetic pole by setting the thickness of the winding according to the current value.
  • stator magnetic poles of the stator shown in FIG. 28 in the rotor axial direction A pair of adjacent stator poles with 180 ° phase difference in electrical angle.
  • the method of using theta pole pairs SMP1, SMP2, and SMP3 is shown.
  • the relative arrangement method of the stator magnetic pole pairs SMP1, SMP2, and SMP3 in the rotor axial direction is to make a combination in which the adjacent stator magnetic poles are closest in phase and adjacent to the stator magnetic pole pairs.
  • stator magnetic pole pair SMP1 is formed by the stator magnetic poles 95 and 75
  • stator magnetic pole pair SMP2 is formed by the stator magnetic poles 76 and 77
  • stator magnetic pole pair SMP3 is formed by the stator magnetic poles 78 and 79.
  • stator magnetic pole pairs SMP1 and SMP2 are adjacent to each other
  • stator magnetic poles 75 and 76 are adjacent to each other.
  • the phase difference between the circumferential positions of the stator magnetic poles 75 and 76 is 60 °, which is the minimum phase difference of six-phase AC.
  • the current vector I which is the sum of the current vectors D and E, reaches the winding 97 arranged between the stator pole pairs. It has become.
  • the current vectors D and E are combinations of currents having the largest phase difference except for the reverse phase, so that the amplitude of the current vector I can be reduced.
  • FIG. 31 is an enlarged view of the stator core and the winding portion extracted from the longitudinal sectional view of the motor 100 shown in FIG.
  • the horizontal direction is the rotor shaft 11 direction
  • the vertical direction is the radial direction of the motor 100.
  • WDP is the distance between the centers of adjacent stator poles, and is the distance between the stator poles.
  • WDD is the axial width of the stator magnetic pole facing the air gap between the stator and the rotor. Increasing WDD can increase the maximum flux linkage FLm and increase the generated torque.
  • WDT is the axial width of the stator pole at the root.
  • stator magnetic poles 53 and 59 at both ends are in the same electrical angle phase with respect to the magnetic poles of the rotor 10, and the magnetomotive force of the current vector A is the same as both the stator magnetic poles 53 and 59.
  • the stator magnetic poles 59 are deleted, and the number of stator magnetic poles is reduced from 7 to 6. Therefore, the motor configuration can be simplified.
  • the section WDFR is cut off.
  • the other slots can be considered in the same way, and as a result, the currents a, b, c, d, e, and f shown in Fig. 33 need to be energized.
  • the number of windings that can be obtained by winding a set of windings integrated into each slot is the same as the number of windings in the looped winding in FIG.
  • the number of turns in the same slot in FIG. 34 is the number of turns in 1Z2 in FIG. 22.
  • the cross-sectional area, which is the thickness of the line, can be doubled, and the current amplitude is shown in FIG.
  • the current in the slot is 1Z2.
  • the copper loss is reduced to 1/4. Note that this reduction ratio also changes when the number of stator phases is not six.
  • the stator shown in FIGS. 21 and 22 and the stator shown in FIG. 34 are greatly different.
  • the currents to be supplied to the windings 41 to 52 in FIG. 22 are, for example, the currents to be supplied to the windings 42 and 43 as shown in the equations (22) to (28).
  • the electrical angle differs by 120 °.
  • stator magnetic poles 53 and 59 shown in FIG. 34 can be integrated and replaced with the stator magnetic pole 67 shown in FIG.
  • the winding wire 66 is arranged outside the stator core.
  • a stator can be configured with six sets of stator magnetic pole groups having the same number as the number of phases and five sets of windings that are one less than the number of phases. Even in this case, the internal connection of the motor can be performed so that it can be driven by applying three-phase AC voltage and current to the motor. Therefore, when the motor shown in FIGS. It can also be viewed as a phase AC motor.
  • stator magnetic pole facing the air gap between the stator and the rotor As described above, an example of the shape of the motor 100 shown in FIG. 21 in which the circumferential direction of the stator magnetic pole tip shape facing the air gap between the stator 14 and the rotor 10 is linearly developed is shown in FIG. ).
  • the shape of the stator magnetic poles 54 to 58 is actually an arc shape on the inner diameter side of the stator, but in FIG. 22 (a), the shape is rectangular because it is expressed by linear development in the circumferential direction.
  • the magnetic flux passing through the stator magnetic poles 53 and 59 is FA
  • the rotational change rate is DFA
  • the magnetic flux passing through the stator magnetic pole 54 is FB
  • the rotational change rate is DFB
  • the magnetic flux passing through the stator magnetic pole 55 is FC
  • its rotation Change rate is DFC
  • magnetic flux passing through stator magnetic pole 56 is FD
  • rotational change rate is DFD
  • magnetic flux passing through stator magnetic pole 57 is FE
  • rotational change rate is DFE
  • magnetic flux passing through stator magnetic pole 58 is FF
  • the rotational change rate of the magnetic flux of each stator magnetic pole is a sinusoidal characteristic with respect to the rotational position ⁇ E expressed by the electrical angle on the horizontal axis, as shown in FIG. Is preferred.
  • the stator magnetic pole shape in FIG. 22 is a rectangle, and the rotational change rate of each magnetic flux is a rectangular wave, which has characteristics including many harmonics. These harmonic components may cause cogging torque and torque ripple, and may interfere with motor torque generation.
  • stator pole shape SPS shown in FIG. 22 can be transformed into the stator shape shown in FIG.
  • Stator magnetic poles 53S, 54S, 55S, 56S, 57S, 58S, 59S force are elongated in the axial direction of the rotor and skewed in the circumferential direction.
  • harmonics of the rotation angle change rate of the magnetic flux passing through the stator magnetic poles are reduced, so that torque ripple and the like are reduced.
  • rate of change in the rotation angle of the magnetic flux can be increased, so the torque increases.
  • stator magnetic pole 54S shown in FIG. 37 the hatched portion of the horizontal line is the root portion 54SB of the stator magnetic pole shown in FIG. 38, and the hatched hatching in the stator magnetic pole 54S shown in FIG.
  • the part marked with is the stator pole tip 54SS shown in FIG.
  • the vertical cross section of the stator is changed from the shape shown in FIG. 31 to the shape shown in FIG. 38, and the width in the rotor axial direction of the tip 54SS of the stator magnetic pole is changed from the WDD shown in FIG. It has become widespread to the WDX shown in. Further, since the magnetic flux passing from the stator magnetic pole tip 54SS to the stator magnetic pole base 54SB in the middle of the back yoke BY also increases, it is necessary to increase the magnetic path.
  • stator magnetic pole shape SPS indicated by 162 is the same shape as FIG.
  • the harmonic component can be greatly reduced by making a sinusoidal area distribution in the circumferential direction.
  • stator magnetic pole indicated by 164 is an example skewed by being inclined in the circumferential direction, and has a sinusoidal area distribution as compared to the rectangular shape indicated by 162, and has a shape close to 163.
  • the stator magnetic pole shape shown in FIG. 37 is close to the stator magnetic pole shown by 164.
  • Stator magnetic pole Is a trapezoidal shape, but the area distribution in the circumferential direction is equivalent to the skew structure shown at 164.
  • the stator magnetic pole shown by 166 is a shape in which a rectangle is inclined in the circumferential direction, and is particularly effective when the stator magnetic pole is arranged as shown in FIG. 37, and does not interfere with the adjacent stator magnetic pole.
  • the area distribution in the circumferential direction is equivalent to the trapezoidal shape indicated by 165 and can increase the rotation angle change rate of the passing magnetic flux, so that the torque can be increased and the harmonics can be reduced, so that the torque ripple and the like can be reduced.
  • the harmonic components can be reduced by providing roundness at each corner, as indicated by the broken lines attached to the stator magnetic pole shapes 162, 164, 165, and 166 in FIG.
  • the shape of the rounded broken line portion is arbitrary. Strictly speaking, for example, in order to obtain the same characteristics as the stator magnetic pole 163 having a sinusoidal area distribution shape with respect to the circumferential direction, The area distribution can be made sinusoidal.
  • the length of each magnetic pole shape in the circumferential direction can be longer than the force 180 ° shown in the electrical angle of 180 ° or shorter than 180 °. In this case, it is the same as the effect that the tangential coefficient of the motor of the conventional structure becomes smaller than 1.
  • the torque in the simple model will decrease, but the interference with the adjacent stator poles can be reduced. There is an effect. It is also possible to obtain the effect of reducing specific torque harmonics, that is, cogging torque and torque ripple, by making the winding shorter than 180 °.
  • the circumferential end of the stator magnetic pole 160 is shaped between the stator and the rotor with respect to the shape shown in FIG.
  • a method of increasing the air gap, a method of making the circumferential end of the permanent magnet 161 of the rotor smooth, and making the boundary of the rotor magnetic pole concave are effective.
  • Each method of reducing harmonics also has the effect of reducing sudden changes in the radial attractive force between the rotor and the stator when the rotor rotates in addition to reducing torque ripple, etc. There is also an effect of reducing noise.
  • the above-described method of deforming the stator magnetic pole shape SPS, the method of deforming the rotor magnetic pole shape, the relative skew method of the stator and the rotor, the circumferential position of the rotor magnetic pole or the stator magnetic pole in the circumferential direction Cogging torque and torque ripple can be reduced by using a combination of techniques such as Further, in FIGS. 21, 22, 35, etc., the force explained for the six-phase motor, especially the motor having a small number of phases Ns, the stator magnetic pole shape SPS circumferential area distribution is sinusoidal. It is effective to reduce torque ripple and the like. When the number of pole pairs of the motor is Pn and the number of stator magnetic poles is Nss, if a basic motor as shown in Fig. 35 is configured,
  • the stator magnetic poles are distributed in the number of phases within the range of the electrical angle of 360 °, and the current of each winding also becomes a multiphase current of Ns phase. Therefore, a force that is difficult in the construction of the stator in reality. If the number of phases Ns is a large number, for example, 30 in theory, the discreteness in the circumferential direction of the stator magnetic pole becomes very small and cogging occurs. Torque and torque ripple are small values.
  • the stator magnetic poles 53 to 59 shown in FIGS. 21 and 31 have a structure in which the rotor magnetic pole width WDD of the stator magnetic pole is slightly smaller than the rotor magnetic pole pitch (interval in the rotor axial direction) WDP of the stator magnetic poles. Yes.
  • the rate of change in the rotation angle of the magnetic flux passing through each stator magnetic pole is advantageous when the length of the stator magnetic pole in the axial direction of the rotor is larger, and the stator magnetic pole 54SS in FIG. Rotor axial width of WDX
  • Specific shapes of the tips of such stator magnetic poles are the stator magnetic pole shapes shown in FIG. 37, the stator magnetic pole shape 166 of FIG. 39, the stator magnetic pole shape of FIG.
  • the length in the axial direction of the rotor is set to the maximum axial length of the outer diameter of the motor, that is, the size of the motor.
  • the hatched portion of the horizontal line is the root portion of the stator pole that extends from the tip of the stator pole to the knock yoke of the stator, and the stator shown in FIG.
  • the hatched portion of the magnetic pole 142 is the tip of the stator magnetic pole.
  • each stator magnetic pole shown in FIG. 41 is a shape diagram in which the shape of the inner peripheral surface of the stator is linearly expanded in the circumferential direction, and the air gap force between the stator and the rotor is also seen.
  • the stator shape as shown in FIG. 41 is particularly preferable in the case of a flat and thin motor having a small accumulated pressure of the motor, that is, a length in the rotor axial direction. Since the rate of change in the rotation angle of the magnetic flux passing through each stator pole can be increased, the motor torque can be increased.
  • the sum of the magnetic flux passing through any X-phase stator pole group is ⁇
  • the rotational change rate of the magnetic flux ⁇ is dO> xZd
  • the other Y phase configuration is the magnetic flux ⁇ y, the winding current Iy, and the number of turns through the stator pole group.
  • the magnetic flux ⁇ , ⁇ y ⁇ line current Ix, Iy and the number of turns WTx, WTy which are determined by the facing area of the stator magnetic pole and the rotor magnetic pole, excluding the phase difference between the X and Y phases It is desirable that at least one of the values is different between the X phase and the Y phase, and the generated torque components Tx and Ty are equal. If the shape of the stator magnetic pole needs to be deformed due to the circumstances of the motor cover, driven side mechanism, etc., change the final electromagnetic action obtained by the magnetic flux ⁇ , current Ix, and number of windings WTx. It may be convenient to change individual parameters.
  • FIG. 42 is a diagram showing another example of the stator magnetic pole arrangement and the winding arrangement.
  • the current vector of each shoreline is the value added to the left end of each shoreline, and corresponds to the current vector with the same symbol shown in FIG. Two sets of looped windings with the same phase are made, and the same phase current is arranged to pass through the windings of two adjacent slots.
  • the windings and currents of the same phase can be divided into a plurality of slots arranged in parallel.
  • the stator magnetic poles are arranged in more phases, the harmonic components of the torque are canceled, the torque ripple is reduced, and the motor drive is made smoother. Can do.
  • there are six types of current vectors, and reverse-phase current vectors can be controlled with a three-phase inverter by reversing the energizing direction, so that the motor controller is not complicated. .
  • FIG. 43 is a diagram showing another example of the stator magnetic pole arrangement and the winding arrangement. Compared to Fig. 42, the shoreline has been changed. By changing the lines 114, 116, 118, 120, and 122 shown in Fig. 42 to lines that can generate more precise currents, the motor can be obtained as a more precise motor with less torque ripple. As shown in FIG. 44, the current vectors of the windings 125 and 126 are al and bl. The sum g of the current vectors al and bl has the same amplitude as the current vectors a and b, and the phase is an intermediate phase between a and b.
  • FIG. 45 is a diagram showing a relationship between current vectors flowing through the windings shown in FIG.
  • the motor shown in Fig. 43 is doubled in phase to the motor shown in Fig. 35.
  • Multi-phase cancellation cancels torque harmonic components, reduces torque ripple, and makes motor drive smoother.
  • the motor drive device since the motor drive device only needs to generate current vectors a, b, c, d, e, and f, it can be driven by a three-phase inverter, and the motor is a little complicated due to the multi-phase drive. There is no burden on the equipment. If the current vector of intermediate phase g, h, i, j, k, 1 is generated by the driver, double the number of transistors in the driver Need to increase.
  • the phase error will be slightly larger but the amplitude error will be reduced, or the power of al will be 3.5 turns and the magnetic circuit force will be extracted in half a turn after 3 turns.
  • it is also possible to achieve almost the intended purpose by arranging the rotation at a rotational position that is 180 ° circumferentially deviated from the al shoreline by a mechanical angle of 3.5 turns.
  • a motor 100 shown in FIG. 21 is an example of a six-phase motor shown in FIG.
  • the present invention can be applied to motors of various phases, but in the case of the three phases shown in FIG. 20 (b), the motor shown in FIG. 1 is obtained, and the winding lines 115, 116, 117, 118 are shown in FIG. It is possible to control with a three-phase inverter.
  • each loop-shaped shoreline 115, 116, 117, 118 is illustrated with a one-turn shoreline symbol as shown in FIG.
  • the induced voltage of the winding is the negative value Vu of the same U-phase voltage. Since the same W-phase magnetic flux is linked to the windings 117 and 118, the induced voltage of the winding is the same W-phase voltage Vw. Therefore, the U-phase current Iu is energized in the reverse direction to the shoreline 115, and the W-phase current Iw is energized in the forward direction to the shoreline 118.
  • each voltage and each current is as shown in the vector diagram of FIG.
  • Each wire, each current, and each voltage can also be expressed as shown in FIG.
  • the dot mark attached to each shoreline indicates the winding start side of the shoreline. In this way, the motors can be operated efficiently by the three-phase inverter by connecting the wires that should carry the current of the opposite phase in series in the opposite direction.
  • the two looped winding wires 115 and 116 are integrated into the winding wire 138. Then, the currents to be applied to the windings 115 and 116 are arithmetically added, and the added current is supplied to the winding 138. Similarly, the two looped windings 117 and 118 are integrated into the winding 139. Thus, the current to be energized in the windings 117 and 118 can be arithmetically added, and the added current can be passed through the winding 139.
  • the method shown in FIG. 49 is a method in which the currents of the windings 138 and 139 are independently controlled independently, and there is no particular technical difficulty. However, in order to generate two currents independently, the number of elements of the inverter This increases the cost burden.
  • current Im —Iu + Iv is passed at the beginning of winding 138
  • In —Iv + Iw is passed at the beginning of winding 139
  • the phases of these currents Im, In, and Io have a phase difference of 120 °, and the amplitude is 1.7 32 times the three-phase currents Iu, Iv, and Iw.
  • the terminal voltages are (one Vw + Vu) Z3 and (one Vu + Vv) Z3 as shown in Figure 50, Figure 51, and Figure 52. , (-Vv + V w) Z3.
  • the line voltage in Fig. 51 is 1 / 1.732 times that of the line voltage shown in Fig. 48.
  • the relationship between these voltages and currents is shown in the vector diagram shown in Fig. 47.
  • each winding, each current, and each voltage can be expressed as shown in FIG.
  • the number of turns of the winding lines 138 and 139 is set to 115, 116, If it is 1.732 times 117 and 118, it will be! 50, 51, and 52 are driven by balanced three-phase voltage and three-phase current, and can be driven by a normal three-phase inverter as shown in FIG. Fig. 5 3
  • Fig. 54 shows an example of the method of connecting the wires 41 to 52 shown in Figs. 21 and 22 and the method of connecting to the three-phase inverter.
  • the stator magnetic poles 53 and 59 are the same phase and the stator magnetic pole 56 is the opposite phase stator magnetic pole having a 180 ° phase difference.
  • the connections of the windings 41, 46, 47, and 52 shown in FIG. 54 are the connections of the windings that make the magnetic flux passing through the stator magnetic poles 53, 59, 56 a U-phase magnetic flux and are linked in the same phase.
  • Wires 46 and 47 may be connected in anti-series. Further, the winding direction of the winding may be opposite to the relationship of the windings 52 and 41 with respect to the stator magnetic poles 59 and 53.
  • the magnetic flux passing through the stator magnetic pole 55 is a V-phase magnetic flux
  • the magnetic flux passing through the stator magnetic pole 58 is a V-phase magnetic flux
  • the connections of the windings are the windings 44, 45, 50, 51 shown in Fig. 54, respectively. Will be connected.
  • the winding wires 44 and 45 before and after the axial direction may be connected in reverse series.
  • the windings 50 and 51 before and after the axial direction may be connected in reverse series.
  • the winding direction of the winding wire should be opposite to the relationship of winding wires 44 and 45 to the stator magnetic pole 55 and the winding wire 50 and 51 to the stator magnetic pole 58.
  • the magnetic flux passing through the stator magnetic pole 57 is a W-phase magnetic flux
  • the magnetic flux passing through the stator magnetic pole 54 is a W-phase magnetic flux
  • the connection of the windings is the connection of the windings 48, 49, 42, and 43 in FIG. It becomes.
  • the windings 48 and 49 before and after the axial direction may be connected in reverse series.
  • the windings 42 and 43 before and after the axial direction may be connected in reverse series.
  • the winding direction of the winding wire may be opposite to the relationship between the winding wires 48 and 49 with respect to the stator magnetic pole 57 and the relationship between the winding wires 42 and 43 with respect to the stator magnetic pole 54.
  • Fig. 55 shows an example of a method of connecting the looped windings 61, 62, 63, 64, 65 shown in Fig. 35 and a method of connecting to a three-phase inverter.
  • the winding wire 62 and the winding wire 65 connect two loop-shaped winding wires in anti-series to link one of three phases of magnetic flux to both wires. Since the voltage connected in series in the opposite direction has the phase of the vector e shown in Fig. 33, the current Iu is energized.
  • the winding 61 and the winding 64 can connect two looped windings in anti-series, so that one of the three phases can be linked to both windings in the opposite direction.
  • the voltage connected in series is the phase a in Fig. 33 and the current Iv is applied.
  • the voltage of the remaining wire 63 is the phase of c shown in Fig. 33, and the current Iw is applied.
  • the winding 63 is in the center of the stator, and one loop-shaped winding can link the magnetic flux of one of the three phases.
  • the looped wire 96, 97, 98, 99, 100 shown in Fig. 28 and the three-phase method Figure 56 shows an example of how to connect to the inverter.
  • the stator structure and the arrangement of the windings are modified from the windings 82 to 93 of the stator structure shown in FIG.
  • the currents that flow in each shoreline are H, I, J, K, and L added to Fig. 28, and the magnitudes of the currents are different as shown by the current vector shown in Fig. 30 (c). .
  • the relationship between the current flowing through each winding shown in FIG. 28 and the magnetic flux of each stator pole is somewhat complicated.
  • the operation of the stator shown in FIG. 28 is equivalent to the relationship between the current of each winding shown in FIG. 27 and the magnetic flux of the stator magnetic pole.
  • the current vector shown in FIG. 30 (c) an example of a method for connecting each feeder and a method for connecting to a three-phase inverter is shown.
  • the current vectors H and K applied to the windings 96 and 99 are
  • the current vectors I and L applied to the windings 97 and 100 are the phase of the V phase, and the amplitude of the 1Z2 current of the winding 100 should be supplied to the winding 97.
  • the same V-phase current Iv is applied with 1Z2 as the number of turns of 100 turns.
  • the current vector J energized in the shoreline 98 is the phase of the W phase, the amplitude of which is the same as that of the shorelines 96 and 100, and energizes the W phase current Iw.
  • windings having substantially the same phase in terms of electrical angle are connected in series in the same direction, and windings having an electrical angle of approximately 180 ° in phase are connected in series in the opposite direction.
  • the motor can be driven by controlling the current of the multiphase phase with a smaller number of current sources.
  • the lines can be simplified and the drive device can also be simplified.
  • the inverter that controls the voltage and current of the motor mainly the power transistors shown in Fig. 53 through Fig. 56 are examples of a three-phase inverter using six transistors.
  • Various methods are possible, such as a method of controlling three-phase alternating current using three strings of inverters that control the voltage.
  • the arrangement structure of the stator magnetic poles shown in Fig. 41 is a structure in which one end force of the stator magnetic pole shape force facing the rotor of each phase is also arranged to the other end.
  • the rotation rate of the stator magnetic pole magnetic flux is maximized.
  • Fig. 37 and Fig. 38 are examples that are not as extreme as in Fig. 41, and the size of the stator magnetic poles of each phase in the rotor axial direction is about half the size of the entire motor in the rotor axial direction.
  • FIG. 38 is a longitudinal sectional view of the stator.
  • the horizontal direction is the rotor axial direction
  • the vertical direction is the radial direction of the motor.
  • 54SS is the tip of the tooth facing the rotor of the stator pole 54S in FIG. 37
  • BY is the back yoke of the starter
  • 54SB is the tooth that passes the magnetic flux from the tip 54SS of the tooth to the back yoke BY.
  • the motors of the configurations of FIGS. 37 and 38 are simply logically opposed to the rotor surfaces more effectively, and the rotation angle change rates of the stator magnetic pole magnetic fluxes are also different. It can be said that the structure is large. In particular, in a region where the surface magnetic flux density of the rotor is smaller than 1 Tesla (1T), for example, and the drive current of the motor is relatively small, the rotor can be driven effectively.
  • 1T 1 Tesla
  • the stator poles of each phase are adjacent and close to each other, and the arrangement is such that leakage magnetic flux is easily generated between stator magnetic poles in which the magnetomotive forces of the respective windings are different from each other, which is a problem.
  • the cross-sectional area of the tooth 54SB portion as a magnetic path is smaller than the area facing the rotor of the tooth tip 54SS. ⁇ .
  • the above-mentioned leakage magnetic flux also overlaps, which is problematic in that magnetic saturation is likely to occur at various points between the tooth tip and the back yoke.
  • FIG. 71 An example of a motor having three-phase stator magnetic pole groups shown in FIG. 71 will be described.
  • Reference numerals 711 and 714 denote A-phase stator poles.
  • 712 is a B-phase stator pole, and 713 is a C-phase stator pole.
  • the rotor is not shown, various types of rotors can be applied.
  • the rotor is a surface magnet type as shown in FIGS. The shape of the surface of the stator magnetic pole in FIG.
  • the length of the motor core in the axial direction of the rotor is MT so that the rotational angle change rate of the magnetic flux passing through the stator magnetic pole can be increased.
  • the axial length MS is larger than MTZ3. This is a device that increases the rotation angle change rate d ⁇ / ⁇ of the magnetic flux ⁇ that passes through the stator magnetic pole, and increases the winding induced voltage and the generated torque of the motor.
  • the configuration in FIG. 71 in which the length of the stator magnetic pole in the rotor axial direction is slightly smaller than 1Z3 of the motor core in the rotor axial direction is more advantageous than the configuration in FIG.
  • Stator magnetic poles are arranged in many portions of the surface where the stator and the rotor face each other. In the six-phase example, about half of the space is not used in the example in FIG. 22, but in the example in FIG. 37, the stator poles are arranged in more parts, and the arrangement in FIG. 71 is similar to that in FIG. Similar arrangement of stator poles.
  • Two windings are arranged between each stator magnetic pole, and the shape of the winding is a wave-like shape in synchronization with the unevenness in the rotor axial direction of the stator magnetic pole of each phase.
  • three-phase alternating current is applied to each winding in synchronization with the rotor to drive the motor.
  • the winding 71A is energized with I shown in (a) of FIG.
  • I is sent to the shore line 716, I is sent to the shore line 717 ⁇ — I, I is sent to the shore line 718, and the shore line 719 ⁇ — I is sent.
  • the voltage at both ends when the wire 71A and the wire 715 are connected in reverse series is Fig. 72 (b) V, ⁇ wires 716 and 717 are connected in reverse series, and the voltage at both ends is V, ⁇ wire 718
  • the motor shown in Fig. 73 integrates two windings between the stator poles of the motor shown in Fig. 71 into one winding, and the current obtained by arithmetically adding the two currents to the winding. It is a motor that is energized. Therefore, the current I shown in (a) of Fig. 74, the current I to the negative line 732, the current I to the negative line 733, to the negative line 731 I
  • each feeder is the voltage shown in (b) of Fig. 74.
  • the voltage of feeder 731 is V / 2
  • the voltage of the wire is an unbalanced three-phase voltage.
  • the voltage between the three terminals when three wires are star-connected is a three-phase balanced voltage with the same amplitude as V, V, and V.
  • This motor can be ideally driven by a normal three-phase inverter that controls three-phase AC voltage and current.
  • Sections 3DB to 3DB shown in FIG. 73 are shown in FIG. 75, which show the shape of the stator magnetic pole, the shape of the winding, and the electromagnetic characteristics.
  • BY is the stator back yoke
  • 712 is the B phase teeth.
  • MT is the length in the rotor axial direction of the motor core
  • MS is the length in the rotor axial direction of the B-phase teeth 712
  • MJ is the length in the axial direction of the magnetic path from the tip of the B-phase stator pole to the back yoke BY That's it.
  • the shape from the tip of the B-phase stator pole to the back yoke BY is the same shape
  • the MS and MJ are the same size.
  • MS can be made larger than the example in Fig.75.
  • the magnetic path 54SB which is a part of the teeth in Fig. 38, is about 1Z4 of the rotor axial length WDX of the tip of the stator magnetic pole.
  • the configuration in Fig. 75 has a sufficiently large magnetic path size MJ in the rotor axis direction. Since the cross-sectional area of the magnetic path through which the magnetic flux passes through the stator pole is large, the problem of magnetic saturation of the soft magnetic material has been eliminated. Therefore, it can be said that the motor having the configuration of FIG. 75 is a motor capable of obtaining a large torque by flowing a large current.
  • a sufficient magnetic path cross-sectional area is secured for the A-phase stator magnetic pole 714 located at the back, and the C-phase magnetic path cross-sectional area is similarly set to a sufficiently large magnetic path cross-sectional area.
  • 731B is a cross section of the winding wire 731
  • 732B is a cross section of the winding wire 732
  • 733B is a cross section of the winding wire 733
  • each winding wire shows an example in which a flat conductor is wound three turns.
  • each part of the winding 732 is a combined current of an eddy current as indicated by an arrow 762 and a phase current passed through the winding 732.
  • the winding shape of each phase is not limited to the shape as shown in Fig. 75. If each winding is located up to the vicinity of the opening of the stator magnetic pole, V, the stator poles of other phases There is an effect of reducing leakage magnetic flux.
  • the extreme stator magnetic pole shapes such as the stator magnetic pole shapes of Fig. 41 or Fig. 38 and Fig. 75 have been described.
  • a motor having an intermediate arrangement and configuration thereof can also be realized.
  • the B to F phase stator magnetic pole shapes are the force that the stator magnetic pole protrudes from both centers in the rotor axial direction and extends, and the A phase stator magnetic poles at both ends of the rotor axial direction.
  • stator shaft Stator magnetic poles arranged at both ends of the direction are directed toward the center of the stator, and need to protrude (extend) approximately twice as much as the stator magnetic poles of the other phases. For this reason, the amount of magnetic flux at the protruding portion increases, and there is a problem of magnetic saturation of the soft magnetic material.
  • the force due to the shape of the stator magnetic pole In this respect, the fact that the stator magnetic pole of the same phase is separated at both ends in the rotor axial direction has a significance in the magnetic path configuration.
  • FIG. 1 shows the connection of the winding of the motor of the present invention and the method of applying voltage and current by the control device.
  • the interlinkage magnetic flux varies greatly depending on the arrangement of the winding, so specifically, the induced voltage of the winding varies.
  • there is a specific wire connection method and voltage current drive method is a method in which each winding is driven independently by a driving circuit as shown in FIG.
  • FIG. 77 The arrangement of stator poles and windings in FIG. 77 is a five-phase motor compared to a six-phase motor in the seven stator pole groups in FIGS.
  • the five-phase motor is similar to the four-phase motor and the six-phase motor, but there are many specialities and differences in configuration and characteristics due to the fact that 5 is an odd number. There is.
  • FIG. 77 is a diagram in which the circumferential shape of each stator magnetic pole and each winding wire facing the rotor is developed in a straight line.
  • the horizontal axis indicates the rotational angle in the circumferential direction as an electrical angle, and the vertical axis Indicates the direction of the rotor axis, and current vectors A, + B, 1B, + C, etc. for each winding are appended.
  • 751 and 756 are phase A
  • 752 is a B-phase stator pole
  • 753 is a C-phase stator pole
  • 754 is a D-phase stator pole
  • 755 is an E-phase stator pole.
  • Reference numeral 757 denotes a loop-shaped shoreline, and in the vector diagram shown in FIG.
  • ⁇ wire 758 is + B phase current
  • ⁇ wire 759 is B phase current
  • ⁇ wire 75A is + C phase current
  • ⁇ wire 75B is C phase current
  • ⁇ wire 75C is + D phase current
  • the lead 75D is energized for the D phase
  • the lead 75E is for the + E phase
  • the lead 75F is for the E phase.
  • each current vector is appended for easy understanding. From the vector relationship in Fig. 78, it can be driven by a 5-phase inverter with a 5-phase delta connection. In addition, each vector in Fig. 78 can be rewritten as shown in Fig. 79, and can be driven by a 5-phase inverter by star connection.
  • FIGS. 1-10 An example of a motor that improves the shoreline coefficient by changing the arrangement of the shoreline is shown in FIGS.
  • the specific arrangement of the winding line is as follows.
  • B s current flows through winding 80B that sandwiches B-phase stator pole 752 and C-phase stator pole 753 in the direction.
  • a + C current is passed through winding 80A and a C current is passed through winding 80D for s s.
  • a vector (C ⁇ B) current is passed between the stator poles 753 of the phase and the same electromagnetic effect as in the case of the motor windings 759 and 75A in FIG. 77 is obtained.
  • the current of vector B flows to the shoreline 80B, and the current of vector + D flows to the shoreline 80C.
  • a vector (DC) current was passed between the stator pole 753 and the D-phase stator pole 754, and the same electromagnetic effect as in the case of the motor windings 75B and 75C in Fig. 77 was obtained.
  • a current of vector—C flows through the winding 80D, and a current ss of vector + E flows through the winding 80E.
  • a vector (E is generated between the D-phase stator pole 754 and the E-phase stator pole 755.
  • the current of D was passed, and the same electromagnetic effect as in the case of the motor windings 75D and 75E in Fig. 77 was obtained.
  • the current of vector — D is sent to the shoreline 80F and s to the shoreline 80G.
  • Fig. 83 shows an example of the motor of the present invention.
  • the motor of FIG. 83 integrates the A-phase stator magnetic pole 756 of FIG. 80 with the stator magnetic pole 751 to form 831 of FIG. 832 is a B-phase stator pole, 833 is a C-phase stator pole, 834 is a D-phase stator pole, and 835 is an E-phase stator pole.
  • Each winding 837, 838, 839, 83A, 83B, 83C, 83D, 83E is the same as each winding shown in Fig. 80. Both the voltage, current and current are equivalent to the stator pole 756 in Fig.
  • winding wire 83F and the winding wire 83G are disposed outside the stator core, and can hardly be omitted because they do not substantially affect the motor in generating the torque of the motor.
  • the current vector of each shoreline is the vector shown in Fig. 84, and the s current of D corresponding to shoreline 83F and the + A current corresponding to shoreline 83G are no longer required. Others are the same as the relationship in Fig. 81. It is the same.
  • connection of each winding of the motor in Fig. 83 is the case where two windings in which the same current flows in the opposite direction across two stator magnetic poles are connected in series in the opposite direction to form a star connection.
  • Figure 85 shows the connection.
  • the shoreline in Fig. 85 is 36 ° out of phase with the two lanes of the shoreline 83F and 83G compared to the shoreline in Fig. 82.
  • the star connection terminals TA, TB, TC, TD, TE have the same voltage amplitude, current amplitude, and relative phase of each phase.
  • the potential at the center point NN of the star connection is the average voltage of the five terminals.
  • the currents in the reverse phase in such a state flow in opposite directions across the two stator magnetic poles.
  • the current of each winding generates a synthetic magnetomotive force that is efficient
  • the voltage amplitude is the same
  • the phase is 72 ° with a phase difference of 72 °.
  • star connection can be used to control and drive the five-phase current of each winding.
  • the connection can be changed to a delta connection.
  • the voltages of the individual windings shown in FIGS. 77 and 80 have different phases and amplitudes depending on the slot in which the winding is placed, as shown in FIG.
  • the voltages across the two sets of two-wires connected in anti-series with the two stator magnetic poles interposed therebetween are balanced five-phase voltages having the same amplitude and different phases by 72 °.
  • N is an odd number, and there are N phase stator magnetic pole groups, and a plurality of looped windings are formed between the stator magnetic pole groups.
  • Motors with can reduce the winding coefficient by the wiring method and can be operated efficiently.
  • each winding voltage is not a balanced N-phase voltage, but (N-1) windings
  • N-1 windings As shown in Fig. 93 (a), balanced N-phase voltage and current drive by N terminals between the star connection and the center point by. Also, as shown in Fig. 93 (b), balanced N-phase voltage and current drive with N terminals can be achieved by delta connection with one wire missing from (N-1) wires.
  • the method of driving with the voltage and current on the motor winding is controlled and driven individually, N-phase driving by star connection, N-phase driving by delta connection, and their changes. There are driving methods etc.
  • Two wires can be connected in series with the current direction aligned to form a three-phase star connection, which can be controlled by a three-phase inverter.
  • phase type N of the stator magnetic pole group is an odd number of 5 or more, as described in the motor configuration of FIGS. 77 and 80, N sets of star windings connected and configured according to a certain rule It is possible to construct an N-phase multiphase balanced network and drive it with an N-phase balanced AC inverter.
  • the central connection portion is the average voltage of the terminals of each star connection, and the potential is stable or stable. Then, if the part of the winding wire where the potential is stable is used as the start of winding the winding wire to the motor iron core, the potential fluctuation between the winding wire and the iron core is reduced, and the floating between the winding wire and the iron core is reduced. Leakage current based on capacity is reduced, and problems such as electromagnetic interference can be reduced.
  • the above-described feeder can be connected as a delta connection and controlled by a multiphase AC inverter.
  • a loop current flows in the delta connection, and a motor design that does not generate a motor imbalance component, an imbalance in manufacturing, an imbalance in control of the inverter, etc. occur.
  • the star connection is usually used in many cases.
  • FIG. 86 shows an example of the motor of the present invention.
  • 861 and 865 are A-phase stator poles
  • 862 is a B-phase stator pole
  • 863 is a C-phase stator pole
  • 864 is a D-phase stator pole
  • 865 is a B-phase stator pole.
  • Reference numerals 867, 869, 86B, 86D, and 86F denote windings between the stator magnetic poles.
  • the vector of the current that should flow through each shoreline is B-A, C-B, D-C, E-D in Fig. 79. , A—E.
  • the voltages of the wires are V, V, V, V, and V, as shown in Fig. 88 (36) and (40).
  • V -VV XXssiinn (( ⁇ 0 ⁇ r)) // 22 "-(36)
  • the terminal voltage of each star connection is V, V, V, V, V in Fig. 89. That means
  • FIG. 881 denotes an A-phase stator magnetic pole, which is formed by integrating the A-phase stator magnetic pole 866 in FIG. 882 is the B-phase stator pole, 8 83 is a C-phase stator pole, 884 is a D-phase stator pole, and 885 is an E-phase stator pole.
  • the current shown by vector B—A in FIG. 91 and FIG. 92 is applied to the saddle line 887, the current indicated by vector CB is applied to the saddle line 889, the current indicated by vector D—C is applied to the saddle line 88B, and 8 8D.
  • the current indicated by the vector E-D is applied to.
  • the current I indicated by the vector A-E in Fig. 91 and Fig. 92 need not flow directly to the motor. However, each shoreline is shown as (a
  • V V -V Xsin ( ⁇ -72 °) --- (52)
  • V V -V Xsin ( ⁇ -144 °) '(53)
  • V V -V Xsin (0r-216 °) "-(54)
  • V (V + V + V + V +0) / 5
  • each winding is connected as shown in Fig. 93 (a), and the potential V at the center point NN is
  • V -V ('56)
  • Each voltage, including V, is the balanced five-phase voltage shown in Fig. 96.
  • V V V V V V becomes a balanced five-phase voltage.
  • FIG. 97 shows an example in which the arrangement of the stator magnetic poles of the five-phase motor of the present invention is a more realistic shape.
  • Fig. 97 is in principle the same relative positional relationship as the motor of Fig. 86. However, the shape, arrangement, etc. are greatly different and the characteristics are greatly different.
  • 951 and 956 are A-phase stator poles
  • 952 is a B-phase stator pole
  • 953 is a C-phase stator pole
  • 954 is a D-phase stator pole
  • 955 is an E-phase stator pole.
  • the current indicated by the vector CB is applied to the shoreline 958
  • the current indicated by the vector D—C is applied to the shoreline 959.
  • the current indicated by the vector ED is passed to 95 A, and the current indicated by the vector AE is sent to the winding 95B.
  • FIG. 97 indicates the rotor axial direction
  • BY is the stator back yoke
  • the length in the rotor axial direction is MTY
  • the length of the B-phase stator pole 957 facing the rotor MSY is larger than MTYZ 5, 2 x MTYZ5 in Figs. 97 and 98 Bigger than.
  • the magnetic path thickness MJY from the vicinity of the rotor surface of the stator magnetic pole 957 to the back yoke BY is the same as the MSY of the stator magnetic pole tip, so that magnetic saturation is unlikely to occur. It is more than twice as large as the magnetic path 54SB in Fig. 38.
  • the windings 958, 959, and 95A in Fig. 98 are arranged up to the opening part facing the rotor of the stator pole, and the other phase The arrangement structure is such that leakage flux between the stator magnetic poles is less likely to occur.
  • Each winding is similarly arranged between the stator magnetic poles of each phase shown in FIG. 97, so that the leakage magnetic flux between the stator magnetic poles of the other phases is reduced as much as possible.
  • the winding is in the shape of a winding with irregularities in the rotor axial direction, and has the structure shown by the winding in FIG. 76, and the same effect can be obtained.
  • a motor having a structure as shown in FIGS. 97 and 98 a large peak torque can be obtained.
  • FIG. 1 changes the 5-phase motor in Fig. 86 to 4-phase.
  • A21 and A25 are A-phase stator poles
  • A22 is a B-phase stator pole
  • A23 is a C-phase stator pole
  • A24 is a D-phase stator pole.
  • the current indicated by the vector B—A in Fig. 100 is applied to the ⁇ line A27
  • the current indicated by the vector C—B is applied to the ⁇ line A29
  • the current indicated by the vector DC is applied to the ⁇ line A2B
  • the current indicated to the ⁇ line A2D Is supplied with the current indicated by the vector A-D.
  • Fig. 101 is a diagram in which each winding is star-connected.
  • the voltage of each winding is not constant as in the case of Fig. 88 with five phases, but the voltage between terminals is balanced. 4 phase voltage.
  • the sum of the currents of the constraint force lines is only zero, and control such as adding harmonic components to the current of each phase is possible.
  • Such an improvement cannot be realized by the method of constructing two sets of windings in which the windings having a phase difference of 180 ° among the windings in FIG. 99 are connected in reverse series.
  • the arrangement and structure of each stator pole and winding can be changed as shown in FIGS.
  • FIGS. A41 is an A-phase stator magnetic pole, and has a shape in which the A-phase stator magnetic pole A21 in FIG. 99 is integrated with A25.
  • A42 is the B-phase stator pole
  • A43 is the C-phase stator pole
  • A44 is the D-phase stator pole.
  • the current shown by vector B-A in Fig. 100 is fed to the shoreline A47
  • the current shown by vector CB is fed to the shoreline A49
  • the current shown by vector DC is sent to the shoreline A4B.
  • the current I shown by the vector AD in Fig. 91 and Fig. 92 need not flow directly to the motor. But each kite
  • the copper loss can be reduced because only one wire is needed. Assuming that the wires are arranged in the same space, the wire resistance value is 3Z4, and the resistance itself is reduced from 4 to 3, so the total copper loss can be reduced to 9Z16. Also, the arrangement and structure of each stator pole and winding can be modified as shown in Fig. 97 and Fig. 98. it can.
  • FIG. A61 is an A-phase stator pole
  • A62 is a B-phase stator pole
  • A63 is a C-phase stator pole
  • A64 is a D-phase stator pole.
  • the shoreline A49 in Fig. 102 is separated into two shorelines A69 and A6B.
  • the star connection is as shown in Fig. 105.
  • the current indicated by the vector B—A in FIG. 100 is fed to the shore line A67, the current having the phase indicated by the vector C B is passed to the shore lines A69 and A6B, and the current indicated by the vector D—C is passed to the shoreline A6B.
  • the number of turns on the windings A69 and A6B is 1Z2 which is the number of turns on the other windings, and the voltage amplitude can be balanced. Further, the arrangement and structure of each stator magnetic pole and winding can be modified as shown in FIGS.
  • FIG. 28 Another example of the present invention is shown in Figs.
  • This arrangement configuration of the stator magnetic poles is an example in which the configuration configuration of the six-phase stator magnetic poles shown in FIG. 28 is converted into four phases, and two windings between the stator magnetic poles are formed as shown in FIG. A81 is the A-phase stator pole, A82 is the C-phase stator pole, A83 is the B-phase stator pole, and A84 is the D-phase stator pole.
  • A81 is the A-phase stator pole
  • A82 is the C-phase stator pole
  • A83 is the B-phase stator pole
  • A84 is the D-phase stator pole.
  • the windings A87 and A88 are integrated into a single winding and the current of the vector CA shown in Fig. 107 (b) is energized, and the windings A89 and A8A are integrated into a single winding. Then, the current of vector B—C shown in (b) of Fig. 107 is energized, and the currents of vector D–B shown in (b) of Fig. 107 are integrated by integrating the windings A8B and A8C into one winding. May be energized. In that way, the copper loss can be reduced to about 5Z6.
  • the arrangement configuration of the stator magnetic poles and the winding shown in FIG. 108 is an improvement of the arrangement configuration of FIG. AA1 is the A-phase stator pole, AA2 is the C-phase stator pole, AA3 is the B-phase stator pole, and AA4 is the D-phase stator pole.
  • the stator magnetic poles are arranged on almost the entire surface facing the rotor.
  • the wire AA9 is the number of times of 1Z2 of the wires AA7 and AAB, and 2 X (B—C) A current corresponding to the vector D is fed, and a current corresponding to the vector D—B is fed to the shoreline AAB.
  • the total current of the three currents of the three feeders can always be made zero. This is the relationship between vectors C—A, D—B, and 2 X (B—C) in Fig. 110 (a).
  • a star connection as shown in FIG. 111, a three-phase inverter can be used.
  • TE, TG, and TF are star connection terminals.
  • FIG. 110 (b) An example of the voltage of each feeder line is the characteristic shown in Fig. 110 (b), where E is the voltage of the feeder line AA7 and G is the feeder line AAB.
  • the voltage of the winding AA9 is such that the current 2 X (B—C) flows so that the magnetic flux does not interlink with this winding, so the voltage generated at the time rate of change of the magnetic flux is basically zero.
  • F of Fig. 110 (b) there is a slight amount of voltage generated due to the voltage drop of the winding resistance and the time change rate of the leakage flux. Since the voltage is approximately three-phase and the sum of the currents at the three terminals becomes zero, driving with a three-phase inverter is possible.
  • Fig. 110 (b) the voltage across the terminals of the three terminals TE, TG, and TF in such a state is as shown in Fig. 110 (b) to 2: 2: 2.828, which is a balanced three-phase relationship. It is not an AC voltage.
  • Fig. 112 and Fig. 113 show how to use three-phase AC voltage and current more efficiently.
  • the current vector is a three-phase vector with a differential force of ⁇ 120 ° between ⁇ 21, ⁇ 22, ⁇ 23, and ⁇ 24 ⁇ .
  • Vector C—— is composed of vectors B21 and ⁇ 22.
  • Vector D—B is composed of vectors B23 and B24.
  • the vector B25 has the same amplitude as the vectors B21 and B23 on the connection in FIG. As a result, it is necessary to recalculate the number of times of wrinkles in FIG. 111 so as to meet the current beta in FIG.
  • the number of times of line B31 and B33 is 0.85 times the number of times of line AA7
  • the number of times of lines 82 and 84 is about 0.3 times
  • the number of times of line 9 is 0.886 times.
  • the currents at terminals TE, TF, and TG in FIG. 113 are three-phase balanced AC, and can be efficiently operated and driven by a three-phase inverter.
  • each shoreline is B31 and B32 instead of shoreline AA7, B35 instead of shoreline AA9, and B33 and B34 instead of shoreline AAB. Arrange it.
  • a feeder configuration as shown in Fig. 103 is also possible. In this case, a 4-phase inverter is required.
  • the cross sections 4GD to 4GD of the stator magnetic poles in FIG. 108 have the shapes shown in FIG.
  • One of the differences of this motor from the motor shown in FIG. 106 is the shape of the stator magnetic pole on the surface facing the rotor.
  • BY is the stator back yoke
  • the length in the rotor axial direction is MTZ.
  • the length of the B-phase stator pole AA1 facing the rotor MSZ is larger than MTZZ4.
  • the magnetic path thickness MJZ from the vicinity of the rotor surface of the stator magnetic pole A A1 to the back yoke BY is the same as the MSZ at the tip of the stator magnetic pole, so that magnetic saturation is unlikely to occur.
  • the magnetic path width of the stator magnetic pole 144 in Fig. 29 is at least twice as large as the WDT. Also, between the B-phase stator pole and the D-phase stator pole, the windings AA7, AA9, and AAB in Fig. 109 are arranged up to the opening that faces the rotor of the stator pole, and the other-phase stator pole It has an arrangement structure in which magnetic flux leakage between the two is difficult to occur.
  • Each winding is similarly arranged between the stator magnetic poles of each phase shown in FIG. 108 to reduce the leakage magnetic flux between the stator magnetic poles of the other phases as much as possible.
  • the shoreline has a shoreline shape with irregularities in the rotor axis direction, that is, the structure shown by the shoreline in FIG. 76, and the same effect can be obtained.
  • the shape of the stator magnetic poles in Fig. 108 is close to a rectangle, and a special shape is shown in the figure. It can be transformed into various shapes.
  • the shape of each stator pole shown in FIG. 10 8 is rectangular because of the material and the convenience of manufacturing using magnetic steel sheets. It is easier to punch and manufacture electromagnetic steel sheets and to laminate magnetic steel sheets.
  • the powder magnetic core is manufactured by press molding using a mold, it is more convenient for press molding to have a curved shape as shown in Fig. 108, which increases the flexibility of the stator magnetic pole shape. .
  • Each wire 61, 62, 63, 64, 65 in FIG. 35 is the star connection in FIG. 115, and there are 6 terminals Ta, Tb, Tc, Td, Te, TN including the center point ⁇ .
  • Ia, Ib, Ic, Id, and Ie are flown through the shore lines, and In flows into terminal TN. Then, the voltage of each line becomes Va, Vb, Vc, Vd, Ve in Fig. 117, and the value obtained by dividing the five voltages and dividing by 6 becomes Vn. Then, when Vn is the potential at the center point NN of the star connection, the potential of each terminal is obtained as Van, Vbn, Vcn, Vdn, Ven, and Vnn in FIG. As a result, it was shown that the motor shown in FIG. 35 can be driven efficiently by applying six-phase voltage and current to the six terminals of the star connection shown in FIG. And a 6-phase inverter can be used to drive it.
  • each of the stator magnetic poles in FIG. 35 is also moved in the circumferential direction by 30 ° in terms of electrical angle by 120 ° in electrical angle and the three phases of the stator magnetic pole group having different phases.
  • both the three-phase current and the three-phase stator magnetic poles are changed. However, even if only one of them is changed, a corresponding effect can be obtained.
  • the motor shown in Fig. 27 is a motor in which the stator magnetic pole groups adjacent in the rotor axial direction have a phase difference of 180 ° with each other. There are six types of phase differences between the electrical angles of 360 °. I'm getting angry. Two windings are respectively arranged between the stator magnetic pole groups. These two windings are integrated into one winding, the current values passed through the two windings are arithmetically added, and an equivalent current is produced by flowing the added current. realizable. At this time, the copper loss is reduced except when the two kinds of current values are flowed at the same phase and the same current density, and the efficiency can be improved.
  • the force that writes a diagram in which a part of the stator magnetic pole is enlarged in the direction of the rotor axis in broken lines from the stator magnetic poles in Fig. 27 is enlarged as shown in 140 and 141 in Fig. 29. can do.
  • the entire tooth can protrude in the rotor axial direction, and the intermediate shape between FIGS. 29, 108, and 109 can be obtained.
  • the example of the stator magnetic pole in FIG. 27 is an example in which the number of phases N is 6, but a similar shape can be formed when N is an even number of 4 or more.
  • the motor shown in Fig. 28 is an example in which the stator magnetic poles at both ends in the rotor axial direction of the motor of Fig. 27 are integrated on one side, and two windings between the stator magnetic poles are integrated into one winding. is there.
  • the number of windings between the stator magnetic poles can be two.
  • Fig. 106 and Fig. 107 are examples of the four phases. Wires A88 and A89 through which current of the same phase flows are made in reverse series, wire A8A and wire A8B are made in reverse series, and other wires A87 A8C and 4 types of star wire connection, and a 4-phase inverter can drive well-balanced.
  • FIG. J1C is the rotor shaft, and is a cross-sectional view of the left half of the rotor shaft.
  • Two rotor forces are magnetically separated on the rotor, Jl l ⁇ Jl 2 is the first rotor and its permanent magnet, and J13iJ14 is the second rotor and its permanent magnet.
  • each permanent magnet has N and S poles arranged alternately on the circumference.
  • J25 is the A-phase stator pole
  • J26 is the C-phase stator pole
  • J27 is the B-phase stator pole
  • J28 is the D-phase stator pole.
  • J29 is a loop that is arranged so that the A-phase and C-phase magnetic fluxes are interlinked.
  • the winding line, J2A is a looped winding line arranged so that the B-phase and D-phase magnetic fluxes are linked.
  • J2B is a spacer for separating magnetically between both stator cores and is a non-magnetic material.
  • the magnetic path J2C passes the C-phase magnetic flux ⁇ C, and the magnetic path J2D passes the magnetic flux ⁇ B.
  • the electromagnetic arrangement relationship is the same as in Figs. 106 and 108, although the shapes are different, and it has a structure that does not require a shoreline corresponding to shoreline A89, A8A, or AA9. Therefore, copper loss can be reduced and the size can be reduced.
  • the stator core and the winding shown in FIG. 121 can be deformed as shown in FIG. 108, and higher torque can be realized.
  • both the rotor and the stator side are magnetically separated in the rotor axial direction. If one side of the stator and the stator is separated, the two rotors and the stator can act electromagnetically independently.
  • FIG. 122 shows a structure in which the rotor side is magnetically separated, and the stator side has a structure in which the spacer J2B is eliminated and the two stators are in close contact with each other.
  • J15 is the A-phase stator pole
  • J16 is the C-phase stator pole
  • J17 is the B-phase stator pole
  • J18 is the D-phase stator pole.
  • the magnetic path J1B passes the C-phase magnetic flux and the B-phase magnetic flux ⁇ ⁇ , and () and () 8 are different in phase by 5 °.
  • the magnetic path can be reduced to 0.707. Therefore, the motor can be miniaturized.
  • the stator core and the winding wire in FIG. 121 can be deformed as shown in FIG. 108, and higher torque can be realized.
  • FIGS. 123 and 124 illustrate a six-phase motor having a structure in which the rotor side is magnetically separated into three parts, and the core on the stator side is connected to the core of each phase at the back yoke.
  • B31 is the A-phase stator pole
  • B32 is the D-phase stator pole
  • B33 is the F-phase stator pole
  • B34 is the C-phase stator pole
  • B35 is the E-phase stator pole
  • B36 is the B-phase stator pole .
  • K6D and K61 are the first rotor and its permanent magnet
  • K6E and K62 are the second rotor and its permanent magnet
  • KF6 and K63 are the third rotor and its permanent magnet.
  • a phase magnetic flux passes through magnetic path KJ6, and B phase magnetic flux passes through K6K.
  • the magnetic path K6G arranged inside the stator is arranged so that the D-phase and F-phase magnetic fluxes pass through it, and the phase difference between these two magnetic fluxes is increased.
  • the electrical angle is 120 °, and the sum of the D-phase and F-phase fluxes is the same as the one-phase flux. Therefore, the magnetic flux of two phases passes through K6G.
  • the magnetic path through which the A-phase magnetic flux passes should be the same thickness as K6J. The same applies to the magnetic path K6H.
  • FIG. B51 is an A-phase stator pole
  • B52 is a C-phase stator pole
  • B53 is an E-phase stator pole
  • B54 is a B-phase stator pole
  • B55 is a D-phase stator pole.
  • FIG. 126 is a diagram showing vectors such as current and magnetic flux
  • A, B, C, D, and E are vectors representing the basic five phases.
  • the current of the vector C—A flows through the shore line B57
  • the current of the vector E—C flows through the shore line B59
  • the current of the vector B—E flows through the shore line B5B
  • the current B5D flows through the shore line B5D.
  • D — B vector current is applied.
  • the current of vector AD flows through the center NN.
  • the relationship between the feeders is the same as that shown in FIGS. 90 to 96, and the 5-phase inverter can be operated efficiently. Since the phase difference between adjacent stator magnetic poles is 144 °, it is easy to enlarge the stator magnetic poles facing the rotor surface as shown by the broken lines in FIG. 157, and a larger torque can be generated. Togashi.
  • a 5-phase motor having 6 stator poles and 5 windings can be realized.
  • the stator core and the winding shown in FIG. 121 can be modified as shown in FIGS. 108 and 109, and higher torque can be realized.
  • FIG. B91 is an A-phase stator pole
  • B92 is a B-phase stator pole
  • B93 is a C-phase stator pole
  • B94 is a D-phase stator pole
  • B95 is an E-phase stator pole
  • B96 is an F-phase stator pole.
  • the rotor uses two magnetically insulated rotors as shown in FIG. B91, B93, and B95 constitute one three-phase motor, and B92, B94, and B96 constitute another motor, and the two motors are combined.
  • B97 in the vector diagram of Fig.
  • the current represented by the CA vector flows, the current represented by the E-C vector flows to the shoreline B98, the current represented by the FB vector flows to the shoreline B99, and the current to the shoreline B9A Passes a current represented by the vector D—F.
  • two motors shown in FIGS. 1, 2, and 7 are driven in parallel. Since these two motors are relatively out of phase by 60 °, it is possible to construct a motor having the characteristics of a six-phase motor and reduced torque ripple.
  • the abbreviated shoreline and current are vector currents of D ⁇ B and F ⁇ B, which are just in the opposite directions and are offset.
  • the magnetomotive force generated in the rotor axial direction is zero due to the total current, so no magnetomotive force is generated in the rotor axial direction and the surrounding iron powder is adsorbed without fear of magnetism of motor peripheral components.
  • the problem to do is also solved.
  • Fig. 125 the arrangement configuration of the five-phase motor is explained.
  • the seven-phase stator poles of A, B, C, D, E, F, and G are arranged.
  • the electrical angular width of 1 phase is 51.43 °, close to 180 °! /
  • a method of arranging them in the rotor axial direction is good. With such a configuration, it is possible to increase the torque generated by each stator magnetic pole, and it is relatively easy to arrange loop-shaped windings that are uneven in the axial direction of the rotor.
  • FIG. 130 shows an example of the motor of the present invention.
  • the various motors of the present invention do not have the stator poles of each phase arranged on the same circumference, so there is a possibility of generating torque ripple for several reasons.
  • the cause is due to the order in which the stator magnetic poles of each phase are arranged, and due to the difference in conditions between the rotor axial ends and rotors other than both ends.
  • the harmonic components can be canceled by dividing the circumferential direction into a plurality of parts and exchanging them.
  • FIG. 130 shows a structure in which the stator magnetic poles and windings of the motor shown in FIG. DDI is the A-phase stator pole and DD2 is the C-phase stator pole.
  • DD9 and DDB are Theta magnetic pole
  • DDA is the C-phase stator magnetic pole.
  • DD3 is a B-phase stator pole
  • DD4 is a D-phase stator pole
  • DD5 and DD7 are B-phase stator poles
  • DD6 and DD8 are D-phase stator poles.
  • the stator magnetic poles of each phase are arranged in the same phase in terms of electrical angle, but the relationship between the center portion of the stator and the end in the rotor axial direction is reversed. Specifically, the portion of the A-phase stator pole DD 1 that is rounded and close to the winding DDC is located at the center of the stator at the center of the stator. ing. By changing the position in the rotor axial direction in this way, the electromagnetic action at the rotor axial end of the rotor and the stator and the electromagnetic action at the center are canceled. As a result, torque ripple is reduced and stable torque output is possible.
  • torque ripple can be reduced by sequentially changing the arrangement of the A-phase, B-phase, and C-phase. .
  • the motor in combination with the stator shown in FIGS. 21, 22, 34, 35, 42, 43, etc. will be described.
  • Various types of rotors have different characteristics and characteristics, and are used for different purposes.
  • the surface magnet type rotors shown in FIGS. 21 and 22 have a structure in which the distribution of the approximate magnetic flux inside the motor is determined by the characteristics of the permanent magnets used.
  • the magnetomotive force generated by the motor has a small influence on the magnetic flux density of each part in the motor, so that the so-called magnet torque is large and the reluctance torque is small.
  • the magnetic pole width of the so-called concentrated winding stator as shown in Fig. 73 is about 120 ° in electrical angle, and it is difficult to create a sine wave-like magnetomotive force distribution in the circumferential direction. . Therefore, in the case of the rotor as shown in FIG. 14 to FIG. 17, sufficient reluctance torque may not be obtained. Also, cogging torque and torque ripple tend to increase. Also, There is also a problem that it is difficult to perform constant output control utilizing the magnetic characteristics of the soft magnetic part of the rotor.
  • the stator magnetic poles can be arranged with a relatively small discreteness of 60 ° in electrical angle in the circumferential direction.
  • the magnitude and phase of the winding current and the magnitude of the magnetomotive force it is possible to generate a smooth rotating magnetic field, which can be combined with a rotor as shown in Figs. 14 to 17 to obtain a large torque. it can.
  • constant output control as obtained with the stator shown in FIG. 74 can be realized by free magnetomotive force control according to the rotational position of the rotor.
  • the stator shown in Fig. 74 has a narrow slot opening, and the layout of the three-phase winding tends to be complicated, so the winding factor is low and the assembly of the winding is low. There is a problem that the coil end becomes long and the motor tends to be large.
  • the stator shown in FIG. 35 and the like of the present invention can reduce the copper loss because the amount of the winding can be reduced, and can be easily manufactured because the winding is a simple loop-shaped winding. Since there is no winding arranged in the axial direction as in the stator shown in Fig. 74, the multi-pole arrangement does not reduce the winding arrangement cross-sectional area. Since there is no end, the motor can be miniaturized.
  • the soft magnetic material an electromagnetic steel plate or a powder magnetic core obtained by applying electrical insulation to the surface of a powdered soft magnetic material and compacting it can be used.
  • a motor that is a combination of the stator shown in FIG. 35 and the like of the present invention and the rotor of a synchronous reluctance motor as shown in FIG. It should be noted that a permanent magnet may be inserted for the purpose of increasing the torque of the slit portion 58 of the rotor, which may be a non-magnetic material.
  • Figure 131 shows a cross-sectional view of the rotor.
  • Rotor magnetic poles are configured by laminating electromagnetic steel plates as shown in FIG. 131 (a).
  • D13 is a rotor shaft
  • D12 is a support member that supports each magnetic path of the rotor and is a non-magnetic material.
  • D11 is an electromagnetic steel sheet with a bent shape as shown in Fig. 132 (a), which is arranged parallel to the rotor shaft and is laminated with electromagnetic steel sheets of different shapes and sizes to form an 8-pole rotor magnetic pole. And The gap between the laminated electromagnetic steel sheets becomes a space, or a non-magnetic member is arranged, and the magnetic resistance between individual magnetic paths made of the electromagnetic steel sheets is increased to increase the rotor magnetic pole.
  • the nonmagnetic member may be arranged for each of a plurality of electromagnetic steel sheets, if there is a gap in the space.
  • the magnetic steel sheet having the shape shown in FIGS. 131 and 132 can pass the magnetic flux along the shape of the magnetic steel sheet even if the magnetic flux passes in the rotor axial direction.
  • the stator structure of the present invention has a convenient magnetic path shape.
  • improvements such as a method of increasing the number of electromagnetic steel sheets and an outer shape of the rotor surface having an arc shape for each magnetic pole can be performed. For motors using such reluctance torque, it is important to improve the motor profile in order to reduce torque clip.
  • D31 there is a method in which permanent magnets D31 and D32 in the direction shown in the figure are arranged on each stator magnetic pole. At this time, the direction of the magnet arranged on the magnetic pole in the opposite direction needs to be opposite.
  • the leakage flux in the laminating direction of the electrical steel sheets at a large current causes a reduction in the power factor and the torque is reduced, but these leakage fluxes can be reduced by adding a permanent magnet D31. There is an effect to compensate.
  • the permanent magnet D31 has an effect of actively supplying torque magnetic flux, and an increase in torque can be realized.
  • the permanent magnet D31 may be a short magnet disposed in a part between the electromagnetic steel sheets, like the permanent magnet shown by the force D32 shown as an example of insertion on almost the entire surface of the electromagnetic steel sheet.
  • the permanent magnet D31 may be a short magnet disposed in a part between the electromagnetic steel sheets, like the permanent magnet shown by the force D32 shown as an example of insertion on almost the entire surface of the electromagnetic steel sheet.
  • partial permanent magnets have a corresponding effect. It can be arranged according to the characteristics required for the motor, the manufacturability of the motor, the type and characteristics of the magnet.
  • the motor of the present invention in which the stator shown in FIG. 35 and the like and the rotor of the induction motor shown in FIG. 19 are combined will be described.
  • the conductor 170 is made by die-casting aluminum and a case where a copper bar is inserted into the slot. V, in both cases, the coil ends of each wire are short-circuited and are made so that induced current flows.
  • the secondary conductor of the rotor with a copper wire whose surface is insulated from the stator wire.
  • induction motors are widely used in the stator configuration shown in Fig. 74 and the rotor configuration shown in Fig.
  • the rotor shown in FIG. 57 has a structure in which guide wires 172 and 173 are added to the rotor shown in FIG.
  • guide wires 172 and 173 are added to the rotor shown in FIG.
  • the motor can be started and stopped by turning on and off the commercial power supply of 50 Hz and 60 Hz, and operating efficiently as a synchronous motor during normal operation Is possible.
  • 171 is a permanent magnet
  • 170 is a soft magnetic material.
  • the guide wires 172 and 173 can be added to the rotor shown in FIGS.
  • FIG. 58 shows a motor that solves this problem and reduces the secondary copper loss of the rotor.
  • the stator 176 shown in FIG. 58 is the same as the stator 14 shown in FIG.
  • the stator winding 177 shown in FIG. 58 can be deformed like the stator shown in FIG. 35, and heat generation at the stator winding can be reduced, and copper loss can also be reduced. It is.
  • the rotor shown in 58 is a rotor that is manufactured by reversing the inner and outer diameters of the stator structure shown in FIG. 34, and the windings 178 to 183 are short-circuited in a loop that energizes the secondary induction current of the induction motor. It is a shoreline.
  • the number of windings of the shoreline 178 to 183 can be freely selected up to multiple turns, and when this shoreline is made of aluminum die casting, it becomes a short-circuited shoreline of 1 turn.
  • a feature of the motor shown in FIG. 58 is that both the stator and the rotor have a configuration using looped windings. As described above, the amount of winding can be reduced, so copper loss can be reduced, and since the winding is a simple loop-shaped winding, it is easy to manufacture, and the stator shown in FIGS. In this way, there is no wire arranged in the axial direction, so there is no need to reduce the wire arrangement cross-sectional area due to multi-pole, so high torque can be achieved by multi-pole, and coil end is not! Therefore, it has features such as miniaturization of the motor. In particular, when the number of poles is increased, the rotor shown in FIG. 58 can reduce the copper loss on the rotor side by / J compared to the rotor shown in FIG.
  • the motor will be described.
  • the surfaces of these rotors include a soft magnetic material, which makes it easy to change the magnetic flux distribution of the rotor with the current of the stator, and the sine wave in the circumferential direction of the stator. It is a rotor with a structure that works effectively when a typical magnetomotive force distribution is applied.
  • the area distribution in the circumferential direction of the stator magnetic pole shape SPS on the inner circumference of the stator can be made closer to a sine wave distribution.
  • a magnetomotive force having a sinusoidal distribution can be applied in the circumferential direction of the rotor, and the rotor can be driven more effectively.
  • the rotor magnetic pole boundary portion has a shape in the radial direction of the rotor as shown in FIG.
  • the stator shown in Fig. 35 has a slightly complicated structure because it has a large number of force phases that are excellent in performance.
  • the structure shown in FIG. 35 with the three-phase stator and the stator magnetic pole shape SPS inner circumferential area distribution in the stator made a sine wave distribution in the circumferential direction makes the circumferential magnetomotive force distribution a sine wave. Therefore, the rotor shown in Fig. 14 to Fig. 19 and Fig. 57 can be driven effectively, and the stator can be simplified and effective driving can be realized, and both low cost and high performance can be achieved. Is possible.
  • stator structure shown in FIG. 35 is deformed into three phases and the stator magnetic pole shape SPS has the shape shown in FIG. 39.
  • the stator structure and each part shape are the same as those shown in FIG.
  • the inner peripheral surface shape SPS is the same as the shape shown in FIGS. 11 to 13 or the stator magnetic pole shape shown in FIG.
  • FIG. 187 is a stator arranged on the inner diameter side, and loop-shaped wires 189 to 194 are arranged inside the stator.
  • Each of these shorelines has two sets of looped shorelines in one slot! /, An example is shown! /, 1S 1S Integrate the shorelines as shown in each of the shorelines in FIGS. 34 and 35 It is also possible.
  • 186 is a bearing that supports the rotor and is rotatable, 185 is an output shaft of the rotor, and 203 is a rotor.
  • the shape of the permanent magnet fixed on the inner diameter side of the rotor and linearly developed in the circumferential direction has a shape like the permanent magnet 12 shown in FIG. 22 (b), although the inner diameter and the outer diameter are different.
  • the motor shown in FIG. 59 has the feature that the output can be increased in addition to the feature that the outer diameter side can be simply rotated. This is because an electromagnetic circuit can be effectively constructed up to the inner diameter side of the motor, so that the cross-sectional area of the winding 189 to 194 can be made wider than the winding 41 to 52 of the motor in FIG.
  • the permanent magnet 195 can be arranged on the outer diameter side compared to the permanent magnet 12 shown in FIG.
  • the outer rotor motor shown in Fig. 59 may cause problems depending on the intended use and the surrounding environment. For example, although the motor case is not shown in FIG. 59, there are applications where it is necessary, and some arrangements are required for the arrangement of the rotor bearings, and the rotor shaft rigidity is often lowered.
  • FIG. 60 shows an example of a motor obtained by deforming the cylindrical stator shown in FIG. 35 into a disk shape.
  • the stators 196 and 231 are arranged on both sides in the axial direction of the rotor 194 formed of permanent magnets.
  • Reference numeral 195 denotes a stator case made of a non-magnetic material.
  • 11 is a rotor shaft made of non-magnetic material, and 197 is a bearing.
  • Reference numerals 198 to 202 denote loop-shaped windings for each phase
  • FIG. 61 shows an arrangement view of the stator 196 as seen from the opposite side of the rotor shaft 11.
  • stator poles of each phase are arranged so as to have a relative phase difference of 60 ° in electrical angle.
  • the windings 198 to 202 of the stator 196 indicate the arrangement relationship with the same numbers in FIG.
  • the arrangement relation of the stator 231 with the anti-load side force of the rotor shaft 11 also viewed is the same as in FIG. Further, since each stator magnetic pole has a different distance from the motor center, the radial width is determined so that the stator magnetic poles have the same area.
  • Fig. 62 is an 8-pole rotor in which permanent magnets N pole 243 and S pole 244 are alternately arranged in the circumferential direction! / , Ru
  • the electromagnetic attraction force acting on the rotor 196 in the rotor axial direction also acts on both sides of the stators 196 and 231, so the attraction force is canceled out. Force is not generated.
  • the operation of the motor shown in Fig. 60 is such that stators 196 and 231 including each phase line are arranged, but the electromagnetic operation is the same as that of the stator of Fig. 35.
  • the stators 196 and 231 can be stators having different configurations.
  • one of the stators can be a soft magnetic disk that does not include a winding. It is also possible to arrange two rotors at the positions of the stators 196 and 231, and arrange the stator at the position of the rotor 196.
  • the number of phases and the number of poles can be freely selected, for example, the force described for the example of 6-phase and 8-pole, for example, the number of phases and the number of poles of 3 and 16 poles.
  • a flat and thin motor can be configured.
  • relatively large permanent magnets can be arranged, so the flux linkage to the winding can be increased and large torque can be generated. It is.
  • FIG. 63 shows an example of a motor in which two motors having the stator having the arrangement structure shown in FIG. 35 are assembled and combined.
  • the motor shown in Fig. 63 incorporates two motors on the upper and lower sides of the horizontal line indicated by the alternate long and short dash line.
  • FIG. 64 is a development view in which the inner peripheral side shape of the stator when the stator of FIG. 63 is viewed from the rotor side is developed linearly as in FIG.
  • the stator magnetic poles 67, 54, 55, 56, 57, 58 and the loop-shaped winding wires 61 to 65, which are the upper half motors shown in FIG. 63, have the same configuration as the stator shown in FIG.
  • the structure corresponding to the current vector f is omitted from the balanced six-phase current line shown in the current vector, and the magnetomotive force corresponding to the current imbalance is generated in the rotor axis direction.
  • the motor configuration of the lower half shown in Fig. 63 is opposite to the stator pole arrangement of Fig. 35 and the arrangement order of the stator magnetic poles and the order of the currents flowing through the looped windings, and the polarity.
  • the magnetomotive force is generated in the opposite direction to the upper half of the motor.
  • the direction and magnitude of the torque generated by the lower half motor in Fig. 63 is the same as that of the upper half motor in Fig. 63.
  • the electromagnetic action of the upper and lower motors indicated by the alternate long and short dash line is a surface-targeted configuration with respect to the surface indicated by the alternate long and short dash line, and therefore each stator is in a close contact configuration. Also shows an example of less electromagnetic interference between two motors. However, the force that cancels the rotor magnetomotive force in the other configuration of the two motors on the surface of the alternate long and short dash line! Space may be provided for magnetic separation.
  • a composite motor that combines a plurality of motors is also effective for the purpose of reducing the overall size by using space effectively, sharing the parts, and reducing the cost.
  • an outer rotor type motor is arranged on the inner side
  • an inner rotor type motor is arranged on the outer side
  • the rotors of both motors are integrated.
  • the side motor and the outer diameter side motor have different shapes, a motor type suitable for each shape can be used to achieve an effective configuration in terms of space and motor output density.
  • the combination of motors to be combined can be a combination of the motors of the present invention, or a combination of the motor of the present invention and a conventional motor, combining the advantages and disadvantages of a plurality of motors. In some cases, the purpose and performance of the application can be achieved.
  • a rotor shown in Fig. 65 in which electromagnetic steel plates arranged in parallel to the rotor shaft are arranged inside the rotor will be described.
  • 265 is a magnetic steel sheet laminated in the rotor axial direction
  • 266 is a soft magnetic rotor shaft.
  • Reference numerals 262 and 263 denote permanent magnets, and the polarity of each permanent magnet is oriented so that the directions of the N pole and S pole shown in the figure are on the outer periphery of the rotor. In such a rotor shown in FIG.
  • the rotor in the cross-sectional view shown in Fig. 65 has a structure in which holes are formed in the rotor axial direction in electromagnetic steel plate 265 shown in Fig. 14, and electromagnetic steel plates 264 stacked in the holes are arranged.
  • the laminated electromagnetic steel plates 264 are configured as shown in Fig. 66, and are laminated thin magnetic steel plates whose surfaces are covered with an insulator film. When the magnetic flux in the direction perpendicular to the lamination direction increases or decreases, It has a structure that makes it difficult for current to flow, and a structure that can reduce iron loss.
  • the rotor shown in FIG. 65 is arranged almost perpendicular to the circumferential direction, so that the magnetic flux changes in the direction other than the circumferential direction, that is, the magnetic flux direction changes in the rotor axial direction and the radial direction. Even so, the iron loss can be reduced.
  • the rotor shown in FIG. 65 is arranged so that the laminated electromagnetic steel plates 264 and 265 as the magnetic conducting paths cross each other, so that even if the magnetic flux of the rotor magnetic pole increases or decreases in the direction of the axis of the rotor.
  • the eddy current is difficult to generate.
  • the magnetic flux generated by the permanent magnets 26 2 and 263 is effectively changed to the stator magnetic poles 67, 54, 55, 56 shown in FIG. , 57, 58, and can reduce eddy current loss even during rotation.
  • the electromagnetic steel sheets 264 are arranged in a stacked manner, but in particular, the lamination may be divided and dispersed in an amount necessary to pass a magnetic flux that is not necessary. Moreover, even with a material with a small eddy current obtained by compacting a soft magnetic powder called a powder magnetic core instead of an electromagnetic steel sheet, the magnetic flux can be guided in the rotor axial direction with low iron loss.
  • the entire soft magnetic body portion of the rotor may be a powder magnetic core.
  • stator magnetic pole shape shown in FIG. 21 and the stator magnetic pole shape shown in FIG. 35 are similar to the stator magnetic pole shape shown in FIG. Force indicating a structure smaller than the spacing WDP
  • stator pole width in the rotor axial direction WDX as in the stator pole shape 54SS shown in Fig. 38 A structure that increases the size is advantageous.
  • the radial thickness HD1 of the stator magnetic pole tip in FIG. 31 is larger than the radial thickness HD2 of the stator magnetic pole tip shown in FIG.
  • the cross-sectional area force of the adjacent slot is reduced due to the increase in the length of the wire, and the current carrying capacity is reduced because the conductive wire becomes thinner.
  • stator shown in Fig. 38 and the rotor shown in Fig. 65 are combined, magnetic flux can easily pass through the rotor in Fig. 65 in the axial direction of the rotor as described above.
  • the radial thickness HD2 of the stator magnetic pole shown in FIG. 38 can be reduced, and the slot cross-sectional area and the conductor cross-sectional area can be increased, so that the copper loss can be reduced and the output can be increased.
  • the electromagnetic steel plate 264 can be added to the force shown for the rotor shown in Fig. 14 for the other types of rotors shown in Figs.
  • the shape of the soft magnetic material to be added various shapes are possible as long as the shape of the laminated electromagnetic steel sheet 264 shown in FIG.
  • FIG. 67 a rotor structure will be described in which a soft magnetic part of a rotor magnetic pole is provided with a gap or a nonmagnetic part that limits the freedom of rotation of magnetic flux.
  • the rotor shown in FIG. 67 is obtained by providing gaps or nonmagnetic parts indicated by 267 and 268 in the soft magnetic part 265 of the rotor shown in FIG.
  • the outer periphery of the rotor has a concave portion at the boundary between the magnetic poles, and the outer periphery of the rotor magnetic pole has a smooth shape with an arc shape having a radius smaller than the rotor radius.
  • the gaps 267 and 268 limit the freedom of rotation of the magnetic flux so that the magnetic fluxes of the magnetic paths 269 and 270 sandwiched between these gaps can move freely in the circumferential direction and not be displaced! Yes.
  • the slits in the gaps 267 and 268 are arranged so that the magnetic fluxes from the permanent magnets 262 and 263 can be gathered together so that the magnetic flux density at the center of the rotor magnetic pole is increased.
  • the magnetic flux distribution on each rotor magnetic pole surface has a structure that is relatively close to a sine wave distribution so that the magnetic flux density on the magnetic pole boundary side is large near the center and the magnetic flux density is low.
  • the boundary shape of the rotor magnetic pole has a concave shape because the magnetic flux in that portion is low in contribution to generating the motor torque, and on the contrary, if the magnetic flux density in that portion is large, it tends to cause torque clip. Reduce the magnetic flux density from the part to the stator.
  • gaps 267 are arranged on one magnetic pole, four gaps 268 are arranged on one magnetic pole, and the circumferential pitch SPP of the gaps is the same. 268 in magnetic pole The circumferential position is shifted by SPPZ2 relative to the heart. As a result, the cogging torque and torque ripple caused by the gap are offset, and a smoother rotor rotation can be realized.
  • a sensor such as a rotor position detecting encoder is arranged at the rear end in the axial direction of the motor, but there is a problem that the total length of the motor becomes long.
  • stator magnetic poles are adjacent to most of the circumferential direction of the stator inner peripheral surface as in the stator magnetic pole shapes shown in FIGS. 10, 11, 12, and 13. If they are arranged, although not shown in particular, a space is secured by removing several stator magnetic poles or by denting a part of one stator magnetic pole and removing a part of the shape. Can do. In addition, using the space, it is possible to perform a process of bending the coil end of the looped winding wire or a connection with a wire subjected to a heat-resistant insulation process. In addition, using the space, a current sensor, a voltage sensor, a magnetic flux sensor, an acceleration detection sensor, a speed detection sensor, a position detection sensor, a temperature sensor, a vibration sensor, and the like can be arranged.
  • the motor shown in FIG. 1 is a three-phase eight-pole motor.
  • the U-phase stator magnetic pole 119, the V-phase stator magnetic pole 120, and the W-phase stator magnetic pole 121 are arranged on the circumference of the inner peripheral surface thereof.
  • the directional shape is expanded linearly, the shape shown in Fig. 4 is obtained.
  • the interval between adjacent stator magnetic poles is narrow.
  • a leakage magnetic flux between the stator magnetic poles such as a leakage magnetic flux from the U-phase stator magnetic pole 119 to the V-phase stator magnetic pole 120 is generated, and a field magnet formed by a permanent magnet of the rotor or the like.
  • FIG. 4 is changed to the configuration of FIG. 68, whereby the distance between the stator magnetic poles can be increased and the leakage magnetic flux between the stator magnetic poles can be reduced.
  • Show. 271 is a U-phase stator pole, and 272 is a V-phase stator pole. Compared to Fig. 4, each of these phase stator poles is every other piece, halved from four to two.
  • the pitch of the in-phase stator magnetic poles arranged in the circumferential direction is 720 ° in electrical angle. Since the distance between the stator magnetic poles is increased and the leakage magnetic flux can be reduced, the above various problems can be solved. However, since the number of stator magnetic poles is halved, a new problem of torque reduction has occurred.To solve this problem, a method of expanding the shape of the stator magnetic pole in an open space, a method of increasing the number of motor poles, etc. It is effective to use together. In this way, the problem of leakage magnetic flux between stator magnetic poles can be solved, and the problem of motor generated torque reduction can be improved by other methods.
  • the stator pole shape shown in FIG. 4 is deformed into various stator pole shapes as shown in FIGS. 10 to 13 in order to increase the linkage flux of each phase line and increase the torque. Is also possible. However, these stator magnetic pole shapes have a larger area adjacent to each phase stator magnetic pole than the stator magnetic pole shape shown in FIG. 4, and the leakage flux between the phases is increased. The problem of magnetic flux leakage is getting bigger. As another problem, there is a problem that the magnetic path space for forming the magnetic path for passing the rotor magnetic flux collected on the stator inner peripheral surface of the stator magnetic poles 122 to 136 to the back yoke portion of the stator is insufficient. . If this magnetic path space is insufficient, the magnetic path is magnetically saturated and the torque decreases.
  • the pitch of the in-phase stator magnetic poles arranged in the circumferential direction can be 720 ° in electrical angle.
  • the motor shown in Fig. 69 is also a 3-phase 8-pole motor.
  • the distance between the adjacent stator magnetic poles can obviously be increased, and the leakage magnetic flux between the stator magnetic poles can be reduced.
  • it is possible to reduce adverse effects such as the problem of torque reduction due to leakage magnetic flux, high-speed rotation due to leakage inductance, and the problem of inductance voltage drop at large currents.
  • the above-mentioned problem concerning the magnetic path space from the stator magnetic pole inner surface to the stator back yoke can secure a sufficient magnetic path space if the space between the stator magnetic poles can be widened as shown in FIG.
  • the problem of magnetic saturation can also be solved.
  • the number of stator magnetic poles is halved in FIG. 69 compared to FIG.
  • the stator magnetic pole pitches of the same phase such as U-phase stator magnetic pole 277, V-phase stator magnetic pole 278, and W-phase stator magnetic pole 279 shown in FIG.
  • a 3-phase, 8-pole motor can be configured with 720 ° and an average circumferential spacing of adjacent stator poles of 240 °.
  • the number of poles is shown for the example of 8 poles, it can be chosen freely.
  • various methods such as a method of deleting the stator every two in the circumferential direction and a method of deleting the stator every third are conceivable.
  • a space can be created in the vicinity of each stator magnetic pole, and the space between the inner circumference side of each stator magnetic pole and the back yoke can be utilized using that space. It is possible to create a space to reduce the leakage flux of the road.
  • the magnetic path cross-sectional area can be secured so that the magnetic path from the inner peripheral surface of each stator magnetic pole to the back yoke does not become magnetically saturated.
  • the method of deleting the stator magnetic pole is closer to the polyphase sine wave AC theory and can be expected to have excellent characteristics when the same regular deletion can be performed in the entire circumference. Even if the stator pole arrangement is somewhat irregular and unbalanced in the circumferential direction, by creating a space, it is possible to reduce the leakage flux between the stator poles or back from the inner circumference of the stator pole.
  • the cross-sectional area of the magnetic path to the yoke can be secured
  • the present invention can be modified in various ways and are included in the present invention. For example, many explanations have been given for three and six phases, but two, four, five, seven, and even multiphases are possible. For small-capacity equipment, the power in terms of cost is also small, and it is desirable to have a small number of phases, which is advantageous in the case of two-phase or three-phase. In terms of the maximum current limitation of a single-phase power device, the number of phases may be larger, which may be advantageous.
  • the number of poles is not limited. In particular, in the motor of the present invention, it is advantageous to increase the number of poles in principle. However, there are physical restrictions, adverse effects such as leakage magnetic flux, an increase in iron loss due to multipolarization, and limitations of control devices due to multipolarization, and it is desirable to select the appropriate number of poles according to the application and motor size.
  • the force shown in Figs. 14 to 19, 73, and 74 is a winding field type rotor having a winding on the rotor, and a field winding fixed to the axial end.
  • Suitable for various rotors such as a claw pole structure rotor that creates magnetic flux in the rotor through the holding gap Can be used.
  • the type and shape of the permanent magnet are not limited.
  • a motor shape in which the air gap shape is deformed to be slightly tapered from the cylindrical shape is also possible. Particularly in this case, the air gap length can be changed by moving the stator and the rotor in the axial direction. It is possible to vary the motor voltage by changing the field size. Constant output control can be realized by changing the gap.
  • a plurality of motors including the motor of the present invention can be combined and manufactured.
  • two motors can be arranged on the inner diameter side and the outer diameter side, or a plurality of motors can be arranged in series in the axial direction.
  • a structure in which a part of the motor of the present invention is omitted and deleted is also possible.
  • the soft magnetic material an ordinary silicon steel plate can be used, and an amorphous magnetic steel plate, a powder magnetic core obtained by compression molding powdered soft iron, and the like can be used.
  • a three-dimensional shape part is formed by punching, bending, and forging a magnetic steel sheet, and forming a part of the above-described motor of the present invention.
  • the force describing many looped windings is not necessarily circular. Ellipses, polygons, and partial uneven shapes in the rotor axis direction are provided depending on the convenience of the magnetic circuit. Some modifications such as the formed shape are possible. Also, for example, if loop-shaped windings with different 180 ° phase are in the stator, loop-shaped windings can be created by connecting them to semi-circular windings with different 180 ° phase as closed loops. It is also possible to transform the shoreline into a semicircular shoreline. It is also possible to divide and transform into an arcuate shoreline.
  • each loop-shaped winding wire has been described with respect to a motor configured in a slot
  • the motor has a structure in which a thin winding wire is arranged near the rotor side surface of the stator without a slot.
  • a coreless motor can also be used.
  • the current flowing to the motor can be controlled with currents of various waveforms other than the force sine wave described on the assumption that the current of each phase is a sinusoidal current.
  • stator structure For example, to reduce RN1st order torque ripple, group multiple A-phase stator poles into N1 sets, and the stator pole position in the rotation direction of each group is an integer of 360 ° / (RN1 X N1) The stator magnetic poles are shifted relative to each other, and the stator magnetic pole positions are shifted in the rotational direction for the stator magnetic poles of the other phases as well as the A-phase stator magnetic poles.
  • FIG. 134 is a diagram showing a specific example of the shift of the stator magnetic pole position performed for torque ripple reduction, and shows a specific example of the A-phase stator magnetic pole. Since the same applies to the stator magnetic poles of other phases such as the B-phase stator magnetic pole and the C-phase stator magnetic pole, detailed illustration is omitted.
  • D51, D53, D55, and D57 are the A, B, C, and D phase rotor poles, respectively.
  • D52, D54, D56, and D58 are A, B, C, and D-phase stator poles, respectively.
  • Rotational rate of change of magnetic flux ⁇ of each phase d ⁇ / ⁇ ⁇ Since it is proportional to ⁇ force torque, the opposing length of the rotor magnetic pole and stator magnetic pole, especially the opposing length in the rotor axial direction, is the magnetic flux of each phase.
  • Rotational change rate of ⁇ d ⁇ / ⁇ ⁇ greatly affects and has relation to the magnitude of torque. In this respect, as shown in FIG.
  • the shape of the portion where the rotor magnetic pole shape and the stator magnetic pole shape are opposed to each other is a trapezoidal shape, so that more magnetic flux can pass and torque can be increased.
  • the shape of the magnetic pole can be further modified from the shape shown in FIG. 135, for example, a triangular shape or a simple uneven shape.
  • the shape of the magnetic poles as shown in Fig. 135 is complicated, and there are problems in the production of parts and in the assembly state, and it is necessary to devise in order to ensure motor manufacturability.
  • various motors such as dividing the stator rotor in the axial direction of the rotor at the center of each stator magnetic pole, or providing steps, irregularities, etc. on each component to ensure assembly accuracy and motor strengthcan be devised.
  • D59, D5A, and D5B are saddle wires, and the loop-like saddle wire shape extends into the rotor side. It is advantageous in that the free space on the rotor side is effectively utilized and that the rotor side has a smaller diameter, so that the copper loss can be reduced because the conductor length is shorter for the same current. As a result, high efficiency, miniaturization, and high torque of the motor can be realized.
  • FIG. 136 shows an example in which the windings B37, B38, and B39 are replaced with pipe-shaped windings in the motor shown in FIG. D61 is a copper pipe, etc.
  • cooling water, cooling air, gas, etc. can flow through the center of the pipe at the same time.
  • the refrigerant material of the cooling device can also be passed.
  • the pipes need to be electrically insulated, and the pipe surface may be insulated. This is effective for increasing the motor's continuous output torque.
  • FIG. 137 is a diagram showing a control device that does not specify the number of windings and has a drive unit with a simple configuration as many as the number of windings.
  • D70 is a DC voltage power source
  • D75, D76, D77, and D88 indicate motor windings, and the number of windings is not specified.
  • D71 and D72 are power transistors, so-called IGBT, power MOS FET, etc. These two transistors are paired to control the voltage at the output part connected to each other.
  • a voltage variable unit that supplies positive or negative current is configured.
  • the configuration of D73 and D74, the configuration of D7A and D7B, and the configuration of D7C and D7D constitute a voltage variable unit.
  • two voltage variable units can differentially supply voltages to the respective windings to allow current to flow.
  • this configuration is a configuration in which voltage variable units having a simple configuration are arranged in parallel by the number of windings, there is a problem that the number of transistors increases.
  • FIG. 138 shows a saddle wire that is placed between the stator poles of each of the five stator poles shown in FIGS. It shows a configuration that controls a motor with a five-phase saddle wire with one wire as one phase.
  • the voltage at each terminal of the star connection becomes a balanced five-phase voltage and can be controlled efficiently by the five-phase inverter shown in Fig. 138.
  • This five-phase inverter has a configuration in which the five voltage variable units are configured in parallel, and each transistor is connected in parallel with a diode facing in the reverse direction that supplies a current in the reverse direction.
  • variable voltage of the number of phases of the motor A knit can be used to construct the same.
  • FIG. 139 shows a configuration for controlling the five-phase motors with five phases shown in FIGS.
  • the voltage of each shoreline has the unbalanced voltage and phase shown in Fig. 88.
  • the voltage and current at each terminal in the star connection configuration is balanced as shown in FIG. 89, and can be driven efficiently.
  • star connection Although the star connection is unbalanced, it may be connected in series in phase sequence to form a delta connection. However, since each feeder voltage is unbalanced, the drive efficiency of the inverter is somewhat degraded.
  • a motor having a configuration of three or more phases other than five phases can be similarly configured by using a voltage variable unit having the number of phases of the motor.
  • FIG. 139 shows the configuration for controlling the 5-phase, 4-wire motor shown in FIGS.
  • the voltage of each shoreline is the unbalanced voltage and phase shown in Fig.95.
  • Fig. 93 (a) by setting the center point NN of the star connection as one terminal of the motor, the voltage and current at each terminal is balanced as shown in Fig. Can be driven.
  • the star connection is unbalanced, it can be connected in series in phase sequence to form a delta connection.
  • the connection is made as shown in (b) of Fig. 93, and the two terminals at both ends of the part where the shoreline is missing are used as the terminals of the modeler connection. Can move.
  • the drive efficiency of the inverter is somewhat degraded.
  • a motor having a configuration of three or more phases other than five phases can be similarly configured by using a voltage variable unit having the number of phases of the motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Windings For Motors And Generators (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Synchronous Machinery (AREA)
  • Control Of Ac Motors In General (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

 モータ100は、周方向に永久磁石12のN極磁極とS極磁極とが交互に配置されたロータ10と、周方向に複数個配置されたステータ磁極53、54、55、56、57、58、59をそれぞれが有して互いにこれらのステータ磁極の周方向位置および軸方向位置をずらして配置された7個のステータ磁極群と、複数のステータ磁極群のそれぞれに対して軸方向に沿った隣接位置に配置されて周方向に形成された複数のループ状巻線41、42、43、44、45、46、47、48、49、50、51、52とを備えている。

Description

明 細 書
モータ及びその制御装置
技術分野
[0001] 本発明は、自動車やトラック等に搭載されるモータ及びその制御装置に関する。
背景技術
[0002] 従来から、ステータ磁極に各相のコイルが集中的に卷回されたブラシレスモータが 知られている(例えば、特許文献 1参照)。図 141は、このような従来のブラシレスモー タの概略的な構成を示す縦断面図である。また、図 143は図 141の A1—A1線断面 図である。これらの図には、 4極 6スロット型のブラシレスモータが示されており、ステ 一タの卷線構造はいわゆる集中巻きであって、各ステータ磁極には各相のコイルが 集中的に卷回されている。また、図 142にはステータを円周方向に 1周展開した状態 で、 U、 V、 W等の卷線の配置関係が示されている。横軸は電気角で表現されており 、 1周で 720° となっている。ロータ 2の表面には、 N極の永久磁石と S極の永久磁石 とが周方向に交互に配置されている。ステータ 4では、 U相のステータ磁極 TBU1、 T BU2のそれぞれには U相卷線 WBU1、 WBU2が卷回されている。同様に、 V相のス テータ磁極 TBV1、 TBV2のそれぞれには V相卷線 WBV1、 WBV2が卷回されてい る。 W相のステータ磁極 TBW1、 TBW2のそれぞれには W相卷線 WBW1、 WBW2 が卷回されている。このような構造を有するブラシレスモータは、現在、広く産業用、 家電用に使用されている。
[0003] また、図 144は他のステータの構成を示す横断面図である。図 144に示すステータ は、 24スロットの構成であって 4極のモータの場合には分布巻きが可能であり、ステ ータの円周方向起磁力分布を比較的滑らかな正弦波形状につくることができるため 、ブラシレスモータ、卷線界磁型同期電動機、誘導電動機などに広く使用されている 。特に、リラクタンストルクを活用するシンクロナスリラクタンスモータおよびリラクタンス トルク応用の各種モータあるいは誘導電動機等の場合、ステータによるより精密な回 転磁界の生成が望まれることから、図 144に示す分布巻きのステータ構造が適して いる。 [0004] 特許文献 1 :特開平 6— 261513号公報 (第 3頁、図 1— 3)
発明の開示
発明が解決しょうとする課題
[0005] ところで、図 141、図 142、図 144および特許文献 1に開示された従来のブラシレス モータは、モータ卷線をステータ磁極毎に卷回する必要があるため構造が複雑であ り、モータ卷線をスロットの奥に配置する必要があるためモータ卷線の卷回に関して 生産性が低下するという問題があった。また、このような構造から小型化、高効率化、 低コストィ匕が難しいという問題があった。さらに、ステータの突極が電気角で 360度の 範隨こ 3個し力ない構造であるため、ステータの発生する起磁力を正弦波状に生成 して回転磁界を精密に生成することは難しく、シンクロナスリラクタンスモータやリラク タンストルク応用の各種モータあるいは誘導電動機などへの適用が難 U、と 、う問題 かあつた。
[0006] また、図 144に示す分布巻きが可能なステータ構造の場合にはステータの起磁力 分布を滑らかな正弦波状に生成することができるが、スロットの開口部から卷線を揷 入する必要があるため卷線の占積率が低くなるとともに、コイルエンドの軸方向長さ が長くなるためモータの小型化が難しいという問題があった。また、卷線の生産性が 低いという問題もあった。
[0007] 本発明は、このような点に鑑みて創作されたものであり、その目的は、卷線構造が 単純で生産性を向上させることができ、小型化、高効率化、低コストィ匕が可能なモー タ、及び、そのモータを制御する制御装置を提供することにある。
課題を解決するための手段
[0008] 上述した課題を解決するために、本発明の第一のモータは、円周方向に N極と S極 とが交互に配置されたロータ磁極群を有するロータと、相毎に複数個のステータ磁極 が円周上あるいは近傍の円周上であって電気角でほぼ同一角度の回転位相の位置 に配置された (N+ 1)個のステータ磁極群と、各相のステータ磁極群の間であって軸 方向に沿って配置され、軸方向両端に同一相が配置された 2N個のループ状卷線と を備えている。
[0009] また、上述した (N+ 1)個のステータ磁極群のそれぞれは、電気角位置が順に変 化するように配置されていることが望ましい。このような構成とすることにより、各ルー プ状卷線の電流が生成する起磁力により効果的にモータトルクを発生することができ る。
[0010] また、電気角が互いにほぼ 180° 異なる 2つの相に対応するステータ磁極群が隣 接するように、(N+ 1)個のステータ磁極群のそれぞれが配置されて!、ることが望まし い。このような構成とすることにより、ロータとステータとが対向するエアギャップ部のス テータ磁極形状の面積を広ぐ大きくすることができ、ロータから卷線へ鎖交する磁束 を大きくすることができ、発生トルクを増大させることができる。
[0011] また、電気角が互いにほぼ 180° 異なる 2つの相に対応するステータ磁極群を組と したときに、隣接する 2組のそれぞれに含まれて互 ヽに隣接するステータ磁極群の電 気角の位相差が最小となるように、(N+ 1)個のステータ磁極群のそれぞれが配置さ れていることが望ましい。このような構成とすることにより、それらの中間に通電すべき 電流を小さくすることができ、銅損を低減することができる。
[0012] また、上述した (N+ 1)個のステータ磁極は、両端に位置する 2つのステータ磁極 であってロータに対向する面のロータ軸方向幅の和がそれ以外のそれぞれのステー タ磁極のロータに対向する面のロータ軸方向幅に等しくなるように設定されていること が望ましい。このような構成とすることにより、軸方向両端の同相のステータ磁極の電 磁気的作用と他相の電磁気的作用が同等の作用となる。
[0013] また、本発明の第二のモータは、円周方向に N極と S極とが交互に配置されたロー タ磁極群を有するロータと、相毎に複数個のステータ磁極が円周上あるいは近傍の 円周上であって電気角でほぼ同一角度の回転位相の位置に配置された N個のステ ータ磁極群と、各相のステータ磁極群の両側であって軸方向に沿って配置され、軸 方向両端に同一相が配置された 2N個のループ状卷線とを備えている。
[0014] また、ロータ軸方向に隣接する 2つのステータ磁極によって形成されるスロット内に 配置された複数のループ状卷線を 1個のループ状卷線に統合することが望ましい。 このような構成とすれば、ループ状卷線が簡略化され、かつ、複数の電流の算術的 な和の電流が共通の卷線に通電され、卷線内の電流が均一化されるので銅損を低 減することができる。特に、複数の卷線に正と負の電流が流れるタイミングにおいて は両電流が相殺されるので通電電流を大幅に低減できる。
[0015] また、ロータ軸方向に沿った両端のそれぞれに配置された 2つのステータ磁極のさ らに外側に配置されたループ状卷線を取り除くことが望ましい。卷線の排除によりモ ータを簡略ィ匕することができる。
[0016] また、上述したステータ磁極のロータに対向する面の面積力 ロータの周方向に沿 つて、正弦波状の面積分布あるいは正弦波に近似される面積分布となっていることが 望ましい。これにより、トルクを増加し、トルクリップルを低減することができる。
[0017] また、上述したステータ磁極のロータに対向する面は、ロータ軸に沿って隣接する ステータ磁極の間隔よりも、ロータ軸方向幅が大きいことが望ましい。このように、多く の磁束力ステータ磁極を通過する形状とすることにより、モータトルク定数を大きくす ることがでさる。
[0018] また、任意の X相のステータ磁極群を通る磁束の総和を Φχ、この磁束 Φχの回転 変ィ匕率を (1ΦχΖ(10、このステータ磁極とロータ磁極との間のエアギャップ部に作用 する起磁力である卷線電流を Ιχ、卷線ターン数を WTx、これらの積 (1ΦχΖ(10 Χ Ιχ X WTxで算出される発生トルク成分を Τχとし、他の任意の Υ相のステータ磁極群を 通る磁束の総和を 0>y、この磁束 0>yの回転変化率を dO>yZd Θ、このステータ磁極 とロータ磁極との間のエアギャップ部に作用する起磁力である卷線電流を Iy、卷線タ 一ン数を WTy、これらの積 dO>yZd 0 X ly X WTyで算出される発生トルク成分を Ty とするときに、ステータ磁極とロータ磁極との対向面積により決まる磁束 Φχ、 0>yと卷 線電流 Ix、 Iyと卷線ターン数 WTx、 WTyの二つ以上が、 X相のステータ磁極と Y相 のステータ磁極とでは異なる値であって、それぞれのステータ磁極に対応する発生ト ルク成分 Tx、 Tyは等しいことが望ましい。これにより、モータカバーや被駆動側機構 等の都合で、ステータ磁極の形状を変形させる必要がある場合に、磁束 Φχと電流 Ix と卷線卷き回数 WTxとで得られる最終的電磁気作用を変えることなぐ個々のパラメ ータを変更することが可能になる。
[0019] また、上述した各相のステータ磁極は、ロータ軸方向に K個に分割されており、各 相の K個のステータ磁極のそれぞれのロータ軸方向に沿った両側あるいは片側に、 同一相の K個のループ状卷線が配置されていることが望ましい。これにより、円周方 向の起磁力分布をより滑らかにし、より正弦波に近い分布にすることができ、モータの 駆動をより滑らかにすることができる。
[0020] また、ロータ軸方向に隣接するステータ磁極によって形成されるスロットに、異なる 位相の電流が通電される複数のループ状卷線が卷回されて合成電流が得られるとと もに、スロットに卷回された複数のループ状卷線のそれぞれの卷回数は、それぞれに 流れる電流ベクトルとそれぞれの卷回数との積の合計が合成電流のベクトルに一致 するように設定されることが望ましい。このような構成とすることにより、各位相のステ ータ磁極群に対して、少な 、相数の電流源で相数以上の数の電流位相を作り出し、 より滑らかなモータ駆動を実現することができる。
[0021] また、上述したループ状卷線同士の結線を、電気角的に同一の位相のループ状卷 線同士については直列接続し、電気角的にほぼ 180° 位相の異なるループ状卷線 同士につ 、ては反対方向に直列接続して行うことが望ま 、。この構成とすることに より、より少ない電流源でモータ駆動を実現することができるので、モータの配線を簡 略化でき、駆動装置も簡略ィ匕することができる。
[0022] また、上述したロータは、表面あるいは内部の一部に永久磁石が配置され、少なく とも表面の一部は軟磁性体で構成されていることが望ましい。これにより、リラクタンス トルクも得られる各種形状のロータを実現することが容易となる。
[0023] また、上述したロータは、一つのロータ磁極から他のロータ磁極へ向かう方向へ細 長 ヽ空隙あるいは非磁性体ある ヽは永久磁石を複数組配置することが望ま 、。こ れにより、シンクロナスリラクタンスモータを実現することが容易となる。
[0024] また、上述したロータは、円周方向に磁気的に軟磁性体の突極で磁極が構成され ていることが望ましい。これにより、リラクタンスモータを構成することが容易となる。
[0025] また、上述したロータは、誘導電流を通電可能な卷線を備えることが望ま 、。これ により、誘導トルクを得ることができる。
[0026] また、上述したステータ磁極のロータに対向する面の面積力 ロータの周方向に沿 つて、正弦波状の面積分布あるいは正弦波に近似される面積分布となっており、 3相 のステータ磁極が備わっている場合に、極対数 Pnとステータ磁極の数 Nssが、 Nss = 3 X Pnの関係を満たすことが望ましい。あるいは、上述したステータ磁極が内径側 に配置され、ロータが外径側に配置された、いわゆるアウターロータ構造とすることが 望ましい。
[0027] また、上述したステータ磁極とロータとが相対的に軸方向に沿って配置された、い わゆるアキシャルギャップ型モータ構造とすることが望ましい。
[0028] また、モータは、上述したモータを含む 2個以上のモータを複合ィ匕して組み合わせ ることによって構成されることが望まし 、。本発明のモータを含む 2個以上のモータを 複合ィ匕して構成することにより、モータ内部のスペースの効果的な活用が可能であり 、モータ構成部材の共用なども可能である。 2個のモータを 1個のモータに複合ィ匕す ることにより、それらのモータを使用したシステムの所要スペースを低減できる。また、 モータ内部の通電電流がアンバランスであって、モータのロータ軸方向に起磁力が 発生される場合は、 2個のモータの発生する軸方向起磁力がキャンセルされるように 配置し、結果として、複合化されたモータの軸方向起磁力をなくすことができる。
[0029] また、上述したロータは、ステータ磁極に対向する面の少なくとも一部は軟磁性体 で構成され、表面あるいは内部にロータ軸方向あるいはラジアル方向に磁束を導く 軟磁性体の導磁磁路を備えることが望ましい。これにより、ステータの各相のロータ軸 方向に交差するステータ磁路を少なくすることができる。
[0030] また、上述したロータは、ステータ磁極に対向する面の少なくとも一部は軟磁性体 で構成され、内部に磁束の回転方向自在性を制限する空隙部あるいは非磁性体部 を備えることが望ましい。これにより、ロータ磁束の回転方向位置依存性を高めること ができる。
[0031] また、規則的に配列されたステータ磁極の一部、あるいは、ロータ磁極の一部が除 去されていることが望ましい。これにより、削除した部分をモータ強度の補強や、電流 、電圧、磁束等のセンサの配置や、卷線取り出しロスペースとして使用することが可 會 になる。
[0032] また、相数が N、極対数が Pnで極数が 2 X Pnに設定されており、ステータ磁極の数 力 Χ Ρηとなる構成力も一部のステータ磁極を削除することが望ましい。これにより、 ステータ磁極間の漏れ磁束を低減することが可能になる。
[0033] 本発明第三のモータには、円周方向に N極と S極とが交互に配置されたロータ磁極 群を有するロータと、相毎に複数個のステータ磁極が円周上あるいは近傍の円周上 であって電気角でほぼ同一角度の回転位相の位置に配置された P個のステータ磁 極群と、各相の前記ステータ磁極群の間であって軸方向に沿って配置された Q個の ループ状卷線とを備え、前記 Q個のループ状卷線それぞれに個別の電流が通電で きるようにモータの入力線が備えられている(ここで、 P= (N+ 1)で Q = 2N、 P=Nで Q = 2 (N—1)、 P= (N+ 1)で Q = N、または、 P = Nで Q= (N—l)であり、 Nは 3以 上の正の整数とする)。
[0034] 本発明第四のモータは、円周方向に N極と S極とが交互に配置されたロータ磁極群 を有するロータと、相毎に複数個のステータ磁極が円周上あるいは近傍の円周上で あって電気角でほぼ同一角度の回転位相の位置に配置された P個のステータ磁極 群と、各相の前記ステータ磁極群の間であって軸方向に沿って配置された Q個のル 一プ状卷線とを備え、 Q個のループ状卷線の内、 2個以上のステータ磁極群を挟ん で配置された 2卷線に同じ電流が逆方向に通電されている(ここで、 P= (N+ 1)で Q = 2N、または、 P=Nで Q = 2 (N— 1)であり、 Nは 3以上の正の整数とする)ことを特 徴とする。
[0035] 本発明第五のモータは、円周方向に N極と S極とが交互に配置されたロータ磁極群 を有するロータと、相毎に複数個のステータ磁極が円周上あるいは近傍の円周上で あって電気角でほぼ同一角度の回転位相の位置に配置された P個のステータ磁極 群と、各相の前記ステータ磁極群の間であって軸方向に沿って配置された Q個のル 一プ状卷線とを備える(ここで、 P= (N+ 1)で Q=N、または、 P=Nで Q= (N—l) であり、 Nは 3以上の正の奇数とする)ことを特徴とする。
[0036] 本発明第六のモータは、円周方向に N極と S極とが交互に配置されたロータ磁極群 を有するロータと、相毎に複数個のステータ磁極が円周上あるいは近傍の円周上で あって電気角でほぼ同一角度の回転位相の位置に配置された (N+ 1)個のステータ 磁極群と、各相の前記ステータ磁極群の間であって軸方向に沿って配置された N個 のループ状卷線とを備え、前記 N個の卷線がスター結線されることを特徴とする。
[0037] 本発明第七のモータは、円周方向に N極と S極とが交互に配置されたロータ磁極群 を有するロータと、相毎に複数個のステータ磁極が円周上あるいは近傍の円周上で あって電気角でほぼ同一角度の回転位相の位置に配置された N個のステータ磁極 群と、各相の前記ステータ磁極群の間であって軸方向に沿って配置された (N— 1) 個のループ状卷線とを備え、前記 (N— 1)個の卷線カスター結線され、前記スター結 線の中心接続部もモータの入力として N個の入力線とすることを特徴とする。
[0038] 本発明第八のモータは、円周方向に N極と S極とが交互に配置されたロータ磁極群 を有するロータと、相毎に複数個のステータ磁極が円周上あるいは近傍の円周上で あって電気角でほぼ同一角度の回転位相の位置に配置された 4個のステータ磁極 群とを備え、両端のステータ磁極群の内側にはそれぞれ卷回数 Nwのループ状卷線 が配置され、中央の 2個のステータ磁極群の間には卷回数 NwZ2の 2個のループ状 卷線が配置され、それら 4個の卷線がスター結線されて 、ることを特徴とする。
[0039] 本発明第九のモータは、円周方向に N極と S極とが交互に配置されたロータ磁極群 を有するロータと、相毎に複数個のステータ磁極が円周上あるいは近傍の円周上で あって電気角でほぼ同一角度の回転位相の位置に配置された 4個のステータ磁極 群とを備え、両端のステータ磁極群の内側にはそれぞれ卷回数 Nwのループ状卷線 が配置され、中央の 2個のステータ磁極群の間には卷回数 NwZ2のループ状卷線 が配置され、それら 3個の卷線がスター結線されて 、ることを特徴とする。
[0040] 本発明第十のモータは、円周方向に N極と S極とが交互に配置されたロータ磁極群 を有するロータと、相毎に複数個のステータ磁極が円周上あるいは近傍の円周上で あって電気角でほぼ同一角度の回転位相の位置に配置された (N+ 1)個のステータ 磁極群とを備え、これらのステータ磁極群の内、電気角が互いにほぼ 180° 異なる 2 つの相に対応する前記ステータ磁極群が隣接するように配置され、各相の前記ステ ータ磁極群の間には N個のループ状卷線が配置されていることを特徴とする。
[0041] 本発明第十一のモータは、円周方向に N極と S極とが交互に配置されたロータ磁極 群を有するロータと、相毎に複数個のステータ磁極が円周上あるいは近傍の円周上 であって電気角でほぼ同一角度の回転位相の位置に配置された N個のステータ磁 極群とを備え、前記の N個のステータ磁極群の配置順が電気角的位相の順で一つ おきの順となって 、て、各相の前記ステータ磁極群の間は各ループ状卷線が配置さ れていることを特徴とする。 [0042] 本発明第十二のモータは、 6個のステータ磁極群を持つモータであって、電気角的 に第 1、 3、 5相のステータ磁極群の第 1の構成部と、電気角的に第 2、 4、 6相のステ ータ磁極群の第 2の構成部とがロータ軸方向に配置され、前記第 1、 3、 5相のステー タ磁極群の間にループ状卷線が配置され、前記第 2、 4、 6相のステータ磁極群の間 にループ状卷線が配置され、各ステータ磁極群が対向する各ロータ磁極が配置され 、前記の第 1の構成部と第 2の構成部との間、あるいは、これらのステータ磁極群に対 向する 2対のロータ磁極群の間の少なくとも片方が空間あるいは非磁性体により磁気 的に分離されていることを特徴とする。
[0043] 本発明第十三のモータは、円周方向に N極と S極とが交互に配置されたロータ磁極 群を有するロータと、相毎に複数個のステータ磁極が円周上あるいは近傍の円周上 であって電気角でほぼ同一角度の回転位相の位置に配置された N個のステータ磁 極群とを備え、前記の N個のステータ磁極群の配置順が電気角的位相の順で二つ おきの順となっていて、各相の前記ステータ磁極群の間には各ループ状卷線が配置 されていることを特徴とする。
[0044] 本発明は、前述した目的を達成するため、その他にも様々な構成のモータ及びそ の制御装置を提供しており、それらは以下に説明する実施例及び添付図面より明ら かになる。
発明の効果
[0045] 本発明によれば、卷線構造が単純で生産性を向上させることができ、小型化、高効 率化、低コストィ匕が可能なモータ、及び、そのモータを制御する制御装置を提供する ことができるという効果が得られる。
[0046] 本発明の第一のモータにおいては、上記のような構成とすることにより、ステータの 円周方向起磁力分布を比較的滑らかな正弦波状に作ることができるので、振動や騒 音の小さな高品質なモータを実現できる。また、ループ状卷線であるため、モータの 卷線が簡素で製作性に優れたモータとすることができる。
[0047] 本発明の第二のモータは、両端のステータ磁極群の片端のステータ磁極群を他端 のステータ磁極群に隣接した位置に移動する構成であり、同相の両端のステータ磁 極群を片側に集めることによってモータ構成を簡略ィ匕することができる。 図面の簡単な説明
[図 1]ループ状の卷線を有する 3相のモータの概略的な構成を示す縦断面図である
[図 2]図 1に示したロータの表面形状を円周方向に直線展開した図である。
[図 3]図 1に示したステータの概略的な構成を示す横断面図である。
[図 4]図 1に示したステータの内周面形状を円周方向に直線展開した図である。
[図 5]図 1に示したステータの卷線の一つを示す正面図と側面図である。
[図 6]図 1に示した各ループ状卷線を円周方向に直線展開した図である。
[図 7]図 6に示した卷線を 2本ずつ統合した図である。
[図 8]図 1に示したステータ磁極と卷線の関係を示す図である。
[図 9]図 1に示したモータの電流と電圧とトルクの関係を各ベクトルで示すベクトル図 である。
[図 10]図 1に示したモータのステータ磁極の内周面形状の変形例を示す図である。
[図 11]図 1に示したモータのステータ磁極の内周面形状の変形例を示す図である。
[図 12]図 1に示したモータのステータ磁極の内周面形状の変形例を示す図である。
[図 13]図 1に示したモータのステータ磁極の内周面形状の変形例を示す図である。
[図 14]永久磁石を内蔵する各種ロータの横断面図である。
[図 15]永久磁石を内蔵する各種ロータの横断面図である。
[図 16]永久磁石を内蔵する各種ロータの横断面図である。
[図 17]永久磁石を内蔵する各種ロータの横断面図である。
[図 18]突極型の磁極を備えるリラクタンスモータのロータ例を示す横断面図である。 圆 19]誘導電動機のロータの概略的な構成を示す横断面図である。
[図 20]2相、 3相、 4相、 5相、 6相、 7相の各ベクトルを示す図である。
[図 21]6相のステータ磁極と 6相の卷線を備えた一実施例のモータを示す図である。
[図 22]図 21に示すステータの内周面形状を円周方向に直線展開した図に各ループ 状卷線の配置を付記し、下部にロータ外周表面形状を円周方向に直線展開した図 を付記した図である。
[図 23]図 21に示すモータの各部の横断面図である。 [図 24]3相 2極のシンクロナスリラクタンスモータを示す横断面図である。
[図 25]シンクロナスリラクタンスモータを dq軸座標で示した電流と磁束のベクトル図で ある。
[図 26]6相のループ状卷線を持ち、軸方向に無限に長いモータモデルのステータの 縦断面図である。
[図 27]ステータの内周面形状を円周方向に直線展開した図に各ループ状卷線の配 置を付記した例を示す図である。
[図 28]ステータの内周面形状を円周方向に直線展開した図に各ループ状卷線の配 置を付記した例を示す図である。
[図 29]図 28に示すステータの一部を示す縦断面図である。
[図 30]図 27、図 28に示す卷線の各電流を表すベクトル図である。
[図 31]図 21に示すモータのステータコアと卷線を拡大した図である。
[図 32]ベクトルの合成を示す図である。
[図 33]合成されたベクトルで構成される 6相のベクトルを示す図である。
[図 34]ステータの内周面形状を円周方向に直線展開した図に各ループ状卷線の配 置を付記した例を示す図である。
[図 35]ステータの内周面形状を円周方向に直線展開した図に各ループ状卷線の配 置を付記した例を示す図である。
[図 36]各ステータ磁極を通る磁束の回転変化率の例を示す図である。
[図 37]ステータの内周面形状を円周方向に直線展開した図に各ループ状卷線の配 置を付記した例を示す図である。
[図 38]ステータ磁極形状の例を示す縦断面図である。
[図 39]ステータ磁極の内径側形状の各種例を示す図である。
圆 40]ステータ磁極形状およびロータ磁極形状の例を示す横断面図である。
[図 41]ステータの内周面形状を円周方向に直線展開した図に各ループ状卷線の配 置を付記した例を示す図である。
[図 42]ステータの内周面形状を円周方向に直線展開した図に各ループ状卷線の配 置を付記した例を示す図である。 [図 43]ステータの内周面形状を円周方向に直線展開した図に各ループ状卷線の配 置を付記した例を示す図である。
[図 44]図 43に示す卷線の電流を表すベクトル図である。
[図 45]図 43に示す卷線の各電流を表すベクトル図である。
[図 46]図 1に示すモータの各卷線の電流、電圧、卷線の結線関係を示す図である。
[図 47]図 46に示す卷線の電流と電圧の関係をベクトルで示す図である。
[図 48]図 46に示す卷線と電流と電圧を示す図である。
[図 49]図 1に示すモータの卷線を図 7に示す卷線に変更したモータの電流、電圧、 卷線の結線関係の例を示す図である。
[図 50]図 1に示すモータの卷線を図 7に示す卷線に変更したモータの電流、電圧、 卷線の結線関係の例を示す図である。
[図 51]図 50に示す卷線の電流と電圧の関係をベクトルで示す図である。
[図 52]図 50に示す卷線と電流と電圧を示す図である。
[図 53]図 50に示す卷線と 3相インバータとの接続関係を示す図である。
[図 54]図 21に示す卷線の接続と 3相インバータへの接続関係を示す図である。
[図 55]図 35に示す卷線の接続と 3相インバータへの接続関係を示す図である。
[図 56]図 28に示す卷線の接続と 3相インバータへの接続関係を示す図である。
[図 57]図 17に示すロータに誘導卷線を付加した図である。
[図 58]ステータ側の 1次卷線とロータ側の 2次卷線の両方がループ状の卷線で構成 される誘導電動機の構成を示す縦断面図である。
[図 59]ロータが外径側に配置されたアウターロータ型のモータの縦断面図である。
[図 60]ステータとロータとが相対的にロータ軸方向へ配置されたアキシャルギャップ 型のモータを示す縦断面図である。
圆 61]図 60に示すステータ磁極形状と各ループ状卷線の配置を付記した横断面図 である。
[図 62]図 60に示すロータを示す横断面図である。
[図 63]2個のモータを組み合わせた本発明モータの縦断面図である。
[図 64]図 63に示すステータの内周面形状を円周方向に直線展開した図に各ループ 状卷線の配置を付記した例を示す図である。
[図 65]ロータ内部に軸方向磁路を持つロータの横断面図である。
圆 66]積層した電磁鋼板の形状例を示す図である。
圆 67]ロータ磁極の軟磁性体部に磁束の回転方向自在性を制限する空隙部を持つ ロータの例を示す図である。
[図 68]ステータ磁極間の距離を大きくしてステータ磁極間の漏れ磁束を低減したステ 一タの例を示す図である。
[図 69]ステータ磁極間の距離を大きくしてステータ磁極間の漏れ磁束を低減したステ 一タの例を示す図である。
[図 70]ステータ磁極間の距離を大きくしてステータ磁極間の漏れ磁束を低減したステ 一タの例を示す図である。
[図 71]ループ状の卷線を有する 3相のモータの概略的な構成を示す図である。
[図 72]図 71の電流、電圧のベクトルを示す図である。
[図 73]ループ状の卷線を有する 3相のモータの概略的な構成を示す図である。
[図 74]図 73の電流、電圧のベクトルを示す図である。
[図 75]図 73に示したモータのステータ磁極の横断面形状を示す図である。
[図 76]図 73に示したモータの卷線の形状と渦電流を示す図である。
[図 77]ループ状の卷線を有する 5相のモータの概略的な構成を示す図である。
[図 78]図 77の電流のベクトルを示す図である。
[図 79]図 77の電流のベクトルを示す図である。
[図 80]ループ状の卷線を有する 5相のモータの概略的な構成を示す図である。
[図 81]図 80のモータの電流のベクトルを示す図である。
[図 82]図 80のモータの卷線をスター結線とした卷線結線図である。
[図 83]ループ状の卷線を有する 5相のモータの概略的な構成を示す図である。
[図 84]図 83のモータの電流のベクトルを示す図である。
[図 85]図 83のモータの卷線をスター結線とした卷線結線図である。
[図 86]ループ状の卷線を有する 5相のモータの概略的な構成を示す図である。
[図 87]図 83のモータの電流波形を示す図である。 [図 88]図 83のモータの卷線の電圧波形を示す図である。
[図 89]図 83のモータの卷線をスター結線とした場合の各端子の電圧波形を示す図 である。
[図 90]ループ状の卷線を有する 5相のモータの概略的な構成を示す図である。
[図 91]図 90のモータの電流のベクトルを示す図である。
[図 92]図 90のモータの電流のベクトルを示す図である。
[図 93]図 90のモータの卷線をスター結線、デルタ結線とした卷線結線図である。
[図 94]図 93のモータの電流波形を示す図である。
[図 95]図 93のモータの卷線の電圧波形を示す図である。
[図 96]図 93のモータの卷線をスター結線とした場合の各端子の電圧波形を示す図 である。
[図 97]ループ状の卷線を有する 5相のモータの概略的な構成を示す図である。
[図 98]図 97に示したモータのステータ磁極の横断面形状を示す図である。
[図 99]ループ状の卷線を有する 4相のモータの概略的な構成を示す図である。
[図 100]図 99の電流のベクトルを示す図である。
[図 101]図 99のモータの卷線をスター結線とした卷線結線図である。
[図 102]ループ状の卷線を有する 4相のモータの概略的な構成を示す図である。
[図 103]図 102のモータの卷線をスター結線とした卷線結線図である。
[図 104]ループ状の卷線を有する 4相のモータの概略的な構成を示す図である。
[図 105]図 104のモータの卷線をスター結線とした卷線結線図である。
[図 106]ループ状の卷線を有する 4相のモータの概略的な構成を示す図である。
[図 107]図 106のモータの電流のベクトルを示す図である。
[図 108]ループ状の卷線を有する 4相のモータの概略的な構成を示す図である。
[図 109]図 108に示したモータのステータ磁極の横断面形状を示す図である。
[図 110]図 108のモータの電流のベクトルを示す図である。
[図 111]図 108のモータの卷線をスター結線とし、 3相卷線ィ匕した卷線結線図である。
[図 112]図 108のモータの電流のベクトルを示す図である。
[図 113]図 108のモータの卷線をスター結線とし、 3相卷線ィ匕した卷線結線図である。 [図 114]図 35の 6相のモータの電流のベクトルを示す図である。
[図 115]図 35のモータの卷線をスター結線とした卷線結線図である。
[図 116]図 35のモータの電流波形を示す図である。
[図 117]図 35のモータの卷線の電圧波形を示す図である。
[図 118]図 35のモータの卷線をスター結線とした場合の各端子の電圧波形を示す図 である。
[図 119]位相を相対的に 30° 位相を替えた 2組の 3相のベクトル図である。
[図 120]図 119のモータの卷線をスター結線とした卷線結線図である。
[図 121]ループ状の卷線を有する 4相のモータの概略的な構成を示す図である。
[図 122]ループ状の卷線を有する 4相のモータの概略的な構成を示す図である。
[図 123]ループ状の卷線を有する 6相のモータの概略的な構成を示す図である。
[図 124]ループ状の卷線を有する 6相のモータの概略的な構成を示す図である。
[図 125]ループ状の卷線を有する 6相のモータの概略的な構成を示す図である。
[図 126]図 125の 6相のモータの電流のベクトルを示す図である。
[図 127]図 125の 6相のモータの電流のベクトルを示す図である。
[図 128]ループ状の卷線を有する 4相のモータの概略的な構成を示す図である。
[図 129]図 128の 6相のモータの電流のベクトルを示す図である。
[図 130]ループ状の卷線を有する 4相のモータの概略的な構成を示す図である。
[図 131]4極のリラクタンスモータのロータの概略的な構成を示す図である。
[図 132]図 131のロータに使用される電磁鋼板の形状を示す図である。
[図 133]図 131のロータに永久磁石を配置した構成を示す図である。
[図 134]ステータ磁極を円周方向にシフトした構成を示す図である。
[図 135]径方向に凹凸のあるステータ磁極形状、ロータ磁極形状を示す図である。
[図 136]ステータの卷線のパイプ状の卷線を使用する例である。
圆 137]モータの各卷線を個別に駆動する制御装置の構成例を示す図である。
[図 138]5相のモータの卷線構成とその制御装置を示す図である。
[図 139]5相のモータの卷線構成とその制御装置を示す図である。
[図 140]5相のモータの卷線構成とその制御装置を示す図である。 [図 141]従来のブラシレスモータの概略的な構成を示す縦断面図である。
[図 142]従来のブラシレスモータのステータ磁極と卷線の関係を示すステータの展開 図である。
[図 143]図 141の A1— A1線断面図である。
[図 144]従来のシンクロナスリラクタンスモータの横断面図である。
発明を実施するための最良の形態
[0049] 以下、本発明を適用した一実施例のモータについて、図面を参照しながら詳細に 説明する。
[0050] 最初に、本発明に係るモータの、従来公知の基本的な構成を説明し、その上で、 本発明に特有の特徴を提供する構成を説明することとする。
[0051] 図 1は、本実施例に係るモータとしてのブラシレスモータの基本的な構成を示す断 面図である。図 1に示すブラシレスモータ 150は、 3相交流で動作する 8極モータであ り、ロータ軸 111、永久磁石 112、ステータ 114を含んで構成されている。
[0052] ロータ 110は、表面に配置された複数の永久磁石 112を備えている。これらの永久 磁石 112は、ロータ 110表面に沿って円周方向に N極と S極とが交互に配置されて いる。図 2は、ロータ 110の円周方向展開図である。横軸は機械角を示しており、機 械角で 360° の位置は電気角で 1440° となる。
[0053] ステータ 114は、それぞれ 4個の U相ステータ磁極 119、 V相ステータ磁極 120、 W ネ目ステータ磁極 121を備えて!/ヽる。各ステータ磁極 119、 120、 121ίま、ロータ 110【こ 対して突極状の形状を有している。図 4は、ロータ 110側力 見たステータ 114の内 周側形状の展開図である。 4個の U相ステータ磁極 119は同一円周上に等間隔に配 置されている。同様に、 4個の V相ステータ磁極 120は同一円周上に等間隔に配置 されている。 4個の W相ステータ磁極 121は同一円周上に等間隔に配置されている。 4個の U相ステータ磁極 119を U相ステータ磁極群、 4個の V相ステータ磁極 120を V相ステータ磁極群、 4個の W相ステータ磁極 121を W相ステータ磁極群と称する。 また、これらの各ステータ磁極群の中で、軸方向に沿って端部に配置された U相ステ ータ磁極群と W相ステータ磁極群を端部ステータ磁極群、それ以外の V相ステータ 磁極群を中間ステータ磁極群と称する。 [0054] また、 U相ステータ磁極 119、 V相ステータ磁極 120、 W相ステータ磁極 121のそれ ぞれは、互いに軸方向位置と周方向位置がずらして配置されている。具体的には、 各ステータ磁極群は、相対的に機械角で 30° 、電気角で 120° の位相差となるよう に互いに円周方向にずらして配置されている。図 4に示す破線は、対向するロータ 1 10の各永久磁石 112を示して!/、る。同極のロータ磁極(N極に永久磁石 112同士あ るいは S極の永久磁石 112同士)のピッチは電気角で 360° であり、同相のステータ 磁極のピッチも電気角で 360° である。
[0055] ステータ 114の U相ステータ磁極 119、 V相ステータ磁極 120、 W相ステータ磁極 1 21のそれぞれの間には、 U相卷線 115、 V相卷線 116、 117、 W相卷線 118が配置 されている。図 6は、各相の卷線の円周方向展開図を示す図である。 U相卷線 115 は、 U相ステータ磁極 119と V相ステータ磁極 120との間に設けられており、周方向 に沿ったループ形状を成して 、る。ロータ軸 111側から見て時計回り方向の電流を 正とすると (他の相の相卷線についても同様とする)、 U相卷線 115に流れる電流 Iu は負(一 Iu)となる。同様に、 V相卷線 116は、 U相ステータ磁極 119と V相ステータ 磁極 120との間に設けられており、周方向に沿ってループ形状を成している。 V相卷 線 116に流れる電流 Ivは正(+Iv)となる。 V相卷線 117は、 V相ステータ磁極 120と W相ステータ磁極 121との間に設けられており、周方向に沿ったループ形状を成し ている。 V相卷線 117に流れる電流 Ivは負(― Iv)となる。 W相卷線 118は、 V相ステ ータ磁極 120と W相ステータ磁極 121との間に設けられており、周方向に沿ったルー プ形状を成している。 W相卷線 118に流れる電流^は正(+^)となる。これら 3種類 の電流 Iu、 Iv、 Iwは、 3相交流電流であり、互いに位相が 120° ずつ、ずれている。
[0056] 次に、ステータ 114の各相ステータ磁極形状と各相卷線形状の詳細について説明 する。図 3は、図 1のステータ 114の断面箇所を示す図であり、図 3 (A)には A— A線 断面図が、図 3 (B)には B— B線断面図力 図 3 (C)には C C線断面図がそれぞれ 示されている。これらの図に示すように、 U相ステータ磁極 119、 V相ステータ磁極 12 0、 W相ステータ磁極 121のそれぞれは、ロータ 110に対して突極形状を成しており、 それぞれが相対的に機械角で 30° 、電気角で 120° の位相差を有するような位置 関係となるように配置されている。 [0057] 図 5は、 U相卷線 115の概略的な形状を示す図であり、図 5 (A)には正面図が、図 5 (B)には側面図がそれぞれ示されている。 U相卷線 115は、巻き始め端子 Uと巻き 終わり端子 Nを有している。なお、同様に、 V相卷線 116、 117は巻き始め端子 Vと卷 き終わり端子 Nを有し、 W相卷線 118は巻き始め端子 Wと巻き終わり端子 Nを有して いる。各相卷線を 3相 Y結線する場合は、各相卷線 115、 116、 117、 118の巻き終 わり端子 Nが接続される。各相卷線 115、 116、 117、 118に流れる電流 Iu、 Iv、 Iwは 、各ネ目ステータ磁極 119、 120、 121とロータ 110の永久磁石 112との間でトノレクを発 生する電流位相に制御される。また、 Iu+Iv+Iw=0となるように制御される。
[0058] 次に、各相電流 Iu、 Iv、 Iwとこれらの各相電流により各相ステータ磁極 119、 120、 121に付与される起磁力との関係について説明する。図 8は、エアギャップ面側(口 ータ 110側)から見た各相ステータ磁極 119、 120、 121の展開図(図 4)に等価的な 各相電流卷線を書き加えた図である。
[0059] U相卷線は、 4個の U相ステータ磁極 119に同一方向で直列に卷回されている。し たがって、各 U相ステータ磁極 119は同一方向に起磁力が付与されている。例えば 、図 8の左から 2番目の U相ステータ磁極 119に卷回されている U相卷線は、導線(3 )、(4)、(5)、(6)によって形成されており、 U相ステータ磁極 119の回りにこの順番 でこれらの導線が複数回卷回されている。なお、導線(2)、(7)は隣接する U相ステ ータ磁極 119間の渡り線であり、電磁気的作用はな!/、。
[0060] このような U相卷線に流れる電流 Iuの各部分について詳細に見ると、導線(1)と(3 )の電流の大きさは同一で逆方向に流れており、起磁力アンペアターンは相殺されて V、るため、これらの導線は等価的に電流が流れて ヽな 、ときと同じ状態にあると!/ヽぇ る。同様に、導線(5)と(8)の部分の電流についても起磁力アンペアターンは相殺さ れており、これらの導線は等価的に電流が流れて!/、な 、ときと同じ状態にあると!/、え る。このように、 U相ステータ磁極 119間に配置される導線に流れる電流は常に相殺 されるため、電流を流す必要がなぐその部分の導線は排除することが可能である。 その結果、導線(10)、(6)に対応するようにステータ 114の円周上にループ状に流 れる U相電流 Iuと、導線 (4)、(9)に対応するようにステータ 114の円周上にループ 状に流れる U相電流一 Iuとが同時に流れている状態と同じと考えることができる。 [0061] し力も、上述した導線(10)、 (6)に対応するようにステータ 114の円周上にループ 状に流れる U相電流 Iuは、ステータコアの外部でループ状に流れる電流であり、ステ ータコアの外部は空気等であって磁気抵抗が大きいことから、ブラシレスモータ 150 への電磁気的作用はほとんどない。このため、省略しても影響はなぐステータコアの 外部に位置するループ状の卷線を排除することができる(なお、上述した例ではこの ループ状の卷線を省略している力 省略せずに残すようにしてもよい)。結局、図 1に 示す U相卷線の作用は、図 1、図 6に示すループ状の U相卷線 115と等価であるとい うことができる。
[0062] また、図 8に示した V相卷線は、 U相卷線と同様に、 4個の V相ステータ磁極 120を 周回するように直列に卷回されている。この中で、導線(11)と(13)に流れる電流は 大きさが同じで方向が逆であり、起磁力アンペアターンが相殺されるため、この部分 は等価的に電流が流れていないときと同じ状態にあるといえる。同様に、導線(15)、 (18)の電流についても起磁力アンペアターンは相殺されている。その結果、導線(2 0)、 (16)に対応するようにステータ 114の円周上に沿ってループ状に流れる V相電 流 Ivと、導線(14)、(19)に対応するようにステータ 114の円周上にループ状に流れ る V相電流 Ivとが同時に流れている状態と同じと考えることができる。結局、図 1に 示す V相卷線の作用は、図 1、図 6に示すループ状の V相卷線 116、 117と等価であ ると ヽうことができる。
[0063] また、図 8に示した W相卷線は、 U相卷線と同様に、 4個の W相ステータ磁極 121を 周回するように直列に卷回されている。この中で、導線(21)と(23)に流れる電流は 大きさが同じで方向が逆であり、起磁力アンペアターンは相殺されるため、この部分 は等価的に電流が流れていないときと同じ状態にあるといえる。同様に、導線(25)、 (28)の電流についても起磁力アンペアターンは相殺されている。その結果、導線(3 0)、 (26)に対応するようにステータ 114の円周上にループ状に流れる W相電流 Iwと 、導線(24)、(29)に対応するようにステータ 114の円周上にループ状に流れる W相 電流一 Iwとが同時に流れている状態と同じと考えることができる。
[0064] し力も、上述した導線卷線(24)、 (29)に対応するようにステータ 114の円周上に ループ状に流れる W相電流 Iwは、ステータコアの外部でループ状に流れる電流で あり、ステータコアの外部は空気等であり磁気抵抗が大きいことから、ブラシレスモー タ 150への電磁気的作用はほとんどない。このため、省略しても影響はなぐステータ コアの外部に位置するループ状の卷線を排除することができる。結局、図 8に示す W 相卷線の作用は、図 1、図 6に示すループ状の W相卷線 118と等価であるということ ができる。
[0065] 以上説明したように、ステータ 114の各相ステータ磁極 119、 120、 121に電磁気 的作用を付与する卷線及び電流はループ状の簡素な卷線で代替えすることができ、 かつ、ステータ 114の軸方向両端のループ状の卷線を排除することができる。その結 果、ブラシレスモータ 150に使われる銅の量を大幅に低減することができるので、高 効率化、高トルク化が可能となる。また、同相の円周方向のステータ磁極間に卷線( 導線)を配置する必要がないため、従来構造以上の多極化が可能となり、特に卷線 構造が簡素であることから、モータの生産性を向上させることができ、低コストィ匕が可 能となる。
[0066] なお、磁気的には、 U、 V、 W相のステータ磁極を通る磁束 、 φ ν、 がバックョ ーク部で合流し、 3相交流磁束の総和が零となる ( ) U + ν+ φ =0の関係となって いる。また、図 71、図 72、図 73に示した従来構造は、図 8に示した各相突極 119、 1 20、 121を 2個ずつ合計 6個を同一円周上に並べた構造であり、個々の突極の電磁 気的作用、トルク発生はブラシレスモータ 150と同じである。但し、図 71、図 72に示 すような従来のブラシレスモータは、その構造上、図 1から図 7に示すブラシレスモー タ 150のように卷線の一部を排除したり、卷線の簡素化を行うことはできない。
[0067] ブラシレスモータ 150はこのような構成を有しており、次にその動作を説明する。図 9は、ブラシレスモータ 150の電流、電圧、出力トルクのベクトル図である。 X軸が実軸 に、 Y軸が虚軸にそれぞれ対応している。また、 X軸に対する反時計回り方向の角度 をベクトルの位相角とする。
[0068] ステータ 114の各相ステータ磁極 119、 120、 121に存在する磁束 φ u、 ν , ψ の回転角度変化率を単位電圧と称し、 Eu =d φ u Zd Θ、 Ev =d φ V Zd Θ、 Ew = d (i) w /d 0とする。各ネ目ステータ磁極 119、 120、 121のロータ 110 (永久磁石 11 2)に対する相対位置は、図 4に示したように、電気角で 120° ずつシフトしているの で、各相卷線 115〜118の 1ターンに誘起される単位電圧 Eu、 Ev、 Ewは、図 9に示 すような 3相交流電圧となる。
[0069] 今、ロータが一定回転 d Θ Zdt=Slで回転し、各相卷線 115〜118の巻き回数を Wu、 Wv、 Wwとし、これらの値が Wcに等しいとすると、卷線 115〜118の各誘起電 圧 Vu、 Vv、 Vwは次のように表される。なお、各ステータ磁極の漏れ磁束成分を無視 すると、 U相卷線の磁束鎖交数は Wu X φ u、 V相卷線の磁束鎖交数は Wv X φν、 W相卷線の磁束鎖交数は WwX ()wである。
Figure imgf000023_0001
= -WuXd u/d0 X d θ /dt
= -WuXEuXSl
同様に、
Vv = WvXEvXSl ---(2)
Vw = WwXEwXSl ---(3)
[0070] ここで、具体的な卷線と電圧の関係は次のようになる。 U相の単位電圧 Euは、図 1 および図 6に示される U相卷線 115の逆向きの 1ターンに発生する電圧である。 U相 電圧 Vuは、 U相卷線 115の逆向きに発生する電圧である。 V相の単位電圧 Evは、 V 相卷線 116の 1ターンと V相卷線 117の逆向きの 1ターンとを直列に接続したときに両 端
に発生する電圧である。 V相電圧 Vvは、 V相卷線 116と逆向きの V相卷線 117とを直 列に接続したときの両端の電圧である。 W相の単位電圧 Ewは、図 1および図 6に示 される W相卷線 118の 1ターンに発生する電圧である。 W相電圧 Vwは、 W相卷線 11 8の逆向きに発生する電圧である。
[0071] ブラシレスモータ 150のトルクを効率良く発生させようとすると、各相電流 Iu、 Iv、 Iw は、各相卷線の単位電圧 Eu、 Ev、 Ewと同一位相に通電する必要がある。図 9では、 I u、 Iv、 Iwと Eu、 Ev、 Ewとがそれぞれ同一位相であるものとし、ベクトル図の簡素化の ため、同相の電圧ベクトル、電流ベクトルを同一のベクトル矢で表現している。
ブラシレスモータ 150の出力パワー Pa、各相のパワー Pu、 Pv、 Pwは、
Pu = VuX (-Iu)= WuXEuXSl XIu "-(4) Pv = VvXIv = WvXEvXSlXIv "-(5)
Pw = VwXIw = WwXEwXSlXIw "-(6)
Pa = Pu + Pv+Pw = VuXIu+VvXIv+VwXIw ---(7)
となる。また、ブラシレスモータ 150の出力トルク Ta、各相のトルク Tu、 Tv、 Twは、
Tu = Pu/Sl = WuXEuXIu ·'·(8)
Tv = Pv/Sl = WvXEvXIv ·'·(9)
Tw = Pw/Sl = WwXEwXIw "-(10)
Ta = Tu+Tv+Tw
= WuXEuX Iu+Wv XEvX Iv+Ww XEwXIw
= WcX (EuXIu + EvXIv+EwXIw) …(11)となる。なお、本実 施例のブラシレスモータ 150の電圧、電流、トルクに関するベクトル図は、図 71、図 7 2、図 73に示した従来のブラシレスモータのベクトル図と同じである。
[0072] 次に、図 1および図 6に示した各相卷線と電流について、より高効率化する変形手 法について説明する。 U相卷線 115と V相卷線 116は、 U相ステータ磁極 119と V相 ステータ磁極 120の間に隣接して配置されたループ状の卷線であり、これらを単一の 卷線にまとめることができる。同様に、 V相卷線 117と W相卷線 118は、 V相ステータ 磁極 120と W相ステータ磁極 121の間に隣接して配置されたループ状の卷線であり 、これらを単一の卷線にまとめることができる。
[0073] 図 7は、 2つの卷線を単一の卷線にまとめた変形例を示す図である。図 7と図 6とを 比較すると明らかなように、 U相卷線 115と V相卷線 116が単一の M相卷線 138に置 き換えられ、 V相卷線 117と W相卷線 118が単一の N相卷線 139に置き換えられて いる。また、 U相卷線 115の電流(一 Iu)と V相卷線 116の電流(Iv)とを加算した M相 電流 Im (=— Iu+Iv)を M相卷線 138に流すことにより、 M相卷線 138によって発生 する磁束の状態と U相卷線 115と V相卷線 116のそれぞれによって発生する磁束を 合成した状態とが同じになり、電磁気的に等価になる。同様に、 V相卷線 117の電流 (-Iv)と W相卷線 118の電流(Iw)とをカ卩算した N相電流 In(=—Iv+Iw)を N相卷線 139に流すことにより、 N相卷線 139によって発生する磁束の状態と V相卷線 117と W相卷線 118のそれぞれによって発生する磁束を合成した状態とが同じになり、電 磁気的に等価になる。
[0074] 図 9にはこれらの状態も示されている。図 9に示された M相卷線 138の単位電圧 Em 、 N相卷線 39の単位電圧 Enは以下のようになる。
Em = — Eu = — d uZ d θ
En = Ew =d wZ d Θ
また、各卷線の電圧 V、パワー P、トルク Tのベクトル算式は以下のようになる。
Vm = WcXEmXSl ·'·(12)
Vn = WcXEnXSl ·'·(13)
Pm = VmXIm = WcX (-Eu) XS1X (— Iu+Iv)
= WcXEuXSIX (-Iu + Iv) "-(14) Pn = Vn XIn = WcXEwX SI X (-Iv+Iw) ---(15)
Pb = Pm + Pn = VuX (-Iu + Iv) +VwX (-Iv+Iw) "-(16) Tm = Pm/Sl = WcX (— Eu ) X (-Iu + Iv) ·'·(17)
Tn = Pn /SI = WcXEwX (-Iv+Iw) "-(18)
Tb = Tm+Tn = WcX ( (— EuXIm) +EwXIn) ---(19) = WcX (— EuX (-Iu + Iv) +Ew X (-Iv+Iw))
= WcXEuXIu+WcXIvX (— Eu— Ew) +WcXEwXIw
= WcX (EuXIu + EvXIv+EwXIw) "-(20) ·.· Eu + Ev+Ew=0 ·'·(21)
[0075] ここで、 (11)式で示されたトルク式は 3相で表現され、(19)式で示されたトルク式は 2相で表現されている。これらのトルク式の表現方法は異なる力 (19)式を展開する と(20)式となり、これら両式は数学的に等価であることがわかる。特に、電圧 Vu、 Vv 、 Vwおよび電流 Iu、 Iv、 Iwが平衡 3相交流の場合は(11)式で示されるトルク Taの値 は一定となる。このとき、(19)式で示されるトルク Tbは、図 9に示すように、 Tmと Tnと の位相差である Kmn=90° となる正弦波の 2乗関数の和として得られ、一定値となる また、(19)式は 2相交流モータの表現形態であり、(11)式と(21)式は 3相交流モ ータの表現形態であるが、これらの値は同じである。しかし、(19)式において、(一Iu +Iv)の電流 Imを M相卷線 138へ通電する場合と—Iuと Ivの電流をそれぞれ U相卷 線 115と V相卷線 116へ通電するのとでは、電磁気的には同じでも、銅損は異なる。 図 9のベクトル図に示すように、電流 Imの実軸成分は Imに cos30° を乗じた値に減 少するため、 M相卷線 138に電流 Imを通電する方が銅損が 75%になり、 25%の銅 損が低減されると ヽぅ効果がある。
[0077] 次に、図 1に示すモータのステータ 114の形状に関し、そのギャップ面磁極形状の 変形例について説明する。ステータ 114の磁極形状は、トルク特性に大きく影響し、 かつ、コギングトルクリップル、通電電流により誘起されるトルクリップルに密接に関係 する。以下では、各ステータ磁極群に存在する磁束の回転角度変化率である単位電 圧の形状および振幅がほぼ同一で相互に電気角で 120° の位相差を維持するよう に、各ステータ磁極群のそれぞれに対応するステータ磁極の形状を変形する具体例 について説明する。
[0078] 図 10は、ステータ磁極の変形例を示す円周方向展開図である。図 4に示した各相 のステータ磁極 122、 123、 124は、ロータ軸 111と平行に配置された基本形状を有 している。各ステータ磁極は、各相について同一形状であって、相対的に電気角で 1 20° の位相差をなすように配置されている。このような形状を有する各ステータ磁極 122、 123、 124を用いた場合にはトルクリップルが大きくなることが懸念される。しか し、各ステータ磁極 122、 123、 124のラジアル方向に力まぼこ形状の凹凸を形成す ることにより、境界部での電磁気的作用を滑らかにすることができ、トルクリップルの低 減が可能になる。また、他の方法として、ロータ 110の永久磁石 112の各極の表面に 力まぼこ形状の凹凸を形成することにより、円周方向に正弦波的な磁束分布を実現 することができ、これによりトルクリップルを低減するようにしてもよい。なお、図 10の水 平軸に付された角度は円周方向に沿った機械角であり、左端力 右端までの 1周が 360° である。
[0079] 図 11は、ステータ磁極の他の変形例を示す円周方向展開図である。図 11に示した 各相のステータ磁極 125、 126、 127は、図 10に示した基本形状に対して、電気角 で約 60° スキューした形状 (ロータ軸 111と平行な向きに対して円周方向に沿って 電気角で 60° 傾斜させた形状)を有している。これにより、トルクリップルを低減する 効果がある。また、各相のステータ磁極 125、 126、 127の幅が 180° より狭いので 各相のステータ磁極 125、 126、 127を通る最大磁束は減少しないため、トルク平均 値の低減は少な 、と 、う特徴がある。
[0080] ところで、図 10および図 11に示したステータ磁極形状を採用した場合には、ステー タ磁極のエアギャップ面形状を実現するためには、各相の卷線 115、 116、 117、 11 8とエアギャップ部との間にその磁極形状を実現するために各相のステータ磁極の先 端がロータ軸方向に出た形状となり、軸方向に出るための磁路のスペースが必要で あり、そのスペース確保のためモータ外形形状が大きくなりがちであるという問題があ る。
[0081] 図 12は、ステータ磁極の他の変形例を示す円周方向展開図であり、この問題を軽 減するステータ磁極形状が示されて 、る。ステータ 114の U相ステータ磁極 128に存 在する磁束 φ uの回転角度変化率である U相の単位電圧を Eu ( = d φ u/d 0 )、 V相 ステータ磁極 129に存在する磁束 φ Vの回転角度変化率である V相の単位電圧を E V ( = d φ v/d θ )、 W相ステータ磁極 130に存在する磁束 φ wの回転角度変化率で ある W相の単位電圧を Ew ( = d φ w/d θ )とするとき、各相の単位電圧 Eu、 Ev、 Ew が形状、振幅がほぼ同一で、位相が相互に電気角で 120° の位相差を保つように各 相のステータ磁極 128、 129、 130の形状を変形した例が図 12に示されている。これ らのステータ磁極形状の特徴は、各ステータ磁極 128、 129、 130のエアギャップ面 の大半がそれぞれのステータ磁極の歯の中間部分に対して距離が短ぐロータ 110 力もの磁束が各ステータ磁極表面を通り、歯の中間部分を通り、そしてステータ 114 のバックヨークへの磁路を介して磁束が容易に通過できる点である。したがって、図 1 2に示したステータ磁極形状は、図 10や図 11に示したステータ磁極形状に比べて、 各相卷線 115、 116、 117、 118とエアギャップ部との間のステータ磁極のスペースを 小さくできることになる。その結果、ブラシレスモータの外形形状を小さくすることが可 會 になる。
[0082] 図 13は、ステータ磁極の他の変形例を示す円周方向展開図であり、図 10に示した ステータ磁極形状をさらに変形したステータ磁極形状が示されて 、る。図 13に示す 例では、ロータ軸 111方向両端の U、W相ステータ磁極 134、 136は、円周方向の磁 極幅を電気角で 180° に広げ、残ったスペースを V相のステータ磁極 135とバランス が取れるように分配配置し、 U、 W相ステータ磁極 134、 136のバックヨーク力も歯の 表面までの距離が遠い部分についてはそれぞれの先端部分が細くなつてその製作 も難しくなることから削除している。 135は V相ステータ磁極である。そして、各相のス テータ磁極形状の表面の回転角度変化率である各相の単位電圧 Eu、 Ev、 Ewは、位 相は異なるが同一の値となるように変形されている。その結果、比較的大きな有効磁 束を通過させることができ、かつ、その製作も比較的容易なステータ磁極形状となつ ている。
[0083] 次に、本実施例に係るモータについて、本発明に係る特徴を呈する詳細な構成及 び作用効果について説明する。このモータには、本発明に係る特徴を呈するステー タ構造に関する構成と、図 14〜図 19、図 73、図 74に示す各種のロータとの組み合 わせによる独特の効果を得る構成とが含まれている。また、このモータの相数は、図 2 0 (a)〜図 20 (f)のベクトル図に示すように、 2相交流、 3相交流、そして、 4相以上の 相数の多相交流まで種々構成が可能である。このモータの極数についても、 2極から 多極まで適用可能であり、特に極数を大きくすることにより各相卷線の鎖交磁束の回 転変化率を大きくすることができ、大きなトルクを得ることができる。図 1に示した 3相 交流モータは、図 20 (b)で表現される 3相交流モータに相当する。
[0084] 図 21は、一実施例の 8極 6相のモータの縦断面図である。また、図 22はステータの 内周面とロータの外周面とを円周方向に直線展開した図である。
[0085] 図 21に示すモータ 100は、ロータ 10、ロータ軸 11、永久磁石 12、ステータ 14を含 んで構成されている。永久磁石 12は、ロータ 10の外周側に取り付けられている。具 体的には、図 22 (a)に示すように、ロータ 10の外周表面に沿って N極と S極とが交互 に配置されている。図 22 (b)の横軸はロータ回転方向位置を示しており、 1周すると 電気角で 360。 X 4= 1440° となる。また、ステータ 14は、図 22 (a)に示すように、 内周側に第 1相力 第 6相までのステータ磁極 53、 54、 55、 56、 57、 58、 59を備え る。軸方向両端に位置するステータ磁極 53とステータ磁極 59は、同極でともに第 1 相のステータ磁極となっている。同じ相のステータ磁極は同一円周上に 360° ピッチ で 4個が配置されている。この例では、第 1相から第 6相までの各ステータ磁極力 そ れぞれ相対的に、電気角で 360° /6 = 60° の位相差を持つように配置され、各ス テータ磁極の円周方向の幅は 180° となっている。
[0086] また、図 23は、図 21に示すモータ 100の各断面形状を示す図である。図 23 (a)に は D— D線断面および J J線断面が、図 23 (b)には E— E線断面力 図 23 (c)には F F線断面力 図 23 (d)には G— G線断面力 図 23 (e)には H— H線断面が、図 23 (f)には I-I線断面がそれぞれ示されている。なお、 D— D線断面および J-J線断面 が同相のステータ磁極 53、 59に対応するものであるため、図 23 (a)に示すように同 一形状となる。図 22に各ステータ磁極の配置を示したように、図 23に示す各ステータ 磁極の円周方向位置が 60° ずつ、ずれていることがわかる。
[0087] また、図 21および図 22 (a)に示すように、ステータ 14は、ロータ軸 11を中心とした ループ状の卷線 41〜52を備えている。ステータ磁極 53、 54の間のスロットには卷線 41、 42が卷回されている。同様に、ステータ磁極 54、 55の間のスロットには卷線 43 、 44が卷回されている。ステータ磁極 55、 56の間のスロットには卷線 45、 46が卷回 されている。ステータ磁極 56、 57の間のスロットには卷線 47、 48が卷回されている。 ステータ磁極 57、 58の間のスロットには卷線 49、 50が卷回されている。ステータ磁 極 58、 59の間のスロットには卷線 51、 52が卷回されている。各卷線の円周方向形 状を直線に展開した形状は、ループ状卷線を切り開いた形状であり、図 22に示すよ うに、直線状に図示される。各卷線の卷線電流の電磁気的作用は、平衡した 6相の 磁気回路構成となっている場合には、図 8を用いて説明したように、例えば、ステータ 磁極 54の両隣の卷線 42と 43の巻き回数を同じとし、卷線 42へ図 20 (e)のベクトル B で示される電流を通電し、卷線 43へベクトル Bで示される逆向きの電流を流せば その起磁力がステータ磁極 54に作用すると考えることができる。等価的には、卷線 4 2に対して卷線 43の巻き方向を逆巻きとして結線し、同一の電流 Bを通電する構成と することもできる。他のステータ磁極についても同様の関係で卷線が配置されている 。図 22の卷線 41〜52のそれぞれへ通電される電流は、それらの左端に付記した電 流ベクトルで、図 20 (e)の同一符号のベクトルで示される電流となっている。ここで、 軸方向両端のステータ磁極 53、 59についてはやや特殊であり、両サイドが空気であ るため磁気抵抗が大きぐそれぞれ、卷線 41と卷線 52の電流がそれぞれの両端のス テータ磁極 53、 59に磁気的作用を及ぼす。各ステータ磁極の軸方向の幅が WDD であるとき、第 1相であって同相のステータ磁極 53、 59の各軸方向幅 WDA1、 WD A2の和が WDDと等しくなるような構成、すなわち WDD=WDA1 +WDA2の関係 を満たすようにすれば、 2つのステータ磁極 53、 59によりステータ 14の軸方向中間 に配置される他相の各ステータ磁極とほぼ同等の電磁気的作用を得ることができる。 整理すると、 A相にステータ磁極 53、 59が対応しており、卷線 52、 41がこれらのステ ータ磁極を通過する磁束と鎖交する。同様に、 B相にステータ磁極 54が対応しており 、卷線は 42、 43がこれらのステータ磁極を通過する磁束と鎖交する。 C相にステータ 磁極 55が対応しており、卷線は 44、 45がこれらのステータ磁極を通過する磁束と鎖 交する。 D相にステータ磁極 56が対応しており、卷線は 46、 47がこれらのステータ磁 極を通過する磁束と鎖交する。 E相がステータ磁極 57に対応しており、卷線は 48、 4 9がこれらのステータ磁極を通過する磁束と鎖交する。 F相がステータ磁極 58に対応 しており、卷線は 50、 51がこれらのステータ磁極を通過する磁束と鎖交する。なお、 軸方向両端のステータ磁極 53、 59については、各ステータ磁極の周辺からの漏れ 磁束の回り込みの影響が有り、厳密には単純モデルでは現れない誤差が発生する ため、その影響を配慮したステータ磁極形状に修正することによりトルクリップルをより 低減させ、より精密なモータを実現することもできる。
次に、モータ 100への具体的な通電例について説明する。ロータ 10は、表面磁石 型ロータであって 8極とする。第 1相の卷線である卷線 41と卷線 52が逆向きに直列に 接続されており、これらの卷線に鎖交する磁束 Φ1の最大値を FLmとし、その円周方 向分布は正弦波分布であると想定すると、卷線 41、 52へ鎖交する鎖交磁束 1=F LXsin(0E)の回転角変化率 Elは、
Ε1 = ά(Φ1)/άθ
= d(FLmXsin(0E))/d0
= d(FLmXsin( Θ E))/d( θ Ε) Χά(ΘΕ)/άθ
=4XFLmXcos( θ Ε) ·'·(22)
となる。ここで、 0はロータ 10の回転位置であり、 0Εは回転位置の電気角単位であ り、 8極の場合には 0 Ε=4Χ 0となる。それぞれの卷線 41、 52の巻き回数を W1と すると、第 1相の卷線 41、 52に誘起する電圧 VIは次式で表すことができる。
Vl=WlXd( 1)/dt ---(23)
=WlXd( l)/d0 Χάθ /dt ---(24)
= 4XWlXFLmXcos( θ E) Χάθ /dt ---(25)
したがって、(25)式より、鎖交磁束 Φ1の回転角変化率 E1と同一位相の電流 IpX co s( 0 E)を通電すれば効率良くトルクを発生することができることになる。 Ipは電流振 幅である。なお、第 1相の卷線 41、 52の磁束鎖交数は Wl X Φ1であり、電圧 VIは 磁束鎖交数の時間変化率である。
他の相についても、該当するステータ磁極の軸方向前後の 2つの卷線が逆方向に 卷回され、直列接続されている。これらの卷線に誘起される電圧は、位相が 60° ず つ異なるが同様の関係となっている。ここで、モータ 100の内部損失 Ploss = 0と仮定 すると、モータ 100の入力であり、モータ 100の機械的な出力である Pcは各相の電 圧と電流の積の総和として得られ、次式となる。
Pc =4WlXFLmXcos( θ Ε) Χάθ /dtXIp X cos ( θ E)
+ 4WlXFLmXcos( θ E- π/6) X d Θ /dt
XIp X cos ( θ Ε- π/6)
+ 4WlXFLmXcos( θ Ε~2π/6) X d Θ /dt
XIp X cos ( θ Ε-2π/6)
+ 4WlXFLmXcos( θ Ε~3π/6) X d Θ /dt
XIp X cos ( θ Ε-3π/6)
+ 4WlXFLmXcos( θ Ε~4π/6) X d Θ /dt
XIp X cos ( θ Ε-4π/6)
+ 4WlXFLmXcos( θ Ε~5π/6) X d Θ /dt
XIp X cos ( θ Ε-5π/6)
=4W1 X FLm X 6/2 Χάθ /dt X Ip
= 12WlXFLmXIp Χάθ /dt "-(26)
一方、機械出力 Pmecは、トルク Tcと回転角周波数 d Θ Zdtの積であるから
Pmec =Tc Χάθ /dt · · · (27) であり、モータ 100の電磁気的出力 Pcと機械出力 Pmecは等しいので、トルク Tcは( 26)式、(27)式より、以下に示す次式(28)で示される。
Tc = 12Wl X FLm X Ip · '· (28)
[0090] この結果、トルク Tcは極数と卷線回数 Wlと電流 Ιρと各相の卷線に鎖交する磁束 F Lmとに比例することになる。トルクリップルは各相の卷線に鎖交する磁束が回転角に 対して正弦波分布であれば原理的に発生しないことになる。現実には、鎖交磁束 Φ 1が正弦波分布ではなぐ多くの高調波成分を持つことが多いので、モータ電流が零 のときのコギングトルク、通電時のトルクリップルを含むことになる。
[0091] なお、各相の卷回数 W1と電流 Ipと各相の卷線に鎖交する磁束 FLとは、これらの 積が同一であれば変形することが可能である。例えば、各ループ状の卷線の電流が 発生する起磁力は、巻き回数と電流値の積であり、アンペア Xターン数が同じであれ ば同一の起磁力を発生できるので、例えば、卷回数を 1Z2にして電流を 2倍に変え ることも可能であり、そのとき、同一の電磁気的作用を得ることができる。また、磁極幅 を 20%狭くして卷線に鎖交する磁束 FLが 20%低減しても、卷線回数 W1あるいは 電流値 Ipを 20%増加すればトルク Tcは変わらない。このように、モータ設計の都合 により、モータ 100の出力特性を変えることなぐモータ 100の内部パラメータを変更 することちでさる。
[0092] 図 21、図 22、図 23に示すモータ 100では各相のステータ磁極の軸方向配置が相 順に配置されている例を示した力 配置順が相順に限定されるわけではなぐ種々の 軸方向配置が可能である。特に、図 21、図 22に示す表面磁石型ロータを使用する 場合には、ロータ表面の磁束が主に永久磁石 12に依存して生成されるため、各相の ステータ磁極の軸方向配置を図 20 (e)に示すベクトル A、 B、 C、 D、 E、 Fの順に配 置しても、他の配置順で例えば、 A、 C、 E、 B、 D、 Fの順に配置してもモータ 100の 出力トルクに大きな差は発生しない。但し、各相のステータ磁極とその相の卷線に流 れる電流の関係は図 21、図 22と同じにする必要がある。ステータ磁極配置の都合、 卷線配置の都合、その他組み立て、製作の容易さなどによりステータ磁極の軸方向 配置を選択することができる。
[0093] なお、各ループ状卷線に流される電流が永久磁石 12の磁束密度を大きく変えるほ どの大電流の場合には、前記の電流振幅 Ipと各相卷線に鎖交する磁束の最大値 F Lmとの間に強い相間を持ち、 FLmが変化することになる。したがって、(22)式から( 28)式で示された各特性値に対して誤差が大きくなり、また、各相のステータ磁極の 軸方向配置の配置順がモータ 100の出力トルクにも影響するようになる。
[0094] ところで、図 21に示したモータ 100は、ループ状の簡単な構造の卷線 41等を有し ており、図 71〜図 74に示したような従来構造のモータのコイルエンドが無いという大 きな特徴がある。また、図 71〜図 74に示したような従来構造のモータでは、多極化し た場合、極数が増加して卷線に鎖交する磁束の回転変化率は増加するが同時にス ロット面積も小さくなるため導線面積は反比例して小さくなり、結局、両モータ極数の 増加と 1極当りの電流量の減少とが相殺するため、トルク増加はできな力つた。しかし 、図 21に示したステータ 14では、ループ状の卷線 41等を備えるため、同相の円周 方向のステータ磁極間に卷線 (導線)を配置する必要がなぐ多極化しても各相卷線 の導線太さを細くする必要がないので、原理的には極数に比例してモータトルクを向 上することができると 、う特徴がある。
[0095] 次に、ロータ 10が表面永久磁石型ロータではなぐ図 74や図 14〜図 19に示すよう なロータ表面近傍に軟磁性体を多く含むような種類のロータと、図 21、図 22に示す ステータ 14とを組み合わせて構成されるモータにおいては、前記の電流振幅 Ipと各 相卷線に鎖交する磁束との間に強い相間を持つことになり、各相のステータ磁極の 軸方向配置の配置順によりモータ出力トルクが大きく左右されることになる。この問題 を解決し、モータ出力トルクを大きくする方法は、各相のステータ磁極の軸方向配置 を相順に配置することである。
[0096] 従来例として図 74に示したシンクロナスリラクタンスモータのステータは、誘導電動 機のステータにも使用されるごく一般的な 3相、 4極、 24スロットのステータである。こ のようなステータと図 74や図 14〜図 19に示すようなロータとを組み合わせたモータ の電磁気的な作用は、モータを dq軸理論で表現することが多い。分かりやすくするた めに、一般的なモデル例として、 3相、 2極、 6スロットのシンクロナスリラクタンスモータ の断面図の例を図 24に示す。 211はロータの磁極の方向に設けられたスリットであり 空隙あるいは非磁性体であり、 212はスリット 211に挟まれ磁極の方向に磁束を導く 細い磁路である。通常、ロータの磁極の方向を d軸、 d軸に電磁気的に直交する方向 を q軸と称している。 219から 223はステータの歯であり、本明細書では個々の歯に 磁気的な個別の機能を持たせる意味でステータ磁極と称している。 213と 216は、 3 相 U、 V、 W相の内の U相卷線であり、コイルエンド部を介して全節卷となっている。 U相電流 Iuは卷線 213に通電され、卷線 216へは逆方向の電流が通電される。同様 に、 V相電流 Ivは卷線 215に通電されその逆方向電流が卷線 218に通電される。 W 相電流 Iwは卷線 217へ通電されその逆方向電流が卷線 214へ通電される。各相の 電流成分を d軸方向成分と q軸方向成分にベクトル分解して、各相の d軸方向成分を 加算した d軸電流 Idと、各相の q軸電流成分を加算した q軸電流 とを得る。例えば、 図 24に示した状態では、卷線 213、 216に流れる電流 Iuは d軸方向に負の磁束を発 生するので、 Iuは全てが負の d軸電流成分で、その値は Iuである。卷線 215、 218 に流れる電流 Ivは起磁力の方向が d軸方向に 60° の角度をなしており、 d軸電流成 分は 1Z2 X IVで q軸電流成分は 1. 732Z2 X IVである。一方、モータの d軸方向 インダクタンスを Ldとし、 q軸方向インダクタンスを Lqとする。
[0097] このような構成において、各相電流を適正に通電して制御する例の各値のベクトル 関係を図 25に示す。 d軸電流 Idによって d軸方向に誘起する d軸方向磁束 Φ(1は Ld X ldであり、 q軸電流 Iqによって q軸方向に誘起する q軸方向磁束 0>qは Lq X Iqであ る。モータ内に発生する磁束 Φπιは磁束 Φ(1と 0>qをベクトル的加算した値である。そ してこのときに発生するトルク Tsynは次式で表される。
Tsyn= (Ld -Lq ) ld X Iq · '· (29)
= dX Iq- q X Id · '· (30)
[0098] 図 21、図 22に示した表面磁石型モータ 100の場合、各ステータ磁極の磁束は主 に永久磁石 12に依存して 、て (22)式〜(28)式で示すように表現できるが、図 24に 示すようなロータ表面に軟磁性体を多く含むロータ構造のモータでは、各ステータ磁 極の磁束は通電される各電流に大きく依存することがよくわかる。
[0099] 次に、図 74や図 14〜図 19に示すようなロータと図 21、図 22に示すステータ 14とを 組み合わせて構成されるモータについて説明する。このモータは、図 24、図 25に示 すモータモデルと比べると、モータの構成、構造は大きく異なる力 電磁気的な特性 は共通する点が有り、対比して説明する。
[0100] 図 21、図 22に示すモータ 100に含まれるステータ 14は、 8極の構成なので、各相 のステータ磁極が円周方向に 4個ずつ配置されている力 2極を想定し、各相のステ ータ磁極が 1個ずつであるとして図 24に示したステータと対比する。卷線については 、図 22の卷線 41、 42に流れる各電流を合計した電流が図 24の卷線 213に流れる 電流に対応する。同様に、卷線 43、 44が卷線 214に、卷線 45、 46力卷線 215〖こ、 卷線 47、 48力 S卷線 216に、卷線 49、 50力 S卷線 217に、卷線 51、 52力 S卷線 218に それぞれ対応する。卷線の形態については、図 21に示したステータ 14はループ状 の卷線で、図 24に示したステータは軸方向卷線とコイルエンド部で構成され、大きく 異なる形状となっている。ステータ磁極については、図 22のステータ磁極 59、 53が 図 24のステータ磁極 219に、ステータ磁極 54がステータ磁極 220に、ステータ磁極 55力 Sステータ磁極 221に、ステータ磁極 56がステータ磁極 222に、ステータ磁極 57 がステータ磁極 223に、ステータ磁極 58がステータ磁極 224にそれぞれ対応してい る。
[0101] 図 22に示したステータ磁極の形状は、円周方向に電気角で 180度の幅を有し、口 ータ軸 11方向の幅はモータの軸方向幅の約 1Z6である力 図 24のステータ磁極は 円周方向幅が約 60度でロータ軸方向幅はモータの軸方向幅と同じであり、両ステ一 タ磁極の形状は構造が大きく異なる。しかし、モータ全体としての電磁気的作用は類 似しており、図 74や図 14〜図 19に示すようなロータと図 21、図 22に示したステータ 14とで構成されるモータをベクトル図で表現すると図 24のモータと同じ図 25のべタト ル図となる。
[0102] 例えば、図 21に示すモータ 100の 8極のステータ 14と図 24に示すロータを 8極化 したロータとを組み合わせて 3相、 8極のシンクロナスリラクタンスモータを構成するこ とができる。このとき、卷線 41、 42へそれらの合計電流が U相電流 Iuを通電し、卷線 47、 48へは Iuを通電すると、ステータ磁極 54、 55、 56へは電流 Iuに相当する起 磁力が、例えば、ステータの外径側から内径側へ作用したとすると、同時にステータ 磁極 57、 58、 59、 53へは逆方向のステータの内径側から外径側への起磁力が作用 する。この関係は、図 24の U相卷線 213、 216に U相電流 Iuを通電したときにステー タ磁極 220、 221、 222へ起磁力力 例えば、ステータの外径側から内径側へ作用し 、同時に、ステータ磁極 223、 224、 219へはステータの内径側力も外径側へ作用す ることに相当する。図 21の他の卷線の電流についても同様に作用し、図 24のモータ と同様の電磁気的作用を行う。構造的に異なる点は多くあり、図 24のモータの起磁 力、磁束が円周方向および径方向であるのに対し図 21のモータではロータ軸方向 へも作用する点、図 24の位相の異なるステータ磁極が円周方向に配置しているのに 対し図 21ではロータ軸方向に配置している点、図 21の卷線 41等がループ状である 点、図 24の位相の異なる卷線が円周方向に位相順に配置されているのに対し図 21 の位相の異なる卷線はロータ軸方向に位相順に配置されて 、る点などである。
[0103] このように、モータの構成は、図 21、図 22に示すモータ 100において回転方向に 位相の異なる各ステータ磁極をロータ軸方向へ位相順に配置し、それらの各ステー タ磁極の軸方向隙間の各スロットへ各ループ状卷線を配置し、回転方向位相に同期 して各卷線へ電流を通電する。モータの作用は、前記モータ構成により主に界磁磁 束を生成する d軸電流 Id成分と主にトルクを生成する q軸電流 Iq成分とを生成させる ことができ、図 25のベクトル図に示すような作用を実現し、必要に応じて効率よくモー タ界磁磁束 Φπιを生成し、(29)、 (30)式で示されるトルクを得ることができる。なお、 図 21に示すステータ磁極 53等の形状、各卷線の形態につ 、て各種の変形が可能 である(後述する)。
[0104] また、図 26はロータ軸方向に無限に長いステータの縦断面図を示す図である。紙 面の横方向がロータ軸方向であり、上下方向がラジアル方向(ロータ軸と垂直な半径 方向)である。各相のステータ磁極、各スロットと各卷線は、図 20 (e)に示されるような 、 A、 B、 C、 D、 E、 Fで示される位相の関係が軸方向に繰り返し配置されている。図 2 1に示すモータ 100のステータ 14は、図 26に示すステータの 1組である WDFFを切 り取ったものであると考えることもできる。 WDFFの幅が電磁気的な 1周期となってい る。このように見ると、 1周期分の幅を変えなければ、 WDFR等の他の場所で切り取 つても類似の電磁気的な作用が得られることが容易に想像できる。
[0105] 次に、ステータ磁極の配置構造、ステータ磁極の形状の例について説明する。図 2 7は、各ステータ磁極の軸方向の隣に逆相のステータ磁極を配置した構成例を示す 図であり、ステータの内周面を円周方向に直線展開した図が示されている。隣接して 組み合わされるステータ磁極 74、 75と、ステータ磁極 76、 77と、ステータ磁極 78、 7 9のそれぞれの組では、各ステータ磁極に相互に電気角で 180° の位相差を持たせ ている。各ループ状卷線 82〜93へ通電する電流ベクトルは図の左端に示した— A から Aの電流ベクトルで示されており、図 22に示す各ステータ磁極と各電流の関係 は保たれている。
[0106] 図 27に示すステータは、隣接するステータ磁極が相互に 180° の位相差を持って いるので、ステータとロータとの境界面近傍において、ステータ磁極の先端部をロー タ軸方向へ相互に突き出してステータ磁極のロータに対向する面積を広げることが 可能である。
[0107] 図 28は、図 27に示すステータの卷線と両端磁極を変形したステータを示す図であ り、その他については図 27に示したステータと同じである。図 29は、図 28の Y—Y線 断面図である。図 27と図 28に共通したステータ磁極 76、 77を例にとると、図 29のス テータ磁極 76の先端部 142がステータ磁極 77の方へ突き出していることが分かる。 同様に、ステータ磁極 77の先端部 143がステータ磁極 76の方へ突き出している。図
27では、ステータ磁極先端部の突き出しを破線で示しており、ステータ磁極 76、 77 は電気角で 180° 位相が異なるため両ステータ磁極が交互に組み合わされ、相互 に干渉しない形状となっている。このように、ステータ磁極のロータに対向する面積を 広げることにより、より多くの磁束を各相の卷線へ鎖交させることができ、より大きなト ルクの発生が可能となる。
[0108] また、図 27に示した構造では、ステータ磁極の簡素化およびループ状卷線の簡素 化が可能であり、図 28に示すように変形することができる。具体的には、図 27に示す ステータ磁極 80は、電磁気的に等価な状態を維持しながら、ステータ磁極 74に隣接 する位置に移動することができる。ループ状卷線 82、 83は、両卷線に流されるべき 電流を算術的に加算して通電することを条件に、 1個のループ状卷線 96へ変更する こと力 Sできる。同様に、卷線 84、 85は卷線 97へ、卷線 86、 87は卷線 98へ、卷線 88 、 89は卷線 99へ、卷線 90、 91は卷線 100へそれぞれ変更することができる。卷線 9 2、 93は、ステータ磁極 80を移動することによりステータコアの外側に配置されること になり、電磁気的にトルク発生にはほとんど寄与しないので、排除することができる。 これらの変更の結果、図 27に示すステータは、電磁気的に等価な状態を維持しなが ら、図 28に示すステータへ変形することが可能になる。
[0109] 図 28に示すステータの Y— Y線断面の形状は、図 29に示すように、お互いに逆相 の関係にあるステータ磁極力 相互にステータ磁極の先端側に入り込んでいる。した がって、各ステータの軸方向の長さ WDRを大きくすることができ、ロータの磁束がより 多くステータ磁極側へ供給され、卷線により多くの磁束を鎖交させることができるので 、トルクを増大させることができる。各ステータ磁極の根元のロータ軸方向厚みを WD T、ステータ磁極間の距離を WDPとすると、各ステータ磁極の先端部のロータ軸方 向長さ WDRは、 WDPより大きぐ最大では WDPの 2倍近くまで大きくすることが可能 である。
[0110] 次に、図 27、図 28に示す各ステータのループ状卷線に流すべき電流について説 明する。図 27に示すステータの卷線へは、図 20 (e)に示す電流ベクトルで表される 電流を通電することができる。例えば、卷線 82へは電流ベクトル Aの逆相の電流、す なわち、 A相の電流を通電し、卷線 83へは電流ベクトル Dの電流を通電する。これ らの両電流は、図 30 (a)に示す電流ベクトル D、—Aでありその加算値は電流べタト ル Hである。この電流ベクトル Hは、電流 Aと同一位相で振幅は 2倍となっており、こ の電流が図 28に示す卷線 96へ通電される。卷線 84へは電流ベクトル D相の電流 を通電し、卷線 85へは電流ベクトル Eの電流を通電する。これらの両電流は、図 30 ( b)に示す電流ベクトル— D、 Eでありその加算値は電流ベクトル Iである。この電流べ クトル Iは電流ベクトル Dと Eの中間の位相で振幅は同一となっており、この電流が 図 28【こ示す卷線 97へ通電される。同様【こ、卷線 98、 99、 100へ ίま、図 30 (c)【こ示 す電流ベクトル J、 K、 Lで示される電流が通電される。卷線の左端に通電すべき電流 ベクトルを付記している。なお、図 28の各卷線に通電される電流の振幅は異なるの で、電流値に応じた卷線太さとし、ステータ磁極等の各部の寸法を適正化することも 可能である。
[0111] 次に、図 28に示すステータの各ステータ磁極のロータ軸方向配置の方法について 説明する。隣接する一対のステータ磁極が相互に電気角で 180° 位相差を持つス テータ磁極対 SMP1、 SMP2、 SMP3とする方法を示す。ここで、ステータ磁極対 S MP1、 SMP2、 SMP3のロータ軸方向への相対的な配置方法は、隣接するステータ 磁極が最も位相の近 、ステータ磁極対と隣接する組み合わせとすることである。この とき、両ステータ磁極対の間に配置されるループ状卷線の電流を小さくすることがで き、結果的にモータ損失を小さくでき、モータ効率を改善することができる。
[0112] 具体的には、図 28において、ステータ磁極対 SMP1がステータ磁極 95、 75によつ て、ステータ磁極対 SMP2がステータ磁極 76、 77によって、ステータ磁極対 SMP3 がステータ磁極 78、 79によって形成されているものとすると、ステータ磁極対 SMP1 と SMP2とが隣接する部分のステータ磁極は 75と 76である。ステータ磁極 75、 76と の円周方向位置の位相差は 6相交流の最小位相差である 60° となっている。その結 果、両ステータ磁極対の間に配置された卷線 97へは、図 30 (b)に示すように電流べ タトル一 Dと Eの加算値である電流ベクトル Iとなり、小さな電流値となっている。ここで 、図 20 (e)において、電流ベクトル Dと Eは逆相以外では最も位相差の大きい電流 の組み合わせであることから、電流ベクトル Iの振幅が小さ ヽと 、うことができる。
[0113] 次に、図 21、図 22に示したステータ 14のステータ磁極形状およびその変形例につ いて説明する。図 31は、図 21に示したモータ 100の縦断面図の内、ステータコアと 卷線の部分を取り出して拡大した図である。水平方向はロータ軸 11方向で、縦方向 がモータ 100のラジアル方向である。 WDPは隣接するステータ磁極の中心間の距離 であり、ステータ磁極間距離である。 WDDは、ステータとロータとの間のエアギャップ 部に面したステータ磁極の軸方向幅であり、 WDDを大きくすれば前記最大鎖交磁 束 FLmを大きくでき、発生トルクを大きくできる。 WDTは、ステータ磁極の根元の口 ータ軸方向幅である。
[0114] ここで、両端のステータ磁極 53、 59は、ロータ 10の磁極に対しては同一の電気角 的に位相であり、かつ、電流ベクトル Aの起磁力が両ステータ磁極 53、 59に同一方 向に印加される関係にある。そして、これらの二つのステータ磁極 53、 59の作用を合 わせて一つの相の作用を行なう関係となっている。したがって、ステータ磁極 53、 59 の幅 WDA1と WDA2は、 WDD=WDA1 +WDA2の関係を満たす开状を有して おり、第 1相の鎖交磁束最大値 FLmと中間部分の他の相の鎖交磁束最大値 FLmと が同じ値になるように構成されて 、る。
[0115] 図 26に示した無限長のステータモデルに対して、図 31に示したステータモデルは 、 1周期分の幅 WDFFだけ切り出したモデルであると見ることができる。このように見 ると、 1周期分の幅を変えなければ、 WDFR等の他の場所で切り取っても類似の電 磁気的な作用が得られることが容易に想像でき、その結果、 WDD=WDA1 +WD A2の関係となる。
[0116] さらには、 WDA2 = 0とし、 WDA1 =WDDすることもできる。この場合、ステータ磁 極 59が削除されたことになり、ステータ磁極の数が 7個から 6個に減少するので、モ ータの構成を簡素化することができる。図 26に示した無限長ステータで表現すると、 区間 WDFRを切り取った構成である。
[0117] 次に、図 21、図 22に示すステータの卷線を変形する方法について説明する。図 2 2の各スロットには 2組ずっ卷線が配置されている。例えば、卷線 41には左端に付記 しているように図 20 (e)に示す Aの電流が通電され、卷線 42には図 20 (e)に示す Bの電流が通電されていて、両電流の合計は図 32 (a)に示すように電流 aと等価であ る。同様に、卷線 43には図 20 (e)に示す—Bの電流が通電され、卷線 44には図 20 ( e)に示す Cの電流が通電されていて、両電流の合計は図 32 (b)に示すように電流 b と等価である。他のスロットも同様に考えることができ、結局、各スロットの電流は図 33 に示す電流 a、 b、 c、 d、 e、 fを通電すればよいことになる。そして、卷線は図 34に示 すように、各スロットに統合された 1組の卷線を卷回すればよぐその卷回数は図 22 のループ状卷線と同一卷回数となる。この結果、図 34の同一スロット内の卷回数は 図 22の 1Z2の卷回数となり、卷線の太さである断面積を約 2倍にすることができ、電 流の振幅は図 32に示したように同一なので、スロット内電流は 1Z2となる。これにより 、銅損は 1/4に低減することになる。なお、ステータの相数が 6相でない場合には、 この低減比率も変化する。
[0118] 通電電流の位相に関しては、図 21、図 22に示したステータと図 34に示したステー タの場合では大きく異なる。図 22の各卷線 41〜52へ通電すべき電流は(22)式〜( 28)式に示されるように、例えば、卷線 42、 43に通電される電流はステータ磁極 54 を通過する磁束の回転変化率にほぼ同期した電流であり、図 20 (e)の電流ベクトル Bである。一方、図 34の場合【こ ίま、図 32、図 33の a、 b、 c、 d、 e、 fで示したよう【こ電気 角で 120° 位相が異なる。
[0119] また、図 34に示すステータ磁極 53、 59は統合して図 35に示すステータ磁極 67に 置き換えることができる。このとき、卷線 66はステータコアの外部に配置されることに なるが、周囲の空気の磁気抵抗は大きいので、実質的にはモータへの電磁気的作 用は非常に小さくなつて、除去することができる。結局、図 35に示すように、相数と同 数の 6組のステータ磁極群と、相数より 1小さ!/、5組の卷線でステータを構成すること ができる。なお、この場合においても、 3相交流の電圧、電流をモータへ与えることに より駆動できるようにモータの内部結線を行なうことができるので、図 21、図 35に示す モータを外部から見ると 3相交流モータと見ることもできる。
[0120] ただし、卷線 66を除去しても、トルク発生上は問題ないが、ロータ軸の軸方向起磁 力が発生し、ロータ軸へ軟磁性体の粉末が付着したり、モータ近傍への電磁気的な 影響与える問題が発生したりする場合がある。このようにモータ近傍での起磁力が問 題となるような用途では、卷線 66を除去せずに配置するか、あるいは、モータ軸を非 磁性体にするなどの対応が必要である。
[0121] 次に、ステータとロータとの間のエアギャップ部に面したステータ磁極の形状および 各卷線の鎖交磁束に関して説明する。上述したように、図 21に示したモータ 100に ついて、そのステータ 14とロータ 10の間のエアギャップ部に面したステータ磁極先端 形状の円周方向を直線展開した形状の例が図 22 (a)に示されている。ステータ磁極 54〜58の形状は、実際にはステータ内径側であって円弧状であるが、図 22 (a)で は円周方向に直線展開して表現しているので長方形となっている。そして、ロータ 10 力 図 21、図 22 (b)に示すように、表面磁石型ロータでロータ外周形状が円形である 場合の各ステータ磁極を通る磁束の回転角変化率について考えてみる。ステータ磁 極 53、 59を通過する磁束を FA、その回転変化率を DFA、ステータ磁極 54を通過 する磁束を FB、その回転変化率を DFB、ステータ磁極 55を通過する磁束を FC、そ の回転変化率を DFC、ステータ磁極 56を通過する磁束を FD、その回転変化率を D FD、ステータ磁極 57を通過する磁束を FE、その回転変化率を DFE、ステータ磁極 58を通過する磁束を FF、その回転変化率を DFFとする。理想的な 6相交流モータ の場合、各ステータ磁極の磁束の回転変化率すなわち卷線に発生する電圧の成分 は、図 36に示すように、横軸の電気角で表した回転位置 θ Eに対して正弦波状の特 性が好ましい。しかし、図 22のステータ磁極形状は長方形であり、各磁束の回転変 化率は矩形波状になり、多くの高調波を含む特性となる。これらの高調波成分は、コ ギングトルク、トルクリップルの発生原因となったり、モータのトルク発生に支障をきた したりすることちある。
[0122] これらの問題を軽減する方法の例として、図 22で示すステータ磁極の形状 SPSを 図 37に示すステータ形状に変形することができる。ステータ磁極 53S、 54S、 55S、 5 6S、 57S、 58S、 59S力ロータ軸方向に長くなり、かつ、円周方向にスキューして傾 V、た形状として 、る。スキューすることによりステータ磁極を通過する磁束の回転角変 化率の高調波が低減されるのでトルクリップル等が低減される。また、ステータ磁極を ロータ軸方向へ長くすることにより磁束の回転角変化率を大きくできるのでトルクが増 加する。なお、例えば、図 37に示すステータ磁極 54Sの形状は、水平線のハツチン グを付した部分が図 38に示すステータ磁極の根元部 54SBであり、図 37に示すステ ータ磁極 54Sにおいて斜線のハッチングを付した部分が図 38に示すステータ磁極 の先端部 54SSである。
[0123] このとき、ステータの縦断面は図 31に示した形状から図 38に示した形状に変更さ れ、ステータ磁極の先端部 54SSのロータ軸方向幅は図 31に示した WDDから図 38 に示した WDXへと広くなつている。また、ステータ磁極先端部 54SSからバックヨーク BYの途中のステータ磁極の根元部 54SBについても通過する磁束が増加するので 磁路を太くする必要がある。
[0124] さらに、ステータ磁極形状 SPSの改良、変形については、図 39に示すように、種々 方法が考えられる。 162で示すステータ磁極形状 SPSは図 22と同一の形状である。 これに対し、 163で示すように円周方向に対して正弦波状の面積分布をさせることに より、高調波成分を大幅に低減することが可能である。また、 164で示すステータ磁 極は、円周方向に傾けてスキューした例であり、 162で示した長方形形状と比較する と正弦波状の面積分布を有して 、る 163に近 、形状である。図 37に示したステータ 磁極形状は 164で示したステータ磁極に近 、形状である。 165で示すステータ磁極 は台形形状であるが、円周方向の面積分布と 、う点では 164で示したスキュー構造 と等価である。 166で示したステータ磁極は、長方形を円周方向に傾けた形状で、ス テータ磁極を図 37に示したように配置する場合に特に有効な形状であり、隣接する ステータ磁極と干渉せず、円周方向の面積分布は 165で示した台形形状と等価であ つて通過する磁束の回転角変化率を大きくできるのでトルクを増大でき、前記高調波 も低減できるのでトルクリップル等も小さくできる。さらには、図 39の各ステータ磁極形 状 162、 164、 165、 166に付記した破線の形状のように、各角部に丸みを設けて高 調波成分を低減することもできる。丸みを持たせた破線部の形状は任意であり、厳密 には例えば円周方向に対して正弦波状の面積分布の形状となっているステータ磁極 163と同じ特性を得るように、円周方向に対する面積分布を正弦波状にすることもで きる。また、図 39において、各磁極形状の円周方向長さは電気角で 180° の長さに 図示している力 180° より長ぐあるいは、 180° より短くすることも可能である。この 場合、従来構造のモータの卷線係数が 1より小さくなる効果と同じで、単純モデルで の理論上はトルクがその分低下することになるが、隣接するステータ磁極との干渉を 低減できるなどの効果がある。また、 180° より小さくして短節巻き化することにより、 特定のトルク高調波、すなわち、コギングトルク、トルクリップルを低減する効果を得る ことも可能である。
[0125] コギングトルク、トルクリップルを低減する他の方法として、図 40に示すように、ステ ータ磁極 160の円周方向の端を図 23に示した形状に対して、ステータとロータ間の エアギャップが大きくなるようにする方法や、ロータの永久磁石 161の円周方向端を 滑らかな形状としてロータ磁極の境界部が凹んだ形状とする方法などが有効である。 なお、高調波の低減を行なう各手法は、トルクリップル等の低減だけでなぐロータが 回転する時のロータとステータ間のラジアル方向吸引力の急峻な変化を低減する効 果も有り、モータの振動、騒音を低減する効果もある。
[0126] さらに、上述したステータ磁極の形状 SPSを変形する手法、ロータ磁極形状を変形 する手法、ステータとロータとの相対的なスキュー手法、ロータ磁極あるいはステータ 磁極の円周方向位置を円周方向に移動させる手法などを組み合わせて使用してコ ギングトルク、トルクリップルを低減することが可能である。 [0127] また、図 21、図 22、図 35等では 6相のモータについて説明した力 特に相数 Nsの 少な 、モータにお 、て、ステータ磁極形状 SPSの円周方向面積分布が正弦波形状 であることがトルクリップル等を低減するために効果的である。モータの極対数を Pnと し、ステータ磁極の数を Nssとする場合に、図 35に示すような基本的なモータを構成 すると、
Nss = Pn X Ns · '· (31)
の関係となる。相数 Nsが大きければ、ステータ磁極は電気角 360° の範囲の中に相 数の数だけ分布的に配置され、それぞれの卷線の電流も Ns相の多相電流になる。 したがって、現実的にはステータの構成上困難である力 単純理論的に相数 Nsが例 えば 30というような大きな数であれば、ステータ磁極の円周方向の離散性は非常に 小さくなり、コギングトルク、トルクリップルは小さな値となる。逆に、相数の最も小さな 多相交流である 2相、あるいは、インバータ駆動の負担、モータ配線の負担などで有 利な 3相の場合、ステータ磁極の円周方向離散性が大きいため、コギングトルク、トル クリップルが発生しやす 、と!/、える。
[0128] このように離散性が大きい場合に、ステータ磁極形状の円周方向面積分布が正弦 波形状であると、ステータ磁極の円周方向離散性を補う効果が有り、大変有効である 。また、現実には、相数 Ns = 2の 2相交流のモータは、コギングトルクが大きぐその 低減策が必要である。(31)式において相数 Ns = 3、 Nss = 3 X Pnの 3相交流モータ の場合において、具体的には、円周方向の電気角で 360° の間にステータ磁極を 3 個配置するような構成の 3相のモータでは、コギングトルク、トルクリップルを低減する ために、ステータ磁極形状の円周方向面積分布を正弦波形状とする技術は重要度 の高 、技術である。相数 Ns = 3とした本発明の 3相交流モータは相数が少な 、ので 簡素な構成とすることができ、部品点数が少なぐコスト的に有利な構成である。
[0129] 図 21、図 31に示したステータ磁極 53〜59は、そのステータ磁極のロータ軸方向 幅 WDDがステータ磁極のロータ軸方向ピッチ(ロータ軸方向の間隔) WDPよりやや 小さい構造となっている。しかし、各ステータ磁極を通る磁束の回転角変化率はステ ータ磁極のロータ軸方向長さが大きい方が有利であり、隣接するステータ磁極と干渉 しない構成としながら、図 38のステータ磁極 54SS等のロータ軸方向幅 WDXのよう にステータ磁極ピッチ WDPより大きな値とすることが好ましい。そのようなステータ磁 極の先端部の具体的形状は、図 37に示す各ステータ磁極形状、図 39のステータ磁 極形状 166、図 29のステータ磁極形状などである。
[0130] また、図 41に示す 6相のステータ磁極の先端部形状 140〜145は、円周方向の幅 WAを電気角で 360° /6 = 60° よりやや小さくして隣接するステータ磁極と干渉し な 、ようにし、そのロータ軸方向長さをこのモータの外径の軸方向最大長さ 、つぱ 、 の大きさとしている。なお、例えば、図 41に示すステータ磁極 142の形状は、水平線 のハッチングを付した部分がステータ磁極の先端部からステータのノックヨークにさし かかるステータ磁極の根元部であり、図 41に示すステータ磁極 142の斜線のハッチ ングを付した部分がステータ磁極の先端部である。なお、図 41に示す各ステータ磁 極の形状は、ステータとロータとの間のエアギャップ部力も見たステータの内周面形 状を円周方向に直線展開した形状図である。図 41に示すようなステータ形状は、特 にモータの積圧、すなわち、ロータ軸方向長さが小さぐ扁平で薄いモータの場合に 好ましい。各ステータ磁極を通過する磁束の回転角変化率を大きくできるので、モー タトノレクを大きくできる。
[0131] N相の全ステータ磁極群 MPNにおいて、任意の X相のステータ磁極群を通る磁束 の総和を Φχとし、その磁束 Φχの回転変化率を dO>xZd 0、そのステータ磁極とロー タ磁極との間のエアギャップ部に作用する起磁力である卷線電流を Ix、卷線ターン数 を WTxとして、それらの積であるモータの発生トルク成分 Tx = dO>x/d 0 X Ix XWT xとし、他の Y相の構成をそのステータ磁極群を通る磁束 Φ yと卷線電流 Iyと巻き回数
Figure imgf000045_0001
Θ X lyX WTyとするとき、 X相、 Y相の位相 差を除いて、ステータ磁極とロータ磁極との対向する面積により決まる磁束 Φχ、 Φy 卷線電流 Ix、 Iyと巻き回数 WTx、 WTyの二つ以上が X相と Y相とでは異なる値であつ て、それぞれの発生トルク成分 Txと Tyは等しくなる構成とすることが望ましい。ステー タ磁極の形状はモータカバー、被駆動側機構等の都合で、形状を変形させる必要が ある場合、磁束 Φχと電流 Ixと卷線卷き回数 WTxとで得られる最終的電磁気作用を 変えることなぐ個々のパラメータは変更した方が都合がよいことがある。
[0132] 図 42は、他のステータ磁極配置、卷線配置の例を示す図である。図 21、図 37、図 35などに示したステータ磁極の円周方向位相の種類が 6種類であつたのに対し、図 42では、中間の位相のステータ磁極を追加し、 12種類の位相のステータ磁極 101 〜112を配置している。卷線についても、卷線 113〜123までの 11個のループ状卷 線を配置している。各卷線の電流ベクトルは各卷線の左端に付記している値で、図 3 3に示した同じ符号が付された電流ベクトルに対応している。同一位相のループ状卷 線を 2組ずつ作り、同一位相の電流を隣接する 2個のスロットの卷線に通電するように 配置している。このように、同一位相の卷線、電流を並列する複数のスロットに分割し て配置することが可能である。図 41に示した構成とすることにより、ステータ磁極がよ り多くの位相に配置されているため、トルクの高調波成分がキャンセルされ、トルクリツ プルが低減し、モータの駆動をより滑らかにすることができる。一方、電流ベクトルの 種類は 6種類であり、逆相の電流ベクトルについては通電方向を逆にすることにより、 3相インバータでの制御が可能であり、モータの制御装置が複雑になることはない。
[0133] 図 43は、他のステータ磁極配置、卷線配置の例を示す図である。図 42に比較して 卷線が変更されている。図 42に示した卷線 114、 116、 118、 120、 122をより精密 な電流を作成できる卷線に変更することにより、より精密な、トルクリップルの小さなモ ータとして ヽる。卷線 125、 126の電流べクトノレは、図 44に示すように、 al、 blである 。電流ベクトル al、 blの和 gは、電流ベクトル a、 bと振幅は同じで、位相は a、 bの中間 の位相である。ここで、 al = lZ (2 X cos30° ) X a = 0. 57735 X a、 bl =0. 5773 5 X bである。卷線 125、 126の起磁力であるアンペア Xターン数は、巻き回数を調 整して、同一電流を流すことにより実現できる。卷線 127〜134についても同様に考 えることができ、図 44に示す電流ベクトルを作ることができる。図 45は、図 43に示す 各卷線に流す電流ベクトルの関係を示す図である。
[0134] 図 43に示すモータは、図 35に示したモータに対して、 2倍に多相化されたことにな る。多相化によりトルクの高調波成分がキャンセルされ、トルクリップルが低減し、モー タの駆動をより滑らかにすることができる。このとき、モータの駆動装置は電流ベクトル a、 b、 c、 d、 e、 fを作ればよいので、 3相のインバータで駆動でき、モータは多相化に よりやや複雑になっている力 駆動装置への負担はない。もし、中間位相の g、 h、 i、 j 、 k、 1の電流ベクトルを駆動装置で作る場合には、駆動装置のトランジスタの数を 2倍 に増加する必要がある。
[0135] また、新たに作った卷線 125、 126等の巻き回数は、卷線 113、 115等に対して整 数比とならず、端数となることが多いが、できるだけ近い巻き回数を選択することによ り狙いの効果を得、実用的な特性を得ることができる。なお、巻き回数の比が、例え ば、、 1 : 0. 57735 = 6 : 3. 4641となり、 3. 4641と整数には力なり外れて!/、る場合に は、 alを 3ターンとし、 blを 4ターンとすることにより、位相誤差は多少大きくなるが振 幅誤差を小さくする方法、あるいは、 alの卷線を 3. 5ターンとして 3ターン後に半周 で磁気回路力 取り出し、 blの卷線も 3. 5ターンとして配置的には alの卷線に対し て機械角で 180° 円周方向にずれた回転位置に配置することによりほぼ所期の目 的を達成することもできる。
[0136] 次に、モータの各ループ状卷線の結線方法およびインバータへの接続方法につい て説明する。図 21に示したモータ 100は、図 20 (e)に示す 6相のモータの例である。 本発明は種々の相のモータへ展開して適用できるが、図 20 (b)の 3相の場合は図 1 に示したモータとなり、卷線 115、 116、 117、 118は、図 46に示すように結線して 3 相インバータで制御することができる。ここで、各ループ状卷線 115、 116、 117、 11 8は巻き始め位置を図示し易!、ように 1ターンの卷線シンボルで図示して!/、る。卷線 1 15、 116へは同じ U相磁束が鎖交するので卷線の誘起電圧は同じ U相の電圧の負 の値 Vuである。卷線 117、 118へは同じ W相磁束が鎖交するので卷線の誘起電 圧は同じ W相の電圧 Vwである。したがって、 U相電流 Iuは卷線 115へ逆向きに通電 し、 W相電流 Iwは卷線 118へ順方向に通電する。 V相電圧 Vuは Vu+Vv+Vw=0 の関係より Vv=—Vu—Vwとなるので、 V相電流 Ivは卷線 116へは順方向に通電し 、卷線 117は逆直列にして逆向きに通電する。
[0137] これらの各電圧と各電流の関係は図 47に示すベクトル図のようになる。また、各卷 線と各電流と各電圧は図 48に示すようにも表現することができる。ここで、各卷線に 付記したドットマークは、卷線の巻き始め側を示す。このように逆相の電流を通電す べき卷線を反対方向に直列に接続することにより 3相インバータによりモータを効率 良く運転することができる。
[0138] 次に、図 6、図 7に示したように、 2個のループ状卷線 115、 116を卷線 138に統合 して、卷線 115、 116に通電すべき電流を算術的に加算して加算電流を卷線 138に 通電し、同様に、 2個のループ状卷線 117、 118を卷線 139に統合して、卷線 117、 118に通電すべき電流を算術的に加算して加算電流を卷線 139に通電することがで きる。これらの卷線 138、 139に通電する電圧、電流、卷線のモデル、卷線の接続方 法にっ ヽて、図 49ある!/、は図 50、 51、 52に示す。図 49に示す方法は、卷線 138と 139の電流をそれぞれ単独で、独立に制御する方法で、特に技術的困難さはないが 、 2つの電流を単独で生成するためにはインバータの素子数が増え、コスト的な負担 が大きくなる。一方、図 50の構成は、卷線 138の巻き始めに電流 Im=— Iu+Ivを通 電し、卷線 139の巻き始めに In=— Iv+Iwを通電し、卷線 138、 139の巻き終わりを 結線し Io = -Im-In= -Iw+ Iuを通電するように構成することができる。これらの電 流 Im、 In、 Ioの位相は 120° ずつ位相差を持ち、振幅は 3相電流 Iu、 Iv、 Iwの 1. 7 32倍である。卷線 138、 139のネ目電圧を Vu、 Vwとすると、図 50、図 51、図 52に 付記するように、各端子電圧は、(一 Vw+Vu) Z3、(一 Vu+Vv) Z3、 (-Vv+V w) Z3となる。図 51の線間電圧は、図 48に示した線間電圧に比較し、 1/1. 732倍 となっている。これらの各電圧と各電流の関係は図 47に示したベクトル図のようにな る。また、各卷線と各電流と各電圧は図 48のようにも表現できる。なお、図 50、図 51 、図 52に示すモータの電圧、電流を図 46、図 47、図 48と同じにするためには、卷線 138、 139の卷き回数を卷線 115、 116、 117、 118の 1. 732倍とすれば、よ!/、ことに なる。また、図 50、図 51、図 52に示すモータの駆動は、平衡した 3相電圧、 3相電流 の駆動であり、図 53に示すような通常の 3相インバータで駆動することができる。図 5 3【こお!ヽて、 150ίま直流電圧源、 151、 152、 153、 154、 155、 156ίま逆向きのダイ オードを並列に配置したトランジスタである。
次に、図 21、図 22に示した卷線 41〜52の結線方法および 3相インバータへの接 続方法の例を図 54に示す。図 21、図 22に示したモータモデルで説明したように、ス テータ磁極 53、 59は同一位相でステータ磁極 56は 180° 位相の異なる逆相のステ ータ磁極である。ステータ磁極 53、 59、 56を通る磁束を U相磁束とし、同一位相で 鎖交させる卷線の接続は、図 54に示す卷線 41、 46、 47、 52のそれぞれの接続とな る。例えば、ステータ磁極 56を通る磁束と鎖交させるためにはその軸方向前後の卷 線 46、 47を逆直列に接続すればよい。また、卷線の卷回方向は、ステータ磁極 59、 53に対する卷線 52、 41の関係とは逆方向にすればよい。
[0140] ステータ磁極 55を通る磁束は V相磁束で、ステータ磁極 58を通る磁束は— V相磁 束であり、卷線の接続は図 54に示す卷線 44、 45、 50、 51のそれぞれの接続となる 。ステータ磁極 55を通る磁束と鎖交させるためにはその軸方向前後の卷線 44、 45を 逆直列に接続すればよい。ステータ磁極 58を通る磁束と鎖交させるためにはその軸 方向前後の卷線 50、 51を逆直列に接続すればよい。また、卷線の卷回方向は、ス テータ磁極 55に対する卷線 44、 45の関係とステータ磁極 58に対する卷線 50、 51 の関係とは逆方向にすればょ 、。
[0141] ステータ磁極 57を通る磁束は W相磁束で、ステータ磁極 54を通る磁束は W相磁 束であり、卷線の接続は図 54の卷線 48、 49、 42、 43のそれぞれの接続となる。ステ ータ磁極 57を通る磁束と鎖交させるためにはその軸方向前後の卷線 48、 49を逆直 列に接続すればよい。ステータ磁極 54を通る磁束と鎖交させるためにはその軸方向 前後の卷線 42、 43を逆直列に接続すればよい。また、卷線の卷回方向は、ステータ 磁極 57に対する卷線 48、 49の関係とステータ磁極 54に対する卷線 42、 43の関係 とは逆方向にすればよい。
[0142] 次に、図 35に示すループ状の卷線 61、 62、 63、 64、 65の結線方法および 3相ィ ンバータへの接続方法の例を図 55に示す。図 35に示すモータモデルで説明したよ うに、卷線 62と卷線 65は 2個のループ状卷線を逆直列に接続することにより 3相のう ちの 1相の磁束を両卷線へ鎖交させることができ、逆方向に直列に接続した電圧は 図 33に示したベクトル eの位相となるので、電流 Iuを通電する。また、卷線 61と卷線 6 4は 2個のループ状卷線を逆直列に接続することにより 3相のうちの 1相の磁束を両 卷線へ鎖交させることができ、逆方向に直列に接続した電圧は図 33の aの位相であ り電流 Ivを通電する。残る卷線 63の電圧は図 33に示す cの位相であり電流 Iwを通電 する。なお、卷線 63はステータの中央にあり、 1個のループ状卷線で 3相のうちの 1相 の磁束を鎖交させることができるが、電圧を発生しない図 34に示す卷線 66が省略さ れているともいえる。
[0143] 次に、図 28に示すループ状の卷線 96、 97、 98、 99、 100の結線方法および 3相 インバータへの接続方法の例を図 56に示す。図 28に示したモータモデルで説明し たように、そのステータ構造、卷線配置は図 27に示すステータ構造の卷線 82〜93を 変形した構造である。また、各卷線に流れる電流は、図 28に付記した H、 I、 J、 K、 L であり、図 30 (c)に示す電流ベクトルで表されるように、その電流の大きさが異なる。 その結果、図 28に示す各卷線に流れる電流と各ステータ磁極の磁束との関係はや や複雑となる。しかし、図 28に示すステータの作用は、図 27に示す各卷線の電流と ステータ磁極の磁束の関係と等価である。ここでは、図 28の各卷線に流れる電流が 図 30 (c)に示す電流ベクトルであるという前提で、各卷線の結線方法および 3相イン バータへの接続方法の例を示す。卷線 96、 99に通電される電流ベクトル Hと Kは
U相の位相で、その振幅は卷線 96の 1Z2の電流が卷線 99へ通電されるべきなので 、卷線 99の卷回数を卷線 96の卷回数の 1Z2として同一の U相電流 Iuを通電する。 卷線 97、 100に通電される電流ベクトル Iと Lは—V相の位相で、その振幅は卷線 10 0の 1Z2の電流が卷線 97へ通電されるべきなので、卷線 97の卷回数を卷線 100の 卷回数の 1Z2として同一の V相電流 Ivを通電する。卷線 98に通電される電流べタト ル Jは W相の位相で、その振幅は卷線 96、 100と同じであり、 W相電流 Iwを通電 する。
[0144] 以上示したように、電気角的にほぼ同一の位相の卷線を同一方向に直列に接続し 、また、電気角的にほぼ 180° 位相の異なる卷線を反対方向に直列接続し、また、 電流ベクトルの大きさにより各ループ状卷線の卷回数を調整することにより、多相の 位相の電流をより少な 、電流源で制御してモータを駆動することができ、モータの配 線を簡略ィ匕でき、駆動装置も簡略ィ匕することができる。
[0145] なお、モータの電圧、電流を制御するインバータについては、主に図 53から図 56 までに、トランジスタを 6個使用する 3相インバータの例を示した力 トランジスタ 4個で 一つの電流、電圧を制御するインバータを 3糸且使用して 3相交流を制御する方法など 各種の方法が可能である。
[0146] 図 21、 22、 34、 35等では、ある規則性に基づくモータの構成について説明したが 、これらのモータおよびこれらのモータの相数を変えたモータなどはそれぞれに優れ た点があると同時に改良の余地もある。以下、優れた点のさらに具体的な説明、さら に改良する余地のある点、および、新たな構成のモータについて説明する。
[0147] 図 22のモータは、ステータ磁極群の数が(N+ 1)で卷線の数が Nのモータで、 53 と 59は同一位相のステータ磁極であり、 N = 6の時の 6相のモータである。また、見方 によっては 180度位相の異なる相を同相と考え 3相交流モータとの解釈もできる。そ の解釈および呼称はどちらでも良ぐ電気角 360度の範囲に 6個の位相のステータ 磁極が配置されるモータである。
[0148] 図 22に示す各ステータ磁極のロータに面する円周方向の形状を直線状に展開し た図では、円周方向に電気角で 180° の間は磁極が配置されているが、残りの 180 ° の間には磁極が配置されていない。従って、約半分の面積は有効に活用されてい ないという問題がある。また、この活用されていない部分には、ロータ側から空間を介 して漏れ磁束が発生し、それらの漏れ磁束はトルクを低減する方向に作用するので、 その点は問題である。また、図 22では、各ステータ磁極に作用する磁束の回転角変 化率がトルクおよび電圧に比例することから、ステータ磁極のロータ軸方向の幅が小 さぐその点は問題である。
[0149] 図 41に示すステータ磁極の配置構造は、各相のロータに面するステータ磁極形状 力 ータ軸方向の片端力も他の端まで配置された構造であって、単純論理的には、 前記のステータ磁極磁束の回転変化率を最大限に大きくした構造である。図 37及び 図 38は、図 41ほど極端ではない例であり、各相のステータ磁極のロータ軸方向の大 きさは、このモータ全体のロータ軸方向の大きさの約半分程度の形状となっている。 図 38はステータの縦断面図であり、水平方向はロータ軸方向、垂直方向はモータの ラジアル方向である。 54SSは、図 37のステータ磁極 54Sのロータに面する歯の先端 部であり、 BYはスタータのバックヨーク、 54SBは歯の先端 54SSからバックヨーク BY まで磁束を通す歯である。図 37及び図 38の構成のモータは、図 21及び図 22の構 成に比較して、単純論理的には、ロータ表面を効率良く対向させ、また、各ステータ 磁極磁束の回転角変化率も大きく取れる構造となっていると言える。特に、ロータの 表面磁束密度が、例えば 1テスラ(1T)より小さぐモータの駆動電流も比較的小さな 領域においては、効果的に駆動することができる。しかし、モータに大きな電流を通 電して大きなトルクを得た 、場合には、各相のステータ磁極が他の相のステータ磁極 と隣り合いかつ接近していて、各卷線の起磁力が相の異なるステータ磁極間の漏れ 磁束を発生しやすい配置構造となっており、その点は問題である。また、歯 54SBの 部分の磁路としての断面積は、歯の先端 54SSのロータに対向する面積より小さぐ 高磁束密度の希土類磁石を活用する場合には、磁気飽和しやす ヽ構造となって ヽ る。さらには、前記の漏れ磁束も重なり、歯の先端からバックヨークまでの間の各所で 磁気飽和し易ぐその点では問題である。
[0150] 次に、これらの問題を低減する技術について説明する。説明を簡略化するため、図 71に示す、 3個の位相のステータ磁極群を持つモータの例について説明する。 711 および 714は A相のステータ磁極である。 712は B相のステータ磁極、 713は C相の ステータ磁極である。ロータは図示していないが、各種のロータを適用することが可 能であり、例えば図 1及び図 2に示すような表面磁石型のロータである。図 71のステ ータ磁極のロータに対向する面の形状は、ステータ磁極を通る磁束の回転角変化率 を大きく取れるように、モータコアのロータ軸方向長さを MTとすると、各ステータ磁極 のロータ軸方向長さ MSを MTZ3より大きくしている。これは、ステータ磁極を通過す る磁束 φの回転角変化率 d φ /ά Θを大きくし、卷線の誘起電圧およびモータの発 生トルクを大きくする工夫である。図 4の例では、ステータ磁極のロータ軸方向長さが モータコアのロータ軸方向長さの 1Z3よりやや小さぐ図 71の構成は、トルクの点で 図 4の構成より有利である。
[0151] そして、ステータとロータとが対向している面の多くの部分にステータ磁極が配置さ れている。 6相の例では、図 22の例は約半分のスペースが使用されていないが、図 3 7の例はより多くの部分にステータ磁極が配置されており、図 71の配置は図 37に類 似したステータ磁極の配置である。
[0152] 各ステータ磁極間にはそれぞれ 2個の卷線が配置され、卷線の形状は各相のステ ータ磁極のロータ軸方向の凹凸に同期して波状の形状となっている。同期電動機を 構成する場合には、ロータに同期して各卷線に 3相交流電流を通電し、モータを駆 動する。例えば、卷線 71Aへは、図 72の(a)に示す I 、卷線 715へ—Iを通電する。
A A
同様に、卷線 716へ I、卷線 717^ ^— I、卷線 718へ I、卷線 719^ ^— Iを流す。各
B B C C
卷線の電圧は、例えば卷線 71Aと卷線 715を逆直列に接続した時の両端の電圧は 、図 72の(b)の V、卷線 716と 717を逆直列にした時の両端の電圧は V、卷線 718
A B
と 719を逆直列にした時の両端の電圧は Vである。この結果、このモータへは 3相の c
平衡した電圧、電流を印加して駆動することができる。
[0153] 図 73のモータは、図 71のモータの各ステータ磁極間の 2個の卷線を 1個の卷線に 統合し、その卷線へ 2個の電流を算術的に加算した電流を通電するモータである。し たがって、卷線 731へ図 74の(a)に示す電流 I 、卷線 732へ電流 I 、卷線 733へ I
BA CB
を流す。卷線 731へは、図 74の(a)に示すように、—Iと +1の和である I の電流
AC A B BA
が通電され、その電流振幅は 1. 732倍である。一方、卷線の太さは 2倍とすることが できるので、結局、卷線の銅損を 3/4とすることができ、銅損を 25%低減することが できる。
[0154] 各卷線の電圧は図 74の(b)に示す電圧で、卷線 731の電圧は V /2 卷線 73
A
2の電圧は V 、卷線 733の電圧は V Z2となる。図 74の(b)に示すよう〖こ、 3個の卷
CB A
線の電圧はアンバランスな 3相電圧である力 3個の卷線をスター結線したときの 3端 子の端子間電圧は相互に V、 V、 Vと同じ振幅の 3相平衡電圧である。スター結線
A B C
の結線した中心点の電位が 3相交流電圧の変化とともに変動する関係となっている。 この結果、このモータは、 3相交流の電圧、電流を制御する通常の 3相インバータで 理想的に駆動することができる。
[0155] 図 73に示す断面 3DB〜3DBを図 75に示し、これによりステータ磁極の形状、卷線 の形状、及び電磁気的な特性を示す。 BYはステータのバックヨークであり、 712は B 相の歯である。 MTはモータコアのロータ軸方向長さ、 MSは B相の歯 712のロータ軸 方向長さ、 MJは B相のステータ磁極の先端部からバックヨーク BYまでの磁路部の口 ータ軸方向長さである。図 75の例では、 B相のステータ磁極の先端からバックヨーク BYまでの形状が同一の形状の例であり、前記 MSと MJが同じ大きさの例である。こ のモータのトルクを改善するために、 MSを図 75の例より大きくすることもできる。
[0156] 図 38の歯の一部である磁路 54SBは、ステータ磁極の先端部のロータ軸方向長さ WDXの 1Z4程度であり、磁束密度の大きい希土類磁石をロータに使用して卷線に 大きな電流を流す場合には、磁路 54SBの部分での磁気飽和の問題が出やすい。 図 38に比較して、図 75の構成は、磁路のロータ軸方向の大きさ MJが十分に大きぐ ステータ磁極に磁束が通る磁路の断面積が大き 、ので、軟磁性体の磁気飽和の問 題が解消されている。従って、図 75の構成のモータは、大きな電流を流して大きなト ルクを得ることが可能なモータであると言える。なお、背部の位置する A相のステータ 磁極 714についても十分の磁路断面積を確保し、 C相の磁路断面積についても同様 に十分な大きさの磁路断面積として 、る。
[0157] 731Bは卷線 731の断面、 732Bは卷線 732の断面、 733Bは卷線 733の断面であ り、各卷線は平板状の導体を 3ターン卷回した例を図示している。これらの各相の卷 線は、各相のステータ磁極を遮るように配置しているので、各卷線が各相のステータ 磁極へ作用する起磁力は、各相のステータ磁極の先端部近傍に作用する構成とし、 各ステータ磁極からロータ側へ前記起磁力が作用する構成としている。その結果、図 38で問題となるような他相のステータ磁極との間の漏れ磁束を大幅に低減することが できる。また、例えば図 76の(a)に示す卷線 736Bの様に平板状の卷線形上をして いるので、矢印 761で示すような漏れ磁束が増加するとき、矢印 762に示すような渦 電流が誘起され、この渦電流が前記磁束 761の増加を妨げる効果がある。このため、 他の相のステータ磁極間の漏れ磁束 761を低減させることができる。なお本発明モ 一タの卷線形状は、図 76の(a)等に限定されるわけではなぐ図 76の(b)の様にラジ アル方向に分割されていても良ぐまた、通常の丸線、より線でも可能である。なお、 卷線 732の各部分に流れる電流は、矢印 762のような渦電流と卷線 732に通電され る相電流との合成電流となる。また、各相の卷線形状図 75に示すような形状に限定 されるわけではなぐ各卷線がステータ磁極のオープニング部の近傍まで配置されて V、れば、他の相のステータ磁極間の漏れ磁束を低減する効果がある。
[0158] 以上、図 41もしくは図 38と図 75のステータ磁極の形状のように、両極端なステータ 磁極形状について示したが、それらの中間的な配置、構成のモータも実現することが できる。図 37のステータ磁極形状において、 B〜F相のステータ磁極形状はそれぞ れの中心部からロータ軸方向の両方ヘステータ磁極が突き出していて延長されてい る力 ロータ軸方向両端の A相のステータ磁極はその構成上 2分され、それぞれが口 ータ軸方向の片側へ磁極が突き出して延長されている。両端のステータ磁極が統合 された図 35の様なステータ磁極を図 37のステータ磁極のように変形すると、ロータ軸 方向両端に配置されているステータ磁極はステータ中心方向に向力つて、他の相の ステータ磁極の約 2倍の突き出し (延長)が必要になる。このため、突き出し部の磁束 量が増加し、軟磁性体の磁気飽和の問題がある。ステータ磁極の形状にもよる力 こ の点で、同相のステータ磁極がロータ軸方向の両端に分離されていることには磁路 構成上の意義がある。
[0159] 次に、本発明モータの卷線の接続およびその制御装置による電圧、電流の印加方 法について説明する。本発明のモータの例として示す図 1、図 6、図 7、図 27、図 28、 図 34、図 35等のモータおよびそれぞれの相数を変えたようなモータ等の卷線は、そ れぞれに特有の電圧、インダクタンス、抵抗等の特性を示し、均等な特性とは限らな い。特に、卷線の配置によりその鎖交磁束が大きく変化するので、具体的には、卷線 の誘起電圧が異なる。それぞれのモータ構成により、特有の卷線の結線方法及び電 圧電流の駆動方法がある。その具体的な一方法は、各卷線を図 137に示すような駆 動回路で各卷線単独に駆動する方法である。ここで、駆動回路の電圧は駆動環境と して一定の電源電圧で駆動されることが多いので、各電力素子の駆動効率上、卷線 の卷回数をその電源電圧に合わせて設計すれば効率の良い駆動が実現できる。例 えば、鎖交磁束 φが小さい場合は、卷回数 Nwとの積である磁束鎖交数 Ψ = Χ Ν wが他の卷線と同じくらいになるように、卷回数 Nwを大きくすればよい。このように、 各卷線の磁束鎖交数 Ψ = φ X Nwが同程度になるように卷線の卷回数 Nwを設定し て、それぞれの卷線を独立に、図 137に示すような駆動回路で各卷線単独に駆動す る方法である。
[0160] 次に、図 77に示す本発明の 5相のモータの例について説明する。図 77のステータ 磁極および卷線の配置図は、図 21及び図 22の 7ステータ磁極群で 6相のモータに 対し、 5相のモータである。 5相のモータは、 4相モータ、 6相モータに対して類似して いる点がある反面、 5が奇数であること等に起因して多くの特殊性および構成の差異 、及び、特性の違いがある。
[0161] 図 77は、ロータに対向する各ステータ磁極と各卷線の円周方向の形状を直線上に 展開した図で、横軸は円周方向の回転角を電気角で示し、縦軸はロータ軸方向を示 し、各卷線の電流ベクトル A、 +B、 一 B、 +C等を付記している。 751と 756は A相 のステータ磁極であり、これら 2個のステータ磁極を合わせて A相のステータ磁極の 機能を達成しており、円周上に電気角で 360ごとに同相のステータ磁極が配置され ている。同様に、 752は B相のステータ磁極、 753は C相のステータ磁極、 754は D相 のステータ磁極、 755は E相のステータ磁極である。 757はループ状の卷線で、図 78 に示すベクトル図において、 Aのベクトルの電流を通電する。同様に、卷線 758は + B相の電流で卷線 759は B相の電流、卷線 75Aは + C相の電流で卷線 75Bは C相の電流、卷線 75Cは + D相の電流で卷線 75Dは D相の電流、卷線 75Eは +E相の電流で卷線 75Fは— E相の電流が通電される。
[0162] 卷線 757と 758は同一スペースに配置されるので、両卷線の両電流の合計は図 78 のベクトル Aからベクトル Bを引いたベクトル B— Aで表される。同様に、卷線 759と 75 Aはベクトル C— B、卷線 75Bと 75Cはベクトル D— C、卷線 75Dと 75Eはベクトル E D、卷線 75Fと 75Gはベクトル A—Eで表される。図 77の左側に、解りやすいように 、各電流のベクトルを付記している。図 78のベクトル関係から 5相のデルタ結線とし、 5相のインバータで駆動することができる。また、図 78の各ベクトルは、書き換えると、 図 79のようにも書くことができ、スター結線することにより、 5相のインバータで駆動す ることちでさる。
[0163] しかし、ベクトル (B—A)の電流がモータとして効果的に作用すると仮定したときの 卷線 757と 758の卷線係数は、 COS ( (180° —72° ) /2) =0. 5878となり、図 77 及び図 78に示す 5相のモータは大きくない。それぞれの卷線の使い方には改良の 余地がある。
[0164] この卷線係数を、卷線の配置を変更することにより改善するモータの例を図 80及び 図 81に示す。具体的な卷線の配置は、卷線 808へ + Bの電流を通電し、ロータ軸
S
方向へ B相のステータ磁極 752と C相のステータ磁極 753を挟む巻線 80Bへ Bの s 電流を流す。同様に、巻線 80Aへ + Cの電流を通電し、巻線 80Dへ Cの電流を s s 流す。巻線 80Cへ + Dの電流を通電し、巻線 80Dへ Cの電流を流す。巻線 80E s s
へ +Eの電流を通電し、巻線 807へ Eの電流を流す。巻線 80Gへ +Aの電流を
S S S
通電し、巻線 809へ— Aの電流を流す。ここで、図 79と図 81のベクトル B—A、 C— s
B、 D— C、 E— D、 A—Eは同じ値である。そして、図 81に示すベクトル A 、 B 、 C 、 D、 Eは 5相のベクトルである。
s s
[0165] これらの結果、卷線 807へはベクトル—Eの電流を流し、卷線 808へはベクトル + s
Bの電流を流し、結局、 A相のステータ磁極 751と B相のステータ磁極 752との間に s
はベクトル(B—A)の電流を流したことになり、図 77のモータの卷線 757、 758の場 合と同じ電磁気的な効果を得ている。同様に、卷線 809へはベクトル— Aの電流を
S
流し、巻線 80Aへはベクトル +Cの電流を流し、結局、 B相のステータ磁極 752と C s
相のステータ磁極 753との間にはベクトル (C— B)の電流を流したことになり、図 77 のモータの卷線 759、 75Aの場合と同じ電磁気的な効果を得ている。卷線 80Bへは ベクトル—Bの電流を流し、卷線 80Cへはベクトル +Dの電流を流し、結局、 C相の s s
ステータ磁極 753と D相のステータ磁極 754との間にはベクトル(D— C)の電流を流 したことになり、図 77のモータの卷線 75B、 75Cの場合と同じ電磁気的な効果を得て いる。卷線 80Dへはベクトル—Cの電流を流し、卷線 80Eへはベクトル +Eの電流 s s を流し、結局、 D相のステータ磁極 754と E相のステータ磁極 755との間にはベクトル (E— D)の電流を流したことになり、図 77のモータの卷線 75D、 75Eの場合と同じ電 磁気的な効果を得ている。卷線 80Fへはベクトル— Dの電流を流し、卷線 80Gへは s
ベクトル +Aの電流を流し、結局、 E相のステータ磁極 755と A相のステータ磁極 75 s
6との間にはベクトル (A—E)の電流を流したことになり、図 77のモータの卷線 75F、 75Gの場合と同じ電磁気的な効果を得ている。
[0166] 次に、図 83に本発明のモータの例を示す。この図 83のモータは、図 80の A相のス テータ磁極 756をステータ磁極 751と統合して図 83の 831としている。 832は B相の ステータ磁極、 833は C相のステータ磁極、 834は D相のステータ磁極、 835は E相 のステータ磁極である。各卷線 837、 838、 839、 83A、 83B、 83C、 83D、 83Eは図 80の各卷線と同様である力 電圧、電流共に図 80のステータ磁極 756の分、 360° / (5 X 2) = 36° だけ位相がずれることになる。そして、卷線 83Fと卷線 83Gはステ ータコアの外側に配置されることになり、ほとんどモータのトルク発生上の電磁気的作 用をモータに及ばさないので、省略することができる。
[0167] 各卷線の電流ベクトルは図 84に示すベクトルであり、卷線 83Fに相当する Dの s 電流と卷線 83Gに相当する +Aの電流は必要なくなる。その他は、図 81の関係と同 じである。
[0168] 図 83のモータの各卷線の接続は、 2個のステータ磁極を挟んで逆向きに同じ電流 が流れる 2個の卷線を逆方向に直列に接続してスター結線とする場合は、図 85の結 線となる。図 85の卷線は、図 82の卷線に比較して、卷線 83Fと卷線 83Gの 2個の卷 線が無ぐ位相が 36° ずれる。しかし、スター結線の端子 TA、 TB、 TC、 TD、 TEの 電圧振幅、電流振幅、各相の相対位相は同じである。そして、スター結線の中心の 点 NNの電位は前記の 5個の端子の平均電圧である。
[0169] また、電圧の観点力も言えば、このような状態の逆相の各電流は、 2個のステータ磁 極を挟んで逆向きに流れて 、ることから、これらの 2個の卷線を逆直列に接続すると、 その卷線に鎖交する磁束は電気角で(72° + 72° ) = 144° の範囲の磁束と鎖交 する関係となっている。図 81に示すように、各卷線の電流が効率良ぐ合成起磁力を 生成する関係となっていて、電圧の振幅が同じで、位相がそれぞれ 72° の位相差を 持った 5相電圧となる。そして、図 82に示すように、スター結線して各卷線の 5相電流 を制御し、駆動することができる。同様に、結線を変えてデルタ結線とすることもできる
[0170] なお、図 77、図 80に示す個々の卷線の電圧は、図 86に示すように、卷線が配置さ れるスロットによって個々に位相、振幅が異なる。前記のように、 2個のステータ磁極 を挟んで逆直列に接続した 5組の 2卷線の両端電圧は、同一振幅で、かつ位相が 72 ° ずつ異なる平衡 5相電圧となる。
[0171] また、前記の状態では、各卷線の接続方法に関係なぐ各卷線の卷線係数は、 CO S ( (180° —144° ) Z2) =0. 951と良好な値となり、図 77及び図 78の関係より大 幅に改善する。
[0172] 本発明モータが奇数相の場合、電気角で 180° の位相差のあるスロットは存在しな いが、 2個の卷線を 180° により近い位置に逆向きに卷回することにより、効率の良 い駆動を実現することができる。 5相モータの場合は、 2個もしくは 3個のステータ磁 極を挟んで同一相の卷線を逆向きに卷回すればよい。 7相モータの場合は、 3個もし くは 4個のステータ磁極を挟んで同一相の卷線を逆向きに卷回すればよい。 2個のス テータ磁極を挟んだ構成であっても、一つのステータ磁極の両側に配置するよりは 格段に効率がよい。また、他の奇数相のモータおよび偶数相のモータについても同 様の効果が得られる。
[0173] なお、 5相、 7相、 9相、 11相などの奇数相は大きな素数なので、モータ全体として の各相の高調波がキャンセルされる確率が高くなり、トルクリップルの小さなモータ運 転を実現することができる。例えば、 3相モータは 60° 周期の高調波が出易ぐ 6相 のモータもその程度は低減するが 60° 周期の高調波が出易い。 4相のモータは素 数が 2なので、多くの高調波が発生し易ぐモータ設計時には高調波低減の工夫が 必要となる。この点で、 5相及び 7相のモータは、低次の高調波がほとんどキャンセル されるので、モータ設計時の高調波低減が容易であり、トルクリップルが小さぐ低騒 音、低振動で高品位なモータを実現することができる。自動化あるいは無人化された 産業機械、生産ラインで使用されるモータとは異なり、自動車など、人間の聴覚、触 覚に近い部位に使用される場合は、モータの静粛性は大変重要な特性である。
[0174] また、先に説明したように、電気角 360° の間に、 Nが奇数で、 N個の位相のステ ータ磁極群を持ち、ステータ磁極群の間に複数のループ状卷線を持つモータは、結 線方法により卷線係数を小さくすることができ、効率の良い運転が可能である。また、 星形結線とすることにより、平衡 N相の電圧、電流の制御、モータ駆動が可能である ことを示した。
[0175] また、ステータ磁極群の間に 1個のループ状卷線を持つモータは、後述するように 、各卷線電圧は平衡 N相電圧ではないが、(N—1)個の卷線によるスター結線と中 心点との N個の端子による平衡 N相電圧、電流駆動が、図 93の(a)に示すように可 能である。また、(N—1)個の卷線による 1線が欠落したデルタ結線で N個の端子に よる平衡 N相電圧、電流駆動が、図 93の(b)に示すように可能である。
[0176] モータの卷線に電圧、電流をカ卩えて駆動する方法としては、各卷線を個々に制御、 駆動する方法、スター結線による N相駆動、デルタ結線による N相駆動、それらの変 形した駆動法などがある。
[0177] ステータ磁極群の位相の種類 Nが 6以上の偶数の場合、例えば図 34及び図 35の 場合は N = 6であり、電気角力 ^180° 異なる位ネ目の卷線 2個、 61と 64、 62と 65、 63と 66とを逆直列に接続し、 3組の卷線による 3相スター結線を実現することができ、 3相 インバータで駆動することができる。このように、 Nが 6以上の偶数の場合は、 NZ2の 相の平衡交流インバータで駆動することができる。
[0178] N力 の場合は、電気角が 180° 異なる位相の卷線 2個を逆直列に接続することは できるが、卷線組が 2個になり、 3相以上の多相平衡交流回路網を構成することはで きず、特有な回路構成を製作する必要がある。
[0179] Nが 3の場合は、図 1及び図 71に示したようなモータ構成で、同相の電流が流れる
2個の卷線を電流の方向を合わせて直列に接続し、 3相のスター結線を構成すること ができ、 3相インバータで制御することができる。
[0180] ステータ磁極群の位相の種類 Nが 5以上の奇数の場合は、図 77及び図 80のモー タ構成で説明したように、一定の規則で接続、構成された N組のスター卷線を構成す ることができ、 N相の多相平衡回路網を構成し、 N相の平衡交流インバータで駆動す ることがでさる。
[0181] 多相交流インバータで効率良く運転できる特徴がある。また、ここで記述したスター 結線の構成の場合は、中心の接続部が各スター結線の端子の平均電圧となり、電位 が安定している、あるいは、安定ィ匕することができる。そして、この電位が安定ィ匕した 卷線の部位をモータ鉄芯へ卷線を卷回する卷始めとすれば、卷線と鉄芯間の電位 変動が小さくなり、卷線と鉄心間の浮遊容量に基づく漏れ電流が低減し、電磁障害 等の問題を軽減することができる。
[0182] また、前記の卷線はデルタ結線として接続し、多相交流インバータで制御することも できる。ただし、この場合には、デルタ結線内でのループ電流が流れる可能性があり 、モータのアンバランス成分が発生しないようなモータ設計、製作上のアンバランス、 インバータの制御上のアンバランスなどが発生しな 、ような注意が必要となる。従って 、特別な理由がない限り、通常はスター結線が多く使用されている。
[0183] 次に、本発明のモータの例を図 86に示す。ステータ磁極群は、図 77及び図 80と同 じで 6個あり、 5相のモータである。 861、 865は A相のステータ磁極、 862は B相のス テータ磁極、 863は C相のステータ磁極、 864は D相のステータ磁極、及び、 865は B相のステータ磁極である。 867、 869、 86B、 86D、 86Fは各ステータ磁極間の卷 線である。各卷線に流すべき電流のベクトルは図 79の B—A、 C— B、 D— C、 E— D 、 A— Eである。各相の電流 I 、1 、1 、1 、1 をそれぞれ数式で示すと、 A相の
BA CB DC ED AE
回転方向ロータ位置 Θ r=0として式(31)〜(35)となり、図 87のようである。
(sin(0r— 72° )— sin(0r)) - (31)
BA O
(sin(0r— 144° )— sin(0r— 72° ;)) •(32)
(sin( ΘΓ-216° ) sin( 0 r— 144° ;)) •(33)
DC O
(sin(0r— 288° )— sin( 0 r— 216° ;)) •(34)
ED O
(sin(0r)—sin(0r—288° ;)) · (35)
AE O
各卷線の電圧は V 、V 、V 、V 、V は式(36) (40)となり、図 88のようであ る。
V =- VV XXssiinn(( Θ0Γr))//22 "-(36)
BA ο
V =v -V Xsin( ΘΓ-72° ) •(37)
BA <
V =v -v sin(0r— 144° ) •(38)
J hi U
V V -V Xsin(0r— 216° ) •(39)
ED
V :sin(0r—288° ) -"(40)
A ΑEϋ =v EDD U
[0184] 図 88の電圧特性より解るように、各卷線の電圧は平衡した 5相電圧ではな 、。そし て、図 88の V は式(36)〜(40)の平均電圧である。ここで、各卷線をスター結線した
N
と仮定し、その中心の点の電圧が— Vであるとして、各スター結線の端子電圧を計
N
算すると、図 89の V 、 V 、 V 、 V 、 V となる。各スター結線の端子電圧
BAN CBN DCN EDN AEN
は平衡した 5相電圧となる。
[0185] この結果、図 86で示されるモータをスター結線し、ロータ回転に同期して(31)〜(3 5)の電流を流すと、スター結線の中心の点の電圧が Vとなり大きく変動するが、
N
各スター結線の端子電圧は図 89の V 、V 、V 、V 、V となる。つまり、
BAN CBN DCN EDN AEN
平衡した 5相電圧となり、 5相のインバータで効率良く運転、駆動できることを確認で きる。
[0186] なお、 5相のモータで説明した力 5相以外の他の相数のモータについても、同様 の関係が成立する。図 73の 3相のモータについても、同様の関係となる。
[0187] 次に、本発明の他の例を図 90に示す。 881は A相のステータ磁極であり、図 86の A相のステータ磁極 866を 861と統合した形状である。 882は B相のステータ磁極、 8 83は C相のステータ磁極、 884は D相のステータ磁極、 885は E相のステータ磁極で ある。卷線 887へは図 91及び図 92のベクトル B— Aで示される電流、卷線 889へは ベクトル C Bで示される電流、卷線 88Bへはベクトル D— Cで示される電流、卷線 8 8Dへはベクトル E— Dで示される電流が流される。図 91及び図 92のベクトル A—E で示される電流 I は直接的にモータへ流す必要はない。しかし、各卷線を図 93の(a
N
)のようにスター結線すると、その中心の NNへは 4個の卷線の総和の電流が流れ込 むことになり、その電流の負の値が前記のベクトル A— Eで表される電流 Iである。こ
N
の結果、ベクトル A—Eで表される電流 Iを直接的に流す卷線はないが、モータへは
N
この電流 Iを供給しているとも言える。
N
[0188] 各卷線の電圧は図 88の特性とは異なり、 (51) (54)式で表される。
V =-V Xsin( ΘΓ) ---(51)
ΒΑ Ο
V =V -V Xsin( ΘΓ-72° ) ---(52)
CB ΒΑ Ο
V =V -V Xsin( ΘΓ-144° ) ·'·(53)
DC CB Ο
V =V -V Xsin(0r—216° ) "-(54)
ED DC Ο
そして、上記の 4個の値を加算して 5で割った値は、図 95の Vとなる。
Ν
V =(V +V +V +V +0)/5 ·'·(55)
N BA CB DC ED
ここで、各巻線を図 93の(a)に示すように結線し、中心の点 NNの電位 V を
NN
V =-V ·'·(56)
Ν
として(51) (54)式へ加え、各端子電圧 V V V V を再計算すると
BAN CBN DCN EDN
、各電圧は、 V を含め、図 96に示す平衡 5相電圧となる。
[0189] この結果、図 90で示されるモータをスター結線し、 4個の端子とスター結線の中心 点 NNへ、ロータ回転に同期して式(31) (35)に示す電流を流すと、スター結線の 中心の点の電圧が Vとなり大きく変動するが、各スター結線の端子電圧は図 96の
N
V V V V V となり、平衡した 5相電圧となり、 5相のインバータで
BAN CBN DCN EDN
効率良く運転、駆動できることを確認できる。
[0190] なお、 5相のモータで説明した力 5相以外の他の相数のモータについても、同様 の関係が成立する。また、図 1のモータの各 2卷線を図 7のように 1卷線へ統合したモ ータについても同様の関係となる。 [0191] また、図 86と図 90で示されるモータのトルクおよびパワーは計算上、全く同じ値に なる。
[0192] 次に、本発明の 5相のモータのステータ磁極の配置を、より現実的な形状とした例 を図 97に示す。図 97は、原理的には図 86のモータと同じ相対的な位置関係である 。しかし、形状、配置などが大幅に異なり、特性的には大きく異なる。 951と 956は A 相のステータ磁極であり、 952は B相のステータ磁極、 953は C相のステータ磁極、 9 54は D相のステータ磁極、 955は E相のステータ磁極である。卷線 957へは図 91及 び図 92のベクトル B— Aで示される電流、卷線 958へはベクトル C Bで示される電 流、卷線 959へはベクトル D— Cで示される電流、卷線 95 Aへはベクトル E— Dで示 される電流、卷線 95Bへはベクトル A— Eで示される電流が流される。
[0193] 図 86に示すモータと異なる点の一つは、ロータに対向する面のステータ磁極の形 状である。断面 5BD〜5BDを図 98に示す。図 97の縦軸はロータ軸方向を示してい るので、この断面 5BD〜5BDはロータ軸方向に対して斜面となっている力 相対的 な大きさの関係は変わらない。 BYはステータのバックヨークで、そのロータ軸方向長 さは MTYで、 B相のステータ磁極 957のロータに面する部分の長さ MSYは MTYZ 5をより大きく、図 97及び図 98では 2 X MTYZ5よりも大きい。したがって、ステータ 磁極 957を通る磁束の回転変化率は大きぐ大きなトルクが期待できる。また、ステー タ磁極 957のロータ表面近傍からバックヨーク BYまでの磁路の太さ MJYはステータ 磁極先端の MSYと同じであり、磁気飽和が生じにくい構造となっている。図 38の磁 路 54SBに比較して 2倍以上の大きさとしている。また、 B相のステータ磁極と E相のス テータ磁極の間には、図 98の卷線 958、 959、 95Aがステータ磁極のロータに面す るオープニング部まで配置されて 、て、他相のステータ磁極間との漏れ磁束が発生 しにくい配置構造となっている。図 97に示す各相のステータ磁極の間へは各卷線が 同様に配置構造となって 、て、他相のステータ磁極間の漏れ磁束を極力低減する構 造となっている。卷線はロータ軸方向に凹凸のある卷線形状としていて、図 76の卷 線で示したような構造となっていて、同様の効果が得られる。図 97及び図 98に示す ような構造のモータとすることにより、大きなピークトルクが得られる構造となっている。
[0194] 次に、本発明の他の例を図 99に示す。このモータは、図 86の 5相のモータを 4相に 変換したモータに相当する。 A21と A25は A相のステータ磁極であり、 A22は B相の ステータ磁極、 A23は C相のステータ磁極、 A24は D相のステータ磁極である。卷線 A27へは図 100のベクトル B— Aで示される電流、卷線 A29へはベクトル C— Bで示 される電流、卷線 A2Bへはベクトル D— Cで示される電流、卷線 A2Dへはベクトル A - Dで示される電流が流される。
[0195] 図 101は各卷線をスター結線した図であり、それぞれの卷線の電圧は 5相の図 88 の例のように各相の電圧振幅は一定ではないが、端子間電圧は平衡した 4相の電圧 となる。 4相のスター結線は制約条件力 線の電流の和が零となるだけであり、各相の 電流に高調波成分を付加する制御等が可能である。また、 2相の直交関係は保ちな がら、他の 2相については位相を 45° 回転させて、トルクリップルを低減するなどの 改良も可能である。なお、このような改良は、図 99の卷線の内、位相差が 180° ある 卷線を逆直列に接続した 2組の卷線を構成する方法では実現することができな 、。ま た、各ステータ磁極および卷線の配置、構造については、図 97及び図 98のように変 形することちでさる。
[0196] 次に本発明の他の例を図 102及び図 103に示す。 A41は A相のステータ磁極であ り、図 99の A相のステータ磁極 A21を A25と統合した形状である。 A42は B相のステ ータ磁極、 A43は C相のステータ磁極、 A44は D相のステータ磁極である。卷線 A47 へは図 100のベクトル B— Aで示される電流、卷線 A49へはベクトル C Bで示され る電流、卷線 A4Bへはベクトル D—Cで示される電流が流される。図 91及び図 92の ベクトル A—Dで示される電流 I は直接的にモータへ流す必要はない。しかし、各卷
N
線を図 103のようにスター結線すると、その中心の NNへは 3個の卷線の総和の電流 が流れ込むことになり、その電流の負の値が前記のベクトル A— Dで表される電流 I
N
である。この結果、ベクトル D— Eで表される電流 Iを直接的に流す卷線はないが、
N
モータへはこの電流 Iを供給しているとも言える。図 102のモータは図 99のモータに
N
対し、卷線が 1個少なくて済むので銅損が低減する効果がある。同一スペースに卷 線を配置すると考えると、卷線抵抗値が 3Z4となり、抵抗そのものが 4個から 3個に少 なくなるので、合計で銅損を 9Z16に低減することができることになる。また、各ステ ータ磁極および卷線の配置、構造については図 97及び図 98のように変形することも できる。
[0197] 次に本発明の他の例を図 104及び図 105に示す。 A61は A相のステータ磁極、 A 62は B相のステータ磁極、 A63は C相のステータ磁極、 A64は D相のステータ磁極 である。図 102の卷線 A49を 2個の卷線 A69、 A6Bに分離している。そして、図 105 のようなスター結線としている。卷線 A67へは図 100のベクトル B— Aで示される電流 、卷線 A69、 A6Bへはベクトル C Bで示される位相の電流、卷線 A6Bへはベクトル D— Cで示される電流が流される。卷線 A69、 A6Bの卷回数は他の卷線の卷回数の 1Z2とし、電圧振幅のバランスを取ることができる。また、各ステータ磁極および卷線 の配置、構造については、図 97及び図 98のように変形することもできる。
[0198] 次の本発明の他の例を図 106及び図 107に示す。このステータ磁極の配置構成は 、図 28に示す 6相のステータ磁極の配置構成を 4相に変換し、ステータ磁極間の卷 線を図 27の構成のように 2個にした例である。 A81は A相のステータ磁極、 A82は C 相のステータ磁極、 A83は B相のステータ磁極、 A84は D相のステータ磁極である。 位相の 180° 異なるステータ磁極をロータ軸方向の隣に配置することによって、図 1 06で空 、て 、るスペースに各相のステータ磁極からロータ軸方向に延長すること容 易な配置構成となっている。卷線 A87へは図 107の(a)のベクトル Aに相当する電流 、卷線 A88へはベクトル Cに相当する電流、卷線 A89へはベクトル Cに相当する 電流、卷線 A8Aへはベクトル Bに相当する電流、 A8Bへはベクトル Bに相当する 電流、 A8Cへはベクトル DCに相当する電流を流す。
[0199] このとき、卷線 A87と A88を 1個の卷線に統合して図 107の(b)に示すベクトル C Aの電流を通電し、卷線 A89と A8Aを 1個の卷線に統合して図 107の(b)に示すベ タトル B— Cの電流を通電し、卷線 A8Bと A8Cを 1個の卷線に統合して図 107の(b) に示すベクトル D— Bの電流を通電しても良い。その方が、銅損を約 5Z6に低減させ ることがでさる。
[0200] 図 108に示すステータ磁極と卷線の配置構成は、図 106の配置構成を改良したも のである。 AA1は A相のステータ磁極、 AA2は C相のステータ磁極、 AA3は B相の ステータ磁極、 AA4は D相のステータ磁極である。図 106のステータ磁極の配置構 成とは異なり、ロータに対向する面のほぼ全面にステータ磁極を配置している。従つ て、ロータからの磁束を効率良くステータ側へ通し、卷線と鎖交させることができるの で大きなトルク発生が期待できる。卷線 AA7へは図 110の(a)のベクトル C— Aに相 当する電流を流し、卷線 AA9は卷線 AA7、 AABの卷回数の 1Z2の卷回数とし、 2 X (B— C)のベクトルに相当する電流を流し、卷線 AABへはベクトル D— Bに相当す る電流を流す。このような構成とすることにより、 3個の卷線の 3電流の合計電流を常 に零とすることが可能となる。図 110の(a)のベクトル C— A、 D— B、 2 X (B— C)の 関係である。そして、図 111に示すようなスター結線とすることにより、 3相インバータ を使用することが可能となる。 TE、 TG、 TFはスター結線の端子である。
[0201] 各卷線の電圧の例は、図 110の(b)に示す特性であり、 Eは卷線 AA7の電圧、 Gは 卷線 AABである。卷線 AA9の電圧は、この卷線に磁束が鎖交しないように電流 2 X (B— C)を流すので、磁束の時間変化率で発生する電圧は基本的に零であり、その 他の卷線抵抗の電圧降下分と漏れ磁束の時間変化率で発生する電圧分が、図 110 の(b)の Fに示すようにわずかに有る。おおよそ 3相電圧となり、 3端子の電流の和が 零になるので、 3相インバータでの駆動が可能である。
[0202] しかし厳密には、このような状態における 3端子 TE、 TG、 TFの端子間電圧は図 11 0の(b)から 2 : 2 : 2. 828の関係となっており、平衡 3相交流電圧ではない。その意味 で、 3相交流電圧、電流をさらに効率良く使用する方法を図 112及び図 113に示す。 図 112にお!/ヽて、電流べクトノレ: Β21、 Β22、 Β23、 Β24ίまネ目互に位ネ目差力 ^120° の 3 相ベクトルである。ベクトル C— Αをベクトル B21と Β22で合成している。ベクトル D— Bをベクトル B23と B24で合成している。ベクトル B25は、図 113の結線上、ベクトル B 21、 B23と同一振幅になる。その結果、図 112の電流べタトノレに合うように、図 111の 各卷線の卷回数を計算し直す必要がある。この例では、卷線 AA7の卷回数に対し 卷線 B31、 B33の卷回数 ίま 0. 8165倍、 Β82、 Β84の卷回数 ίま約 0. 3倍、 ΑΑ9の 卷回数は 0. 866倍とすればよい。このような構成とすれば、図 113の端子 TE、TF、 TGの電流は 3相平衡交流となり、 3相インバータで効率良く運転、駆動することがで きる。また、この場合の各卷線の配置は、卷線 AA7の替わりに B31、 B32の 2卷線を 配置し、卷線 AA9の替わりに B35を配置し、卷線 AABの替わりに B33、 B34を配置 すればよい。 [0203] また、卷線の他の接続方法として、図 103のような卷線構成ももちろん可能である。 この場合には 4相のインバータが必要である。
[0204] 図 108のステータ磁極の断面 4GD〜4GDは図 109に示す形状となっている。この モータの図 106に示すモータと異なる点の一つは、ロータに対向する面のステータ磁 極の形状である。 BYはステータのバックヨークで、そのロータ軸方向長さは MTZで、 B相のステータ磁極 AA1のロータに面する部分の長さ MSZは MTZZ4をより大きく 、図 97及び図 98では 2 X MTZ/4に近い値である。したがって、ステータ磁極 AA1 を通る磁束の回転変化率は大きぐ大きなトルクが期待できる。また、ステータ磁極 A A1のロータ表面近傍からバックヨーク BYまでの磁路の太さ MJZはステータ磁極先端 の MSZと同じであり、磁気飽和が起きにくい構造となっている。図 29のステータ磁極 144の磁路幅 WDTに比較して 2倍以上の大きさとしている。また、 B相のステータ磁 極と D相のステータ磁極の間には、図 109の卷線 AA7、 AA9、 AABがステータ磁極 のロータに面するオープニング部まで配置されていて、他相のステータ磁極間との漏 れ磁束が発生じにくい配置構造となっている。図 108に示す各相のステータ磁極の 間へは各卷線が同様に配置構造となっていて、他相のステータ磁極間の漏れ磁束 を極力低減させる構造となって 、る。卷線はロータ軸方向に凹凸のある卷線形状とな つていて、つまり図 76の卷線で示したような構造となっていて、同様の効果が得られ る。図 108及び図 109に示すような構造のモータとすることにより、大きなピークトルク が得られる構造となって 、る。
[0205] また、図 108のステータ磁極の形状は長方形に近 、、特殊な形状を図示して!/、る 力 種々の形状に変形することも可能である。例えば、ロータ軸方向へ電磁鋼板を積 層して使用する場合には、材料的に、また電磁鋼板を使用した製作の都合上、図 10 8に示す各ステータ磁極の形状は長方形の形状である方が電磁鋼板のプレス打ち抜 き製作及び電磁鋼板の積層が容易である。一方、圧粉磁心を金型を利用してプレス 成形で製作する場合には、ステータ磁極の形状の自在性が高ぐ図 108のような曲 面形状であった方がプレス成型時に好都合である。
[0206] 次に、図 35に示す本発明の 6相のモータの電流、電圧について説明する。このモ ータは、先に、ある卷線と 180° 位相の異なる他の卷線へ逆方向の電流を流し、卷 線としては逆方向に直列に接続することにより 3相インバータで制御、駆動することが できることを示した。その方法とは異なるモータの構成法として、図 114〜図 118の構 成、あるいは、図 119、図 120の構成とすることができる。
[0207] 図 35の各卷線 61、 62、 63、 64、 65を図 115のスター結線とし、中心点丽を含め 6個の端子 Ta、 Tb、 Tc、 Td、 Te、 TNとする。前記各卷線へは、それぞれ、図 116の Ia、 Ib、 Ic、 Id、 Ieが流され、端子 TNへ Inが流れることになる。そして、各卷線の電圧 は図 117の Va、 Vb、 Vc、 Vd、 Veとなり、 5つの電圧をカ卩算して 6で割った値は Vnと なる。そして、 Vnをスター結線の中心点 NNの電位として各端子の電位を求めると 、図 118の Van、 Vbn、 Vcn、 Vdn、 Ven、 Vnnとなる。この結果、この図 115のスタ 一結線の 6端子へ 6相の電圧、電流を印加することにより、図 35で示されるモータを 効率良く駆動できることが示された。そして、 6相のインバータをその駆動に使用する ことができる。
[0208] 次に、図 34に示すような、 Nが 4以上の偶数相のモータで、モータの各相の高調波 成分をキャンセルしてトルクリップル、振動及び騒音の小さなモータを実現する方法 について説明する。図 119において、ベクトル a、 c、 eについてはそのままのベクトル とし、 3相平衡の電流を流し、一方、ベクトル b、 d、 fについては時計回転方向 CWへ 30° 回転してベクトル ab、 cd、 efで 3相平衡の電流を流す。このような構成とすること により、トルクリップルなどの高調は成分に対して、 12相のモータであるかのような効 果を得ることができ、トルクリップル、振動、及び騒音の小さなモータを実現することが できる。このとき、図 35の各ステータ磁極も同様に、電気角で 120° ずつ、位相の異 なるステータ磁極群 3相分を電気角で 30° 円周方向に移動させる。なお、前記の説 明では、 3相分の電流と 3相分のステータ磁極を両方変化させたが、片方だけ変化さ せても相応の効果は得られる。
[0209] なお、インバータの相数とコストの関係については、大きな出力容量のモータ、例え ば 50kw以上のモータを駆動する場合は、パワートランジスタを並列使用することが 多ぐ相数が例えば 3相から 6相に 2倍に増えてもパワートランジスタの数は変わらず 、コスト的な負担は小さい。また、相数が大きいと、モータの高調は成分を低減でき、 トルクリップルを小さくできるなどのメリットもある。 [0210] 逆に、 kw以下のモータの場合、インバータのコストが素子数により変動することが 多ぐ相数が大きいとコスト的に不利である。従って、この場合、小さい容量のモータ を駆動する場合は 3相交流駆動が好ま 、。
[0211] 次に、本発明モータの他の例を示す。図 27のモータは、ロータ軸方向に隣接する ステータ磁極群が相互に 180° の位相差を持つモータで、電気角 360° の間に 6種 類の位相差を持ち、 7個のステータ磁極群カゝらなっている。ステータ磁極群の間には 、それぞれ、 2個の卷線が配置されている。これらの 2個の卷線は、 1個の卷線に統合 し、前記の 2個の卷線に流される電流値を算術的に加算し、加算値の電流を流すこと により、等価なモータを実現できる。この時、前記の 2種類の電流値が同一の位相で 、同一の電流密度で流される場合を除いては銅損が低減されることになり、効率を向 上することができる。また、図 27の各ステータ磁極から破線でロータ軸方向にステー タ磁極の一部を拡大した図を書いている力 図 29の 140、 141のように、ロータに面 するステータ磁極の面積を拡大することができる。また、図 108、図 109のように歯全 体がロータ軸方向に突き出すこともでき、図 29と図 108、図 109の中間の形状とする こともできる。また、図 27のステータ磁極の例は、相数 Nが 6の例であるが、 Nが 4以 上の偶数の時に同様の形状を構成することができる。
[0212] 図 28に示すモータは、図 27のモータのロータ軸方向両端のステータ磁極を片側へ 統合し、かつ、ステータ磁極間の 2個の卷線を 1個の卷線に統合した例である。この 図 28の構成において、ステータ磁極間の卷線を 2個とすることもできる。図 106、図 1 07はその 4相の例であり、同相の電流が流される卷線 A88と A89とを逆直列とし、卷 線 A8Aと卷線 A8Bとを逆直列とし、他の卷線 A87、 A8Cと 4種類の卷線のスター結 線とし、 4相インバータでバランスの良い駆動が可能である。
[0213] 次に、本発明の他の例を図 121に示す。 J1Cはロータ軸で、ロータ軸より左側半面 の断面図である。ロータには 2個のロータ力 磁気的に分離されて配置され、 Jl l^Jl 2は第 1ロータとその永久磁石、 J13iJ14は第 2ロータとその永久磁石である。各永久 磁石は図 2のように円周上に N極、 S極が交互に配置されている。 J25は A相のステ ータ磁極、 J26は C相のステータ磁極、 J27は B相のステータ磁極、 J28は D相のステ ータ磁極である。 J29は、 A相、 C相の磁束が鎖交するように配置されたループ状の 卷線、 J2Aは、 B相、 D相の磁束が鎖交するように配置されたループ状の卷線である 。J2Bは両ステータコアの間の磁気的に分離するためのスぺーサで非磁性体である。 磁路 J2Cへは C相の磁束 φ Cがとおり、磁路 J2Dへは磁束 φ Bが通る。電磁気的な配 置関係は、形状は異なるが、図 106、図 108と同じであり、卷線 A89、 A8A、 AA9に 相当する卷線が不要な構造となっている。従って、銅損の低減、小型化が可能であ る。また、図 121のステータコア、卷線については、図 108のように変形することもでき 、より高トルク化を実現することができる。
[0214] 図 121においては、ロータとステータ側の両方が、ロータ軸方向に磁気的に分離さ れていたが、各ロータ、ステータ間の漏れ磁束を無視した単純論理的な考えでは、口 一タとステータとの片側が分離されていれば、 2組のロータ、ステータが電磁気的に 独立に作用することができる。図 122は、ロータ側が磁気的に分離された構造で、ス テータ側はスぺーサ J2Bが排除され、 2つのステータが密着された構造である。 J15 は A相のステータ磁極、 J16は C相のステータ磁極、 J17は B相のステータ磁極、 J18 は D相のステータ磁極である。この時、磁路 J1Bの部分には C相の磁束 と B相の 磁束 Φ Βが通ることになり、 ()じと() 8とは位相カ 5° 異なることから、図 121の磁路 J 2C、 J2Dに比較して磁路を 0. 707の太さに小さくできる。したがって、モータの小型 化が可能である。また、図 121のステータコア、卷線については、図 108のように変形 することもでき、より高トルク化を実現することができる。
[0215] 次に、図 123、図 124に、ロータ側は 3個に磁気的に分離し、ステータ側のコアはバ ックヨーク部で各相のコアが連結された構造の 6相のモータについて説明する。 B31 は A相のステータ磁極、 B32は D相のステータ磁極、 B33は F相のステータ磁極、 B3 4は C相のステータ磁極、 B35は E相のステータ磁極、 B36は B相のステータ磁極で ある。 K6D、 K61は第 1ロータとその永久磁石、 K6Eと K62は第 2ロータとその永久 磁石、 KF6と K63は第 3ロータとその永久磁石である。磁路 KJ6へは A相の磁束が 通り、 K6Kへは B相の磁束が通る。一方、ステータ内部に配置された磁路 K6Gへは D相と F相の磁束が通るように配置しており、これらの両磁束の位相差を大きくする組 み合わせとしているので、両位相差は電気角で 120° であり、 D相と F相の磁束の合 計は 1相の磁束と同じ大きさになる。したがって、 K6Gへは 2相分の磁束が通るにも かかわらず、 A相の磁束が通る磁路 K6Jと同じ太さでよいことになる。磁路 K6Hにつ いても同様であり、 C相と E相の磁束が通り、両磁束の位相差は電気角で 120° であ り、磁路 K6Hの太さは、 A相の磁束が通る磁路 K6Jと同じ太さでよい。このように、口 ータの構成、配置を工夫することにより、ステータの一部を小型化することができ、モ ータの小型化、低コストィ匕を実現することができる。また、図 121のステータコア、卷線 については、図 108、図 109のように変形することもでき、より高トルク化を実現するこ とがでさる。
[0216] 次に、本発明の他の例を図 125、図 126に示す。 B51は A相のステータ磁極、 B52 は C相のステータ磁極、 B53は E相のステータ磁極、 B54は B相のステータ磁極、 B5 5は D相のステータ磁極である。図 126は電流、磁束等のベクトルを表す図で、 A、 B 、 C、 D、 Eが基本の 5相を表すベクトルである。卷線 B57には C— Aのベクトルの電流 を流し、卷線 B59には E— Cのベクトルの電流を流し、卷線 B5Bには B— Eのベクトル の電流を流し、卷線 B5Dには D— Bのベクトルの電流を流す。各ベクトルを図 127の ように並べ替え、このようなスター結線とすると、中心の NNには A—Dのベクトルの電 流が流れることになる。この時、各卷線の関係は、図 90〜図 96に示した関係と同じ 関係であり、 5相インバータで効率良く運転することができる。そして、隣接するステー タ磁極との位相差を 144° としているので、図 157の破線で示すように、ロータ表面 に対向するステータ磁極を拡大することが容易であり、より大きなトルクを生成するこ とがでさる。
[0217] また、図 125の変形として、 6ステータ磁極、 5卷線の 5相のモータを実現することも できる。また、図 121のステータコア、卷線については、図 108、図 109のように変形 することもでき、より高トルク化を実現することができる。
[0218] 次に、本発明の他の例を図 128に示す。 B91は A相のステータ磁極、 B92は B相の ステータ磁極、 B93は C相のステータ磁極、 B94は D相のステータ磁極、 B95は E相 のステータ磁極、 B96は F相のステータ磁極である。このような配置、構成で、ロータ は図 121のような磁気的に絶縁された 2個のロータを使用する。そして、 B91、 B93、 B95で一つの 3相モータを構成し、 B92、 B94、 B96でもう一つのモータを構成し、 2 個のモータが複合された構成とする。卷線 B97へは、図 129のベクトル図において、 C Aのベクトルで表される電流を流し、卷線 B98へは E— Cのベクトルで表される電 流を流し、卷線 B99へは F Bのベクトルで表される電流を流し、卷線 B9Aへは D— Fのベクトルで表される電流を流す。このような構成とすることにより、図 1、図 2、図 7 で示されるモータが 2個並列に駆動されることになる。そして、これらの 2個のモータ は位相が相対的に 60° ずれているので、 6相のモータの性格を持ち、トルクリップル が低減されたモータを構成することができる。また、図 129に示すように、省略された 卷線、電流は D— B、 F— Bのベクトルの電流であって、丁度逆方向であって、相殺さ れる関係としている。その結果、全電流によりロータ軸方向に発生する起磁力が零と なるので、ロータ軸方向に起磁力が発生せず、モータ周辺部品の磁ィ匕などの恐れが 無ぐ周辺の鉄粉を吸着する問題も解消される。
[0219] 次に、本発明の他の例を説明する。図 125では 5相のモータの配置構成について 説明したが、 7相のモータの場合には、 A、 B、 C、 D、 E、 F、 G相の 7相のステータ磁 極を配置することになる。 7相の場合には 1相の電気角的な幅が 51. 43° であり、 18 0° に近!/、磁極幅の整数値は 3であり、 3 X 51. 43 = 154. 3° となる。従って、図 12 5のモータの考え方で 7相に拡張する場合には、隣接するステータ磁極の相が 2個の 相を飛ばした、 A、 D、 G、 C、 F、 B、 E相の順にロータ軸方向に並べる方法が良い。 このような構成の時には、各ステータ磁極の発生トルクを大きくすることができ、ロータ 軸方向へ凹凸形状となるループ状卷線の配置も比較的容易である。
[0220] 次に、本発明モータの例を図 130に示す。本発明の各種モータは、各相のステー タ磁極が同一円周上には配置されていないので、いくつかの原因でトルクリップル発 生の可能性を持っている。その原因として、各相のステータ磁極の配置される順に起 因した要因とロータ軸方向両端と両端以外のロータとの条件の差異による要因とがあ る。これらのトルク脈動の要因に起因するトルクリップルを低減する方法として、円周 方向を複数個に区切って、相互に入れ替えることにより高調波成分をキャンセルさせ ることがでさる。
[0221] 図 130は、図 108のモータのステータ磁極、卷線の配置をモータの半周で入れ替 える構造を示している。 DDIは A相のステータ磁極で DD2は C相のステータ磁極で あり、図 130の右側ではロータ軸方向の反対側へ配置を換え、 DD9、 DDBが A相ス テータ磁極、 DDAが C相ステータ磁極である。 DD3は B相ステータ磁極、 DD4は D 相ステータ磁極であり、入れ替えて、 DD5、 DD7が B相ステータ磁極、 DD6、 DD8 が D相ステータ磁極である。各相のステータ磁極は、電気角で同一の位相に配置さ れているが、ステータの中央部とロータ軸方向端の関係が反転している。具体的には 、 A相のステータ磁極 DD 1の丸みを帯び卷線 DDCに近接した部分はステータのほ ぼ中央部に位置している力 DD9ではロータ軸方向端で図 130の下端に位置して いる。このようにロータ軸方向の位置を変えることにより、ロータ、ステータのロータ軸 方向端の電磁気的な作用、および、中央部の電磁気的な作用がキャンセルされる構 造としている。この結果、トルクリップルが低減され、安定したトルク出力が可能となる
[0222] なお、図 130において、ステータ磁極の入れ替えのため、空きスペースが発生して いるが、このスペースは、少し小さなステータ磁極を配置するなどの方法でトルク発生 のために有効に活用することもできる。
[0223] 図 130では、 4相の例について説明した力 A、 B、 Cの 3相の場合には A相、 B相 C 相を順次、配置を入れ替える方法でトルクリップルを低減することができる。
[0224] 次に、永久磁石によるトルクといわゆる軟磁性体を活用したリラクタンストルクとが得 られるような、図 14〜図 16に示す磁石埋め込み構造のロータ、図 17に示す磁石イン セット型ロータと図 21、図 22、図 34、図 35、図 42、図 43などに示すステータとの組 み合わせのモータについて説明する。なお、各種の形状のロータは、それぞれに特 性、特徴が異なり、用途ごとに使い分けられている。また、これらのロータに対し、図 2 1、図 22に示す表面磁石型のロータは、使用される永久磁石の特性でモータ内部の おおよその磁束の分布が決まる構造であり、ステータの各卷線が発生する起磁力が モータ内の各部の磁束密度に与える影響は少なぐいわゆる磁石トルクが多く前記の リラクタンストルクは少な ヽ特性である。
[0225] 上述したように、図 73に示すようないわゆる集中巻きのステータの磁極幅が電気角 で約 120° であり、円周方向に正弦波状の起磁力分布を作ることが難しい面がある。 したがって、図 14〜図 17に示すようなロータの場合、リラクタンストルクが十分に得ら れないことがある。また、コギングトルク、トルクリップルも大きくなる傾向がある。また、 ロータの軟磁性部の磁気特性を活用した定出力制御が難しいという問題もある。
[0226] しかし、本発明の図 35等に示すステータでは円周方向に電気角で 60° の比較的 小さな離散性でステータ磁極を配置することができ、さらには、各ステータ磁極に作 用する起磁力の大きさを卷線電流の振幅と位相を制御することにより、滑らかな回転 磁界の生成が可能であり、図 14〜図 17に示すようなロータと組み合わせて大きなト ルクを得ることができる。また、ロータの回転位置に応じた自在な起磁力制御により、 図 74に示すステータで得られるような定出力制御を実現することができる。また、滑ら かな回転磁界によりコギングトルク、トルクリップルの低減も比較的容易である。
[0227] 一方、図 74に示すステータはスロットのオープニング部が狭ぐ 3相卷線の配置が 複雑になりがちであるため、卷線の占積率が低ぐ卷線の組み立て性が低ぐコイル エンドが長くなりモータが大きくなりがちである等の問題がある。本発明の図 35等に 示すステータは、上述したように、卷線の量を少なくできるので銅損を低減でき、卷線 が単純なループ状の卷線なので製作が容易で、図 73および図 74に示すステータの ように軸方向に配置される卷線がな 、ため多極ィ匕して卷線配置断面積が小さくなる こともなく、多極ィ匕による高トルク化が可能で、コイルエンドがないのでモータを小型 化することができるなどの特徴を持って 、る。
[0228] なお、軟磁性体としては電磁鋼板あるいは粉状の軟磁性体の表面に電気的絶縁を 施して押し固めた圧紛磁心などを使用することができる。
[0229] 次に、本発明の図 35等に示したステータと図 74に示すようなシンクロナスリラクタン スモータのロータとの組み合わせのモータについて説明する。なお、このロータのスリ ット部 58の空隙部は非磁性体でも良ぐ高トルク化などの目的で永久磁石を挿入し てもよい。
[0230] 図 73に示すようないわゆる集中巻きの 4極のステータと図 74に示す 4極のロータと を組み合わせた特性は、大きなトルクリップルを生じる問題がある。図 74のステータと の組み合わせで良好な特性を得ることが知られて 、るが、前記のステータの課題が ある。特に、シンクロナスリラクタンスモータは永久磁石などの高価な部材を使用せず にあるいは少量の永久磁石の使用で実現できるので低コストであり、界磁弱め制御 が可能であるため低出力制御が可能であるという優れた特徴を有している力 図 74 のステータの前記課題カこのモータの競争力を低下させている。
[0231] しかし、本発明の図 35等に示すステータと組み合わせることにより、シンクロナスリラ クタンスモータのロータの特徴と本発明の図 35等に示すステータの前記特徴が組み 合わされ、優れたモータを実現することができる。
[0232] 次に、本発明のモータのロータ構造について説明する。図 131にロータの断面図を 示す。
[0233] 図 131の(a)に示すような電磁鋼板を積層してロータ磁極を構成している。 D13は ロータ軸、 D12はロータの各磁路を支える支持部材で非磁性体である。 D11は図 13 2の(a)に示すような折り曲げられた形状の電磁鋼板で、ロータ軸に平行に配置され 、類似形状でサイズの異なる電磁鋼板が積層されて 8極のロータ磁極を形成して 、る 。前記の積層された電磁鋼板の相互の隙間は空間となって 、るかあるいは非磁性体 部材が配置されていて、電磁鋼板で作られる個々の磁路間の磁気抵抗を大きくして 、ロータ磁極から隣のロータ磁極への磁気抵抗を小さくしてモータの d軸インダクタン ス Ldを大きくし、同時に、ロータ磁極境界部から隣のロータ磁極の境界部への磁気 抵抗を大きくしてモータの q軸インダクタンス Lqを小さくしている。なお、前記の空間 の隙間ある ヽは非磁性体部材は、複数枚の電磁鋼板ごとに配置されて ヽても良 、。
[0234] 図 131に示したロータ構成では、各電磁鋼板の固定方法が図示されていないが、 ロータ軸へボルトで固定する方法、接着剤で固定する方法、榭脂で含浸する方法な ど、様々な方法で固定することができる。この図では、電磁気的な要件だけを示した
[0235] ここまでに示した本発明のモータは、その各相の磁束が円周方向、ラジアル方向だ けでなく、ロータ軸方向へも通る構造であることが多い。その点で、図 131、図 132で 示す形状の電磁鋼板はロータ軸方向へ磁束が通っても電磁鋼板の形状に沿って磁 束を通すことができるのでロータ軸方向への磁束を容易に通過させることができ、特 に、本発明のステータ構造には都合の良い磁路形状となっている。また、さらに、電 磁鋼板の枚数を増加させる方法、ロータ表面の外形形状を各磁極ごとに円弧状にす るなどの改良を行うこともできる。このようなリラクタンストルクを応用するモータは、トル クリップルを低減するためにそのようなモータ外形に関わる改善が重要である。 [0236] 図 132の(a)で示す電磁鋼板で図 131のロータを構成した場合の問題点として、高 トルクで回転中にロータ表面近傍で磁束がロータ円周方向に変化するように作用し、 電磁鋼板の厚み方向に増減する磁束に起因する渦電流が発生し、渦電流損が発生 する問題がある。
[0237] この問題を解決するために、図 132の(b)に示すように、電磁鋼板のロータ表面近 傍に位置する部分に、渦電流を低減するように、ごく細いスリットを設ける方法が有効 である。このように、ごく細ぐラジアル方向のスリットは、磁束量的にも遠心力に対す る強度的にも問題が少ない。
[0238] なお、図 131のロータ構成では、高速回転でのロータ各部に力かる遠心力が強度 上の問題となる。このロータ構成は、やや複雑な構成なので、高速回転用途では口 ータの強化策が必要である。また、図 131のモータ構造をアウターロータ型が変形し た場合にはロータの外周側に強固なリング状の鋼材を配置することも可能であり、遠 心力の問題は軽減される。
[0239] 次に、図 131および図 132に示したロータを備えるモータのトルクを向上する方法 について、図 133に示し、説明する。例えば、 D31に示すように、図示するような方向 の永久磁石 D31、 D32を各ステータ磁極に配置する方法がある。この時、反対方向 に磁極へ配置する磁石の方向は反対方向にする必要がある。図 131に示すような口 ータでは、大電流時の電磁鋼板の積層方向への漏れ磁束が力率低下を招き、トルク が低下するが、永久磁石 D31を追加することによりこれらの漏れ磁束を補償する効 果がある。また、永久磁石 D31は積極的にトルク磁束を供給する効果もあり、トルクの 増加を実現することができる。
[0240] また永久磁石 D31は、電磁鋼板のほぼ全面に挿入する例として示した力 D32に 示す永久磁石のように、短い磁石を電磁鋼板間の一部に配置しても良い。また、各 電磁鋼板間の全てに永久磁石を配置しなくとも、部分的な永久磁石の配置でも相応 の効果がある。モータに求められる特性、モータの製作性、磁石の種類および特性 に合わせた配置が可能である。
[0241] また、図 18に示すような突極状の軟磁性体で構成されるロータと図 35等に示すス テータとを組み合わせて、堅牢で高速回転制御の容易なモータを実現することもでき る。なお、ロータの突極の形状は特に限定するものではなぐロータ内部へスリットを 付加する、あるいは、永久磁石を付加するなどの変形も可能である。
[0242] 次に、図 35等に示すステータと図 19に示す誘導電動機のロータとを組み合わせた 本発明モータについて説明する。図 19に示すロータは、導体 170がアルミニウムの ダイカスト成形で作られる場合と銅製の棒材をスロットに挿入する場合とがある。 V、ず れも、各卷線のコイルエンド部は短絡されていて、誘導電流が流れるように製作され る。また、ステータの卷線を構成する表面が絶縁された銅線でロータの 2次導体を構 成することも可能である。一般的に、誘導電動機は、図 74に示すステータ構成と図 1 9に示すようなロータ構成で広く使用されており、堅牢で、界磁弱めによる定出力制 御の性能に優れ、 50Hz, 60Hzの商用電源を電磁接触器の開閉により簡便に駆動 停止することができるなどの特徴がある。しかし、図 74に示すステータについて説明 したように、いくつかの課題があり、効率、生産性、モータサイズ、コストの問題がある
[0243] しかし、図 35等に示したステータと図 19に示す誘導電動機のロータとを組み合わ せることにより、誘導電動機の特徴を備えながらステータの前記課題を解消すること ができるので、優れた誘導型のモータを実現することができる。
[0244] また、図 57に示すロータは、図 17に示すロータに誘導卷線 172、 173を追カ卩した 構造を有している。このような同期電動機のロータに誘導卷線 172、 173を追加する ことにより、 50Hz、 60Hzの商用電源の入り、切りでモータを起動、停止でき、通常運 転時には同期電動機として効率良く運転することが可能となる。 171は永久磁石で、 170は軟磁性体である。また、誘導卷線 172、 173の追カ卩は、図 14〜図 18に示した ロータについても可能である。
[0245] また、誘導電動機のもう一つの課題は、ロータの 2次導体に流れる誘導電流が発生 する 2次銅損の発熱であり、モータ効率を低下させ、用途によってはロータの温度上 昇が問題になっている。この問題を解決し、ロータの 2次銅損を低減するモータを図 5 8に示す。図 58に示すステータ 176は、図 21に示すステータ 14と同一である。なお、 図 58に示すステータの卷線 177は、図 35に示すステータのように変形することが可 能であり、ステータの卷線部での発熱を低減し、銅損を低減することも可能である。図 58に示すロータは、図 34に示すステータの構造を内径と外径を逆に製作してロータ としたもので、卷線 178〜183は誘導電動機の 2次誘導電流を通電するループ状の 短絡された卷線である。卷線 178〜183の卷回数は 1ターン力も複数ターンまで自由 に選択することができ、この卷線をアルミダイカストで製作するときは 1ターンの短絡 卷線となる。
[0246] 図 58に示すモータの特徴は、ステータとロータの両方がループ状の卷線を使用し た構成となっていることである。上述したように、卷線の量を少なくできるので銅損を 低減することができ、卷線が単純なループ状の卷線なので製作が容易で、図 73およ び図 74に示したステータのように軸方向に配置される卷線がな 、ため多極ィ匕して卷 線配置断面積が小さくなることもないので多極ィ匕による高トルク化が可能で、コイルェ ンドがな!/、のでモータを小型化することができるなどの特徴を持って 、る。特に多極 化した場合には、図 19に示したロータより図 58に示したロータの方がロータ側の銅 損を/ J、さくすることができる。
[0247] また、図 58に示したモータでは、ステータとロータとが同一の考え方の構造であるこ とを明示するため、同一の歯の数、同一のスロットの数として図示したが、類似形態の ステータとロータの組み合わせの場合にはトルクリップルが発生しやすいという問題 がある。その意味では、図 58に示したモータにおいて、ステータとロータの歯の数、ス ロットの数、卷線の数を異なる値にすることが望ま 、。
[0248] 次に、(31)式の Nss = PnX Nsで相数 3のステータ構成、すなわち、 Nss = 3 X Pn の構成のステータと図 14〜図 19および図 57に示すロータとを組み合わせたモータ について説明する。上述したように、これらのロータ表面には軟磁性体が含まれてお り、ロータの磁束分布をステータの電流で変えることが容易な構造となっており、ステ 一タカ 円周方向に正弦波的な起磁力分布を印加したときに効果的に作用する構 造のロータである。一方、図 35等に示す 6相のステータは円周方向の起磁力分布が 60° ピッチであり、離散性が小さいので比較的高精度に円周方向に正弦波的な起 磁力分布を印加することができ、図 14〜図 19および図 57で示すロータと組み合わ せて効果的に駆動することが可能である。ここで、図 35に示すステータ構成を 3相に 変形すると、ステータの離散性は 120° と 2倍に大きくなるので、図 14〜図 19および 図 57に示すロータを駆動すると、平均トルクの減少あるいはトルクリップルの増加など の問題が発生し、効果的に駆動できないという問題がある。しかし、この対策として、 ステータの磁極形状 SPSを図 39に示すような形状にすることにより、ステータ内周の ステータ磁極形状 SPSの円周方向の面積分布を正弦波分布に近づけることが可能 となり、ロータの円周方向に正弦波分布状の起磁力を印加することができ、より効果 的なロータの駆動が可能となる。
[0249] また、ロータに印加される起磁力分布が円周方向に正弦波的な分布となるようにし たいのであるから、図 40に示すように、ロータの径方向形状をロータ磁極境界部が凹 状となる形状とする方法、あるいは、ステータ磁極の円周方向両端がステータ中心に 対する半径が大きくなる形状とし、図 23に示すステータ磁極形状に対して両端部が 外径側に滑らかな形状とする方法も効果的である。また、それらの方法の組み合わ せも可能である。
[0250] 上述したように、図 35に示すステータは性能的には優れている力 相数が多いの でやや複雑な構成となる。この点で、図 35に示すステータを 3相にしてステータ内周 のステータ磁極形状 SPSの円周方向の面積分布を正弦波分布にした構造は、円周 方向の起磁力分布を正弦波にすることができるので、図 14〜図 19および図 57に示 すロータを効果的に駆動することができ、ステータが簡素化でありながら効果的駆動 が実現でき、低コストと高性能を両立させることが可能である。
[0251] なお、図 35に示すステータを 3相に変形し、ステータ磁極形状 SPSを図 39に示し た形状とするステータの構造および各部形状は、図 1に示す構成のステータでステ ータ磁極の内周面形状 SPSを図 11〜図 13の形状あるいは図 39のステータ磁極形 状とすることと同じである。
[0252] 次に、ステータとロータとの内径側、外径側の関係を逆にし、外径側が回転するい わゆるアウターロータモータの形状について、図 59を用いて説明する。 187は内径 側に配置されたステータで、その内部にループ状の卷線 189〜 194が配置されて!ヽ る。これら各卷線は 1スロット中に 2組のループ状卷線を配置して!/、る例を示して!/、る 1S 図 34、図 35の各卷線のように卷線を統合することも可能である。 186はロータを 支え、回転自在とする軸受け、 185はロータの出力軸、 203はロータである。 195は口 ータの内径側に固定された永久磁石で、円周方向を直線展開した形状は、内径、外 径は異なるが、図 22 (b)に示す永久磁石 12のような形状を有する。図 59に示したモ ータは、単に外径側を回転できるという特徴の他に、出力を大きくできる特徴がある。 これは、モータの内径側まで有効に電磁気回路を構成できるので、卷線 189〜194 の断面積を図 21のモータの卷線 41〜52より広く取ることができて通電電流を大きく することができ、モータとして電磁気的に作用する磁束の量においても永久磁石 195 が図 21に示す永久磁石 12に比較して外径側に配置できるので、電流、磁束ともに 大きくなり、出力トルクを大きくすることができる。但し、図 59に示すアウターロータモ ータは、使用される用途、使用される周囲環境によっては問題となることもある。例え ば、図 59ではモータケースを図示していないが、必要となる用途もあり、また、ロータ 軸受けの配置に工夫が必要で、ロータ軸剛性が低くなることが多い。
次に、図 35に示す円筒状のステータを円盤状に変形したモータの例を図 60に示 す。ステータ 196、 231は永久磁石で構成されたロータ 194の軸方向両側に配置さ れている。 195はステータのケースで、非磁性体で構成されている。 11は非磁性体 で製作されたロータ軸で、 197は軸受けである。 198〜202は各相のループ状卷線 で、図 61にステータ 196をロータ軸 11の反負荷側カゝら見た配置図を示す。 237が第 1相のステータ磁極、 238が第 2相のステータ磁極、 239が第 3相のステータ磁極、 2 40が第 4相のステータ磁極、 241が第 5相のステータ磁極、 242が第 6相のステータ 磁極である。各相のステータ磁極が電気角で 60° の相対的位相差を持つように配 置されている。ステータ 196の各卷線 198〜202は図 61において同一番号でその配 置関係を示している。ステータ 231についても、ロータ軸 11の反負荷側力も見た配置 関係は図 61と同じである。また、各ステータ磁極の形状はそれぞれにモータ中心か らの距離が異なるので、ステータ磁極の面積が同一になるように径方向の幅が決めら れている。ロータ 196をロータ軸 11の反負荷側力も見た構成は図 62となり、円周方 向に永久磁石の N極 243と S極 244とが交互に配置された 8極のロータとなって!/、る 。このとき、ロータ 196に作用するロータ軸方向の電磁気的吸引力は、ステータ 196、 231の両側力も作用するので、吸引力が相殺されており、トータルとしては大きなロー タ軸方向の力すなわち大きなスラスト力は発生しない構造となっている。 [0254] 図 60に示したモータの作用は、各相卷線を含むステータ 196、 231が配置されて いるが、電磁気的な作用は図 35のステータと同じである。また、ステータ磁極の形状 、ループ状卷線、ロータなどは、上述した種々の構成に変形することが可能である。 ステータ 196、 231を異なる構成のステータとすることも可能であり、例えば、片方の ステータを卷線を含まない軟磁性体の円盤とすることも可能である。ステータ 196、 2 31の位置に 2個のロータを配置し、ロータ 196の位置にステータを配置することもで きる。また、相数、極数を 6相、 8極の例について説明した力 例えば、 3相、 16極の 相数、極数とするなど、相数、極数を自由に選択することができる。
[0255] 図 60に示すようなモータ構造とすることにより、扁平で薄型のモータを構成すること ができる。また、図 21、図 35に示すモータと比較して、相対的に大きな永久磁石を配 置することができるので、卷線への鎖交磁束を大きくすることができ、大きなトルクの 発生が可能である。
[0256] 次に、図 35に示した配置構造のステータを有するモータを 2個組み込んで複合ィ匕 したモータの例を図 63に示す。図 63に示すモータは、一点鎖線で示す水平線の上 側と下側とで 2個のモータが組み込まれている。図 64は、図 35と同様に、図 63のス テータをロータ側から見たステータの内周側形状を直線状に展開した展開図である。 図 63に示す上半分のモータであるステータ磁極 67、 54、 55、 56、 57、 58およびル 一プ状卷線 61〜65は、図 35に示したステータの構成と同じであり、図 33に示した電 流ベクトルに示す平衡 6相電流の卷線から電流ベクトル fに相当する卷線を省略した 構造で、その電流アンバランス分の起磁力がロータ軸方向に発生している。図 63に 示す下半分のモータ構成は、図 35のステータ構成と比較して、ステータ磁極の配置 順およびループ状卷線に通電する電流の順と極性が逆であり、その電流アンバラン ス分の起磁力が上半分のモータと逆方向に発生する構成としている。ただし、図 63 の下半分のモータが発生するトルクの方向と大きさは、図 63の上半分のモータと同 一となる構成としている。なお、図 64に示す各ループ状卷線の左端に示す電流べク トル a、 b、 c、 d、 e、 一 a、 一 b、 一 c、 一 d、 一 eが、各卷線に通電される電流であり、図 3 3に示す電流ベクトルである。このように、 2個のモータを組み合わせることにより、各 モータが発生する軸方向起磁力をキャンセルさせて相殺することが可能である。した がって、ロータ軸が軸方向に磁ィ匕されることにより、モータ出力軸に周辺の鉄紛が付 着する、あるいは、ロータ軸上に磁気式のエンコーダを取り付けていてロータ軸方向 起磁力が問題となるというような用途では有効である。さらに、 3個以上の電磁気的に アンバランスなモータを同軸上に配置して電磁気的なバランスを保つこともできる。
[0257] また、図 63においては、一点鎖線で示す上下のモータの電磁気的作用が一点鎖 線で示される面に対して面対象な構成として ヽるので、それぞれのステータは密着し た構成としても 2個のモータ間の電磁気的な干渉が少ない例を示している。しかし、 2 個のモータの他の構成でロータ軸方向起磁力をキャンセルする力 一点鎖線の面に お!、て電磁気的に対象な構成となって ヽな 、場合は、 2個のステータ間にスペース を設け、磁気的な分離をしてもよい。
[0258] また、スペースの有効活用による全体の小型化あるいは部品の共用などによる簡素 ィ匕、低コスト化の目的でも、複数のモータを結合する複合ィ匕は効果的である。軸方向 に複数のモータを結合する場合は、細長いモータ構成とし易ぐ径方向に複数のモ ータを結合する場合は短い、扁平なモータ構成とし易い。例えば、径方向に 2個のモ ータを組み合わせる場合は、内側にアウターロータ型のモータを配置し、外側にイン ナーロータ型のモータを配置し、両モータのロータを一体化する構成とし、内径側モ ータと外径側モータとは大きく異なる形状となるのでそれぞれの形状に適したモータ のタイプとすることにより、スペース的に、モータの出力密度的に効果的な構成とする ことができる。上述したような複合ィ匕の対象となるモータの組み合わせは、本発明の モータ同士の組み合わせ、あるいは、本発明モータと従来モータとの組み合わせも 可能であり、複数のモータの長所と短所とを組み合わせることにより、その用途の目 的、性能を達成することができる場合もある。
[0259] 次に、ロータ軸に平行して配置された電磁鋼板をロータ内部に配置した図 65に示 すロータについて説明する。図 14に示したロータは、 265がロータ軸方向に積層した 電磁鋼板、 266は軟磁性体のロータ軸である。 262、 263は永久磁石で、ロータ外周 に図示する N極および S極の向きになるように各永久磁石の極性が向けられている。 このような図 14に示したロータでは、ロータ内の磁束が円周方向および径方向に変 化しても電磁鋼板内では渦電流が過大となり難い構成としている。しかし、図 35に示 すステータと組み合わせて駆動する場合、電磁鋼板 265のロータ軸方向磁束が変化 することになり、回転時には電磁鋼板 265での渦電流が大きく発生して渦電流損が 問題となる。
[0260] 図 65に示す横断面図のロータは、図 14に示した電磁鋼板 265にロータ軸方向に 穴を設け、その穴に積層した電磁鋼板 264を配設した構造である。積層した電磁鋼 板 264は図 66に示すような構成で、表面が絶縁体膜で覆われた薄板の電磁鋼板を 積層しており、積層方向と直角な方向への磁束が増減したときに渦電流が流れ難い 構造となっており、鉄損を低減できる構造となっている。図 65に示すように配置され た積層電磁鋼板 264の向きは、円周方向にほぼ直角に配置されているので、円周方 向以外の方向、すなわち、磁束がロータ軸方向と径方向に変化しても鉄損を小さくで きる配置となっている。このように、図 65に示すロータは、導磁磁路としての積層電磁 鋼板 264、 265が互いに交差するように配置されているので、ロータ磁極の磁束が口 ータ軸方向に増減しても渦電流が発生し難い構成となっている。その結果、図 65に 示すロータと図 35等に示すステータとを組み合わせたモータにおいて、永久磁石 26 2、 263で生成される磁束を効果的に図 35に示すステータ磁極 67、 54、 55、 56、 5 7、 58へ導くことができ、回転時にも渦電流損を低減できる効果がある。
[0261] なお、電磁鋼板 264は積層して配置されているが、特に積層することは必要条件で はなぐ磁束を通すために必要な量の電磁鋼板を分割、分散して配置してもよい。ま た、電磁鋼板の替わりに圧紛磁心と称される軟磁性体の粉末を押し固めた渦電流の 少ない材料であっても、低鉄損でロータ軸方向に磁束を導くことができる。また、ロー タの軟磁性体部の全体が圧紛磁心であってもよい。
[0262] また、図 21に示すステータ磁極形状および図 35に示すステータ磁極形状は、図 3 1に示したステータ磁極形状のようにステータ磁極のロータ軸方向幅 WDDがステー タ磁極のロータ軸方向間隔 WDPより小さな構造を示している力 ロータからの磁束を より多く導くことにより発生トルクを大きくする場合には、図 38に示したステータ磁極形 状 54SSのようにステータ磁極のロータ軸方向幅 WDXを大きくする構造が有利であ る。しかし、その場合には、図 31のステータ磁極先端部の径方向厚み HD1が図 38 に示したステータ磁極先端部の径方向厚み HD2のように、ロータ軸方向へ磁束を多 く通すために大きくなり、そのために隣接するスロットの断面積力 、さくなり、導線が細 くなるため通電容量が減少するという問題がある。
[0263] この問題に対し、図 38に示したステータと図 65に示したロータを組み合わせた場 合、上述したように、図 65のロータ内部でロータ軸方向に磁束が容易に通過できるた め、図 38に示したステータ磁極の径方向厚み HD2を小さくすることができ、スロット 断面積、導線断面積を大きく取れるので銅損を低減でき、出力を増加させることがで きる。
[0264] なお、電磁鋼板 264の追加を図 14に示したロータについて示した力 図 15〜図 18 などに示した他の種類のロータについて行なうことも可能である。また、追加する軟磁 性体の形状については、図 66に示す積層電磁鋼板 264の例を図示した力 渦電流 が少な 、形状であれば種々形状が可能である。
[0265] 次に、図 67に示すように、ロータ磁極の軟磁性体部に磁束の回転方向自在性を制 限する空隙部あるいは非磁性体部を備えるロータ構造について説明する。図 67に示 すロータは、図 14に示したロータの軟磁性体部 265の部分に、 267、 268で示す空 隙部あるいは非磁性体部を設けたものである。ロータの外周形状は各磁極の境界部 が凹部となり、ロータ磁極の外周形状をロータ半径より小さな半径の円弧状形状で滑 らかな形状となっている。空隙部 267、 268は、それらの空隙部に挟まれた磁路 269 、 270の磁束が円周方向に自在に動 、てずれな!/、ように、磁束の回転方向自在性を 制限している。また、空隙部 267、 268のスリット形状の向きは、ロータ磁極の中央部 の磁束密度が高くなるように、永久磁石 262、 263からの磁束が寄せ集められるよう な配置構造としている。その結果、各ロータ磁極表面の磁束分布は、中央近傍は磁 束密度が大きぐ磁極境界部側の磁束密度が低くなるように、比較的正弦波分布に 近くなるような構造となっている。ロータ磁極の境界部形状は、その部分の磁束はモ 一タトルクを発生させるための貢献度が低ぐ逆にその部分の磁束密度が大きいとト ルクリップルを発生する要因になり易いので、凹状としてその部分からステータへ通る 磁束の磁束密度を低くして 、る。
[0266] また、空隙部 267は一つの磁極に 3個配置し、空隙部 268は一つの磁極に 4個配 置していて、空隙部の円周方向ピッチ SPPは同一とし、空隙部 267、 268が磁極中 心に対して相対的に SPPZ2だけ円周方向位置がずれている関係としている。その 結果、空隙部に起因するコギングトルク、トルクリップルが相殺される関係となり、より 滑らかなロータの回転を実現することができる。
[0267] 次に、本発明のモータのステータ磁極の一部を削除し、そのスペースを活用してス テータのループ状卷線のコイル端の卷線配線スペースとする、あるいは、位置検出 センサー、温度センサー等の配置スペースとする技術にっ 、て説明する。
[0268] 従来の方法として、モータの軸方向後端にロータ位置検出用エンコーダ等のセン サーを配置する例が多く見られるが、モータ全長が長くなるという問題がある。また、 図 71に示した従来のモータのステータのコイルエンド 5の近傍のスペースを活用して コイル端の配線処理を行なう、あるいは、各種センサーを配置することがあった力 コ ィルエンドの軸方向長さが短いモータの場合、あるいは、図 1、図 21に示すような本 発明のモータのようにコイルエンド部がない場合には、モータ内部の軸方向端でコィ ル端の配線処理を行なう、あるいは、各種センサーを配置するとモータの軸方向長さ が大きくなる問題がある。
[0269] この問題を解決するために、図 10、図 11、図 12、図 13に示したステータ磁極形状 のようにステータ内周面の円周方向の大半の部分にステータ磁極が隣接して配置さ れている場合は、特に図示しないが、数個のステータ磁極を除去する、あるいは、 1 個のステータ磁極の一部を凹ませて形状の一部を除去することによりスペースを確保 することができる。また、そのスペースを利用して、ループ状卷線のコイル端に折り曲 げ処理、あるいは耐熱絶縁処理を施した電線と接続する処理を行なうことができる。 また、そのスペースを利用して、電流センサー、電圧センサー、磁束センサー、加速 度検出センサー、速度検出センサー、位置検出センサー、温度センサー、振動セン サ一等を配置することもできる。
[0270] 図 1に示したモータは 3相 8極のモータであり、 U相のステータ磁極 119、 V相のステ ータ磁極 120、 W相のステータ磁極 121は、その内周面の円周方向形状を直線状に 展開すると図 4の形状となる。このとき、隣接するステータ磁極の間隔が狭ぐ例えば 、U相ステータ磁極 119から V相ステータ磁極 120への漏れ磁束などステータ磁極間 の漏れ磁束が発生し、ロータの永久磁石等で作られる界磁磁束が漏れてモータ卷線 と鎖交する成分が減少することによるモータトルクの減少の問題や、各相卷線の電流 Iが生成する起磁力に起因するステータ磁極間の漏れ磁束である漏れインダクタンス Lxが無視できないほど大きくなつて、高速回転 ω、大電流 Iでの電圧降下 Vx= ω X Lx X Iが大きくなり、高速回転での出力トルクが低下する問題や、漏れインダクタンス Lxが大きくなることによるモータ制御装置における電流応答性の低下の問題がある。
[0271] この問題を解決するため、図 4の構成を図 68の構成とすることにより、ステータ磁極 間の距離を大きくしてステータ磁極間の漏れ磁束を低減することができる。図 4、図 6 8ともに 8極のモータで、水平軸は機械角角度 0° 力も 360° で示されており、電気 角で表現すると 0° 力 360° X 4= 1440° の角度範囲を図示している。 271は U 相ステータ磁極、 272は V相ステータ磁極である。これらの各相ステータ磁極は、図 4 に比べて、 1個おきになっており、 4個から 2個に半減している。同相のステータ磁極 が周方向に配置されるピッチは電気角で 720° ピッチとなっている。ステータ磁極間 の距離が大きくなり、漏れ磁束を低減できるので前記の種々問題を解決することもで きる。ただし、ステータ磁極の数は半減するのでトルクが低下する問題が新たに発生 し、この問題を解決するため、ステータ磁極の形状を空いたスペース内で広げる方法 、モータの極数を大きくする方法などを併用すると効果的である。このように、ステー タ磁極間の漏れ磁束の問題を解決し、モータ発生トルクの低下の問題については他 の手法で改善することができる。
[0272] 図 4に示したステータ磁極の形状は、各相卷線の鎖交磁束を大きくしてトルクを増 カロさせるため図 10〜図 13に示すような種々のステータ磁極形状に変形することも可 能である。しかし、これらのステータ磁極形状は、図 4に示したステータ磁極形状に比 較し、各相ステータ磁極が隣接する面積が広くなつており、相間の漏れ磁束が増加し ており、前記の図 4の漏れ磁束の問題がさらに大きくなつている。また他の問題として 、ステータ磁極 122〜136のステータ内周面で集められたロータ磁束をステータのバ ックヨーク部へ通過させるための磁路を形成するための磁路スペースが不足する問 題がある。この磁路スペースが不足すると磁路が磁気飽和してトルクが低下する現象 となる。
[0273] これらの問題を解決するため、例えば、図 11に示したステータ磁極の場合、図 69 に示すように、同相のステータ磁極の周方向に配置されるピッチを電気角で 720° ピ ツチとすることができる。図 69に示すモータも 3相 8極のモータである。図 10〜図 13 および図 69の水平軸は機械角で表しており、 0° から 360° であり、電気角で表現 すると 0° 力 360° X 4= 1440° の角度範囲を図示している。図 69に示すステー タ磁極形状の場合、明らかに隣接するステータ磁極間の距離を大きくすることができ 、ステータ磁極間の漏れ磁束を低減することができる。その結果、漏れ磁束に起因し たトルク低減の問題、漏れインダクタンスに起因した高速回転、大電流時のインダクタ ンス電圧降下の問題等の悪影響を低減することが可能である。また、ステータ磁極内 周面からステータバックヨークまでの磁路スペースに関する前記問題は、図 69のよう にステータ磁極間のスペースを広くすることができれば十分な磁路スペースを確保す ることができ、磁気飽和の問題も解消することができる。ただし、ステータ磁極の数は 図 11に比較して図 69は半減するのでトルクが低下する問題が新たに発生する。この 問題を解決するため、ステータ磁極の形状を空いたスペース内で広げる方法、モー タの極数を大きくする方法などを併用すると効果的である。このように、ステータ磁極 間の漏れ磁束の問題を解決し、モータ発生トルクの低下の問題については他の手法 で改善することができる。
[0274] 図 12に示すステータ磁極形状についても、同様に、図 70に示す U相ステータ磁極 277、 V相ステータ磁極 278、 W相ステータ磁極 279のように同相のステータ磁極ピ ツチを電気角で 720° とし、隣接するステータ磁極の周方向平均間隔を 240° とした 3相、 8極のモータを構成することができる。極数は 8極の例について図示したが、自 由に選択することができる。特に、本発明のモータのようにループ状の卷線を持つモ ータの場合は、極数が大きいほど大きなトルクの発生が可能なので、トルク発生上は 極数を大きくした方が有利である。
[0275] なお、この手法は、他の各種のステータ磁極形状のモータにっ 、ても適用すること ができる。また、相数が 2相の場合は、同相のステータ磁極の円周方向間隔を電気角 で 720° とし、 2相の位相差が 90° なので、隣接するステータ磁極の円周方向間隔 を 360° + 90° =450° と 360° —90° = 270° との繰り返しとして、やや変貝 IJ的 ではあるが、規則的に配置することができる。 [0276] 相数が 5、 7、 9などの奇数相であれば、同相のステータ磁極の円周方向間隔を電 気角で 720° として規則的に配列することができる。相数が 4相以上の多相モータで 、円周方向に 2個おきにステータを削除する方法、 3個おきにステータを削除する方 法等の種々方法が考えられる。いずれにしても、一部のステータ磁極を削除すること により、各ステータ磁極の近傍にスペースを作り出すことができ、そのスペースを活用 して各ステータ磁極の内周側からバックヨークまでの間の磁路の漏れ磁束を低減す るための空間を作りだすことができる。また同時に、各ステータ磁極の内周面からバッ クヨークまでの間の磁路が磁気飽和しないように磁路断面積を確保することができる
[0277] また、ステータ磁極の削除の方法は、円周方向全周で同一の規則性のある削除が 可能である場合はより多相正弦波交流理論に近 、優れた特性を期待できるが、円周 方向に多少不規則でアンバランスなステータ磁極の配置構成であってもスペースを 作り出すことにより、各ステータ磁極間の漏れ磁束を低減することができ、あるいは、 ステータ磁極の内周面からバックヨークまでの磁路の断面積を確保することができる
[0278] 以上、本発明に関する種々形態の例について説明したが、本発明を種々変形も可 能であり、本発明に含むものである。例えば、相数については 3相、 6相について多く 説明したが、 2相、 4相、 5相、 7相、さらに相数の大きい多相が可能である。小容量の 機器にぉ 、ては、コストの観点力も部品点数が少な 、ことが望ましぐ相数の少な 、2 相、 3相が有利である力 トルクリップルの観点あるいは大容量機器の場合の 1相の パワーデバイスの最大電流制約の点等では相数が多 、方が有利なこともある。極数 についても限定するものではなぐ特に本発明モータにおいては原理的に極数を大 きくした方が有利である。しかし、物理的な制約、漏れ磁束などの悪影響、多極化に よる鉄損の増加、多極化による制御装置の限界などが有り、用途およびモータサイズ に応じた適正な極数の選択が望ま 、。
[0279] また、ロータの種類について図 14〜図 19、図 73、図 74に示した力 ロータに卷線 を持った卷線界磁型ロータ、軸方向端に固定された界磁卷線を持ちギャップを介し てロータに磁束を作り出す 、わゆるクローポール構造ロータなどの種々ロータへの適 用が可能である。永久磁石の種類、形状についても限定するものではない。
[0280] モータの形態についても種々形態が可能であり、ステータとロータとの間のエアギヤ ップ形状で表現して、エアギャップ形状が円筒形であるインナーロータ型モータ、ァ ウタ一ロータ型モータ、エアギャップ形状が円盤状であるアキシャルギャップ型モータ 等に変形できる。また、エアギャップ形状が円筒形状をややテーパ状に変形したモ ータ形状も可能であり、特にこの場合には、ステータとロータとを軸方向に移動させる ことによりエアギャップ長を変化させることができ、界磁の大きさを変化させモータ電 圧を可変することが可能である。このギャップ可変により定出力制御を実現することが 可能である。
[0281] また、本発明のモータを含む複数のモータを複合して製作することが可能である。
例えば、内径側と外径側に 2個のモータを配置する、あるいは、軸方向に複数のモー タを直列に配置することが可能である。また、本発明モータの一部を省略して削除し た構造も可能である。軟磁性体としては通常の珪素鋼板を使用する他に、ァモルファ ス電磁鋼板、粉状の粉末軟鉄を圧縮成形した圧紛磁心等の使用が可能である。特 に小型のモータにおいては、電磁鋼板を打ち抜き加工、折り曲げ加工、鍛造加工を 行なうことにより 3次元形状部品を形成し、前述の本発明モータの一部の形状を成す ことちでさる。
[0282] モータの卷線については、ループ状の卷線を多く記述した力 必ずしも円形である 必要はなぐ楕円形、多角形、磁気回路の都合などによりロータ軸方向に部分的な 凹凸形状が設けられた形状等の多少の変形は可能である。また、例えば 180° 位相 の異なるループ状卷線がステータ内にある場合は、半円状の卷線として 180° 位相 の異なる半円状卷線に接続して閉回路とすることにより、ループ状卷線を半円状卷 線に変形することも可能である。さらに分割して、円弧状卷線に変形することも可能で ある。また、各ループ状卷線はスロットの中に配設された構成のモータについて説明 したが、スロットのな 、構造でステータのロータ側表面近傍に薄型の卷線を配置した 構造のモータで、いわゆるコアレスモータとすることも可能である。モータに通電する 電流については、各相の電流が正弦波状の電流であることを前提に説明した力 正 弦波以外の各種波形の電流で制御することも可能である。これらの種々変形したモ ータについても、本発明モータの主旨の変形技術は本発明に含むものである。
[0283] 次に、ステータ構造を工夫してトルクリップルを低減する手法にっ 、て説明する。例 えば、 RN1次のトルクリップルを低減する場合、複数の A相のステータ磁極を N1組 にグループ分け、各グループの回転方向のステータ磁極位置を電気角で 360° / ( RN1 X N1)の整数倍だけ相対的にシフトし、他の相のステータ磁極についても A相 ステータ磁極と同様に、回転方向にステータ磁極位置のシフトを行うものである。
[0284] 図 134は、トルクリップル低減のために行われるステータ磁極位置のシフトの具体 例を示す図であり、 A相のステータ磁極についての具体例が示されている。 B相のス テータ磁極と C相のステータ磁極など、他の相のステータ磁極にっ ヽても同様である ため、詳細な図示は省略する。図 134に示す横軸はステータの円周方向に沿った電 気角を示している。例えば、 6次 (RN1 = 6)のトルクリップル成分を除去することので きるステータ構成について説明する。図 134に示す 4個の A相ステータ磁極を A—1 、 A— 3と A— 2、 A— 4の 2組に分類する(Nl = 2)。 360° / (RN1 X N1) = 360° / (6 X 2) = 30° となるので、ステータ磁極 A— 2、 A— 4の円周方向位置を電気角 で 30° だけ図 30に示すように円周方向にシフトすればよい。この結果、 2組に分け た各グループの U相ステータ磁極 19が発生するトルクの内、 6次高調波成分につい ては互いに 180° の位相差を持っているので、ブラシレスモータ 100としてトータル では 6次高調波成分、すなわち、電気角で 60° の周期のトルクリップルがキャンセル されるわけである。
[0285] この状態力もさらに、複数のトルクリップルを低減するためには、図 134に示した考 え方をさらに重畳すれば良い。但し、複数のトルクリップル低減手法が独立して機能 し、相互干渉しない配慮は必要である。
[0286] 図 134に示した、ステータ磁極の配置、構成を変えるトルクリップル低減手法は、ス テータとロータが相対的であることから、同一の手法をロータに適用してトルクリップル 低減効果を得ることができる。また、一つのトルクリップル成分をステータの配置、構 成で低減し、他のトルクリップル成分をロータ側のロータ磁極の配置、構成で低減す ることもできる。 2つ以上の大きなトルクリップル成分を含むモータの場合は、ステータ 側とロータ側との両方でトルクリップルを低減する手法も効果的である。 [0287] 次に、ロータ磁極形状、ステータ磁極形状を改良して、トルクを向上する方法につ いて説明する。図 135は 4相のモータの例で、 D51、 D53、 D55、 D57は、それぞれ 、 A、 B、 C、 D相のロータ磁極である。 D52、 D54、 D56、 D58は、それぞれ、 A、 B、 C、 D相のステータ磁極である。各相の磁束 φの回転変化率 d φ /ά Θ力トルクに比 例するので、ロータ磁極とステータ磁極との対向する面積の内、特に、ロータ軸方向 の対向する長さが各相の磁束 φの回転変化率 d φ /ά Θに大きく影響し、トルクの大 きさと関係がある。その点で、図 135のように、ロータ磁極形状とステータ磁極形状と の対向する部分の形状を台形形状とすることにより、より多く磁束が通過できる構成と し、トルクを増加させることができる。磁極の形状は、図 135の形状をさらに変形する ことも可能であり、例えば、三角形状、単純な凹凸形状なども可能である。
[0288] しかし、図 135のような磁極の形状は複雑になり、部品の製作上、組み立て状上の 問題があり、モータ製作性を確保するための工夫が必要である。例えば、ステータロ ータのロータ軸方向の分割部を各ステータ磁極の中央部で行う、あるいは、組み立て 精度とモータ強度確保のため、各部品に段差、凹凸などを設ける等の種々のモータ 製作上の工夫を行うことができる。
[0289] 図 135のモータ構成において、 D59、 D5A、 D5Bは卷線であり、ループ状の卷線 形状がロータ側にまで入り込んだ形状として 、る。ロータ側の空きスペースを有効に 活用するという点と、ロータ側の方が直径が小さいので同一電流に対して導線の長さ が短ぐ銅損を低減できるという点が有利である。結果として、モータの高効率化、小 型化、高トルク化を実現することができる。
[0290] 次に、図 124に示したモータにおいて、その卷線 B37、 B38、 B39をパイプ状の卷 線に置き換えた例を図 136に示す。 D61は銅製のパイプなどであり、電流を流すと 同時にパイプを利用してその中心部に冷却水、冷却用のエア、ガスなどを流すことが できる。冷却装置の冷媒物質を通過させることもできる。パイプ間は電気的に絶縁さ れる必要があり、パイプ表面に絶縁処理をしても良い。モータの連続出力トルクを増 大させるためには効果的である。
[0291] このパイプの導体に銅を使用する場合、銅の温度による抵抗変化は約 40%Z100 °Cにもなり、導体を冷却することは、銅損を低減する意味でも大きな効果がある。 [0292] また、図 136のような構成は、従来のモータでは電線の太さから考えてあまり現実的 ではないが、本発明のモータにおいては、多極ィ匕が比較的容易であり、モータの卷 線の卷回数を減らすことができ、卷線をパイプ状にする程度に太くすることが現実的 に可能である。
[0293] 次に、本発明モータの制御装置について説明する。図 137は、卷線の数を特定し ない、そして、単純な構成の駆動部を卷線の数だけ持つ制御装置を示す図である。 D70は直流電圧電源、 D75、 D76、 D77、 D88はモータの卷線を示していて、その 卷線の数は特定していない。 D71と D72はパワートランジスタで、いわゆる、 IGBT、 パワー MOS FETなどである。これらの 2個のトランジスタが対となって、相互に接続 した出力部の電圧を制御し。正もしくは負の値の電流を供給する電圧可変ユニットを 構成している。同様に、 D73、 D74の構成、 D7A、 D7Bの構成、 D7C、 D7Dの構成 が電圧可変ユニットを構成している。そして、図 173に示すように 2個の電圧可変ュ- ットで各卷線へ差動的に電圧を供給し、電流を流すことができる。この構成は、比較 的、単純な構成の電圧可変ユニットを卷線の数だけ並置する構成であるが、トランジ スタの数が多くなる問題がある。
[0294] 次に、 5相のモータを駆動する制御装置について説明する。図 138は、図 83、図 8 4、図 85に示した 5個のステータ磁極それぞれのステータ磁極の間に配置され、 2個 のステータ磁極を挟んで配置された卷線を逆直列制御した卷線を一つの相とする 5 相卷線のモータを制御する構成を示している。すでに説明したように、図 85に示され るスター結線の構成では、スター結線の各端子の電圧が平衡した 5相の電圧となり、 図 138に示す 5相のインバータにより効率良く制御することができる。なお、この 5相 のインバータは前記の電圧可変ユニットが 5個並列に構成された構成で、各トランジ スタには逆方向の電流を通電させる逆方向に向いたダイオードが並列に接続されて いる。
[0295] また、図 85にスター結線で示した各卷線の電圧電流が 5相に平衡していることから 、デルタ結線として制御することもできる。但しこの場合には、循環電流がデルタ結線 内を流れるので、モータの高調波成分、制御装置の不平衡成分には注意を要する。
[0296] また、 5相以外の 3相以上の構成のモータについても、モータの相数の電圧可変ュ ニットを使用して、同様に構成することができる。
[0297] 次に、本発明の 5相のモータであって、各卷線の電圧振幅が等しくない卷線の駆動 装置について説明する。図 139は、図 86〜図 89に示した 5相で 5個の卷線のモータ を制御する構成を示している。すでに説明したように、各卷線の電圧は図 88に示し た不平衡な電圧、位相となっている。しかし、スター結線の構成としたときの各端子の 電圧電流は図 89に示すように平衡しており、効率良く駆動することができる。
[0298] ただし、卷線ごとに厳密に制御する必要がある場合は、図 83に示す電圧関係を基 本とした制御を行う必要がある。例えば、卷線ごとにある種の高調波電流を重畳させ る場合には、図 88の電圧関係力も計算される卷線ごとに電圧のフィードフォワード制 御を行う必要がある。
[0299] また、前記のスター結線は、不平衡であるが、相順通り直列に接続し、デルタ結線 とすることもできる。ただし、各卷線電圧がアンバランスであることから、インバータの 駆動効率は、多少劣化する。
[0300] また、 5相以外の 3相以上の構成のモータについても、モータの相数の電圧可変ュ ニットを使用して、同様に構成することができる。
[0301] 次に、本発明の 5相のモータであって、各卷線の電圧振幅が等しくなぐ卷線の数 が相数より 1個少ないモータの駆動装置について説明する。図 139は、図 90〜図 96 に示した 5相で 4卷線のモータを制御する構成を示して 、る。すでに説明したように、 各卷線の電圧は図 95に示した不平衡な電圧、位相となっている。し力し、図 93の(a )のように、スター結線の中心点 NNをモータの一つの端子とすることにより、各端子 の電圧電流は図 96に示すように平衡しており、効率良く駆動することができる。
[0302] ただし、卷線ごとに厳密に制御する必要がある場合は、図 95に示す電圧関係を基 本とした制御を行う必要がある。例えば、卷線ごとにある種の高調波電流を重畳させ る場合には、図 95の電圧関係から計算される卷線ごとに電圧のフィードフォワード制 御を行う必要がある。
[0303] また、前記のスター結線は、不平衡であるが、相順通り直列に接続し、デルタ結線 とすることもできる。ただし、この場合には、図 93の (b)の用に結線し、卷線が欠落す る部分の、両端の 2個の端子をモデルタ結線の端子とすることによりデルタ結線で駆 動することができる。ただし、各卷線電圧がアンバランスであることから、インバータの 駆動効率は、多少劣化する。
[0304] また、 5相以外の 3相以上の構成のモータについても、モータの相数の電圧可変ュ ニットを使用して、同様に構成することができる。
[0305] 本出願は、特願 2005— 131808 (2005年 4月 28曰出願)、特願 2005— 144293
(2005年 5月 17日出願)、特願 2005— 151257 (2005年 5月 24日出願)及び特願
2005— 208358 (2005年 7月 19曰出願)【こ基づくちのであり、これらの出願【こよる開 示のすべては、参照により本出願に組入れられる。
[0306] また、本出願に力かる発明は、特許請求の範囲によってのみ特定され、明細書に 記載された実施の態様等に限定的に解釈されることはない。

Claims

請求の範囲
[1] 円周方向に N極と S極とが交互に配置されたロータ磁極群を有するロータと、 相毎に複数個のステータ磁極が円周上あるいは近傍の円周上であって電気角で ほぼ同一角度の回転位相の位置に配置された (N+ 1)個のステータ磁極群と、 各相の前記ステータ磁極群の間であって軸方向に沿って配置され、軸方向両端に 同一相が配置された 2N個のループ状卷線と、
を備えることを特徴とするモータ。
[2] 請求項 1において、
(N+ 1)個の前記ステータ磁極群のそれぞれは、電気角位置が順に変化するよう に配置されて 、ることを特徴とするモータ。
[3] 請求項 1において、
電気角が互いにほぼ 180° 異なる 2つの相に対応する前記ステータ磁極群が隣接 するように、(N+ 1)個の前記ステータ磁極群のそれぞれが配置されて 、ることを特 徴とするモータ。
[4] 請求項 3において、
電気角が互いにほぼ 180° 異なる 2つの相に対応する前記ステータ磁極群を組と したときに、隣接する 2組のそれぞれに含まれて互いに隣接する前記ステータ磁極群 の電気角の位相差が最小となるように、(N+ 1)個の前記ステータ磁極群のそれぞ れが配置されて!、ることを特徴とするモータ。
[5] 請求項 1または 2において、
(N+ 1)個の前記ステータ磁極は、両端に位置する 2つの前記ステータ磁極であつ て前記ロータに対向する面のロータ軸方向幅の和がそれ以外のそれぞれの前記ス テータ磁極の前記ロータに対向する面のロータ軸方向幅に等しくなるように設定され て 、ることを特徴とするモータ。
[6] 円周方向に N極と S極とが交互に配置されたロータ磁極群を有するロータと、 相毎に複数個のステータ磁極が円周上あるいは近傍の円周上であって電気角で ほぼ同一角度の回転位相の位置に配置された N個のステータ磁極群と、
各相の前記ステータ磁極群の両側であって軸方向に沿って配置され、軸方向両端 に同一相が配置された 2N個のループ状卷線と、
を備えることを特徴とするモータ。
[7] 請求項 6において、
ロータ軸方向に隣接する 2つの前記ステータ磁極によって形成されるスロット内に配 置された複数の前記ループ状卷線を 1個のループ状卷線に統合することを特徴とす るモータ。
[8] 請求項 6または 7において、
ロータ軸方向に沿った両端のそれぞれに配置された 2つの前記ステータ磁極のさら に外側に配置された前記ループ状卷線を取り除いたことを特徴とするモータ。
[9] 請求項 1〜8のいずれかにおいて、
前記ステータ磁極の前記ロータに対向する面の面積力 前記ロータの周方向に沿 つて、正弦波状の面積分布あるいは正弦波に近似される面積分布となっていることを 特徴とするモータ。
[10] 請求項 1〜9のいずれかにおいて、
前記ステータ磁極の前記ロータに対向する面は、ロータ軸に沿って隣接する前記ス テータ磁極の間隔よりも、ロータ軸方向幅が大きいことを特徴とするモータ。
[11] 請求項 1〜10のいずれかにおいて、
任意の X相の前記ステータ磁極群を通る磁束の総和を Φ x、この磁束 Φ Xの回転変 ィ匕率を (1ΦχΖ(10、このステータ磁極とロータ磁極との間のエアギャップ部に作用す る起磁力である卷線電流を Ιχ、卷線ターン数を WTx、これらの積 (1ΦχΖ(10 Χ Ιχ Χ WTxで算出される発生トルク成分を Τχとし、他の任意の Υ相の前記ステータ磁極群 を通る磁束の総和を 0>y、この磁束 0>yの回転変化率を dO>yZd 0、このステータ磁 極とロータ磁極との間のエアギャップ部に作用する起磁力である卷線電流を Iy、卷線 ターン数を WTy、これらの積 dO>yZd 0 X ly X WTyで算出される発生トルク成分を Tyとするときに、前記ステータ磁極と前記ロータ磁極との対向面積により決まる前記 磁束 Φχ、 0>yと前記卷線電流 Ix、 Iyと前記卷線ターン数 WTx、 WTyの二つ以上が 、 X相の前記ステータ磁極と Y相のステータ磁極とでは異なる値であって、それぞれ のステータ磁極に対応する前記発生トルク成分 Tx、 Tyは等 Uヽことを特徴とするモ ータ。
[12] 請求項 1、 2、 5〜: L Iのいずれかにおいて、
各相の前記ステータ磁極は、ロータ軸方向に K個に分割されており、
各相の K個のステータ磁極のそれぞれのロータ軸方向に沿った両側ある 、は片側 に、同一相の K個の前記ループ状卷線が配置されて 、ることを特徴とするモータ。
[13] 請求項 1、 2、 5〜12のいずれかにおいて、
ロータ軸方向に隣接する前記ステータ磁極によって形成されるスロットに、異なる位 相の電流が通電される複数のループ状卷線が卷回されて合成電流が得られるととも に、
前記スロットに卷回された複数のループ状卷線のそれぞれの卷回数は、それぞれ に流れる電流ベクトルとそれぞれの卷回数との積の合計が前記合成電流のベクトル に一致するように設定されることを特徴とするモータ。
[14] 請求項 1〜13のいずれかにおいて、
前記ループ状卷線同士の結線を、電気角的に同一の位相の前記ループ状卷線同 士については直列接続し、電気角的にほぼ 180° 位相の異なる前記ループ状卷線 同士につ 、ては反対方向に直列接続して行うことを特徴とするモータ。
[15] 円周方向に N極と S極とが交互に配置されたロータ磁極群を有するロータと、
相毎に複数個のステータ磁極が円周上あるいは近傍の円周上であって電気角で ほぼ同一角度の回転位相の位置に配置された p個のステータ磁極群と、
各相の前記ステータ磁極群の間であって軸方向に沿って配置された Q個のループ 状卷線とを備え、
前記 Q個のループ状卷線それぞれに個別の電流が通電できるようにモータの入力 線が備えられている(ここで、 P= (N+ 1)で Q = 2N、 P = Nで Q = 2 (N— 1)、 P= (N + 1)で Q=N、または、 P=Nで Q= (N— 1)であり、 Nは 3以上の正の整数とする)こ とを特徴とするモータ。
[16] 円周方向に N極と S極とが交互に配置されたロータ磁極群を有するロータと、
相毎に複数個のステータ磁極が円周上あるいは近傍の円周上であって電気角で ほぼ同一角度の回転位相の位置に配置された p個のステータ磁極群と、 各相の前記ステータ磁極群の間であって軸方向に沿って配置された Q個のループ 状卷線とを備え、
Q個のループ状卷線の内、 2個以上のステータ磁極群を挟んで配置された 2卷線 に同じ電流が逆方向に通電されている(ここで、 P= (N+ 1)でQ = 2N、または、 P = Nで Q = 2 (N- 1)であり、 Nは 3以上の正の整数とする)ことを特徴とするモータ。
[17] 請求項 16において、
同じ電流が逆方向に通電されて 、る前記 2卷線が直列に逆方向に接続されて 、る ことを特徴とするモータ。
[18] 円周方向に N極と S極とが交互に配置されたロータ磁極群を有するロータと、
相毎に複数個のステータ磁極が円周上あるいは近傍の円周上であって電気角で ほぼ同一角度の回転位相の位置に配置された p個のステータ磁極群と、
各相の前記ステータ磁極群の間であって軸方向に沿って配置された Q個のループ 状卷線とを備える(ここで、 P= (N+ 1)で Q=N、または、 P=Nで Q= (N— 1)であり 、 Nは 3以上の正の奇数とする)ことを特徴とするモータ。
[19] 請求項 1〜9、 16〜18のいずれかにおいて、
同一の電流が流される各ループ状卷線を電流の方向を合わせて直列に接続し、そ れぞれの直列卷線あるいは単独の卷線をスター結線とすることを特徴とするモータ。
[20] 円周方向に N極と S極とが交互に配置されたロータ磁極群を有するロータと、
相毎に複数個のステータ磁極が円周上あるいは近傍の円周上であって電気角で ほぼ同一角度の回転位相の位置に配置された (N+ 1)個のステータ磁極群と、 各相の前記ステータ磁極群の間であって軸方向に沿って配置された N個のループ 状卷線とを備え、
前記 N個の卷線カスター結線されることを特徴とするモータ。
[21] 円周方向に N極と S極とが交互に配置されたロータ磁極群を有するロータと、
相毎に複数個のステータ磁極が円周上あるいは近傍の円周上であって電気角で ほぼ同一角度の回転位相の位置に配置された N個のステータ磁極群と、
各相の前記ステータ磁極群の間であって軸方向に沿って配置された (N— 1)個の ループ状卷線とを備え、 前記 (N— 1)個の卷線がスター結線され、
前記スター結線の中心接続部もモータの入力として N個の入力線とすることを特徴 とするモータ。
[22] 円周方向に N極と S極とが交互に配置されたロータ磁極群を有するロータと、 相毎に複数個のステータ磁極が円周上あるいは近傍の円周上であって電気角で ほぼ同一角度の回転位相の位置に配置された 4個のステータ磁極群とを備え、 両端のステータ磁極群の内側にはそれぞれ卷回数 Nwのループ状卷線が配置さ れ、
中央の 2個のステータ磁極群の間には卷回数 NwZ2の 2個のループ状卷線が配 置され、
それら 4個の卷線がスター結線されていることを特徴とするモータ。
[23] 円周方向に N極と S極とが交互に配置されたロータ磁極群を有するロータと、 相毎に複数個のステータ磁極が円周上あるいは近傍の円周上であって電気角で ほぼ同一角度の回転位相の位置に配置された 4個のステータ磁極群とを備え、 両端のステータ磁極群の内側にはそれぞれ卷回数 Nwのループ状卷線が配置さ れ、
中央の 2個のステータ磁極群の間には卷回数 NwZ2のループ状卷線が配置され それら 3個の卷線がスター結線されていることを特徴とするモータ。
[24] 請求項 1〜16および 21のいずれかにおいて、
Nが偶数であり、
円周方向に N極と S極とが交互に配置されたロータ磁極群を有するロータと、 相毎に複数個のステータ磁極が円周上あるいは近傍の円周上であって電気角で ほぼ同一角度の回転位相の位置に配置された N個のステータ磁極群とを備え、 NZ 2個のステータ磁極群は電気角で 360° ZNの整数倍の位相に配置され、 他の NZ2のステータ磁極群は電気角で 360° ZNの整数倍とは異なる位相に配 置されて!ヽることを特徴とするモータ。
[25] 円周方向に N極と S極とが交互に配置されたロータ磁極群を有するロータと、 相毎に複数個のステータ磁極が円周上あるいは近傍の円周上であって電気角で ほぼ同一角度の回転位相の位置に配置された (N+ 1)個のステータ磁極群とを備え これらのステータ磁極群の内、電気角が互いにほぼ 180° 異なる 2つの相に対応 する前記ステータ磁極群が隣接するように配置され、
各相の前記ステータ磁極群の間には N個のループ状卷線が配置されていることを 特徴とするモータ。
[26] 請求項 25において、
ロータ軸方向両端の二つのステータ磁極群が片側に隣接して配置されて一つのス テータ磁極群となって 、ることを特徴とするモータ。
[27] 請求項 3、 25、 26のいずれ力において、
前記ステータ磁極群の内、電気角が相互にほぼ 180° 異なる 2つの相のステータ 磁極群が隣接するように配置され、
相互にほぼ 180° 異なる 2つの相のステータ磁極群のバックヨーク部は軟磁性体で 磁気的に結合され、
相互にほぼ 180° 異なる 2つの相のステータ磁極群に対向するロータ磁極群のバ ックヨーク部も相互に軟磁性体で磁気的に結合され、
前記の 180° 異なる 2つの相の対の構成をなすステータ磁極群と隣接する他の対 のステータ磁極群との間、あるいは、これらのステータ磁極群に対向する 2対のロータ 磁極群の間の少なくとも片方が空間あるいは非磁性体により磁気的に分離されてい ることを特徴とするモータ。
[28] 請求項 27において、
前記の 180° 異なる 2つの相の対の構成をなすステータ磁極群と隣接する他の対 のステータ磁極群とに対向する 2対のロータ磁極群の間が空間あるいは非磁性体に より磁気的に分離されていて、
前記の相互に位相が 180° 異なる 2対で 4個のステータ磁極群の内、中央側の 2個 のステータ磁極群の歯の先端からバックヨーク部までの磁路の一部が密着されるかあ るいは共通化されて 、ることを特徴とするモータ。
[29] 円周方向に N極と S極とが交互に配置されたロータ磁極群を有するロータと、 相毎に複数個のステータ磁極が円周上あるいは近傍の円周上であって電気角で ほぼ同一角度の回転位相の位置に配置された N個のステータ磁極群とを備え、 前記の N個のステータ磁極群の配置順が電気角的位相の順で一つおきの順となつ ていて、
各相の前記ステータ磁極群の間は各ループ状卷線が配置されていることを特徴と するモータ。
[30] 6個のステータ磁極群を持つモータであって、
電気角的に第 1、 3、 5相のステータ磁極群の第 1の構成部と、電気角的に第 2、 4、 6相のステータ磁極群の第 2の構成部とがロータ軸方向に配置され、
前記第 1、 3、 5相のステータ磁極群の間にループ状卷線が配置され、 前記第 2、 6、 4相のステータ磁極群の間にループ状卷線が配置され、 各ステータ磁極群が対向する各ロータ磁極が配置され、
前記の第 1の構成部と第 2の構成部との間、あるいは、これらのステータ磁極群に対 向する 2対のロータ磁極群の間の少なくとも片方が空間あるいは非磁性体により磁気 的に分離されて!、ることを特徴とするモータ。
[31] 円周方向に N極と S極とが交互に配置されたロータ磁極群を有するロータと、
相毎に複数個のステータ磁極が円周上あるいは近傍の円周上であって電気角で ほぼ同一角度の回転位相の位置に配置された N個のステータ磁極群とを備え、 前記の N個のステータ磁極群の配置順が電気角的位相の順で二つおきの順となつ ていて、
各相の前記ステータ磁極群の間には各ループ状卷線が配置されていることを特徴 とするモータ。
[32] 請求項 1〜31のいずれかにおいて、
各相のステータ磁極と各卷線とをロータ軸方向に入れ替えあるいは各相のロータ軸 方向の並び順を回転角に応じて順次、ロータ軸方向へ移動することを特徴とするモ ータ。
[33] 請求項 1〜32のいずれかにおいて、 前記のループ状卷線のより具体的な形状が各相の各ステータ磁極形状に合わせ て凹凸形状をしたループ状卷線であることを特徴とするモータ。
[34] 請求項 1〜32のいずれかにおいて、
卷線が平板状の導線で構成されていることを特徴とするモータ。
[35] 請求項 1〜34のいずれかにおいて、
N相のモータコアのロータ軸方向長さを MTとすると、各ステータ磁極の先端からス テータのバックヨークまでの磁路のロータ軸方向長さを MTZNより大きくすることを特 徴とするモータ。
[36] 請求項 1〜35のいずれかにおいて、
前記ロータは、表面あるいは内部の一部に永久磁石が配置され、少なくとも表面の 一部は軟磁性体で構成されていることを特徴とするモータ。
[37] 請求項 1〜35のいずれかにおいて、
前記ロータは、一つのロータ磁極から他のロータ磁極へ向かう方向へ細長い空隙 あるいは非磁性体あるいは永久磁石を複数組配置したことを特徴とするモータ。
[38] 請求項 1〜35のいずれかにおいて、
ロータ軸にほぼ平行に配置し、ロータの磁極の方向へ折り曲げられた電磁鋼板を 積層してロータ磁極を構成したロータを備えることを特徴とするモータ。
[39] 請求項 37または 38において、
前記ロータ軸にほぼ平行に配置した電磁鋼板の両側あるいは片側に永久磁石を 備えることを特徴とするモータ。
[40] 請求項 1〜35のいずれかにおいて、
前記ロータは、円周方向に磁気的に軟磁性体の突極で磁極が構成されていること を特徴とするモータ。
[41] 請求項 1〜35のいずれかにおいて、
前記ロータは、誘導電流を通電可能な卷線を備えることを特徴とするモータ。
[42] 請求項 15〜35のいずれかにおいて、
前記ステータ磁極の前記ロータに対向する面の面積力 前記ロータの周方向に沿 つて、正弦波状の面積分布あるいは正弦波に近似される面積分布となっており、 3相 の前記ステータ磁極が備わって ヽる場合に、極対数 Pnと前記ステータ磁極の数 Nss 力 Nss = 3 X Pnの関係を満たすことを特徴とするモータ。
[43] 請求項 1〜42のいずれかにおいて、
前記ステータ磁極が内径側に配置され、前記ロータが外径側に配置されていること を特徴とするモータ。
[44] 請求項 1〜42のいずれかにおいて、
前記ステータ磁極と前記ロータとが相対的に軸方向に沿って配置されたことを特徴 とするモータ。
[45] 請求項 1〜44の 、ずれかに記載されたモータを含む 2個以上のモータを複合ィ匕し て組み合わせることによって構成されることを特徴とするモータ。
[46] 請求項 1〜45のいずれかにおいて、
前記ロータは、前記ステータ磁極に対向する面の少なくとも一部は軟磁性体で構 成され、表面あるいは内部にロータ軸方向あるいはラジアル方向に磁束を導く軟磁 性体の導磁磁路を備えることを特徴とするモータ。
[47] 請求項 1〜46のいずれかにおいて、
前記ロータは、前記ステータ磁極に対向する面の少なくとも一部は軟磁性体で構 成され、内部に磁束の回転方向自在性を制限する空隙部あるいは非磁性体部を備 えることを特徴とするモータ。
[48] 請求項 1〜44のいずれかにおいて、
規則的に配列された前記ステータ磁極の一部、あるいは、ロータ磁極の一部が除 去されて!ヽることを特徴とするモータ。
[49] 請求項 1〜44のいずれかにおいて、
相数が Sn、極対数が Pnで極数が 2 X Pnに設定されており、
前記ステータ磁極の数が Sn X Pnとなる構成力も一部の前記ステータ磁極を削除し たことを特徴とするモータ。
[50] 請求項 1〜44のいずれかにおいて、
低減した ヽトルクリップルの次数を mとしたときに、前記ステータに含まれる前記 N個 のステータ磁極群のそれぞれについて複数の前記ステータ磁極を n組にグループ分 けし、各グループに属する前記ステータ磁極の周方向位置を電気角で 360Z (mX n)度の整数倍だけ相対的に変位させることを特徴とする交流モータ。
[51] 請求項 1〜44のいずれかにおいて、
低減した ヽトルクリップルの次数を mとしたときに、ロータ磁極を n組にグループ分け し、各グループに属する前記ロータ磁極の周方向位置を電気角で 360Z (m X n)度 の整数倍だけ相対的に変位させることを特徴とする交流モータ。
[52] 請求項 1〜44のいずれかにおいて、
近接して対向するステータ突極とロータ突極との形状が凹凸形状となっていて、対 向面積を大きくした形状となっていることを特徴とするモータ。
[53] 請求項 1〜44のいずれかにおいて、
ステータとロータとが対向して配置されて 、て、ロータはロータ軸方向に凹んだ部分 と凸部分とを備え、ステータの卷線の全てあるいは一部がロータの凹んだ部分に配 置された構造であることを特徴とするモータ。
[54] 請求項 1〜44のいずれかにおいて、
モータの卷線の一部あるいは全てが金属パイプで構成され、
導体である前記金属パイプに液体あるいは気体を通過させる構造の冷却機構を備 えることを特徴とするモータ。
[55] 請求項 16、 17、 19、 24、 29、 30項のいずれかに記載の N相のモータと、電流のォ ン、オフ制御が可能な電力素子 TRが電源の端子 VP、 VNへ直接あるいは間接に 2 個直列に接続された電圧可変ユニット WUを N個備え、
前記の N相のモータの卷線を、スター結線をした N個の端子、あるいは、デルタ結 線をした各接続部の N個の端子を、前記の N個の電圧可変ユニット WUへ接続して 、電圧及び電流を制御することを特徴とするモータとその制御装置。
[56] 請求項 18、 20、 22項のいずれかに記載の N相のモータと、
電流のオン、オフ制御が可能な電力素子 TRが電源の端子 VP、 VNへ直接あるいは 間接に 2個直列に接続された電圧可変ユニット VVUを N個備え、
前記の N相のモータの卷線を、スター結線をした N個の端子、あるいは、デルタ結 線をした各接続部の N個の端子を、前記の N個の電圧可変ユニット WUへ接続して 、電圧及び電流を制御することを特徴とするモータとその制御装置。
[57] 請求項 18または 21に記載の N相のモータと、
N個の、電流のオン、オフ制御が可能な電力素子 TRが電源の端子 VP、 VNへ直 接あるいは間接に 2個直列に接続された電圧可変ユニット VVUとを備え、
前記の N相のモータの卷線を、スター結線をした(N— 1)個の端子とスター結線の 中心の点 NNとの合計 N個の端子、あるいは、(N—1)個の卷線をデルタ結線をした 各接続部の(N— 2)個の端子と N番目の卷線が配置されるべき部分の 2個の端子の 合計 N個の端子を、前記の N個の電圧可変ユニット VVUへ接続して、電圧及び電流 を制御することを特徴とするモータとその制御装置。
[58] 円周方向に N極と S極とが交互に配置されたロータ磁極群を有するロータと、相毎 に複数個のステータ磁極が円周上あるいは近傍の円周上であって電気角でほぼ同 一角度の回転位相の位置に配置された 3個のステータ磁極群と、各相の前記ステー タ磁極群の間であって軸方向に沿って配置された 2個のループ状卷線とを備え、前 記の 2個の卷線の片端を相互に接続し、 3個のモータ卷線の接続端子としたモータと
3個の、電流のオン、オフ制御が可能な電力素子 TRが電源の端子 VP、 VNへ直 接あるいは間接に 2個直列に接続された電圧可変ユニット VVUとを備え、
前記の 3個の接続端子へ 3相の電圧、電流を与えて前記モータを制御することを特 徴とするモータとその制御装置。
PCT/JP2006/308904 2005-04-28 2006-04-27 モータ及びその制御装置 WO2006118219A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US11/919,440 US7816822B2 (en) 2005-04-28 2006-04-27 Motor and control unit thereof
CN2006800237580A CN101213729B (zh) 2005-04-28 2006-04-27 交流电动机
DE112006001089.1T DE112006001089B4 (de) 2005-04-28 2006-04-27 Mehrphasiger bürstenloser Elektromotor
JP2007514822A JPWO2006118219A1 (ja) 2005-04-28 2006-04-27 モータ及びその制御装置

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2005-131808 2005-04-28
JP2005131808 2005-04-28
JP2005-144293 2005-05-17
JP2005144293 2005-05-17
JP2005151257 2005-05-24
JP2005-151257 2005-05-24
JP2005-208358 2005-07-19
JP2005208358 2005-07-19

Publications (1)

Publication Number Publication Date
WO2006118219A1 true WO2006118219A1 (ja) 2006-11-09

Family

ID=37308017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/308904 WO2006118219A1 (ja) 2005-04-28 2006-04-27 モータ及びその制御装置

Country Status (6)

Country Link
US (1) US7816822B2 (ja)
JP (1) JPWO2006118219A1 (ja)
KR (1) KR101082929B1 (ja)
CN (1) CN101213729B (ja)
DE (1) DE112006001089B4 (ja)
WO (1) WO2006118219A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008245368A (ja) * 2007-03-26 2008-10-09 Toshiba Corp 永久磁石式回転電機及び永久磁石電動機ドライブシステム
US20120038301A1 (en) * 2009-04-16 2012-02-16 Hitachi Ltd Polyphase AC Motor, Driving Device and Driving Method Therefor
CN102931807A (zh) * 2012-11-27 2013-02-13 镇江市江南矿山机电设备有限公司 轴间永磁耦合机构
CN102931808A (zh) * 2012-11-27 2013-02-13 镇江市江南矿山机电设备有限公司 轴间永磁耦合机构
JP2013038944A (ja) * 2011-08-09 2013-02-21 Toshiba Corp モータ
JP2019187132A (ja) * 2018-04-12 2019-10-24 株式会社ミツバ モータ及びブラシレスワイパーモータ
RU2771993C2 (ru) * 2020-10-15 2022-05-16 Олег Григорьевич Дашко Электрическая машина с ротором, созданным по схеме Хальбаха
US11340515B2 (en) 2018-06-08 2022-05-24 Panasonic Intellectual Property Management Co., Ltd. Linear motor, and lens barrel and imaging device equipped with same
US11424652B2 (en) * 2019-10-18 2022-08-23 Neapco Intellectual Property Holdings, Llc Lubricant supported electric motor including magnetic rotor centering

Families Citing this family (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8847522B2 (en) * 2008-11-14 2014-09-30 Denso Corporation Reluctance motor with improved stator structure
US9467009B2 (en) * 2009-12-22 2016-10-11 Kress Motors, LLC Dipolar transverse flux electric machine
US8541920B2 (en) * 2010-03-29 2013-09-24 Regal Beloit America, Inc. High density windings for a concentric wound electrical machine stator
CN102859327B (zh) * 2010-04-16 2015-03-11 株式会社捷太格特 旋转角检测装置
JP5182320B2 (ja) * 2010-05-11 2013-04-17 株式会社デンソー モータ
DE102010051099B4 (de) * 2010-05-12 2014-07-03 Blickle Räder + Rollen GmbH & Co. KG Transportgerät und System zur Ortung eines oder mehrerer Transportgeräte
ES2397938T3 (es) * 2010-07-19 2013-03-12 Maxon Motor Ag Motor eléctrico pequeño así como procedimiento para la fabricación de un motor eléctrico pequeño
JP5797960B2 (ja) * 2010-08-24 2015-10-21 アスモ株式会社 ブラシレスモータの駆動方法及びブラシレスモータの駆動回路、並びに、ブラシレスモータの回転位置の検出方法及びブラシレスモータの回転位置の検出回路
JP5287824B2 (ja) 2010-10-20 2013-09-11 株式会社デンソー モータ
FR2969857B1 (fr) * 2010-12-22 2013-12-20 Francecol Technology Perfectionnements aux moteurs homopolaires.
CN102299599B (zh) * 2011-08-26 2013-01-02 北京航空航天大学 一种定子永磁体高速电机
EP2822931B1 (en) 2012-03-09 2017-05-03 Inception 2, Inc. Triazolone compounds and uses thereof
CN103378707B (zh) * 2012-04-23 2017-12-19 德昌电机(深圳)有限公司 电机、线性驱动器、及使用该线性驱动器的车灯调节器
DE102012208550A1 (de) * 2012-05-22 2013-11-28 Wobben Properties Gmbh Generator einer getriebelosen Windenergieanlage
GB2503040B (en) * 2012-06-15 2020-05-06 Danfoss Drives As Variable torque angle for electric motor
GB2503039B (en) * 2012-06-15 2020-05-27 Danfoss Drives As Method for controlling a synchronous reluctance electric motor
EP2888807B1 (en) * 2012-08-27 2017-10-04 Albus Technologies Ltd. Planar stator with efficient use of space
DE102012108409A1 (de) * 2012-09-10 2014-03-13 Linde Material Handling Gmbh Flurförderzeug mit geschaltetem Reluktanzmotor
DE102012108410A1 (de) * 2012-09-10 2014-04-03 Linde Material Handling Gmbh Flurförderzeug mit synchronem Reluktanzmotor
SG11201504622PA (en) 2012-12-20 2015-07-30 Inception 2 Inc Triazolone compounds and uses thereof
US10465951B2 (en) * 2013-01-10 2019-11-05 Haier Us Appliance Solutions, Inc. Magneto caloric heat pump with variable magnetization
CN104124849B (zh) * 2013-04-25 2018-03-27 常州雷利电机科技有限公司 排水泵用无刷电动机及排水泵
KR102045255B1 (ko) * 2013-07-10 2019-11-15 두산중공업 주식회사 횡자속형 유도 회전기 및 이를 포함하는 발전 시스템
CN105579440A (zh) 2013-09-06 2016-05-11 因森普深2公司 三唑酮化合物及其应用
US11139707B2 (en) 2015-08-11 2021-10-05 Genesis Robotics And Motion Technologies Canada, Ulc Axial gap electric machine with permanent magnets arranged between posts
US9742225B2 (en) 2015-08-11 2017-08-22 Genesis Robotics Llp Electric machine
CN105610258B (zh) * 2015-10-26 2018-01-30 湖南省金函数科技有限公司 一种永磁步进伺服电机
WO2017109968A1 (ja) 2015-12-25 2017-06-29 三菱電機株式会社 永久磁石モータ
US10541070B2 (en) 2016-04-25 2020-01-21 Haier Us Appliance Solutions, Inc. Method for forming a bed of stabilized magneto-caloric material
US10299655B2 (en) 2016-05-16 2019-05-28 General Electric Company Caloric heat pump dishwasher appliance
US10348168B2 (en) * 2016-06-01 2019-07-09 Abb Schweiz Ag Inverter cell arrangement for brushless electrical machine
US11043885B2 (en) 2016-07-15 2021-06-22 Genesis Robotics And Motion Technologies Canada, Ulc Rotary actuator
US10274231B2 (en) 2016-07-19 2019-04-30 Haier Us Appliance Solutions, Inc. Caloric heat pump system
US10281177B2 (en) 2016-07-19 2019-05-07 Haier Us Appliance Solutions, Inc. Caloric heat pump system
US10222101B2 (en) 2016-07-19 2019-03-05 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10295227B2 (en) 2016-07-19 2019-05-21 Haier Us Appliance Solutions, Inc. Caloric heat pump system
CN106100485B (zh) * 2016-08-18 2019-01-18 东南大学 一种九相磁通切换永磁电机的直接转矩控制系统
US10443585B2 (en) 2016-08-26 2019-10-15 Haier Us Appliance Solutions, Inc. Pump for a heat pump system
CN109863687B (zh) * 2016-10-31 2021-12-28 三菱电机株式会社 电动机驱动装置
US10288326B2 (en) 2016-12-06 2019-05-14 Haier Us Appliance Solutions, Inc. Conduction heat pump
US10386096B2 (en) 2016-12-06 2019-08-20 Haier Us Appliance Solutions, Inc. Magnet assembly for a magneto-caloric heat pump
US11009282B2 (en) 2017-03-28 2021-05-18 Haier Us Appliance Solutions, Inc. Refrigerator appliance with a caloric heat pump
US10527325B2 (en) 2017-03-28 2020-01-07 Haier Us Appliance Solutions, Inc. Refrigerator appliance
US10451320B2 (en) 2017-05-25 2019-10-22 Haier Us Appliance Solutions, Inc. Refrigerator appliance with water condensing features
US10422555B2 (en) 2017-07-19 2019-09-24 Haier Us Appliance Solutions, Inc. Refrigerator appliance with a caloric heat pump
US10451322B2 (en) 2017-07-19 2019-10-22 Haier Us Appliance Solutions, Inc. Refrigerator appliance with a caloric heat pump
US10520229B2 (en) 2017-11-14 2019-12-31 Haier Us Appliance Solutions, Inc. Caloric heat pump for an appliance
US11022348B2 (en) 2017-12-12 2021-06-01 Haier Us Appliance Solutions, Inc. Caloric heat pump for an appliance
US10830506B2 (en) 2018-04-18 2020-11-10 Haier Us Appliance Solutions, Inc. Variable speed magneto-caloric thermal diode assembly
US10557649B2 (en) 2018-04-18 2020-02-11 Haier Us Appliance Solutions, Inc. Variable temperature magneto-caloric thermal diode assembly
US10876770B2 (en) 2018-04-18 2020-12-29 Haier Us Appliance Solutions, Inc. Method for operating an elasto-caloric heat pump with variable pre-strain
US10782051B2 (en) * 2018-04-18 2020-09-22 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US10641539B2 (en) 2018-04-18 2020-05-05 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US10648705B2 (en) 2018-04-18 2020-05-12 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US10551095B2 (en) 2018-04-18 2020-02-04 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US10648706B2 (en) 2018-04-18 2020-05-12 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with an axially pinned magneto-caloric cylinder
US10648704B2 (en) 2018-04-18 2020-05-12 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
FR3080718B1 (fr) * 2018-04-26 2021-04-23 Valeo Equip Electr Moteur Machine electrique tournante ayant une configuration reduisant les harmoniques du troisieme ordre
US10989449B2 (en) 2018-05-10 2021-04-27 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with radial supports
US11015842B2 (en) 2018-05-10 2021-05-25 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with radial polarity alignment
US11054176B2 (en) 2018-05-10 2021-07-06 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with a modular magnet system
US11092364B2 (en) 2018-07-17 2021-08-17 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with a heat transfer fluid circuit
US10684044B2 (en) 2018-07-17 2020-06-16 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with a rotating heat exchanger
CN108768015B (zh) * 2018-07-20 2020-04-17 珠海格力电器股份有限公司 转子组件及电机
TWI684317B (zh) * 2018-08-13 2020-02-01 國立中山大學 偏移式電機轉子及其鐵芯
US11168926B2 (en) 2019-01-08 2021-11-09 Haier Us Appliance Solutions, Inc. Leveraged mechano-caloric heat pump
US11149994B2 (en) 2019-01-08 2021-10-19 Haier Us Appliance Solutions, Inc. Uneven flow valve for a caloric regenerator
US11193697B2 (en) 2019-01-08 2021-12-07 Haier Us Appliance Solutions, Inc. Fan speed control method for caloric heat pump systems
US11274860B2 (en) 2019-01-08 2022-03-15 Haier Us Appliance Solutions, Inc. Mechano-caloric stage with inner and outer sleeves
US11112146B2 (en) 2019-02-12 2021-09-07 Haier Us Appliance Solutions, Inc. Heat pump and cascaded caloric regenerator assembly
JP6972055B2 (ja) * 2019-03-12 2021-11-24 株式会社東芝 回転電機、回転電機システム、車、発電装置、昇降装置、および、ロボット
US11557941B2 (en) 2019-03-14 2023-01-17 Robert C. Hendricks Electronically commutated axial conductor motor
US11015843B2 (en) 2019-05-29 2021-05-25 Haier Us Appliance Solutions, Inc. Caloric heat pump hydraulic system
JP6896029B2 (ja) * 2019-08-19 2021-06-30 三菱電機株式会社 回転電機
CN110556995A (zh) * 2019-10-16 2019-12-10 河北工业大学 一种新型高功率密度爪极永磁电机
KR20210091466A (ko) 2020-01-14 2021-07-22 조희수 모터의 고정자 코어
CN113258696B (zh) * 2021-02-24 2022-08-23 江苏大学 一种用于降低分数槽集中绕组永磁电机电磁振动的方法
WO2022190116A1 (en) * 2021-03-09 2022-09-15 Tvs Motor Company Limited A rotary electrical machine

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63198559A (ja) * 1987-02-10 1988-08-17 Canon Inc モ−タのロ−タマグネツト
JPH08322230A (ja) * 1995-05-26 1996-12-03 Nippondenso Co Ltd 縦列コイル式ステッピングモータ及びその製造方法
JPH09247916A (ja) * 1996-03-08 1997-09-19 Shohei Imamura 回転機
JP2000078820A (ja) * 1998-08-31 2000-03-14 Tamagawa Seiki Co Ltd モータ構造
JP2001218395A (ja) * 2000-02-07 2001-08-10 Mitsubishi Electric Corp 車両用交流発電機
JP2002125394A (ja) * 2000-08-07 2002-04-26 Nissan Motor Co Ltd 回転電機の制御装置
JP2002142427A (ja) * 2000-10-31 2002-05-17 Tokyo Parts Ind Co Ltd 駆動回路を内蔵した小型ブラシレス振動モータ
JP2003105507A (ja) * 2001-09-27 2003-04-09 Hitachi Metals Ltd 電気絶縁膜を有する複合磁性部材及びその製造方法、並びに電気絶縁膜を有する複合磁性部材を用いて成るモータ
JP2003268442A (ja) * 2002-03-11 2003-09-25 Fuji Electronics Industry Co Ltd 誘導加熱コイル及びワークの誘導加熱方法
JP2003274590A (ja) * 2002-03-15 2003-09-26 Nippon Steel Corp 永久磁石同期モータのロータ
JP2003278653A (ja) * 2002-03-25 2003-10-02 Mitsubishi Electric Corp 冷媒圧縮装置
JP2003319583A (ja) * 2002-04-17 2003-11-07 Yaskawa Electric Corp 同期モータ
JP2005020981A (ja) * 2003-06-04 2005-01-20 Honda Motor Co Ltd クローポール型モータのステータ
JP2005020991A (ja) * 2003-06-04 2005-01-20 Hitachi Metals Ltd 回転子およびその製造方法
JP2005057942A (ja) * 2003-08-07 2005-03-03 Mitsubishi Electric Corp 回転電機
JP2005080362A (ja) * 2003-08-29 2005-03-24 Japan Servo Co Ltd 永久磁石形ステッピングモータ
JP2005094876A (ja) * 2003-09-16 2005-04-07 Honda Motor Co Ltd クローポール型モータのステータ

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1261946B (de) 1965-02-23 1968-02-29 Elmasch Bau Sachsenwerk Veb Direkt fluessigkeitsgekuehlte Laeuferwicklung grosser Asynchronmaschinen
US4692646A (en) 1984-08-01 1987-09-08 Matsushita Electric Industrial Co., Ltd. Rotating electric motor with reduced cogging torque
US5252880A (en) * 1992-11-24 1993-10-12 General Electric Company Dynamoelectric machine rotor endwindings with cooling passages
JP3211457B2 (ja) 1993-03-10 2001-09-25 松下電器産業株式会社 ブラシレスモータ
DE19811075A1 (de) 1998-03-13 1999-09-16 Blum Gmbh Einseitige, mehrphasige Transversalflußmaschine
US6472845B2 (en) 2000-08-07 2002-10-29 Nissan Motor Co., Ltd. Motor/generator device
EP1217713B1 (en) 2000-12-20 2010-02-10 Yamaha Motor Electronics Kabushiki Kaisha Permanent magnet type rotor and permanent magnet type rotary electrical machine
JP4113339B2 (ja) * 2001-06-18 2008-07-09 日本サーボ株式会社 3相環状コイル式永久磁石型回転電機
US6664704B2 (en) * 2001-11-23 2003-12-16 David Gregory Calley Electrical machine
DE10240704B4 (de) 2002-09-04 2006-04-27 Tirron-Elektronik Gmbh Hochpolige, mehrphasige Wechselstrommaschine mit transversaler Flussführung
JP4007339B2 (ja) * 2003-11-07 2007-11-14 株式会社デンソー 交流モータとその制御装置
EP1699126A3 (en) * 2005-03-01 2006-10-04 HONDA MOTOR CO., Ltd. Stator, motor and method of manufacturing such stator
JP4654756B2 (ja) * 2005-04-28 2011-03-23 株式会社デンソー 交流モータ
JP4654819B2 (ja) * 2005-08-01 2011-03-23 株式会社デンソー モータ

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63198559A (ja) * 1987-02-10 1988-08-17 Canon Inc モ−タのロ−タマグネツト
JPH08322230A (ja) * 1995-05-26 1996-12-03 Nippondenso Co Ltd 縦列コイル式ステッピングモータ及びその製造方法
JPH09247916A (ja) * 1996-03-08 1997-09-19 Shohei Imamura 回転機
JP2000078820A (ja) * 1998-08-31 2000-03-14 Tamagawa Seiki Co Ltd モータ構造
JP2001218395A (ja) * 2000-02-07 2001-08-10 Mitsubishi Electric Corp 車両用交流発電機
JP2002125394A (ja) * 2000-08-07 2002-04-26 Nissan Motor Co Ltd 回転電機の制御装置
JP2002142427A (ja) * 2000-10-31 2002-05-17 Tokyo Parts Ind Co Ltd 駆動回路を内蔵した小型ブラシレス振動モータ
JP2003105507A (ja) * 2001-09-27 2003-04-09 Hitachi Metals Ltd 電気絶縁膜を有する複合磁性部材及びその製造方法、並びに電気絶縁膜を有する複合磁性部材を用いて成るモータ
JP2003268442A (ja) * 2002-03-11 2003-09-25 Fuji Electronics Industry Co Ltd 誘導加熱コイル及びワークの誘導加熱方法
JP2003274590A (ja) * 2002-03-15 2003-09-26 Nippon Steel Corp 永久磁石同期モータのロータ
JP2003278653A (ja) * 2002-03-25 2003-10-02 Mitsubishi Electric Corp 冷媒圧縮装置
JP2003319583A (ja) * 2002-04-17 2003-11-07 Yaskawa Electric Corp 同期モータ
JP2005020981A (ja) * 2003-06-04 2005-01-20 Honda Motor Co Ltd クローポール型モータのステータ
JP2005020991A (ja) * 2003-06-04 2005-01-20 Hitachi Metals Ltd 回転子およびその製造方法
JP2005057942A (ja) * 2003-08-07 2005-03-03 Mitsubishi Electric Corp 回転電機
JP2005080362A (ja) * 2003-08-29 2005-03-24 Japan Servo Co Ltd 永久磁石形ステッピングモータ
JP2005094876A (ja) * 2003-09-16 2005-04-07 Honda Motor Co Ltd クローポール型モータのステータ

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8334667B2 (en) 2007-03-26 2012-12-18 Kabushiki Kaisha Toshiba Permanent magnet rotating electrical machine and permanent magnet motor drive system
JP2008245368A (ja) * 2007-03-26 2008-10-09 Toshiba Corp 永久磁石式回転電機及び永久磁石電動機ドライブシステム
US20120038301A1 (en) * 2009-04-16 2012-02-16 Hitachi Ltd Polyphase AC Motor, Driving Device and Driving Method Therefor
US8664902B2 (en) * 2009-04-16 2014-03-04 Hitachi, Ltd. Polyphase AC motor, driving device and driving method therefor
JP2013038944A (ja) * 2011-08-09 2013-02-21 Toshiba Corp モータ
CN102931807A (zh) * 2012-11-27 2013-02-13 镇江市江南矿山机电设备有限公司 轴间永磁耦合机构
CN102931808A (zh) * 2012-11-27 2013-02-13 镇江市江南矿山机电设备有限公司 轴间永磁耦合机构
JP2019187132A (ja) * 2018-04-12 2019-10-24 株式会社ミツバ モータ及びブラシレスワイパーモータ
CN111869052A (zh) * 2018-04-12 2020-10-30 株式会社美姿把 马达以及无刷雨刮器马达
JP7080702B2 (ja) 2018-04-12 2022-06-06 株式会社ミツバ モータ及びブラシレスワイパーモータ
CN111869052B (zh) * 2018-04-12 2023-01-24 株式会社美姿把 马达以及无刷雨刮器马达
US11901779B2 (en) 2018-04-12 2024-02-13 Mitsuba Corporation Motor and brushless wiper motor
US11340515B2 (en) 2018-06-08 2022-05-24 Panasonic Intellectual Property Management Co., Ltd. Linear motor, and lens barrel and imaging device equipped with same
US11424652B2 (en) * 2019-10-18 2022-08-23 Neapco Intellectual Property Holdings, Llc Lubricant supported electric motor including magnetic rotor centering
RU2771993C2 (ru) * 2020-10-15 2022-05-16 Олег Григорьевич Дашко Электрическая машина с ротором, созданным по схеме Хальбаха

Also Published As

Publication number Publication date
CN101213729A (zh) 2008-07-02
KR101082929B1 (ko) 2011-11-11
DE112006001089B4 (de) 2015-05-28
CN101213729B (zh) 2013-06-12
KR20080014801A (ko) 2008-02-14
US20090236930A1 (en) 2009-09-24
JPWO2006118219A1 (ja) 2008-12-18
US7816822B2 (en) 2010-10-19
DE112006001089T5 (de) 2008-03-06

Similar Documents

Publication Publication Date Title
WO2006118219A1 (ja) モータ及びその制御装置
JP4821770B2 (ja) 交流モータとその制御装置
JP5948061B2 (ja) 回転電機、およびその回転電機を備えた車両
US7911107B2 (en) AC electric motor
JP4007339B2 (ja) 交流モータとその制御装置
JP4828666B2 (ja) 同期電動機及び同期電動機駆動システム
JP5827026B2 (ja) 回転電機及び回転電機駆動システム
JP2008005665A (ja) 円筒リニアモータ及びそれを用いた車両
JP2012222941A (ja) 回転電機
US11863018B2 (en) Reluctance motor
JP2013116034A (ja) スイッチドリラクタンスモータ
JP4654819B2 (ja) モータ
Chen et al. Reduction of torque ripple caused by slot harmonics in FSCW spoke-type FPM motors by assisted poles
JP2008211918A (ja) 回転電機
JP5184468B2 (ja) 電磁サスペンション及びそれを用いた車両
US20100052460A1 (en) Electrical rotating machine
Wang et al. Design and experimental verification of an 18-slot/10-pole fractional-slot surface-mounted permanent-magnet machine
JP7095550B2 (ja) 回転電機の制御装置及び回転電機の制御方法
JP2018050441A (ja) 多重交流電動機駆動システム
WO2002082622A1 (fr) Moteur synchrone du type a aimant permanent
US20230231425A1 (en) Motor and control device thereof
Wu et al. An analytical method of calculating back-emf in dual consequent hybrid excitation synchronous machine
CN114256999B (zh) 一种不等厚磁极轴向磁通永磁无刷直流电机的设计方法
JP2010148267A (ja) モータ
Rezal et al. Rotating analysis of 18-slot/16-pole permanent magnet synchronous motor for light electric vehicle using FEM

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680023758.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007514822

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1120060010891

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 11919440

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: KR

Ref document number: 1020077027676

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: RU

RET De translation (de og part 6b)

Ref document number: 112006001089

Country of ref document: DE

Date of ref document: 20080306

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 06745787

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607