WO2005022637A1 - フィン型電界効果トランジスタを有する半導体装置 - Google Patents

フィン型電界効果トランジスタを有する半導体装置 Download PDF

Info

Publication number
WO2005022637A1
WO2005022637A1 PCT/JP2004/012385 JP2004012385W WO2005022637A1 WO 2005022637 A1 WO2005022637 A1 WO 2005022637A1 JP 2004012385 W JP2004012385 W JP 2004012385W WO 2005022637 A1 WO2005022637 A1 WO 2005022637A1
Authority
WO
WIPO (PCT)
Prior art keywords
effect transistor
type field
plane
field effect
semiconductor region
Prior art date
Application number
PCT/JP2004/012385
Other languages
English (en)
French (fr)
Inventor
Kiyoshi Takeuchi
Koji Watanabe
Koichi Terashima
Atsushi Ogura
Toru Tatsumi
Koichi Takeda
Masahiro Nomura
Masayasu Tanaka
Shigeharu Yamagami
Hitoshi Wakabayashi
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to JP2005513479A priority Critical patent/JPWO2005022637A1/ja
Priority to US10/569,451 priority patent/US20070187682A1/en
Publication of WO2005022637A1 publication Critical patent/WO2005022637A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823807Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the channel structures, e.g. channel implants, halo or pocket implants, or channel materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823821Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823828Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823828Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
    • H01L21/82385Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes gate conductors with different shapes, lengths or dimensions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0924Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors including transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
    • H01L29/42392Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor fully surrounding the channel, e.g. gate-all-around
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66787Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
    • H01L29/66795Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • H01L29/7853Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET the body having a non-rectangular crossection
    • H01L29/7854Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET the body having a non-rectangular crossection with rounded corners

Definitions

  • the present invention relates to a semiconductor device having a fin-type field-effect transistor having high carrier mobility.
  • a fin-type MISFET that has a projection in a semiconductor region and forms a main channel on a plane substantially perpendicular to the substrate (projection side surface) has been used for the purpose of suppressing a short channel effect caused by miniaturization.
  • Japanese Patent Application Laid-Open No. 64-8670 discloses a fin-type MISFET in which a part of the protrusion is a part of a silicon wafer substrate and a fin-type MISFET in which a part of the protrusion is a part of a single crystal silicon layer of an SOI substrate.
  • a MISFET is disclosed. The former structure will be described with reference to FIG. 12 (a), and the latter structure will be described with reference to FIG. 12 (b).
  • a part of the silicon wafer substrate 101 becomes a protrusion 103, and the gate electrode 105 extends on both sides beyond the top of the protrusion 103.
  • a channel is formed in a portion below the insulating film 104 below the gate electrode.
  • the channel width corresponds to twice the height h of the protrusion 103
  • the gate length corresponds to the width L of the gate electrode 105.
  • the gate electrode 105 is provided on the insulating film 102 formed in the groove so as to straddle the protrusion 103.
  • an S ⁇ I substrate composed of a silicon wafer substrate 111, an insulating film 112 and a silicon single crystal layer is prepared, and the silicon single crystal layer is patterned to form projections 113.
  • a gate electrode 115 is provided on the exposed insulating layer 112 so as to straddle the protrusion 113.
  • a source region and a drain region are formed in portions on both sides of the gate electrode, and a channel is formed in a portion (the upper surface and side surfaces of the protrusion 113) below the insulating film 114 below the gate electrode.
  • the channel width corresponds to the sum of twice the height a of the protrusion 113 and its width b
  • the gate length corresponds to the width L of the gate electrode 115.
  • a fin-type MISFET is a MISFET having a gate on both sides of a semiconductor region where a channel is formed, and is generally excellent in suppressing a short channel effect. have.
  • Japanese Patent Application Laid-Open No. 2002-118255 discloses a fin-type MOSFET having a plurality of semiconductor protrusions (semiconductor layers 213), for example, as shown in FIGS. FIG. 13 (b) is a sectional view taken along line BB of FIG. 13 (a), and FIG. 13 (c) is a sectional view taken along line CC of FIG. 13 (a).
  • This fin-type MOSFET has a plurality of semiconductor layers 213 each of which is a part of a metal layer 211 of a silicon substrate 210. These semiconductor layers 213 are arranged in parallel with each other, and straddle the central portion of these protruding semiconductor layers.
  • a gate electrode 216 is provided.
  • the gate electrode 216 is formed along the side surface of each semiconductor layer 213 from the upper surface of the insulating film 214.
  • An insulating film 218 is interposed between each protruding semiconductor layer and the gate electrode, and a channel 215 is formed in the protruding semiconductor layer below the gate electrode.
  • a source / drain region is formed in each protruding semiconductor layer, and a high-concentration impurity layer (a punch-through stopper layer) is provided in a region 212 below the source / drain region 217.
  • upper wirings 229 and 230 are provided via an interlayer insulating film 226, and each upper wiring is connected to the source / drain region 217 and the gate electrode 216 by each contact plug 228.
  • Japanese Patent Application Laid-Open No. 2001-298194 discloses, for example, a fin-type MOSFET as shown in FIGS. 14 (a) and 14 (b).
  • This fin-type MOSFET is formed using an SOI substrate including a silicon substrate 301, an insulating layer 302, and a semiconductor layer (single-crystal silicon layer) 303, and a patterned semiconductor layer 303 is provided on the insulating layer 302. Have been.
  • a plurality of openings 310 are provided in the semiconductor layer 303 so as to cross the semiconductor layer 303 in a row. These openings 310 are formed so that the insulating layer 302 is exposed when the semiconductor layer 303 is patterned.
  • an insulating film is interposed between the semiconductor layers (conduction paths) 332 between the openings 310 along the arrangement direction of the openings 310, and a channel is formed in a conduction path below the gate electrode. It is formed.
  • the insulating film on the upper surface of the conduction path 332 is a gate insulating film as thin as the insulating film on the side surface, a channel is formed on both sides and the upper surface of the semiconductor layer 332 under the gate electrode.
  • both sides of the row of the opening 310 form source / drain regions 304.
  • FIG. 2 shows a view of a semiconductor device in which an n-type MISFET 2001 and a p-type MISFET 2002 having a (001) crystal orientation parallel to the substrate are arranged as viewed from ⁇ 00_1>.
  • these MISFETs are placed so that the protruding sides of the n-type MISFET and the p-type MISFET are orthogonal (Fig. 2 (a)) or parallel (Fig. 2 (b)). Let's do it.
  • the crystal orientation of the side surface of the n-type MISFET is (-110)
  • the crystal orientation of the side surface of the p-type MISFET is (110).
  • both the n-type MISFET and the p-type MISFET have a (110) crystal orientation on the side surface of the protrusion.
  • an object of one embodiment of the present invention is to optimize carrier transfer characteristics and increase the speed of CMIS.
  • Another object of the present invention is to optimize both of the CMIS in consideration of speeding-up and layout requirements.
  • the present invention has the following configurations. That is, according to the present invention, a protruding semiconductor region forming a channel on a side surface, a gate electrode provided at least on the side surface via an insulating film, and a semiconductor region formed in the semiconductor region so as to sandwich the gate electrode are formed.
  • a semiconductor device comprising an n-type field effect transistor and a p-type field effect transistor having a source region and a drain region,
  • the crystal orientation of the protruding semiconductor region constituting the n-type field effect transistor is such that a plane parallel to the substrate is substantially a ⁇ 100 ⁇ plane and a side surface thereof is substantially perpendicular to the ⁇ 100 ⁇ plane. 00 ⁇ plane,
  • the crystal orientation of the protruding semiconductor region constituting the p-type field-effect transistor is such that a plane parallel to the substrate is substantially a ⁇ 100 ⁇ plane.
  • the present invention provides a semiconductor device, comprising: a protruding semiconductor region forming a channel on a side surface; An n-type field effect transistor and a p-type field effect transistor each including a gate electrode provided with an insulating film interposed therebetween, and a source region and a drain region formed in the semiconductor region so as to sandwich the gate electrode.
  • a semiconductor device comprising:
  • the crystal orientation of the protruding semiconductor region constituting the P-type field-effect transistor is such that a plane parallel to the substrate is substantially a ⁇ 100 ⁇ plane and a side surface thereof is substantially perpendicular to the ⁇ 100 ⁇ plane. 10 ⁇ plane,
  • the crystal orientation of the protruding semiconductor region constituting the n-type field effect transistor is such that a plane parallel to the substrate is substantially a ⁇ 100 ⁇ plane and a side surface thereof is substantially perpendicular to the ⁇ 100 ⁇ plane. 10 ⁇ different from the plane,
  • a projecting semiconductor region forming a channel on a side surface, a gate electrode provided at least on the side surface via an insulating film, and a semiconductor region formed in the semiconductor region so as to sandwich the gate electrode are formed.
  • a semiconductor device comprising an n-type field effect transistor and a p-type field effect transistor having a source region and a drain region,
  • the crystal orientation of the protruding semiconductor region constituting the n-type field effect transistor is such that a plane parallel to the substrate is substantially a ⁇ 100 ⁇ plane and a side surface thereof is substantially perpendicular to the ⁇ 100 ⁇ plane. 00 ⁇ plane,
  • the crystal orientation of the protruding semiconductor region constituting the p-type field-effect transistor is such that a plane parallel to the substrate is substantially a ⁇ 100 ⁇ plane, and a side surface thereof is substantially perpendicular to the ⁇ 100 ⁇ plane. 10 ⁇ plane,
  • the present invention is directed to a semiconductor device having a protruding semiconductor region forming a channel on a side surface, a gate electrode provided on at least the side surface via an insulating film, and a semiconductor region formed in the semiconductor region so as to sandwich the gate electrode.
  • a semiconductor device comprising an n-type field effect transistor and a p-type field effect transistor having a source region and a drain region,
  • the side surface of the protruding semiconductor region constituting the P-type field-effect transistor is substantially (10) 0 ⁇ plane
  • a projection-shaped semiconductor region forming a channel on a side surface, a gate electrode provided at least on the side surface via an insulating film, and a semiconductor region formed in the semiconductor region so as to sandwich the gate electrode.
  • a semiconductor device comprising an n-type field effect transistor and a p-type field effect transistor having a source region and a drain region,
  • its side surface is substantially a ⁇ 110 ⁇ plane
  • a side surface of the protruding semiconductor region constituting the n-type field effect transistor is substantially orthogonal to the ⁇ 110 ⁇ plane, and a crystal orientation of the side surface is substantially different from the ⁇ 110 ⁇ plane;
  • a projecting semiconductor region forming a channel on a side surface, a gate electrode provided on at least the side surface via an insulating film, and a semiconductor region formed in the semiconductor region so as to sandwich the gate electrode.
  • a semiconductor device comprising an n-type field effect transistor and a p-type field effect transistor having a source region and a drain region,
  • the crystal orientation of the protruding semiconductor region constituting the n-type field effect transistor is such that a plane parallel to the substrate is substantially a ⁇ 110 ⁇ plane and a side surface thereof is substantially perpendicular to the ⁇ 110 ⁇ plane. 00 ⁇ plane,
  • the crystal orientation of the protruding semiconductor region forming the p-type field effect transistor is such that a plane parallel to the substrate is substantially a ⁇ 110 ⁇ plane and a side surface thereof is substantially perpendicular to the ⁇ 110 ⁇ plane. 10 ⁇ plane,
  • a projecting semiconductor region forming a channel on a side surface, a gate electrode provided on at least the side surface via an insulating film, and a semiconductor region formed in the semiconductor region so as to sandwich the gate electrode are formed.
  • a semiconductor device comprising an n-type field effect transistor and a p-type field effect transistor having a source region and a drain region,
  • the crystal orientation of the protruding semiconductor region constituting the n-type field effect transistor is such that a plane parallel to the substrate is substantially a ⁇ 100 ⁇ plane, and a side surface thereof is substantially orthogonal to the ⁇ 100 ⁇ plane. Unlike the ⁇ 110 ⁇ face,
  • the crystal orientation of the protruding semiconductor region forming the p-type field-effect transistor is such that a plane parallel to the substrate is substantially a ⁇ 100 ⁇ plane, and a side surface thereof is a protruding shape forming the n-type field-effect transistor. Substantially parallel or orthogonal to the side surface of the semiconductor region,
  • At least one protruding semiconductor having a ⁇ 100 ⁇ plane (including a plane having an off angle of 10 ° or less) having a crystal orientation of a plane parallel to the substrate and having a channel formed on a side surface.
  • a semiconductor device having an n-type field effect transistor and a p-type field effect transistor comprising:
  • the projection side surfaces of the n-type field effect transistor and the p-type field effect transistor in the reference state are independently formed by the substrate method. Fixed or rotated at an angle of 0 ° or more and 90 ° or less with the line as the rotation center (except when the rotation angles of the n-type field effect transistor and the p-type field effect transistor are both 0 ° and 90 °)
  • the present invention relates to a semiconductor device having a different crystal orientation.
  • the present invention provides at least one protruding semiconductor region forming a channel on a side surface, a gate electrode provided via an insulating film so as to straddle a central portion of the semiconductor region, and the semiconductor region A source / drain region electrically connected to at least one of the gate electrode and the source / drain region with the gate electrode interposed therebetween, comprising: an n-type field-effect transistor and a p-type field-effect transistor.
  • the crystal orientation of the plane parallel to the substrate of the n-type field-effect transistor and the p-type field-effect transistor (including the plane having an off angle of 10 ° or less) and the crystal orientation of the side surface of the projection are orthogonal to each other.
  • the normal state of the projection side surface of the n-type field-effect transistor is used as the center of rotation, and It has a crystal orientation in which the plane parallel to the substrate of the n-type and p-type field-effect transistors and the side surface of the protrusion of the p-type field-effect transistor are fixed or rotated by the same angle within the range of 45 ° to 45 °.
  • the present invention relates to a semiconductor device characterized by the above-mentioned.
  • the present invention provides at least one protruding semiconductor region forming a channel on a side surface, a gate electrode provided via an insulating film so as to straddle a central portion of the semiconductor region, and the semiconductor region.
  • a source / drain region electrically connected to at least one of the gate electrodes and provided with the gate electrode interposed therebetween;
  • the crystal orientation of the plane parallel to the substrate of the n-type field-effect transistor and the p-type field-effect transistor (including the plane with an off angle of 10 ° or less) is the ⁇ 100 ⁇ plane, and the crystal orientation of the side face of the projection is the When the ⁇ 100 ⁇ plane and the ⁇ 100 ⁇ plane are perpendicular to each other, respectively, as a reference state,
  • the plane parallel to the substrate of the n-type field effect transistor and the p-type field effect transistor in the reference state and the side surface of the projection of the n-type field effect transistor are defined around the normal of the side surface of the projection of the p-type field effect transistor as the rotation center.
  • the present invention relates to a semiconductor device having a crystal orientation rotated by the same angle within a range of 90 ° or less.
  • the present invention provides a semiconductor region having a protruding shape for forming a channel on a side surface, a gate electrode provided at least on the side surface with an insulating film interposed therebetween, and a semiconductor region formed so as to sandwich the gate electrode.
  • a semiconductor device comprising an n-type field effect transistor and a p-type field effect transistor having a source region and a drain region formed,
  • the side surface of the protruding semiconductor region constituting the P-type field effect transistor is substantially parallel to the ⁇ 100 ⁇ plane.
  • the n-type MISFET and the p-type MISFET have By independently fixing or rotating the normal line of the substrate around the center of rotation, it is possible to optimize the CMIS delay index and the layout of the MISFETs in consideration of the layout. Furthermore, the layout is made easier by rotating the protrusion side surfaces of the n-type MISFET and the p-type MISFET by the same angle while maintaining the arrangement in which the protrusion side surfaces are perpendicular or parallel to each other. At the same time, the CMIS delay index can be reduced.
  • the projection side surface of the n-type MISFET, the projection side surface of the p-type MISFET, and the plane parallel to the substrate of these MISFETs are ⁇ 100 ⁇ planes orthogonal to each other. From the reference state, the surface parallel to the substrate of the n-type MISFET and p-type MISFET and the protrusion side of the p-type MISFET are fixed or By rotating the MISFET, the layout of the MISFET can be optimized and high carrier transfer characteristics can be achieved.
  • the crystal orientation of the plane parallel to the substrate of the n-type MISFET and the p-type MISFET is the ⁇ 100 ⁇ plane
  • the side faces of the protrusions of the n-type MISFET and the p-type MISFET are From the reference state where the crystal orientation of the projection side is the ⁇ 110 ⁇ plane, and these three planes are orthogonal to each other, the n-type Ml SFET and p
  • the ⁇ 100 ⁇ plane parallel to the substrate of the n-type MISFET and the p-type MISFET, and the crystal orientation of the projection side surface of the n-type MISFET and the p-type MISFET are From the reference state where they are the same and are arranged so that they are ⁇ 100 ⁇ planes perpendicular to the substrate, the n-type MISFET and p-type MISFET Even if the plane parallel to the MISFET substrate is rotated, a low CMIS delay index and high carrier transfer characteristics can be maintained.
  • FIG. 1 (a) is a perspective view showing a semiconductor region according to the present invention and a conventional example.
  • FIG. 1B is a perspective view showing a MOS transistor according to the present invention and a conventional example.
  • FIG. 2 (a) is a diagram of a conventional orthogonally arranged semiconductor device.
  • Figure 2 (b) shows the conventional parallel It is a top view showing the arrangement
  • FIG. 3 (a) is a top view illustrating a semiconductor device having an orthogonal arrangement according to the present invention.
  • FIG. 3B is a top view illustrating a semiconductor device having a parallel arrangement according to the present invention.
  • FIG. 4 (a) is a top view illustrating a semiconductor device having an orthogonal arrangement according to the present invention.
  • FIG. 4B is a top view illustrating a semiconductor device having a parallel arrangement according to the present invention.
  • FIG. 5 (a) is a top view illustrating a semiconductor device having an orthogonal arrangement according to the present invention.
  • FIG. 5B is a top view illustrating a semiconductor device having a parallel arrangement according to the present invention.
  • FIG. 6 is a top view illustrating a semiconductor device according to a second embodiment of the present invention.
  • FIG. 7 is a top view illustrating a semiconductor device according to a third embodiment of the present invention.
  • FIG. 8 (a) is a diagram showing the relationship between the carrier mobility of an n-type MISFET and the crystal orientation of the side surface of the protrusion.
  • FIG. 8 (b) is a diagram showing the relationship between the carrier mobility of the p-type MISFET and the crystal orientation on the side surface of the protrusion.
  • FIG. 8 (c) is a diagram showing the relationship between the carrier mobility of the p-type MISFET and the crystal orientation of the side surface of the protrusion.
  • FIG. 8D is a diagram showing the relationship between the carrier mobility of the n-type MISFET and the crystal orientation on the side surface of the protrusion.
  • FIG. 9 is a diagram showing a relationship between a CMIS delay index and a crystal orientation of a protrusion side surface.
  • FIG. 10 is a diagram showing a manufacturing process of the semiconductor device according to the present invention.
  • FIG. 11 is a view illustrating a process of manufacturing a semiconductor device according to the present invention.
  • FIG. 12 (a) is a perspective view showing a conventional MISFET.
  • FIG. 12 (b) is a perspective view showing a MISFET of the related art.
  • FIG. 13 (a) is a cross-sectional view illustrating a MISFET having a multi-structure.
  • FIG. 13B is a cross-sectional view illustrating a multi-structure MISFET.
  • FIG. 13C is a cross-sectional view illustrating a MISFET having a multi-structure.
  • FIG. 14 (a) is a perspective view showing a MISFET having a multi-structure.
  • FIG. 14B is a perspective view showing a multi-structure MISFET.
  • FIG. 15 is a sectional view showing a tri-gate type MISFET of the present invention.
  • FIG. 16 is a cross-sectional view illustrating a double-gate MISFET of the present invention.
  • FIG. 17 is a cross-sectional view of a semiconductor device in which an MISFET of the present invention and a planar MISFET are mixed.
  • FIG. 18 is a diagram illustrating crystal orientation and rotation.
  • FIG. 19 is a top view showing a multi-structure MISFET of the present invention.
  • a channel is formed on the side surface of the semiconductor region. Therefore, it is possible to change the carrier mobility by rotating the crystal orientation of the protruding side surface.
  • a fin-type MISFET is formed using a gate insulating film such as SiO
  • the interface state can be made smaller by setting the crystal orientation of the side surface of the protruding semiconductor region to the (100) plane than to the (110) plane.
  • fin-type MISFETs whose side faces have a (100) crystal orientation can have the same characteristics as conventional planar-type FETs that use a (100) -plane formed substrate. There are advantages such as compatibility and design easiness among them.
  • CMIS typically used one by one as a pair has a high carrier mobility.
  • CMIS there is also a method of constructing a logic circuit using mainly n-type MISFETs (for example, domino circuits). In this case, it is more advantageous to use n-type MISFETs with high mobility. .
  • the present inventors have studied the relationship between the carrier mobility and the crystal orientation of the side surface of the protrusion in the semiconductor region in the fin-type MISFET, and have reached the present invention.
  • the present invention changes the crystal orientation of the semiconductor that forms the protruding semiconductor region (the plane parallel to the substrate and / or the side surface of the protuberance), thereby increasing the speed of the n-type MISFET or CMIS. It is intended to make it. It also aims to speed up CMIS and optimize layout requirements.
  • a channel is formed on at least a part of the side surface of the protrusion directly below the gate electrode, and the channel forming portion forms a channel region.
  • Channel current The flowing direction is parallel to the side surface of the protrusion and parallel to the substrate. Therefore, if the crystal orientation parallel to the substrate and the crystal orientation of the side surface of the protrusion are defined, the direction of the current is uniquely determined except for the direction (positive or negative).
  • the side surface of the protrusion is formed so as to be mainly perpendicular to the substrate, but may have a tapered shape in which the width w of the semiconductor region changes from the upper portion to the lower portion of the protrusion.
  • the angle between the normal line of the substrate and the side surface of the protrusion is preferably 10 ° or less.
  • the angle formed by the side surface of the protrusion and the normal line of the substrate is within this range, it can be regarded as having the same characteristics as when the side surface of the protrusion is perpendicular to the substrate.
  • the term “having a substantially predetermined crystal orientation” regarding the crystal orientation of the side surface of the protrusion refers to not only the case where the side surface of the protrusion is perpendicular to the substrate but also the above-described case. It also includes the case where it has a tapered shape within 10 °.
  • the "projecting semiconductor region” may have any shape as a whole as long as a surface substantially perpendicular to the substrate surface can be used as a channel region.
  • the crystal orientation is defined by the orientation (including the crystal orientation on the side surface of the projection), particularly in the channel region in the projection-like semiconductor region. Therefore, the source and drain regions may have any shape and may have any crystal orientation. Therefore, in the present invention, the “projection side surface” means only the side surface on which the channel is formed in the protruding semiconductor region.
  • the protruding semiconductor region may be protruded from the substrate so as to have a side surface on which a channel can be formed.
  • the protruded semiconductor region protrudes above an insulating film separating the semiconductor layer forming an element from the substrate. I have.
  • a main channel is formed on the side surface of the protruding semiconductor region.
  • a channel may or may not be formed on the upper surface (the surface parallel to the substrate) of the protruding semiconductor region.
  • FIG. 15 shows an example of a cross-sectional shape of a protruding semiconductor region in which a channel is formed on the upper surface
  • FIG. 16 shows an example of a cross-sectional shape of a protruding semiconductor region in which a channel is not formed on the upper surface.
  • FIGS. 15 (b)-(d) and 16 (b)-(d) show examples of a Fin-type MISFET having a gate electrode having a structure different from the above-described embodiment.
  • FIGS. 15 and 16 correspond to the cross-sectional view of FIG. 1 (b).
  • FIGS. 15 and 16 correspond to the cross-sectional view of FIG. 1 (b).
  • 15B and 16B show a structure in which the lower end of the gate electrode 1005 is located below the lower end of the semiconductor region 1003. This structure is similar to the Greek letter “ ⁇ ”, and is therefore called the “ ⁇ gate structure”.
  • the gate electrode extends to a position lower than the protruding semiconductor region, the control of the channel by the gate electrode is strengthened, the sharpness of the on / off transition (subthreshold characteristic) is improved, and the off current is suppressed. be able to.
  • FIGS. 15 (c) and 16 (c) show a structure in which a gate electrode 1005 is partly provided on the lower surface side of the semiconductor region 1003 (the gate electrode covers a part of the lower surface of the protruding semiconductor region).
  • the structure extends like this.
  • This structure is called the “0 gate structure” because the gate electrode resembles the Greek letter “ ⁇ ”.
  • the control of the channel by the gate electrode is further strengthened, and the lower surface of the semiconductor region can be used as the channel, so that the driving capability can be improved.
  • FIGS. 15D and 16D show a structure in which the gate electrode 1005 completely extends to the lower surface side of the semiconductor region 1003.
  • This structure is such that the semiconductor region floats in the air below the gate with respect to the plane of the base under the gate, and is called a “gate-all-around” (GAA) structure.
  • GAA gate-all-around
  • the lower surface of the semiconductor region can also be used as a channel, so that driving capability can be improved and short channel characteristics can be improved.
  • single crystal silicon can be preferably used, and, in addition, silicon'germanium and germanium can be preferably used.
  • a multilayer film of the above materials can be used as necessary.
  • a silicon substrate was used as the substrate under the base insulating film.
  • the present invention can be implemented if there is an insulating film below the semiconductor region.
  • a structure in which the insulator itself under the semiconductor region serves as a support substrate such as S ⁇ S (silicon-on-sapphire, silicon-on-spinel), can be mentioned.
  • the insulating support substrate include quartz and A1N substrates in addition to the above SOS.
  • a conductor having desired conductivity and work function can be used as a material for the gate electrode.
  • a conductor having desired conductivity and work function can be used.
  • Silicide compounds As the structure of the gate electrode, a stacked structure of a stacked film of a semiconductor and a metal film, a stacked film of metal films, a stacked film of a semiconductor and a silicide film, and the like can be used in addition to a single crystal film.
  • the gate insulating film an SiO film or a Si ⁇ ⁇ ⁇ N film can be used.
  • a body insulating film may be used.
  • the High-K film for example, TaO film, A1
  • Metal oxides such as ⁇ film, La O film, Hf ⁇ film, Zr ⁇ film, HfSi ⁇ , ZrSi ⁇ , HfAl ⁇ , Zr
  • a composite metal oxide represented by a composition formula such as Al ⁇ can be given.
  • the gate insulating film may have a laminated structure.
  • the present invention relates to selection of a crystal orientation of a protruding semiconductor region.
  • the crystal orientation of a semiconductor region forming Fin is expressed as the orientation of a Fin arranged in a crystal coordinate system. This may be interpreted as that the Fin is cut out of the crystal in such a direction.
  • the normal of the plane parallel to the substrate is drawn as shown in Fig. 18 (a).
  • the fins are arranged in the crystal coordinate system so that the 001> direction and the normal of the plane parallel to the channel are 110> directions, which corresponds to the state where the Fin is placed in the crystal coordinate system (the hatched surface is parallel to the substrate).
  • “rotate” means to change the crystal orientation of Fin based on the above-described expression method by rotating Fin in a crystal coordinate system that is not the rotation of the entity in real space. For example, turning from the state of Fig. 18 (a) by 45 degrees clockwise around the 001> axis is the transition from Fig. 18 (a) to the state of 18 (b) in the figure. However, this means that the plane parallel to the substrate does not change from (001), and the plane parallel to the channel changes to (010).
  • the upper portion of the protrusion forms a plane parallel to the substrate.
  • the source region other than the channel region In the Z drain region, the width may be wide due to a contact or the like.
  • the channel may be further formed above the protrusion. In this case, since the channel is formed on the three sides of the projection side and the top, the controllability by the gate is improved.
  • FIG. 1A is a perspective view showing a protruding semiconductor region provided on an insulator
  • FIG. 1B is a perspective view showing a MISFET.
  • an insulator 1002 which also has Si force is provided on a semiconductor substrate 1001, and a projection-like half is further provided on the insulator 1002.
  • a conductor region 1003 is provided.
  • the semiconductor region 1003 has a channel region (projection side surface) 1008.
  • the semiconductor region has a rectangular parallelepiped shape.
  • a channel region and a source / drain region are formed.
  • a gate insulating film 1004 is provided on the top and side surfaces of the semiconductor region 1003, and a gate electrode 1005 is provided across the semiconductor region 1003 where the gate insulating film 1004 is formed on the surface.
  • a main channel region 1008 is formed in a part of the protruding semiconductor region 1003.
  • the portions of the semiconductor region 1003 on both sides of the gate electrode 1005 constitute a source region 1006 / drain region 1007 into which a high concentration impurity is introduced.
  • the MISFET may have a multi-structure having a plurality of independent channel regions.
  • a semiconductor layer 213, a channel 215, and a source Z drain region 217 projecting above the insulating film 214 are formed.
  • the gate is common to a plurality of channels, and the source and drain regions are connected to each other by wiring.
  • a channel region and a source Z drain region (304, 332) are formed in a semiconductor layer 303 projecting above the insulating film 302.
  • the source / drain region 304 is a region provided in common for a plurality of channel regions.
  • FIG. 3 is a simplified top view of FIG.
  • a pair of source / drain regions 401 shared by each semiconductor layer is provided.
  • a pair of source / drain regions 401 are provided independently in each semiconductor layer.
  • the fin-type MISFET of the present invention has the same structure as a conventional fin-type MISFET in that a protruding semiconductor region is provided on a substrate and a channel is formed on a side surface of the semiconductor region. However, it differs from the conventional fin-type MISFET in that the crystal orientation of the protruding semiconductor region is different and the carrier transfer characteristics are improved.
  • the semiconductor region is a part of the semiconductor substrate 1001 as shown in FIG. 12 (a)
  • the silicon single crystal layer of the S ⁇ I substrate as shown in FIG. 12 (b) Even good. In either case, it protrudes above the insulating layer (insulating film 102 in FIG. 12 (a) and insulating film 112 in FIG. 12 (b)) that separates the region where the substrate and the element are formed. And a side surface on which a channel can be formed.
  • a part of the semiconductor substrate 1001 and a part of the silicon single crystal layer of the SOI substrate may be mixed on the same semiconductor substrate.
  • the crystal orientation of the protruding semiconductor region 1003 affects the carrier mobility, but the crystal orientation of the substrate 1001 is independent of the carrier mobility. Therefore, the crystal orientation of the protruding semiconductor region 1003 does not have to match the crystal orientation of the substrate 1001.
  • the plane parallel to the substrate in the semiconductor area may be different from the crystal orientation of the substrate.
  • the “plane parallel to the substrate” refers to the crystal orientation of the semiconductor crystal forming the protruding semiconductor region 1003, or more strictly, the channel region 1008, and does not mean the crystal orientation of the substrate 1001. Absent.
  • a plurality of protruding semiconductor regions are formed as a part of a semiconductor single crystal substrate or by processing a silicon single crystal layer of an SOI substrate.
  • the crystal orientation is uniform between the regions.
  • Such a protruding semiconductor region is When used to construct a CMIS, p-type MISFETs and n-type MISFETs are formed in a projecting crystal with a uniform orientation. Therefore, in the p-type MISFET and the n-type MISFET, the crystal orientation of the plane parallel to each substrate is the same plane.
  • the width of the semiconductor region (representing the length of the protruding semiconductor region in the direction parallel to the substrate) is such that the entire protruding region where the channel is formed is depleted. If b in FIGS. 1 and 12 (b) and t in FIG. 12 (a) are reduced, a fully depleted MIS FET can be obtained. Finned MISFETs may or may not be fully depleted. Further, the semiconductor region may or may not be appropriately doped with impurities.
  • the n-type field effect transistor and the p-type field effect transistor included in the semiconductor device of the present invention are typically used as a CMIS circuit in pairs each having substantially the same number. It is also possible to use a field effect transistor of one conductivity type (eg, n-type) mainly and a field effect transistor of the other conductivity type (eg, p-type) in a circuit which is used as an auxiliary. Further, the present invention includes a CMIS and other circuits having the above-described crystal orientation relationship in at least a part of a semiconductor device (chip).
  • the semiconductor device of the present invention may have two or more CMISs.
  • the MISFETs can be arranged at orthogonal and / or parallel positions, so that the layout is easy, and a large number of MISFETs can be arranged with a small area. Therefore, high integration of the semiconductor device can be achieved.
  • the plane parallel to the substrate of the n-type MISFET and the p-type MISFET is a ⁇ 100 ⁇ plane (including a plane having an off angle of 10 ° or less).
  • the n-type MISFET and the p-type The ET is fixed or rotated independently at an angle of 0 ° or more and 90 ° or less with respect to the normal line of the substrate, with the side surfaces of the MISFET in the standard state fixed with the surface parallel to the substrate fixed.
  • rotate the side surface of the protrusion means in the real space. It does not mean substantial rotation in the MISFET.
  • the fins arranged in the crystal coordinate system are rotated in the crystal coordinate system while the crystal orientation of the plane parallel to the substrate of the MISFET is fixed. Indicates that the crystal orientation is changed. That is, it means that the protruding semiconductor region is formed so as to have a side surface having such a current direction.
  • the mobility data used in the present invention was measured using a commercially available semiconductor parameter analyzer.
  • the measurement conditions were a drain voltage of 0.05 V and a substrate voltage of 0 V based on the source voltage.
  • the gate voltage was finely adjusted for each sample so that the vertical effective electric field Eeff applied to the channel was 10 MV / cm, and was set to approximately 1.35 V.
  • Eeff vertical effective electric field
  • E e f f (V gs + V th) / 6 T O x.
  • Vgs gate voltage
  • Vth threshold voltage
  • Tox gate oxide film thickness.
  • the delay index is an index for evaluating the carrier transfer characteristic of CMIS, and was calculated by the following equation.
  • the delay index is a unitless number obtained by standardizing all the mobilities measured by the above method with the mobility (240 cm 2 ZV * s) of an n-type MISFET in which the side surfaces of the protruding semiconductor region are ⁇ 100 ⁇ planes.
  • the plane parallel to the MISFET substrate may be any of the (100), (010), and (001) planes.
  • the side surface of the protrusion of the MISF ET is perpendicular to the substrate, and the n-type MISFET and p-type MISFET When the rotation angles of the side surfaces of the protrusion are the same, the mobility becomes the same due to the symmetry of the silicon crystal.
  • the crystal orientation of the plane parallel to the substrate of the MISFET is the (100) plane
  • the crystal orientation of the projection side surface of the n-type MISF ET and the p-type MISFET is changed to the (0-11) plane and the Z or ( 011)
  • the arrangement as a plane is in a reference state, and the protrusion side surface of the MISFET is rotated around ⁇ 100> as a rotation center.
  • the crystal orientation of the plane parallel to the substrate of the MISFET is the (010) plane
  • the crystal orientation of the projection side surface of the n-type Ml SFET and the p-type MISFET is the (10_1) plane and / or the (101) plane.
  • the arrangement is in the reference state, and the MISFET is rotated about the protrusion side face 010> as the center of rotation.
  • the n-type Ml SFET and p-type MISFET have the (110) and / or (110) plane crystal orientations on the side surfaces of the protrusions.
  • the MISFET is rotated around the protrusion side surface 001> as the center of rotation.
  • the crystal orientation of the plane parallel to the substrate of the MISFET is not changed by the rotation of the projection side.
  • the projection side surface of the MISFET has a normal line of the substrate as a four-fold symmetry axis. Therefore, when the rotation angle of the side surface of the projection of the MISFET becomes 90 °, the mobility becomes the same as that in the reference state. When the rotation angle is further increased from 90 °, the mobility decreases from 0 ° to a force of 90 °. It shows the same behavior as when it is increased. Therefore, when the rotation angle of the projection side surface of the MISFET is 0 ° or more and 90 ° or less, movement of all the rotation angles (0-360 °) can be represented.
  • Figure 2 (a) shows the reference state when n-type MISFETs and p-type MISFETs are vertically arranged with the crystal orientation of the plane parallel to the substrate being the (001) plane and the case where they are arranged in parallel.
  • the reference state is shown in Fig. 2 (b).
  • FIGS. 2 (a) and 2 (b) are views of these MISFETs as viewed from the top.
  • the projection side surfaces of the n-type MISFET 2001 and the p-type MISFET 2002 are changed from the reference state of FIGS. 2 (a) and 2 (b) as shown in FIGS. 3 (a) and 3 (b).
  • ⁇ 001> as the rotation center, fix or rotate independently at an angle of 0 ° or more and 90 ° or less.
  • FIGS. Fig. 8 (a) shows the relationship between the carrier mobility and the crystal orientation of the n-type MISFET
  • Fig. 8 (b) shows the relationship between the carrier mobility and the crystal orientation of the p-type MISFET
  • Fig. 9 shows the delay characteristic of the CMIS. It shows the relationship between the target and the crystal orientation.
  • FIG. 2 (a) and 2 (b) The mobility of the arrangement (conventional CMIS) in Figs. 2 (a) and 2 (b) is represented by a point (A) in Fig. 8 (a) and a point (D) in Fig. 8 (b). .
  • the measured CMIS delay index is 8.8 from Fig. 9.
  • Figs. 3 (a) and 3 (b) when the projecting sides of the n-type MISFET and the p-type MISFET are rotated up to 90 °, the mobility of the n-type MISFET becomes After a monotonous increase from point (a) to point (B), it reaches point (C).
  • the mobility of the p-type MISFET is from point (D) to point (E) in Fig. 8 (b). After a monotonous decrease, it reaches point (F), where points (A) and (D) are the mobility in the reference state, and points (C) and (F) are the movement when the rotation angle of the side of the protrusion is 90 °.
  • the mobility of points (A) and (C) and the mobility of points (D) and (F) are the same due to crystal symmetry.
  • the rotation angles of the projection side surfaces of the n-type MISFET and the p-type MISFET may be the same or different. Alternatively, only one of the side surfaces of the n-type MISFET and the p-type MISFET may be rotated, and the other side surface may be fixed. However, this does not include the case where both the n-type MISFET and the p-type MISFET are fixed at the reference state and the case where both sides are rotated 90 ° from the reference state. In this case, because of the symmetry of the silicon crystal, the mobility is the same as that of the conventional MISFET corresponding to the arrangement of FIGS. 2 (a) and 2 (b).
  • the projection side surfaces of the n-type MISFET and the p-type MISFET are rotated by the same angle while maintaining the orthogonal or parallel arrangement of the projection side surfaces.
  • the layout of these MISFETs is easy and the delay index of the CMIS can be reduced.
  • FIGS. 4 (a) and 4 (b) show views of the semiconductor device from the perspective of FIG.
  • the crystal orientation on the side surface of the n-type MISFET 2001 is (010)
  • the crystal orientation on the side surface of the p-type MISFET 2002 is (100).
  • the crystal orientations of the side surfaces of the protrusions of the n-type MISFET 2001 and the p-type Ml SFET 2002 are both (010) planes.
  • the mobilities of the n-type MISFET and the p-type MISFET are represented by a point (B) in FIG. 8A and a point (E) in FIG. 8B.
  • the state at point (B) shows that the mobility of the n-type MISFET is higher than in the reference state (point (A)), and the measured CMIS delay index From Fig. 9 decreased from 8.8 (standard condition) to 8.5. Therefore, the carrier transfer characteristics of the CMIS are improved as compared with the conventional CMIS. Further, since the n-type MISFET and the p-type MISFET are arranged so that the side surfaces of the protrusions are perpendicular or parallel to each other, the layout of the MISFET becomes easy and the layout of the MISFET can be optimized.
  • the mobility of the p-type MISFET becomes as shown in FIG. It is fixed to the point (D) in the middle or exists near the point (D), and shows high mobility.
  • the projection side of the n-type MISFET is rotated at an angle of 90 ° or less while keeping the projection side of the p-type MISFET in this way, the mobility passes from point (A) to point (B) in Fig. 8 (a).
  • point (C) Therefore, the mobility of the n-type MISFET can be increased as compared with the reference state.
  • the delay index of the CMIS can be made smaller than that of the reference state, and the carrier transfer characteristic of the CMIS is improved as compared with the conventional CMIS.
  • the protrusion side surfaces of the n-type MISFET and the p-type MISFET are rotated at an angle at which the mobility of the n-type MISFET and the p-type MISFET is in a preferable range.
  • the protrusion side surface of the p-type MISFET is fixed or rotated at an angle of 0 ° or more and 10 ° or less from the reference state, and the rotation angle of the protrusion side surface of the n-type MISFET is 45 °.
  • FIG. 2A The semiconductor device having this arrangement in which the arrangement shown in FIGS. 2A and 2B is set as a reference state is shown in FIG. 2B
  • Figures 5 (a) and 5 (b) show the side view of the projection of the p-type MISFET. Fixed).
  • the crystal orientation of the side surface of the protrusion of the n-type MISFET 2001 is a (010) plane
  • the crystal orientation of the side surface of the protrusion of the p-type MISFET 2002 is a (110) plane.
  • the crystal orientation of the side surface of the n-type MISFET 2001 is (010)
  • the crystal orientation of the side surface of the p-type MISFET 2002 is (110).
  • the mobility of the n-type MISFET is represented by point (B) in FIG. 8 (a)
  • the mobility of the p-type MISFET is represented by point (D) in FIG. 8 (b).
  • the mobility of the n-type MISFET is higher than that in the reference state (point (A)), and the mobility of the p-type MISFET is the same as that of the point (D). is there. Therefore, the measured CMIS delay index decreases from 8.8 (reference state) to 4.7 in Fig. 9, and the carrier transfer characteristics of the CMIS are improved compared to the conventional CMIS.
  • the arrangement shown in FIGS. 5 (a) and 5 (b) can be obtained from the arrangement shown in FIGS. 2 (a) and 2 (b) by one or more rotations of the projecting side surface.
  • FIGS. 2 (a) and (b) only the protrusion side surfaces of the n-type MISFET are rotated by 45 °, so that the arrangements of FIGS. 5 (a) and (b) can be obtained.
  • the mobility of the n-type MISFET moves from point (A) to point (B) through FIG. 8 (a).
  • the mobility of the p-type MISFET does not move from the point (D) in Fig. 8 (b).
  • FIGS. 4 (a) and 4 (b) After the arrangement of FIGS. 4 (a) and 4 (b) is made by rotating the projection side from the arrangement of FIGS. 2 (a) and 2 (b), the projection side of the p-type MISFET is further rotated by 45 °. By doing so, the arrangement shown in Figs. 5 (a) and 5 (b) can be adopted. In this case, the mobility of the n-type MISFET moves from point (A) to point (B) on Fig. 8 (a). On the other hand, for example, when obtaining the state shown in FIG. 5 (b), the mobility of the p-type MISFET moves from point (D) to point (E) on FIG. 8 (b) (see FIG. 2 to FIG. 2).
  • the crystal orientation of the plane parallel to the substrate of the n-type and p-type MISFETs is the ⁇ 100 ⁇ plane.
  • the crystal orientation of the protruding semiconductor region of the n-type MISFET is a ⁇ 100 ⁇ plane whose side surface is substantially orthogonal to a plane substantially parallel to the substrate.
  • Fig. 8 (a) The mobility of the n-type MISFET is maximized. Therefore, regardless of the crystal orientation on the side of the projecting semiconductor region of the p-type MISFET, the crystal orientation on the side of the projecting semiconductor region of the n-type MISFET and the p-type MISFET is substantially ⁇ 110 ⁇ .
  • the CMIS delay index is lower than in the case of ⁇ . Therefore, it is possible to obtain a CMIS having excellent carrier transfer characteristics.
  • the crystal orientation of the protruding semiconductor region of the p-type MISFET is a ⁇ 110 ⁇ plane whose side surface is substantially orthogonal to a plane substantially parallel to the substrate, and that of the protruding semiconductor region of the n-type MISFET.
  • the crystal orientation should be different from this ⁇ 110 ⁇ plane.
  • the mobility of the p-type MISF ET becomes the maximum value from FIG. 8 (b).
  • the mobility of the n-type MISFET is not the lowest value (points (A) and (C) in FIG. 8A).
  • the delay index of the CMIS is lower than in the case where the crystal orientations of both sides of the protruding semiconductor region of the n-type MISFET and the p-type Ml SFET are substantially ⁇ 110 ⁇ planes. Therefore, it is possible to obtain CMIS with excellent carrier transfer characteristics.
  • the crystal orientation of the side surface of the protruding semiconductor region of the n-type MISFET is a ⁇ 100 ⁇ plane that is substantially orthogonal to a plane parallel to the substrate, and the protruding semiconductor region of the p-type MISFET is The crystal orientation of the side surface is preferably a ⁇ 110 ⁇ plane orthogonal to a plane substantially parallel to the substrate.
  • the mobility of the n-type MISFET and the p-type MISFET has the maximum value from FIGS. 8 (a) and 8 (b), so the CMIS delay index is low, and a CMIS with excellent carrier mobility is obtained. That can be S.
  • FIG. 17 shows an example of a structure in which a fin transistor and a planar transistor are mixed.
  • the n-type MISFET and the p-type MISFET have a crystal orientation of a plane parallel to the substrate (including a plane having an off angle of 10 ° or less) and an n-type MISFET.
  • the reference state is a state in which the crystal orientation of the side surface of the protrusion of T and the crystal orientation of the side surface of the protrusion of the ⁇ -type MISFET are ⁇ 100 ⁇ planes perpendicular to each other.
  • the surface parallel to the ⁇ -type MISFET and the ⁇ -type MISFET substrate and the side surface of the p-type MISFET are more than 45 ° and less than 45 ° It is equivalent to one fixed or rotated at an angle of.
  • ⁇ rotate '' refers to rotating Fin in the crystal coordinate system while keeping the relative crystal orientation of the n-type MISFET and p-type MISFET fixed, rather than the rotation of the entity in the real space. This means changing the crystal orientation of the Fin. That is, it means that the protruding semiconductor region is formed to have such a side surface in the current direction.
  • CMIS can have a high carrier mobility characteristic.
  • the n-type MISFET and the p-type MISFET are arranged such that the side surfaces of the protrusions are orthogonal to each other, it is possible to design an optimal arrangement that facilitates the layout of the MISFET.
  • the plane parallel to the substrate of the MISFET in the reference state may be any of the (100) plane, the (010) plane, and the (001) plane. Regardless of the plane parallel to the substrate, the crystal orientation of the plane parallel to the substrate of the n-type MISFET and p-type MISFET (including planes with an off angle of 10 ° or less). Also, the crystal orientations of the side surfaces of the protrusions are ⁇ 100 ⁇ planes orthogonal to each other, and these planes are equivalent due to crystal symmetry.
  • the crystal orientation of the plane parallel to the MISFET substrate is the (100) plane
  • the crystal orientation of the projection side surface of the n-type MISFET is the (001) plane
  • the crystal orientation of the projection side surface of the p-type MISFET is (010).
  • 001> is the center of rotation.
  • the crystal orientation of the plane parallel to the MISFET substrate is the (010) plane
  • the crystal orientation of the n-type MISFET projection side is the (100) plane
  • the crystal orientation of the p-type MISF ET projection side is the (001) plane.
  • 100> is the center of rotation.
  • the crystal orientation of the plane parallel to the MISFET substrate is the (001) plane
  • the crystal orientation of the projection side of the n-type MISFET is the (010) plane
  • the crystal orientation of the projection side of the p-type MISFET is the (100) plane.
  • 010> becomes the center of rotation.
  • the projection side surface of the p-type MISFET has the normal line of the projection side surface of the n-type MISFET as a four-fold symmetry axis. Therefore, when the rotation angle of the side surface of the protrusion of the p-type MISFET becomes 45 °, the p-type The mobility of the MISFET is the same as that at 1 45 °, and when the rotation angle is further increased from 45 °, the mobility shows the same behavior as when the force angle is increased by 1 45 °. Therefore, the rotation angle of the side surface of the protrusion of the p-type MISFET can represent the mobility of all the rotation angles (180-180 °) in the range of ⁇ 45 ° or more and 45 ° or less.
  • the rotation center is the normal to the side surface of the protrusion of the n-type MISFET
  • the crystal orientation of the plane parallel to the side surface of the protrusion of the p-type MISFET and the substrate of the MISFET is caused by the rotation.
  • the “plane orientation” changes, but the crystal orientation on the side surface of the protrusion of the n-type MISFET does not change.
  • the side surface of the protrusion is fixed to the reference state.
  • Figure 4 shows the view from ⁇ 00_1>. The change in carrier movement characteristics when the side surface of the protrusion is rotated from this reference state will be described.
  • Figure 8 (c) shows the relationship between the mobility and the crystal orientation of the p-type MISFET. Fig.
  • FIG. 8 (b) rotates the projection side of the p-type MISFET about the normal line of the substrate as the center of rotation
  • Fig. 8 (c) shows the projection side of the n-type MISFET.
  • the projection side is rotated as the center of rotation, and the rotation center of the projection side is different between Fig. 8 (b) and Fig. 8 (c).
  • the mobility of the n-type MISFET is represented by point (B) in FIG. 8A
  • the mobility of the p-type MISFET is represented by point (H) in FIG. 8 (c).
  • the measured CMIS delay index is 8.5 from Fig. 9.
  • the planes corresponding to point (E) in Fig. 8 (b) and point (H) in Fig. 8 (c) are equivalent.
  • the crystal orientation on the side surface of the n-type MISFET does not change, so the mobility does not move from the point (B) in FIG. 8A.
  • the carrier mobility of the p-type MISFET reaches (G) in FIG. 8 (c).
  • a point (G) represents the mobility of the p-type MISFET in the reference state when the projection side surface is rotated by 45 degrees.
  • the carrier mobility of the p-type MISFET reaches the point (I) starting from the point (H) in FIG. 8 (c).
  • Point (I) is the crystal symmetry representing the mobility of the p-type MISFET when the projection side is rotated by 45 °. From the nature, the mobility of the point (G) is the same as the mobility of the point (I).
  • Point (I) represents the mobility of the p-type MISFET when the side surface of the protrusion is rotated by 45 °.
  • FIG. 6 shows a semiconductor device in which the protrusion side surfaces are rotated by 45 ° when the arrangement in FIG. 4 is set as a reference state.
  • FIG. 6 is a view of this arrangement.
  • the crystal orientation of the side surface of the n-type MISFET2001 is (010) plane
  • the crystal orientation of the side surface of the p-type MISFET2002 is (10-1) plane
  • the crystal orientation of the plane parallel to the MISFET substrate is ( 1 01) face.
  • the mobility of the n-type MISFET is represented by point (B) in Fig.
  • the mobility of the p-type MISFET is represented by point (I) in Fig. 8 (c).
  • the measured CMIS delay index is 6.1 from Fig. 9, which is lower than the conventional CMIS delay index corresponding to the arrangement in Fig. 2. Therefore, the carrier transfer characteristics of the CMIS are improved as compared with the conventional CMIS. The same result can be obtained even when the rotation angle is -45 °.
  • the crystal orientation of the protruding semiconductor region of the n-type MISFET is such that the side surface is substantially a ⁇ 100 ⁇ plane, and the side surfaces of the protruding semiconductor region of the n-type MISFET are orthogonal. Is good.
  • the crystal orientation of the plane parallel to the substrate of the MISFET and the side face of the protrusion of the p-type MISFET can be both ⁇ 100 ⁇ planes or both ⁇ 110 ⁇ planes.
  • the mobility of the n-type MISFET becomes the maximum value from FIG. 8A, so that the delay index of the CMIS becomes a low value, and a CMIS having excellent carrier transfer characteristics can be obtained.
  • the crystal orientation of the protruding semiconductor region of the n-type MISFET is such that a plane parallel to the substrate is substantially a ⁇ 110 ⁇ plane, and a side surface thereof is substantially perpendicular to the ⁇ 110 ⁇ plane.
  • the crystal orientation of the protruding semiconductor region of the p-type MISFET is a ⁇ 110 ⁇ plane substantially parallel to the substrate and a ⁇ 110 ⁇ plane substantially parallel to the ⁇ 110 ⁇ plane. It's good, At this time, the mobility of the n-type MISFET and the p-type MISFET becomes the maximum value from FIGS. 8 (a) and 8 (c), so that the delay index of the CMIS becomes a low value, and the CMIS having excellent carrier mobility characteristics is obtained. Obtainable.
  • the crystal orientation of the plane parallel to the substrate of the n-type MISFET and the p-type MISFET is ⁇ 100 ⁇ plane.
  • n-type The crystal orientation of the projection side surface of the field-effect transistor and the p-type field-effect transistor is defined as a ⁇ 110 ⁇ plane, and a state where these three planes are orthogonal to each other is defined as a reference state.
  • the surface parallel to the n-type MISFET and the p-type MISFET substrate and the n-type MISFET protrusion side surface were rotated at an angle of 90 ° or less around the normal of the side surface of the protrusion of the ⁇ -type MISFET as the rotation center. Equivalent to something.
  • Rotate refers to the rotation of the n-type MISFET and the p-type MISFET, which is different from the rotation of the entity in the real space.
  • Rotating the Fin means changing the crystal orientation of the Fin. That is, it means that the protruding semiconductor region is formed so as to have a side surface in such a current direction. Due to this rotation, the crystal orientation of the plane parallel to the substrate and the side surface of the n-type MISFET protrusion of the MISFET of this embodiment has a different crystal orientation from the reference state.
  • CMIS can have high carrier movement characteristics.
  • the n-type MISFET and the p-type MISFET are arranged so that the projection side surfaces are orthogonal to each other, it is possible to design an optimal arrangement that facilitates the layout of the MISFET.
  • the plane parallel to the substrate of the MISFET in the reference state may be any of the (100) plane, the (010) plane, and the (001) plane. Regardless of which of these planes is parallel to the substrate, the n-type MISFET and the p-type MISFET have a ⁇ 110 ⁇ plane crystal orientation on the projection side surface, and these planes are orthogonal. When the rotation angles of these MISFETs are the same, the mobility becomes the same due to the symmetry of the silicon crystal.
  • the crystal orientation of the plane parallel to the MISFET substrate is the (100) plane
  • the crystal orientation of the n-type MISFET projection side is the (0-11) plane
  • the crystal orientation of the p-type MISFET projection side is In the reference state of the (01 1) plane, 011> is the center of rotation.
  • the crystal orientation of the plane parallel to the MISFET substrate is the (010) plane
  • the crystal orientation of the n-type MISFET projection side is the (10_1) plane
  • the crystal orientation of the p-type MISFET projection side is the (101) plane.
  • 101> becomes the center of rotation.
  • the crystal orientation of the plane parallel to the substrate of the MISFET is the (001) plane
  • the crystal orientation of the projection side of the n-type MISFET is the (110) plane
  • the crystal orientation of the projection side of the p-type MISFET is (110)
  • 110> is the center of rotation.
  • FIG. 8D corresponds to a case where the rotation angle of the n-type MISFET is 0 to 45 ° when rotated about the substrate normal of FIG. 8A as the center of rotation.
  • the mobility of the n-type MISFET is represented by point (A) in Fig. 8 (d)
  • the mobility of the p-type MISFET is represented by point (D) in Fig. 8 (b).
  • the measured CMIS delay index is 8.8 from Fig. 9.
  • FIG. 7 shows a semiconductor device in which the protrusion side surfaces of the n-type MISFET and the p-type MISFET are rotated by 90 ° when the arrangement in FIG. 2 is used as a reference state.
  • Fig. 7 is a view of this arrangement.
  • the crystal orientation of the side surface of the n-type MISFET2001 is (001) plane
  • the crystal orientation of the side surface of the p-type MISFET2002 is (110) plane
  • the plane parallel to the MISFET substrate is the (-110) plane.
  • the mobility of the n-type MISFET is represented by a point (B) in FIG. 8D
  • the mobility of the p-type MISFET is represented by a point (G) in FIG. 8B.
  • the measured CMIS delay index is 6.1 (corresponding to the result in Fig. 6) from Fig. 9, which is lower than the conventional CMIS delay index corresponding to the arrangement in Fig. 2. Therefore, the carrier transfer characteristics of the CMIS are improved as compared with the conventional CMIS.
  • the crystal orientation of the protruding semiconductor region of the p-type MISFET is substantially
  • the ⁇ 110 ⁇ plane, the side surface of the protruding semiconductor region of the n-type MISFET is substantially orthogonal to the ⁇ 110 ⁇ plane, and the crystal orientation of the side surface is substantially different from the ⁇ 110 ⁇ plane.
  • the crystal orientation of the plane parallel to the substrate of the MISFET can be the ⁇ 110 ⁇ plane
  • the crystal orientation of the side surface of the protrusion of the p-type MISFET can be the ⁇ 100 ⁇ plane.
  • the mobility of the p-type MISFET becomes the maximum value from FIG. 8 (c), so that the delay index of the CMIS becomes a low value, and a CMIS having excellent carrier mobility characteristics can be obtained.
  • the same effect as when the projection side surfaces of these MISFETs are rotated by the same 45 degrees while maintaining the parallel arrangement of the projection side surfaces of the n-type MISFET and the p-type MISFET. Can be obtained as follows.
  • the n-type MISFET and the p-type MISFET have a ⁇ 100 ⁇ plane parallel to the substrate (however, also include a plane with an off angle of 10 ° or less), and the n-type MISFET and the p-type MISFET
  • the crystal orientations of the side surfaces of the protrusions are the same (the side surfaces of the protrusions are parallel to each other), and the crystal orientation of the side surfaces of the protrusions of the parentheses MISFET is the ⁇ 100 ⁇ plane perpendicular to the substrate.
  • the plane parallel to the substrate of the n-type MISFET and the p-type MISFET is set to 0 ° or more with respect to the normal state of the projection side surface of the n-type and the p-type MISFET from the reference state. Equivalent to an object fixed or rotated at an angle of 90 ° or less.
  • rotating a plane parallel to the substrate means that the rotation of the body in the real space is different from that of the body.
  • rotating Fin it means changing the crystal orientation of Fin.
  • both the n-type MISFET and the p-type MISFET as channel surfaces are fixed to the ⁇ 100 ⁇ plane, and the direction of current flow changes only within the ⁇ 100 ⁇ plane. ⁇ 100 ⁇
  • the in-plane mobility has no dependence on the current direction due to the four-fold symmetry of the crystal. Therefore, this embodiment is different from the first embodiment in that the projection side surfaces of the n-type MISFET and the p-type MISFET are rotated by the same 45 ° while maintaining the parallel arrangement of the projection side surfaces. The same effect as in the case can be obtained.
  • the semiconductor device according to the present invention can be manufactured using a conventional semiconductor device manufacturing method. However, they differ from the conventional manufacturing method in that substrates having different crystal orientations are used, and a resist mask is formed in an arrangement rotated by a predetermined angle during photolithography.
  • FIG. 10 shows a manufacturing process of a semiconductor device including a fin-type MISFET in which a part of the protrusion is a part of a single-crystal silicon layer of an SOI substrate as shown in FIG. 12 (b).
  • An SOI substrate consisting of a thin film 3003 is manufactured.
  • the single crystal silicon film 3003 has a ⁇ 100 ⁇ plane in the first embodiment, and a predetermined crystal orientation in the second and third embodiments.
  • an SiO film 3004 is formed on the surface of the SOI substrate by thermal oxidation (Fig. 1
  • a MISFET in which impurities are not intentionally introduced into the channel may be used.
  • the formation and removal of the thermal oxide film before and after that may be omitted.
  • a photoresist is applied to the entire surface of the single crystal silicon film 3003, and a resist mask 3005 is formed by using photolithography (FIG. 10D).
  • the resist mask 3005 is anisotropically dry-etched, the resist mask 3005 is removed, and a projection 3006 having a predetermined height is formed on the SiO film 3002.
  • the SiO film is appropriately oriented downward by anisotropic etching, or
  • a ⁇ -gate FinFET and an ⁇ -gate FinFET can be formed, respectively.
  • a thin Si ⁇ film 3007 is formed on the surface of the single crystal silicon protrusion 3006 by a thermal oxidation method.
  • a polysilicon film is formed on the Si film 3007 by a CVD method,
  • a predetermined pattern is selectively etched to form a gate electrode 3008.
  • an impurity is doped into the single crystal silicon projection 3006 to form a source region and a drain region (FIG. 10 (f)).
  • FIG. 11 shows a manufacturing process of a semiconductor device including a fin-type MISFET in which a part of a projection is a part of a silicon wafer substrate as shown in FIG. 12A.
  • a silicon oxide film 3004 is formed on the surface of the single crystal silicon film 3003 by a thermal oxidation method (FIG. 11 (a)).
  • the crystal orientation of the con film 3003 the ⁇ 100 ⁇ plane is used in the first embodiment, and the crystal orientation of a predetermined crystal orientation is used in the second and third embodiments.
  • ions are implanted into the single crystal silicon film 3003 to form a semiconductor region (FIG. 11B). Then low on SiO oxide film 3004
  • a silicon nitride film 3009 is formed by a pressure CVD method (FIG. 11C).
  • a MISFET that does not intentionally introduce impurities into the channel can be used. Further, the formation and removal of the thermal oxide film before and after that may be omitted.
  • a photoresist is applied to the entire surface of the silicon nitride film 3009, and a resist mask 3005 is formed using photolithography while leaving the photoresist only at a portion where a MOSFET is to be formed (Fig. 11 (d)). ).
  • the resist mask 3005 is anisotropically dry-etched, the resist mask 3005 is removed, and a projection 3006 having a predetermined height is formed on the substrate (FIG. e)).
  • the projections 3006, the SiO oxide film 3004, and the silicon nitride film 3009 are formed by low-pressure CVD.
  • the Si ⁇ oxide film 3010 is formed to a thickness that covers all the protrusions made of (FIG. 11 (f)). Continued
  • the SiO oxide film 3010 is etched to a predetermined thickness, and the isolation insulating film 3011 is formed.
  • a thin Si oxide film 3007 is formed on the surfaces of the protrusions by a thermal oxidation method. Furthermore, on this Si ⁇ oxide film 3007
  • a polysilicon film is formed by a CVD method, and after being made conductive by impurity diffusion, selective etching is performed on a predetermined pattern to form a gate electrode 3008.
  • an impurity is doped into the projection 3006 made of single-crystal silicon to form a source.
  • a region and a drain region are formed (FIG. 11F).
  • an insulating film thicker than the gate insulating film can be formed between the upper portion of the fin and the gate electrode 3008. Even when the fin is on the SOI, an insulating film thicker than the gate insulating film can be formed between the upper portion of the fin and the gate electrode by the same method.
  • FIG. 17 shows a method of manufacturing a semiconductor device (balta substrate type) in which Fin type MISFETs and planar type MISFETs are mixed. Steps in the middle (FIGS. 17 (a) and (b)) are the same as the steps in FIGS. 11 (a) and (f). Thereafter, in the manufacturing method of FIG. 11, the insulating film 3010 provided in a portion other than the fin is retracted, but in the manufacturing method of FIG. 17, the insulating film 3010 is retracted in a portion configuring the fin-type transistor. The difference is that it does not recede in the parts that make up the planar transistor (Fig. 17 (c)).
  • FIG. 17 is a diagram of the hybrid transistor viewed from above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thin Film Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

 n型電界効果トランジスタおよびp型電界効果トランジスタとを含む半導体装置であって、n型電界効果トランジスタを構成する突起状半導体領域の結晶方位は、その基板と平行な面が実質上{100}面であり、その側面が実質上前記{100}面と直交する{100}面であり、p型電界効果トランジスタを構成する突起状半導体領域の結晶方位は、その基板と平行な面が実質上{100}面であり、その側面が実質上前記{100}面と直交する{110}面である、という条件を満足する半導体装置とする。  

Description

明 細 書
'ン型電界効果トランジスタを有する半導体装置
技術分野
[0001] 本発明は、キャリア移動度の高いフィン型の電界効果トランジスタを有する半導体 装置に関する。
背景技術
[0002] 従来、微細化に伴い発生する短チャンネル効果抑制等を目的として、半導体領域 力 なる突起を有し、基板にほぼ垂直な平面(突起側面)に主たるチャネルを形成す るフィン型の MISFETが開発されてきた。特開昭 64-8670号公報には、突起の一 部がシリコンウェハ基板の一部であるフィン型の MISFETと、突起の一部が SOI基板 の単結晶シリコン層の一部であるフィン型の MISFETが開示されている。前者の構 造を図 12 (a)、後者の構造を図 12 (b)を用レ、て説明する。
[0003] 図 12 (a)に示す形態では、シリコンウェハ基板 101の一部が突起 103となり、ゲート 電極 105がこの突起 103の頂部を超えて両側に延在している。そして、この突起 103 において、ゲート電極下の絶縁膜 104下の部分にチャネルが形成される。チャネル 幅は突起 103の高さ hの 2倍に相当し、ゲート長はゲート電極 105の幅 Lに対応する 。また、ゲート電極 105は、この溝内に形成した絶縁膜 102上に、突起 103を跨ぐよう に設けている。
[0004] 図 12 (b)に示す形態では、シリコンウェハ基板 111、絶縁膜 112及びシリコン単結 晶層からなる S〇I基板を用意し、そのシリコン単結晶層をパターユングして突起 113 とし、そして、この突起 113を跨ぐように、露出した絶縁層 112上にゲート電極 115を 設けている。この特記 113において、ゲート電極両側の部分にソース領域及びドレイ ン領域が形成され、ゲート電極下の絶縁膜 114下の部分 (突起 113の上面及び側面 )にチャネルが形成される。チャネル幅は突起 113の高さ aの 2倍とその幅 bとの合計 に相当し、ゲート長はゲート電極 115の幅 Lに対応する。
[0005] このようにフィン型の MISFETは、チャネルが形成される半導体領域の側面両側に ゲートを持つ MISFETであり、一般的に短チャネル効果の抑制に優れるという特徴 を持つ。
[0006] 一方、特開 2002-118255号公報には例えば図 13 (a)—(c)に示すような、複数 の半導体突起(半導体層 213)を有するフィン型の MOSFETが開示されている。図 13 (b)は図 13 (a)の B—B線断面図であり、図 13 (c)は図 13 (a)の C—C線断面図で ある。このフィン型の MOSFETは、シリコン基板 210のゥヱル層 211の一部で構成さ れる半導体層 213を複数有し、これらが互いに平行に配列され、これらの突起状半 導体層の中央部を跨いでゲート電極 216が設けられている。このゲート電極 216は、 絶縁膜 214の上面から各半導体層 213の側面に沿って形成されている。各突起状 半導体層とゲート電極間には絶縁膜 218が介在し、ゲート電極下の突起状半導体層 にはチャネル 215が形成される。また、各突起状半導体層にはソース/ドレイン領域 が形成され、ソース/ドレイン領域 217下の領域 212には高濃度不純物層(パンチス ルーストッパー層)が設けられている。そして、層間絶縁膜 226を介して上層配線 22 9、 230が設けられ、各コンタクトプラグ 228により、各上層配線とそれぞれソース/ド レイン領域 217及びゲート電極 216とが接続されている。
[0007] また、特開 2001-298194号公報には例えば、図 14 (a)及び(b)に示すような、フ イン型の MOSFETが開示されている。このフィン型の MOSFETは、シリコン基板 30 1、絶縁層 302及び半導体層(単結晶シリコン層) 303からなる SOI基板を用いて形 成され、その絶縁層 302上にパターニングされた半導体層 303が設けられている。こ の半導体層 303には、複数の開口部 310がー列に半導体層 303を横断するように 設けられている。これらの開口部 310は、半導体層 303のパターエングの際に、絶縁 層 302が露出するように形成されている。ゲート電極 305は、これらの開口部 310の 配列方向に沿って、開口部 310間の各半導体層(伝導経路) 332との間には絶縁膜 が介在し、ゲート電極下の伝導経路にチャネルが形成される。伝導経路 332の上面 の絶縁膜が、側面の絶縁膜と同程度に薄いゲート絶縁膜である場合は、ゲート電極 下の半導体層 332の両面側及び上面にチャネルが形成される。半導体層 303にお いて、開口部 310の列の両側がソース/ドレイン領域 304を構成する。
[0008] 一般的にこれらの MOSFETの製造では、結晶方位が { 100}面の基板を [110]に 平行にダイシング(ペレツタイジング)してチップ化する。このため、フィン型の MOSF ETの基板と平行な面の結晶方位は { 100}面、チャネルが形成される突起側面の結 晶方位は通常、 { 110}面となる。
[0009] 図 2に、基板と平行な面の結晶方位が(001)面である n型の MISFET2001及び p 型の MISFET2002を配置した半導体装置を < 00_1 >から見た図を示す。これら の MISFETはレイアウトを容易にするため、 n型の MISFETと p型の MISFETの突 起側面が互いに直交(図 2 (a) )又は平行(図 2 (b) )になる位置に配置されてレ、る。図 2 (a)では n型の MISFETの突起側面の結晶方位は(一 110)面、 p型の MISFETの 突起側面の結晶方位は(110)面である。図 2 (b)では n型の MISFET及び p型の MI SFETの突起側面の結晶方位は共に (一 110)面である。
発明の開示
[0010] 近年、半導体素子の高速化と共に高いキャリア移動特性を有する CMISの開発が 必要とされている。しかし、フィン型の CMISのキャリア移動度に基づく遅延指標と半 導体領域側面の結晶方位との関係にっレ、ては、検討されてレ、なかった。
[0011] そこで、本発明の一態様ではキャリア移動特性の最適化を図り、 CMISの高速化を 図ることを目的とする。また、本発明の異なる態様では CMISの高速化とレイアウト上 の要請を考慮しつつ両者の最適化を図ることを目的とする。
[0012] 上記課題を解決するため、本発明は以下の構成を有する。すなわち、本発明は側 面にチャネルを形成する突起状の半導体領域と、少なくとも該側面上に絶縁膜を介 して設けられたゲート電極と、該ゲート電極をはさむように半導体領域内に形成され たソース領域およびドレイン領域と、を備えた n型電界効果トランジスタおよび p型電 界効果トランジスタとを含む半導体装置であって、
該 n型電界効果トランジスタを構成する突起状半導体領域の結晶方位は、その基 板と平行な面が実質上 { 100}面であり、その側面が実質上該 { 100}面と直交する { 1 00}面であり、
該 p型電界効果トランジスタを構成する突起状半導体領域の結晶方位は、その基 板と平行な面が実質上 { 100}面である、
という条件を満足する半導体装置に関する。
[0013] 本発明は、側面にチャネルを形成する突起状の半導体領域と、少なくとも該側面上 に絶縁膜を介して設けられたゲート電極と、該ゲート電極をはさむように半導体領域 内に形成されたソース領域およびドレイン領域と、を備えた n型電界効果トランジスタ および p型電界効果トランジスタとを含む半導体装置であって、
該 P型電界効果トランジスタを構成する突起状半導体領域の結晶方位は、その基 板と平行な面が実質上 { 100}面であり、その側面が実質上該 { 100}面と直交する { 1 10}面であり、
該 n型電界効果トランジスタを構成する突起状半導体領域の結晶方位は、その基 板と平行な面が実質上 { 100}面であり、その側面が実質上該 { 100}面と直交する { 1 10}面とは異なる、
という条件を満足する半導体装置に関する。
[0014] 本発明は、側面にチャネルを形成する突起状の半導体領域と、少なくとも該側面上 に絶縁膜を介して設けられたゲート電極と、該ゲート電極をはさむように半導体領域 内に形成されたソース領域およびドレイン領域と、を備えた n型電界効果トランジスタ および p型電界効果トランジスタとを含む半導体装置であって、
該 n型電界効果トランジスタを構成する突起状半導体領域の結晶方位は、その基 板と平行な面が実質上 { 100}面であり、その側面が実質上該 { 100}面と直交する { 1 00}面であり、
該 p型電界効果トランジスタを構成する突起状半導体領域の結晶方位は、その基 板と平行な面が実質上 { 100}面であり、その側面が実質上該 { 100}面と直交する { 1 10}面である、
という条件を満足する半導体装置に関する。
[0015] 本発明は、側面にチャネルを形成する突起状の半導体領域と、少なくとも該側面上 に絶縁膜を介して設けられたゲート電極と、該ゲート電極をはさむように半導体領域 内に形成されたソース領域およびドレイン領域と、を備えた n型電界効果トランジスタ および p型電界効果トランジスタとを含む半導体装置であって、
該 n型電界効果トランジスタを構成する突起状半導体領域の結晶方位は、その側 面が実質上 { 100}面であり、
該 P型電界効果トランジスタを構成する突起状半導体領域の側面が実質上、該 { 10 0}面と直交する、
という条件を満足する半導体装置に関する。
[0016] 本発明は、側面にチャネルを形成する突起状の半導体領域と、少なくとも該側面上 に絶縁膜を介して設けられたゲート電極と、該ゲート電極をはさむように半導体領域 内に形成されたソース領域およびドレイン領域と、を備えた n型電界効果トランジスタ および p型電界効果トランジスタとを含む半導体装置であって、
該 P型電界効果トランジスタを構成する突起状半導体領域の結晶方位は、その側 面が実質上 { 110}面であり、
該 n型電界効果トランジスタを構成する突起状半導体領域の側面が実質上該 { 110 }面と直交し、かつ該側面の結晶方位は実質上 { 110}面とは異なる、
という条件を満足する半導体装置に関する。
[0017] 本発明は、側面にチャネルを形成する突起状の半導体領域と、少なくとも該側面上 に絶縁膜を介して設けられたゲート電極と、該ゲート電極をはさむように半導体領域 内に形成されたソース領域およびドレイン領域と、を備えた n型電界効果トランジスタ および p型電界効果トランジスタとを含む半導体装置であって、
該 n型電界効果トランジスタを構成する突起状半導体領域の結晶方位は、その基 板と平行な面が実質上 { 110}面であり、その側面が実質上該 { 110}面と直交する { 1 00}面であり、
該 p型電界効果トランジスタを構成する突起状半導体領域の結晶方位は、その基 板と平行な面が実質上 { 110}面であり、その側面が実質上該 { 110}面と直交する { 1 10}面である、
という条件を満足する半導体装置に関する。
[0018] 本発明は、側面にチャネルを形成する突起状の半導体領域と、少なくとも該側面上 に絶縁膜を介して設けられたゲート電極と、該ゲート電極をはさむように半導体領域 内に形成されたソース領域およびドレイン領域と、を備えた n型電界効果トランジスタ および p型電界効果トランジスタとを含む半導体装置であって、
該 n型電界効果トランジスタを構成する突起状半導体領域の結晶方位は、その基 板と平行な面が実質上 { 100}面であり、その側面が実質上該 { 100}面と直交し、か つ { 110}面とは異なり、
該 p型電界効果トランジスタを構成する突起状半導体領域の結晶方位は、その基 板と平行な面が実質上 { 100}面であり、その側面が該 n型電界効果トランジスタを構 成する突起状半導体領域の側面と実質上平行又は直交する、
という条件を満足する半導体装置に関する。
[0019] 本発明は、基板と平行な面の結晶方位が { 100}面(ただし、オフ角度が 10° 以下 の面も含む。 )であり側面にチャネルを形成する少なくとも一つの突起状の半導体領 域と、該半導体領域の中央部を跨ぐように絶縁膜を介して設けられたゲート電極と、 該半導体領域の少なくとも一つに導通され該ゲート電極を挟んで設けられたソース /ドレイン領域と、を備えた n型電界効果トランジスタ及び p型電界効果トランジスタを 有する半導体装置であって、
該 n型電界効果トランジスタ及び p型電界効果トランジスタは、
突起側面の結晶方位を基板と垂直な { 110}面とした状態を基準状態とするとき、 該基準状態の n型電界効果トランジスタ及び p型電界効果トランジスタの突起側面 を独立して、基板の法線を回転中心として 0° 以上 90° 以下の角度で固定又は回 転 (ただし、該 n型電界効果トランジスタ及び p型電界効果トランジスタの回転角度が 共に 0° 及び 90° の場合を除く。)させた結晶方位を有することを特徴とする半導体 装置に関する。
[0020] また、本発明は側面にチャネルを形成する少なくとも一つの突起状の半導体領域と 、該半導体領域の中央部を跨ぐように絶縁膜を介して設けられたゲート電極と、該半 導体領域の少なくとも一つに導通され該ゲート電極を挟んで設けられたソース/ドレ イン領域と、を備えた n型電界効果トランジスタ及び p型電界効果トランジスタを有する 半導体装置であって、
該 n型電界効果トランジスタ及び p型電界効果トランジスタの基板と平行な面(ただ し、オフ角度が 10° 以下の面も含む。)の結晶方位及び突起側面の結晶方位をそれ ぞれ互いに直交する { 100}面とした状態を基準状態とするとき、
該 n型電界効果トランジスタ及び p型電界効果トランジスタは、
該 n型電界効果トランジスタの突起側面の法線を回転中心として、該基準状態の該 n型電界効果トランジスタ及び p型電界効果トランジスタの基板と平行な面及び p型電 界効果トランジスタの突起側面を一 45° 以上 45° 以下の範囲で同じ角度だけ固定 又は回転させた結晶方位を有することを特徴とする半導体装置に関する。
[0021] また、本発明は側面にチャネルを形成する少なくとも一つの突起状の半導体領域と 、該半導体領域の中央部を跨ぐように絶縁膜を介して設けられたゲート電極と、該半 導体領域の少なくとも一つに導通され該ゲート電極を挟んで設けられたソース/ドレ イン領域と、
を備えた n型電界効果トランジスタ及び p型電界効果トランジスタを有する半導体装置 であって、
該 n型電界効果トランジスタ及び p型電界効果トランジスタの基板と平行な面(ただ し、オフ角度が 10° 以下の面も含む。)の結晶方位を { 100}面、突起側面の結晶方 位をそれぞれ { 110}面とし、且つ該 { 100}面及び { 110}面を互いにそれぞれ直交さ せた状態を基準状態とするとき、
該 n型電界効果トランジスタ及び p型電界効果トランジスタは、
該 p型電界効果トランジスタの突起側面の法線を回転中心として、該基準状態の該 n型電界効果トランジスタ及び p型電界効果トランジスタの基板と平行な面及び n型電 界効果トランジスタの突起側面を 90° 以下の範囲で同じ角度だけ回転させた結晶方 位を有することを特徴とする半導体装置に関する。
[0022] また、本発明は側面にチャネルを形成する突起状の半導体領域と、少なくとも該側 面上に絶縁膜を介して設けられたゲート電極と、該ゲート電極をはさむように半導体 領域内に形成されたソース領域およびドレイン領域と、を備えた n型電界効果トランジ スタおよび p型電界効果トランジスタとを含む半導体装置であって、
該 n型電界効果トランジスタを構成する突起状半導体領域の結晶方位は、その側 面が実質上 { 100}面であり、
該 P型電界効果トランジスタを構成する突起状半導体領域の側面が実質上、該 { 10 0}面と平行である、
という条件を満足する半導体装置に関する。
[0023] 本発明の半導体装置では、 n型の MISFET及び p型の MISFETの突起側面を、 基板の法線を回転中心としてそれぞれ独立して固定又は回転させることで、 CMIS の遅延指標と、レイアウトを考慮した MISFETの配置の最適化を図ることができる。 更に、 n型の MISFET及び p型の MISFETの突起側面が互いに直行又は平行とな る配置を保ったままこれらの MISFETの突起側面を同じ角度だけ回転させることによ り、よりレイアウトの容易にすると共に、 CMISの遅延指標を低下させることができる。
[0024] また、本発明の半導体装置では、 n型の MISFETの突起側面と、 p型の MISFET の突起側面と、これらの MISFETの基板と平行な面が互いに直交する { 100}面とな るように配置した基準状態から、 n型の MISFETの突起側面の法線を回転中心とし て、 n型の MISFET及び p型の MISFETの基板と平行な面及び p型の MISFETの 突起側面を固定又は回転させることによって、 MISFETのレイアウトの最適化を図る とともに、高いキャリア移動特性を有することができる。
[0025] また、本発明の半導体装置では、 n型の MISFET及び p型の MISFETの基板と平 行な面の結晶方位を { 100}面、 n型の MISFET及び p型の MISFETの突起側面の 突起側面の結晶方位を { 110}面とし、これら三つの面が互いに直交するように配置 した基準状態から、 p型の MISFETの突起側面の法線を回転中心として、 n型の Ml SFET及び p型の MISFETの基板と平行な面及び n型の MISFETの突起側面を固 定又は回転させることによって、より高い密度での MISFETの配置が可能になるとと もに、高いキャリア移動特性を有することができる。
[0026] また、本発明の半導体装置では、 n型の MISFET及び p型の MISFETの基板に平 行な面を { 100}面、 n型の MISFET及び p型の MISFETの突起側面の結晶方位が 同一であり、基板と垂直な { 100}面となるよう配置した基準状態から、 n型の MISFE T及び p型の MISFETの突起側面の法線を回転中心として、 n型の MISFET及び p 型の MISFETの基板に平行な面を回転させても、低い CMISの遅延指標と、高いキ ャリア移動特性を維持することができる。
図面の簡単な説明
[0027] [図 1]図 1 (a)は、本発明及び従来例における半導体領域を表す斜視図である。図 1 ( b)は、本発明及び従来例における MOSトランジスタを表す斜視図である。
[図 2]図 2 (a)は、従来の直交配置の半導体装置の図である。図 2 (b)は、従来の平行 配置の半導体装置を表す上面図である。
[図 3]図 3 (a)は、本発明の直交配置の半導体装置を表す上面図である。図 3 (b)は、 本発明の平行配置の半導体装置を表す上面図である。
[図 4]図 4 (a)は、本発明の直交配置の半導体装置を表す上面図である。図 4 (b)は、 本発明の平行配置の半導体装置を表す上面図である。
[図 5]図 5 (a)は、本発明の直交配置の半導体装置を表す上面図である。図 5 (b)は、 本発明の平行配置の半導体装置を表す上面図である。
[図 6]図 6は本発明の第二の実施態様の半導体装置を表す上面図である。
[図 7]図 7は本発明の第三の実施態様の半導体装置を表す上面図である。
[図 8]図 8 (a)は、 n型の MISFETのキャリア移動度と突起側面の結晶方位との関係 を表した図である。図 8 (b)は、 p型の MISFETのキャリア移動度と突起側面の結晶 方位との関係を表した図である。図 8 (c)は、 p型の MISFETのキャリア移動度と突起 側面の結晶方位との関係を表した図である。図 8 (d)は、 n型の MISFETのキャリア 移動度と突起側面の結晶方位との関係を表した図である。
[図 9]図 9は CMISの遅延指標と突起側面の結晶方位との関係を表した図である。
[図 10]図 10は本発明に係る半導体装置の製造工程を表した図である。
[図 11]図 11は本発明に係る半導体装置の製造工程を表した図である。
[図 12]図 12 (a)は、従来技術の MISFETを表す斜視図である。図 12 (b)は、従来技 術の MISFETを表す斜視図である。
[図 13]図 13 (a)は、マルチ構造の MISFETを表す断面図である。図 13 (b)は、マル チ構造の MISFETを表す断面図である。図 13 (c)は、マルチ構造の MISFETを表 す断面図である。
[図 14]図 14 (a)は、マルチ構造の MISFETを表す斜視図である。図 14 (b)は、マル チ構造の MISFETを表す斜視図である。
[図 15]図 15は本発明のトライゲート型の MISFETを表す断面図である。
[図 16]図 16は本発明のダブルゲート型の MISFETを表す断面図である。
[図 17]図 17は本発明の MISFETとプレーナ型の MISFETが混載した半導体装置 の断面図である。 [図 18]図 18は結晶方位及び回転を説明する図である。
[図 19]図 19は本発明のマルチ構造の MISFETを表す上面図である。
発明を実施するための最良の形態
[0028] ゲート電極直下の基板内にチャネルが形成される従来のプレーナ型の MISFET では、基板が等方面の { 100}面であるため、基板内でチャネル電流が流れる方向を 変化させても移動度は変化しなかった。
一方、フィン型の MISFETでは半導体領域の側面にチャネルが形成されるため、突 起側面の結晶方位を回転させることによって、キャリア移動度を変化させることが可能 となる。例えば、 SiOなどのゲート絶縁膜を用いてフィン型の MISFETを形成した際
2
、突起状半導体領域の側面の結晶方位を(110)面とするよりも(100)面とした方が、 界面準位を小さくできることが知られている。また、側面の結晶方位が(100)面であ るフィン型の MISFETは、 (100)面の形成基板を使用する従来のプレーナ型の FE Tと共通の特性とすることができ、これらの FETの間で互換性、設計容易性があるな どのメリットがある。
[0029] 一方、近年、半導体装置の高集積化が進んでいるため、 n型の MISFETと p型の MISFETを組み合わせて用いる場合、典型的には 1個ずつペアとして用いる CMIS は、高いキャリア移動特性を有する必要がある。更に CMIS以外に、主に n型の MIS FETを用いてロジック回路を構成する手法 (例えば、ドミノ回路など)がありこの場合、 n型の MISFETを高レ、移動度とする方が有利である。
[0030] そこで、本発明者等はフィン型の MISFETにおいて、キャリア移動度と半導体領域 の突起側面の結晶方位との関係について検討を行った結果、本発明に至った。すな わち、本発明は突起状半導体領域を成す半導体の結晶方位 (突起の基板に平行な 面、または突起の側面、またはその両者)を変化させることにより、 n型の MISFETや CMISの高速化を図るものである。また、 CMISの高速化とレイアウト上の要請の最 適化を図るものである。
[0031] (半導体装置)
典型的なフィン型の MISFETでは、ゲート電極直下の少なくとも突起側面の一部 にチャネルが形成され、チャネル形成部分がチャネル領域をなす。チャネル電流が 流れる方向は突起側面と平行、かつ基板に対して平行である。従って、基板に平行 な結晶方位及び突起側面の結晶方位を規定すれば、電流の方向はその向き(正負) を除いて一意に確定する。突起側面は主に基板と垂直となるよう形成されているが、 半導体領域の幅 wが突起上部から下部に向かって変化するテーパー状であっても 良い。この場合、基板の法線と突起側面のなす角度は 10° 以下であることが好まし レ、。突起側面が基板の法線となす角度がこの範囲内である場は、突起側面が基板と 垂直の場合と同様の特性がでるものとして同一視することができる。本発明(特許請 求の範囲を含む)において、突起側面の結晶方位について「実質的に所定の結晶方 位を持つ」というとき、突起側面が基板に対して垂直な場合だけではなぐ上記のよう に 10°以内のテーパー形状を有する場合も含むものとする。
[0032] 本発明では、このように基板面にほぼ垂直の面をチャネル領域として利用できる形 状であれば、「突起状半導体領域」は、全体としてどのような形状になっていてもよい 。本発明において、結晶方位が規定されるのは突起状半導体領域のうち特にチヤネ ノレ領域における方位 (突起側面の結晶方位を含む)である。従って、ソース'ドレイン 領域がどのような形状になっていても、またどのような結晶方位を有していてもよい。 従って、本発明において、「突起側面」とは、突起状半導体領域のなかでも、チヤネ ルが形成される側面のみを意味する。また、突起状半導体領域は、チャネル形成可 能な側面を有するように、基板より突出していればよぐ通常は、素子を形成する半 導体層と基板とを区分けする絶縁膜より上に突出している。
[0033] 本発明の半導体装置においては、突起状の半導体領域の側面に主たるチャネル が形成される。突起状の半導体領域の上面(基板と平行な面)には、チャネルが形成 されても、されなくても良い。図 15には上面にチャネルが形成される突起状の半導体 領域の断面形状の例を、図 16には上面にチャネルが形成されない突起状の半導体 領域の断面形状の例を示す。このように突起状の半導体領域の上面にチャネルが形 成されるかどうかは、突起状半導体領域の上面にゲート絶縁膜より厚レ、絶縁膜を載 せるか載せないかで選択できる。本発明の半導体装置において更に、図 15の半導 体装置のように突起状の半導体領域のコーナー部を丸くして、電界集中を避けること ができる。 [0034] 図 15 (b)— (d)及び 16 (b)一 (d)には、ゲート電極が前述の形態と異なる構造を有 する Fin型 MISFETの例を示す。図 15及び 16は、図 1 (b)の断面図に相当する。図 15 (b)及び 16 (b)は、半導体領域 1003の下端よりも下方にゲート電極 1005の下端 が位置する構造を示す。この構造はギリシャ文字の「 π」に似てレ、ることから「 πゲート 構造」と呼ばれている。このように、ゲート電極が突起状半導体領域より低い位置まで 延在すると、ゲート電極によるチャネルの制御が強化され、オンオフ遷移の急嵯性( サブスレショールド特性)が向上し、オフ電流を抑制することができる。
[0035] 図 15 (c)及び 16 (c)は、半導体領域 1003の下面側へ一部、ゲート電極 1005が回 り込んでいる構造 (ゲート電極は突起状半導体領域の下面の一部を覆うように延在し ている構造)を示す。この構造は、ゲート電極がギリシャ文字の「Ω」に似ていることか ら「0ゲート構造」と呼ばれている。この構造によれば、ゲート電極によるチャネルの 制御が更に強化され、半導体領域の下面もチャネルとして利用できるため駆動能力 を向上させることができる。
[0036] なお、図 15 (d)及び 16 (d)では、半導体領域 1003の下面側へゲート電極 1005が 完全に回り込んでいる構造を示す。この構造は、ゲート下部分において半導体領域 が基体平面に対して空中に浮レ、た状態となり、「ゲート'オール ·アラウンド (GAA)構 造」と呼ばれている。この構造によれば、半導体領域の下面もチャネルとして利用で きるため、駆動能力を向上することができ、短チャネル特性も向上することができる。
[0037] 半導体領域を形成する半導体材料としては、単結晶シリコンを好適に用いることが でき、その他、シリコン 'ゲルマニウム、ゲルマニウムを好適に用いることができる。ま た、必要に応じて前記材料の複層膜を用いることができる。
[0038] 上記の各実施形態においては、ベース絶縁膜下の基板としてシリコン基板を用い た例を示したが、ベース絶縁膜下の半導体基板の一部で半導体領域を構成する場 合を除き、半導体領域の下に絶縁膜があれば本発明を構成することができる。例え ば、 S〇S (シリコン.オン.サファイア、シリコン'オン'スピネル)のように、半導体領域 下の絶縁体自体が支持基板となる構造を挙げることができる。絶縁性の支持基板とし ては、上記 SOSの他、石英や A1N基板が挙げられる。 SOIの製造技術 (貼り合わせ 工程および薄膜化工程)によってこれらの支持基板上に半導体領域を設けることが できる。
[0039] ゲート電極の材料としては、所望の導電率及び仕事関数を持つ導電体を用いるこ とができ、例えば、不純物が導入された多結晶シリコン、多結晶 SiGe、多結晶 Ge、 多結晶 SiC等の不純物導入半導体、 Mo、 W、 Ta、 Ti、 Hf、 Re、 Ru等の金属、 TiN 、 TaN、 HfN、 WN等の金属窒化物、コバルトシリサイド、ニッケルシリサイド、白金シ リサイド、エルビウムシリサイド等のシリサイド化合物が挙げられる。また、ゲート電極 の構造は、単結晶膜の他、半導体と金属膜との積層膜、金属膜同士の積層膜、半導 体とシリサイド膜との積層膜等の積層構造を用いることができる。
[0040] ゲート絶縁膜としては、 SiO膜、 Si〇N膜を用いることができる他、いわゆる高誘電
2
体絶縁膜 (High-K膜)を用いてもよい。 High-K膜としては、例えば、 Ta O膜、 A1
2 5 2
〇膜、 La O膜、 Hf〇膜、 Zr〇膜等の金属酸化物、 HfSi〇、 ZrSi〇、 HfAl〇、 Zr
3 2 3 2 2
Al〇等の組成式で示される複合金属酸化物を挙げることができる。また、ゲート絶縁 膜は積層構造を有していてもよぐ例えば、シリコン等の半導体層に SiOや HfSiO
2
等のシリコン含有酸化膜を形成し、その上に High— K膜を設けた積層膜を挙げること ができる。
[0041] 本発明は突起状半導体領域の結晶方位の選択に関する。なお、本明細書では、 F inを構成する半導体領域の結晶方位を、結晶座標系の中に配置される Finの方位と して表現する。これは、 Finが結晶からこのような向きで切り出されると解釈しても良い 。例えば、 Finの基板と平行な面が(001)、 Finのチャネルと平行な面が(110)であ るという状態は、図 18 (a)のように、基板と平行な面の法線がく 001 >方向、チヤネ ルと平行な面の法線がく 110 >方向であるよう Finが結晶座標系中に配置された状 態と対応する(ハッチングを施した面が基板と平行とする)。また、「回転する」とは実 空間内での実体の回転ではなぐ結晶座標系内で Finを回転することで、上記した表 現方法に基づき Finの結晶方位を変更することを意味する。例えば、図 18 (a)の状 態からく 001 >軸を中心に右ねじ方向に 45度回転することは、すなわち図で図 18 ( a)から 18 (b)の状態へ移行することであるが、これは基板と平行な面は(001)から変 更せず、チャネルと平行な面を(010)面に変更するということを意味する。
[0042] 図 10 (f)に示すように、突起状の半導体領域のゲートを含む断面形状は通常、両 側にゲートを設けることができる平行な 2つの側面を有し、典型的には方形状であり、 幅と高さの関係は通常、高さ(H) /幅 (W) = l/2— 10、例えば、 1一 2の範囲にあ る。また、典型的には突起上部は基板と平行な面を形成する。チャネル領域以外の ソース領域 Zドレイン領域では、コンタクト等のため幅が広くなつていても構わない。 また、チャネルは突起上部に更に形成されていても良レ、。この場合、チャネルは突起 側面及び上部の三つの面に形成されるため、ゲートによる制御性が向上する。
[0043] 独立したチャネル領域が一つである MISFETの突起状半導体領域の一例を図 1 を用いて説明する。図 1 (a)は絶縁体上に設けられた突起状の半導体領域を表す斜 視図、図 1 (b)は MISFETを表す斜視図である。図 1 (a)に示すように、半導体基板 1 001上に Si〇力もなる絶縁体 1002が設けられ、絶縁体 1002上に更に突起状の半
2
導体領域 1003が設けられる。半導体領域 1003はチャネル領域 (突起側面) 1008 を有する。図 1では半導体領域は直方体状である。
[0044] この半導体領域 1003には、チャネル領域及びソース/ドレイン領域が形成される 。図 1 (b)に示すように半導体領域 1003の上面及び側面にはゲート絶縁膜 1004が 設けられ、表面にゲート絶縁膜 1004が形成された半導体領域 1003を跨いで、ゲー ト電極 1005が設けられる。適当なゲート電圧をゲート電極 1005に印加することによ り、突起状の半導体領域 1003の一部に主たるチャネル領域 1008が形成される。半 導体領域 1003のゲート電極 1005を挟んだ両側の部分は高濃度の不純物が導入さ れたソース領域 1006/ドレイン領域 1007を構成している。
[0045] また、 MISFETは図 13及び 14に示されるように独立した複数のチャネル領域を有 するマルチ構造であっても良レ、。図 13の構造の MISFETでは絶縁膜 214より上部 に突出した半導体層 213,チャネル 215及びソース Zドレイン領域 217が形成されて いる。この構造では、ゲートが複数のチャネルに共通しており、また、ソース Zドレイン 領域が互いに配線により接続されている。図 14の MISFETでは絶縁膜 302より上部 に突出した半導体層 303にチャネル領域とソース Zドレイン領域(304、 332)が形成 されている。ソース/ドレイン領域 304は、複数のチャネル領域に対して共通に設け られた領域である。図 13、 14のどちらの構造でも、チャネル領域は互いに並列に接 続され、全体として一つの MISFETとして機能する。図 19はマルチ構造の MISFET を簡略化して表した上面図である。図 19 (a)の MISFETでは、各半導体層で共通化 された一対のソース/ドレイン領域 401が設けられている。図 19 (b)の MISFETで は、各半導体層にそれぞれ独立して一対のソース/ドレイン領域 401が設けられて いる。このようにマルチ構造とすることで、フィン型の MISFETは少ない面積でより大 きなチャネル幅を実現することができ、本発明のように突起側面の結晶方位を変化さ せた場合、キャリア移動特性をより効果的に向上させることができる。
[0046] 本発明のフィン型の MISFETは基板上に突起状の半導体領域を設け、半導体領 域の側面にチャネルが形成される点で従来のフィン型の MISFETと同じ構造である 。しかし、突起状半導体領域の結晶方位が異なり、キャリア移動特性が向上している 点が従来のフィン型の MISFETと異なる。
[0047] また、半導体領域は図 12 (a)で表されるように半導体基板 1001の一部であっても 、図 12 (b)で表されるように S〇I基板のシリコン単結晶層であっても良レ、。どちらの場 合であっても、基板と素子を形成する領域を区分けする絶縁層(図 12 (a)では絶縁 膜 102、図 12 (b)では絶縁膜 112)より上に突出しており、そのため、チャネル形成 可能な側面を有することができる。また、半導体領域は、半導体基板 1001の一部で あるものと、 SOI基板のシリコン単結晶層であるものとが同一半導体基板上に混在し ていても構わない。
[0048] 本発明のフィン型の MISFETでは、突起状半導体領域 1003の結晶方位はキヤリ ァの移動度に影響するが、基板 1001の結晶方位はキャリアの移動度とは無関係で ある。従って、突起状半導体領域 1003の結晶方位は基板 1001の結晶方位と一致 しなくても良い。例えば、貝占り合わせ法で製造した SOI基板を用いた場合、半導体領 域の基板に平行な面と基板の結晶方位とは異なる場合がある。本発明において「基 板に平行な面」とは突起状半導体領域 1003、さらに厳密にはチャネル領域 1008を 構成する半導体結晶の結晶方位を指しており、基板 1001の結晶方位を意味するも のではない。
[0049] ここで、望ましレ、形成方法として、複数の突起状半導体領域を、半導体単結晶基板 の一部として、または SOI基板のシリコン単結晶層を加工して形成する場合、突起状 半導体領域間ではその結晶方位は揃うことになる。このような突起状半導体領域を 用いて CMISを構成するとき、 p型の MISFETと n型の MISFETは方位の揃った突 起状の結晶に形成される。従って、 p型の MISFETと n型の MISFETでは、それぞ れの基板に平行な面の結晶方位は同一面となる。
[0050] なお、フィン型の MISFETがオン状態のときチャネルが形成される突起状領域全 体が空乏化する程度に半導体領域の幅 (突起状半導体領域の基板と平行な方向の 長さを表す。図 1及び 12 (b)の b、図 12 (a)の t。)を小さくすると、完全空乏型の MIS FETとすることができる。フィン型の MISFETは完全空乏型であっても、そうでなくて も良い。また、半導体領域は適宜不純物をドープされていても、ドープされていなくて も良い。
[0051] 本発明の半導体装置が含む n型電界効果トランジスタと p型電界効果トランジスタは 、典型的には各々ほぼ同数をペアとして CMIS回路として用いる。また、一方の導電 型 (例えば n型)の電界効果トランジスタを主として用い、他方の導電型 (例えば p形) の電界効果トランジスタは補助的に用いるような回路に用いることも可能である。また 本発明は、少なくとも半導体装置 (チップ)の一部において、上記の様な結晶方位の 関係を有する CMISその他の回路を含むものである。
[0052] 更に、本発明の半導体装置は 2以上の CMISを有していても良い。本発明の半導 体装置では MISFETは直交及び/又は平行する位置に配置させることができ、レイ アウトが容易であり少なレ、面積で多数の MISFETを配置することができる。このため 、半導体装置の高集積化が可能となる。
[0053] (第一の実施態様)
本発明の第一の実施態様では、 n型の MISFET及び p型の MISFETの基板に平 行な面は { 100}面(ただし、オフ角度が 10° 以下の面も含む。)である。また、この n 型の MISFET及び p型の MISFETの突起側面の結晶方位を基板と垂直な { 110} 面とした状態を基準状態としたとき、本実施態様の n型の MISFET及び p型の MISF ETは、基板に平行な面を固定したまま基準状態の MISFETの突起側面を基板の 法線を回転中心としてそれぞれ独立して 0° 以上 90° 以下の角度で固定又は回転 (ただし、 n型の MISFET及び p型の MISFETの回転角度が共に 0° 及び 90° の 場合を除く。)させたものに相当する。ここで、「突起側面を回転する」とは、実空間内 での実体的な回転を意味するのではなぐ MISFETの基板と平行な面の結晶方位 を固定したまま、結晶座標系内で Finを回転させることで、結晶座標系の中に配置さ れる Finの結晶方位を変更することを表す。すなわち、このような電流方向となる側面 を有するように、突起状半導体領域を形成することを意味する。このように突起側面 を固定又は回転させることによって、 CMISの遅延指標と、レイアウトを考慮した MIS FETの配置の最適化を図ることができる。
[0054] 本発明で用いた移動度のデータは、市販の半導体パラメータ 'アナライザ装置を用 レ、て計測した。測定条件はソース電圧を基準として、ドレイン電圧 0. 05V、基板電圧 0Vとした。ゲート電圧はチャネルにかかる垂直実効電界 Eeffが 10MV/cmとなるよ うにサンプノレごとに微調整し、概ね 1. 35Vとした。なお、一般的なポリシリコンゲート を用いた場合には近似的に
[0055] [数 1]
E e f f = (V g s + V t h) / 6 T o x で与えられる。ここで、 Vgs : ゲート電圧、 Vth :しきい値電圧、 Tox:ゲート 酸化膜厚、である。
[0056] また、遅延指標は CMISのキャリア移動特性を評価する指標であり、下記式によつ て算出した。
[0057] [数 2]
Figure imgf000019_0001
なお、遅延指標は、上記方法により測定した移動度を全て、突起状半導体領域の 側面が { 100 }面である n型の MISFETの移動度(240cm2ZV* s)で規格化した無 単位数として計算したものを示す。遅延指標が低い値であるほど CMISのキャリア移 動特性は良好となる。 MISFETの基板に平行な面は(100)面、(010)面、 (001)面 の何れの面であっても良い。基板と平行な面がこれらの何れの面であっても、 MISF ETの突起側面と基板とが垂直であり、且つ n型の MISFET及び p型の MISFETの 突起側面の回転角度が同一である場合には、シリコン結晶の対称性から同一の移動 度となる。
[0058] 例えば、 MISFETの基板に平行な面の結晶方位が(100)面の場合、 n型の MISF ET及び p型の MISFETの突起側面の結晶方位を(0— 11)面及び Z又は(011)面と した配置が基準状態となり、 MISFETの突起側面は < 100 >を回転中心として回転 される。また、 MISFETの基板に平行な面の結晶方位が(010)面の場合、 n型の Ml SFET及び p型の MISFETの突起側面の結晶方位を( 10_1 )面及び/又は( 101 ) 面とした配置が基準状態となり、 MISFETの突起側面はく 010 >を回転中心として 回転される。 MISFETの基板に平行な面の結晶方位が(001)面の場合、 n型の Ml SFET及び p型の MISFETの突起側面の結晶方位を (一 110)面及び/又は(110) 面とした配置が基準状態となり、 MISFETの突起側面はく 001 >を回転中心として 回転される。この際、 MISFETの基板に平行な面の結晶方位は突起側面の回転に よっても変わらない。これらの基準状態は従来の半導体装置におけるフィン型の MIS FETに該当する。
[0059] なお、 MISFETの突起側面は基板の法線を 4回対称軸とする。このため、 MISFE Tの突起側面の回転角度が 90° となった時、基準状態と同じ移動度となり、 90° か ら回転角度を更に大きくすると、移動度は 0° 力 90° まで回転角度を大きくした場 合と同様の挙動を示す。従って、 MISFETの突起側面の回転角度は 0° 以上 90° 以下で全ての回転角度(0— 360° )の移動を表せることとなる。
[0060] 基板に平行な面の結晶方位が(001)面で n型の MISFETと p型の MISFETを、垂 直に配置した場合の基準状態を図 2 (a)、平行に配置した場合の基準状態を図 2 (b) に示す。図 2 (a)及び(b)はこれらの MISFETをく 00—1 >力 見た図である。本発 明の第一の実施態様では、この図 2 (a)及び (b)の基準状態から図 3 (a)及び (b)の ように n型の MISFET2001及び p型の MISFET2002の突起側面を < 001 >を回 転中心として、独立して 0° 以上 90° 以下の角度で固定又は回転させる。
[0061] このように突起側面を回転させた場合のキャリア移動特性の変化を図 8及び 9を用 いて説明する。図 8 (a)は n型の MISFETのキャリア移動度と結晶方位との関係、図 8 (b)は p型の MISFETのキャリア移動度と結晶方位との関係、図 9は CMISの遅延指 標と結晶方位との関係を示したものである。
[0062] 図 2 (a)及び (b)の配置(従来の CMIS)の移動度は図 8 (a)中の点(A)、図 8 (b)中 の点(D)で表される。また、この時、測定した CMISの遅延指標は図 9より 8. 8である 。これに対して、図 3 (a)及び(b)のように n型の MISFET及び p型の MISFETの突 起側面を 90° まで回転していくと、 n型の MISFETの移動度は図 8 (a)の点( から 点 (B)まで単調増加した後、点(C)に至る。一方、 p型の MISFETの移動度は図 8 (b )の点(D)から点(E)まで単調減少した後、点(F)に至る。なお、点 (A)及び (D)は 基準状態の移動度、点(C)及び (F)は突起側面の回転角度が 90° の時の移動度を 表す。結晶の対称性から点 (A)と(C)の移動度、点(D)と(F)の移動度は同一となる
[0063] n型の MISFET及び p型の MISFETの突起側面の回転角度は同一であつても良 いし、異なっていても良い。また、 n型の MISFET及び p型の MISFETのいずれか一 方の突起側面のみを回転させ、他方の突起側面は固定していても良い。ただし、 n型 の MISFET及び p型の MISFETの突起側面を共に基準状態に固定した場合及び 共に基準状態から 90° 回転させた場合は含まない。この場合、シリコン結晶の対称 性から図 2 (a)及び (b)の配置に対応する従来の MISFETと同じ移動度となるからで める。
[0064] また、図 8より n型の MISFETの突起側面を固定し、 p型の MISFETの突起側面の みを回転させた場合には、基準状態に比べて p型の MISFETの移動度は低くなる。 このため、測定した CMISの遅延指標は図 9より大きくなり、キャリア移動特性は悪く なる。従って、 p型の MISFETの突起側面を回転させる場合には、基準状態よりも C MISの遅延指標を大きくしないように n型の MISFETの突起側面も回転する必要が ある。好ましくは、 n型の MISFETと p型の MISFETの突起側面は直交又は平行とな る配置を保ったまま、これらの MISFETの突起側面を同じ角度だけ回転させるのが 良レ、。このように同じ角度だけ回転させることによって、これらの MISFETのレイアウト が容易であり、 CMISの遅延指標を小さくすることができる。
[0065] 一つの好ましい形態は n型の MISFET及び p型の MISFETの突起側面の回転角 度が共に 45° の場合である。図 2 (a)及び (b)の配置を基準状態とした場合、この配 置の半導体装置をく 00-1 >から見た図を図 4 (a)及び (b)に示す。図 4 (a)では n型 の MISFET2001の突起側面の結晶方位は(010)面、 p型の MISFET2002の突 起側面の結晶方位は(100)面となる。図 4 (b)では n型の MISFET2001と p型の Ml SFET2002の突起側面の結晶方位は共に(010)面となる。また、この場合の n型の MISFET及び p型の MISFETの移動度は図 8 (a)の点(B)及び図 8 (b)の点(E)で 表される。
[0066] 図 8 (a)より点 (B)の状態は、基準状態(点(A) )の時と比べて n型の MISFETの移 動度が高くなつており、測定した CMISの遅延指標は図 9より 8. 8 (基準状態)から 8. 5へと低下している。従って、 CMISのキャリア移動特性は従来の CMISと比べて向 上している。また、 n型の MISFET及び p型の MISFETの突起側面が互いに垂直又 は平行となるように配置されているため、 MISFETのレイアウトが容易となり、 MISFE Tの配置を最適化することができる。
[0067] また、図 8 (b)より、 p型の MISFETの突起側面を基準状態から 0° 以上 10° 以下 の角度で固定又は回転させると、 p型の MISFETの移動度は図 8 (b)中の点(D)に 固定されるか点(D)近傍に存在し、高い移動度を示す。 p型の MISFETの突起側面 をこのようにしつつ n型の MISFETの突起側面を 90° 以下の角度で回転させると、 移動度は図 8 (a)の点 (A)から点(B)を経由して点(C)に至る。このため、基準状態と 比べて n型の MISFETの移動度を大きくすることができる。また、 CMISの遅延指標 も基準状態と比べて小さくすることができ、 CMISのキャリア移動特性は従来の CMI Sと比べて向上する。
[0068] 異なる好ましい一つの実施形態では、 n型の MISFET及び p型の MISFETの移動 度が好ましい範囲となる角度で n型の MISFET及び p型の MISFETの突起側面を 回転させる。好ましくは、 p型の MISFETの突起側面を基準状態から 0° 以上 10° 以下の角度で固定又は回転させ、 n型の MISFETの突起側面の回転角度が 45° で
あるのが良い。
[0069] 図 2 (a)及び (b)の配置を基準状態とした場合のこの配置の半導体装置をく 00—1
>から見た図を図 5 (a)及び (b)に示す p型の MISFETの突起側面は基準状態に固 定)。図 5 (a)では n型の MISFET2001の突起側面の結晶方位は(010)面、 p型の MISFET2002の突起側面の結晶方位は(110)面となる。また、図 5 (b)では、 n型 の MISFET2001の突起側面の結晶方位は(010)面、 p型の MISFET2002の突 起側面の結晶方位は (一 110)面となる。この場合の n型の MISFETの移動度は図 8 ( a)の点(B)、 p型の MISFETの移動度は図 8 (b)の点(D)で表される。
[0070] 図 8より基準状態(点 (A) )の時と比べて n型の MISFETの移動度が高くなつており 、 p型の MISFETの移動度は点(D)の移動度と同じである。従って、測定した CMIS の遅延指標は図 9より 8. 8 (基準状態)から 4. 7に低下し、 CMISのキャリア移動特性 は従来の CMISと比べて向上する。
[0071] なお、図 5 (a)及び (b)の配置は、図 2 (a)及び (b)の配置から 1回又は複数回の突 起側面の回転操作によって得ることができる。例えば、図 2 (a)及び (b)の配置にお いて n型の MISFETの突起側面のみを 45° 回転させることによって図 5 (a)及び(b) の配置とすることができる。この場合、 n型の MISFETの移動度は図 8 (a)を通って点 (A)点から点(B)へ移動する。一方、 p型の MISFETの移動度は図 8 (b)中の点(D) 点から移動しない。このように突起側面を回転させることによって、キャリア移動特性 に優れた CMISを得ることができる。
[0072] また、図 2 (a)及び (b)の配置から突起側面の回転によって図 4 (a)及び (b)の配置 とした後、更に p型の MISFETの突起側面を 45° 回転させることによって図 5 (a)及 び(b)の配置とすることもできる。この場合、 n型の MISFETの移動度は図 8 (a)上を 点 (A)から点(B)へ移動する。一方、例えば、図 5 (b)の状態を得る場合は、 p型の M ISFETの移動度は図 8 (b)上を点(D)から点(E)へ移動した後(図 2から図 4への突 起側面の回転)、図 2 (a)を基準状態とした場合では点(F)に至り、図 2 (b)を基準状 態とした場合では点(D)に戻る(図 4から図 5への突起側面の回転)。このように突起 側面を回転させることによって、キャリア移動特性に優れた CMISを得ることができる
[0073] 本実施形態では n型及び p型の MISFETの基板と平行な面の結晶方位は { 100} 面となる。好ましくは、 n型の MISFETの突起状半導体領域の結晶方位は、その側 面が実質上基板と平行な面と直交する { 100}面であるのが良い。この場合、図 8 (a) より n型の MISFETの移動度は最大となる。このため、 p型の MISFETの突起状半 導体領域側面の結晶方位がどの面であっても、 n型の MISFET及び p型の MISFE Tの突起状半導体領域側面の結晶方位が共に実質上 { 110}面である場合と比べて CMISの遅延指標は低下する。従って、キャリア移動特性に優れた CMISを得ること ができる。
[0074] 好ましくは、 p型の MISFETの突起状半導体領域の結晶方位は、その側面が実質 上基板と平行な面と直交する { 110}面であり、 n型の MISFETの突起状半導体領域 の結晶方位は、この { 110}面と異なるのが良レ、。この場合、図 8 (b)より p型の MISF ETの移動度は最大値となる。また、図 8 (a)より n型の MISFETの移動度は最低値( 図 8 (a)中の点(A)及び(C) )とはならなレ、。このため、 n型の MISFET及び p型の Ml SFETの突起状半導体領域側面の結晶方位が共に実質上 { 110}面である場合と比 ベて CMISの遅延指標は低下する。従って、キャリア移動特性に優れた CMISを得 ること力 Sできる。
[0075] より好ましくは、 n型の MISFETの突起状半導体領域側面の結晶方位が、実質上 基板と平行な面と直交する { 100}面であり、且つ p型の MISFETの突起状半導体領 域側面の結晶方位が、実質上基板と平行な面と直交する { 110}面であるのが良い。 このとき、図 8 (a)及び(b)より n型の MISFET及び p型の MISFETの移動度が最大 値となるため、 CMISの遅延指標は低い値となり、キャリア移動特性に優れた CMIS を得ること力 Sできる。
[0076] 第一の実施形態においては、基板と平行な面が { 100}であることから、フィン型トラ ンジスタと平面型トランジスタを同一基板上で混在させる場合において優位性を持つ 。その第一の理由は、平面型トランジスタ力、ら成る CMIS、及び n型 MISFETの移動 度は、 { 100}面に形成されるとき最も有利となるからである。第二の理由は、 { 100} 面上の MISFETは従来の平面 MISFETと設計上の互換性を有することである。図 1 7にフィン型トランジスタと平面型トランジスタを混在させた構造の一例を示す。
[0077] (第二の実施態様)
本発明の第二の実施態様では、 n型の MISFETおよび p型の MISFETの基板と 平行な面(ただし、オフ角度が 10° 以下の面も含む。)の結晶方位と、 n型の MISFE Tの突起側面の結晶方位と、 ρ型の MISFETの突起側面の結晶方位と、の 3者がそ れぞれ互いに直行する { 100}面となる状態を基準状態とする。そして、 η型の MISF ΕΤの突起側面の法線を回転中心として、 η型の MISFET及び ρ型の MISFETの基 板と平行な面及び p型の MISFETの突起側面を一 45° 以上 45° 以下の角度で固 定又は回転させたものに相当する。ここで、「回転させる」とは、実空間内での実体の 回転ではなぐ n型の MISFETと p型の MISFETの相対的な結晶方位の配置を固定 したまま、結晶座標系内で Finを回転することで、 Finの結晶方位を変更することを意 味する。すなわち、このような電流方向となる側面を有するように、突起状半導体領域 を形成することを意味する。
[0078] また、このような結晶方位を有することによって、 CMISは高いキャリア移動特性を 有すること力 Sできる。また、 n型の MISFETと p型の MISFETは突起側面が互いに直 交するように配置されているため、 MISFETのレイアウトが容易な最適な配置を設計 すること力 Sできる。
[0079] 基準状態の MISFETの基板に平行な面は(100)面、(010)面、(001)面の何れ の面であっても良い。基板と平行な面がこれらの何れの面であっても、 n型の MISFE T及び p型の MISFETの基板と平行な面(ただし、オフ角度が 10° 以下の面も含む 。)の結晶方位及び突起側面の結晶方位が互いに直交する { 100}面であり、これら の面は結晶の対称性から等価である。
[0080] 例えば、 MISFETの基板に平行な面の結晶方位が(100)面、 n型の MISFETの 突起側面の結晶方位が(001)面、 p型の MISFETの突起側面の結晶方位が(010) 面の基準状態ではく 001 >が回転中心となる。 MISFETの基板に平行な面の結晶 方位が(010)面、 n型の MISFETの突起側面の結晶方位が(100)面、 p型の MISF ETの突起側面の結晶方位が(001)面の基準状態ではく 100 >が回転中心となる。 また、 MISFETの基板に平行な面の結晶方位が(001)面、 n型の MISFETの突起 側面の結晶方位が(010)面、 p型の MISFETの突起側面の結晶方位が(100)面の 基準状態ではく 010 >が回転中心となる。
[0081] p型の MISFETの突起側面は n型の MISFETの突起側面の法線を 4回対称軸と する。このため、 p型の MISFETの突起側面の回転角度が 45° となった時、 p型の MISFETの移動度は一 45° のときと同じとなり、 45° から更に回転角度を大きくする と、移動度は一 45° 力 角度を大きくした場合と同様の挙動を示す。従って、 p型の MISFETの突起側面の回転角度は- 45° 以上 45° 以下で全ての回転角度(一 18 0— 180° )の移動度を表せることとなる。
[0082] また、 n型の MISFETの突起側面の法線を回転中心としているため、回転に伴い p 型の MISFETの突起側面及び MISFETの基板に平行な面の結晶方位(面の法線 の向き、つまり、「面方位」)は変化するが、 n型の MISFETの突起側面の結晶方位 は変化しない。
[0083] 好ましくは、突起側面を基準状態に固定するのが良い。 MISFETの基板に平行な 面の結晶方位が(001)面、 n型の MISFETの突起側面の結晶方位が(010)面、 p 型の MISFETの突起側面の結晶方位が(100)面の基準状態を < 00_1 >から見た 図を図 4に示す。この基準状態から突起側面を回転させた場合のキャリア移動特性 の変化を説明する。図 8 (c)は p型の MISFETの移動度と結晶方位との関係を示した ものである。尚、図 8 (b)は基板の法線を回転中心として p型の MISFETの突起側面 を回転させているのに対して、図 8 (c)は n型の MISFETの突起側面の法線を回転 中心として突起側面を回転させており、図 8 (b)と図 8 (c)とでは突起側面の回転中心 が異なる。基準状態にあるとき、 n型の MISFETの移動度は図 8 (a)の点(B)、 p型の MISFETの移動度は図 8 (c)の点(H)で表される。また、この時、測定した CMISの 遅延指標は図 9より 8· 5である。図 8 (b)の点(E)と図 8 (c)の点(H)に対応する面は 等価である。
[0084] これに対して、 n型の MISFETの突起側面の法線を回転中心として、突起側面を一
45° 以上 0° 未満の角度で回転させると、 n型の MISFETの突起側面の結晶方位 は変化しないため、移動度は図 8 (a)の点(B)から移動しなレ、。一方、 p型の MISFE Tのキャリア移動度は、図 8 (c)の(G)に至る。
[0085] 点(G)は突起側面を一 45° 回転させた場合、点(H)は基準状態の p型の MISFE Tの移動度を表す。一方、突起側面を 0° を超え 45° 以下の角度で回転させると、 p 型の MISFETのキャリア移動度は、図 8 (c)の点(H)を起点として点(I)へ至る。点(I )は突起側面を 45° 回転させた場合の p型の MISFETの移動度を表す結晶の対称 性から点(G)の移動度は点(I)の移動度と同一である。点(I)は突起側面を 45° 回 転させた場合の p型の MISFETの移動度を表す。
[0086] また、好ましくは n型の MISFET及び p型の MISFETの突起側面を 45° 回転させ るのが良い。図 4の配置を基準状態とした場合の突起側面を 45° 回転させた配置の 半導体装置を図 6に示す。図 6はこの配置をく 101 >からみた図である。この配置で は n型の MISFET2001の突起側面の結晶方位は(010)面、 p型の MISFET2002 の突起側面の結晶方位は(10— 1)面、 MISFETの基板と平行な面の結晶方位は(1 01)面となる。この場合の n型の MISFETの移動度は図 8 (a)の点(B)、 p型の MISF ETの移動度は図 8 (c)の点(I)で表される。また、測定した CMISの遅延指標は図 9 より 6. 1となり、図 2の配置に対応する従来の CMISの遅延指標よりも低くなる。従つ て、 CMISのキャリア移動特性は従来の CMISと比べて向上する。尚、回転角度は— 45° であっても同様の結果が得られる。
[0087] 好ましくは、 n型の MISFETの突起状半導体領域の結晶方位は、その側面が実質 上 { 100}面であり、 n型と p型の MISFETの突起状半導体領域の側面が直交するの が良い。この場合、 MISFETの基板と平行な面及び p型の MISFETの突起側面の 結晶方位は、ともに { 100}面とすること、又はともに { 110}面とすることが可能となる。 また、この時、図 8 (a)より n型の MISFETの移動度は最大値となるため、 CMISの遅 延指標は低い値となり、キャリア移動特性に優れた CMISを得ることができる。
[0088] より好ましくは、 n型の MISFETの突起状半導体領域の結晶方位は、基板と平行な 面が実質上 { 110}面、その側面が実質上この { 110}面と直交する { 100}面であり、 p 型の MISFETの突起状半導体領域の結晶方位は、基板と平行な面が実質上 { 110 }面、その側面が実質上この { 110}面と直交する { 110}面であるのが良レ、。このとき、 図 8 (a)及び(c)より、 n型の MISFET及び p型の MISFETの移動度が最大値となる ため、 CMISの遅延指標は低い値となり、キャリア移動特性に優れた CMISを得るこ とができる。
[0089] (第三の実施態様)
本発明の第三の実施態様では、 n型の MISFET及び p型の MISFETの基板と平 行な面(ただし、オフ角度が 10° 以下の面も含む。)の結晶方位を { 100}面、 n型電 界効果トランジスタ及び p型電界効果トランジスタの突起側面の結晶方位を { 110}面 とし、且つこれら三者の面がそれぞれ互いに直交する状態を基準状態とする。そして 、 ρ型の MISFETの突起側面の法線を回転中心として、 n型の MISFET及び p型の MISFETの基板と平行な面及び n型の MISFET突起側面を 90° 以下の角度で回 転させたものに相当する。
[0090] ここで、「回転させる」とは、実空間内での実体の回転ではなぐ n型の MISFETと p 型の MISFETの相対的な結晶方位の配置を固定したまま、結晶座標系内で Finを 回転することで、 Finの結晶方位を変更することを意味する。すなわち、このような電 流方向となる側面を有するように、突起状半導体領域を形成することを意味する。こ の回転によって本実施形態の MISFETの基板と平行な面及び n型の MISFET突起 側面の結晶方位は、基準状態と異なる結晶方位となる。また、このような結晶方位を 有することによって、 CMISは高いキャリア移動特性を有することができる。また、 n型 の MISFETと p型の MISFETは突起側面が互いに直交するように配置されているた め、 MISFETのレイアウトが容易な最適な配置を設計することができる。
[0091] 基準状態の MISFETの基板に平行な面は(100)面、(010)面、(001)面の何れ の面であっても良い。基板と平行な面がこれらの何れの面であっても、 n型の MISFE T及び p型の MISFETの突起側面の結晶方位が { 110}面であって、且つこれらの面 が直交しており、これらの MISFETの回転角度が同一の場合はシリコン結晶の対称 性から同一の移動度となる。
[0092] 例えば、 MISFETの基板に平行な面の結晶方位が(100)面、 n型の MISFETの 突起側面の結晶方位が(0— 11)面、 p型の MISFETの突起側面の結晶方位が(01 1)面の基準状態ではく 011 >が回転中心となる。 MISFETの基板に平行な面の結 晶方位が(010)面、 n型の MISFETの突起側面の結晶方位が(10_1)面、 p型の M ISFETの突起側面の結晶方位が(101)面の基準状態ではく 101 >が回転中心と なる。また、 MISFETの基板に平行な面の結晶方位が(001)面、 n型の MISFETの 突起側面の結晶方位が (一 110)面、 p型の MISFETの突起側面の結晶方位が(11 0)面の基準状態ではく 110 >が回転中心となる。
[0093] また、 p型の MISFETの突起側面の法線を回転中心とした場合、回転に伴い n型 の MISFETの突起側面及び MISFETの基板に平行な面の結晶方位は変化するが 、 p型の MISFETの突起側面の結晶方位は変化しないが、基板と平行な面の結晶 方位は変化する。
基準状態力、ら P型の MISFETの突起側面の法線を回転中心として n型の MISFET の突起側面を回転させた場合のキャリア移動特性の変化を説明する。図 8 (d)は、図 8 (a)の基板法線を回転中心として回転させた場合の n型の MISFETの回転角度が 0— 45° の移動度を示したものに相当する。
[0094] 基準状態にあるとき、 n型の MISFETの移動度は図 8 (d)の点(A)、 p型の MISFE Tの移動度は図 8 (b)の点(D)で表される。また、この時、測定した CMISの遅延指標 は図 9より 8. 8である。
[0095] p型の MISFETの突起側面の法線を回転中心として、 n型の MISFETの突起側面 を 90° 以下の角度で回転させると、 p型の MISFETの突起側面の結晶方位は変化 せず、基板と平行な面の結晶方位が変化する。 { 110}面は 2回対称なので、面方位 が同一でも電流の面内での向きによって移動度が変化する。このため、 p型の MISF ETの移動度は図 8 (b)の点線の方向に沿って点(D)から点(G)に移動する。また、 n 型の MISFETのキャリア移動度は図 8 (d)の点(A)を起点として、直線上を変化しつ つ回転角度が 90° になったとき点(B)に至る。ここで、基板法線を回転中心として回 転させた場合には、 45° の回転で点(A)から点 (B)に至るが、 p型の MISFETの突 起側面の法線を回転中心として回転させた場合には 90° の回転で点 (A)から点 (B )に至る。このように突起側面を回転させた場合、 p型の MISFETの移動度は基板の 法線を回転中心として、突起側面を回転させた場合と比べて、 n型の MISFETのキ ャリア移動度は高くなる。従って、測定した CMISの遅延指標は小さくなり、高いキヤリ ァ移動特性を達成することができる。
[0096] 好ましくは n型の MISFETの突起側面を 90° 回転させるのが良い。図 2の配置を 基準状態とした場合の n型の MISFET及び p型の MISFETの突起側面を 90° 回転 させた配置の半導体装置を図 7に示す。図 7はこの配置をく— 110 >からみた図であ る。この配置では n型の MISFET2001の突起側面の結晶方位は(001)面、 p型の MISFET2002の突起側面の結晶方位は(110)面、 MISFETの基板と平行な面の 結晶方位は (一 110)面となる。この場合、 n型の MISFETの移動度は図 8 (d)の点(B )、 p型の MISFETの移動度は図 8 (b)の点(G)で表される。また、測定した CMISの 遅延指標は図 9より 6. 1 (図 6の結果に相当。)となり、図 2の配置に対応する従来の CMISの遅延指標よりも低くなる。従って、 CMISのキャリア移動特性は従来の CMI Sと比べて向上する。
[0097] 好ましくは p型の MISFETの突起状半導体領域の結晶方位は、その側面が実質上
{ 110}面であり、 n型 MISFETの突起状半導体領域の側面が実質上この { 110}面と 直交し、且つその側面の結晶方位が実質上 { 110}面とは異なるのが良い。この場合 、 MISFETの基板と平行な面の面の結晶方位を { 110}面、 p型の MISFETの突起 側面の結晶方位を { 100}面とすることが可能となる。また、この時、図 8 (c)より p型の MISFETの移動度は最大値となるため、 CMISの遅延指標は低い値となり、キャリア 移動特性に優れた CMISを得ることができる。
[0098] (第四の実施態様)
第一の実施態様において、 n型の MISFETと p型の MISFETの突起側面は平行と なる配置を保ったまま、これらの MISFETの突起側面を同じ 45度だけ回転させた場 合と同等の効果を、以下のようにしても得ることができる。すなわち、 n型の MISFET 及び p型の MISFETの基板に平行な面は { 100}面(ただし、オフ角度が 10° 以下 の面も含む。)であり、この n型の MISFET及び p型の MISFETの突起側面の結晶 方位は同一(突起側面は互いに平行)であり、かっこの MISFETの突起側面の結晶 方位は基板と垂直な { 100}面とした状態を基準状態とする。第四の実施態様は、こ の基準状態から、 n型及び p型の MISFETの突起側面の法線を回転中心として、 n 型の MISFET及び p型の MISFETの基板と平行な面を 0° 以上 90° 以下の角度 で固定又は回転させたものに相当する。
ここで、「基板と平行な面を回転する」とは、実空間内での実体の回転ではなぐ n型 の MISFETと p型の MISFETの突起側面の面方位を固定したまま、結晶座標系内 で Finを回転することで、 Finの結晶方位を変更することを意味する。
[0099] 本実施態様においては、 n型の MISFETと p型の MISFETのチャネルとなる面はと もに { 100}面に固定され、電流が流れる向きは { 100}面内でのみ変化する。 { 100} 面内での移動度は、結晶の 4回対称性に起因して電流の向きへの依存性が存在し なレ、。よって本実施の態様は、第一の実施態様において、 n型の MISFETと p型の MISFETの突起側面は平行となる配置を保ったまま、これらの MISFETの突起側 面を同じ 45度だけ回転させ場合と同等の効果を得ることができる。
[0100] (半導体装置の製造方法)
本発明に係る半導体装置は、従来の半導体装置の製造方法を用いて製造すること 力 Sできる。しかし、異なる結晶方位の基板を用いている点、フォトリソグラフィーを行な う際に所定の角度だけ回転させた配置でレジストマスクを形成する点が、従来の製法 と異なる。
[0101] 図 10に図 12 (b)に示したように突起の一部が SOI基板の単結晶シリコン層の一部 であるフィン型の MISFETを含む半導体装置の製造工程を示す。まず、貼り合わせ 又は SIMOXによってシリコンウェハ基板 3001、 SiO酸化膜 3002及び単結晶シリコ
2
ン膜 3003からなる SOI基板を製造する。単結晶シリコン膜 3003の結晶方位は、第 一の実施形態では { 100}面、第二及び第三の実施形態では所定の結晶方位のもの を用いる。次に、 SOI基板の表面上に熱酸化法によって SiO膜 3004形成する(図 1
2
0 (a) )。更に、不純物を単結晶シリコン膜 3003にイオン注入し、半導体領域を形成 する(図 10 (b) )。その後、エッチングによって SiO膜 3004除去する(図 10 (c) )。な
2
お、上記したイオン注入を省略することで、チャネルに意図的には不純物を導入しな い MISFET (ノンドープ.チャネル MISFET)としても良い。また、その前後の熱酸化 膜形成と除去は省略しても良い。
[0102] 続いて、単結晶シリコン膜 3003の全面にフォトレジストを塗布し、フォトリソグラフィ 一を用いて、レジストマスク 3005を形成する(図 10 (d) )。次に、このレジストマスク 30 05をエッチングマスクとして、単結晶シリコン膜 3003を異方性ドライエッチングした後 、レジストマスク 3005を除去し、 SiO膜 3002上に所定の高さの突起 3006を形成す
2
る(図 10 (e) )。このとき、適宜 SiO膜を異方性エッチングにより下方向に、あるいは
2
等方性エッチングにより下方向とその横方向に、後退させることにより、それぞれ πゲ ート型の FinFETと Ωゲート型の FinFETを形成することができる。
[0103] 次に、熱酸化法によって単結晶シリコンの突起 3006の表面に薄い Si〇膜 3007を
2 形成する。更に、この Si〇膜 3007上に CVD法によってポリシリコン膜を形成し、不
2
純物拡散で導電性としてから、所定パターンに選択的エッチングを施してゲート電極 3008を形成する。次に、このゲート電極 3008をマスクとして不純物を単結晶シリコン 力 なる突起 3006にドープし、ソース領域及びドレイン領域を形成する(図 10 (f) )。
[0104] 図 11に図 12 (a)に示したように突起の一部がシリコンウェハ基板の一部であるフィ ン型の MISFETを含む半導体装置の製造工程を示す。まず、単結晶シリコン膜 300 3の表面上に熱酸化法によって Si〇酸化膜 3004形成する(図 l l (a) )。単結晶シリ
2
コン膜 3003の結晶方位は、第一の実施形態では { 100}面、第二及び第三の実施 形態では所定の結晶方位のものを用いる。次に、不純物を単結晶シリコン膜 3003に イオン注入し、半導体領域を形成する(図 11 (b) )。続いて SiO酸化膜 3004上に低
2
圧 CVD法によりシリコン窒化膜 3009を形成する(図 11 (c) )。なお、上記したイオン 注入を省略することで、チャネルに意図的には不純物を導入しない MISFET (ノンド ープ ·チャネル MISFET)としても良レ、。また、その前後の熱酸化膜形成と除去は省 略しても良い。
[0105] 続いて、シリコン窒化膜 3009の全面にフォトレジストを塗布し、フォトリソグラフィー を用いて、 MOSFETを形成する部位にのみにフォトレジストを残しレジストマスク 30 05を形成する(図 11 (d) )。次に、このレジストマスク 3005をエッチングマスクとして、 単結晶シリコン膜 3003を異方性ドライエッチングした後、レジストマスク 3005を除去 し、基板上に所定の高さの突起 3006を形成する(図 11 (e) )。
[0106] 次に、低圧 CVD法により突起 3006、 SiO酸化膜 3004及びシリコン窒化膜 3009
2
からなる突起を全て坦め込む膜厚まで Si〇酸化膜 3010を形成する(図 11 (f) )。続
2
いて、 SiO酸化膜 3010を所定の厚さまでエッチングし、素子分離用絶縁膜 3011を
2
形成する(図 11 (h) )。
[0107] 次に、必要に応じて突起上の絶縁膜 3004と 3009を除去した後、熱酸化法によつ て突起の表面に薄い Si〇酸化膜 3007を形成する。更に、この Si〇酸化膜 3007上
2 2
に CVD法によってポリシリコン膜を形成し、不純物拡散で導電性としてから、所定パ ターンに選択的エッチングを施してゲート電極 3008を形成する。次に、このゲート電 極 3008をマスクとして不純物を単結晶シリコンからなる突起 3006にドープしソース 領域及びドレイン領域を形成する(図 11 (f) )。
[0108] 図 11 (g)において突起上の絶縁膜を除去しないことで、フィン上部とゲート電極 30 08との間にゲート絶縁膜より厚い絶縁膜を形成することができる。フィンが SOI上に ある場合でも、同様の手法によりフィン上部とゲート電極との間にゲート絶縁膜より厚 レ、絶縁膜を形成することができる。
[0109] 図 17に Fin型 MISFETと平面型 MISFETとを混在させた半導体装置(バルタ基板 型)の製造方法を示す。途中までの工程(図 17 (a)、 (b) )は、図 11 (a) (f)の工程 と同様である。その後、図 11の製造方法では、フィン以外の部分に設けられた絶縁 膜 3010を後退させるが、図 17の製造方法では、絶縁膜 3010を、フィン型トランジス タを構成する部分では後退させるが、平面型トランジスタを構成する部分では後退さ せない点が異なる(図 17 (c) )。
[0110] 次に、図 17の製造方法では、フィン型トランジスタを構成する部分ではフィンの上 面および側面上に、平面型トランジスタを構成する部分ではフィンの上面に絶縁膜を 設ける。更に、フィン型トランジスタを構成する部分ではフィンを挟むように、平面型ト ランジスタを構成する部分ではフィンの上面上にゲート電極を設ける(図 17 (d) )。図 17 (e)はこの混載型トランジスタを上面から見た図である。

Claims

請求の範囲
[1] 側面にチャネルを形成する突起状の半導体領域と、少なくとも該側面上に絶縁膜 を介して設けられたゲート電極と、該ゲート電極をはさむように半導体領域内に形成 されたソース領域およびドレイン領域と、を備えた n型電界効果トランジスタおよび p型 電界効果トランジスタとを含む半導体装置であって、
該 n型電界効果トランジスタを構成する突起状半導体領域の結晶方位は、その基 板と平行な面が実質上 { 100}面であり、その側面が実質上該 { 100}面と直交する { 1 00}面であり、
該 p型電界効果トランジスタを構成する突起状半導体領域の結晶方位は、その基 板と平行な面が実質上 { 100}面である、
という条件を満足する半導体装置。
[2] 側面にチャネルを形成する突起状の半導体領域と、少なくとも該側面上に絶縁膜 を介して設けられたゲート電極と、該ゲート電極をはさむように半導体領域内に形成 されたソース領域およびドレイン領域と、を備えた n型電界効果トランジスタおよび p型 電界効果トランジスタとを含む半導体装置であって、
該 P型電界効果トランジスタを構成する突起状半導体領域の結晶方位は、その基 板と平行な面が実質上 { 100}面であり、その側面が実質上該 { 100}面と直交する { 1 10}面であり、
該 n型電界効果トランジスタを構成する突起状半導体領域の結晶方位は、その基 板と平行な面が実質上 { 100}面であり、その側面が実質上該 { 100}面と直交する { 1 10}面とは異なる、
という条件を満足する半導体装置。
[3] 側面にチャネルを形成する突起状の半導体領域と、少なくとも該側面上に絶縁膜 を介して設けられたゲート電極と、該ゲート電極をはさむように半導体領域内に形成 されたソース領域およびドレイン領域と、を備えた n型電界効果トランジスタおよび p型 電界効果トランジスタとを含む半導体装置であって、
該 n型電界効果トランジスタを構成する突起状半導体領域の結晶方位は、その基 板と平行な面が実質上 { 100}面であり、その側面が実質上該 { 100}面と直交する { 1 00}面であり、
該 p型電界効果トランジスタを構成する突起状半導体領域の結晶方位は、その基 板と平行な面が実質上 { 100}面であり、その側面が実質上該 { 100}面と直交する { 1 10}面である、
という条件を満足する半導体装置。
[4] 側面にチャネルを形成する突起状の半導体領域と、少なくとも該側面上に絶縁膜 を介して設けられたゲート電極と、該ゲート電極をはさむように半導体領域内に形成 されたソース領域およびドレイン領域と、を備えた n型電界効果トランジスタおよび p型 電界効果トランジスタとを含む半導体装置であって、
該 n型電界効果トランジスタを構成する突起状半導体領域の結晶方位は、その側 面が実質上 { 100}面であり、
該 P型電界効果トランジスタを構成する突起状半導体領域の側面が実質上、該 { 10 0}面と直交する、
という条件を満足する半導体装置。
[5] 側面にチャネルを形成する突起状の半導体領域と、少なくとも該側面上に絶縁膜 を介して設けられたゲート電極と、該ゲート電極をはさむように半導体領域内に形成 されたソース領域およびドレイン領域と、を備えた n型電界効果トランジスタおよび p型 電界効果トランジスタとを含む半導体装置であって、
該 p型電界効果トランジスタを構成する突起状半導体領域の結晶方位は、その側 面が実質上 { 110}面であり、
該 n型電界効果トランジスタを構成する突起状半導体領域の側面が実質上該 { 110 }面と直交し、かつ該側面の結晶方位は実質上 { 110}面とは異なる、
という条件を満足する半導体装置。
[6] 側面にチャネルを形成する突起状の半導体領域と、少なくとも該側面上に絶縁膜 を介して設けられたゲート電極と、該ゲート電極をはさむように半導体領域内に形成 されたソース領域およびドレイン領域と、を備えた n型電界効果トランジスタおよび p型 電界効果トランジスタとを含む半導体装置であって、
該 n型電界効果トランジスタを構成する突起状半導体領域の結晶方位は、その基 板と平行な面が実質上 { 110}面であり、その側面が実質上該 { 110}面と直交する { 1 00}面であり、
該 P型電界効果トランジスタを構成する突起状半導体領域の結晶方位は、その基 板と平行な面が実質上 { 110}面であり、その側面が実質上該 { 110}面と直交する { 1 10}面である、
という条件を満足する半導体装置。
[7] 側面にチャネルを形成する突起状の半導体領域と、少なくとも該側面上に絶縁膜 を介して設けられたゲート電極と、該ゲート電極をはさむように半導体領域内に形成 されたソース領域およびドレイン領域と、を備えた n型電界効果トランジスタおよび p型 電界効果トランジスタとを含む半導体装置であって、
該 n型電界効果トランジスタを構成する突起状半導体領域の結晶方位は、その基 板と平行な面が実質上 { 100}面であり、その側面が実質上該 { 100}面と直交し、か つ { 110}面とは異なり、
該 p型電界効果トランジスタを構成する突起状半導体領域の結晶方位は、その基 板と平行な面が実質上 { 100}面であり、その側面が該 n型電界効果トランジスタを構 成する突起状半導体領域の側面と実質上平行又は直交する、
という条件を満足する半導体装置。
[8] 前記 n型電界効果トランジスタを構成する突起状半導体領域と前記 p型電界効果ト ランジスタを構成する突起状半導体領域の基板と平行な面の結晶方位が同一である ことを特徴とする請求項 1から 7のいずれかに記載の半導体装置。
[9] 前記 n型電界効果トランジスタを構成する突起状半導体領域と、前記 p型電界効果 トランジスタを構成する突起状半導体領域とが CMIS回路を構成する請求項 1から 8 のレ、ずれかに記載の半導体装置。
[10] 基板と平行な面の結晶方位が { 100}面 (ただし、オフ角度が 10° 以下の面も含む
。)であり側面にチャネルを形成する突起状の半導体領域と、少なくとも該側面上に 絶縁膜を介して設けられたゲート電極と、該ゲート電極を挟むように半導体領域内に 形成されたソース領域及びドレイン領域と、を備えた n型電界効果トランジスタ及び p 型電界効果トランジスタを有する半導体装置であって、 該 n型電界効果トランジスタ及び p型電界効果トランジスタは、
突起側面の結晶方位を基板と垂直な { 110}面とした状態を基準状態とするとき、 該基準状態の n型電界効果トランジスタ及び p型電界効果トランジスタの突起側面 を独立して、基板の法線を回転中心として 0° 以上 90° 以下の角度で固定又は回 転 (ただし、該 n型電界効果トランジスタ及び p型電界効果トランジスタの回転角度が 共に 0° 及び 90° の場合を除く。)させた結晶方位を有することを特徴とする半導体
[11] 前記 n型電界効果トランジスタ及び p型電界効果トランジスタは、前記基準状態の n 型電界効果トランジスタ及び P型電界効果トランジスタの突起側面を同じ角度だけ回 転させた結晶方位を有することを特徴とする請求項 10記載の半導体装置。
[12] 前記 n型電界効果トランジスタ及び p型電界効果トランジスタの突起側面の基準状 態からの回転角度が共に 45° であることを特徴とする請求項 11に記載の半導体装 置。
[13] 前記 P型電界効果トランジスタは、基準状態の突起側面を 0° 以上 10° 以下の角 度で固定又は回転させた結晶方位を有することを特徴とする請求項 10に記載の半
[14] 前記 n型電界効果トランジスタの突起側面の基準状態からの回転角度が 45° であ ることを特徴とする請求項 13記載の半導体装置。
[15] 側面にチャネルを形成する突起状の半導体領域と、少なくとも該側面上に絶縁膜 を介して設けられたゲート電極と、該ゲート電極を挟むように半導体領域内に形成さ れたソース領域及びドレイン領域と、を備えた n型電界効果トランジスタ及び p型電界 効果トランジスタを有する半導体装置であって、
該 n型電界効果トランジスタ及び p型電界効果トランジスタの基板と平行な面(ただ し、オフ角度が 10° 以下の面も含む。)の結晶方位及び突起側面の結晶方位をそれ ぞれ互いに直交する { 100}面とした状態を基準状態とするとき、
該 n型電界効果トランジスタ及び p型電界効果トランジスタは、
該 n型電界効果トランジスタの突起側面の法線を回転中心として、該基準状態の該 n型電界効果トランジスタ及び p型電界効果トランジスタの基板と平行な面及び p型電 界効果トランジスタの突起側面を一 45° 以上 45° 以下の範囲で同じ角度だけ固定 又は回転させた結晶方位を有することを特徴とする半導体装置。
[16] 前記基板と平行な面の結晶方位及び P型電界効果トランジスタの突起側面の結晶 方位が、それぞれ基準状態の基板と平行な面の結晶方位及び p型電界効果トランジ スタの突起側面の結晶方位と一致することを特徴とする請求項 15記載の半導体装
[17] 前記基板と平行な面及び p型電界効果トランジスタの突起側面の基準状態からの 回転角度が 45° であることを特徴とする請求項 15記載の半導体装置。
[18] 側面にチャネルを形成する突起状の半導体領域と、少なくとも該側面上に絶縁膜 を介して設けられたゲート電極と、該ゲート電極を挟むように半導体領域内に形成さ れたソース領域及びドレイン領域と、を備えた n型電界効果トランジスタ及び p型電界 効果トランジスタを有する半導体装置であって、
該 n型電界効果トランジスタ及び p型電界効果トランジスタの基板と平行な面(ただ し、オフ角度が 10° 以下の面も含む。)の結晶方位を { 100}面、突起側面の結晶方 位をそれぞれ { 110}面とし、且つ該 { 100}面及び { 110}面をそれぞれ互いに直交さ せた状態を基準状態とするとき、
該 n型電界効果トランジスタ及び p型電界効果トランジスタは、
該 p型電界効果トランジスタの突起側面の法線を回転中心として、該基準状態の該 n型電界効果トランジスタ及び p型電界効果トランジスタの基板と平行な面及び n型電 界効果トランジスタの突起側面を 90° 以下の範囲で同じ角度だけ回転させた結晶方 位を有することを特徴とする半導体装置。
[19] 前記基板と平行な面及び n型電界効果トランジスタの突起側面の基準状態からの 回転角度が 90° であることを特徴とする請求項 18記載の半導体装置。
[20] 側面にチャネルを形成する突起状の半導体領域と、少なくとも該側面上に絶縁膜 を介して設けられたゲート電極と、該ゲート電極をはさむように半導体領域内に形成 されたソース領域およびドレイン領域と、を備えた n型電界効果トランジスタおよび p型 電界効果トランジスタとを含む半導体装置であって、
該 n型電界効果トランジスタを構成する突起状半導体領域の結晶方位は、その側 面が実質上 { 100}面であり、
該 p型電界効果トランジスタを構成する突起状半導体領域の側面が実質上、該 { 10 0}面と平行である、
という条件を満足する半導体装置。
[21] 前記半導体装置は更に、上面に主たるチャネルが形成される突起状の半導体領 域を有するプレーナ型の電界効果トランジスタを備え、
該プレーナ型の電界効果トランジスタを構成する突起状の半導体領域と、前記 n型 電界効果トランジスタを構成する突起状の半導体領域と、前記 p型電界効果トランジ スタを構成する突起状の半導体領域の、基板と平行な面の結晶方位が同一の { 100 }面であることを特徴とする請求項 1から 3、 7、 10から 14のいずれかに記載の半導体
[22] 前記 n型電界効果トランジスタを構成する突起状の半導体領域と、前記 p型電界効 果トランジスタを構成する突起状の半導体領域の、基板と平行な面に更にチャネルを 形成することを特徴とする、請求項 1から 21のいずれかに記載の半導体装置。
PCT/JP2004/012385 2003-08-28 2004-08-27 フィン型電界効果トランジスタを有する半導体装置 WO2005022637A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005513479A JPWO2005022637A1 (ja) 2003-08-28 2004-08-27 フィン型電界効果トランジスタを有する半導体装置
US10/569,451 US20070187682A1 (en) 2003-08-28 2004-08-27 Semiconductor device having fin-type effect transistor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003-304753 2003-08-28
JP2003304753 2003-08-28
JP2004-235346 2004-08-12
JP2004235346 2004-08-12

Publications (1)

Publication Number Publication Date
WO2005022637A1 true WO2005022637A1 (ja) 2005-03-10

Family

ID=34277642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/012385 WO2005022637A1 (ja) 2003-08-28 2004-08-27 フィン型電界効果トランジスタを有する半導体装置

Country Status (3)

Country Link
US (1) US20070187682A1 (ja)
JP (1) JPWO2005022637A1 (ja)
WO (1) WO2005022637A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006339514A (ja) * 2005-06-03 2006-12-14 Toshiba Corp 半導体装置及びその製造方法
JP2007035957A (ja) * 2005-07-27 2007-02-08 Toshiba Corp 半導体装置とその製造方法
JP2007073960A (ja) * 2005-09-06 2007-03-22 Taiwan Semiconductor Manufacturing Co Ltd 半導体デバイスおよびcmosデバイス
JP2008517464A (ja) * 2004-10-18 2008-05-22 インターナショナル・ビジネス・マシーンズ・コーポレーション Finfetと一体化した平坦基板デバイス及びその製造方法
EP1959492A1 (en) * 2005-12-02 2008-08-20 Tohoku University Semiconductor device
JP2009509344A (ja) * 2005-09-19 2009-03-05 インターナショナル・ビジネス・マシーンズ・コーポレーション 高密度のシェブロンfinFET及びそれを製造する方法
JP2009117818A (ja) * 2007-10-15 2009-05-28 Qimonda Ag 集積回路の製造方法
JP2010067635A (ja) * 2008-09-08 2010-03-25 Imec 電子回路および電子回路の製造方法
US7701018B2 (en) 2004-03-19 2010-04-20 Nec Corporation Semiconductor device and method for manufacturing same
US7777306B2 (en) * 2007-03-06 2010-08-17 International Business Machines Corporation Defect-free hybrid orientation technology for semiconductor devices
JP2010245522A (ja) * 2009-04-03 2010-10-28 Internatl Business Mach Corp <Ibm> 半導体構造体およびその製造方法(移動度が最適化された方位を有する半導体ナノワイヤ)
US7859065B2 (en) 2005-06-07 2010-12-28 Nec Corporation Fin-type field effect transistor and semiconductor device
US7989855B2 (en) 2004-06-10 2011-08-02 Nec Corporation Semiconductor device including a deflected part
DE102009047639B4 (de) * 2009-01-28 2014-08-14 Infineon Technologies Ag Halbleiterelement, Fin-Feldeffekttransistor und integrierte Schaltung
JP2014179604A (ja) * 2013-03-11 2014-09-25 Renesas Electronics Corp フィンfet構造を有する半導体装置及びその製造方法
CN109216428A (zh) * 2017-06-29 2019-01-15 台湾积体电路制造股份有限公司 半导体结构及其制造方法
JP2021153191A (ja) * 2013-05-20 2021-09-30 株式会社半導体エネルギー研究所 半導体装置

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7456476B2 (en) 2003-06-27 2008-11-25 Intel Corporation Nonplanar semiconductor device with partially or fully wrapped around gate electrode and methods of fabrication
US7042009B2 (en) 2004-06-30 2006-05-09 Intel Corporation High mobility tri-gate devices and methods of fabrication
US20060086977A1 (en) 2004-10-25 2006-04-27 Uday Shah Nonplanar device with thinned lower body portion and method of fabrication
US7518196B2 (en) 2005-02-23 2009-04-14 Intel Corporation Field effect transistor with narrow bandgap source and drain regions and method of fabrication
US7858481B2 (en) 2005-06-15 2010-12-28 Intel Corporation Method for fabricating transistor with thinned channel
US7547637B2 (en) 2005-06-21 2009-06-16 Intel Corporation Methods for patterning a semiconductor film
US7279375B2 (en) * 2005-06-30 2007-10-09 Intel Corporation Block contact architectures for nanoscale channel transistors
US7230287B2 (en) * 2005-08-10 2007-06-12 International Business Machines Corporation Chevron CMOS trigate structure
US20070090416A1 (en) 2005-09-28 2007-04-26 Doyle Brian S CMOS devices with a single work function gate electrode and method of fabrication
US7485503B2 (en) 2005-11-30 2009-02-03 Intel Corporation Dielectric interface for group III-V semiconductor device
JP2007299951A (ja) * 2006-04-28 2007-11-15 Toshiba Corp 半導体装置およびその製造方法
US8143646B2 (en) 2006-08-02 2012-03-27 Intel Corporation Stacking fault and twin blocking barrier for integrating III-V on Si
US8362566B2 (en) 2008-06-23 2013-01-29 Intel Corporation Stress in trigate devices using complimentary gate fill materials
US8268729B2 (en) 2008-08-21 2012-09-18 International Business Machines Corporation Smooth and vertical semiconductor fin structure
US8420455B2 (en) 2010-05-12 2013-04-16 International Business Machines Corporation Generation of multiple diameter nanowire field effect transistors
US8519479B2 (en) * 2010-05-12 2013-08-27 International Business Machines Corporation Generation of multiple diameter nanowire field effect transistors
JP2012182354A (ja) * 2011-03-02 2012-09-20 Toshiba Corp 半導体記憶装置
US8969154B2 (en) * 2011-08-23 2015-03-03 Micron Technology, Inc. Methods for fabricating semiconductor device structures and arrays of vertical transistor devices
US8629512B2 (en) 2012-03-28 2014-01-14 Taiwan Semiconductor Manufacturing Company, Ltd. Gate stack of fin field effect transistor with slanted sidewalls
CN103367153B (zh) * 2012-03-31 2015-11-25 中芯国际集成电路制造(上海)有限公司 鳍式场效应管及其形成方法
CN103579234A (zh) * 2012-08-03 2014-02-12 中国科学院微电子研究所 一种半导体结构及其制造方法
US9136320B2 (en) * 2013-04-08 2015-09-15 Design Express Limited Field effect transistor
US9508799B2 (en) * 2014-08-26 2016-11-29 United Microelectronics Corp. Substrate of semiconductor device including epitaxial layer and silicon layer having same crystalline orientation
WO2016143653A1 (ja) * 2015-03-06 2016-09-15 株式会社トクヤマ Iii族窒化物積層体、及び該積層体を有する発光素子
DE102015106689A1 (de) 2015-04-29 2016-11-03 Infineon Technologies Ag Verfahren zum Herstellen einer Halbleitervorrichtung mit geneigten Ionenimplantationsprozessen, Halbleitervorrichtung und integrierte Schaltung

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6380561A (ja) * 1986-09-24 1988-04-11 Nec Corp 相補型半導体装置の製造方法
JP2003188273A (ja) * 2001-12-13 2003-07-04 Tadahiro Omi 相補型mis装置
JP2003229575A (ja) * 2002-02-04 2003-08-15 Hitachi Ltd 集積半導体装置及びその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6413802B1 (en) * 2000-10-23 2002-07-02 The Regents Of The University Of California Finfet transistor structures having a double gate channel extending vertically from a substrate and methods of manufacture
US7163851B2 (en) * 2002-08-26 2007-01-16 International Business Machines Corporation Concurrent Fin-FET and thick-body device fabrication
US6821834B2 (en) * 2002-12-04 2004-11-23 Yoshiyuki Ando Ion implantation methods and transistor cell layout for fin type transistors
US6885055B2 (en) * 2003-02-04 2005-04-26 Lee Jong-Ho Double-gate FinFET device and fabricating method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6380561A (ja) * 1986-09-24 1988-04-11 Nec Corp 相補型半導体装置の製造方法
JP2003188273A (ja) * 2001-12-13 2003-07-04 Tadahiro Omi 相補型mis装置
JP2003229575A (ja) * 2002-02-04 2003-08-15 Hitachi Ltd 集積半導体装置及びその製造方法

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7701018B2 (en) 2004-03-19 2010-04-20 Nec Corporation Semiconductor device and method for manufacturing same
US8486811B2 (en) 2004-06-10 2013-07-16 Nec Corporation Semiconductor device and manufacturing process therefor
US7989855B2 (en) 2004-06-10 2011-08-02 Nec Corporation Semiconductor device including a deflected part
JP2008517464A (ja) * 2004-10-18 2008-05-22 インターナショナル・ビジネス・マシーンズ・コーポレーション Finfetと一体化した平坦基板デバイス及びその製造方法
JP4711446B2 (ja) * 2004-10-18 2011-06-29 インターナショナル・ビジネス・マシーンズ・コーポレーション Finfetと一体化した平坦基板デバイス及びその製造方法
JP4648096B2 (ja) * 2005-06-03 2011-03-09 株式会社東芝 半導体装置の製造方法
JP2006339514A (ja) * 2005-06-03 2006-12-14 Toshiba Corp 半導体装置及びその製造方法
US7859065B2 (en) 2005-06-07 2010-12-28 Nec Corporation Fin-type field effect transistor and semiconductor device
US8247294B2 (en) 2005-06-07 2012-08-21 Nec Corporation Manufacturing process of fin-type field effect transistor and semiconductor
JP2007035957A (ja) * 2005-07-27 2007-02-08 Toshiba Corp 半導体装置とその製造方法
JP4639172B2 (ja) * 2005-09-06 2011-02-23 台湾積體電路製造股▲ふん▼有限公司 半導体デバイス
JP2007073960A (ja) * 2005-09-06 2007-03-22 Taiwan Semiconductor Manufacturing Co Ltd 半導体デバイスおよびcmosデバイス
JP2009509344A (ja) * 2005-09-19 2009-03-05 インターナショナル・ビジネス・マシーンズ・コーポレーション 高密度のシェブロンfinFET及びそれを製造する方法
EP1959492A4 (en) * 2005-12-02 2011-06-01 Univ Tohoku SEMICONDUCTOR COMPONENT
EP1959492A1 (en) * 2005-12-02 2008-08-20 Tohoku University Semiconductor device
US7777306B2 (en) * 2007-03-06 2010-08-17 International Business Machines Corporation Defect-free hybrid orientation technology for semiconductor devices
JP2009117818A (ja) * 2007-10-15 2009-05-28 Qimonda Ag 集積回路の製造方法
JP2010067635A (ja) * 2008-09-08 2010-03-25 Imec 電子回路および電子回路の製造方法
DE102009047639B4 (de) * 2009-01-28 2014-08-14 Infineon Technologies Ag Halbleiterelement, Fin-Feldeffekttransistor und integrierte Schaltung
JP2010245522A (ja) * 2009-04-03 2010-10-28 Internatl Business Mach Corp <Ibm> 半導体構造体およびその製造方法(移動度が最適化された方位を有する半導体ナノワイヤ)
JP2014179604A (ja) * 2013-03-11 2014-09-25 Renesas Electronics Corp フィンfet構造を有する半導体装置及びその製造方法
JP2021153191A (ja) * 2013-05-20 2021-09-30 株式会社半導体エネルギー研究所 半導体装置
JP7157851B2 (ja) 2013-05-20 2022-10-20 株式会社半導体エネルギー研究所 半導体装置
JP7426459B2 (ja) 2013-05-20 2024-02-01 株式会社半導体エネルギー研究所 半導体装置
US11961917B2 (en) 2013-05-20 2024-04-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising stacked transistors
CN109216428A (zh) * 2017-06-29 2019-01-15 台湾积体电路制造股份有限公司 半导体结构及其制造方法
US11735594B2 (en) 2017-06-29 2023-08-22 Taiwan Semiconductor Manufacturing Co., Ltd. Integrated circuit structure and method with hybrid orientation for FinFET

Also Published As

Publication number Publication date
US20070187682A1 (en) 2007-08-16
JPWO2005022637A1 (ja) 2007-11-01

Similar Documents

Publication Publication Date Title
WO2005022637A1 (ja) フィン型電界効果トランジスタを有する半導体装置
US11139400B2 (en) Non-planar semiconductor device having hybrid geometry-based active region
US9905650B2 (en) Uniaxially strained nanowire structure
US7759737B2 (en) Dual structure FinFET and method of manufacturing the same
JP4904815B2 (ja) 半導体装置及びその製造方法
CN108172548B (zh) 用于形成金属氧化物半导体器件结构的鳍的方法
US20160111426A1 (en) Methods of integrating multiple gate dielectric transistors on a tri-gate (finfet) process
JP4216676B2 (ja) 半導体装置
EP3285300A1 (en) Precision resistor for non-planar semiconductor device architecture
JP5270094B2 (ja) 細型化されたボディを有する、狭いボディのダマシン・トライゲートFinFET
US20200027960A1 (en) Semiconductor device and method of manufacturing the same
US9881927B2 (en) CMOS-compatible polycide fuse structure and method of fabricating same
WO2005038931A1 (ja) 半導体装置及び半導体装置の製造方法
CN110634939A (zh) 纳米线晶体管和衬底之间的电介质隔离层
WO2005119764A1 (ja) 半導体装置およびその製造方法
WO2011066728A1 (zh) 混合材料积累型全包围栅cmos场效应晶体管
TW202125823A (zh) 具有絕緣基體之閘極全包圍式積體電路結構
US20230197821A1 (en) Gate-all-around devices with optimized gate spacers and gate end dielectric
TW202129979A (zh) 具有移除基板的環繞式閘極積體電路結構
WO2005020325A1 (ja) 半導体装置及びその製造方法
US11581414B2 (en) Gate-all-around devices with optimized gate spacers and gate end dielectric
US7105391B2 (en) Planar pedestal multi gate device
US20240113214A1 (en) Semiconductor structure with dielectric spacer and method for manufacturing the same
US20230387120A1 (en) Semiconductor device structure and methods of forming the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005513479

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10569451

Country of ref document: US

Ref document number: 2007187682

Country of ref document: US

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10569451

Country of ref document: US