CN108172548B - 用于形成金属氧化物半导体器件结构的鳍的方法 - Google Patents

用于形成金属氧化物半导体器件结构的鳍的方法 Download PDF

Info

Publication number
CN108172548B
CN108172548B CN201711419295.6A CN201711419295A CN108172548B CN 108172548 B CN108172548 B CN 108172548B CN 201711419295 A CN201711419295 A CN 201711419295A CN 108172548 B CN108172548 B CN 108172548B
Authority
CN
China
Prior art keywords
fin portion
fin
silicon
germanium
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711419295.6A
Other languages
English (en)
Other versions
CN108172548A (zh
Inventor
M·D·贾尔斯
T·加尼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intel Corp
Original Assignee
Intel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intel Corp filed Critical Intel Corp
Priority to CN201711419295.6A priority Critical patent/CN108172548B/zh
Publication of CN108172548A publication Critical patent/CN108172548A/zh
Application granted granted Critical
Publication of CN108172548B publication Critical patent/CN108172548B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823821Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7831Field effect transistors with field effect produced by an insulated gate with multiple gate structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1203Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
    • H01L27/1211Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI combined with field-effect transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823431MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823807Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the channel structures, e.g. channel implants, halo or pocket implants, or channel materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/84Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body
    • H01L21/845Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body including field-effect transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0924Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors including transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/161Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System including two or more of the elements provided for in group H01L29/16, e.g. alloys
    • H01L29/165Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System including two or more of the elements provided for in group H01L29/16, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
    • H01L29/42392Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor fully surrounding the channel, e.g. gate-all-around
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66787Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
    • H01L29/66795Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET

Abstract

公开了用于在晶体管中形成鳍的方法。在一个实施例中,一种制造器件的方法包括在衬底上形成硅鳍,以及在衬底上且邻近硅鳍形成介电层,从而暴露每个硅鳍的上部区域。随后可以在硅鳍的上部区域上外延生长锗,以形成锗鳍。

Description

用于形成金属氧化物半导体器件结构的鳍的方法
本申请是申请号为201180075701.6、申请日为2011年12月21日、发明名称为“用于形成金属氧化物半导体器件结构的鳍的方法”的中国发明专利申请的分案申请。
技术领域
本公开的实施例涉及用于形成金属氧化物半导体器件结构的鳍的方法。
背景技术
微电子集成电路(诸如微处理器)包括数以亿计的晶体管。集成电路的速度主要取决于这些晶体管的性能。因此,该行业已开发了独特的结构(诸如非平面晶体管)以提高性能。
诸如锗(Ge)之类的可替代沟道材料使更高性能的晶体管成为可能。这些材料与硅衬底集成在一起,从而成为最有用的。集成方案应当允许为设计中的每一晶体管选择晶体管材料类型。如今硅上的锗的异质外延利用晶片级或利用中间的SiGe组成的厚的缓冲层的大面积覆盖层增长而实现,以适应晶格失配缺陷。厚的缓冲使得难以形成与Si混合的用于单回路的小Ge岛。相较于常规的Si晶片,这种方法也存在相对高的缺陷密度。
附图说明
在附图的视图中,本发明的实施例通过举例而不是通过限制来示出,并且在附图中:
图1是示出根据本发明的一个实施例的形成具有鳍的器件(例如,晶体管)的方法100的流程图;
图2a-2c示出根据本发明的一个实施例的用于形成诸如PMOS器件或NMOS器件之类的晶体管的鳍的截面图;
图3是示出根据本发明的一个实施例的形成具有鳍的器件(例如,晶体管)的方法300的流程图;
图4a-4g示出根据本发明的一个实施例的用于形成诸如PMOS器件或NMOS器件之类的晶体管的鳍的截面图;
图5是示出根据本发明的一个实施例的形成具有鳍的器件(例如,晶体管)的方法500的流程图;
图6a-6j示出根据本发明的一个实施例的用于形成诸如PMOS器件或NMOS器件之类的晶体管的鳍的截面图;
图7是示出根据本发明的一个实施例的形成具有鳍的器件(例如,晶体管)的方法700的流程图;
图8a-8d示出根据本发明的一个实施例的用于形成诸如PMOS器件或NMOS器件之类的晶体管的鳍的截面图;
图9是示出根据本发明的一个实施例的形成具有鳍的器件(例如,晶体管)的方法900的流程图;
图10a-10f示出根据本发明的一个实施例的用于形成诸如PMOS器件或NMOS器件之类的晶体管的鳍的截面图;
图11示出根据本发明的实施例的互补金属氧化物半导体(CMOS)集成电路1300的部分,其包括具有金属栅电极1320的n型非平面晶体管1310和p型非平面晶体管1350;以及
图12示出根据本发明的实施例的系统1400的框图。
具体实施方式
在下文详细的描述中,参照了附图,附图通过图示示出了可以实践所主张主题的具体实施例。这些实施例被足够详细地描述,以使本领域技术人员能够实践本主题。要理解,各种实施例尽管不同,但不一定是相互排斥的。例如,本文描述的与一个实施例有关的具体特征、结构或特点可以在不脱离所要求的主题的精神和范围的情况下,在其它实施例内实现。此外,要理解,在不脱离所主张主题的精神和范围的情况下,可以修改每一公开的实施例内单个元件的位置或布置。因此,下文详细的描述不应当被视为具有限制意义,并且主题的范围连同所附权利要求承担的全范围的等同物一起,仅由所附权利要求定义,适当地说明。在附图中,同样的附图标记表示贯穿若干视图的相同或相似的元件或功能,并且未必按比例绘制本文中描述的元件,相反,可以扩大或缩小单个元件,以更容易地理解本描述上下文中的元件。在制造诸如三栅晶体管和FinFET之类的非平面晶体管中,非平面半导体主体可以用于形成能够充分消耗非常小的栅长(例如,短于约30nm)的晶体管。这些半导体主体一般是鳍状的,并因此,一般被称为晶体管“鳍”。例如在三栅晶体管中,晶体管鳍具有在体半导体衬底或绝缘体上硅衬底上形成的顶表面和两个相对的侧壁。栅极电介质可以在半导体主体的顶表面和侧壁上形成,并且栅电极可以形成在半导体主体顶表面上的栅极电介质之上并邻近半导体主体的侧壁上的栅极电介质。因此,由于栅极电介质和栅电极邻近半导体主体的三个表面,形成了三个独立的沟道和栅极。由于形成了三个独立的沟道,半导体主体可以在晶体管接通时完全耗尽。至于finFET晶体管,栅极材料和电极仅接触半导体主体的侧壁,从而形成两个独立的沟道(而不是三栅晶体管中的三个)。
本描述的实施例涉及包括三栅晶体管和finFET晶体管的微电子器件的制造。在至少一个实施例中,本主题涉及仅在需要晶体管的局部区域中形成结晶Ge鳍的方法。这些方法包括用于使薄的Ge层生长的选择性生长方法。小体积的Ge允许无成核现象的扩展缺陷的生长。鳍机械上比体衬底更柔顺,因为鳍将在减少生长层的应力并允许更厚的膜的稳定生长的薄膜外延期间拉伸。对比现有的方法,选择性生长不需要使用缓冲层。本文描述的方法包括Ge在Si上的选择性生长,以形成晶体管的鳍体。在实施例中,选择性生长方案允许将Ge从Si种晶分离,以形成绝缘体上锗(GOI)结构。
图1是示出根据本发明的一个实施例的形成具有鳍的器件(例如,晶体管)的方法100的流程图。方法100包括在方框102处,在衬底上形成硅鳍。例如,衬底可以利用光致抗蚀剂掩模来图案化,并随后进行蚀刻,以形成硅鳍。随后,方法100在方框104处,在衬底上并邻近硅鳍形成介电层,从而暴露每一硅鳍的上部区域。随后,在方框106处,在所暴露的鳍的上部区域生长外延层。在一个实施例中,在硅鳍的上部区域外延生长锗。在另一实施例中,在硅鳍的上部区域外延地生长硅锗。在实施例中,在III-V族衬底(例如,GaA)或IV族衬底(例如,Ge)上生长III-V族材料。随后利用常规的晶体管处理(例如,Trigate或finfet处理)继续方法100。例如,该处理可以包括沉积伪氧化物和栅极多晶硅,图案化并蚀刻多晶硅栅极,沉积并蚀刻用于栅极的间隔材料,并在方框108处形成包括外延源极/漏极生长的源极/漏极区域。该处理还可以包括在方框110形成触点以及利用栅极氧化层/金属栅极替换多晶硅栅极的金属栅极替换过程。
图2a-2c示出了根据本发明的一个实施例的用于形成诸如PMOS器件或NMOS器件之类的晶体管的鳍的截面图。可以利用这些截面图示出方法100。器件200包括如图2a所示出的衬底202、硅鳍204和介电层206。在该方法中,形成的薄硅鳍将成为晶体管主体(例如,PMOS主体)的核心。薄硅鳍还可以用作NMOS器件的主体。随后,在Si芯上外延地生长薄膜208(例如,锗,硅锗),以实现如图2b所示出的晶体管主体。晶体管处理继续并包括在如图2c所示出的鳍上设置的伪氧化物和多晶硅栅220。可以根据常规处理利用栅极氧化层和金属栅极来替换多晶硅栅极220。
在一个实施例中,硅鳍可以具有30-50纳米的高度,5-10纳米的宽度,以及鳍之间50-100纳米的间距。膜208可以具有取决于膜类型的5-10纳米的厚度。
图3是示出根据本发明的一个实施例的形成具有鳍的器件(例如,晶体管)的方法300的流程图。方法300包括在方框302处在衬底上形成硅鳍。例如,衬底可以利用光致抗蚀剂掩模来图案化,并随后进行蚀刻,以形成硅鳍。随后,在方框304处在鳍上生长外延层。在一个实施例中,在硅鳍上外延地生长锗。在另一实施例中,在硅鳍上外延地生长硅锗。在实施例中,在III-V族衬底(例如,GaA)或IV族衬底(例如,Ge)上生长III-V族材料。随后,在方框306处,方法300在衬底上并邻近硅鳍形成介电层,从而利用介电层覆盖硅鳍。在方框308处,去除(例如,蚀刻,平面化)介电层的上部和外延层的上部,以使得每一鳍的上表面暴露。在方框310处,选择性蚀刻去除硅鳍的上部区域,而未蚀刻或基本上未蚀刻外延生长层(例如,锗,硅锗)。在方框312处,进行介电层填充或沉积。随后利用常规的晶体管处理(例如,Trigate或finfet处理)继续方法300。例如,该处理可以包括在方框314处图案化/蚀刻介电层、沉积伪氧化物和栅极多晶硅、图案化并蚀刻多晶硅栅极、沉积并蚀刻用于栅极的间隔体材料、以及形成包括外延源极/漏极生长的源极/漏极区域。该处理还可以包括在方框316处形成触点以及利用金属栅机替换多晶硅栅极的金属栅极替换过程。
图4a-4g示出了根据本发明的一个实施例的用于形成诸如PMOS器件或NMOS器件这类的晶体管的鳍的截面图。可以利用这些截面图示出方法400。器件400包括如图4a所示的衬底402和硅鳍404。在该方法中,形成了确定晶体管主体(例如,PMOS主体)的Ge鳍的间距的薄硅鳍。薄硅鳍还可以用作NMOS器件的主体。随后,在如图4b所示的Si鳍上外延地生长薄膜层408(例如,锗,硅锗)。随后,方法400在衬底上并邻近硅鳍形成介电层406,从而覆盖硅鳍,如图4c示出。去除(例如,蚀刻,平面化)介电层的上部和外延层的上部,以使每一鳍的上表面暴露,如图4d所示。如图4e示出,选择性蚀刻去除了硅鳍的上部区域,而未蚀刻或基本上未蚀刻外延地生长层(例如,锗,硅锗)。如图4f示出,进行介电层填充或沉积。晶体管处理继续并包括在如图4g示出的鳍上设置的伪氧化物和多晶硅栅极40。根据常规的处理,可以利用栅极氧化层和金属栅极替换多晶硅栅极420。
在一个实施例中,硅鳍可以具有30-50纳米的高度,10-50纳米的宽度,以及鳍之间40-150纳米的间距405。膜408可以具有取决于膜类型的5-10纳米的厚度和取决于膜类型和设计要求的20-80纳米的间距409。在实施例中,间距409是鳍的间距405的一半。可以基于期望的锗鳍间距来设计硅鳍的间距。方法400形成仅有Ge的鳍,而自然间距加倍。
图5是示出根据本发明的一个实施例的形成具有鳍的器件(例如,晶体管)的方法500的流程图。方法500包括在方框502处在衬底上形成硅鳍。例如,衬底可以利用光致抗蚀剂掩模来图案化,并随后进行蚀刻,以形成硅鳍。随后,方法500在方框504处,在衬底上并邻近硅鳍形成介电层,从而覆盖每一硅鳍。在方框506处,使介电层凹陷从而暴露鳍的上部区域。随后在方框508处在鳍上生长外延层。在一个实施例中,在硅鳍上外延地生长锗。在另一实施例中,在硅鳍上外延地生长硅锗。在实施例中,在III-V族衬底(例如,GaA)或IV族衬底(例如,Ge)上生长III-V族材料。
随后,方法500在方框510处在衬底上并邻近硅鳍形成介电层,从而利用介电层覆盖硅鳍和外延层。在方框512处,去除(例如,蚀刻,平面化)介电层的上部和外延层的上部,以暴露鳍的上表面。在方框514处,选择性蚀刻去除硅鳍的上部区域,而未蚀刻或基本上未蚀刻外延的生长层(例如,锗,硅锗)。在方框516处,进行介电层填充或沉积。随后利用常规的晶体管处理(例如,Trigate或finfet处理)继续方法500。例如,该处理可以包括在方框518处图案化/蚀刻介电层、沉积伪氧化物和栅极多晶硅、图案化并蚀刻多晶硅栅极、沉积并蚀刻用于栅极的间隔体材料、以及形成包括外延源极/漏极生长的源极/漏极区域。该处理还可以包括在方框520处形成触点以及利用金属栅极替换多晶硅栅极的金属栅极替换过程。
图6a-6j示出根据本发明的一个实施例的用于形成诸如PMOS器件或NMOS器件之类的晶体管的鳍的截面图。可以利用这些截面图示出方法500。器件600包括如图6a示出的衬底602和硅鳍604。在该方法中,形成确定了晶体管主体(例如,PMOS主体)的Ge鳍的间距的薄硅鳍。薄硅鳍还可以用作NMOS器件的主体。介电层606在衬底上并邻近硅鳍形成,从而覆盖硅鳍,如图6b示出。去除(例如,蚀刻,平面化)介电层的上部,从而暴露鳍的上部区域,如图6c示出。随后如图6d示出,在硅鳍上外延地生长薄的外延层608(例如,锗,硅锗)。随后,介电层606在衬底上并邻近硅鳍形成,从而覆盖硅鳍,如图6e示出。去除(例如,蚀刻,平面化)介电层的上部和外延层的上部,以暴露鳍的顶表面,如图6f示出。如图6g的器件600或图6g’的器件630示出,选择性蚀刻去除了硅鳍的上部区域,而未蚀刻或基本上未蚀刻外延的生长层(例如,锗,硅锗)。
进行介电层填充或沉积,如图6h或6i所示。如果相比图6g中的硅蚀刻去除硅而言,图6c所示的介电层蚀刻去除更多的介电层,则制造出图6h中的器件600。如果相比图6g’中的硅蚀刻去除硅而言,图6c所示的介电层蚀刻去除更少的介电层,则制造出图6i中的器件630。图6h示出的器件600在锗鳍608和硅鳍604之间具有重叠,而图6i示出的器件630并不包括该重叠。由于缺少重叠以及作为晶体管主体的锗鳍608与作为硅衬底602的部分的硅鳍604分离,而使得器件630将可能具有更好的器件性能。器件630是绝缘体上半导体器件。
晶体管处理继续并包括在如图6j所示的鳍上设置的伪氧化物和多晶硅栅极620。可以根据常规的处理,利用栅极氧化层和金属栅极替换多晶硅栅极620。
在一个实施例中,硅鳍可以具有30-50纳米的初始高度,10-50纳米的宽度,以及鳍之间40-150纳米的间距605。层608可以具有取决于膜的类型的5-10纳米的厚度和取决于膜的类型和设计要求的20-80纳米的间距609。在实施例中,间距609是鳍的间距605的一半。可以基于期望的锗鳍间距来设计硅鳍的间距。方法500形成仅有Ge的鳍,而自然间距加倍。
方法500与方法300相似,不同之处在于,在如图6c示出的氧化物凹陷处理流程之后,进一步处理初始的硅鳍。随后在硅鳍上选择性地外延生长薄Ge膜并如方法300继续处理。如图6h和6i示出,分别有两个可能的所得结构600和630。相较于方法100和300,方法500所具有的优点在于具有较小的Ge生长区(即,只是活性鳍区)。这种方法500在缺陷成核之前允许生长较厚的Ge膜。
图7是示出根据本发明的一个实施例的形成具有鳍的器件(例如,晶体管)的方法700的流程图。方法700包括在方框702处在衬底上形成硅鳍,在方框704处在衬底上形成介电层,并在方框706处去除介电层的上部。例如,衬底可以利用光致抗蚀剂掩模来图案化,并随后进行蚀刻,以形成硅鳍。随后,在衬底上形成介电层并向后凹陷,从而暴露出硅鳍的顶表面。在方框708处选择性蚀刻去除硅鳍的上部区域,而未蚀刻或基本上不蚀刻介电层。随后在方框710处,在鳍的顶部生长外延层。在一个实施例中,在硅鳍上外延地生长锗。在另一实施例中,在硅鳍的顶部外延地生长硅锗。在实施例中,在III-V族衬底(例如,GaA)或IV族衬底(例如,Ge)上生长III-V族材料。随后方法700利用常规的晶体管处理(例如,Trigate或finfet处理)继续。例如,这种处理可以包括在方框712处图案化/蚀刻介电层、沉积伪氧化物和栅极多晶硅、图案化并蚀刻多晶硅栅极、沉积并蚀刻用于栅极的间隔体材料、以及形成包括外延源极/漏极生长的源极/漏极区域。该处理还可以包括在方框714处形成触点以及利用金属栅极替换多晶硅栅极的金属栅极替换过程。
图8a-8d示出了根据本发明的一个实施例的用于形成诸如PMOS器件或NMOS器件之类的晶体管的鳍的截面图。可以利用这些截面图示出方法700。器件800如图8a示出,包括衬底802、介电层806和硅鳍804。在该方法中,形成薄硅鳍,其将提供用于生长用作晶体管主体(例如,PMOS主体)的外延层的硅种晶。薄硅鳍还可以用作NMOS器件的主体。如图8b示出,选择性蚀刻去除了硅鳍的上部区域,而未蚀刻或基本上未蚀刻介电层。随后在如图8c示出的硅鳍的顶部外延地生长薄膜808(例如,锗,硅锗)。晶体管处理继续并包括在如图8d示出的鳍上设置的伪氧化物和多晶硅栅820。可以根据常规的处理,利用栅极氧化层和金属栅极来替换多晶硅栅极1020。
在一个实施例中,硅鳍可以具有30-50纳米的高度、10-100纳米的宽度、以及鳍之间40-150纳米的间距805。膜808可以具有取决于膜类型的10-100纳米的厚度和与间距805相同的间距。
该方法700产生硅鳍与最终预期的锗鳍间距相匹配的器件800。
图9是示出根据本发明的一个实施例的形成具有鳍的器件(例如,晶体管)的方法900的流程图。方法900包括在方框902处在衬底上形成硅鳍,在方框904处在衬底上形成介电层,并在方框906处去除介电层的上部。例如,衬底可以利用光致抗蚀剂掩模来图案化,并随后进行蚀刻,以形成硅鳍。随后,在衬底上形成介电层并向后凹陷,从而暴露硅鳍的上表面。在方框908处选择性蚀刻去除每一硅鳍的上部区域,而未蚀刻或基本上未蚀刻介电层。随后在方框910处在鳍和介电层上形成(例如,沉积,外延的生长)层(例如,非晶,多晶,缺陷填充的结晶等)。在一个实施例中,在硅鳍的顶部形成锗。在另一实施例中,在硅鳍上形成硅锗。在实施例中,在III-V族衬底(例如,GaA)或IV族衬底(例如,Ge)上形成III-V族材料。在方框912处对层进行平面化。器件以高于层的熔点的一定温度被退火(例如,快速的热退火),并且这允许该层的区域由下层的硅种晶再结晶,以在方框914处产生结晶层(例如,锗层)。可以切换平面化和退火的顺序。随后利用常规的晶体管处理(例如,Trigate或finfet处理)继续方法900。例如,这种处理可以包括在方框916处,图案化/蚀刻介电层、沉积伪氧化物和栅极多晶硅、图案化并蚀刻多晶硅栅极、沉积并蚀刻用于栅极的间隔体材料、以及形成包括外延源极/漏极生长的源极/漏极区域。该处理还可以包括在方框918处形成触点以及利用金属栅极替换多晶硅栅极的金属栅极替换过程。
图10a-10f示出了根据本发明的一个实施例的用于形成诸如PMOS器件或NMOS器件之类的晶体管的鳍的截面图。可以利用这些截面图示出方法900。器件1000包括如图10a所示的衬底1002,介电层1006和硅鳍1004。在该方法中,形成薄硅鳍,其将在再结晶之后提供用于使用作晶体管主体(例如,PMOS主体)的沉积层再结晶的硅种晶。薄硅鳍还可以用作NMOS器件的主体。如图10b示出,选择性蚀刻去除了硅鳍的上部区域,而未蚀刻或基本上未蚀刻介电层。随后如图10c示出,在鳍上形成(例如,沉积,外延的生长)层1008(例如,非晶,多晶,缺陷填充的结晶等)。在一个实施例中,在硅鳍上形成锗。在另一实施例中,在硅鳍上形成硅锗。如图10d示出对层进行平面化。器件以高于层的熔点的一定温度被退火(例如,快速的热退火),并且这允许了该层的区域由下层的硅种晶再结晶,以如图10e示出产生结晶层(例如,锗层)。晶体管处理继续并包括在如图10f示出的鳍上设置的伪氧化物和多晶硅栅极1020。可以根据常规的处理,利用栅极氧化层和金属栅极来替换多晶硅栅极1020。
在一个实施例中,硅鳍可以具有30-50纳米的高度、10-100纳米的宽度、以及鳍之间40-150纳米的间距1005。膜1008可以具有取决于膜类型的10-100纳米的厚度和与间距1005相同的间距。该方法900产生硅鳍与最终预期的锗鳍间距相匹配的器件1000。
在一个实施例中,方法900形成硅鳍并使它们凹陷在周围的氧化物内。沉积锗以填充沟槽,但这并不需要是外延生长操作。非晶、多晶、或缺陷填充的结晶Ge沉积也是可能的。在平面化之后,高于Ge熔点的快速的热退火仅用于熔化Ge区域,并随后允许它们由下层的硅种晶再结晶,以产生结晶Ge鳍。可以切换平面化和熔融退火的顺序。快速的热或激光退火使鳍边界的锗和硅的相互扩散最小化。
在本公开的实施例中,衬底可以是单晶硅衬底。衬底还可以是其它类型的衬底,诸如绝缘体上硅("SOI")、锗、砷化镓、锑化铟、碲化铅、砷化铟、磷化铟、砷化镓,锑化镓等,它们均可以与硅结合。
栅极介电层可以由任何已知的栅极电介质材料形成,包括但并不限于二氧化硅(SiO2)、氮氧化硅(SiOxNy)、氮化硅(Si3N4)、和诸如氧化铪、氧化铪硅、氧化镧、镧氧化铝、氧化锆、氧化锆硅、氧化钽、氧化钛、氧化钡锶钛、氧化钡钛、氧化锶钛、氧化钇、氧化铝、铅钪氧化钽以及铌酸铅锌的高k介质材料。
如对本领域的技术人员而言,将要理解,栅极介电层可以由公知技术形成,诸如通过沉积栅电极材料,诸如化学气相沉积(“CVD”)、物理气相沉积(“PVD”)、原子层沉积(“ALD”),并随后利用公知的光刻和蚀刻技术图案化栅电极材料。
要理解,源极区和漏极区(未示出)可以在栅电极的相对侧的晶体管鳍中形成。源极区和漏极区可以由相同的导电类型形成,诸如N型或P型导电。源区和漏区可以具有均匀的掺杂浓度或可以包括诸如尖端区域(例如,源极/漏极扩展)的不同浓度或掺杂分布的子区域。在本公开实施例的一些实施方式中,源极区和漏极区可以具有基本上相同的掺杂浓度和分布,而在其它实施方式中,它们可能会发生变化。
图11示出了根据本发明的实施例的非平面晶体管的范例。图11示出了互补金属氧化物半导体(CMOS)集成电路1100的部分,其包括在绝缘衬底1102上形成的具有金属栅电极1120的n型非平面晶体管1110和具有金属栅电极1152的p型非平面晶体管1150。n型晶体管1110是载流子为电子的场效应晶体管,而p型晶体管1150是载流子为空穴的晶体管。n型晶体管1110和p型晶体管1150通过更高水平的金属化耦合到一起,成为有功能的CMOS电路。虽然,相对于图11示出并描述了CMOS集成电路1100,但本发明的实施例并不限于CMOS集成电路并且可以包括仅包括一个具有金属栅电极的p型非平面晶体管或仅包括一个具有金属栅电极的n型非平面晶体管的电路。在一个实施例中,本文描述的方法可以用于制造用于PMOS器件的Ge鳍并使用用于NMOS器件的规则的Si鳍,NMOS器件用于图11所示的CMOS集成方法。更一般地说,在其它实施例中,一种所公开的方法可以用于制造一种材料类型的NMOS鳍,而另一种方法用于制造不同材料类型的PMOS鳍。
可以在绝缘衬底1102上形成CMOS集成电路1100。在本发明的实施例中,绝缘衬底1102包括下部的单晶硅衬底1104,诸如二氧化硅膜的绝缘层1106在其上形成。然而,集成电路1100可以形成在任何合适的绝缘衬底上,诸如由二氧化硅、氮化物、氧化物和蓝宝石形成的衬底。
此外,在本发明的实施例中,衬底1102未必是绝缘衬底,可以是公知的半导体衬底,例如,但不限于单晶硅衬底和砷化镓衬底。
N型非平面晶体管1110包括形成于绝缘衬底1102的绝缘层1106上的半导体主体1130,而p型非平面晶体管1150包括形成于绝缘衬底1102的绝缘层1106上的半导体主体1170。半导体主体1130和1170可以由任何公知的半导体材料形成,例如,但不限于硅、锗、硅锗(SixGey)、砷化镓(GaAs)、InSb、GaP、GaSb、碳纳米管和碳纳米线。半导体主体1130和1170可以由任何公知的可以通过施加外部电控制而从绝缘状态可逆变化到导电状态的半导体材料形成。在希望晶体管1110和1150的电气性能最好时,半导体主体1130和1170理想地是单晶膜。例如,当在高性能应用中(例如在高密度电路,例如微处理器中)使用CMOS集成电路1100时,半导体主体1130和1170是单晶膜。然而,当在需要的性能较不严格的应用中(例如在液晶显示器中)使用CMOS集成电路1100时,半导体主体1130和1170可以是多晶膜。绝缘层1106将半导体主体1130和1170与单晶硅衬底1102绝缘。在本发明的实施例中,半导体主体1130和1170为单晶硅膜。
半导体主体1130具有一对横向相对的侧壁1131和1132,它们被分隔开界定了半导体主体宽度1133的距离。此外,半导体主体1130具有与形成于衬底1102上的底表面1135相对的顶表面1134。顶表面1134和底表面1135之间的距离界定主体高度1136。在本发明的实施例中,主体高度1136基本等于主体宽度1135。在本发明的实施例中,主体1130的高度1136小于50纳米,而宽度1133小于20纳米。在本发明的实施例中,主体高度1136介于主体宽度1133的两倍到主体宽度1133的十倍之间。
类似地,半导体主体1170具有一对横向相对的侧壁1171和1172,它们被分隔开界定了半导体主体宽度1173的距离1173。此外,半导体主体1170具有与形成于衬底1102上的底表面1175相对的顶表面1174。顶表面1174和底表面1175之间的距离界定主体高度1176。在本发明的实施例中,主体高度1176介于主体宽度1173的两倍到主体宽度1173的十倍之间。
N型非平面晶体管1110具有栅极介电层1112。栅极介电层1112形成于半导体主体1130的三个侧面上和周围,如图11所示。栅极介电层1112形成于侧壁1131上或与之相邻、形成于顶表面1134上且形成于主体1130的侧壁1132上或与之相邻,如图11所示。类似地,非平面p型晶体管1150具有栅极介电层1152。栅极介电层1152形成于半导体主体1170的三个侧面上和周围,如图11所示。栅极介电层1152形成于侧壁1171上或与之相邻、顶表面1174上且在主体1170的侧壁1172上或与之相邻,如图11所示。栅极介电层1112和1152可以由任何公知的栅极电介质膜形成。在本发明的实施例中,栅极介电层为二氧化硅(SiO2)、氮氧化硅(SiOxNy)或氮化硅(Si3N4)介电层或其组合。在本发明的实施例中,栅极介电层1112和1152为形成之间厚度的氮氧化硅膜。在本发明的实施例中,栅极介电层1112和1152为高K栅极介电层,例如金属电介质,例如,但不限于氧化钽、氧化钛、氧化铪、氧化锆、氧化铝、氧化镧、氧化镧铝及其硅酸盐。在本发明的实施例中,介电层1112和1152可以是其它类型的高K介电层,例如,但不限于PZT和BST。
N型非平面器件1110具有栅电极1120。栅电极1120形成在栅极介电层1112上和周围,如图11所示。栅电极1120在半导体主体1130的侧壁1131上所形成的栅极介电层1112上形成或与之相邻、在半导体主体1130的顶表面1134上形成的栅极介电层1112上形成、以及与半导体主体1120侧壁1132上所形成的栅极介电层1112相邻地形成或形成于其上。栅电极1120具有一对横向相对的侧壁1122和1124,它们被分隔开界定了n型晶体管1110的栅极长度1126的距离。在本发明的实施例中,栅电极1120的横向相对侧壁1122和1124在垂直于半导体主体1130的横向相对侧壁1131和1132的方向上延伸。类似地,p型非平面器件1150具有形成于栅极介电层1152上和周围的栅电极1160,如图11所示。栅电极1160在半导体主体1170的侧壁1171上所形成的栅极介电层1152上形成或与之相邻、在半导体主体1170的顶表面1174上所形成的栅极介电层1152上形成、以及与半导体主体1170的侧壁1172上所形成的栅极介电层1152相邻地形成或形成于其上。栅电极1170具有一对横向相对的侧壁1162和1164,它们被分隔开界定了P型晶体管1150的栅极长度(Lg)1166的距离。在本发明的实施例中,栅电极1160的横向相对的侧壁1162和1164在垂直于半导体主体1170的横向相对侧壁1171和1172的方向上延伸。
在本发明的实施例中,栅电极1120和1160由包括下金属膜1127和上金属或掺杂多晶硅膜1128的复合膜形成。在本发明的实施例中,下金属膜1127控制栅电极材料的功函数。在本发明的实施例中,栅电极1120和1160的下金属部分1127被形成至少或四个单原子层的厚度,从而由下金属膜控制栅电极材料的功函数。即,在本发明的实施例中,下金属膜形成得足够厚,使其不是“功函数透明的”,使得栅电极材料的功函数受到下金属膜1127而非由上金属膜1128控制。在本发明的实施例中,下金属膜1127形成/>之间的厚度,且由钛和钽的氮化物或碳化物形成,例如,但不限于TaN、TiN和掺铝的碳化钛。在本发明的实施例中,上金属膜1128由具有良好缝隙填充特性且具有低电阻的材料形成,例如,但不限于钨(W)、铜(Cu)或掺杂多晶硅。
N型非平面晶体管1110具有源极区1140和漏极区1142。源极区1140和漏极区1142形成于半导体主体1108中栅电极1120的相对侧,如图11所示。源极区1140和漏极区1142由n型导电性形成。在本发明的实施例中,源极1140和漏极区1142具有1×1019到1×1021原子/cm3的n型掺杂剂浓度。源极区1140和漏极区1142可以是均匀的浓度,或者可以包括不同浓度或掺杂剂分布的子区域,例如尖端区域(例如,源极/漏极扩展区)。在本发明的实施例中,在非平面n型晶体管1110是对称晶体管时,源极区1140和漏极区1142具有相同的掺杂浓度和分布。在本发明的实施例中,非平面n型晶体管1110被形成为非对称晶体管,其中源极区1140和漏极区1142的掺杂浓度分布可以变化,以便获得特定的电气特性。
类似地,p型非平面晶体管1150具有源极区1180和漏极区1182。源极区1180和漏极区1182形成于半导体主体1170中栅电极1160的相对侧,如图11所示。源极区1180和漏极区1182由p型导电性形成。在本发明的实施例中,源极区1180和漏极区1182具有1×1019到1×1021原子/cm3之间的p型掺杂浓度。源极区1180和漏极区1182可以形成均匀的浓度,或者可以包括不同浓度掺杂剂分布的子区域,例如尖端区域(例如源极/漏极区扩展)。在本发明的实施例中,在非平面p型晶体管1150是对称晶体管时,源极区1180和漏极区1182具有相同的掺杂浓度和分布。在本发明的实施例中,在p型非平面晶体管1150被形成为非对称晶体管时,那么源极区1180和漏极区1182的掺杂浓度分布可以变化,以便获得特定的电气特性。
半导体主体1130的位于源极区1140和漏极区1142之间的部分界定n型非平面晶体管1110的沟道区1144。也可以将沟道区1144界定为半导体主体1130的被栅电极1120围绕的区域。类似地,半导体主体1170的位于源极区1180和漏极区1182之间的部分1184界定p型非平面晶体管1150的沟道区1184。也可以将沟道区1184界定为半导体主体1170的被栅电极1160围绕的区域。源极/漏极区通常通过例如扩散在栅电极略低的下方延伸,以界定比栅电极长度(Lg)稍小的沟道区。在本发明的实施例中,沟道区1144和1184是本征或非掺杂单晶锗。在本发明的实施例中,沟道区1144或1184是掺杂的单晶锗。在沟道区1144被掺杂时,通常将其掺杂到本征和4×1019原子/cm3之间的p型导电水平。在沟道区1184被掺杂时,通常将其掺杂到本征和4×1019原子/cm3之间的n型导电水平。在本发明的实施例中,将沟道区1144和1184掺杂到1×1018-1×1019原子/cm3之间的浓度。沟道区1144和1184可以是均匀掺杂的,或者可以不均匀掺杂或掺杂不同浓度,以提供特定的电气性能特性。例如,如果希望,沟道区1144和1184可以包括公知的“光晕(halo)”区域。
通过提供在三个侧面围绕半导体主体1130的栅极电介质1112和栅电极1120,n型非平面晶体管1110的特征在于,具有三个沟道和三个栅极,一个栅极(g1)延伸于在半导体主体1130的侧面1131上的源极区和漏极区之间,第二个栅极(g2)延伸于半导体主体1130的顶表面1134上的源极区和漏极区之间,而第三个栅极(g3)延伸于半导体主体1130的侧壁1132上的源极区和漏极区之间。因此,可以将非平面晶体管1110称为三栅极晶体管。晶体管1110的栅极宽度(Gw)是三个沟道区宽度之和。即,晶体管1110的栅极宽度等于半导体主体1130在侧壁1131处的高度1136,加上半导体主体1130在顶表面1134处的宽度,并加上半导体主体1130在侧壁1132处的高度1136。类似地,通过提供在三个侧面围绕半导体主体1170的栅极电介质1152和栅电极1160,非平面p型晶体管1150的特征在于,具有三个沟道和三个栅极,一个沟道和栅极(g1)延伸于半导体主体1170的侧面1171的源极区和漏极区之间,第二个沟道和栅极(g2)延伸于半导体主体1170的顶表面1174上的源极区和漏极区之间,而第三个沟道和栅极(g3)延伸于半导体主体1170的侧壁1172上的源极区和漏极区之间。因此,可以将非平面晶体管1150称为三栅极晶体管。晶体管1150的栅极“宽度”(Gw)是三个沟道区的宽度之和。即,晶体管1150的栅极宽度等于半导体主体1170在侧壁1171处的高度1176,加上半导体主体1170在顶表面1174处的宽度1173,加上半导体主体1170在侧壁1172处的高度1176。可以利用耦合在一起的多个器件(例如,被单个栅电极1120围绕的多个硅主体1130或被单个栅电极1160围绕的多个半导体主体1170)来获得更大宽度的n型和p型非平面晶体管。
因为沟道区1144和1184在三个侧面上被栅电极1120和1160围绕,所以可以通过全耗尽方式操作晶体管1110和1150,其中在导通晶体管1110和1150时,沟道区1150完全耗尽,由此提供完全耗尽晶体管的有利电气特性和性能。即,在打开晶体管1110和1150时,在沟道区域以及沟道区1144和1184表面处的反转层(即,在半导体主体的侧表面和顶表面上形成反转层)中形成耗尽区。反转层与源极区和漏极区具有相同的导电类型,并在源极区和漏极区之间形成导电沟道,以允许电流在其间流动。耗尽区耗尽了来自反转层下方的自由载流子。耗尽区延伸到沟道区1144和1184的底部,从而可以将晶体管称为“完全耗尽的”晶体管。完全耗尽的晶体管相对于未完全耗尽或部分耗尽的晶体管具有改善的电气性能特性。例如,以完全耗尽方式操作晶体管1110和1150为晶体管赋予了理想或非常陡峭的亚阈值斜率。此外,以完全耗尽方式操作晶体管1110和1150,晶体管1110和1150具有改进的漏极诱发势垒(DIBL)降低效果,这实现了更好的“截止”状态泄露,这导致更低的泄露,并由此导致更低的功耗。要认识到,如果希望,未必一定以完全耗尽方式操作晶体管1110和1150(例如,可以将半导体主体做大,使得它们不会完全耗尽)。
可以将本发明实施例的晶体管1110和1150称为非平面晶体管,因为在半导体主体1130和1170的水平和垂直方向上都形成了沟道区1144和1184的反转层。也可以将本发明的实施例的半导体器件视为非平面器件,因为从水平(g2)和垂直侧(g1和g3)都施加来自栅电极1120和1160的电场。晶体管1110和1150可以包括如本文结合形成锗鳍的方法描述和示出的多个主体(例如2,3,4)。
在一个实施例中,互补金属氧化物半导体(CMOS)集成电路包括具有第一高度的鳍主体的n型金属氧化物半导体(NMOS)器件和具有第二高度的锗鳍主体和第三高度的对应硅鳍主体的p型金属氧化物半导体(PMOS)器件。锗鳍主体形成PMOS器件的主体。NMOS器件的鳍主体包括硅主体鳍,其具有形成NMOS器件主体的硅鳍主体。锗鳍主体的间距大约是PMOS器件的硅鳍间距的一半。
图12示出了根据本发明一个实施例的计算设备1200。计算设备1200容纳板1202。板1202可以包括若干部件,包括但不限于处理器1204和至少一个通信芯片1206。处理器1204物理和电耦合至板1202。在一些实施方式中,至少一个通信芯片1206也物理和电耦合至板1202。在其它实施方式中,通信芯片1206是处理器1204的部分。
根据其应用,计算设备1200可以包括其它部件,其可以或可以不物理和电耦合至板1202。这些其它部件包括但不限于易失性存储器(例如DRAM1210,1211)、非易失性存储器(例如ROM 1212)、闪速存储器、图形处理器1220、数字信号处理器、密码处理器、芯片组1222、天线1224、显示器、触摸屏显示器1226、触摸屏控制器1228、电池1230、音频编解码器、视频编解码器、功率放大器1232、全球定位系统(GPS)器件1234、罗盘1236、加速度计、陀螺仪、扬声器1240、相机1250、以及大容量存储设备(例如硬盘驱动器、紧致盘(CD)、数字多用盘(DVD)等)。
通信芯片1206使得能够进行无线通信,从而向和从计算器件1200传输数据。“无线”一词及其派生词可以用来描述利用调制电磁辐射通过非固态介质进行数据通信的电路、设备、系统、方法、技术、通信信道等。该术语并非暗示关联的设备不包含任何导线,尽管在一些实施例中它们可能不包含。通信芯片1206可以实施若干无线标准或协议的任一种,包括,但不限于Wi-Fi(IEEE 802.11系列)、WiMAX(IEEE 802.16系列)、IEEE 802.20、长期演进(LTE)、Ev-DO、HSPA+、HSDPA+、HSUPA+、EDGE、GSM、GPRS、CDMA、TDMA、DECT、蓝牙、其派生物,以及被指定为3G、4G、5G等的任何其它无线协议。该计算器件1200可以包括多个通信芯片1206。例如,第一通信芯片1206可以专用于较短范围的无线通信,例如Wi-Fi和蓝牙,而第二通信芯片1206可以专用于较长范围的无线通信,例如GPS、EDGE、GPRS、CDMA、WiMAX、LTE、Ev-DO等。
计算设备1200的处理器1204包括封装在处理器1204之内的集成电路管芯。在本发明的一些实施例中,处理器的集成电路管芯包括根据本发明的实施方式形成的一个或多个器件,例如晶体管(例如,PMOS、NMOS)。术语“处理器”可以指处理来自寄存器和/或存储器的电子数据以将该电子数据变换成可以在寄存器和/或存储器中存储的其它电子数据的任何设备或设备的部分。
通信芯片1206还包括封装于通信芯片1206内的集成电路管芯。根据本发明的另一实施例,通信芯片的集成电路管芯包括根据本发明的实施方式形成的一个或多个器件,例如晶体管(例如,PMOS、NMOS)。
在其它实施例中,容纳在计算设备1200内的另一部件可以包含集成电路管芯,该集成电路管芯包括根据本发明的实施方式而形成的一个或多个器件,例如晶体管(例如PMOS、NMOS)。
在各种实施方式中,计算设备1200可以是膝上计算机、上网本、笔记本、超级本、智能电话、平板计算机、个人数字助理(PDA)、超级移动PC、移动电话、台式计算机、服务器、打印机、扫描仪、监视器、机顶盒、娱乐控制单元、数码相机、便携式音乐播放器或数码摄像机。在其它实施方式中,计算设备1200可以是处理数据的任何其它电子器件。

Claims (17)

1.一种器件,包括:
鳍,包括下鳍部分和上鳍部分,所述上鳍部分包括硅和锗,并且所述下鳍部分主要由硅组成,其中,所述上鳍部分是沿着所述下鳍部分的侧壁、超越所述下鳍部分的顶面向上延伸生长的两个相对的膜结构,两个所述膜结构的高度高于所述下鳍部分的高度,并且所述膜结构的厚度小于所述下鳍部分的宽度;
在所述鳍的顶部之上并沿着所述鳍的侧壁的栅极结构,所述鳍包括包含硅和锗的所述上鳍部分,所述栅极结构包括栅极电介质和栅电极,所述栅极结构具有在所述下鳍部分与所述上鳍部分之间的界面下方的最底部表面,其中,所述鳍的高度介于所述鳍的宽度的两倍到所述鳍的宽度的十倍之间;
在所述栅极结构的第一侧的源极区;以及
在所述栅极结构的第二侧的漏极区,所述第二侧与所述第一侧相对,
其中,所述源极区和所述漏极区包括硅和锗。
2.根据权利要求1所述的器件,其中,所述栅极结构的所述最底部表面与所述下鳍部分的底部基本共面。
3.根据权利要求1所述的器件,其中,所述下鳍部分与下面的硅衬底连续。
4.根据权利要求1所述的器件,其中,所述栅极电介质包括铪和氧。
5.一种器件,包括:
鳍,包括下鳍部分和上鳍部分,所述上鳍部分包括硅和锗,并且所述下鳍部分包括硅,其中,所述下鳍部分基本上不含锗,并且其中,所述上鳍部分是沿着所述下鳍部分的侧壁、超越所述下鳍部分的顶面向上延伸生长的两个相对的膜结构,两个所述膜结构的高度高于所述下鳍部分的高度,并且所述膜结构的厚度小于所述下鳍部分的宽度;
在所述鳍的顶部之上并沿着所述鳍的侧壁的栅极结构,所述鳍包括包含硅和锗的所述上鳍部分,所述栅极结构包括栅极电介质和栅电极,所述栅极结构具有在所述下鳍部分与所述上鳍部分之间的界面下方的最底部表面,其中,所述鳍的高度介于所述鳍的宽度的两倍到所述鳍的宽度的十倍之间;
在所述栅极结构的第一侧的源极区;以及
在所述栅极结构的第二侧的漏极区,所述第二侧与所述第一侧相对,
其中,所述源极区和所述漏极区包括硅和锗。
6.根据权利要求5所述的器件,其中,所述栅极结构的所述最底部表面与所述下鳍部分的底部基本共面。
7.根据权利要求5所述的器件,其中,所述下鳍部分与下面的硅衬底连续。
8.根据权利要求5所述的器件,其中,所述栅极电介质包括铪和氧。
9.一种器件,包括:
鳍,包括下鳍部分和上鳍部分,所述上鳍部分包括硅和锗,并且所述下鳍部分包括硅,其中,所述上鳍部分具有比所述下鳍部分高的锗浓度,并且其中,所述上鳍部分是沿着所述下鳍部分的侧壁、超越所述下鳍部分的顶面向上延伸生长的两个相对的膜结构,两个所述膜结构的高度高于所述下鳍部分的高度,并且所述膜结构的厚度小于所述下鳍部分的宽度;
在所述鳍的顶部之上并沿着所述鳍的侧壁的栅极结构,所述鳍包括包含硅和锗的所述上鳍部分,所述栅极结构包括栅极电介质和栅电极,所述栅极结构具有在所述下鳍部分与所述上鳍部分之间的界面下方的最底部表面,其中,所述鳍的高度介于所述鳍的宽度的两倍到所述鳍的宽度的十倍之间;
在所述栅极结构的第一侧的源极区;以及
在所述栅极结构的第二侧的漏极区,所述第二侧与所述第一侧相对,
其中,所述源极区和所述漏极区包括硅和锗。
10.根据权利要求9所述的器件,其中,所述栅极结构的所述最底部表面与所述下鳍部分的底部基本共面。
11.根据权利要求9所述的器件,其中,所述下鳍部分与下面的硅衬底连续。
12.根据权利要求9所述的器件,其中,所述栅极电介质包括铪和氧。
13.一种计算设备,包括:
板;以及
耦合到所述板的部件,所述部件包括集成电路结构,所述集成电路结构包括:
鳍,包括下鳍部分和上鳍部分,所述上鳍部分包括硅和锗,并且所述下鳍部分主要由硅组成,其中,所述上鳍部分是沿着所述下鳍部分的侧壁、超越所述下鳍部分的顶面向上延伸生长的两个相对的膜结构,两个所述膜结构的高度高于所述下鳍部分的高度,并且所述膜结构的厚度小于所述下鳍部分的宽度;
在所述鳍的顶部之上并沿着所述鳍的侧壁的栅极结构,所述鳍包括包含硅和锗的所述上鳍部分,所述栅极结构包括栅极电介质和栅电极,所述栅极结构具有在所述下鳍部分与所述上鳍部分之间的界面下方的最底部表面,其中,所述鳍的高度介于所述鳍的宽度的两倍到所述鳍的宽度的十倍之间;
在所述栅极结构的第一侧的源极区;以及
在所述栅极结构的第二侧的漏极区,所述第二侧与所述第一侧相对,
其中,所述源极区和所述漏极区包括硅和锗。
14.根据权利要求13所述的计算设备,还包括:
耦合到所述板的存储器。
15.根据权利要求13所述的计算设备,还包括:
耦合到所述板的通信芯片。
16.根据权利要求13所述的计算设备,其中,所述部件是封装集成电路管芯。
17.根据权利要求13所述的计算设备,其中,所述部件选自由处理器、通信芯片、和数字信号处理器组成的组。
CN201711419295.6A 2011-12-21 2011-12-21 用于形成金属氧化物半导体器件结构的鳍的方法 Active CN108172548B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711419295.6A CN108172548B (zh) 2011-12-21 2011-12-21 用于形成金属氧化物半导体器件结构的鳍的方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201180075701.6A CN104011841B (zh) 2011-12-21 2011-12-21 用于形成金属氧化物半导体器件结构的鳍的方法
CN201711419295.6A CN108172548B (zh) 2011-12-21 2011-12-21 用于形成金属氧化物半导体器件结构的鳍的方法
PCT/US2011/066671 WO2013095474A1 (en) 2011-12-21 2011-12-21 Methods for forming fins for metal oxide semiconductor device structures

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201180075701.6A Division CN104011841B (zh) 2011-12-21 2011-12-21 用于形成金属氧化物半导体器件结构的鳍的方法

Publications (2)

Publication Number Publication Date
CN108172548A CN108172548A (zh) 2018-06-15
CN108172548B true CN108172548B (zh) 2023-08-15

Family

ID=48669121

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201180075701.6A Active CN104011841B (zh) 2011-12-21 2011-12-21 用于形成金属氧化物半导体器件结构的鳍的方法
CN201711419295.6A Active CN108172548B (zh) 2011-12-21 2011-12-21 用于形成金属氧化物半导体器件结构的鳍的方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201180075701.6A Active CN104011841B (zh) 2011-12-21 2011-12-21 用于形成金属氧化物半导体器件结构的鳍的方法

Country Status (5)

Country Link
US (3) US9607987B2 (zh)
KR (1) KR101700213B1 (zh)
CN (2) CN104011841B (zh)
TW (4) TWI706477B (zh)
WO (1) WO2013095474A1 (zh)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9324866B2 (en) * 2012-01-23 2016-04-26 Taiwan Semiconductor Manufacturing Company, Ltd. Structure and method for transistor with line end extension
US9142400B1 (en) 2012-07-17 2015-09-22 Stc.Unm Method of making a heteroepitaxial layer on a seed area
US9054212B2 (en) * 2012-10-30 2015-06-09 Globalfoundries Inc. Fin etch and Fin replacement for FinFET integration
US9023697B2 (en) * 2013-08-08 2015-05-05 International Business Machines Corporation 3D transistor channel mobility enhancement
US20160190319A1 (en) * 2013-09-27 2016-06-30 Intel Corporation Non-Planar Semiconductor Devices having Multi-Layered Compliant Substrates
CN104835738B (zh) * 2014-02-08 2018-08-21 中芯国际集成电路制造(北京)有限公司 一种形成FinFET器件的鳍片的方法
WO2015147836A1 (en) * 2014-03-27 2015-10-01 Intel Corporation High mobility strained channels for fin-based nmos transistors
US9484427B2 (en) * 2014-07-01 2016-11-01 Globalfoundries Inc. Field effect transistors having multiple effective work functions
US10559683B2 (en) 2014-09-19 2020-02-11 Intel Corporation Apparatus and methods to create a buffer to reduce leakage in microelectronic transistors
CN106575672B (zh) * 2014-09-19 2020-11-10 英特尔公司 创建具有富铟表面的砷化铟镓有源沟道的装置和方法
KR101611337B1 (ko) * 2014-11-14 2016-04-12 울산과학기술원 표면 거칠기 산란을 최소화 또는 없앤 고성능 저전력 전계효과 트랜지스터 소자의 제조방법
US9472573B2 (en) 2014-12-30 2016-10-18 International Business Machines Corporation Silicon-germanium fin formation
US10026659B2 (en) * 2015-01-29 2018-07-17 Globalfoundries Inc. Methods of forming fin isolation regions under tensile-strained fins on FinFET semiconductor devices
US20160300857A1 (en) * 2015-04-07 2016-10-13 Stmicroelectronics, Inc. Junctionless finfet device and method for manufacture
US10062779B2 (en) 2015-05-22 2018-08-28 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device and manufacturing method thereof
US9559205B2 (en) 2015-05-29 2017-01-31 Taiwan Semiconductor Manufacturing Company, Ltd. Structure and formation method of semiconductor device structure
US9818647B2 (en) 2015-06-03 2017-11-14 International Business Machines Corporation Germanium dual-fin field effect transistor
KR102501128B1 (ko) * 2015-06-26 2023-02-16 타호 리서치 리미티드 희생 코어 상의 클래딩을 통한 트랜지스터 핀 형성
CN106531631B (zh) * 2015-09-09 2019-07-16 中国科学院微电子研究所 一种形成鳍的方法及结构
KR102502885B1 (ko) * 2015-10-06 2023-02-23 삼성전자주식회사 반도체 장치 및 그 제조 방법
US9583486B1 (en) * 2015-11-19 2017-02-28 International Business Machines Corporation Stable work function for narrow-pitch devices
US10079302B2 (en) 2015-12-28 2018-09-18 International Business Machines Corporation Silicon germanium fin immune to epitaxy defect
US10170620B2 (en) * 2016-05-18 2019-01-01 International Business Machines Corporation Substantially defect free relaxed heterogeneous semiconductor fins on bulk substrates
US9954050B1 (en) * 2016-10-24 2018-04-24 International Business Machines Corporation Precise/designable FinFET resistor structure
US11245020B2 (en) * 2017-01-04 2022-02-08 International Business Machines Corporation Gate-all-around field effect transistor having multiple threshold voltages
KR102466356B1 (ko) 2017-08-30 2022-11-15 삼성전자주식회사 반도체 소자 및 그 제조방법
US11355505B2 (en) * 2017-09-29 2022-06-07 Intel Corporation Vertical backend transistor with ferroelectric material
US10468501B2 (en) * 2017-09-29 2019-11-05 Taiwan Semiconductor Manufacturing Company, Ltd. Gap-filling germanium through selective bottom-up growth
US11227918B2 (en) 2018-07-31 2022-01-18 Taiwan Semiconductor Manufacturing Company, Ltd. Melt anneal source and drain regions
US10727427B2 (en) 2018-08-31 2020-07-28 Taiwan Semiconductor Manufacturing Co., Ltd. Method of manufacturing a field effect transistor using carbon nanotubes and a field effect transistor
US11101347B2 (en) 2018-11-29 2021-08-24 Taiwan Semiconductor Manufacturing Company, Ltd. Confined source/drain epitaxy regions and method forming same
US11888034B2 (en) 2019-06-07 2024-01-30 Intel Corporation Transistors with metal chalcogenide channel materials
US11171243B2 (en) 2019-06-27 2021-11-09 Intel Corporation Transistor structures with a metal oxide contact buffer
US11777029B2 (en) 2019-06-27 2023-10-03 Intel Corporation Vertical transistors for ultra-dense logic and memory applications
KR102271030B1 (ko) * 2019-12-20 2021-07-01 서울대학교산학협력단 선택적 영역 성장을 이용한 cmos 소자의 제조 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1967792A (zh) * 2005-10-27 2007-05-23 国际商业机器公司 制造带有掩埋沟道的鳍式场效应晶体管的结构和方法
EP1993136A1 (en) * 2007-05-14 2008-11-19 Interuniversitair Microelektronica Centrum (IMEC) Multi-gate MOSFET device and method of manufacturing same
CN101490857A (zh) * 2006-06-30 2009-07-22 飞思卡尔半导体公司 形成半导体器件的方法及其结构
CN101853882A (zh) * 2009-04-01 2010-10-06 台湾积体电路制造股份有限公司 具有改进的开关电流比的高迁移率多面栅晶体管
CN101924105A (zh) * 2009-05-29 2010-12-22 台湾积体电路制造股份有限公司 集成电路结构
CN102194756A (zh) * 2010-03-17 2011-09-21 台湾积体电路制造股份有限公司 鳍式场效晶体管及其制法

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6475869B1 (en) * 2001-02-26 2002-11-05 Advanced Micro Devices, Inc. Method of forming a double gate transistor having an epitaxial silicon/germanium channel region
US6855990B2 (en) * 2002-11-26 2005-02-15 Taiwan Semiconductor Manufacturing Co., Ltd Strained-channel multiple-gate transistor
KR100578130B1 (ko) * 2003-10-14 2006-05-10 삼성전자주식회사 핀 전계효과 트랜지스터를 위한 다중 실리콘 핀 및 그형성 방법
US7705345B2 (en) * 2004-01-07 2010-04-27 International Business Machines Corporation High performance strained silicon FinFETs device and method for forming same
JP4852694B2 (ja) 2004-03-02 2012-01-11 独立行政法人産業技術総合研究所 半導体集積回路およびその製造方法
TWI266427B (en) * 2004-06-01 2006-11-11 Yamanashi Tlo Co Ltd Field-effect transistor and method of manufacturing same
US6969659B1 (en) * 2004-08-12 2005-11-29 International Business Machines Corporation FinFETs (Fin Field Effect Transistors)
US7332439B2 (en) 2004-09-29 2008-02-19 Intel Corporation Metal gate transistors with epitaxial source and drain regions
KR100657969B1 (ko) * 2005-08-30 2006-12-14 삼성전자주식회사 한 쌍의 핀-타입 채널 영역들에 대응하는 단일 게이트전극을 갖는 반도체 소자의 제조 방법
US7449373B2 (en) * 2006-03-31 2008-11-11 Intel Corporation Method of ion implanting for tri-gate devices
CN101427608B (zh) * 2006-06-09 2013-03-27 株式会社半导体能源研究所 半导体器件的制造方法
US7799592B2 (en) * 2006-09-27 2010-09-21 Taiwan Semiconductor Manufacturing Company, Ltd. Tri-gate field-effect transistors formed by aspect ratio trapping
US8017463B2 (en) 2006-12-29 2011-09-13 Intel Corporation Expitaxial fabrication of fins for FinFET devices
US7560784B2 (en) * 2007-02-01 2009-07-14 International Business Machines Corporation Fin PIN diode
US7821061B2 (en) * 2007-03-29 2010-10-26 Intel Corporation Silicon germanium and germanium multigate and nanowire structures for logic and multilevel memory applications
US7923337B2 (en) * 2007-06-20 2011-04-12 International Business Machines Corporation Fin field effect transistor devices with self-aligned source and drain regions
US20090001415A1 (en) * 2007-06-30 2009-01-01 Nick Lindert Multi-gate transistor with strained body
US7939889B2 (en) 2007-10-16 2011-05-10 Taiwan Semiconductor Manufacturing Company, Ltd. Reducing resistance in source and drain regions of FinFETs
US20090152589A1 (en) 2007-12-17 2009-06-18 Titash Rakshit Systems And Methods To Increase Uniaxial Compressive Stress In Tri-Gate Transistors
US7727830B2 (en) * 2007-12-31 2010-06-01 Intel Corporation Fabrication of germanium nanowire transistors
US8362566B2 (en) 2008-06-23 2013-01-29 Intel Corporation Stress in trigate devices using complimentary gate fill materials
US20100072515A1 (en) 2008-09-19 2010-03-25 Amberwave Systems Corporation Fabrication and structures of crystalline material
US8294232B2 (en) 2009-01-15 2012-10-23 Raytheon Company High quantum efficiency optical detectors
US8053299B2 (en) 2009-04-17 2011-11-08 Taiwan Semiconductor Manufacturing Company, Ltd. Method of fabrication of a FinFET element
US8264021B2 (en) * 2009-10-01 2012-09-11 Taiwan Semiconductor Manufacturing Company, Ltd. Finfets and methods for forming the same
US8623728B2 (en) * 2009-07-28 2014-01-07 Taiwan Semiconductor Manufacturing Company, Ltd. Method for forming high germanium concentration SiGe stressor
US9953885B2 (en) 2009-10-27 2018-04-24 Taiwan Semiconductor Manufacturing Company, Ltd. STI shape near fin bottom of Si fin in bulk FinFET
US8415718B2 (en) 2009-10-30 2013-04-09 Taiwan Semiconductor Manufacturing Company, Ltd. Method of forming epi film in substrate trench
US7993999B2 (en) 2009-11-09 2011-08-09 International Business Machines Corporation High-K/metal gate CMOS finFET with improved pFET threshold voltage
US8373238B2 (en) * 2009-12-03 2013-02-12 Taiwan Semiconductor Manufacturing Company, Ltd. FinFETs with multiple Fin heights
US20110147848A1 (en) 2009-12-23 2011-06-23 Kuhn Kelin J Multiple transistor fin heights
US8310013B2 (en) 2010-02-11 2012-11-13 Taiwan Semiconductor Manufacturing Company, Ltd. Method of fabricating a FinFET device
US8435845B2 (en) * 2011-04-06 2013-05-07 International Business Machines Corporation Junction field effect transistor with an epitaxially grown gate structure
US8420464B2 (en) * 2011-05-04 2013-04-16 International Business Machines Corporation Spacer as hard mask scheme for in-situ doping in CMOS finFETs
US9761666B2 (en) * 2011-06-16 2017-09-12 Taiwan Semiconductor Manufacturing Company, Ltd. Strained channel field effect transistor
US8604518B2 (en) * 2011-11-30 2013-12-10 Taiwan Semiconductor Manufacturing Company, Ltd. Split-channel transistor and methods for forming the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1967792A (zh) * 2005-10-27 2007-05-23 国际商业机器公司 制造带有掩埋沟道的鳍式场效应晶体管的结构和方法
CN101490857A (zh) * 2006-06-30 2009-07-22 飞思卡尔半导体公司 形成半导体器件的方法及其结构
EP1993136A1 (en) * 2007-05-14 2008-11-19 Interuniversitair Microelektronica Centrum (IMEC) Multi-gate MOSFET device and method of manufacturing same
CN101853882A (zh) * 2009-04-01 2010-10-06 台湾积体电路制造股份有限公司 具有改进的开关电流比的高迁移率多面栅晶体管
CN101924105A (zh) * 2009-05-29 2010-12-22 台湾积体电路制造股份有限公司 集成电路结构
CN102194756A (zh) * 2010-03-17 2011-09-21 台湾积体电路制造股份有限公司 鳍式场效晶体管及其制法

Also Published As

Publication number Publication date
TWI590338B (zh) 2017-07-01
US9607987B2 (en) 2017-03-28
CN104011841A (zh) 2014-08-27
CN108172548A (zh) 2018-06-15
TW201730982A (zh) 2017-09-01
US20210210514A1 (en) 2021-07-08
TW201611124A (zh) 2016-03-16
TWI655687B (zh) 2019-04-01
TWI506706B (zh) 2015-11-01
TW201340218A (zh) 2013-10-01
WO2013095474A1 (en) 2013-06-27
US20170200744A1 (en) 2017-07-13
US20140151814A1 (en) 2014-06-05
KR20140091754A (ko) 2014-07-22
TW201926476A (zh) 2019-07-01
US10985184B2 (en) 2021-04-20
TWI706477B (zh) 2020-10-01
KR101700213B1 (ko) 2017-01-26
CN104011841B (zh) 2018-01-26

Similar Documents

Publication Publication Date Title
US20210210514A1 (en) Fins for metal oxide semiconductor device structures
US9673302B2 (en) Conversion of strain-inducing buffer to electrical insulator
US10847653B2 (en) Semiconductor device having metallic source and drain regions
CN107768426B (zh) 包含具有低带隙包覆层的沟道区的非平面半导体器件
US9859424B2 (en) Techniques for integration of Ge-rich p-MOS source/drain contacts
US11901458B2 (en) Dielectric isolation layer between a nanowire transistor and a substrate
US9559160B2 (en) Common-substrate semiconductor devices having nanowires or semiconductor bodies with differing material orientation or composition
TWI727950B (zh) 替代通道鰭式場效電晶體中之子鰭側壁鈍化
KR101778866B1 (ko) 아래에 놓인 기생 누설 배리어 층과 게르마늄 활성층을 갖는 반도체 디바이스
US11569231B2 (en) Non-planar transistors with channel regions having varying widths
TWI737792B (zh) 在mos電晶體中用以降低子通道洩漏的積體電路結構和基板
US11081570B2 (en) Transistors with lattice matched gate structure
US20240145598A1 (en) Dielectric isolation layer between a nanowire transistor and a substrate

Legal Events

Date Code Title Description
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant