CN1967792A - 制造带有掩埋沟道的鳍式场效应晶体管的结构和方法 - Google Patents

制造带有掩埋沟道的鳍式场效应晶体管的结构和方法 Download PDF

Info

Publication number
CN1967792A
CN1967792A CNA2006101429791A CN200610142979A CN1967792A CN 1967792 A CN1967792 A CN 1967792A CN A2006101429791 A CNA2006101429791 A CN A2006101429791A CN 200610142979 A CN200610142979 A CN 200610142979A CN 1967792 A CN1967792 A CN 1967792A
Authority
CN
China
Prior art keywords
material type
buried channel
sidewall
grid
fin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2006101429791A
Other languages
English (en)
Other versions
CN100517619C (zh
Inventor
朱慧珑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Publication of CN1967792A publication Critical patent/CN1967792A/zh
Application granted granted Critical
Publication of CN100517619C publication Critical patent/CN100517619C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/84Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66787Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
    • H01L29/66795Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78684Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising semiconductor materials of Group IV not being silicon, or alloys including an element of the group IV, e.g. Ge, SiN alloys, SiC alloys
    • H01L29/78687Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising semiconductor materials of Group IV not being silicon, or alloys including an element of the group IV, e.g. Ge, SiN alloys, SiC alloys with a multilayer structure or superlattice structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823412MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the channel structures, e.g. channel implants, halo or pocket implants, or channel materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823807Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the channel structures, e.g. channel implants, halo or pocket implants, or channel materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

一种制造鳍片结构的方法,该方法包括在晶片上形成第一材料类型的第一结构,以及在第一结构侧壁的附近形成第二材料类型掩埋沟道。该第二材料与第一材料不同。该结构包括第一个结构和掩埋沟道。

Description

制造带有掩埋沟道的鳍式 场效晶体管的结构和方法
技术领域
本发明总体上涉及半导体结构和制造方法,更具体地涉及带有掩埋沟道的pFinFET和制造方法。
背景技术
鳍式场效晶体管(FinFET)是形成在SOI/体型半导体衬底上的MOSFET双栅极晶体管。在实施中,栅极被裹在场效应晶体管(FET)沟道周围,形成双栅极结构。FinFET器件显著地能更好的控制短沟道效应,其电流密度大于或者等于传统的CMOS技术,几乎可以用于所有的集成电路的设计(即,微处理器、存储器等)。
特别地,双栅极的使用抑制了短沟道效应(SCE),使泄漏减少,提供了更为理想的开关行为,从而降低了功率消耗。此外,双栅极的使用增加了栅极的面积,这允许FinFET具有更好的电流控制,而无需增加器件的栅极长度。因此FinFET能够拥有较大晶体管的电流控制能力,而无需要求较大晶体管的器件空间。
在制造过程中,高质量的硅上驰豫SiGe层导致证实具有增强的载流子沟道的FET。并且,在沟道中使用锗可以提高空穴沟道迁移率。尽管在短沟道FET内部载流子散射物理还不为人所知,但是公知,增强的迁移率转换为更好的器件性能,即使栅极很短。
为了提高迁移率,掩埋沟道可以用于单栅极MOSFET。掩埋沟道可以使载流子远离栅极电介质界面的散射,从而提高载流子迁移率或MOSFET性能。然而,由于部分损失了栅极对沟道电势的控制,有掩埋沟道的MOSFET的SCE比传统的MOSFET要差。希望使用针对掩埋沟道MOSFET的双栅极结构,从而获得高性能和良好的SCE,因为双栅极MOSFET给出良好的SCE。
发明内容
本发明的第一方面,制造鳍式结构的方法包括在晶片上形成第一材料类型的第一结构和在第一结构的侧壁附近形成第二材料类型的掩埋沟道。第一材料类型与第二材料类型不同。
本发明的另一方面,形成一种结构的方法包括在含第一材料类型的晶片上形成第一结构和在第一结构的至少一个侧壁附近形成第二材料类型的第二结构。该方法进一步包括在第一结构和第二结构中的一个上形成覆盖层,从而形成前置栅极和后置栅极。
在本发明的另一方面,鳍式结构包括晶片上第一材料的第一垂直结构和与第一结构侧壁相邻的第二材料类型的掩埋沟道。第二材料类型与第一材料类型不同。
附图简述
图1-图8示出按照本发明形成结构的工艺步骤的实施例;
图9示出使用按照本发明工艺的栅极的横截面图;
图10示出按照本发明将前置栅极和后置栅极分开的工艺;
图11示出按照发明得到的最终结构;
图12示出按照本发明的一个替代实施例;
图13和图14示出按照本发明形成结构的另一个实施例。
具体实施方式
本发明涉及一种半导体结构及其制造方法,更具体地涉及带掩埋沟道的FinFET器件及其制造方法。在一个实施例中,本发明的结构提高了迁移率从而显著增强pMOSFET的操作频率和性能。此外,通过使用这种制造方法并因此形成本发明的最终结构,栅极可以更为精确地对沟道进行控制,并通过使载流子远离粗糙的栅极电介质界面从而提高载流子的迁移率,同时控制源极附近的速率过冲。在一个实施过程中,可以本发明的制造工艺控制沟道中掩埋SiGe层的厚度,从而获得本发明的有利结果。
参考图1,其示出起始结构,该结构包括在BOX 10(掩埋氧化物)上形成的硅鳍片12。在该硅鳍片12上形成氮化物硬掩膜14。硅鳍片12和氮化物硬掩膜14是用传统工艺形成的。例如,硅层可以黏合到BOX以及氮化物膜,可以沉积在硅上。然后,可以对氮化物膜构图并使用反应性离子刻蚀(RIE)工艺,以形成氮化物硬掩膜14。也可以使用传统RIE工艺对硅层进行刻蚀,在BOX 10上终止。
图2示出角度注入工艺。在这一工艺中,锗(Ge)被注入到图1中形成的结构的一侧。在一个实施例中,角度注入工艺可以在结构的两侧进行,如下面详细论述。角度注入工艺是在一个角度上执行的,该角度范围大约为45度;然而,本发明也包括其他角度注入工艺。在一个实施例中,注入能量大约为10KeV到30KeV。注入工艺的剂量约为5e14到3e15/cm3。在一个实施例中优选使用锗,因为随后的蚀刻步骤对锗具有选择性。
图3示出除去图2中的注入工艺所引起的锗注入损伤的退火步骤。在图3中,退火工艺发生的温度范围是800摄氏度到1000摄氏度,尽管其他退火温度也包括在本发明考虑范围之内。
在图4中,掺锗硅鳍片12可以通过对硅具有选择性的蚀刻工艺进行蚀刻。譬如,蚀刻可以包括CF4/CH2F2或者CF4/O2。本发明还考虑到硅鳍片12的掺锗部分可用对硅具有选择性的RIE工艺或者其他干法蚀刻工艺进行蚀刻。根据锗注入的深度,掺锗硅鳍片12蚀刻范围约100到200。
在图5中,外延SiGe膜16沉积或生长在硅鳍片12上。在一个实施例中,SiGe膜16仅对硅具有选择性,使得SiGe仅在硅鳍片12上沉积或者生长。应该理解SiGe膜16的基体与硅鳍片12的基体不同。在一个实施例中,SiGe膜16的厚度范围在20到50。SiGe膜16可以用任何传统工艺形成,譬如,CVD。SiGe将形成掩埋沟道,并且在实施例中被用来提高FinFET沟道的沟道迁移率。
在图6中,因为硅鳍片12侧壁上的SiGe没有被氮化物硬掩膜覆盖,可以使用各向异性蚀刻工艺对该侧壁上的SiGe进行有选择的蚀刻。该蚀刻工艺在FinFET的沟道中留下了SiGe膜16。
图7示出在SiGe层16上形成外延Si层18。硅层18的厚度范围在,例如2nm到5nm。在该结构中,SiGe膜16现在被夹在硅鳍片2和硅膜18之间,从而形成带隙结构的基础。
图8示出栅极氧化工艺。特别地,使用传统工艺将栅极氧化膜20沉积在图7的结构的侧面。在一个实施工艺中,高k电介质可以用作栅极电介质,诸如,HfO2,ZrO2,Al2O3,TiO2,La2O3,SrTiO3,LaAlO3和它们的混合物。在本步骤之后,可以使用传统FinFET工艺形成FinFET。例如,可以对多晶硅层进行沉积、蚀刻从而形成栅极,进行角度注入工艺形成扩展区和晕轮区(halo region)。然后,(作为一个例子)可提供通过SD注入和退火工艺形成的间隔件来形成该结构。
图9表示完成图8的工艺之后栅极的横截面。在图9中,栅极氧化物的一面形成前置栅极22,优选是带有掩埋SiGe层18的面。该栅极氧化物另一面形成后置栅极24。在该结构上提供了掺杂多晶硅栅极。
图10示出根据本发明将前置栅极22和后置栅极24分开的工艺。在该工艺中,氧化物26在图9中的结构上沉积。在图11中,作为最终结构,使用化学机械抛光(CMP)将氧化物26磨光,在氮化物硬掩膜14之顶上停止,以将前置栅极22和后置栅极24分开。
如应该理解的那样,后置栅极24被用来调节器件阈值电压,前置栅极22被用来控制器件电流。并且,通过控制从而对锗注入和SiGe外延工艺,进而对随后选择性蚀刻工艺的深度的调节,也可以使用本发明工艺控制掩埋沟道(譬如,SiGe掩埋层)的厚度。这为制造工艺提供了灵活性,从而使SiGe层距离栅极本身更近,以便栅极控制。
参考图12,在可替换工艺中,锗注入工艺可以在该结构的两面进行,从而形成对称的FinFET。角度注入工艺是以一定角度进行的,该角度范围大约为45度;然而,本发明也考虑包括其他角度注入工艺。在一个实施例中,注入能量大约为10KeV到30KeV。该注入工艺的剂量为1e15到3e15/cm3。在一个实施例中优选使用锗,因为随后的蚀刻步骤对锗具有选择性,以便控制。
在图12的实施例中,退火工艺被用来将结构两面上由注入工艺造成的锗注入损伤除去。然后,可以对硅鳍片12进行对锗具有选择性的蚀刻,可以在两面进行干法蚀刻或者湿法蚀刻从而形成对称的结构。根据上述标准,在硅鳍片12的两面沉积或者生长外延SiGe膜18。随后沉积外延硅层20,从而将SiGe膜18夹在中间。外延硅层20的范围可以在约1-2nm。使用传统工艺将栅极氧化物膜20沉积在该结构的两面。在一个实施工艺中,高k电介质可以用作栅极电介质,诸如,HfO2,ZrO2,Al2O3,TiO2,La2O3,SrTiO3,LaAlO3和它们的混合物。在本步骤之后,可以使用传统FinFET工艺形成FinFET。如上所述,可以按照本发明将前置栅极22和后置栅极24分开。
图13和图14示出用于根据本发明形成结构的工艺步骤的另一个实施例。在该实施例的结构中,BOX 10上形成了驰豫SiGe鳍片26。根据一个实例,驰豫SiGe层和氮化物膜可以分别沉积在BOX 10上。然后,可以对氮化物膜进行构图和使用反应性离子刻蚀(RIE)工艺刻蚀从而形成氮化物硬掩膜14。也可以使用传统RIE工艺对SiGe层进行刻蚀,在BOX 10上停止,从而形成驰豫的SiGe鳍片26。
在图14中,在驰豫SiGe鳍片上可以生长外延薄应变硅层28。该外延硅层对SiGe膜具有选择性,可以是驰豫的SiGe鳍片26的侧壁上的厚度大约为2nm到5nm的薄层。在硅层28形成之后,如上所述,可以使用传统工艺步骤形成FinFET,譬如,从图8中的工艺步骤开始。
虽然本发明参考示例性实施例进行了描述,应理解,此处所用的语言应理解为描述性和说明性语言,而不是限制性语言。在不偏离本发明的范围或精神的前提下,可以在所附权利要求的范围内做出变更。因此,尽管根据具体的材料和实施例对本发明进行了描述,本发明的范围并不仅限于此处所披露的细节;相反,本发明包括诸如所附权利要求书范围内的功能等同结构、方法和用途。

Claims (20)

1.一种制造鳍片结构的方法,包括在晶片上形成第一材料类型的第一结构和相邻所述第一结构侧壁形成第二材料类型的掩埋沟道,所述第二材料类型和第一材料类型不同。
2.如权利要求1所述的方法,
其中形成第一结构包括形成第一材料类型的鳍片;以及
其中形成所述掩埋沟道包括:
将第一类型的原子注入到所述鳍片的侧壁中;
选择性修整鳍片的侧壁以形成至少一个底切;
通过在该至少一个底切内沉积或生长第二材料类型,并在该第二材料类型上形成外延层,从而在该至少一个底切内形成掩埋沟道。
3.如权利要求2中所述的方法,进一步包括:
在外延层上形成栅极氧化物或者高k电介质从而形成前置栅极和后置栅极电介质;
在掺杂多晶硅栅极上沉积氧化物;以及
刻蚀氧化物至掺杂多晶硅栅极。
4.如权利要求2所述的方法,其中第一类型原子是锗(Ge),修整步骤是对硅有选择性的掺锗硅进行蚀刻。
5.如权利要求2所述的方法,其中第二材料类型是外延SiGe膜,其沉积或生长的范围是20到50。
6.如权利要求2所述的方法,其中所述注入工艺是在约10KeV到30KeV的注入能量下执行的,剂量范围约5e14到3e15/cm3
7.如权利要求2所述的方法,还包括退火从而除去注入工艺造成的注入损伤,退火是在约800摄氏度到1100摄氏度的范围执行的。
8.如权利要求2所述的方法,其中修整是湿法蚀刻工艺或干法蚀刻工艺,该刻蚀工艺是刻蚀对纯硅具有选择性的掺锗硅。
9.如权利要求2所述的方法,进一步包括:
在侧壁上形成外延层;
在所述外延层上形成栅极氧化物或者高k电介质从而形成前置栅极和后置栅极;
形成掺杂的多晶硅栅极;
在该掺杂的多晶硅栅极上沉积氧化物;以及
蚀刻该氧化物至掺杂多晶硅栅极。
10.如权利要求2所述的方法中,其中:
注入和修整是在鳍片的两面进行的从而在鳍片的两面形成底切部分;
通过在与鳍片的两面相邻的底切部分内形成不同的材料类型,和在所述底切部分内不同材料类型上形成外延层而提供掩埋的沟道。
11.如权利要求10所述的方法,其中所述掩埋沟道包含SiGe。
12.如权利要求1所述的方法,其中所述掩埋沟道被控制在一定的深度。
13.如权利要求1所述的方法,其中形成所述第一结构包括在掩埋沟道的侧壁上形成第一材料类型。
14.如权利要求1所述的方法,其中所述掩埋沟道是通过在至少一个底切内和邻近所述第一结构的侧壁形成不同的材料类型,并且在所述掩埋沟道上形成外延层而形成。
15.形成一种结构的方法,其包括:
在包含第一材料类型的晶片上形成第一结构;
在邻近所述第一结构的至少一个侧壁形成第二材料类型的第二结构;以及
在所述第一结构和第二结构之一上形成一个层,从而形成前置栅极和后置栅极。
16.如权力要求15所述的方法,其中所述第二材料类型是在所述第一结构的至少一个侧壁上沉积或生长的外延SiGe膜。
17.如权利要求15所述的方法,还包括:
向所述第一结构的至少一个侧壁内注入第一类型掺杂剂;
选择地修整所述第一结构的至少一个侧壁从而形成至少一个底切;以及
通过在该至少一个底切内形成第一结构,并且在所述侧壁和掩埋沟道上形成外延层,而在该至少一个底切内形成掩埋沟道。
18.如权利要求15所述的方法,其中所述第一材料类型是在所述第二结构侧壁上形成的硅。
19.一种鳍片结构,包括在晶片上的第一材料类型的第一垂直结构,和与所述第一结构的侧壁相邻的第二材料类型的掩埋沟道,所述第二材料类型与第一材料类型不同。
20.如权利要求19所述的鳍片结构,其中一条掩埋沟道是SiGe,且第一材料类型是硅。
CNB2006101429791A 2005-10-27 2006-10-26 制造带有掩埋沟道的鳍式场效应晶体管的结构和方法 Expired - Fee Related CN100517619C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/163,687 US7348225B2 (en) 2005-10-27 2005-10-27 Structure and method of fabricating FINFET with buried channel
US11/163,687 2005-10-27

Publications (2)

Publication Number Publication Date
CN1967792A true CN1967792A (zh) 2007-05-23
CN100517619C CN100517619C (zh) 2009-07-22

Family

ID=37996935

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2006101429791A Expired - Fee Related CN100517619C (zh) 2005-10-27 2006-10-26 制造带有掩埋沟道的鳍式场效应晶体管的结构和方法

Country Status (2)

Country Link
US (2) US7348225B2 (zh)
CN (1) CN100517619C (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102640273A (zh) * 2009-12-01 2012-08-15 国际商业机器公司 用于在相同芯片上形成具有多个掺杂的鳍片场效晶体管的方法及结构
CN103186691A (zh) * 2012-09-17 2013-07-03 上海华力微电子有限公司 一种独立双栅FinFET解析沟道电势分布模型
CN103681326A (zh) * 2012-09-05 2014-03-26 中芯国际集成电路制造(上海)有限公司 具有不同阈值电压的鳍式场效应管基体的形成方法
CN104733314A (zh) * 2013-12-18 2015-06-24 中芯国际集成电路制造(上海)有限公司 半导体结构及其形成方法
CN104813453A (zh) * 2012-12-20 2015-07-29 英特尔公司 薄晶体管元件的从硅到硅锗的转换
CN106158859A (zh) * 2015-04-09 2016-11-23 中国科学院微电子研究所 一种半导体器件及其制造方法
CN108172548A (zh) * 2011-12-21 2018-06-15 英特尔公司 用于形成金属氧化物半导体器件结构的鳍的方法

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100541723C (zh) * 2005-09-28 2009-09-16 Nxp股份有限公司 双栅极非易失性存储器及其制造方法
US8227316B2 (en) * 2006-06-29 2012-07-24 International Business Machines Corporation Method for manufacturing double gate finFET with asymmetric halo
FR2911004B1 (fr) * 2006-12-28 2009-05-15 Commissariat Energie Atomique Procede de realisation de transistors a double-grille asymetriques permettant la realisation de transistors a double-grille asymetriques et symetriques sur un meme substrat
US7772048B2 (en) * 2007-02-23 2010-08-10 Freescale Semiconductor, Inc. Forming semiconductor fins using a sacrificial fin
US20090283829A1 (en) * 2008-05-13 2009-11-19 International Business Machines Corporation Finfet with a v-shaped channel
US7781283B2 (en) * 2008-08-15 2010-08-24 International Business Machines Corporation Split-gate DRAM with MuGFET, design structure, and method of manufacture
US7979836B2 (en) * 2008-08-15 2011-07-12 International Business Machines Corporation Split-gate DRAM with MuGFET, design structure, and method of manufacture
US8184472B2 (en) 2009-03-13 2012-05-22 International Business Machines Corporation Split-gate DRAM with lateral control-gate MuGFET
CN101853882B (zh) * 2009-04-01 2016-03-23 台湾积体电路制造股份有限公司 具有改进的开关电流比的高迁移率多面栅晶体管
US9768305B2 (en) 2009-05-29 2017-09-19 Taiwan Semiconductor Manufacturing Company, Ltd. Gradient ternary or quaternary multiple-gate transistor
CN102222691A (zh) * 2010-04-13 2011-10-19 联合大学 高驱动电流三维多重闸极晶体管及其制法
CN102208448B (zh) * 2011-05-24 2013-04-24 西安电子科技大学 多晶Si1-xGex/金属并列覆盖双栅SSGOI nMOSFET器件结构
US8772149B2 (en) 2011-10-19 2014-07-08 International Business Machines Corporation FinFET structure and method to adjust threshold voltage in a FinFET structure
CN103137686B (zh) 2011-11-24 2016-01-06 中芯国际集成电路制造(北京)有限公司 半导体器件及其制造方法
US20140054705A1 (en) 2012-08-27 2014-02-27 International Business Machines Corporation Silicon germanium channel with silicon buffer regions for fin field effect transistor device
US8916932B2 (en) 2013-05-08 2014-12-23 International Business Machines Corporation Semiconductor device including FINFET structures with varied epitaxial regions, related method and design structure
US9093533B2 (en) 2013-07-24 2015-07-28 International Business Machines Corporation FinFET structures having silicon germanium and silicon channels
CN104835738B (zh) * 2014-02-08 2018-08-21 中芯国际集成电路制造(北京)有限公司 一种形成FinFET器件的鳍片的方法
US9337269B2 (en) 2014-02-11 2016-05-10 Taiwan Semiconductor Manufacturing Company, Ltd. Buried-channel FinFET device and method
US9263586B2 (en) 2014-06-06 2016-02-16 Taiwan Semiconductor Manufacturing Company, Ltd. Quantum well fin-like field effect transistor (QWFinFET) having a two-section combo QW structure
US9293588B1 (en) 2014-08-28 2016-03-22 International Business Machines Corporation FinFET with a silicon germanium alloy channel and method of fabrication thereof
KR102255174B1 (ko) 2014-10-10 2021-05-24 삼성전자주식회사 활성 영역을 갖는 반도체 소자 및 그 형성 방법
US9419078B2 (en) 2014-10-22 2016-08-16 International Business Machines Corporation Floating body memory with asymmetric channel
US9484201B2 (en) 2015-02-23 2016-11-01 International Business Machines Corporation Epitaxial silicon germanium fin formation using sacrificial silicon fin templates
US9761584B2 (en) 2015-06-05 2017-09-12 Taiwan Semiconductor Manufacturing Co., Ltd. Buried channel semiconductor device and method for manufacturing the same
US11063559B2 (en) 2015-06-05 2021-07-13 Taiwan Semiconductor Manufacturing Co., Ltd. High-implant channel semiconductor device and method for manufacturing the same
US10374042B2 (en) 2015-08-31 2019-08-06 International Business Machines Corporation Semiconductor device including epitaxially formed buried channel region
US9496371B1 (en) 2015-10-07 2016-11-15 International Business Machines Corporation Channel protection during fin fabrication
US10522534B2 (en) 2016-04-29 2019-12-31 Taiwan Semiconductor Manufacturing Co., Ltd. FinFET varactor with low threshold voltage and method of making the same
US10170620B2 (en) 2016-05-18 2019-01-01 International Business Machines Corporation Substantially defect free relaxed heterogeneous semiconductor fins on bulk substrates
US10217863B2 (en) 2016-06-28 2019-02-26 International Business Machines Corporation Fabrication of a vertical fin field effect transistor with an asymmetric gate structure
US10784781B2 (en) 2017-11-29 2020-09-22 Taiwan Semiconductor Manufacturing Company, Ltd. Transistor having asymmetric threshold voltage, buck converter and method of forming semiconductor device
US11380548B2 (en) 2019-12-30 2022-07-05 Taiwan Semiconductor Manufacturing Company Ltd. Method of manufacturing semiconductor structure through multi-implantation to fin structures
US11264486B2 (en) 2020-01-16 2022-03-01 Taiwan Semiconductor Manufacturing Company Ltd. Semiconductor structure and method of fabricating the semiconductor structure

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60036594T2 (de) * 1999-11-15 2008-01-31 Matsushita Electric Industrial Co., Ltd., Kadoma Feldeffekt-Halbleiterbauelement
US6583015B2 (en) * 2000-08-07 2003-06-24 Amberwave Systems Corporation Gate technology for strained surface channel and strained buried channel MOSFET devices
US6475869B1 (en) * 2001-02-26 2002-11-05 Advanced Micro Devices, Inc. Method of forming a double gate transistor having an epitaxial silicon/germanium channel region
US6830976B2 (en) * 2001-03-02 2004-12-14 Amberwave Systems Corproation Relaxed silicon germanium platform for high speed CMOS electronics and high speed analog circuits
US6724008B2 (en) * 2001-03-02 2004-04-20 Amberwave Systems Corporation Relaxed silicon germanium platform for high speed CMOS electronics and high speed analog circuits
US7205604B2 (en) * 2001-03-13 2007-04-17 International Business Machines Corporation Ultra scalable high speed heterojunction vertical n-channel MISFETs and methods thereof
AU2002349881A1 (en) * 2001-09-21 2003-04-01 Amberwave Systems Corporation Semiconductor structures employing strained material layers with defined impurity gradients and methods for fabricating same
US6800905B2 (en) * 2001-12-14 2004-10-05 International Business Machines Corporation Implanted asymmetric doped polysilicon gate FinFET
US6635909B2 (en) * 2002-03-19 2003-10-21 International Business Machines Corporation Strained fin FETs structure and method
US6759712B2 (en) * 2002-09-12 2004-07-06 Micron Technology, Inc. Semiconductor-on-insulator thin film transistor constructions
US6882010B2 (en) * 2002-10-03 2005-04-19 Micron Technology, Inc. High performance three-dimensional TFT-based CMOS inverters, and computer systems utilizing such novel CMOS inverters
US6812504B2 (en) * 2003-02-10 2004-11-02 Micron Technology, Inc. TFT-based random access memory cells comprising thyristors
US6800892B2 (en) * 2003-02-10 2004-10-05 Micron Technology, Inc. Memory devices, and electronic systems comprising memory devices
US6768156B1 (en) * 2003-02-10 2004-07-27 Micron Technology, Inc. Non-volatile random access memory cells associated with thin film constructions
US6845034B2 (en) * 2003-03-11 2005-01-18 Micron Technology, Inc. Electronic systems, constructions for detecting properties of objects, and assemblies for identifying persons
KR100585111B1 (ko) * 2003-11-24 2006-06-01 삼성전자주식회사 게르마늄 채널 영역을 가지는 비평면 트랜지스터 및 그제조 방법
KR100555573B1 (ko) * 2004-09-10 2006-03-03 삼성전자주식회사 Seg막에 의해 확장된 접합영역을 갖는 반도체 소자 및그의 제조방법
US7288802B2 (en) * 2005-07-27 2007-10-30 International Business Machines Corporation Virtual body-contacted trigate

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102640273A (zh) * 2009-12-01 2012-08-15 国际商业机器公司 用于在相同芯片上形成具有多个掺杂的鳍片场效晶体管的方法及结构
CN102640273B (zh) * 2009-12-01 2015-02-11 国际商业机器公司 形成鳍片场效晶体管的方法
CN108172548A (zh) * 2011-12-21 2018-06-15 英特尔公司 用于形成金属氧化物半导体器件结构的鳍的方法
CN108172548B (zh) * 2011-12-21 2023-08-15 英特尔公司 用于形成金属氧化物半导体器件结构的鳍的方法
CN103681326A (zh) * 2012-09-05 2014-03-26 中芯国际集成电路制造(上海)有限公司 具有不同阈值电压的鳍式场效应管基体的形成方法
CN103186691A (zh) * 2012-09-17 2013-07-03 上海华力微电子有限公司 一种独立双栅FinFET解析沟道电势分布模型
CN104813453A (zh) * 2012-12-20 2015-07-29 英特尔公司 薄晶体管元件的从硅到硅锗的转换
CN104733314A (zh) * 2013-12-18 2015-06-24 中芯国际集成电路制造(上海)有限公司 半导体结构及其形成方法
CN106158859A (zh) * 2015-04-09 2016-11-23 中国科学院微电子研究所 一种半导体器件及其制造方法
CN106158859B (zh) * 2015-04-09 2019-07-12 中国科学院微电子研究所 一种半导体器件及其制造方法

Also Published As

Publication number Publication date
US7348225B2 (en) 2008-03-25
US20080105897A1 (en) 2008-05-08
US7910413B2 (en) 2011-03-22
US20070099350A1 (en) 2007-05-03
CN100517619C (zh) 2009-07-22

Similar Documents

Publication Publication Date Title
CN100517619C (zh) 制造带有掩埋沟道的鳍式场效应晶体管的结构和方法
KR101060439B1 (ko) 융화성있는 유전체 층들을 갖는 활성 영역들
US9978870B2 (en) FinFET with buried insulator layer and method for forming
US8247285B2 (en) N-FET with a highly doped source/drain and strain booster
CN100524666C (zh) 制造晶体管结构的方法
US9466616B2 (en) Uniform junction formation in FinFETs
US7154118B2 (en) Bulk non-planar transistor having strained enhanced mobility and methods of fabrication
US9299837B2 (en) Integrated circuit having MOSFET with embedded stressor and method to fabricate same
US9293464B2 (en) Structure to enhance gate induced strain effect in multigate devices
US20090001415A1 (en) Multi-gate transistor with strained body
US9425315B2 (en) FinFET semiconductor device with isolated fins made of alternative channel materials
CN101032018A (zh) 使用牺牲隔离体的应变沟道fet
KR20070089743A (ko) 변형 채널 영역을 갖는 비평면형 mos 구조
CN106098771A (zh) 具有半导体鳍结构的隧穿场效应晶体管
CN101097954A (zh) 场效应晶体管、集成电路元件及其制造方法
US20080048217A1 (en) Semiconductor device and method of fabricating the same
CN1794433A (zh) 异质结构沟道绝缘栅极场效应晶体管的制造方法及晶体管
CN101604705B (zh) 四周环绕栅极鳍栅晶体管及其制作方法
CN102956466B (zh) 鳍状晶体管与其制作方法
CN104465389B (zh) FinFet器件源漏区的形成方法
US8338258B2 (en) Embedded stressor for semiconductor structures
CN104576378A (zh) 一种mosfet结构及其制造方法
CN100524823C (zh) 半导体结构及其制作方法
CN105097535B (zh) FinFet器件的制造方法
CN105702580B (zh) 鳍式场效应晶体管及其源漏区的制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090722

Termination date: 20181026