WO2005015619A1 - 基板処理装置および半導体装置の製造方法 - Google Patents

基板処理装置および半導体装置の製造方法 Download PDF

Info

Publication number
WO2005015619A1
WO2005015619A1 PCT/JP2004/011266 JP2004011266W WO2005015619A1 WO 2005015619 A1 WO2005015619 A1 WO 2005015619A1 JP 2004011266 W JP2004011266 W JP 2004011266W WO 2005015619 A1 WO2005015619 A1 WO 2005015619A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
heater
processing apparatus
substrate processing
substrate
Prior art date
Application number
PCT/JP2004/011266
Other languages
English (en)
French (fr)
Inventor
Naoharu Nakaiso
Original Assignee
Hitachi Kokusai Electric Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34131387&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2005015619(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hitachi Kokusai Electric Inc. filed Critical Hitachi Kokusai Electric Inc.
Priority to JP2005512958A priority Critical patent/JP4267624B2/ja
Priority to US10/549,933 priority patent/US7622007B2/en
Publication of WO2005015619A1 publication Critical patent/WO2005015619A1/ja
Priority to US12/578,012 priority patent/US8673076B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45578Elongated nozzles, tubes with holes

Definitions

  • the present invention relates to a substrate processing apparatus, and particularly to a substrate processing apparatus such as a vertical CVD (Chemical Vapor D mark osition) apparatus for manufacturing a semiconductor device such as an IC on a substrate such as a silicon wafer.
  • a substrate processing apparatus such as a vertical CVD (Chemical Vapor D mark osition) apparatus for manufacturing a semiconductor device such as an IC on a substrate such as a silicon wafer.
  • a substrate processing apparatus a batch type substrate processing apparatus for processing a required number of substrates at a time, for example, a vertical CVD apparatus equipped with a vertical reaction furnace and processing a required number of substrates at a time. There is.
  • a batch type vertical hot wall type low pressure CVD apparatus is widely used for forming a CVD film such as a polysilicon (polycrystalline silicon) film or a silicon nitride film on a substrate (wafer). It is used.
  • a general batch-type vertical hot-wall decompression CVD apparatus is provided with a reaction tube constituted by an inner tube and an outer tube provided concentrically with the inner tube, and a reaction tube arranged so as to surround the outer tube.
  • a heater for heating the reaction tube a gas introduction nozzle for introducing a reaction gas into the inner tube, and a vertical furnace including an exhaust port for evacuating the inside of the reaction tube.
  • a boat is loaded from below into the inner tube while being held in a horizontal position in multiple stages, the reaction gas is introduced into the inner tube by the gas introduction nozzle, and the inside of the reaction tube is heated by the heater.
  • a CVD film is formed on a wafer.
  • reaction gas supply nozzles are provided as gas introduction nozzles, and a 1/4 inch diameter (outer diameter) quartz tube is used as the reaction gas supply nozzle.
  • the reaction gas supply nozzle consists of a horizontal part inserted below the inner tube from the horizontal direction, and a vertical part extending upward along the inner surface of the inner tube, and has an L-shape. You are.
  • the vertical portion is provided in the gap between the inner tube, the boat, and the wafer held by the boat.
  • the upper end is open and the reaction gas supply is performed so that the reaction gas can be dispersed and supplied into the inner tube.
  • the length of the vertical part of the nozzle varies stepwise.
  • the reaction product is formed not only on the wafer surface, but also on the inner surface of the inner tube 3 or the reaction gas supply nozzle 106 as shown in FIG. It also adheres and deposits inside.
  • the portion of the reaction gas supply nozzle 106 facing the heater 5 is heated by the heater 5, so that the reaction product 47 is particularly likely to adhere and deposit.
  • the pressure inside the reaction gas supply nozzle 106 is higher than the pressure outside the nozzle 106, the reaction product 47 attached to the inner wall of the nozzle 106 is 3 to 3 times more than the reaction product attached to the outer wall of the nozzle 106. It becomes about 4 times thicker.
  • a main object of the present invention is to provide a gas injection nozzle that does not immediately become clogged even when a thick film such as a polysilicon film is formed in view of the above circumstances.
  • the maintenance cycle can be lengthened to reduce equipment downtime, reduce maintenance work, and improve throughput.
  • a reaction vessel for processing a plurality of substrates A reaction vessel for processing a plurality of substrates
  • a substrate processing apparatus comprising: at least one nozzle for supplying a reaction gas into the reaction vessel;
  • the nozzle is attached to the reaction vessel through the wall of the reaction vessel, A substrate processing apparatus is provided, wherein a cross-sectional area of at least a portion of the nozzle facing the heater is larger than a cross-sectional area of the nozzle mounting portion.
  • the reaction gas is attached to the reaction vessel through the wall of the reaction vessel, and at least a portion of the passage facing the heater has a cross-sectional area larger than that of the mounting portion. Supplying the substrate to process the substrate;
  • a method for manufacturing a semiconductor device comprising:
  • FIG. 1 is a schematic vertical sectional view for explaining a vertical CVD apparatus according to one embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view for explaining a vertical CVD apparatus according to one embodiment of the present invention.
  • FIG. 3 is a partially enlarged longitudinal sectional view of FIG. 1.
  • FIG. 4A is a sectional view taken along line AA of FIG. 3.
  • FIG. 4B is a sectional view taken along line BB of FIG. 3.
  • FIG. 5 is a view showing a change in film thickness of a film formed on a wafer when notch processing is performed using the vertical CVD apparatus according to one embodiment of the present invention.
  • FIG. 6 is a schematic partial longitudinal sectional view for explaining a state of attachment of a reaction product to a gas introduction nozzle.
  • FIG. 7 is a schematic partial longitudinal sectional view for explaining a modification of the gas introduction nozzle.
  • FIG. 8A is a sectional view taken along line AA of FIG. 3 for explaining a modification of the gas introduction nozzle.
  • FIG. 8B is a sectional view taken along the line BB of FIG. 3 for explaining a modification of the gas introduction nozzle.
  • FIG. 9A is a sectional view taken along line AA of FIG. 3 for explaining a modification of the gas introduction nozzle.
  • FIG. 9B is a sectional view taken along the line BB of FIG. 3 for explaining a modification of the gas introduction nozzle.
  • FIG. 10A is a cross-sectional view taken along line AA of FIG. 3 for describing a modification of the gas introduction nozzle.
  • FIG. 10B is a sectional view taken along the line BB of FIG. 3 for explaining a modification of the gas introduction nozzle.
  • FIG. 11A is a sectional view taken along line AA of FIG. 3 for explaining a modification of the gas introduction nozzle.
  • FIG. 11B is a sectional view taken along the line BB of FIG. 3 for explaining a modification of the gas introduction nozzle.
  • FIG. 12A is a sectional view taken along line AA of FIG. 3 for describing a modification of the gas introduction nozzle.
  • FIG. 12B is a sectional view taken along the line BB of FIG. 3 for describing a modification of the gas introduction nozzle.
  • FIG. 13 is a schematic partial longitudinal sectional view for explaining a conventional vertical CVD apparatus.
  • SiH is supplied into the furnace as a reaction gas from a reaction gas supply nozzle, for example, the inside of the furnace is heated to 610 ° C, and the pressure is maintained at 26.6 Pa. Perform processing to form a film.
  • a flat polysilicon film is formed as a back seal for a silicon wafer.
  • the processing temperature is set to be higher by 30 ° C. to 50 ° C. than the normal processing, and the temperature is higher than that of the polysilicon film.
  • the film is formed thicker.
  • the preferred embodiment of the present invention is suitably used for forming such a polysilicon film or a flat polysilicon film, and among them, particularly suitable for forming a flat polysilicon film. It is used for
  • FIG. 1 shows an outline of a batch type vertical CVD apparatus, which is one of the substrate processing apparatuses, in particular, an CVD apparatus for forming a flat polysilicon film, in particular, an outline of a reactor 1.
  • FIG. 2 is a schematic cross-sectional view for explaining the outline of the vertical CVD apparatus, particularly, the reactor 1.
  • a flat polysilicon film refers to a polysilicon film formed on a plurality of substrates arranged in a furnace having a flat temperature gradient.
  • a film forming gas nozzle called a long nozzle is used to uniformly supply a film forming gas to an entire region in a furnace where a plurality of substrates are arranged.
  • the long nozzle refers to a film forming gas nozzle capable of supplying a film forming gas from a region where a plurality of substrates are arranged in a furnace and not from a region where a plurality of substrates are arranged in the furnace. Re, u.
  • this long nozzle is usually inserted from the lower part of the furnace and stops there because it is inserted into the lower part of the furnace and extends toward the upper part of the furnace.
  • the length is longer than the normal nozzle.
  • the above-described flat polysilicon film is formed by forming a plurality of, for example, four quartz long nozzles having different lengths along an area where a plurality of substrates are arranged in a furnace. Is used.
  • a furnace port flange 2 made of stainless steel or the like forming a furnace section is provided in an airtight manner above a decompression airtight chamber (not shown) such as a load lock chamber.
  • An inner tube 3 is supported concentrically at a required position on the inner surface of the mouth flange 2
  • an outer tube 4 is provided concentrically with the inner tube 3 at the upper end of the furnace low flange 2
  • a cylindrical heater is provided so as to surround the outer tube 4.
  • 5 is provided concentrically with the auta tube 4.
  • a heat insulating material 44 is provided so as to cover around and above the heater 5.
  • the heater 5 is divided from the top into five zones U, CU, C, CL, and L. During substrate processing, the five zones have the same temperature (so that the temperature gradient becomes flat in the vertical direction).
  • the furnace is controlled by the main control unit 24 as follows: The lower end of the furnace low flange 2 is hermetically closed by the seal cap 13.
  • the inner tube 3 has a cylindrical shape with open upper and lower ends, is made of quartz or silicon carbide, which is a material having heat resistance and does not contaminate the wafer, and stores heat from the heater 5. This makes the heating of the wafer uniform.
  • the outer tube 4 is in the shape of a hollow cylinder having an open lower end and a closed upper end, and, like the inner tube 3, is made of quartz or silicon carbide.
  • a boat 26 on which a plurality of wafers 30 are mounted in a horizontal posture is provided in the inner tube 3.
  • a predetermined interval is provided between the plurality of wafers 30.
  • the boat 26 is mounted on a boat pedestal 15 attached to the seal cap 13, and in a state where the seal cap 13 on which the boat 26 is mounted rises to hermetically close the lower end of the furnace flange 2, the boat 26 is mounted.
  • the wafer 30 mounted on the wafer is located at a predetermined processing position.
  • a plurality of heat insulating plates 41 are mounted, and at the upper part, 510 dummy wafers 312 are mounted, and one monitor wafer 325 is mounted thereon.
  • 25 product wafers 304 are mounted, on which:! Monitor wafers 324 are mounted, on which 25 product wafers 303 are mounted, on which One monitor wafer 323 is mounted, 25 product wafers 302 are mounted thereon, and one monitor wafer 322 is mounted thereon, and 25 product wafers 322 are mounted thereon.
  • Monitor wafers 324 are mounted, on which 25 product wafers 303 are mounted, on which One monitor wafer 323 is mounted, 25 product wafers 302 are mounted thereon, and one monitor wafer 322 is mounted thereon, and 25 product wafers 322 are mounted thereon.
  • 301 is mounted, one monitor wafer 321 is mounted on it, and 5-10 dummy wafers 311 are mounted.
  • a reaction tube is constituted by the inner tube 3 and the outer tube 4, and a vertical furnace is constituted by the furnace flange 2, the inner tube 3, the outer tube 4, the heater 5, and the like, and a processing chamber 16 is defined inside the inner tube 3.
  • a cylindrical gas exhaust path 11 is defined between the inner tube 3 and the outer tube 4.
  • the reaction vessel is composed of reaction tubes 3 and 4, furnace roflange 2, seal cap 13, and the like.
  • Gas introduction nos, no 6, 6, 8, 9 power S is provided and installed.
  • the gas introduction noses and holes 6, 7, 8, and 9 are made of quartz and are open at the upper end to form gas outlets 63, 73, 83, and 93, respectively.
  • Gas introduction The reaction gas is introduced into the inner tube 3 by the nozzles 6, 7, 8, and 9.
  • the gas introduction nozzles 6, 7, 8, and 9 penetrate horizontally through the wall of the furnace flange 2 at the same height, but have different lengths.
  • the gas introduction nozzles 6, 7, 8, and 9 are perpendicular to the axis of the reaction tube, 61, 71, 81, and 91, respectively, and run along the inner surface of the tube in parallel with the axis of the reaction tube.
  • the pipe shaft parallel portions 62, 72, 82, and 92 are provided, and the length of the pipe shaft parallel portions 62, 72, 82, and 92 are different from each other. As a result, the heights of the upper end positions (gas outlets 63, 73, 83, 93) of the gas inlets 6, 7, 8, and 9 are gradually different.
  • the height of the gas outlets 63, 73, 83, 93 at the upper ends of the gas introduction nozzles 6, 7, 8, 9 was changed stepwise in the direction along the pipe axis in the reactor 1.
  • the area where multiple wafers 30 are arranged is divided into four zones (product wafers 301, 302, 303, 304). It is necessary to extend a plurality of gas introduction nozzles 6, 7, 8, and 9 into the reactor 1 so as to correspond to each of the divided zones, and to supply the reaction gas from these. Because it becomes.
  • the gas outlets 63, 73, 83, and 93 at the upper ends of the gas introduction nozzles 6, 7, 8, and 9 are arranged at equal intervals, and each of the product wafers 301, 302, and 303 each having 25 wafers stacked thereon. , 304 are located near the center of the array region, respectively.
  • the gas outlets 63, 73, 83, and 93 at the upper end of the gas introduction nozzles 6, 7, 8, and 9 correspond to the four zones of the processing chambers 301, 302, 303, and 304 in the processing chamber 16, respectively. Multiple positions.
  • the reaction gas is supplied evenly to c.
  • the power S at which the reaction gas is consumed by the film formation, and the gas outlets 63, 73, 83, and 93 at the upper end of the gas introduction nozzles 6, 7, 8, and 9 are stepwise opened upward. Therefore, the reaction gas is sequentially introduced so as to compensate for the consumption, and the reaction gas is introduced at a uniform concentration from the lower part to the upper part of the processing chamber 16, so that the film thickness between the wafers 30 is uniform. Be transformed into
  • the gas introduction nozzles 6, 7, 8, 9 are arranged at equal intervals on the same circumference along the inner surface of the inner tube 3.
  • the inner tubes 3 are arranged in the radial direction for easy understanding.
  • the gas introduction nozzle 10 is a straight nozzle orthogonal to the tube axis, and is made of quartz, similarly to the gas introduction nozzles 6, 7, 8, and 9.
  • the orthogonal portions 61, 71, 81, and 91 of the gas introduction nozzles 6, 7, 8, and 9 have a small diameter (small channel cross section).
  • At least the portion of the tube axis parallel portions 62, 72, 82, and 92 facing the heater 5 has a large diameter (large channel cross section). It is preferable that the cross-sectional area of the large diameter portion is at least twice as large as the cross-sectional area of the small diameter portion.
  • the inside diameter of the tube axis parallel portions 62, 72, 82, 92 is made larger than the tube axis perpendicular portions 61, 71, 81, 91.
  • the tube axis orthogonal parts 61, 71, 81, and 91 small in diameter (in this embodiment, the same outer diameter as the conventional one, 1/4 inch), the existing substrate processing equipment is greatly modified. It becomes possible to carry out things. Also, as shown in FIGS.
  • the cross-sectional shape of the tube axis parallel portions 62, 72, 82, and 92 is an ellipse having a major axis in the circumferential direction or an ellipse.
  • the outer diameter in the short axis direction is the same as that of the tube axis orthogonal parts 61, 71, 81, and 91, or the gap between the inner tube 3 and the boat 26 and the wafer 30 held by the boat 26 is taken into consideration. Is determined so as not to interfere with the boat 26 and the wafer 30.
  • the cross section of the tube axis orthogonal portions 61, 71, 81, and 91 is a circle having an outer diameter of 5-7 mm and an inner diameter of 3-5 mm.
  • the outer diameter "b" in the minor axis direction of the tube axis parallel parts 62, 72, 82, 92 is 79 mm, and the inner diameter "a” is 57 mm.
  • the outer diameter “d” in the major axis direction of the tube axis parallel parts 62, 72, 82, 92 is 10-12 mm, and the inner diameter “c” is 8 10 mm.
  • the inner diameters of the pipe axis parallel portions 62, 72, 82, and 92 become thicker with a certain inclination from a point 51 where the pipe diameter starts to become thicker.
  • Ori Is located below the lower end 53 of the heater 5.
  • the portion 51 where the thickening starts is located below the heater 5, the outer tube 4, and the heat insulating plate 41, and above the lower ends of the boat pedestal 15, the inner tube 3, and facing the furnace low flange 2. It is located in.
  • the point 52 where the inner diameter has finished increasing may be approximately the same height as the lower end 53 of the heater 5 (see (a)), and the point 51 where the inner diameter starts to increase is the heater 51.
  • the height may be substantially the same as the lower end 53 of the heater 5 (see (b)), or the middle part where the inner diameter is thick may be approximately the same as the lower end 53 of the heater 5 (see (c)).
  • 54 may be positioned below the lower end 53 of the heater 5 (see (d)) or may be approximately the same height as the lower end 53 of the heater 5 (see (e)). .
  • a multi-hole nozzle with multiple gas outlets 48 may be used instead of providing gas outlets 63, 73, 83, and 93.
  • the positions of 51 and 52 are the same as in the case of the gas introduction nozzles 6, 7, 8, and 9. It is.
  • the tube axis parallel portions 62, 72, 82, 92 and the tube axis orthogonal portions 61, 71, 81, 91 are integrally formed so that they may be connected as separate parts. May be.
  • a cushion member 46 is attached to the lower portion of each of the tube axis orthogonal portions 61, 71, 81, and 91, and the cushion member 46 is attached to the wall of the furnace low flange 2 by protruding inward. It is in contact with a metal ring-shaped lip support member 45.
  • the furnace low flange 2 is provided with an exhaust pipe 12 communicating with the lower end of the gas exhaust path 11.
  • the reaction gas introduced from the gas introduction nozzles 6, 7, 8, 9, and 10 rises in the inner tube 3, turns back at the upper end of the inner tube 3, descends through the gas exhaust passage 11, and is exhausted from the exhaust pipe 12.
  • the lower end opening (furnace opening) of the furnace low flange 2 is configured to be airtightly closed by a seal cap 13, and the seal cap 13 is provided with a boat rotating device 14.
  • the boat 26 is erected on a boat cradle 15 rotated by a boat rotating device 14.
  • Seal cap 13 can be raised and lowered by boat elevator 17 It is supported.
  • the gas introduction nozzles 6, 7, 8, 9, and 10 are reaction gas supply sources 42 for supplying a reaction gas such as SiH through mass flow controllers 18, 1 9, 20, 21, and 22, respectively, as flow controllers.
  • a purge gas supply source 43 for supplying an inert gas such as nitrogen gas.
  • the heating of the heater 5, the elevation of the boat elevator 17, the rotation of the boat rotation device 14, and the flow rate of the mashu mouth controllers 18, 19, 20, 21, 22 are controlled by the main control wholesaler 24. Further, a temperature detection signal from one or a plurality of temperature detectors 25 for detecting the temperature inside the furnace is input to the main control unit 24, and the heater 5 is controlled so as to uniformly heat the inside of the furnace.
  • the boat 26 is lowered by the boat elevator 17, and the wafer 27 is transferred to the lowered boat 26 by a substrate transfer machine (not shown). With a predetermined number of wafers 27 loaded, the boat elevator 17 raises the seal cap 13 and loads the boat 26 into the processing chamber 16.
  • the processing chamber 16 is hermetically closed by the seal cap 13, the pressure is reduced to the processing pressure via the exhaust pipe 12, and the processing chamber 16 is heated to the processing temperature by the heater 5.
  • the boat rotating device 14 rotates the boat 26 about the vertical axis.
  • the mass flow controllers 18, 19, 20, 21 and 22 control the flow rate of the reaction gas (SiH), and
  • the reaction gas is introduced into the processing chamber 16 from the gas inlets 6, 7, 8, 9, and 10.
  • This reaction gas (SiH) can be introduced as 100% SiH alone.
  • the reaction gas is consumed by the film formation.
  • the upper end positions (gas introduction positions) of the gas introduction nozzles 6, 7, 8, and 9 are stepwise opened upward, the consumption of the reaction gas is increased.
  • the reaction gas is sequentially introduced so as to compensate for the difference, and the reaction gas is introduced at a uniform concentration from the lower part to the upper part of the processing chamber 16. Therefore, the film thickness between the wafer surfaces is made uniform.
  • the mass flow controllers 18, 19, 20, 21 and 22 control the gas introduction amounts from the respective gas introduction nozzles 6, 7, 8, 9 and 10 so that the gas concentration of the reaction gas becomes constant. are doing.
  • the reaction gas is heated by the heater 5 in the process of passing through the tube axis orthogonal parts 61, 71, 81, 91 and ascending the tube axis parallel parts 62, 72, 82, 92. For this reason, in the process of passing through the tube axis parallel portions 62, 72, 82, and 92, the reaction product may adhere to the inner surfaces of the tube axis parallel portions 62, 72, 82, and 92.
  • the tube axis orthogonal portions 61, 71, 81, and 91 may have a small diameter because the temperature is low and the reaction does not proceed.
  • the temperature is less than 300-400 ° C from the part that does not face the heater 5 and rises from the tube axis orthogonal parts 61, 71, 81, and 91. is there.
  • the portion where the cross section of the flow path is increased may be a region where the wafer 30 is further stored in a portion facing the heater 5.
  • the portion where the cross-sectional area of the nozzle must be increased is a portion having a temperature at which a film forming reaction occurs (a portion having a temperature of 300 to 400 ° C or more in the case of SiH) or a reaction.
  • the portion where the cross-sectional area of the nozzle does not need to be increased is a nozzle mounting portion, a horizontal portion of the nozzle, a bent portion of the nozzle, a portion that does not face the heater, and a temperature that does not cause a film forming reaction. Parts (in the case of SiH, the temperature is lower than 300 ° C) and the reaction gas does not decompose.
  • FIG. 5 shows a film formation on a wafer when batch processing is performed in the substrate processing apparatus according to the present invention.
  • the film forming temperature ie, at least the temperature of the region where the wafer 30 in the processing chamber 16 is stored is 650 to 670 ° C.
  • the film forming pressure is 10 to 30 Pa
  • the film thickness is 5000 to 10000 A
  • the reaction gas flow rate SiH, total flow rate: 0.21 SLM is preferred.
  • FIG. 5 shows a case where batch processing is repeated 10 times under the above processing conditions, and the average film thickness (average film thickness between wafers processed in the same batch) gradually increases with each batch processing.
  • the uniformity of film thickness for each batch process is only ⁇ 0.38%, which is within the range that does not affect product quality, so nozzle clogging can be suppressed and there is a shortage of reactant gas supply. It indicates that there is not.
  • force was clogged in 34 batches. According to this example, it was confirmed that 10 or more batches could be performed without clogging of horns.
  • the mass flow controllers 18, 19, 20, 21 and 22 are controlled, and the flow rate is controlled for each batch process. By doing so, the film thickness uniformity is further improved.
  • the film formation temperature is 650 ° C. to 670 ° C.
  • the film formation temperature is 620 ° C. or more, for example, 620 ° C. to 680 ° C.
  • a 3/8 inch tube is crushed and formed.
  • the cross-sectional shape is not limited to a circle, an ellipse, and an ellipse, but may be an arc-shaped oval or a rectangle having a long side in a circumferential direction. Any shape is acceptable.
  • a whisker-shaped circle for example, a whisker-shaped circle, a substantially elliptical shape, a shape like a crushed circle (an ellipse, an oval, a rectangle with rounded corners, a shape where the ends of opposing semicircles are connected by straight lines), A substantially elliptical shape that faces the center, a substantially elliptical shape that has a short axis in the linear direction that connects the substrate center and the nozzle center, and a substantially elliptical shape that has a long axis that is approximately perpendicular to the straight line that connects the substrate center and the nozzle center A shape in which the width in the direction substantially perpendicular to the straight line connecting the center of the substrate and the center of the nozzle is larger than that in the direction of the straight line, and the long side in the direction substantially perpendicular to the straight line connecting the center of the substrate and the center of the nozzle.
  • a rhombus having a major axis in a direction substantially perpen
  • the reaction can be carried out even if the reactor is a horizontal type.
  • the flow path cross-sectional area of at least the part of the nozzle that faces the heater is made larger than the flow path cross-sectional area of the part where the nozzle is attached to the reaction vessel.
  • the number of processes before maintenance can be increased.
  • the frequency of maintenance can be reduced (maintenance cycle lengthened), and downtime of the equipment can be reduced.
  • the cross-sectional area of the flow passage at the attachment portion of the nozzle to the reaction vessel is not large and can be made the same shape (1/4 inch diameter) as the conventional one, the same shape (1Z4
  • the furnace flange for inch diameter nozzle
  • the flow path cross-sectional area of the entire nozzle is increased, it is necessary to redesign (change the design) the furnace port flange so as to conform to the changed nozzle shape.
  • the cross-sectional shape of at least the portion of the nozzle facing the heater is a whispered circular shape (substantially elliptical shape)
  • the clearance between the wafer and the inner tube can be reduced.
  • the gas concentration in the substrate surface can be made uniform, and the uniformity of the in-plane film thickness and the in-plane film quality can be improved.
  • the volume of the reaction tube can be reduced, and the amount of gas used can be saved. Further, the size of the device can be reduced.
  • a reaction tube for processing a plurality of substrates a heater for heating the substrates, and at least one gas introduction nozzle for supplying gas into the reaction tubes.
  • the gas introduction nozzle has at least a flow path cross section at a portion facing the heater larger than other portions, so that clogging of the gas introduction nozzle can be suppressed when performing a film forming process, and It has an excellent effect of reducing maintenance work and shortening the maintenance cycle and improving throughput.
  • the present invention can be particularly suitably used for a vertical CVD apparatus for manufacturing a semiconductor device on a silicon wafer and a method for manufacturing a semiconductor device using the CVD apparatus.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

 基板処理装置は、複数の基板27を処理する反応管3,4と、前記基板を加熱するヒータ5と、反応管内にガスを供給するガス導入ノズル6,7,8,9,10とを有し、ガス導入ノズル6,7,8,9は少なくともヒータ5と対向する部分の流路断面を他の部分より大きくした構造を有する。

Description

明 細 書
基板処理装置および半導体装置の製造方法
技術分野
[0001] 本発明は、基板処理装置に関し、特に、シリコンウェハ等の基板に IC等の半導体 装置を製造する縦型 CVD (Chemical Vapor D印 osition)装置等の基板処理装置に 関するものである。
背景技術
[0002] 基板処理装置としては、所要枚数の基板を一度に処理するバッチ式の基板処理装 置、例えば、縦型反応炉を具備し、所要枚数の基板を一度に処理する縦型 CVD装 置がある。
[0003] 半導体装置の製造工程に於いて、基板(ウェハ)にポリシリコン (polycrystalline silicon)膜やシリコン窒化膜等の CVD膜を成膜するのにバッチ式縦型ホットウォール 型減圧 CVD装置が広く使用されている。
[0004] 一般的なバッチ式縦型ホットウォール型減圧 CVD装置は、インナチューブ及びィ ンナチューブと同心に設けられたァウタチューブにより構成される反応管と、ァウタチ ユーブを囲繞する様に配設され反応管内を加熱するヒータと、インナチューブ内に反 応ガスを導入するガス導入ノズルと、反応管内を真空排気する排気口等から構成さ れる縦型炉とを具備し、所要枚数のウェハが基板保持具 (ボート)によって水平姿勢 で多段に保持された状態でインナチューブ内に下方から装入され、インナチューブ 内に反応ガスがガス導入ノズルにより導入されると共に、ヒータによって反応管内が 加熱されることにより、ウェハに CVD膜が成膜される様になつている。
[0005] 従来、斯かる基板処理装置としては、例えば、特開 2000-68214号公報に示され る縦型 CVD装置がある。
[0006] このような縦型 CVD装置では、ガス導入ノズルとして反応ガス供給ノズルを複数本 具備し、反応ガス供給ノズノレには例えば 1/4インチ径 (外径)の石英製の管が用い られ、反応ガス供給ノズノレはインナチューブの下側に水平方向から挿入される水平 部分と、インナチューブの内面に沿って上方に延在する垂直部分とから成り、 L字状 をしている。又、垂直部分はインナチューブとボート、ボートに保持されたウェハとの 間隙に設けられており、上端が開放され、インナチューブ内に反応ガスを分散して供 給できる様、それぞれの反応ガス供給ノズルの垂直部分の長さは段階的に異なって いる。
[0007] ウェハに CVD膜を成膜する場合、反応生成物はウェハ表面に成膜されるだけでな く、図 13に示すように、インナチューブ 3の内面、或は反応ガス供給ノズル 106の内 部にも付着堆積する。特に、反応ガス供給ノズル 106のヒータ 5に対向している部分 はヒータ 5によって加熱されるので、特に反応生成物 47の付着堆積の傾向が大きい 。さらに、反応ガス供給ノズル 106の内部はノズル 106の外部よりも圧力が高くなるた め、ノズル 106外壁に付着する反応生成物よりもノズル 106の内壁に付着する反応 生成物 47の方が 3— 4倍程度厚くなつてしまう。このため、例えば、ノズノレ 106に 1/ 4インチ径(外径)の石英管を使用し、 5000 10000 A程度の膜厚のフラットポリシリ コン膜 (後述する)を成膜する場合、 3— 4バッチでノズル 106が詰まってしまうことが あった。この場合、ノズルのクリーニングは行えず、ノズル 106を交換するしか手立て がなかった。つまり、 3— 4回のバッチ処理毎にノズル 106を交換する必要があった。 この為、反応ガス供給ノズルの洗浄等の保守作業を頻繁に行うことを余儀なくされて おり、基板処理装置の稼働率、スループットの低下の要因となっていた。
[0008] 従って、本発明の主な目的は、斯かる実情に鑑み、ポリシリコンの厚膜等、厚膜を 成膜処理する場合にもガス導入ノズノレがすぐに詰まってしまうことがなレ、様にし、メン テナンスサイクルを長くして装置のダウンタイムを減少させ、保守作業の軽減を図ると 共にスループットの向上を図ることにある。
発明の開示
[0009] 本発明の一態様によれば、
複数枚の基板を処理する反応容器と、
前記複数枚の基板を加熱するヒータと、
前記反応容器内に反応ガスを供給する少なくとも一つのノズノレと、を有する基板処 理装置であって、
前記ノズノレは前記反応容器の壁を貫通して前記反応容器に取り付けられ、前記ノ ズノレの少なくとも前記ヒータと対向する部分の流路断面積を前記ノズル取り付け部の 流路断面積よりも大きくしたことを特徴とする基板処理装置が提供される。
[0010] 本発明の他の態様によれば、
基板を反応容器内に搬入するステップと、
前記反応容器の壁を貫通するよう前記反応容器に取り付けられ、少なくともヒータと 対向する部分の流路断面積を前記取り付け部の流路断面積よりも大きくしたノズノレよ り前記反応容器内に反応ガスを供給して前記基板を処理するステップと、
処理後の前記基板を前記反応容器より搬出するステップと、
を有することを特徴とする半導体装置の製造方法が提供される。
図面の簡単な説明
[0011] [図 1]本発明の一実施例の縦型 CVD装置を説明するための概略縦断面図である。
[図 2]本発明の一実施例の縦型 CVD装置を説明するための概略横断面図である。
[図 3]図 1の部分拡大縦断面図である。
[図 4A]図 3の A— A線断面図である。
[図 4B]図 3の B— B線断面図である。
[図 5]本発明の一実施例の縦型 CVD装置を用いて、ノ ノチ処理した場合にウェハに 成膜される膜の膜厚の変化を示す図である。
[図 6]ガス導入ノズルへの反応生成物の付着状態を説明するための概略部分縦断面 図である。
[図 7]ガス導入ノズルの変形例を説明するための概略部分縦断面図である。
[図 8A]ガス導入ノズノレの変形例を説明するための図 3の A— A線断面図である。
[図 8B]ガス導入ノズノレの変形例を説明するための図 3の B—B線断面図である。
[図 9A]ガス導入ノズノレの変形例を説明するための図 3の A— A線断面図である。
[図 9B]ガス導入ノズノレの変形例を説明するための図 3の B—B線断面図である。
[図 10A]ガス導入ノズルの変形例を説明するための図 3の A— A線断面図である。
[図 10B]ガス導入ノズルの変形例を説明するための図 3の B— B線断面図である。
[図 11A]ガス導入ノズルの変形例を説明するための図 3の A— A線断面図である。
[図 11B]ガス導入ノズルの変形例を説明するための図 3の B— B線断面図である。 [図 12A]ガス導入ノズルの変形例を説明するための図 3の A— A線断面図である。
[図 12B]ガス導入ノズルの変形例を説明するための図 3の B— B線断面図である。
[図 13]従来の縦型 CVD装置を説明するための概略部分縦断面図である。
発明を実施するための好ましい形態
[0012] 以下、図面を参照しつつ本発明の好ましい実施の形態を説明する。
[0013] 通常、ポリシリコン膜を成膜する場合、反応ガス供給ノズノレより反応ガスとして SiH を炉内に供給し、例えば炉内を 610°Cに加熱し、圧力を 26. 6Paに維持して処理を 行い成膜する。
[0014] 又、シリコンウェハのバックシール用としてフラットポリシリコン膜が成膜される場合が あり、この場合は通常の処理より、 30°C— 50°C高い処理温度とされ、ポリシリコン膜よ り厚く成膜される。
[0015] 本発明の好ましい実施の形態は、このようなポリシリコン膜やフラットポリシリコン膜 の成膜に好適に使用されるものであるが、その中でも、特にフラットポリシリコン膜の 成膜に好適に使用されるものである。
[0016] 図 1は、基板処理装置の 1つである、バッチ式の縦型 CVD装置、特に、フラットポリ シリコン膜の成膜を行う CVD装置の概略、特に反応炉 1の概略を示している。図 2は 、縦型 CVD装置、特に反応炉 1の概略を説明するための概略横断面図である。
[0017] ここで、フラットとは、炉内の温度勾配をフラット(略ゼロ)にすることである。したがつ て、フラットポリシリコン膜とは、温度勾配をフラットにした炉内に配置された複数の基 板上に成膜されるポリシリコン膜をレ、う。このフラットポリシリコン膜の成膜に際しては、 複数の基板が配置される炉内の領域全体に均一に成膜ガスを供給するために、ロン グノズノレと呼ばれる成膜ガスノズルを使用する。ここでロングノズルとは、炉内に複数 の基板が配置される領域外からではなぐ炉内に複数の基板が配置される領域内か ら成膜ガスを供給することが可能な成膜ガスノズルをレ、う。縦型 CVD装置の反応炉 にあっては、このロングノズルは、通常、炉の下部力 挿入されて炉の上部に向けて 延在されているため、炉内の下部から挿入されてそこに止まる通常ノズルと比べて長 さが長くなつている。上述したフラットポリシリコン膜の成膜には、炉内に複数の基板 が配置される領域に沿う、長さの異なる複数本の、例えば 4本の石英製のロングノズ ルが使用される。
[0018] 図 1、 2を参照すれば、ロードロック室等の減圧気密室(図示せず)の上部に炉ロ部 を形成するステンレス鋼等から成る炉口フランジ 2が気密に設けられ、炉口フランジ 2 の内面の所要位置にインナチューブ 3が同心に支持され、炉ロフランジ 2の上端にィ ンナチューブ 3と同心にァウタチューブ 4が設けられ、更にァウタチューブ 4の周囲を 囲繞する様に円筒状のヒータ 5がァウタチューブ 4と同心に設けられている。ヒータ 5 の周囲および上部を覆って断熱材 44が設けられている。ヒータ 5は、上から、 U、 CU 、 C、 CL、 Lの 5つのゾーンに分割されており、基板処理時には、 5つのゾーンは同一 の温度となる(温度勾配が縦方向にフラットになるようにように主制御部 24によって制 御される。なお、炉ロフランジ 2の下端はシールキャップ 13によって気密に閉塞され るようになっている。
[0019] インナチューブ 3は上端、下端が開放された円筒形状であり、耐熱性を有しウェハ を汚染しない材料である石英或は炭化珪素を材料としており、ヒータ 5からの熱を蓄 熱することで、ウェハへの加熱が均一化する。ァウタチューブ 4は下端が開放され上 端が閉塞された有天円筒形状であり、インナチューブ 3と同様に、石英或は炭化珪素 を材料としている。
[0020] インナチューブ 3内には、複数枚のウェハ 30を水平姿勢で搭載したボート 26が設 けられている。複数枚のウェハ 30間には所定の間隔が設けられている。ボート 26は 、シールキャップ 13に取り付けられたボート受け台 15上に搭載されており、ボート 26 を搭載したシールキャップ 13が上昇して炉ロフランジ 2の下端を気密に閉塞した状 態で、ボート 26に搭載されたウェハ 30は所定の処理位置に位置することになる。ボ ート 26の下部には、複数枚の断熱板 41が搭載され、その上部には、 5 10枚のダミ 一ウェハ 312が搭載され、その上には、 1枚のモニタウェハ 325が搭載され、その上 には、 25枚のプロダクトウェハ 304が搭載され、その上には:!枚のモニタウェハ 324 が搭載され、その上には、 25枚のプロダクトウェハ 303が搭載され、その上には 1枚 のモニタウェハ 323が搭載され、その上には、 25枚のプロダクトウェハ 302が搭載さ れ、その上には 1枚のモニタウェハ 322が搭載され、その上には、 25枚のプロダクト ウェハ 301が搭載され、その上には 1枚のモニタウェハ 321が搭載され、その上には 5— 10枚のダミーウェハ 311が搭載されてレ、る。
[0021] インナチューブ 3とァウタチューブ 4により反応管が構成され、炉ロフランジ 2、イン ナチューブ 3、ァウタチューブ 4、ヒータ 5等により、縦型炉が構成され、インナチユー ブ 3内部には処理室 16が画成され、インナチューブ 3とァウタチューブ 4との間には 円筒状のガス排気路 11が画成される。反応容器は、反応管 3、 4、炉ロフランジ 2、シ ールキャップ 13等により構成される。
[0022] 炉ロフランジ 2の壁を水平方向から気密に貫通し、インナチューブ 3の内面に沿い 上方、好ましくはインナチューブ 3の軸心と平行に延在する複数本(図中では 4本)の ガス導入ノス、ノレ 6, 7, 8, 9力 S設けられてレヽる。ガス導入ノス、ノレ 6, 7, 8, 9は石英製で あり、上端カ開放され、それぞれガス噴出口 63、 73、 83、 93となってレ、る。ガス導入 ノズノレ 6, 7, 8, 9により、反応ガスがインナチューブ 3内に導入される。ガス導入ノズ ル 6, 7, 8, 9は、炉ロフランジ 2の壁を同じ高さのところで水平方向に貫通しているが 、長さはそれぞれ異なっている。ガス導入ノズノレ 6, 7, 8, 9は、それぞれ反応管の軸 心と直交するよう設けられた管軸直交部 61、 71、 81、 91と、反応管の軸心と平行に 管内面に沿って設けられた管軸平行部 62、 72、 82、 92とからなり、管軸平行部 62、 72、 82、 92の長さ力 S段皆的に異なってレヽる。その結果、ガス導入ノズノレ 6, 7, 8, 9 の上端位置(ガス噴出口 63、 73、 83、 93)の高さが段階的に異なっている。
[0023] ガス導入ノズル 6, 7, 8, 9の上端のガス噴出口 63、 73、 83、 93のの高さを段階的 に異ならせたのは、反応炉 1内の管軸に沿う方向の温度勾配をゼロとしたうえで、複 数のウェハ 30の膜厚均一性を確保するためには、複数ウェハ 30を配置している領域 を 4ゾーン(プロダクトウェハ 301、 302、 303、 304)に分割して、分割した各ゾーン に対応するように、反応炉 1内に複数本のガス導入ノズル 6, 7, 8, 9をそれぞれ延在 させ、これらから反応ガスを供給することが必要となるからである。
[0024] ガス導入ノズル 6, 7, 8, 9の上端のガス噴出口 63、 73、 83、 93は、等間隔に配置 され、それぞれ 25枚のウェハカ積層されたプロダクトウエノヽ 301、 302、 303、 304の 配列領域の中央部付近にそれぞれ位置している。このように、ガス導入ノズル 6, 7, 8, 9の上端のガス噴出口 63、 73、 83、 93は処理室 16内の 4ゾーンのプロダクトゥェ ハ 301、 302、 303、 304にそれぞれ対応して位置決めされているので、複数のゥェ ハ 30に反応ガスを均等に供給するようになっている。
[0025] 成膜により反応ガスが消費される力 S、ガス導入ノズノレ 6 , 7, 8, 9の上端のガス噴出 口 63、 73、 83、 93が上方に向って段階的に開口しているので、消費分を補う様に 反応ガスが順次導入されることとなり、処理室 16の下部から上部に至る迄、反応ガス は均等な濃度で導入され、その結果、ウェハ 30間の膜厚が均一化される。
[0026] ガス導入ノズル 6, 7, 8, 9は、図 2に見られる様に、インナチューブ 3の内面に沿つ て同一円周上に等間隔に配設されている。尚、図 1中では説明上、分り易くする為、 インナチューブ 3の半径方向に配列して示している。又、ガス導入ノズル 10は、管軸 に直交するストレートノズルであり、材質はガス導入ノズル 6, 7, 8, 9と同様に石英製 である。
[0027] 図 3、図 4A、 4Bに示される様に、ガス導入ノズル 6, 7, 8, 9の管軸直交部 61、 71 、 81、 91は細径(小流路断面)となっており、管軸平行部 62、 72、 82、 92の少なくと もヒータ 5と対向する部分は、太径(大流路断面)となっている。太径部の流路断面積 は、細径部の流路断面積の少なくとも 2倍以上とすることが好ましい。
[0028] 大流路断面とする方法については、管軸平行部 62、 72、 82、 92の内径を管軸直 交部 61、 71、 81、 91に対して大きくする。管軸直交部 61、 71、 81、 91を細径 (本実 施例では、従来と同じ外径である 1/4インチ)とすることで、既存の基板処理装置に 対して大きな改造をすることなぐ実施可能となる。又、図 4A、 4Bの如ぐ管軸平行 部 62、 72、 82、 92の断面形状を、円周方向の長軸を有する長円、或は楕円とする。 この場合、短軸方向の外径は管軸直交部 61、 71、 81、 91と同寸法、或はインナチュ ーブ 3とボート 26およびボート 26に保持されるウェハ 30と間の間隙を考慮し、ボート 26やウェハ 30と干渉しない様に決定される。本実施例では、管軸直交部 61、 71、 8 1、 91の断面は、外径が 5— 7mm、内径が 3— 5mmの円形である。管軸平行部 62、 72、 82、 92の短軸方向の外径" b"は 7 9mmであり、内径" a"は 5 7mmである。 管軸平行部 62、 72、 82、 92の長軸方向の外径'' d"は 10— 12mmであり、内径" c" は 8 10mmである。
[0029] 本実施例では、管軸平行部 62、 72、 82、 92の内径は太くなり始める箇所 51からあ る傾きを持って太くなり、箇所 52においてそれ以降の部分と同じ太さとなつており、こ の箇所 52は、ヒータ 5の下端 53よりも下に位置している。また、太くなり始める箇所 51 は、ヒータ 5、ァウタチューブ 4、断熱板 41よりも下方であって、ボート受け台 15、イン ナチューブ 3の下端よりも上方であって、炉ロフランジ 2と対向する領域内に位置して いる。
[0030] また、図 7に示すように、内径が太くなり終わった箇所 52がヒータ 5の下端 53とほぼ 同じ高さとしてもよく((a)参照)、内径が太くなり始める箇所 51がヒータ 5の下端 53と ほぼ同じ高さとしてもよく((b)参照)、内径が太くなつている途中の箇所がヒータ 5の 下端 53とほぼ同じ高さとしてもよい((c)参照)。さらに、管軸平行部 62、 72、 82、 92 の内径は太くなり始める箇所 51からある傾きを持って太くなるのではなぐある箇所 5 4で急に太くなる構造でもよぐこの場合にこの箇所 54は、ヒータ 5の下端 53よりも下 に位置してレ、てもよく((d)参照)、ヒータ 5の下端 53とほぼ同じ高さであってもよレ、 ( (e )参照)。さらにまた、管車由平行部 62、 72、 82、 92の上端にガス噴出口 63、 73、 83、 93を設けるのではなく、管軸平行部 62、 72、 82、 92の佃 J面に複数のガス噴出口 48 を設けた多孔ノズル((f)参照)を用いるようにしてもよぐこの場合においても 51、 52 の位置は、ガス導入ノズノレ 6, 7, 8, 9の場合と同様である。
[0031] 再び、図 3を参照すると、管軸平行部 62、 72、 82、 92と管軸直交部 61、 71、 81、 91は別部品として連結して構成してもよぐ一体成形してもよい。
[0032] また、管軸直交部 61、 71、 81、 91の下部にはクッション部材 46がそれぞれ取り付 けられており、クッション部材 46は炉ロフランジ 2の壁に内側に突き出して取り付けら れた金属製のリング状のノズノレ支持部材 45に接触している。
[0033] 炉ロフランジ 2にはガス排気路 11の下端部に連通する排気管 12が設けられる。ガ ス導入ノズノレ 6, 7, 8, 9, 10から導入された反応ガスはインナチューブ 3内を上昇し 、インナチューブ 3の上端で折返し、ガス排気路 11を降下して排気管 12より排気され る。
[0034] 図 1を再び参照すれば、炉ロフランジ 2の下端開口(炉口)はシールキャップ 13によ つて気密に閉塞される様になつており、シールキャップ 13にはボート回転装置 14が 設けられ、ボート回転装置 14によって回転されるボート受台 15にボート 26が立設さ れる様になつている。シールキャップ 13はボートエレベータ 17によって昇降可能に 支持されている。
[0035] ガス導入ノズル 6, 7, 8, 9, 10は流量制御器としてのマスフローコントローラ 18, 1 9, 20, 21, 22をそれぞれ介して SiH等の反応ガスを供給する反応ガス供給源 42
4 、 或は窒素ガス等の不活性ガスを供給するパージガス供給源 43に接続されている。
[0036] ヒータ 5の加熱、ボートエレベータ 17の昇降、ボート回転装置 14の回転、マスフ口 一コントローラ 18, 19, 20, 21 , 22の流量は、主制卸部 24によって制 ί卸される。又、 主制御部 24には炉内温度を検出する 1又は複数の温度検出器 25からの温度検出 信号が入力され、ヒータ 5が炉内を均一加熱する様制御されている。
[0037] 以下、操作について説明する。
[0038] ボートエレベータ 17によりボート 26が降下され、降下状態のボート 26に対してゥェ ハ 27が図示しない基板移載機により移載される。ウェハ 27が所定枚数装填された状 態で、ボートエレベータ 17がシールキャップ 13を上昇させ、ボート 26を処理室 16に 装入する。処理室 16はシールキャップ 13により気密に閉塞され、排気管 12を介して 処理圧力迄減圧され、ヒータ 5により処理室 16が処理温度に加熱される。又、ボート 回転装置 14によりボート 26が、鉛直軸心を中心に回転される。
[0039] マスフローコントローラ 18, 19, 20, 21 , 22が反応ガス(SiH )の流量を制御し、反
4
応ガスはガス導入ノズノレ 6 , 7, 8, 9, 10より処理室 16に導入される。なお、この反応 ガス(SiH )は、 100%SiHとして、単独で導入してもよぐ SiHを Nで希釈して導入
4 4 4 2
してもよい。
[0040] 反応ガスは処理室 16内を上昇する過程で、熱化学反応により反応生成物がウェハ
27に堆積し、成膜される。又、ボート 26が回転されるので、反応ガスのウェハ 27に対 する偏流が防止される。
[0041] 又、成膜により反応ガスが消費されるが、ガス導入ノズノレ 6 , 7, 8, 9の上端位置 (ガ ス導入位置)が上方に向って段階的に開口しているので、消費分を補う様に反応ガ スが順次導入されることとなり、処理室 16の下部から上部に至る迄、反応ガスは均等 な濃度で導入される。従って、ウェハ面間の膜厚が均一化される。
[0042] 又、マスフローコントローラ 18, 19, 20, 21 , 22は反応ガスのガス濃度が一定とな る様に、各ガス導入ノズノレ 6, 7, 8, 9, 10からのガス導入量を制御している。 [0043] 反応ガスは管軸直交部 61、 71、 81、 91を通過して、管軸平行部 62、 72、 82、 92 を上昇する過程で、ヒータ 5で加熱される。この為、管軸平行部 62、 72、 82、 92を通 過する過程で、反応生成物が管軸平行部 62、 72、 82、 92内面に付着することがあ る。上記した様に、管軸平行部 62、 72、 82、 92の少なくともヒータ 5と対向する部分 は太径としているので、図 6に示すように、反応生成物 47が付着したとしても、ガス導 人ノズノレ 6、 7、 8、 9を言吉らせるには至らなレヽ。
[0044] 又、管軸直交部 61、 71、 81、 91は、温度が低く反応が進まないので、細径のまま でも構わない。図 3の様に、管軸直交部 61、 71、 81、 91と管軸平行部 62、 72、 82、 92との接合咅 B近傍、又は、管軸平行咅 B62、 72、 82、 92であっても、ヒータ 5と対向し ない部分であって管軸直交部 61、 71、 81、 91から立ち上がったある位置までは、 3 00— 400°C未満であり反応が進まないので細径である。
[0045] 尚、管軸平行咅 B62、 72、 82、 92のヒータ 5と対向した咅分であっても、 300— 400 °C未満であって加熱の進まない下部については細径のままとしてもよレ、。又、流路断 面を大きくする部分をヒータ 5と対向した部分で更にウェハ 30が収納される領域とし てもよい。
[0046] 従って、成膜処理を繰返し行った場合も、ノズノレの詰まりを抑制でき、ガス導入ノズ ル 6, 7, 8, 9からの反応ガスの供給量に不足は生じることなぐ品質の高い基板処理 を行うことができる。特にポリシリコン、好ましくはフラットポリシリコンの厚膜等の成膜 処理に於いて、効果が期待できる。また、 SiH等のシラン系ガスと GeH等のゲルマ
4 4
ン系ガスを用いて行う SiGe膜の成膜にも適用できる。
[0047] このように、ノズノレの流路断面積を大きくする必要がある部分は、成膜反応が生じる 程度の温度となる部分(SiHの場合 300— 400°C以上となる部分)や、反応ガスが
4
分解する程度の温度となる部分(SiHの場合 300 400°C以上となる部分)である。
4
[0048] また、ノズノレの流路断面積を大きくしなくてもよい部分は、ノズル取り付け部、ノズル 水平部、ノズル折れ曲がり部、ヒータと対向しない部分、成膜反応が生じない程度の 温度となる部分(SiHの場合 300 400°C未満となる部分)や、反応ガスが分解しな
4
い程度の温度となる部分(SiHの場合 300 400°C未満となる部分)である。
4
[0049] 図 5は本発明に係る基板処理装置に於いて、バッチ処理した場合にウェハに成膜 される膜厚の変化を示したものである。
[0050] 処理条件としては、例えば成膜温度即ち、少なくとも処理室 16のウェハ 30が収納 された領域の温度が 650— 670°C、成膜圧力 10— 30Pa、成膜膜厚 5000— 10000 A、反応ガス流量(SiH、総流量: 0. 2 1SLM)が好ましい。
4
[0051] 図 5では、上記処理条件にてバッチ処理を 10回繰返した場合を示しており、平均 膜厚(同一バッチ処理したウェハ間の膜厚平均値)は、バッチ処理毎に、漸次増加す る傾向にあるが、バッチ処理毎の膜厚均一性は ± 0. 38%と製品品質上支障ない範 囲に止まっており、ノズルの詰まりを抑制でき、反応ガスの供給量に不足が生じない ことを示している。従来は、 3 4バッチで詰まっていた力 本実施例によれば、ノズノレ を詰まらせることなく 10バッチ以上行うことができることが確認できた。
[0052] 又、ノ ツチ処理毎の膜厚均一性のデータを集積し、傾向を把握することで、マスフ ローコントローラ 18, 19, 20, 21 , 22を制御し、バッチ処理毎に流量を制御すれば 更に膜厚均一性が向上する。
[0053] 尚、上記の実施の形態で、成膜温度が 650°C— 670°Cの場合を例示したが、成膜 温度は 620°C以上で、例えば 620°C— 680°Cとしてもよレ、。又、管軸平行部 62、 72 , 82、 92の製造にあっては、一例として、 3/8インチの管を押潰して成形する等が ある。又、断面形状としては円形、長円、楕円に限らず、円弧状の長円であっても、 或は円周方向に長辺を有する矩形であってもよぐ要は流路断面を拡大できる形状 であればよい。例えば、ひしゃげた円形状、略楕円形状、円を潰したような形状 (楕 円形、卵形、角を丸めた長方形、対向した半円の端同士を直線で結んだ形)、短軸 が基板中央部側を向く略楕円形状、基板中心とノズル中心とを結ぶ直線方向に短軸 を有する略楕円形状、基板中心とノズル中心とを結ぶ直線と略垂直な方向に長軸を 有する略楕円形状、基板中心とノズノレ中心とを結ぶ直線方向の幅よりも、それと略垂 直な方向の幅の方が大きくなるような形状、基板中心とノズル中心とを結ぶ直線と略 垂直な方向に長辺を有する長方形、基板中心とノズル中心とを結ぶ直線と略垂直な 方向に長軸を有する菱形が好ましく挙げられる。このような変形例を図 8A—図 12B に図示する。
[0054] 又、反応炉は横型であっても実施可能であることは言う迄もない。 以上説明したように、本実施例においては、ノズノレの少なくともヒータと対向する部 分の流路断面積をノズノレの反応容器への取り付け部の流路断面積よりも大きくした ので、ノズルの詰まりを抑制でき、メンテナンスを行うまでの処理回数を増やすことが できる。これにより、メンテナンスの頻度を減らす (メンテナンスサイクルを長くする)こと ができ、装置のダウンタイムを減少させることができる。
[0055] また、ノズノレの反応容器への取り付け部の流路断面積は大きくしておらず、従来と 同形状(1/4インチ径)とすることができるので、従来と同形状の(1Z4インチ径ノズ ル対応の)炉口フランジをそのまま使用でき、炉口フランジを新たに設計し直す必要 がない。なお、ノズル全体の流路断面積を大きくした場合は、変更したノズル形状に 適合するように炉口フランジを新たに設計し直す (設計変更する)必要がある。
[0056] ノズルの少なくともヒータと対向する部分の断面形状をひしゃげた円形状(略楕円 形状)としたので、ウェハとインナチューブとの間のクリアランスを小さくできる。これに より基板面内でのガス濃度を均一にでき、面内膜厚均一性、面内膜質均一性を向上 させること力 Sできる。また、反応管容積を小さくすることができ、使用するガス量を節約 すること力 Sできる。また装置を小型化することもできる。
[0057] 明細書、特許請求の範囲、図面および要約書を含む 2003年 8月 7日提出の日本 国特許出願 2003-206526号および 2004年 3月 29日提出の日本国特許出願 200 4-096063号の開示内容全体は、そのまま引用してここに組み込まれる。
[0058] 種々の典型的な実施の形態を示しかつ説明してきた力 本発明はそれらの実施の 形態に限定されない。従って、本発明の範囲は、次の請求の範囲によってのみ限定 されるものである。
産業上の利用可能性
[0059] 以上説明したように、本発明の一形態によれば、複数枚の基板を処理する反応管 と、基板を加熱するヒータと、反応管内にガスを供給する少なくとも 1つのガス導入ノ ズルとを有する基板処理装置に於いて、ガス導入ノズノレは少なくともヒータと対向する 部分の流路断面を他の部分より大きくしたので、成膜処理する場合にガス導入ノズル の詰りを抑制でき、又、保守作業の軽減が図れ、メンテナンスサイクルの短縮ゃスル 一プットの向上が図れるという優れた効果を発揮する。 その結果、本発明は、シリコンウェハに半導体装置を製造する縦型 CVD装置やこ の CVD装置を用いる半導体装置の製造方法に特に好適に利用できる。

Claims

請求の範囲
[1] 複数枚の基板を処理する反応容器と、
前記複数枚の基板を加熱するヒータと、
前記反応容器内に反応ガスを供給する少なくとも一つのノズノレと、を有する基板処 理装置であって、
前記ノズノレは前記反応容器の壁を貫通して前記反応容器に取り付けられ、前記ノ ズノレの少なくとも前記ヒータと対向する部分の流路断面積を前記ノズル取り付け部の 流路断面積よりも大きくしたことを特徴とする基板処理装置。
[2] 前記ノズノレの少なくとも前記ヒータと対向する部分の断面形状をひしゃげた円形状と したことを特徴とする請求項 1記載の基板処理装置。
[3] 前記ノズノレの前記取り付け部の断面形状を円形状にしたことを特徴とする請求項 2記 載の基板処理装置。
[4] 前記ノズノレの少なくとも前記ヒータと対向する部分の断面形状を略楕円形状とし、そ の短軸が基板中央部側を向くようにしたことを特徴とする請求項 1記載の基板処理装 置。
[5] 前記ノズルの前記取り付け部の断面形状を円形状とし、その直径を前記短軸よりも小 さくしたことを特徴とする請求項 4記載の基板処理装置。
[6] 前記ノズノレの少なくとも前記ヒータと対向する部分の断面形状を、基板中心とノズノレ 中心とを結ぶ直線方向の幅よりも、それと垂直な方向の幅の方が大きい形状としたこ とを特徴とする請求項 1記載の基板処理装置。
[7] 前記ノズルの前記取り付け部の断面形状を円形状とし、その直径を前記ノズルの基 板中心とノズノレ中心とを結ぶ直線方向の幅よりも小さくしたことを特徴とする請求項 6 記載の基板処理装置。
[8] 前記ノズルは水平方向に伸びる水平部と、垂直方向に立ち上がる垂直部とを有し、 前記水平部が前記反応容器の側壁に取り付けられ、前記垂直部の一部が前記ヒー タと対向することを特徴とする請求項 1記載の基板処理装置。
[9] 前記反応ガスとは成膜ガスであり、前記処理とは成膜処理であることを特徴とする請 求項 1記載の基板処理装置。
[10] 前記反応ガスとは SiHであり、前記処理とはシリコン膜の成膜処理であることを特徴
4
とする請求項 1記載の基板処理装置。
[11] 前記ノズルは、長さの異なる複数本のノズルからなることを特徴とする請求項 1記載の 基板処理装置。
[12] 前記ヒータは複数のヒータゾーンに分かれており、前記基板を処理する際、前記各ヒ ータゾーンに対応する反応容器内の温度を同一温度に保持するよう構成されること を特徴とする請求項 11記載の基板処理装置。
[13] 前記反応ガスとは SiHであり、前記処理とはシリコン膜の成膜処理であることを特徴
4
とする請求項 12記載の基板処理装置。
[14] 前記ヒータは前記基板を処理する際、前記各ヒータゾーンに対応する反応容器内の 温度を 650— 670°Cの範囲内の温度に保持するよう構成されることを特徴とする請求 項 13記載の基板処理装置。
[15] 基板を反応容器内に搬入するステップと、
前記反応容器の壁を貫通するよう前記反応容器に取り付けられ、少なくともヒータと 対向する部分の流路断面積を前記取り付け部の流路断面積よりも大きくしたノズノレよ り前記反応容器内に反応ガスを供給して前記基板を処理するステップと、
処理後の前記基板を前記反応容器より搬出するステップと、
を有することを特徴とする半導体装置の製造方法。
PCT/JP2004/011266 2003-08-07 2004-08-05 基板処理装置および半導体装置の製造方法 WO2005015619A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005512958A JP4267624B2 (ja) 2003-08-07 2004-08-05 基板処理装置および半導体装置の製造方法
US10/549,933 US7622007B2 (en) 2003-08-07 2004-08-05 Substrate processing apparatus and semiconductor device producing method
US12/578,012 US8673076B2 (en) 2003-08-07 2009-10-13 Substrate processing apparatus and semiconductor device producing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-206526 2003-08-07
JP2003206526 2003-08-07

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10/549,933 A-371-Of-International US7622007B2 (en) 2003-08-07 2004-08-05 Substrate processing apparatus and semiconductor device producing method
US12/578,012 Division US8673076B2 (en) 2003-08-07 2009-10-13 Substrate processing apparatus and semiconductor device producing method

Publications (1)

Publication Number Publication Date
WO2005015619A1 true WO2005015619A1 (ja) 2005-02-17

Family

ID=34131387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/011266 WO2005015619A1 (ja) 2003-08-07 2004-08-05 基板処理装置および半導体装置の製造方法

Country Status (4)

Country Link
US (2) US7622007B2 (ja)
JP (1) JP4267624B2 (ja)
KR (1) KR100870807B1 (ja)
WO (1) WO2005015619A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007042671A (ja) * 2005-07-29 2007-02-15 Hitachi Kokusai Electric Inc 基板処理装置
JP2012501067A (ja) * 2008-08-22 2012-01-12 アプライド マテリアルズ インコーポレイテッド 半導体プロセスチャンバのプロセスガス配送
WO2013118822A1 (ja) * 2012-02-10 2013-08-15 株式会社ジェイテクト 炭素膜成膜装置および炭素膜成膜方法
JP2019503086A (ja) * 2015-12-22 2019-01-31 シコ・テクノロジー・ゲーエムベーハーSICO Technology GmbH 半導体産業用のシリコンのインジェクター

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100609065B1 (ko) * 2004-08-04 2006-08-10 삼성전자주식회사 산화막 형성 장치 및 방법
JP4455225B2 (ja) * 2004-08-25 2010-04-21 Necエレクトロニクス株式会社 半導体装置の製造方法
KR101077106B1 (ko) * 2006-08-11 2011-10-26 가부시키가이샤 히다치 고쿠사이 덴키 기판 처리 장치 및 반도체 장치의 제조 방법
JP4464949B2 (ja) * 2006-11-10 2010-05-19 株式会社日立国際電気 基板処理装置及び選択エピタキシャル膜成長方法
JP5144295B2 (ja) * 2007-02-28 2013-02-13 株式会社日立国際電気 基板処理装置及び半導体装置の製造方法
JP5090097B2 (ja) * 2007-07-26 2012-12-05 株式会社日立国際電気 基板処理装置、半導体装置の製造方法及び基板処理方法
KR101431197B1 (ko) * 2008-01-24 2014-09-17 삼성전자주식회사 원자층 증착설비 및 그의 원자층 증착방법
US20090197424A1 (en) * 2008-01-31 2009-08-06 Hitachi Kokusai Electric Inc. Substrate processing apparatus and method for manufacturing semiconductor device
JP5383332B2 (ja) * 2008-08-06 2014-01-08 株式会社日立国際電気 基板処理装置、基板処理方法及び半導体装置の製造方法
JP2010141223A (ja) * 2008-12-15 2010-06-24 Hitachi Kokusai Electric Inc 半導体装置の製造方法及び基板処理装置
JP2010239115A (ja) * 2009-03-10 2010-10-21 Hitachi Kokusai Electric Inc 基板処理装置
JP5610438B2 (ja) * 2010-01-29 2014-10-22 株式会社日立国際電気 基板処理装置及び半導体装置の製造方法
US8409352B2 (en) * 2010-03-01 2013-04-02 Hitachi Kokusai Electric Inc. Method of manufacturing semiconductor device, method of manufacturing substrate and substrate processing apparatus
JP5243519B2 (ja) * 2010-12-22 2013-07-24 東京エレクトロン株式会社 成膜装置
KR101408084B1 (ko) * 2011-11-17 2014-07-04 주식회사 유진테크 보조가스공급포트를 포함하는 기판 처리 장치
KR101364701B1 (ko) * 2011-11-17 2014-02-20 주식회사 유진테크 위상차를 갖는 반응가스를 공급하는 기판 처리 장치
KR101427726B1 (ko) * 2011-12-27 2014-08-07 가부시키가이샤 히다치 고쿠사이 덴키 기판 처리 장치 및 반도체 장치의 제조 방법
US9512519B2 (en) * 2012-12-03 2016-12-06 Taiwan Semiconductor Manufacturing Company, Ltd. Atomic layer deposition apparatus and method
JPWO2014125653A1 (ja) * 2013-02-15 2017-02-02 株式会社日立国際電気 基板処理装置、半導体装置の製造方法及び基板処理方法
JP6562946B2 (ja) * 2014-04-09 2019-08-21 ビューラー アルツェナウ ゲゼルシャフト ミット ベシュレンクテル ハフツングBuehler Alzenau GmbH ガス案内装置を備える真空チャンバのガス分配装置
US20170207078A1 (en) * 2016-01-15 2017-07-20 Taiwan Semiconductor Manufacturing Co., Ltd. Atomic layer deposition apparatus and semiconductor process
US10998205B2 (en) * 2018-09-14 2021-05-04 Kokusai Electric Corporation Substrate processing apparatus and manufacturing method of semiconductor device
JP7109331B2 (ja) * 2018-10-02 2022-07-29 東京エレクトロン株式会社 基板処理装置及び基板処理方法
US11433614B2 (en) * 2019-07-31 2022-09-06 Hamilton Sundstrand Corporation Apparatus and method for removing unused powder from a printed workpiece
JP7486388B2 (ja) * 2020-09-17 2024-05-17 東京エレクトロン株式会社 ガス導入構造及び処理装置
TW202229795A (zh) * 2020-11-23 2022-08-01 荷蘭商Asm Ip私人控股有限公司 具注入器之基板處理設備
KR20220076343A (ko) * 2020-11-30 2022-06-08 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치의 반응 챔버 내에 배열되도록 구성된 인젝터

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09102463A (ja) * 1995-10-04 1997-04-15 Sharp Corp 成膜装置
JP2002353211A (ja) * 2001-05-28 2002-12-06 Tokyo Electron Ltd 熱処理装置とその熱処理方法
JP2003045811A (ja) * 2001-07-31 2003-02-14 Hitachi Kokusai Electric Inc 半導体デバイスの製造方法および基板処理装置
JP2003045864A (ja) * 2001-08-02 2003-02-14 Hitachi Kokusai Electric Inc 基板処理装置
JP2004134466A (ja) * 2002-10-08 2004-04-30 Hitachi Kokusai Electric Inc 基板処埋装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4992301A (en) * 1987-09-22 1991-02-12 Nec Corporation Chemical vapor deposition apparatus for obtaining high quality epitaxial layer with uniform film thickness
JPH0225576A (ja) * 1988-07-14 1990-01-29 Canon Inc 堆積膜形成装置
JP2819073B2 (ja) * 1991-04-25 1998-10-30 東京エレクトロン株式会社 ドープド薄膜の成膜方法
JPH05198517A (ja) * 1992-01-21 1993-08-06 Tokyo Electron Ltd バッチ式ガス処理装置
JPH08213330A (ja) * 1995-01-31 1996-08-20 Shinko Electric Co Ltd 半導体製造装置における加熱炉のガス導入部
JP3969859B2 (ja) 1998-08-26 2007-09-05 株式会社日立国際電気 基板処理装置及び半導体デバイスの製造方法
JP2002525841A (ja) * 1998-09-16 2002-08-13 トーレックス・イクイップメント・コーポレーション 低圧における高速シリコン堆積法
US6383300B1 (en) * 1998-11-27 2002-05-07 Tokyo Electron Ltd. Heat treatment apparatus and cleaning method of the same
JP2000294511A (ja) * 1999-04-09 2000-10-20 Ftl:Kk 半導体装置の製造装置
JP3855531B2 (ja) * 1999-04-23 2006-12-13 株式会社Sumco ポリシリコン層付きシリコンウェーハ及びその製造方法
JP2001252604A (ja) 2000-03-13 2001-09-18 Tokyo Electron Ltd 処理液吐出ノズルおよび液処理装置
JP3572247B2 (ja) 2000-10-06 2004-09-29 東芝セラミックス株式会社 半導体熱処理炉用ガス導入管
US6641673B2 (en) * 2000-12-20 2003-11-04 General Electric Company Fluid injector for and method of prolonged delivery and distribution of reagents into plasma
US6435865B1 (en) * 2001-07-30 2002-08-20 Taiwan Semiconductor Manufacturing Co., Ltd. Apparatus and method for positioning gas injectors in a vertical furnace
JP4873820B2 (ja) 2002-04-01 2012-02-08 株式会社エフティーエル 半導体装置の製造装置
KR100829327B1 (ko) * 2002-04-05 2008-05-13 가부시키가이샤 히다치 고쿠사이 덴키 기판 처리 장치 및 반응 용기
JP4716664B2 (ja) 2004-03-29 2011-07-06 株式会社日立国際電気 半導体装置の製造方法、クリーニング方法及び基板処理装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09102463A (ja) * 1995-10-04 1997-04-15 Sharp Corp 成膜装置
JP2002353211A (ja) * 2001-05-28 2002-12-06 Tokyo Electron Ltd 熱処理装置とその熱処理方法
JP2003045811A (ja) * 2001-07-31 2003-02-14 Hitachi Kokusai Electric Inc 半導体デバイスの製造方法および基板処理装置
JP2003045864A (ja) * 2001-08-02 2003-02-14 Hitachi Kokusai Electric Inc 基板処理装置
JP2004134466A (ja) * 2002-10-08 2004-04-30 Hitachi Kokusai Electric Inc 基板処埋装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007042671A (ja) * 2005-07-29 2007-02-15 Hitachi Kokusai Electric Inc 基板処理装置
JP2012501067A (ja) * 2008-08-22 2012-01-12 アプライド マテリアルズ インコーポレイテッド 半導体プロセスチャンバのプロセスガス配送
WO2013118822A1 (ja) * 2012-02-10 2013-08-15 株式会社ジェイテクト 炭素膜成膜装置および炭素膜成膜方法
CN104105815A (zh) * 2012-02-10 2014-10-15 株式会社捷太格特 用于沉积碳膜的设备以及用于沉积碳膜的方法
JP2019503086A (ja) * 2015-12-22 2019-01-31 シコ・テクノロジー・ゲーエムベーハーSICO Technology GmbH 半導体産業用のシリコンのインジェクター

Also Published As

Publication number Publication date
US7622007B2 (en) 2009-11-24
US8673076B2 (en) 2014-03-18
JP4267624B2 (ja) 2009-05-27
US20100081288A1 (en) 2010-04-01
JPWO2005015619A1 (ja) 2006-10-05
KR100870807B1 (ko) 2008-11-27
US20070034158A1 (en) 2007-02-15
KR20050117573A (ko) 2005-12-14

Similar Documents

Publication Publication Date Title
JP4267624B2 (ja) 基板処理装置および半導体装置の製造方法
JP2654996B2 (ja) 縦型熱処理装置
JP5157100B2 (ja) 成膜装置及び成膜方法
US20090277386A1 (en) Catalytic chemical vapor deposition apparatus
JP5144295B2 (ja) 基板処理装置及び半導体装置の製造方法
US20080135516A1 (en) Substrate treatment device
JP5560093B2 (ja) 基板処理装置及び半導体装置の製造方法及び基板製造方法
US20090197409A1 (en) Substrate processing apparatus and method of manufacturing semiconductor device
JP2001274107A (ja) 拡散炉
JPH03287770A (ja) 枚葉式常圧cvd装置
US10793949B2 (en) Substrate processing apparatus and substrate processing method using the same
JP2011012331A (ja) 気相成長装置及び気相成長方法
JP2012080035A (ja) 基板処理装置及び基板製造方法
US20090061651A1 (en) Substrate processing apparatus and method for manufacturing semiconductor device
JP4645616B2 (ja) 成膜装置
JP7383832B2 (ja) 基板処理装置、基板処理方法、半導体装置の製造方法及びプログラム
JP2006186015A (ja) 基板処理装置
JP2008025007A (ja) 基板処理装置および半導体装置の製造方法
JP2004104014A (ja) 半導体装置の製造方法
JPH08115883A (ja) 成膜装置
JP2011216848A (ja) 半導体装置の製造方法及び基板の製造方法及び基板処理装置
US11885024B2 (en) Gas introduction structure and processing apparatus
JP7471972B2 (ja) 処理装置及び処理方法
JP2002373861A (ja) バッチ式熱処理装置
JP2024088766A (ja) 処理装置及び処理方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005512958

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020057017603

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020057017603

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007034158

Country of ref document: US

Ref document number: 10549933

Country of ref document: US

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10549933

Country of ref document: US