US20080135516A1 - Substrate treatment device - Google Patents

Substrate treatment device Download PDF

Info

Publication number
US20080135516A1
US20080135516A1 US11/979,816 US97981607A US2008135516A1 US 20080135516 A1 US20080135516 A1 US 20080135516A1 US 97981607 A US97981607 A US 97981607A US 2008135516 A1 US2008135516 A1 US 2008135516A1
Authority
US
United States
Prior art keywords
gas
gas supply
treatment chamber
substrate
supplying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/979,816
Inventor
Takashi Yokogawa
Yasuhiro Inokuchi
Katsuhiko Yamamoto
Yoshiaki Hashiba
Yasuhiro Ogawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Assigned to HITACHI KOKUSAI ELECTRIC INC. reassignment HITACHI KOKUSAI ELECTRIC INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HASHIBA, YOSHIAKI, INOKUCHI, YASUHIRO, OGAWA, YASUHIRO, YAMAMOTO, KATSUHIKO, YOKOGAWA, TAKASHI
Publication of US20080135516A1 publication Critical patent/US20080135516A1/en
Priority to US13/067,117 priority Critical patent/US8652258B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/08Reaction chambers; Selection of materials therefor
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/14Feed and outlet means for the gases; Modifying the flow of the reactive gases
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B35/00Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure

Definitions

  • This invention relates to a substrate treatment device to be used for a semiconductor production apparatus.
  • a reaction furnace (treatment furnace) of a vertical low pressure CVD device used for selective epitaxial growth of Si or SiGe is formed of a reaction piping, an inlet flange, a seal cap, and the like, wherein a boat is placed on the seal cap, a wafer is placed on the boat, and the reaction furnace is heated by a heater.
  • a gas serving as a raw material for the Si or SiGe selective epitaxial growth is introduced from an upper part of the reaction furnace through a nozzle and discharged from a lower part. Accordingly, in a reaction atmosphere where the wafer is present, the gas flows from the top to the bottom.
  • the heater heating the reaction furnace is divided into five regions of an upper heater, a central upper heater, a central heater, a central lower heater, and a lower heater, and a temperature gradient (temperature inclination) is set for the five divisional heaters in such a manner that the lower the region the higher is the temperature.
  • a reduction in growth speed at the discharge side (the lower part of the reaction furnace), which is caused by consumption of the reaction gas, is corrected by the temperature gradient.
  • a method of alternately supplying a raw material gas and an etching gas is employed.
  • the method of alternately supplying a raw material gas and an etching gas since the raw material gas supply and the etching gas supply are performed under an identical temperature, only one of a growth speed and an etching speed is adjusted by the temperature gradient of the heaters. That is, in the case where the temperature gradient is so set as to adjust the growth speed, the etching speed is decided in accordance with the temperature gradient. In the case where the temperature gradient is so set as to adjust the etching speed, the growth speed is decided in accordance with the temperature gradient.
  • the raw material gas and the etching gas are supplied from an identical nozzle, a film that is formed due to self-decomposition of the raw material gas deposits inside the nozzle, and particle generation and etching gas consumption are undesirably caused when the etching gas is fed through such nozzle.
  • This invention has been accomplished for the purpose of solving the above-described problems, and an object thereof is to provide a substrate treatment device that enables adjustment of both of a growth speed and an etching speed and is capable of suppressing particle generation.
  • this invention is characterized by a substrate treatment device at least using a Si-containing gas and a Cl 2 gas and alternately supplying the Si-containing gas and the Cl 2 gas to a treatment chamber for selectively growing an epitaxial film on a surface of a substrate housed in the treatment chamber, comprising: a substrate support member for supporting the substrate in the treatment chamber; a heating member provided outside the treatment chamber for heating the substrate and an atmosphere of the treatment chamber; a gas supply system provided inside the treatment chamber; and a discharge port opened on the treatment chamber, wherein: the gas supply system comprises a first gas supply member for supplying the Si-containing gas and a second gas supply member for supplying the Cl 2 gas different from the first gas supply member; and each of the first gas supply member and the second gas supply member comprises a plurality of gas supply nozzles for separately supplying the Si-containing gas and the Cl 2 gas to a plurality of different parts of the treatment chamber.
  • FIG. 1 is a schematic diagram showing a structure of a substrate treatment device according to one embodiment of this invention.
  • FIG. 2 is a longitudinal sectional view showing a structure of a treatment furnace of the substrate treatment device according to the embodiment of this invention.
  • FIG. 3 is diagram showing a flow of specific steps for a selective epitaxial growth of a Si film using the substrate treatment device according to the embodiment of this invention.
  • FIG. 1 Shown in FIG. 1 is a schematic diagram of a substrate treatment device 10 according to one embodiment of this invention.
  • the substrate treatment device 10 is a so-called hot wall type vertical low pressure CVD device.
  • wafers (Si substrates) a conveyed by a wafer cassette 12 are transferred onto a boat 16 from the wafer cassette 12 by a transfer machine 14 .
  • the boat 16 is inserted into a treatment furnace 18 , and then the treatment furnace 18 is reduced in pressure by an evacuation system 20 .
  • a temperature inside the treatment furnace 18 is increased to a desired temperature by a heater 22 , and, when the temperature becomes stable, a raw material gas and an etching gas are alternately supplied from a gas supply system 21 to cause selective epitaxial growth of Si, SiGe, or the like on the wafers a.
  • Denoted by 23 is a control system for controlling insertion of the boat 16 into the treatment furnace 18 , rotation of the boat 16 , evacuation by the evacuation system 20 , gas supply from the gas supply system 21 , heating by the heater 22 , and the like.
  • a Si-containing gas such as SiH 4 , Si 2 H 6 , and SiH 2 Cl 2 may be used.
  • a Ge-containing gas such as GeH 4 and GeCl 4 may be added.
  • the selective growth means the growth of Si or SiGe caused only on Si during the incubation period.
  • Si nuclei adhere to SiO 2 or Si 3 N 4 to diminish the selectivity. Therefore, the etching gas is supplied after the raw material gas supply in order to eliminate the Si nuclei adhered to SiO 2 or Si 3 N 4 .
  • the selective epitaxial growth is performed by alternating the gas supplies.
  • FIG. 2 is a schematic block diagram which is a longitudinal sectional view showing the treatment furnace 18 after the insertion of the boat 16 according to one embodiment of this invention.
  • the treatment furnace 18 is provided with a reaction piping 26 that forms a treatment chamber 24 and formed of an outer tube, for example, a gas discharge piping 28 disposed under the reaction piping 26 for discharging gases from a discharge port 27 , a first gas supply piping 30 for supplying the raw material gas and the like to the treatment chamber 24 , a second gas supply piping 32 for supplying the etching gas and the like, a manifold 34 connected to the reaction piping 26 via an O-ring 33 a , a sealing cap 36 for closing a lower end of the manifold 34 to seal the treatment chamber 24 via O-rings 33 b and 33 c , the boat 16 serving as a wafer retaining body (substrate support member) for retaining (supporting) the wafers (Si substrates) a in a multistage state, a rotation mechanism 38 for rotating the boat 16 at a predetermined number of rotations, and the heater (heating member) 22 formed of a heater wire (not shown
  • the reaction piping 26 is formed from a heat insulating material such as quartz (SiO 2 ) and silicon carbide (SiC) and has a cylindrical shape wherein an upper end is closed and a lower end is opened.
  • the manifold 34 is made from a stainless steel or the like, for example, and has a cylindrical shape wherein an upper end and a lower end are opened. The upper end of the manifold 34 is coupled to the reaction piping 26 via the O-ring 33 a , and the first gas supply piping 30 and the second gas supply piping 32 are attached as penetrating through the manifold 34 .
  • the sealing cap 36 is made from a stainless steel or the like, for example, and formed of a ring-like part 35 and a circular part 37 to close the lower end of the manifold 34 via the O-rings 33 b and 33 c .
  • the boat 16 is made from a heat insulating material such as quartz and silicon carbide and has a structure of retaining the plural wafers a in such a state that the wafers a keep a horizontal posture and drawn up with centerlines being aligned.
  • the rotation mechanism 38 of the boat 16 is connected to the boat 16 by a rotation shaft 39 penetrating through the sealing cap 36 , so that the wafers a are rotated when the boat 16 is rotated.
  • the heater 22 is divided into 5 regions of an upper heater 22 A, a central upper heater 22 B, a central heater 22 C, a central lower heater 22 D, and a lower heater 22 E, and each of the heater regions has a cylindrical shape.
  • the treatment gas is supplied from a raw material gas supply source 46 for supplying the raw material gas (e.g. SiH 4 gas), a purge gas supply source 48 for supplying a purge gas (e.g. H 2 gas), an etching gas supply source 50 for supplying the etching gas (e.g. Cl 2 gas), for example.
  • a raw material gas supply source 46 for supplying the raw material gas (e.g. SiH 4 gas)
  • a purge gas supply source 48 for supplying a purge gas (e.g. H 2 gas)
  • an etching gas supply source 50 for supplying the etching gas (e.g. Cl 2 gas), for example.
  • the raw material gas and the purge gas are introduced into the treatment chamber 24 separately through the first gas supply piping 30 and the second gas supply piping 32 after flow rates of the gases are independently adjusted by a first MFC (mass-flow controller) 52 serving as a unit for controlling the flow rate of the raw material gas from the raw material gas supply source 46 and a second MFC 54 serving as a unit for controlling the flow rate of the purge gas from the purge gas supply source 48 .
  • a first MFC mass-flow controller
  • the raw material gas is supplied to three parts of an upper part, a center part, and a lower part of the boat 16 by the first gas supply nozzles 42 a , 42 b , and 42 c branched from the first gas supply piping 30 , while the purge gas is supplied to the three parts of the upper part, the center part, and the lower part of the boat 16 by the second gas supply nozzles 44 a , 44 b , and 44 c branched from the second gas supply piping 32 .
  • the purge gas and the etching gas are introduced into the treatment chamber 24 separately through the first gas supply piping 30 and the second gas supply piping 32 after flow rates of the gases are independently adjusted by a third MFC 56 serving as a unit for controlling the flow rate of the purge gas from the purge gas supply source 48 and a fourth MPC 58 serving as a unit for controlling the flow rate of the etching gas from the etching gas supply source 50 .
  • the purge gas is supplied to the three parts of the upper part, the center part, and the lower part of the boat 16 by the first gas supply nozzles 42 a , 42 b , and 42 c branched from the first gas supply piping 30 , while the etching gas is supplied to the three parts of the upper part, the center part, and the lower part of the boat 16 by the second gas supply nozzles 44 a , 44 b , and 44 c branched from the second gas supply piping 32 .
  • the atmosphere inside the treatment chamber 24 is evacuated by an evacuation unit (e.g. vacuum pump 59 ) connected to the gas discharge piping 28 from the treatment chamber 24 .
  • an evacuation unit e.g. vacuum pump 59
  • the boat 16 retaining the untreated wafers a is inserted into the treatment chamber 24 by driving of an elevation motor (not shown).
  • An evacuation valve 62 is opened by a command from the control device 60 to evacuate the atmosphere in the treatment chamber 24 , thereby reducing a pressure of the treatment chamber 24 .
  • the heater 22 is controlled by the control device 60 so as to maintain a temperature of the treatment chamber 24 , i.e. a temperature of the wafers a, to a desired temperature.
  • the rotation mechanism 38 is driven by a command from the control device 60 so that the boat 16 is rotated at the predetermined number of rotations.
  • a first valve 64 opening/closing for supplying the raw material gas from the raw material gas supply source 46 and a second valve 66 for supplying the purge gas from the purge gas supply source 48 are opened.
  • a third valve 68 is opened to introduce the raw material gas into the treatment chamber 24 through the first gas supply piping 30 and the first gas supply nozzles 42 a , 42 b , and 42 c to treat the wafers a.
  • a sixth valve 74 is opened to introduce the purge gas into the treatment chamber 24 through the second gas supply piping 32 and the second gas supply nozzles 44 a , 44 b , and 44 c.
  • a fourth valve 70 opening/closing for supplying the etching gas from the etching gas supply source 50 and a fifth valve 72 for supplying the purge gas from the purge gas supply source 48 are opened.
  • the sixth valve 74 is opened to introduce the etching gas into the treatment chamber 24 through the second gas supply piping 32 and the second gas supply nozzles 44 a , 44 b , and 44 c to treat the wafers a.
  • the third valve 68 is opened to introduce the purge gas into the treatment chamber 24 through the first gas supply piping 30 and the first gas supply nozzles 42 a , 42 b , and 42 c.
  • the raw material gas is supplied to the treatment chamber 24 through the first gas supply piping 30 and the first gas supply nozzles 42 a , 42 b , and 42 c separately from the etching gas supplied to the treatment chamber 24 through the second gas supply piping 32 and the second gas supply nozzles 44 a , 44 b , and 44 c .
  • the substrate treatment device 10 since the substrate treatment device 10 according to one embodiment of this invention is capable of supplying the raw material gas and the etching gas separately from each other through the plural nozzles that are provided independently for each of the raw material gas and the etching gas, it is possible to adjust both of the growth speed and the etching speed by adjusting the supply rates of the raw material gas and the etching gas.
  • the substrate treatment device 10 since the raw material gas is supplied from the plural nozzles that are different from the plural nozzles used for supplying the etching gas, it is possible to avoid the particle generation from the nozzles.
  • the etching gas is not consumed in the second gas supply nozzles 44 a , 44 b , and 44 c , thereby making it possible to achieve good etching characteristics as well as to ensure a stable etching rate for the wafers a irrespective of the inner wall state of the first gas supply nozzles 42 a , 42 b , and 42 c and the second gas supply nozzles 44 a , 44 b , and 44 c.
  • the substrate treatment device 10 is capable of adjusting a reduction in growth speed, which is aggravated as a distance between the discharge side (the lower part inside the treatment furnace 18 ) and the wafer is reduced due to consumption of the reaction gas, by supplying the gas between the upper part and the lower part of the treatment furnace 18 , thereby making it possible to set a growth speed at a temperature close to the treatment temperature upper limit as the standard as well as to realize a growth speed larger than that achieved by setting the temperature gradient.
  • the purge gas such as a hydrogen gas is fed during the film formation (raw material gas supply) through the second gas supply nozzles 44 a , 44 b , and 44 c that are used for the etching gas as described above, it is possible to prevent entrance of the gas and film deposition on the inner walls in the second gas supply nozzles 44 a , 44 b , and 44 c .
  • the purge gas is fed during the etching (etching gas supply) through the first gas supply nozzles 42 a , 42 b , and 42 c that are used for the raw material gas, it is possible to prevent entrance of the etching gas in the first gas supply nozzles 42 a , 42 b , and 42 c.
  • a monosilane (SiH 4 ) gas which is the raw material gas is supplied to the treatment chamber 24 through the first gas supply piping 30 and the first gas supply nozzles 42 a , 42 b , and 42 c (film formation step).
  • a hydrogen (H 2 ) gas which is the purge gas is supplied to the treatment chamber 24 through the second gas supply piping 32 and the second gas supply nozzles 44 a , 44 b , and 44 c.
  • the H 2 gas which is the purge gas is supplied to the treatment chamber 24 through both of the first gas supply piping 30 and the first gas supply nozzles 42 a , 42 b , and 42 c and the second gas supply piping 32 and the second gas supply nozzles 44 a , 44 b , and 44 c (purge step).
  • a chlorine (Cl 2 ) gas which is the etching gas is supplied to the treatment chamber 24 through the second gas supply piping 32 and the second gas supply nozzles 44 a , 44 b , and 44 c (etching step).
  • the H 2 gas which is the purge gas is supplied to the treatment chamber 24 through the first gas supply piping 30 and the first gas supply nozzles 42 a , 42 b , and 42 c.
  • the H 2 gas which is the purge gas is supplied to the treatment chamber 24 through both of the first gas supply piping 30 and the first gas supply nozzles 42 a , 42 b , and 42 c and the second gas supply piping 32 and the second gas supply nozzles 44 a , 44 b , and 44 c (purge step).
  • the substrate treatment device capable of adjusting both of the growth speed and the etching speed in the Si or SiGe selective epitaxial growth, avoiding the particle generation from nozzles, and achieving good etching characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

It is intended to provide a substrate treatment device capable of adjusting both of a growth speed and an etching speed in a selective epitaxial growth, avoiding particle generation from nozzles, and achieving good etching characteristics. A substrate treatment device for selectively growing an epitaxial film on a surface of a substrate by alternately supplying a raw material gas containing silicon and an etching gas to a treatment chamber, the substrate treatment device being provided with a substrate support member for supporting the substrate in the treatment chamber, a heating member provided outside the treatment chamber for heating the substrate and an atmosphere of the treatment chamber, a gas supply system provided inside the treatment chamber, and a discharge port opened on the treatment chamber, wherein the gas supply system comprises first gas supply nozzles for supplying the raw material gas and second gas supply nozzles for supplying the etching gas.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • This invention relates to a substrate treatment device to be used for a semiconductor production apparatus.
  • 2. Description of the Related Art
  • A reaction furnace (treatment furnace) of a vertical low pressure CVD device used for selective epitaxial growth of Si or SiGe is formed of a reaction piping, an inlet flange, a seal cap, and the like, wherein a boat is placed on the seal cap, a wafer is placed on the boat, and the reaction furnace is heated by a heater.
  • In the above-mentioned structure, a gas serving as a raw material for the Si or SiGe selective epitaxial growth is introduced from an upper part of the reaction furnace through a nozzle and discharged from a lower part. Accordingly, in a reaction atmosphere where the wafer is present, the gas flows from the top to the bottom.
  • In this case, the heater heating the reaction furnace is divided into five regions of an upper heater, a central upper heater, a central heater, a central lower heater, and a lower heater, and a temperature gradient (temperature inclination) is set for the five divisional heaters in such a manner that the lower the region the higher is the temperature. A reduction in growth speed at the discharge side (the lower part of the reaction furnace), which is caused by consumption of the reaction gas, is corrected by the temperature gradient.
  • In the Si or SiGe selective epitaxial growth, a method of alternately supplying a raw material gas and an etching gas is employed. In the case of the method of alternately supplying a raw material gas and an etching gas, since the raw material gas supply and the etching gas supply are performed under an identical temperature, only one of a growth speed and an etching speed is adjusted by the temperature gradient of the heaters. That is, in the case where the temperature gradient is so set as to adjust the growth speed, the etching speed is decided in accordance with the temperature gradient. In the case where the temperature gradient is so set as to adjust the etching speed, the growth speed is decided in accordance with the temperature gradient.
  • Also, when the raw material gas and the etching gas are supplied from an identical nozzle, a film that is formed due to self-decomposition of the raw material gas deposits inside the nozzle, and particle generation and etching gas consumption are undesirably caused when the etching gas is fed through such nozzle.
  • SUMMARY OF THE INVENTION
  • This invention has been accomplished for the purpose of solving the above-described problems, and an object thereof is to provide a substrate treatment device that enables adjustment of both of a growth speed and an etching speed and is capable of suppressing particle generation.
  • In order to solve the above-described problems, this invention is characterized by a substrate treatment device at least using a Si-containing gas and a Cl2 gas and alternately supplying the Si-containing gas and the Cl2 gas to a treatment chamber for selectively growing an epitaxial film on a surface of a substrate housed in the treatment chamber, comprising: a substrate support member for supporting the substrate in the treatment chamber; a heating member provided outside the treatment chamber for heating the substrate and an atmosphere of the treatment chamber; a gas supply system provided inside the treatment chamber; and a discharge port opened on the treatment chamber, wherein: the gas supply system comprises a first gas supply member for supplying the Si-containing gas and a second gas supply member for supplying the Cl2 gas different from the first gas supply member; and each of the first gas supply member and the second gas supply member comprises a plurality of gas supply nozzles for separately supplying the Si-containing gas and the Cl2 gas to a plurality of different parts of the treatment chamber.
  • According to this invention, since it is possible to adjust both of a growth speed and an etching speed, it is possible to avoid particle generation and to achieve good etching characteristics.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic diagram showing a structure of a substrate treatment device according to one embodiment of this invention.
  • FIG. 2 is a longitudinal sectional view showing a structure of a treatment furnace of the substrate treatment device according to the embodiment of this invention.
  • FIG. 3 is diagram showing a flow of specific steps for a selective epitaxial growth of a Si film using the substrate treatment device according to the embodiment of this invention.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • One embodiment of this invention will be described below based on the drawings.
  • Shown in FIG. 1 is a schematic diagram of a substrate treatment device 10 according to one embodiment of this invention. The substrate treatment device 10 is a so-called hot wall type vertical low pressure CVD device.
  • As shown in FIG. 1, wafers (Si substrates) a conveyed by a wafer cassette 12 are transferred onto a boat 16 from the wafer cassette 12 by a transfer machine 14. When transfer of all of the wafers a is finished, the boat 16 is inserted into a treatment furnace 18, and then the treatment furnace 18 is reduced in pressure by an evacuation system 20. Subsequently, a temperature inside the treatment furnace 18 is increased to a desired temperature by a heater 22, and, when the temperature becomes stable, a raw material gas and an etching gas are alternately supplied from a gas supply system 21 to cause selective epitaxial growth of Si, SiGe, or the like on the wafers a. Denoted by 23 is a control system for controlling insertion of the boat 16 into the treatment furnace 18, rotation of the boat 16, evacuation by the evacuation system 20, gas supply from the gas supply system 21, heating by the heater 22, and the like.
  • As the raw material gas for the Si or SiGe selective epitaxial growth, a Si-containing gas such as SiH4, Si2H6, and SiH2Cl2 may be used. In the case of the SiGe selective epitaxial growth, a Ge-containing gas such as GeH4 and GeCl4 may be added. In the CVD reaction, the growth starts on Si immediately after the introduction of the raw material gas, but a delay in growth called an incubation period occurs on SiO2 or Si3N4. The selective growth means the growth of Si or SiGe caused only on Si during the incubation period. During the selective growth, Si nuclei adhere to SiO2 or Si3N4 to diminish the selectivity. Therefore, the etching gas is supplied after the raw material gas supply in order to eliminate the Si nuclei adhered to SiO2 or Si3N4. The selective epitaxial growth is performed by alternating the gas supplies.
  • Hereinafter, details of a structure after the insertion of the boat 16 of the treatment furnace 18 to be used for the substrate treatment device 10 according to one embodiment of this invention will be described based on the drawings.
  • FIG. 2 is a schematic block diagram which is a longitudinal sectional view showing the treatment furnace 18 after the insertion of the boat 16 according to one embodiment of this invention.
  • As shown in FIG. 2, the treatment furnace 18 is provided with a reaction piping 26 that forms a treatment chamber 24 and formed of an outer tube, for example, a gas discharge piping 28 disposed under the reaction piping 26 for discharging gases from a discharge port 27, a first gas supply piping 30 for supplying the raw material gas and the like to the treatment chamber 24, a second gas supply piping 32 for supplying the etching gas and the like, a manifold 34 connected to the reaction piping 26 via an O-ring 33 a, a sealing cap 36 for closing a lower end of the manifold 34 to seal the treatment chamber 24 via O-rings 33 b and 33 c, the boat 16 serving as a wafer retaining body (substrate support member) for retaining (supporting) the wafers (Si substrates) a in a multistage state, a rotation mechanism 38 for rotating the boat 16 at a predetermined number of rotations, and the heater (heating member) 22 formed of a heater wire (not shown) and a heat insulating member for heating the wafers a outside the reaction piping 26.
  • The reaction piping 26 is formed from a heat insulating material such as quartz (SiO2) and silicon carbide (SiC) and has a cylindrical shape wherein an upper end is closed and a lower end is opened. The manifold 34 is made from a stainless steel or the like, for example, and has a cylindrical shape wherein an upper end and a lower end are opened. The upper end of the manifold 34 is coupled to the reaction piping 26 via the O-ring 33 a, and the first gas supply piping 30 and the second gas supply piping 32 are attached as penetrating through the manifold 34. The sealing cap 36 is made from a stainless steel or the like, for example, and formed of a ring-like part 35 and a circular part 37 to close the lower end of the manifold 34 via the O-rings 33 b and 33 c. The boat 16 is made from a heat insulating material such as quartz and silicon carbide and has a structure of retaining the plural wafers a in such a state that the wafers a keep a horizontal posture and drawn up with centerlines being aligned. The rotation mechanism 38 of the boat 16 is connected to the boat 16 by a rotation shaft 39 penetrating through the sealing cap 36, so that the wafers a are rotated when the boat 16 is rotated.
  • The heater 22 is divided into 5 regions of an upper heater 22A, a central upper heater 22B, a central heater 22C, a central lower heater 22D, and a lower heater 22E, and each of the heater regions has a cylindrical shape.
  • In the treatment furnace 18 according to one embodiment of this invention, three first gas supply nozzles 42 a, 42 b, and 42 c branched from the first gas supply piping 30 and having first gas supply apertures 40 a, 40 b, and 40 c that are different in height and three second gas supply nozzles 44 a, 44 b, and 44 c branched from the second gas supply piping 32, having second gas supply apertures 43 a, 43 b, and 43 c that are different in height, and formed separately from the first gas supply nozzles 42 a, 42 b, and 42 c are provided as a gas supply unit.
  • In the above-described structure of the treatment furnace 18, the treatment gas is supplied from a raw material gas supply source 46 for supplying the raw material gas (e.g. SiH4 gas), a purge gas supply source 48 for supplying a purge gas (e.g. H2 gas), an etching gas supply source 50 for supplying the etching gas (e.g. Cl2 gas), for example. In a film formation step, the raw material gas and the purge gas are introduced into the treatment chamber 24 separately through the first gas supply piping 30 and the second gas supply piping 32 after flow rates of the gases are independently adjusted by a first MFC (mass-flow controller) 52 serving as a unit for controlling the flow rate of the raw material gas from the raw material gas supply source 46 and a second MFC 54 serving as a unit for controlling the flow rate of the purge gas from the purge gas supply source 48. The raw material gas is supplied to three parts of an upper part, a center part, and a lower part of the boat 16 by the first gas supply nozzles 42 a, 42 b, and 42 c branched from the first gas supply piping 30, while the purge gas is supplied to the three parts of the upper part, the center part, and the lower part of the boat 16 by the second gas supply nozzles 44 a, 44 b, and 44 c branched from the second gas supply piping 32.
  • During an etching step, the purge gas and the etching gas are introduced into the treatment chamber 24 separately through the first gas supply piping 30 and the second gas supply piping 32 after flow rates of the gases are independently adjusted by a third MFC 56 serving as a unit for controlling the flow rate of the purge gas from the purge gas supply source 48 and a fourth MPC 58 serving as a unit for controlling the flow rate of the etching gas from the etching gas supply source 50. The purge gas is supplied to the three parts of the upper part, the center part, and the lower part of the boat 16 by the first gas supply nozzles 42 a, 42 b, and 42 c branched from the first gas supply piping 30, while the etching gas is supplied to the three parts of the upper part, the center part, and the lower part of the boat 16 by the second gas supply nozzles 44 a, 44 b, and 44 c branched from the second gas supply piping 32.
  • The atmosphere inside the treatment chamber 24 is evacuated by an evacuation unit (e.g. vacuum pump 59) connected to the gas discharge piping 28 from the treatment chamber 24.
  • Hereinafter, one example of wafer treatment by the substrate treatment device 10 according to one embodiment of this invention will be described.
  • As shown in FIG. 2, the boat 16 retaining the untreated wafers a is inserted into the treatment chamber 24 by driving of an elevation motor (not shown). An evacuation valve 62 is opened by a command from the control device 60 to evacuate the atmosphere in the treatment chamber 24, thereby reducing a pressure of the treatment chamber 24. The heater 22 is controlled by the control device 60 so as to maintain a temperature of the treatment chamber 24, i.e. a temperature of the wafers a, to a desired temperature. The rotation mechanism 38 is driven by a command from the control device 60 so that the boat 16 is rotated at the predetermined number of rotations.
  • Next after degrees of opening of the first MFC 52 and the second MFC 54 are adjusted by a command from the control device 60, a first valve 64 opening/closing for supplying the raw material gas from the raw material gas supply source 46 and a second valve 66 for supplying the purge gas from the purge gas supply source 48 are opened. Subsequently, a third valve 68 is opened to introduce the raw material gas into the treatment chamber 24 through the first gas supply piping 30 and the first gas supply nozzles 42 a, 42 b, and 42 c to treat the wafers a. Simultaneously, a sixth valve 74 is opened to introduce the purge gas into the treatment chamber 24 through the second gas supply piping 32 and the second gas supply nozzles 44 a, 44 b, and 44 c.
  • Next, after degrees of opening of the third MFC 56 and the fourth MFC 58 are adjusted by a command from the control device 60, a fourth valve 70 opening/closing for supplying the etching gas from the etching gas supply source 50 and a fifth valve 72 for supplying the purge gas from the purge gas supply source 48 are opened. Subsequently, the sixth valve 74 is opened to introduce the etching gas into the treatment chamber 24 through the second gas supply piping 32 and the second gas supply nozzles 44 a, 44 b, and 44 c to treat the wafers a. Simultaneously, the third valve 68 is opened to introduce the purge gas into the treatment chamber 24 through the first gas supply piping 30 and the first gas supply nozzles 42 a, 42 b, and 42 c.
  • As described above, in the substrate treatment device 10 according to one embodiment of this invention, the raw material gas is supplied to the treatment chamber 24 through the first gas supply piping 30 and the first gas supply nozzles 42 a, 42 b, and 42 c separately from the etching gas supplied to the treatment chamber 24 through the second gas supply piping 32 and the second gas supply nozzles 44 a, 44 b, and 44 c. Therefore, though only one of the growth speed and the etching speed has been adjusted in the conventional method of setting the temperature gradient, since the substrate treatment device 10 according to one embodiment of this invention is capable of supplying the raw material gas and the etching gas separately from each other through the plural nozzles that are provided independently for each of the raw material gas and the etching gas, it is possible to adjust both of the growth speed and the etching speed by adjusting the supply rates of the raw material gas and the etching gas.
  • Also, in the case of supplying the raw material gas and the etching gas from an identical nozzle, a film deposits inside the nozzle due to self-decomposition of the raw material gas, and particle generation and etching gas consumption are caused when the etching gas is fed through the nozzle. In contrast, in the substrate treatment device 10 according to one embodiment of this invention, since the raw material gas is supplied from the plural nozzles that are different from the plural nozzles used for supplying the etching gas, it is possible to avoid the particle generation from the nozzles. Further, since no film deposits on inner walls of the second gas supply nozzles 44 a, 44 b, and 44 c for supplying the etching gas, the etching gas is not consumed in the second gas supply nozzles 44 a, 44 b, and 44 c, thereby making it possible to achieve good etching characteristics as well as to ensure a stable etching rate for the wafers a irrespective of the inner wall state of the first gas supply nozzles 42 a, 42 b, and 42 c and the second gas supply nozzles 44 a, 44 b, and 44 c.
  • Furthermore, since each of the gases is supplied from the plural nozzles that are different in height and provided independently for each of the gases in the substrate treatment device 10 according to one embodiment of this invention, the substrate treatment device 10 is capable of adjusting a reduction in growth speed, which is aggravated as a distance between the discharge side (the lower part inside the treatment furnace 18) and the wafer is reduced due to consumption of the reaction gas, by supplying the gas between the upper part and the lower part of the treatment furnace 18, thereby making it possible to set a growth speed at a temperature close to the treatment temperature upper limit as the standard as well as to realize a growth speed larger than that achieved by setting the temperature gradient.
  • Since the purge gas such as a hydrogen gas is fed during the film formation (raw material gas supply) through the second gas supply nozzles 44 a, 44 b, and 44 c that are used for the etching gas as described above, it is possible to prevent entrance of the gas and film deposition on the inner walls in the second gas supply nozzles 44 a, 44 b, and 44 c. Likewise, since the purge gas is fed during the etching (etching gas supply) through the first gas supply nozzles 42 a, 42 b, and 42 c that are used for the raw material gas, it is possible to prevent entrance of the etching gas in the first gas supply nozzles 42 a, 42 b, and 42 c.
  • One example of specific flow of steps of the selective epitaxial growth of a Si film using the substrate treatment device 10 according to one embodiment this invention will be described based on FIG. 3.
  • (1) A monosilane (SiH4) gas which is the raw material gas is supplied to the treatment chamber 24 through the first gas supply piping 30 and the first gas supply nozzles 42 a, 42 b, and 42 c (film formation step). During the film formation step, a hydrogen (H2) gas which is the purge gas is supplied to the treatment chamber 24 through the second gas supply piping 32 and the second gas supply nozzles 44 a, 44 b, and 44 c.
  • (2) The gas supplies are stopped to evacuate the treatment chamber 24.
  • (3) The H2 gas which is the purge gas is supplied to the treatment chamber 24 through both of the first gas supply piping 30 and the first gas supply nozzles 42 a, 42 b, and 42 c and the second gas supply piping 32 and the second gas supply nozzles 44 a, 44 b, and 44 c (purge step).
  • (4) A chlorine (Cl2) gas which is the etching gas is supplied to the treatment chamber 24 through the second gas supply piping 32 and the second gas supply nozzles 44 a, 44 b, and 44 c (etching step). During the etching step, the H2 gas which is the purge gas is supplied to the treatment chamber 24 through the first gas supply piping 30 and the first gas supply nozzles 42 a, 42 b, and 42 c.
  • (5) The gas supplies are stopped to evacuate the treatment chamber 24.
  • (6) The H2 gas which is the purge gas is supplied to the treatment chamber 24 through both of the first gas supply piping 30 and the first gas supply nozzles 42 a, 42 b, and 42 c and the second gas supply piping 32 and the second gas supply nozzles 44 a, 44 b, and 44 c (purge step).
  • By performing the selective epitaxial growth of the Si film on the wafers a by repeating the steps (1) to (6) with the steps (1) to (6) being used as one cycle, it is possible to adjust both of the growth speed and the etching speed as well as to avoid the particle generation, thereby achieving good etching characteristics.
  • As described in the foregoing, according to this invention, it is possible to provide the substrate treatment device capable of adjusting both of the growth speed and the etching speed in the Si or SiGe selective epitaxial growth, avoiding the particle generation from nozzles, and achieving good etching characteristics.

Claims (11)

1. A substrate treatment device at least using a Si-containing gas and a Cl2 gas and alternately supplying the Si-containing gas and the Cl2 gas to a treatment chamber for selectively growing an epitaxial film on a surface of a substrate housed in the treatment chamber, comprising:
a substrate support member which supports the substrate in the treatment chamber;
a heating member provided outside the treatment chamber which heats the substrate and an atmosphere of the treatment chamber;
a gas supply system provided inside the treatment chamber; and
a discharge port opened on the treatment chamber, wherein:
the gas supply system comprises a first gas supply member which supplies the Si-containing gas and a second gas supply member which supplies the Cl2 gas, the second gas supply member being different from the first gas supply member; and
each of the first gas supply member and the second gas supply member comprises a plurality of gas supply nozzles which separately supply the Si-containing gas and the Cl2 gas to a plurality of different parts of the treatment chamber.
2. The substrate treatment device according to claim 1, wherein the Si-containing gas is SiH4, Si2H6, or SiH2Cl2.
3. The substrate treatment device according to claim 1, wherein the epitaxial film is any one of a Si film or a SiGe film.
4. The substrate treatment device according to claim 3, wherein the SiGe film is formed by using, in addition to the Si-containing gas, a Ge-containing gas of which Ge is GeH4 or GeCl4.
5. The substrate treatment device according to claim 1, wherein a purge gas is supplied to the second gas supply member when supplying the Si-containing gas, and the purge gas is supplied to the first gas supply member when supplying the Cl2 gas.
6. The substrate treatment device according to claim 5, wherein the purge gas is H2.
7. A substrate treatment device at least using a Si-containing gas and a Cl2 gas for selectively growing an epitaxial film on a surface of a substrate housed in the treatment chamber, comprising:
a gas supply system provided inside the treatment chamber and comprising a plurality of first gas supply nozzles having gas supply apertures opened at a plurality of different heights of the treatment chamber and a plurality of second gas supply nozzles having gas supply apertures opened at a plurality of different heights of the treatment chamber;
a discharge port opened on the treatment chamber; and
a control system which controls at least the gas supply system, wherein:
the control system controls the gas supply system in such a manner that at least the Si-containing gas is supplied from the first gas supply nozzles to the treatment chamber and at least the Cl-containing gas is supplied from the second gas supply nozzles to the treatment chamber.
8. The substrate treatment device according to claim 7, wherein the control system controls the gas supply system in such a manner that a purge gas is supplied to the second gas supply nozzles when supplying the Si-containing gas and the purge gas is supplied to the first gas supply nozzles when supplying the Cl-containing gas.
9. The substrate treatment device according to claim 8, wherein the purge gas is H2.
10. The substrate treatment device according to claim 9, wherein the heights of the treatment chamber at which the gas supply apertures of the first gas supply nozzles are opened are identical with the heights of the treatment chamber at which the gas supply apertures of the second gas supply nozzles are opened.
11. A selective epitaxial film growth method for selectively growing an epitaxial film on a surface of a substrate housed in a treatment chamber in a substrate treatment device comprising a plurality of first gas supply nozzles for supplying at least a Si-containing gas to a plurality of different parts of the treatment chamber and a plurality of second gas supply nozzles for supplying at least a Cl-containing gas to a plurality of different parts of the treatment chamber, at least comprising:
supplying at least the Si-containing gas to the treatment chamber by using the first gas supply nozzles;
evacuating an atmosphere of the treatment chamber by stopping the Si-containing gas supply;
supplying a purge gas to the treatment chamber by using the first gas supply nozzles and the second gas supply nozzles;
supplying the Cl-containing gas at least as an etching gas to the treatment chamber by using the second gas supply nozzles;
evacuating an atmosphere of the treatment chamber by stopping the Cl-containing gas supply; and
supplying the purge gas to the treatment chamber by using the first gas supply nozzles and the second gas supply nozzles, the steps being repeated for growing the film to a desired thickness.
US11/979,816 2006-11-10 2007-11-08 Substrate treatment device Abandoned US20080135516A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/067,117 US8652258B2 (en) 2006-11-10 2011-05-10 Substrate treatment device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-304936 2006-11-10
JP2006304936A JP4464949B2 (en) 2006-11-10 2006-11-10 Substrate processing apparatus and selective epitaxial film growth method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/067,117 Continuation US8652258B2 (en) 2006-11-10 2011-05-10 Substrate treatment device

Publications (1)

Publication Number Publication Date
US20080135516A1 true US20080135516A1 (en) 2008-06-12

Family

ID=39496741

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/979,816 Abandoned US20080135516A1 (en) 2006-11-10 2007-11-08 Substrate treatment device
US13/067,117 Active US8652258B2 (en) 2006-11-10 2011-05-10 Substrate treatment device

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/067,117 Active US8652258B2 (en) 2006-11-10 2011-05-10 Substrate treatment device

Country Status (2)

Country Link
US (2) US20080135516A1 (en)
JP (1) JP4464949B2 (en)

Cited By (175)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110212623A1 (en) * 2006-11-10 2011-09-01 Hitachi Kokusai Electric Inc. Substrate treatment device
US20150064908A1 (en) * 2013-02-15 2015-03-05 Hitachi Kokusai Electric Inc. Substrate processing apparatus, method for processing substrate and method for manufacturing semiconductor device
CN110268506A (en) * 2017-03-31 2019-09-20 株式会社国际电气 Manufacturing method, substrate board treatment and the program of semiconductor device
US20190304785A1 (en) * 2016-11-03 2019-10-03 Eugene Technology Co., Ltd. Method for forming epitaxial layer at low temperature
US11274369B2 (en) 2018-09-11 2022-03-15 Asm Ip Holding B.V. Thin film deposition method
US11286558B2 (en) 2019-08-23 2022-03-29 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
USD947913S1 (en) 2019-05-17 2022-04-05 Asm Ip Holding B.V. Susceptor shaft
US11295980B2 (en) 2017-08-30 2022-04-05 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
US11296189B2 (en) 2018-06-21 2022-04-05 Asm Ip Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
US11306395B2 (en) 2017-06-28 2022-04-19 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
US11315794B2 (en) 2019-10-21 2022-04-26 Asm Ip Holding B.V. Apparatus and methods for selectively etching films
US11342216B2 (en) 2019-02-20 2022-05-24 Asm Ip Holding B.V. Cyclical deposition method and apparatus for filling a recess formed within a substrate surface
US11339476B2 (en) 2019-10-08 2022-05-24 Asm Ip Holding B.V. Substrate processing device having connection plates, substrate processing method
US11345999B2 (en) 2019-06-06 2022-05-31 Asm Ip Holding B.V. Method of using a gas-phase reactor system including analyzing exhausted gas
US20220170177A1 (en) * 2020-11-30 2022-06-02 Jinko Solar Co., Ltd. Single Crystal Furnace
US11355338B2 (en) 2019-05-10 2022-06-07 Asm Ip Holding B.V. Method of depositing material onto a surface and structure formed according to the method
US11361990B2 (en) 2018-05-28 2022-06-14 Asm Ip Holding B.V. Substrate processing method and device manufactured by using the same
US11378337B2 (en) 2019-03-28 2022-07-05 Asm Ip Holding B.V. Door opener and substrate processing apparatus provided therewith
US11387120B2 (en) 2017-09-28 2022-07-12 Asm Ip Holding B.V. Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
US11387106B2 (en) 2018-02-14 2022-07-12 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US11393690B2 (en) 2018-01-19 2022-07-19 Asm Ip Holding B.V. Deposition method
US11390945B2 (en) 2019-07-03 2022-07-19 Asm Ip Holding B.V. Temperature control assembly for substrate processing apparatus and method of using same
US11390946B2 (en) 2019-01-17 2022-07-19 Asm Ip Holding B.V. Methods of forming a transition metal containing film on a substrate by a cyclical deposition process
US11390950B2 (en) 2017-01-10 2022-07-19 Asm Ip Holding B.V. Reactor system and method to reduce residue buildup during a film deposition process
US11398382B2 (en) 2018-03-27 2022-07-26 Asm Ip Holding B.V. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode
US11396702B2 (en) 2016-11-15 2022-07-26 Asm Ip Holding B.V. Gas supply unit and substrate processing apparatus including the gas supply unit
US11401605B2 (en) 2019-11-26 2022-08-02 Asm Ip Holding B.V. Substrate processing apparatus
US11411088B2 (en) 2018-11-16 2022-08-09 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US11410851B2 (en) 2017-02-15 2022-08-09 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
US11417545B2 (en) 2017-08-08 2022-08-16 Asm Ip Holding B.V. Radiation shield
US11414760B2 (en) 2018-10-08 2022-08-16 Asm Ip Holding B.V. Substrate support unit, thin film deposition apparatus including the same, and substrate processing apparatus including the same
US11424119B2 (en) 2019-03-08 2022-08-23 Asm Ip Holding B.V. Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer
US11430640B2 (en) 2019-07-30 2022-08-30 Asm Ip Holding B.V. Substrate processing apparatus
US11430674B2 (en) 2018-08-22 2022-08-30 Asm Ip Holding B.V. Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US11437241B2 (en) 2020-04-08 2022-09-06 Asm Ip Holding B.V. Apparatus and methods for selectively etching silicon oxide films
US11443926B2 (en) 2019-07-30 2022-09-13 Asm Ip Holding B.V. Substrate processing apparatus
US11447861B2 (en) * 2016-12-15 2022-09-20 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
US11450529B2 (en) 2019-11-26 2022-09-20 Asm Ip Holding B.V. Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface
US11447864B2 (en) 2019-04-19 2022-09-20 Asm Ip Holding B.V. Layer forming method and apparatus
USD965044S1 (en) 2019-08-19 2022-09-27 Asm Ip Holding B.V. Susceptor shaft
US11453943B2 (en) 2016-05-25 2022-09-27 Asm Ip Holding B.V. Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor
USD965524S1 (en) 2019-08-19 2022-10-04 Asm Ip Holding B.V. Susceptor support
US11476109B2 (en) 2019-06-11 2022-10-18 Asm Ip Holding B.V. Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method
US11473195B2 (en) 2018-03-01 2022-10-18 Asm Ip Holding B.V. Semiconductor processing apparatus and a method for processing a substrate
US11482412B2 (en) 2018-01-19 2022-10-25 Asm Ip Holding B.V. Method for depositing a gap-fill layer by plasma-assisted deposition
US11482418B2 (en) 2018-02-20 2022-10-25 Asm Ip Holding B.V. Substrate processing method and apparatus
US11482533B2 (en) 2019-02-20 2022-10-25 Asm Ip Holding B.V. Apparatus and methods for plug fill deposition in 3-D NAND applications
US11488819B2 (en) 2018-12-04 2022-11-01 Asm Ip Holding B.V. Method of cleaning substrate processing apparatus
US11488854B2 (en) 2020-03-11 2022-11-01 Asm Ip Holding B.V. Substrate handling device with adjustable joints
US11492703B2 (en) 2018-06-27 2022-11-08 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11495459B2 (en) 2019-09-04 2022-11-08 Asm Ip Holding B.V. Methods for selective deposition using a sacrificial capping layer
US11501968B2 (en) 2019-11-15 2022-11-15 Asm Ip Holding B.V. Method for providing a semiconductor device with silicon filled gaps
US11501973B2 (en) 2018-01-16 2022-11-15 Asm Ip Holding B.V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
US11499222B2 (en) 2018-06-27 2022-11-15 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11499226B2 (en) 2018-11-02 2022-11-15 Asm Ip Holding B.V. Substrate supporting unit and a substrate processing device including the same
US11515187B2 (en) 2020-05-01 2022-11-29 Asm Ip Holding B.V. Fast FOUP swapping with a FOUP handler
US11515188B2 (en) 2019-05-16 2022-11-29 Asm Ip Holding B.V. Wafer boat handling device, vertical batch furnace and method
US11521851B2 (en) 2020-02-03 2022-12-06 Asm Ip Holding B.V. Method of forming structures including a vanadium or indium layer
US11527403B2 (en) 2019-12-19 2022-12-13 Asm Ip Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
US11532757B2 (en) 2016-10-27 2022-12-20 Asm Ip Holding B.V. Deposition of charge trapping layers
US11530483B2 (en) 2018-06-21 2022-12-20 Asm Ip Holding B.V. Substrate processing system
US11530876B2 (en) 2020-04-24 2022-12-20 Asm Ip Holding B.V. Vertical batch furnace assembly comprising a cooling gas supply
US11551925B2 (en) 2019-04-01 2023-01-10 Asm Ip Holding B.V. Method for manufacturing a semiconductor device
US11551912B2 (en) 2020-01-20 2023-01-10 Asm Ip Holding B.V. Method of forming thin film and method of modifying surface of thin film
US11557474B2 (en) 2019-07-29 2023-01-17 Asm Ip Holding B.V. Methods for selective deposition utilizing n-type dopants and/or alternative dopants to achieve high dopant incorporation
USD975665S1 (en) 2019-05-17 2023-01-17 Asm Ip Holding B.V. Susceptor shaft
US11562901B2 (en) 2019-09-25 2023-01-24 Asm Ip Holding B.V. Substrate processing method
US11572620B2 (en) 2018-11-06 2023-02-07 Asm Ip Holding B.V. Methods for selectively depositing an amorphous silicon film on a substrate
US11581186B2 (en) * 2016-12-15 2023-02-14 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
US11587821B2 (en) 2017-08-08 2023-02-21 Asm Ip Holding B.V. Substrate lift mechanism and reactor including same
US11587814B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587815B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11594450B2 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Method for forming a structure with a hole
USD979506S1 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Insulator
US11594600B2 (en) 2019-11-05 2023-02-28 Asm Ip Holding B.V. Structures with doped semiconductor layers and methods and systems for forming same
USD980813S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas flow control plate for substrate processing apparatus
US11605528B2 (en) 2019-07-09 2023-03-14 Asm Ip Holding B.V. Plasma device using coaxial waveguide, and substrate treatment method
USD980814S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas distributor for substrate processing apparatus
US11610775B2 (en) 2016-07-28 2023-03-21 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11610774B2 (en) 2019-10-02 2023-03-21 Asm Ip Holding B.V. Methods for forming a topographically selective silicon oxide film by a cyclical plasma-enhanced deposition process
US11615970B2 (en) 2019-07-17 2023-03-28 Asm Ip Holding B.V. Radical assist ignition plasma system and method
US11615980B2 (en) 2019-02-20 2023-03-28 Asm Ip Holding B.V. Method and apparatus for filling a recess formed within a substrate surface
USD981973S1 (en) 2021-05-11 2023-03-28 Asm Ip Holding B.V. Reactor wall for substrate processing apparatus
US11626308B2 (en) 2020-05-13 2023-04-11 Asm Ip Holding B.V. Laser alignment fixture for a reactor system
US11626316B2 (en) 2019-11-20 2023-04-11 Asm Ip Holding B.V. Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure
US11629407B2 (en) 2019-02-22 2023-04-18 Asm Ip Holding B.V. Substrate processing apparatus and method for processing substrates
US11637014B2 (en) 2019-10-17 2023-04-25 Asm Ip Holding B.V. Methods for selective deposition of doped semiconductor material
US11637011B2 (en) 2019-10-16 2023-04-25 Asm Ip Holding B.V. Method of topology-selective film formation of silicon oxide
US11639811B2 (en) 2017-11-27 2023-05-02 Asm Ip Holding B.V. Apparatus including a clean mini environment
US11639548B2 (en) 2019-08-21 2023-05-02 Asm Ip Holding B.V. Film-forming material mixed-gas forming device and film forming device
US11644758B2 (en) 2020-07-17 2023-05-09 Asm Ip Holding B.V. Structures and methods for use in photolithography
US11643724B2 (en) 2019-07-18 2023-05-09 Asm Ip Holding B.V. Method of forming structures using a neutral beam
US11646184B2 (en) 2019-11-29 2023-05-09 Asm Ip Holding B.V. Substrate processing apparatus
US11646197B2 (en) 2018-07-03 2023-05-09 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US11646205B2 (en) 2019-10-29 2023-05-09 Asm Ip Holding B.V. Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same
US11646204B2 (en) 2020-06-24 2023-05-09 Asm Ip Holding B.V. Method for forming a layer provided with silicon
US11649546B2 (en) 2016-07-08 2023-05-16 Asm Ip Holding B.V. Organic reactants for atomic layer deposition
US11658029B2 (en) 2018-12-14 2023-05-23 Asm Ip Holding B.V. Method of forming a device structure using selective deposition of gallium nitride and system for same
US11658035B2 (en) 2020-06-30 2023-05-23 Asm Ip Holding B.V. Substrate processing method
US11664245B2 (en) 2019-07-16 2023-05-30 Asm Ip Holding B.V. Substrate processing device
US11664199B2 (en) 2018-10-19 2023-05-30 Asm Ip Holding B.V. Substrate processing apparatus and substrate processing method
US11664267B2 (en) 2019-07-10 2023-05-30 Asm Ip Holding B.V. Substrate support assembly and substrate processing device including the same
US11674220B2 (en) 2020-07-20 2023-06-13 Asm Ip Holding B.V. Method for depositing molybdenum layers using an underlayer
US11676812B2 (en) 2016-02-19 2023-06-13 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on top/bottom portions
US11680839B2 (en) 2019-08-05 2023-06-20 Asm Ip Holding B.V. Liquid level sensor for a chemical source vessel
US11682572B2 (en) 2017-11-27 2023-06-20 Asm Ip Holdings B.V. Storage device for storing wafer cassettes for use with a batch furnace
USD990441S1 (en) 2021-09-07 2023-06-27 Asm Ip Holding B.V. Gas flow control plate
USD990534S1 (en) 2020-09-11 2023-06-27 Asm Ip Holding B.V. Weighted lift pin
US11685991B2 (en) 2018-02-14 2023-06-27 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US11688603B2 (en) 2019-07-17 2023-06-27 Asm Ip Holding B.V. Methods of forming silicon germanium structures
US11694892B2 (en) 2016-07-28 2023-07-04 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11695054B2 (en) 2017-07-18 2023-07-04 Asm Ip Holding B.V. Methods for forming a semiconductor device structure and related semiconductor device structures
US11705333B2 (en) 2020-05-21 2023-07-18 Asm Ip Holding B.V. Structures including multiple carbon layers and methods of forming and using same
US11718913B2 (en) 2018-06-04 2023-08-08 Asm Ip Holding B.V. Gas distribution system and reactor system including same
US11725277B2 (en) 2011-07-20 2023-08-15 Asm Ip Holding B.V. Pressure transmitter for a semiconductor processing environment
US11725280B2 (en) 2020-08-26 2023-08-15 Asm Ip Holding B.V. Method for forming metal silicon oxide and metal silicon oxynitride layers
US11735422B2 (en) 2019-10-10 2023-08-22 Asm Ip Holding B.V. Method of forming a photoresist underlayer and structure including same
US11735445B2 (en) 2018-10-31 2023-08-22 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
US11735414B2 (en) 2018-02-06 2023-08-22 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
US11742189B2 (en) 2015-03-12 2023-08-29 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
US11742198B2 (en) 2019-03-08 2023-08-29 Asm Ip Holding B.V. Structure including SiOCN layer and method of forming same
US11749562B2 (en) 2016-07-08 2023-09-05 Asm Ip Holding B.V. Selective deposition method to form air gaps
US11769682B2 (en) 2017-08-09 2023-09-26 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11767589B2 (en) 2020-05-29 2023-09-26 Asm Ip Holding B.V. Substrate processing device
US11769670B2 (en) 2018-12-13 2023-09-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
US11776846B2 (en) 2020-02-07 2023-10-03 Asm Ip Holding B.V. Methods for depositing gap filling fluids and related systems and devices
US11781243B2 (en) 2020-02-17 2023-10-10 Asm Ip Holding B.V. Method for depositing low temperature phosphorous-doped silicon
US11781221B2 (en) 2019-05-07 2023-10-10 Asm Ip Holding B.V. Chemical source vessel with dip tube
US11795545B2 (en) 2014-10-07 2023-10-24 Asm Ip Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
US11804364B2 (en) 2020-05-19 2023-10-31 Asm Ip Holding B.V. Substrate processing apparatus
US11804388B2 (en) 2018-09-11 2023-10-31 Asm Ip Holding B.V. Substrate processing apparatus and method
US11802338B2 (en) 2017-07-26 2023-10-31 Asm Ip Holding B.V. Chemical treatment, deposition and/or infiltration apparatus and method for using the same
US11810788B2 (en) 2016-11-01 2023-11-07 Asm Ip Holding B.V. Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US11814747B2 (en) 2019-04-24 2023-11-14 Asm Ip Holding B.V. Gas-phase reactor system-with a reaction chamber, a solid precursor source vessel, a gas distribution system, and a flange assembly
US11823876B2 (en) 2019-09-05 2023-11-21 Asm Ip Holding B.V. Substrate processing apparatus
US11823866B2 (en) 2020-04-02 2023-11-21 Asm Ip Holding B.V. Thin film forming method
US11821078B2 (en) 2020-04-15 2023-11-21 Asm Ip Holding B.V. Method for forming precoat film and method for forming silicon-containing film
US11827981B2 (en) 2020-10-14 2023-11-28 Asm Ip Holding B.V. Method of depositing material on stepped structure
US11828707B2 (en) 2020-02-04 2023-11-28 Asm Ip Holding B.V. Method and apparatus for transmittance measurements of large articles
US11830730B2 (en) 2017-08-29 2023-11-28 Asm Ip Holding B.V. Layer forming method and apparatus
US11830738B2 (en) 2020-04-03 2023-11-28 Asm Ip Holding B.V. Method for forming barrier layer and method for manufacturing semiconductor device
US11840761B2 (en) 2019-12-04 2023-12-12 Asm Ip Holding B.V. Substrate processing apparatus
US11848200B2 (en) 2017-05-08 2023-12-19 Asm Ip Holding B.V. Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures
US11876356B2 (en) 2020-03-11 2024-01-16 Asm Ip Holding B.V. Lockout tagout assembly and system and method of using same
US11876008B2 (en) 2019-07-31 2024-01-16 Asm Ip Holding B.V. Vertical batch furnace assembly
US11873557B2 (en) 2020-10-22 2024-01-16 Asm Ip Holding B.V. Method of depositing vanadium metal
US11885013B2 (en) 2019-12-17 2024-01-30 Asm Ip Holding B.V. Method of forming vanadium nitride layer and structure including the vanadium nitride layer
US11885023B2 (en) 2018-10-01 2024-01-30 Asm Ip Holding B.V. Substrate retaining apparatus, system including the apparatus, and method of using same
USD1012873S1 (en) 2020-09-24 2024-01-30 Asm Ip Holding B.V. Electrode for semiconductor processing apparatus
US11885020B2 (en) 2020-12-22 2024-01-30 Asm Ip Holding B.V. Transition metal deposition method
US11887857B2 (en) 2020-04-24 2024-01-30 Asm Ip Holding B.V. Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element
US11891696B2 (en) 2020-11-30 2024-02-06 Asm Ip Holding B.V. Injector configured for arrangement within a reaction chamber of a substrate processing apparatus
US11901179B2 (en) 2020-10-28 2024-02-13 Asm Ip Holding B.V. Method and device for depositing silicon onto substrates
US11898243B2 (en) 2020-04-24 2024-02-13 Asm Ip Holding B.V. Method of forming vanadium nitride-containing layer
US11923181B2 (en) 2019-11-29 2024-03-05 Asm Ip Holding B.V. Substrate processing apparatus for minimizing the effect of a filling gas during substrate processing
US11923190B2 (en) 2018-07-03 2024-03-05 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US11929251B2 (en) 2019-12-02 2024-03-12 Asm Ip Holding B.V. Substrate processing apparatus having electrostatic chuck and substrate processing method
US11939673B2 (en) 2018-02-23 2024-03-26 Asm Ip Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
US11946137B2 (en) 2020-12-16 2024-04-02 Asm Ip Holding B.V. Runout and wobble measurement fixtures
US11956977B2 (en) 2015-12-29 2024-04-09 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
US11961741B2 (en) 2020-03-12 2024-04-16 Asm Ip Holding B.V. Method for fabricating layer structure having target topological profile
US11959168B2 (en) 2020-04-29 2024-04-16 Asm Ip Holding B.V. Solid source precursor vessel
USD1023959S1 (en) 2021-05-11 2024-04-23 Asm Ip Holding B.V. Electrode for substrate processing apparatus
US11967488B2 (en) 2013-02-01 2024-04-23 Asm Ip Holding B.V. Method for treatment of deposition reactor
US11976359B2 (en) 2020-01-06 2024-05-07 Asm Ip Holding B.V. Gas supply assembly, components thereof, and reactor system including same
US11986868B2 (en) 2020-02-28 2024-05-21 Asm Ip Holding B.V. System dedicated for parts cleaning
US11987881B2 (en) 2020-05-22 2024-05-21 Asm Ip Holding B.V. Apparatus for depositing thin films using hydrogen peroxide
US11996289B2 (en) 2020-04-16 2024-05-28 Asm Ip Holding B.V. Methods of forming structures including silicon germanium and silicon layers, devices formed using the methods, and systems for performing the methods
US11996292B2 (en) 2019-10-25 2024-05-28 Asm Ip Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
US11996309B2 (en) 2019-05-16 2024-05-28 Asm Ip Holding B.V. Wafer boat handling device, vertical batch furnace and method
US11993847B2 (en) 2020-01-08 2024-05-28 Asm Ip Holding B.V. Injector
US12006572B2 (en) 2019-10-08 2024-06-11 Asm Ip Holding B.V. Reactor system including a gas distribution assembly for use with activated species and method of using same
US12009224B2 (en) 2020-09-29 2024-06-11 Asm Ip Holding B.V. Apparatus and method for etching metal nitrides
US12009241B2 (en) 2019-10-14 2024-06-11 Asm Ip Holding B.V. Vertical batch furnace assembly with detector to detect cassette
US12020938B2 (en) 2022-07-07 2024-06-25 Asm Ip Holding B.V. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101623458B1 (en) * 2008-03-26 2016-05-23 지티에이티 코포레이션 Systems and methods for distributing gas in a chemical vapor deposition reactor
JP5645718B2 (en) * 2011-03-07 2014-12-24 東京エレクトロン株式会社 Heat treatment equipment
WO2013147481A1 (en) 2012-03-28 2013-10-03 국제엘렉트릭코리아 주식회사 Apparatus and cluster equipment for selective epitaxial growth
US8785303B2 (en) * 2012-06-01 2014-07-22 Taiwan Semiconductor Manufacturing Company, Ltd. Methods for depositing amorphous silicon
KR102326377B1 (en) * 2016-06-07 2021-11-15 가부시키가이샤 코쿠사이 엘렉트릭 Substrate processing apparatus, method of manufacturing semiconductor device and program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5622566A (en) * 1993-09-16 1997-04-22 Tokyo Electron Limited Film-forming apparatus
US6107197A (en) * 1996-01-10 2000-08-22 Nec Corporation Method of removing a carbon-contaminated layer from a silicon substrate surface for subsequent selective silicon epitaxial growth thereon and apparatus for selective silicon epitaxial growth
US20050287806A1 (en) * 2004-06-24 2005-12-29 Hiroyuki Matsuura Vertical CVD apparatus and CVD method using the same
US20070034158A1 (en) * 2003-08-07 2007-02-15 Hitachi Kokusai Electric Inc. Substrate processing apparatus and semiconductor device producing method

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0316208A (en) 1989-06-14 1991-01-24 Nec Corp Apparatus for silicon epitaxial growth
JPH0715888B2 (en) 1990-10-01 1995-02-22 日本電気株式会社 Method and apparatus for selective growth of silicon epitaxial film
JPH04163912A (en) 1990-10-29 1992-06-09 Nec Corp Vapor growth equipment
JPH05206106A (en) 1992-01-09 1993-08-13 Nec Corp Vacuum vapor phase growth device
KR970072061A (en) * 1996-04-16 1997-11-07 김광호 A diffusion furnace used in a semiconductor manufacturing process
JP3969859B2 (en) 1998-08-26 2007-09-05 株式会社日立国際電気 Substrate processing apparatus and semiconductor device manufacturing method
US6383300B1 (en) * 1998-11-27 2002-05-07 Tokyo Electron Ltd. Heat treatment apparatus and cleaning method of the same
JP2000311860A (en) 1999-04-27 2000-11-07 Sony Corp Cleaning method in vertical reduced pressure cvd system and vertical reduced pressure cvd system with cleaning mechanism
US6503330B1 (en) * 1999-12-22 2003-01-07 Genus, Inc. Apparatus and method to achieve continuous interface and ultrathin film during atomic layer deposition
KR100375102B1 (en) 2000-10-18 2003-03-08 삼성전자주식회사 Method for CVD and apparatus for performing the same in semiconductor device processing
JP2003077845A (en) * 2001-09-05 2003-03-14 Hitachi Kokusai Electric Inc Manufacturing method of semiconductor device and substrate treatment apparatus
US6905963B2 (en) * 2001-10-05 2005-06-14 Hitachi Kokusai Electric, Inc. Fabrication of B-doped silicon film by LPCVD method using BCI3 and SiH4 gases
US6869880B2 (en) * 2002-01-24 2005-03-22 Applied Materials, Inc. In situ application of etch back for improved deposition into high-aspect-ratio features
US20060124058A1 (en) * 2002-11-11 2006-06-15 Hitachi Kokusai Electric Inc. Substrate processing device
JP2005243924A (en) 2004-02-26 2005-09-08 Hitachi Kokusai Electric Inc Substrate processing device
KR100636037B1 (en) * 2004-11-19 2006-10-18 삼성전자주식회사 Method of forming a titanium nitride layer and apparatus for performing the same
KR100841866B1 (en) * 2005-02-17 2008-06-27 가부시키가이샤 히다치 고쿠사이 덴키 Production method for semiconductor device and substrate processing device
JP4506677B2 (en) * 2005-03-11 2010-07-21 東京エレクトロン株式会社 Film forming method, film forming apparatus, and storage medium
KR100642646B1 (en) * 2005-07-08 2006-11-10 삼성전자주식회사 Methods of selectively forming an epitaxial semiconductor layer using a ultra high vacuum chemical vapor deposition technique and batch-type ultra high vacuum chemical vapor deposition apparatus used therein
JP4832022B2 (en) 2005-07-29 2011-12-07 株式会社日立国際電気 Substrate processing equipment
WO2007108401A1 (en) * 2006-03-20 2007-09-27 Hitachi Kokusai Electric Inc. Semiconductor device manufacturing method and substrate processing apparatus
TWI397115B (en) * 2006-03-27 2013-05-21 Hitachi Int Electric Inc A method of manufacturing a semiconductor device and device of processing substrate and cleaning method
JP4464949B2 (en) * 2006-11-10 2010-05-19 株式会社日立国際電気 Substrate processing apparatus and selective epitaxial film growth method
US20090136652A1 (en) * 2007-06-24 2009-05-28 Applied Materials, Inc. Showerhead design with precursor source
US20080314311A1 (en) * 2007-06-24 2008-12-25 Burrows Brian H Hvpe showerhead design
JP2010141223A (en) * 2008-12-15 2010-06-24 Hitachi Kokusai Electric Inc Method of manufacturing semiconductor device and substrate processing apparatus
JP5610438B2 (en) * 2010-01-29 2014-10-22 株式会社日立国際電気 Substrate processing apparatus and semiconductor device manufacturing method
US8409352B2 (en) * 2010-03-01 2013-04-02 Hitachi Kokusai Electric Inc. Method of manufacturing semiconductor device, method of manufacturing substrate and substrate processing apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5622566A (en) * 1993-09-16 1997-04-22 Tokyo Electron Limited Film-forming apparatus
US6107197A (en) * 1996-01-10 2000-08-22 Nec Corporation Method of removing a carbon-contaminated layer from a silicon substrate surface for subsequent selective silicon epitaxial growth thereon and apparatus for selective silicon epitaxial growth
US20070034158A1 (en) * 2003-08-07 2007-02-15 Hitachi Kokusai Electric Inc. Substrate processing apparatus and semiconductor device producing method
US20050287806A1 (en) * 2004-06-24 2005-12-29 Hiroyuki Matsuura Vertical CVD apparatus and CVD method using the same

Cited By (203)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110212623A1 (en) * 2006-11-10 2011-09-01 Hitachi Kokusai Electric Inc. Substrate treatment device
US8652258B2 (en) * 2006-11-10 2014-02-18 Hitachi Kokusai Electric Inc. Substrate treatment device
US11725277B2 (en) 2011-07-20 2023-08-15 Asm Ip Holding B.V. Pressure transmitter for a semiconductor processing environment
US11967488B2 (en) 2013-02-01 2024-04-23 Asm Ip Holding B.V. Method for treatment of deposition reactor
US20150064908A1 (en) * 2013-02-15 2015-03-05 Hitachi Kokusai Electric Inc. Substrate processing apparatus, method for processing substrate and method for manufacturing semiconductor device
US11795545B2 (en) 2014-10-07 2023-10-24 Asm Ip Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
US11742189B2 (en) 2015-03-12 2023-08-29 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
US11956977B2 (en) 2015-12-29 2024-04-09 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
US11676812B2 (en) 2016-02-19 2023-06-13 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on top/bottom portions
US11453943B2 (en) 2016-05-25 2022-09-27 Asm Ip Holding B.V. Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor
US11649546B2 (en) 2016-07-08 2023-05-16 Asm Ip Holding B.V. Organic reactants for atomic layer deposition
US11749562B2 (en) 2016-07-08 2023-09-05 Asm Ip Holding B.V. Selective deposition method to form air gaps
US11610775B2 (en) 2016-07-28 2023-03-21 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11694892B2 (en) 2016-07-28 2023-07-04 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11532757B2 (en) 2016-10-27 2022-12-20 Asm Ip Holding B.V. Deposition of charge trapping layers
US11810788B2 (en) 2016-11-01 2023-11-07 Asm Ip Holding B.V. Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US20190304785A1 (en) * 2016-11-03 2019-10-03 Eugene Technology Co., Ltd. Method for forming epitaxial layer at low temperature
US10796915B2 (en) * 2016-11-03 2020-10-06 Eugene Technology Co., Ltd. Method for forming epitaxial layer at low temperature
US11396702B2 (en) 2016-11-15 2022-07-26 Asm Ip Holding B.V. Gas supply unit and substrate processing apparatus including the gas supply unit
US11581186B2 (en) * 2016-12-15 2023-02-14 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
US11447861B2 (en) * 2016-12-15 2022-09-20 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
US11970766B2 (en) 2016-12-15 2024-04-30 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
US11851755B2 (en) 2016-12-15 2023-12-26 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
US12000042B2 (en) 2016-12-15 2024-06-04 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
US11390950B2 (en) 2017-01-10 2022-07-19 Asm Ip Holding B.V. Reactor system and method to reduce residue buildup during a film deposition process
US11410851B2 (en) 2017-02-15 2022-08-09 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
US11152215B2 (en) 2017-03-31 2021-10-19 Kokusai Electric Corporation Method of manufacturing semiconductor device, substrate processing apparatus and non-transitory computer-readable recording medium
CN110268506A (en) * 2017-03-31 2019-09-20 株式会社国际电气 Manufacturing method, substrate board treatment and the program of semiconductor device
US11848200B2 (en) 2017-05-08 2023-12-19 Asm Ip Holding B.V. Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures
US11976361B2 (en) 2017-06-28 2024-05-07 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
US11306395B2 (en) 2017-06-28 2022-04-19 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
US11695054B2 (en) 2017-07-18 2023-07-04 Asm Ip Holding B.V. Methods for forming a semiconductor device structure and related semiconductor device structures
US11802338B2 (en) 2017-07-26 2023-10-31 Asm Ip Holding B.V. Chemical treatment, deposition and/or infiltration apparatus and method for using the same
US11417545B2 (en) 2017-08-08 2022-08-16 Asm Ip Holding B.V. Radiation shield
US11587821B2 (en) 2017-08-08 2023-02-21 Asm Ip Holding B.V. Substrate lift mechanism and reactor including same
US11769682B2 (en) 2017-08-09 2023-09-26 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11830730B2 (en) 2017-08-29 2023-11-28 Asm Ip Holding B.V. Layer forming method and apparatus
US11295980B2 (en) 2017-08-30 2022-04-05 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
US11581220B2 (en) 2017-08-30 2023-02-14 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
US11387120B2 (en) 2017-09-28 2022-07-12 Asm Ip Holding B.V. Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
US11682572B2 (en) 2017-11-27 2023-06-20 Asm Ip Holdings B.V. Storage device for storing wafer cassettes for use with a batch furnace
US11639811B2 (en) 2017-11-27 2023-05-02 Asm Ip Holding B.V. Apparatus including a clean mini environment
US11501973B2 (en) 2018-01-16 2022-11-15 Asm Ip Holding B.V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
US11482412B2 (en) 2018-01-19 2022-10-25 Asm Ip Holding B.V. Method for depositing a gap-fill layer by plasma-assisted deposition
US11972944B2 (en) 2018-01-19 2024-04-30 Asm Ip Holding B.V. Method for depositing a gap-fill layer by plasma-assisted deposition
US11393690B2 (en) 2018-01-19 2022-07-19 Asm Ip Holding B.V. Deposition method
US11735414B2 (en) 2018-02-06 2023-08-22 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
US11685991B2 (en) 2018-02-14 2023-06-27 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US11387106B2 (en) 2018-02-14 2022-07-12 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US11482418B2 (en) 2018-02-20 2022-10-25 Asm Ip Holding B.V. Substrate processing method and apparatus
US11939673B2 (en) 2018-02-23 2024-03-26 Asm Ip Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
US11473195B2 (en) 2018-03-01 2022-10-18 Asm Ip Holding B.V. Semiconductor processing apparatus and a method for processing a substrate
US11398382B2 (en) 2018-03-27 2022-07-26 Asm Ip Holding B.V. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode
US11361990B2 (en) 2018-05-28 2022-06-14 Asm Ip Holding B.V. Substrate processing method and device manufactured by using the same
US11908733B2 (en) 2018-05-28 2024-02-20 Asm Ip Holding B.V. Substrate processing method and device manufactured by using the same
US11718913B2 (en) 2018-06-04 2023-08-08 Asm Ip Holding B.V. Gas distribution system and reactor system including same
US11296189B2 (en) 2018-06-21 2022-04-05 Asm Ip Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
US11530483B2 (en) 2018-06-21 2022-12-20 Asm Ip Holding B.V. Substrate processing system
US11952658B2 (en) 2018-06-27 2024-04-09 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11814715B2 (en) 2018-06-27 2023-11-14 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11492703B2 (en) 2018-06-27 2022-11-08 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11499222B2 (en) 2018-06-27 2022-11-15 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11646197B2 (en) 2018-07-03 2023-05-09 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US11923190B2 (en) 2018-07-03 2024-03-05 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US11430674B2 (en) 2018-08-22 2022-08-30 Asm Ip Holding B.V. Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US11804388B2 (en) 2018-09-11 2023-10-31 Asm Ip Holding B.V. Substrate processing apparatus and method
US11274369B2 (en) 2018-09-11 2022-03-15 Asm Ip Holding B.V. Thin film deposition method
US11885023B2 (en) 2018-10-01 2024-01-30 Asm Ip Holding B.V. Substrate retaining apparatus, system including the apparatus, and method of using same
US11414760B2 (en) 2018-10-08 2022-08-16 Asm Ip Holding B.V. Substrate support unit, thin film deposition apparatus including the same, and substrate processing apparatus including the same
US11664199B2 (en) 2018-10-19 2023-05-30 Asm Ip Holding B.V. Substrate processing apparatus and substrate processing method
US11735445B2 (en) 2018-10-31 2023-08-22 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
US11866823B2 (en) 2018-11-02 2024-01-09 Asm Ip Holding B.V. Substrate supporting unit and a substrate processing device including the same
US11499226B2 (en) 2018-11-02 2022-11-15 Asm Ip Holding B.V. Substrate supporting unit and a substrate processing device including the same
US11572620B2 (en) 2018-11-06 2023-02-07 Asm Ip Holding B.V. Methods for selectively depositing an amorphous silicon film on a substrate
US11798999B2 (en) 2018-11-16 2023-10-24 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US11411088B2 (en) 2018-11-16 2022-08-09 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US11488819B2 (en) 2018-12-04 2022-11-01 Asm Ip Holding B.V. Method of cleaning substrate processing apparatus
US11769670B2 (en) 2018-12-13 2023-09-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
US11658029B2 (en) 2018-12-14 2023-05-23 Asm Ip Holding B.V. Method of forming a device structure using selective deposition of gallium nitride and system for same
US11959171B2 (en) 2019-01-17 2024-04-16 Asm Ip Holding B.V. Methods of forming a transition metal containing film on a substrate by a cyclical deposition process
US11390946B2 (en) 2019-01-17 2022-07-19 Asm Ip Holding B.V. Methods of forming a transition metal containing film on a substrate by a cyclical deposition process
US11342216B2 (en) 2019-02-20 2022-05-24 Asm Ip Holding B.V. Cyclical deposition method and apparatus for filling a recess formed within a substrate surface
US11798834B2 (en) 2019-02-20 2023-10-24 Asm Ip Holding B.V. Cyclical deposition method and apparatus for filling a recess formed within a substrate surface
US11615980B2 (en) 2019-02-20 2023-03-28 Asm Ip Holding B.V. Method and apparatus for filling a recess formed within a substrate surface
US11482533B2 (en) 2019-02-20 2022-10-25 Asm Ip Holding B.V. Apparatus and methods for plug fill deposition in 3-D NAND applications
US11629407B2 (en) 2019-02-22 2023-04-18 Asm Ip Holding B.V. Substrate processing apparatus and method for processing substrates
US11424119B2 (en) 2019-03-08 2022-08-23 Asm Ip Holding B.V. Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer
US11742198B2 (en) 2019-03-08 2023-08-29 Asm Ip Holding B.V. Structure including SiOCN layer and method of forming same
US11901175B2 (en) 2019-03-08 2024-02-13 Asm Ip Holding B.V. Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer
US11378337B2 (en) 2019-03-28 2022-07-05 Asm Ip Holding B.V. Door opener and substrate processing apparatus provided therewith
US11551925B2 (en) 2019-04-01 2023-01-10 Asm Ip Holding B.V. Method for manufacturing a semiconductor device
US11447864B2 (en) 2019-04-19 2022-09-20 Asm Ip Holding B.V. Layer forming method and apparatus
US11814747B2 (en) 2019-04-24 2023-11-14 Asm Ip Holding B.V. Gas-phase reactor system-with a reaction chamber, a solid precursor source vessel, a gas distribution system, and a flange assembly
US11781221B2 (en) 2019-05-07 2023-10-10 Asm Ip Holding B.V. Chemical source vessel with dip tube
US11355338B2 (en) 2019-05-10 2022-06-07 Asm Ip Holding B.V. Method of depositing material onto a surface and structure formed according to the method
US11515188B2 (en) 2019-05-16 2022-11-29 Asm Ip Holding B.V. Wafer boat handling device, vertical batch furnace and method
US11996309B2 (en) 2019-05-16 2024-05-28 Asm Ip Holding B.V. Wafer boat handling device, vertical batch furnace and method
USD975665S1 (en) 2019-05-17 2023-01-17 Asm Ip Holding B.V. Susceptor shaft
USD947913S1 (en) 2019-05-17 2022-04-05 Asm Ip Holding B.V. Susceptor shaft
US11345999B2 (en) 2019-06-06 2022-05-31 Asm Ip Holding B.V. Method of using a gas-phase reactor system including analyzing exhausted gas
US11453946B2 (en) 2019-06-06 2022-09-27 Asm Ip Holding B.V. Gas-phase reactor system including a gas detector
US11476109B2 (en) 2019-06-11 2022-10-18 Asm Ip Holding B.V. Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method
US11908684B2 (en) 2019-06-11 2024-02-20 Asm Ip Holding B.V. Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method
US11390945B2 (en) 2019-07-03 2022-07-19 Asm Ip Holding B.V. Temperature control assembly for substrate processing apparatus and method of using same
US11746414B2 (en) 2019-07-03 2023-09-05 Asm Ip Holding B.V. Temperature control assembly for substrate processing apparatus and method of using same
US11605528B2 (en) 2019-07-09 2023-03-14 Asm Ip Holding B.V. Plasma device using coaxial waveguide, and substrate treatment method
US11664267B2 (en) 2019-07-10 2023-05-30 Asm Ip Holding B.V. Substrate support assembly and substrate processing device including the same
US11996304B2 (en) 2019-07-16 2024-05-28 Asm Ip Holding B.V. Substrate processing device
US11664245B2 (en) 2019-07-16 2023-05-30 Asm Ip Holding B.V. Substrate processing device
US11615970B2 (en) 2019-07-17 2023-03-28 Asm Ip Holding B.V. Radical assist ignition plasma system and method
US11688603B2 (en) 2019-07-17 2023-06-27 Asm Ip Holding B.V. Methods of forming silicon germanium structures
US11643724B2 (en) 2019-07-18 2023-05-09 Asm Ip Holding B.V. Method of forming structures using a neutral beam
US11557474B2 (en) 2019-07-29 2023-01-17 Asm Ip Holding B.V. Methods for selective deposition utilizing n-type dopants and/or alternative dopants to achieve high dopant incorporation
US11430640B2 (en) 2019-07-30 2022-08-30 Asm Ip Holding B.V. Substrate processing apparatus
US11443926B2 (en) 2019-07-30 2022-09-13 Asm Ip Holding B.V. Substrate processing apparatus
US11587814B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587815B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11876008B2 (en) 2019-07-31 2024-01-16 Asm Ip Holding B.V. Vertical batch furnace assembly
US11680839B2 (en) 2019-08-05 2023-06-20 Asm Ip Holding B.V. Liquid level sensor for a chemical source vessel
USD965524S1 (en) 2019-08-19 2022-10-04 Asm Ip Holding B.V. Susceptor support
USD965044S1 (en) 2019-08-19 2022-09-27 Asm Ip Holding B.V. Susceptor shaft
US11639548B2 (en) 2019-08-21 2023-05-02 Asm Ip Holding B.V. Film-forming material mixed-gas forming device and film forming device
USD979506S1 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Insulator
US11594450B2 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Method for forming a structure with a hole
US11286558B2 (en) 2019-08-23 2022-03-29 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
US11827978B2 (en) 2019-08-23 2023-11-28 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
US11898242B2 (en) 2019-08-23 2024-02-13 Asm Ip Holding B.V. Methods for forming a polycrystalline molybdenum film over a surface of a substrate and related structures including a polycrystalline molybdenum film
US11495459B2 (en) 2019-09-04 2022-11-08 Asm Ip Holding B.V. Methods for selective deposition using a sacrificial capping layer
US11823876B2 (en) 2019-09-05 2023-11-21 Asm Ip Holding B.V. Substrate processing apparatus
US11562901B2 (en) 2019-09-25 2023-01-24 Asm Ip Holding B.V. Substrate processing method
US11610774B2 (en) 2019-10-02 2023-03-21 Asm Ip Holding B.V. Methods for forming a topographically selective silicon oxide film by a cyclical plasma-enhanced deposition process
US12006572B2 (en) 2019-10-08 2024-06-11 Asm Ip Holding B.V. Reactor system including a gas distribution assembly for use with activated species and method of using same
US11339476B2 (en) 2019-10-08 2022-05-24 Asm Ip Holding B.V. Substrate processing device having connection plates, substrate processing method
US11735422B2 (en) 2019-10-10 2023-08-22 Asm Ip Holding B.V. Method of forming a photoresist underlayer and structure including same
US12009241B2 (en) 2019-10-14 2024-06-11 Asm Ip Holding B.V. Vertical batch furnace assembly with detector to detect cassette
US11637011B2 (en) 2019-10-16 2023-04-25 Asm Ip Holding B.V. Method of topology-selective film formation of silicon oxide
US11637014B2 (en) 2019-10-17 2023-04-25 Asm Ip Holding B.V. Methods for selective deposition of doped semiconductor material
US11315794B2 (en) 2019-10-21 2022-04-26 Asm Ip Holding B.V. Apparatus and methods for selectively etching films
US11996292B2 (en) 2019-10-25 2024-05-28 Asm Ip Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
US11646205B2 (en) 2019-10-29 2023-05-09 Asm Ip Holding B.V. Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same
US11594600B2 (en) 2019-11-05 2023-02-28 Asm Ip Holding B.V. Structures with doped semiconductor layers and methods and systems for forming same
US11501968B2 (en) 2019-11-15 2022-11-15 Asm Ip Holding B.V. Method for providing a semiconductor device with silicon filled gaps
US11626316B2 (en) 2019-11-20 2023-04-11 Asm Ip Holding B.V. Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure
US11401605B2 (en) 2019-11-26 2022-08-02 Asm Ip Holding B.V. Substrate processing apparatus
US11915929B2 (en) 2019-11-26 2024-02-27 Asm Ip Holding B.V. Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface
US11450529B2 (en) 2019-11-26 2022-09-20 Asm Ip Holding B.V. Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface
US11646184B2 (en) 2019-11-29 2023-05-09 Asm Ip Holding B.V. Substrate processing apparatus
US11923181B2 (en) 2019-11-29 2024-03-05 Asm Ip Holding B.V. Substrate processing apparatus for minimizing the effect of a filling gas during substrate processing
US11929251B2 (en) 2019-12-02 2024-03-12 Asm Ip Holding B.V. Substrate processing apparatus having electrostatic chuck and substrate processing method
US11840761B2 (en) 2019-12-04 2023-12-12 Asm Ip Holding B.V. Substrate processing apparatus
US11885013B2 (en) 2019-12-17 2024-01-30 Asm Ip Holding B.V. Method of forming vanadium nitride layer and structure including the vanadium nitride layer
US11527403B2 (en) 2019-12-19 2022-12-13 Asm Ip Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
US11976359B2 (en) 2020-01-06 2024-05-07 Asm Ip Holding B.V. Gas supply assembly, components thereof, and reactor system including same
US11993847B2 (en) 2020-01-08 2024-05-28 Asm Ip Holding B.V. Injector
US11551912B2 (en) 2020-01-20 2023-01-10 Asm Ip Holding B.V. Method of forming thin film and method of modifying surface of thin film
US11521851B2 (en) 2020-02-03 2022-12-06 Asm Ip Holding B.V. Method of forming structures including a vanadium or indium layer
US11828707B2 (en) 2020-02-04 2023-11-28 Asm Ip Holding B.V. Method and apparatus for transmittance measurements of large articles
US11776846B2 (en) 2020-02-07 2023-10-03 Asm Ip Holding B.V. Methods for depositing gap filling fluids and related systems and devices
US11781243B2 (en) 2020-02-17 2023-10-10 Asm Ip Holding B.V. Method for depositing low temperature phosphorous-doped silicon
US11986868B2 (en) 2020-02-28 2024-05-21 Asm Ip Holding B.V. System dedicated for parts cleaning
US11837494B2 (en) 2020-03-11 2023-12-05 Asm Ip Holding B.V. Substrate handling device with adjustable joints
US11876356B2 (en) 2020-03-11 2024-01-16 Asm Ip Holding B.V. Lockout tagout assembly and system and method of using same
US11488854B2 (en) 2020-03-11 2022-11-01 Asm Ip Holding B.V. Substrate handling device with adjustable joints
US11961741B2 (en) 2020-03-12 2024-04-16 Asm Ip Holding B.V. Method for fabricating layer structure having target topological profile
US11823866B2 (en) 2020-04-02 2023-11-21 Asm Ip Holding B.V. Thin film forming method
US11830738B2 (en) 2020-04-03 2023-11-28 Asm Ip Holding B.V. Method for forming barrier layer and method for manufacturing semiconductor device
US11437241B2 (en) 2020-04-08 2022-09-06 Asm Ip Holding B.V. Apparatus and methods for selectively etching silicon oxide films
US11821078B2 (en) 2020-04-15 2023-11-21 Asm Ip Holding B.V. Method for forming precoat film and method for forming silicon-containing film
US11996289B2 (en) 2020-04-16 2024-05-28 Asm Ip Holding B.V. Methods of forming structures including silicon germanium and silicon layers, devices formed using the methods, and systems for performing the methods
US11530876B2 (en) 2020-04-24 2022-12-20 Asm Ip Holding B.V. Vertical batch furnace assembly comprising a cooling gas supply
US11898243B2 (en) 2020-04-24 2024-02-13 Asm Ip Holding B.V. Method of forming vanadium nitride-containing layer
US11887857B2 (en) 2020-04-24 2024-01-30 Asm Ip Holding B.V. Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element
US11959168B2 (en) 2020-04-29 2024-04-16 Asm Ip Holding B.V. Solid source precursor vessel
US11515187B2 (en) 2020-05-01 2022-11-29 Asm Ip Holding B.V. Fast FOUP swapping with a FOUP handler
US11798830B2 (en) 2020-05-01 2023-10-24 Asm Ip Holding B.V. Fast FOUP swapping with a FOUP handler
US11626308B2 (en) 2020-05-13 2023-04-11 Asm Ip Holding B.V. Laser alignment fixture for a reactor system
US11804364B2 (en) 2020-05-19 2023-10-31 Asm Ip Holding B.V. Substrate processing apparatus
US11705333B2 (en) 2020-05-21 2023-07-18 Asm Ip Holding B.V. Structures including multiple carbon layers and methods of forming and using same
US11987881B2 (en) 2020-05-22 2024-05-21 Asm Ip Holding B.V. Apparatus for depositing thin films using hydrogen peroxide
US11767589B2 (en) 2020-05-29 2023-09-26 Asm Ip Holding B.V. Substrate processing device
US11646204B2 (en) 2020-06-24 2023-05-09 Asm Ip Holding B.V. Method for forming a layer provided with silicon
US11658035B2 (en) 2020-06-30 2023-05-23 Asm Ip Holding B.V. Substrate processing method
US11644758B2 (en) 2020-07-17 2023-05-09 Asm Ip Holding B.V. Structures and methods for use in photolithography
US11674220B2 (en) 2020-07-20 2023-06-13 Asm Ip Holding B.V. Method for depositing molybdenum layers using an underlayer
US11725280B2 (en) 2020-08-26 2023-08-15 Asm Ip Holding B.V. Method for forming metal silicon oxide and metal silicon oxynitride layers
USD990534S1 (en) 2020-09-11 2023-06-27 Asm Ip Holding B.V. Weighted lift pin
USD1012873S1 (en) 2020-09-24 2024-01-30 Asm Ip Holding B.V. Electrode for semiconductor processing apparatus
US12009224B2 (en) 2020-09-29 2024-06-11 Asm Ip Holding B.V. Apparatus and method for etching metal nitrides
US11827981B2 (en) 2020-10-14 2023-11-28 Asm Ip Holding B.V. Method of depositing material on stepped structure
US11873557B2 (en) 2020-10-22 2024-01-16 Asm Ip Holding B.V. Method of depositing vanadium metal
US11901179B2 (en) 2020-10-28 2024-02-13 Asm Ip Holding B.V. Method and device for depositing silicon onto substrates
US11795570B2 (en) * 2020-11-30 2023-10-24 Jinko Solar Co., Ltd. Single crystal furnace
US20220170177A1 (en) * 2020-11-30 2022-06-02 Jinko Solar Co., Ltd. Single Crystal Furnace
US11891696B2 (en) 2020-11-30 2024-02-06 Asm Ip Holding B.V. Injector configured for arrangement within a reaction chamber of a substrate processing apparatus
US11946137B2 (en) 2020-12-16 2024-04-02 Asm Ip Holding B.V. Runout and wobble measurement fixtures
US11885020B2 (en) 2020-12-22 2024-01-30 Asm Ip Holding B.V. Transition metal deposition method
US12020934B2 (en) 2021-04-16 2024-06-25 Asm Ip Holding B.V. Substrate processing method
USD980813S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas flow control plate for substrate processing apparatus
USD981973S1 (en) 2021-05-11 2023-03-28 Asm Ip Holding B.V. Reactor wall for substrate processing apparatus
USD980814S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas distributor for substrate processing apparatus
USD1023959S1 (en) 2021-05-11 2024-04-23 Asm Ip Holding B.V. Electrode for substrate processing apparatus
USD990441S1 (en) 2021-09-07 2023-06-27 Asm Ip Holding B.V. Gas flow control plate
US12020938B2 (en) 2022-07-07 2024-06-25 Asm Ip Holding B.V. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode

Also Published As

Publication number Publication date
JP4464949B2 (en) 2010-05-19
JP2008124181A (en) 2008-05-29
US20110212623A1 (en) 2011-09-01
US8652258B2 (en) 2014-02-18

Similar Documents

Publication Publication Date Title
US8652258B2 (en) Substrate treatment device
US20090017638A1 (en) Substrate processing apparatus and method for manufacturing semiconductor device
US8673076B2 (en) Substrate processing apparatus and semiconductor device producing method
US7556839B2 (en) Method of manufacturing semiconductor device and apparatus for processing substrate
JP5562409B2 (en) Semiconductor device manufacturing method, substrate manufacturing method, and substrate processing apparatus
US8071477B2 (en) Method of manufacturing semiconductor device and substrate processing apparatus
JP5560093B2 (en) Substrate processing apparatus, semiconductor device manufacturing method, and substrate manufacturing method
US20130149846A1 (en) Method of manufacturing semiconductor device and substrate processing apparatus
KR101077106B1 (en) Substrate processing apparatus and manufacturing method of semiconductor device
JP4699545B2 (en) Vapor growth apparatus and vapor growth method
US7700054B2 (en) Substrate processing apparatus having gas side flow via gas inlet
KR101685096B1 (en) Apparatus for processing substrate and method for processing substrate using the same
US20100282166A1 (en) Heat treatment apparatus and method of heat treatment
KR100996689B1 (en) Manufacturing method of semiconductor apparatus, film forming method and substrate processing apparatus
US20130137272A1 (en) Method of manufacturing semiconductor device and substrate processing apparatus
JP2013197507A (en) Substrate processing apparatus, substrate processing method, and semiconductor device manufacturing method
JP2014099427A (en) Substrate processing apparatus and process of manufacturing substrate
US20150064908A1 (en) Substrate processing apparatus, method for processing substrate and method for manufacturing semiconductor device
JP4832022B2 (en) Substrate processing equipment
JP2006186015A (en) Substrate processor
JP2004095940A (en) Method of manufacturing semiconductor device
CN115584481A (en) Chemical vapor deposition furnace with cleaning gas system for providing cleaning gas
TW202307260A (en) Chemical vapor deposition furnace and method for depositing films
JP2011157235A (en) Apparatus and method for producing crystal
JP2011066214A (en) Method of manufacturing semiconductor device and substrate processing apparatus

Legal Events

Date Code Title Description
AS Assignment

Owner name: HITACHI KOKUSAI ELECTRIC INC., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YOKOGAWA, TAKASHI;INOKUCHI, YASUHIRO;YAMAMOTO, KATSUHIKO;AND OTHERS;REEL/FRAME:020524/0952

Effective date: 20080123

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION