JPH0316208A - Apparatus for silicon epitaxial growth - Google Patents

Apparatus for silicon epitaxial growth

Info

Publication number
JPH0316208A
JPH0316208A JP15123089A JP15123089A JPH0316208A JP H0316208 A JPH0316208 A JP H0316208A JP 15123089 A JP15123089 A JP 15123089A JP 15123089 A JP15123089 A JP 15123089A JP H0316208 A JPH0316208 A JP H0316208A
Authority
JP
Japan
Prior art keywords
tube
gas
nozzle
reaction
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15123089A
Other languages
Japanese (ja)
Inventor
Seiichi Shishiguchi
獅子口 清一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP15123089A priority Critical patent/JPH0316208A/en
Publication of JPH0316208A publication Critical patent/JPH0316208A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the amount of unnecessary reaction product deposited on a reaction tube at the same time as film formation by a method wherein in addition to nozzle tubes for supplying reactive gas containing growing gas, nozzle tubes for supplying etching gas such as HCl in a direction avoiding a grown substrate crystal surface are provided. CONSTITUTION:A plurality of nozzle tubes comprise first nozzle tubes 10, 11 for supplying reaction gas containing silane growing gas to a grown surface and second nozzle tubes for supplying etching gas such as HCl in a direction avoiding the grown surface. Thus growing gas is supplied onto the grown surface of a substrate 1 as well as etching gas is supplied to a direction avoiding the grown surface of the substrate. Thus reaction product deposited on the wall of a reaction tube 2 can be prevented by etching function without influencing epitaxial growth on the substrate 1 surface and at the same time as film formation.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は気相成長装置に関し、特に反応容器を縦に立て
たホットウォール方式のシリコンヱビタキシャル成長装
置に関するものである.〔従来の技術〕 エビタキシャル成長技術は、半導体製造プロセスにおい
てはすでに重要な技術分野となっており、特にバイボー
ラ系のデバイスではデバイス製造上必須のプロセスにな
っている。さらに近年、超高集積度、超高速デバイスの
要求から少ない消費電力で、しかも、高速Bi −CM
OS構造のSRAM、あるいは超高集積化にともなうラ
ッチアヅプ対策からエビ構造を用いたDRAM等の開発
が精力的に行なわれているが、これらのデバイスはいず
れもエビタキシャル或長プロセスを必要とI一ている.
又、デバイスチップ当りの製造プロセスコスト低減のた
め、シリコンウエー八の大口径化や製造装置に関しては
1バッチ当りの処理枚数の向上による高スルーブット化
が進められている.エビタキシャル成長装置においても
、従来のバレル型、パンケーキ型と呼ばれる装置では、
すでにスループットの点で現状の要求を満たすことは困
難となっており、最近になって種々の新しい方式の装置
が試作されるようになっている.例えば、縦型反応管を
用いたホットウォール方式で、大口径6インチウエー八
を大量に処理できる装置として、特開昭63− 008
6424号に提案されている.第5図(a) . (b
)はこの装置の概略を示したものである. 図において、外管1及び内管2からなる二重梢遣の反応
管内に、基板ホルダー4に単結晶基板5をある間隔で水
平に積み重ねるようにして保持し、減圧下で900℃−
1200℃程度に加熱してその基板5表面にジクロロシ
ラン(SiH2CQ2 )等のシラン系のガス、水素〈
H1〉及びドーピングガスをノズル管群7にて導入して
エビタキシャル成長させるものとなっていた。3は架台
、、6は抵抗加熱炉、8はガス排出孔、9は排気口であ
る.反応管は二重構造で、外管1で真空を保持し、回転
する単結晶基板5にノズル群7を用いて反応ガスを供給
する.反応ガスは内管2の円筒面内に設けられた多数の
ガス排出孔8を通って排出される. 〔発明が解決しようとする課題〕 上述した従来のシリコンエピタキシャル或長装置は、抵
抗加熱炉6によるホットウォール方式であるため、或膜
時には、反応管が基板結晶とほぼ同程度の温度まで加熱
される.そのため、基板結晶に成膜が行われると同時に
、反応管へ反応生成物が堆積する,この反応生成物は、
成膜時、基板結晶ローディング時あるいはアンローディ
ング時にパーティクルを発生し成膜した膜質を劣化させ
る.また、反応管に堆積した反応生戒物に取り込まれた
ドーパントは、成膜時に気相中に再拡散して気相中のド
ーバント分圧を増大させるなど膜の抵抗率制御を困難に
する.このため、従来、無欠陥で抵抗率の制御された成
膜を得るために、数バッチ成長する度にHCQ等のエッ
チングガスによる気相エッチング、あるいはエッチング
液によるウェットエッチングにより、反応管に堆積した
反応生成物を除去する工程が必要とされていた.抵抗加
熱炉6によるバッチ式の気相成長装置は、一度に大Iの
基板結晶を処理できることから、高スループットが期待
されながら、従来スループットの向上が見られないのは
以上の理由によるものである. 本発明の目的は前記課題を解決したシリコンエピタキシ
ャル成長装置を提供することにある.〔発明の従来技術
に対する相違点〕 上述した従来のシリコンエピタキシャル或長装置に対し
、本発明の或長装置は、従来の装置で問題となっていた
反応管への反応生戊物堆積を大幅に減少させることによ
り装置スループットを向上させるため、被或長基板結晶
面上にシラン系の成長ガスを含む反応ガスを供給するノ
ズル管群に加え、被成長基板結晶面上を避ける方向にH
CQ等のエッチングガスを供給するノズル管群とを有し
ているという相違点を有する. 〔課題を解決するための手段〕 前記目的を達成するため、本発明に隔るシリコンエピタ
キシャル成長装置は、外管と内管とから構成される二重
管構造の反応管をI置きに設置し、該反応管内に複数枚
のシリコン単結晶基板を所定の間隔でほぼ水平に積み重
ねるように保持し、その長手方向に複数本の反応ガス放
出孔を有する複数のノズル管より、前記複数枚のシリコ
ン単結晶基板のそれぞれの被戊長而にほぼ水平に前記反
応ガスを流し、前記被成長面に気相成長法で膜を或長さ
せるホットウォール方式のシリコンエピタキシャル或長
装置において、前記複数本のノズル管は、前記被成長面
上にシラン系の成長ガスを含む反応ガスを供給する第1
のノズル管群と、前記被成長面を避ける方向に塩酸(H
CQ)等のエッチングガスを含む反応ガスを供給する第
2のノズル管群とから構成されるものである. また、本発明に係るシリコンエピタキシャル成長装置は
前記第2のノズル管群に属するノズル管を前記外管と内
管の間にも配置したものである.〔作用〕 以下に本発明のシリコンエピタキシャル成長装置によれ
ば、反応管に堆積する反応生戊物の量を大幅に減少させ
ることができることを述べる.反応管に堆積する反応生
或物が減少すれば、反応管エッチング頻度を減らずこと
ができ、装置スループットを大幅に向上させることが可
能となる,気相或長法で膜或長を行う場合、特に或長が
高温で行われるエビタキシャル或長のように、反応が反
応ガスの供給で律速されるような系では、反応ガスの流
特性がr!j.WAに大きく影響する.すなわち、反応
ガスの流線に沿って反応ガスと基板結晶との反応が生じ
、その他の領域でほとんど反応が起こらない.例えば、
シリコン基板面上シラン系の成長ガスを含む反応ガスを
供給した場合、ガス流線に沿った領域でのみ成膜が起こ
り、又エッチングガスを含む反応ガスを供給した場合は
その領域でエッチングが起こる。従って、基板被成長面
上に戊長ガスを供給すると同時に基板被成長面を避ける
方向にエッチングガスを供給すれば、反応管壁に堆積す
べき反応生戒物を、基板面上へのエビ膜成長に影響を与
えること無く、しかも膜成長と同時に、エッチング作用
によって防止することができる. 〔実施例〕 次に、本発明について図面を参照して説明する.(実施
gI41) 第1図(a) . (b)は本発明の実施例1を示す図
である. 図において、本発明の装置は、装置を支えるための架台
3、外管1及び内管2からなる二重管楕造の反応管、単
結晶基板5を保持ずるための基板ホルダー4、抵抗加熱
炉6、反応ガスを供給するノズル管群から梢成されてい
る,反応ガスはノズル管10より噴出され、内管2の壁
面に設けられたガス排出孔8を通り排気口9から排気さ
れる.ノズル管群は第1図(b)に示すように、主とし
て成膜に寄与するS i H 2 C Q 2を含む反
応ガスを供給するためのノズル管10及びノズル管11
からなる第1のノズル管群と、主として反応生或物のエ
ッチングに寄与するHCQを含む反応ガスを供給するた
めのノズル管12とノズル管13からなる第2のノズル
管群とから構成されている.各ノズル管の反応ガス噴出
方向は、反応管径、ウェーハ口径、ウェーハwt載間隔
、ノズル管とウェーハとの距離等により決まるウエーハ
面上の反応ガス流に対する流れのコンダクタンスによっ
て異なるが、本実施例では、内管径250 m、ウェー
ハロ径150鵬、ウェーハ積載間隔10+m+、ノズル
管中心軸とウェーハ中心との距llIi1151mの場
合について述べる.この場合について、ガス噴出方向を
変化させてガス流線を調べた結果、ノズル管断面の中心
とウェーハ中心を通る直線とガス噴出方向とのなす角が
0゜から30”の範囲にあるときは、ガス流線はウェー
ハ被成長面上を通り、それ以外のときは、ウェーハ被成
長面上を通らないことが明らかとなった.従って、本実
施例においては、第1図(b)に示したようにノズル管
10からはO゜、ノズル管11からは301、ノズル管
12及びノズル管13からは180゛すなわち反応管内
壁方向に反応ガスを噴出する配置とし、さらに反応ガス
を排出するためのガス排出孔8は内管壁のノズル管対向
lP1180゜の領域にのみ設けた.この配置では、第
1のノズル管群(ノズル管10及びノズル管11)によ
りrlcpAを行い、第2のノズル管群(ノズル管12
及びノズル管13)により反応管壁に#IMする反応生
戊物を防止する.この際、ガス排出孔が内管聖のノズル
管対向側のみに設けられているので、第2のノズル管群
より噴出されたエッチングガスは内管内壁に沿ってノズ
ル対向開のガス排出孔8に流れ、内管内壁の広い範囲を
効率よくエッチングすることができる. 以下に本実施例によるシリコンエピタキシャル膜の成長
例を説明する,基板ホルダー4に直径150噛のシリコ
ン単結晶基板5を10im間隔で50枚セットし、1分
間に5回転の回転速度(5rpm)で基板ホルダー4を
回転させ、反応管内温度を抵抗加熱炉6により1050
゜Cとした。反応ガスは、第1のノズル管群のノズル管
10及びノズル管11から各々Hz 10Q/nin 
, S I H2 C Q2 200nQ/ISIn 
, P H s約2 iQ/minで流し、第2のノズ
ル管群ノズル管12及びノズル管13からは各々H2t
OQ/nin , HC Q200nQ /1inで流
した.反応管内真空度は10tOrrとし、P型のシリ
コン単結晶基板上にN型のシリコンエピタキシャル膜を
5μl或長させた,以上のエビタキシャル成長プロセス
を繰り返し行った結果、良質のエビタキシャル膜を得る
ためには、従来の装置では5バッチ毎に反応管洗浄を必
要としたが、本発明の装置では、反応管洗浄頻度は20
バッチ毎に減少した.しかも、従来装置では、反応管壁
に堆積した反応生成物から気相中にドーバントの再拡散
が起こるため、抵抗率を制御するためには反応ガス中の
PH,濃度をバッチ毎に微妙にコントロールする必要が
あったが、本装置の場合P H s濃度を一定に保った
状態で連続20バッチの成長を行っても抵抗率の変動は
ほとんど見られず、簡単に抵抗率制御が行えることが明
らかになった. (実施例2) 第2図(a) . (b)は本発明の実施例2を示す図
である. 実施例2では、第2のノズル管群(16. 17)を第
1のノズル管群(14. 15)の対向側、すなわちガ
ス排出孔8の近傍に設けたことが実施例1と異なる.ノ
ズル管配置以外は実施例1と同一である.この実施例で
は、第2のノズル管群(16. 17)がガス排出孔8
の近傍にあるため、これらのノズル管からのエッチング
ガスは排出されやすいので、実施例1の場合より、さら
にエッチングガスのエビ成長に与える影響は少なくなる
.従って、同一成長速度を得るために必要とされるSI
H2cQ2流量を実施例1の場合よりも少なくすること
ができるという利点がある.この実施例の場合、内管壁
のガス排出孔が設けられていない領域にエッチングガス
がほとんど供給されないが、第1のノズル管群から供給
される或長ガスがウェーハ方向に噴出されているため、
結果的に成長ガスはガス排出孔方向に噴出されることに
なり、反応生成物は排出孔近傍に堆積することになるの
で、このことによる問題は少ない。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a vapor phase growth apparatus, and more particularly to a hot wall silicon ebitaxial growth apparatus in which a reaction vessel is vertically erected. [Prior Art] Ebitaxial growth technology has already become an important technical field in semiconductor manufacturing processes, and has become an essential process for device manufacturing, especially for bibolar devices. Furthermore, in recent years, demands for ultra-high integration and ultra-high speed devices have led to the development of high-speed Bi-CM devices with low power consumption.
SRAMs with an OS structure and DRAMs with an shrimp structure are being actively developed as a countermeasure against latch-up due to ultra-high integration, but all of these devices require an epitaxial process. ing.
In addition, in order to reduce the manufacturing process cost per device chip, efforts are being made to increase the throughput of silicon wafers and increase the number of wafers processed per batch in manufacturing equipment. Even in the case of epitaxial growth equipment, conventional barrel-type and pancake-type equipment
It has already become difficult to meet current requirements in terms of throughput, and recently various new types of equipment have been prototyped. For example, JP-A-63-008 was developed as a device capable of processing large quantities of large-diameter 6-inch wafers using a hot wall method using a vertical reaction tube.
It is proposed in No. 6424. Figure 5(a). (b
) shows an outline of this device. In the figure, single-crystal substrates 5 are held in a double-walled reaction tube consisting of an outer tube 1 and an inner tube 2, stacked horizontally at a certain interval on a substrate holder 4, and heated to 900° C. under reduced pressure.
The surface of the substrate 5 is heated to about 1200°C and silane gas such as dichlorosilane (SiH2CQ2), hydrogen
H1> and doping gas were introduced through the nozzle tube group 7 to cause epitaxial growth. 3 is a frame, 6 is a resistance heating furnace, 8 is a gas exhaust hole, and 9 is an exhaust port. The reaction tube has a double structure, with an outer tube 1 maintaining vacuum and a nozzle group 7 supplying reaction gas to a rotating single crystal substrate 5. The reaction gas is discharged through a large number of gas discharge holes 8 provided in the cylindrical surface of the inner tube 2. [Problems to be Solved by the Invention] The conventional silicon epitaxial growth apparatus described above uses a hot wall method using a resistance heating furnace 6, so during film formation, the reaction tube is heated to approximately the same temperature as the substrate crystal. Ru. Therefore, at the same time as the film is formed on the substrate crystal, reaction products are deposited in the reaction tube.
Particles are generated during film deposition, loading or unloading of substrate crystals, and deteriorate the quality of the deposited film. In addition, dopants incorporated into reactants deposited in the reaction tube re-diffuse into the gas phase during film formation, increasing the dopant partial pressure in the gas phase, making it difficult to control the resistivity of the film. For this reason, conventionally, in order to obtain a defect-free film with controlled resistivity, deposits were deposited in a reaction tube by vapor phase etching with an etching gas such as HCQ or wet etching with an etching solution every time several batches were grown. A step was required to remove the reaction products. Although a batch type vapor phase growth apparatus using a resistance heating furnace 6 is expected to have a high throughput because it can process large I substrate crystals at one time, the above is the reason why no improvement in throughput has been seen in the past. .. An object of the present invention is to provide a silicon epitaxial growth apparatus that solves the above problems. [Differences between the invention and the prior art] Compared to the conventional silicon epitaxial elongation apparatus described above, the elongation apparatus of the present invention greatly reduces the deposition of reaction products in the reaction tube, which was a problem with the conventional apparatus. In order to improve the device throughput by reducing the amount of growth, in addition to the nozzle tube group that supplies a reaction gas containing a silane-based growth gas onto the crystal plane of the substrate to be grown, a
The difference is that it has a nozzle tube group that supplies etching gas such as CQ. [Means for Solving the Problems] In order to achieve the above object, a silicon epitaxial growth apparatus according to the present invention is provided with a reaction tube having a double tube structure consisting of an outer tube and an inner tube, installed every other tube, A plurality of silicon single crystal substrates are held in the reaction tube so as to be stacked almost horizontally at predetermined intervals, and the plurality of silicon single crystal substrates are In a hot-wall type silicon epitaxial growth apparatus, in which the reaction gas is flowed almost horizontally onto each of the crystal substrates to be elongated, and a film is elongated on the growth surface by a vapor phase growth method, the plurality of nozzles are provided. A first tube supplies a reaction gas containing a silane-based growth gas onto the growth surface.
hydrochloric acid (H) in a direction avoiding the nozzle tube group and the growth surface.
A second nozzle tube group supplies a reactive gas containing an etching gas such as CQ). Further, in the silicon epitaxial growth apparatus according to the present invention, a nozzle tube belonging to the second nozzle tube group is also arranged between the outer tube and the inner tube. [Function] It will be described below that the silicon epitaxial growth apparatus of the present invention can significantly reduce the amount of reaction products deposited in the reaction tube. If the reaction products or substances deposited in the reaction tube are reduced, the frequency of reaction tube etching can be reduced without reducing the reaction tube etching frequency, and the device throughput can be greatly improved. In particular, in a system where the reaction rate is determined by the supply of the reactant gas, such as an evitaxial elongation in which a certain length is carried out at a high temperature, the flow characteristics of the reactant gas are r! j. It greatly affects WA. In other words, the reaction between the reaction gas and the substrate crystal occurs along the streamlines of the reaction gas, and almost no reaction occurs in other regions. for example,
When a reactive gas containing a silane-based growth gas is supplied on the silicon substrate surface, film formation occurs only in the region along the gas flow line, and when a reactive gas containing an etching gas is supplied, etching occurs in that region. . Therefore, if the etching gas is supplied onto the surface of the substrate to be grown and at the same time the etching gas is supplied in a direction avoiding the surface of the substrate to be grown, the reaction products that should be deposited on the reaction tube wall can be removed from the reaction products by forming a shrimp film on the substrate surface. It can be prevented by etching without affecting growth and simultaneously with film growth. [Example] Next, the present invention will be explained with reference to the drawings. (Implementation gI41) Figure 1 (a). (b) is a diagram showing Example 1 of the present invention. In the figure, the apparatus of the present invention includes a pedestal 3 for supporting the apparatus, a double tube oval reaction tube consisting of an outer tube 1 and an inner tube 2, a substrate holder 4 for holding a single crystal substrate 5, and a resistance heating The furnace 6 is composed of a group of nozzle tubes for supplying the reaction gas, and the reaction gas is ejected from the nozzle tube 10, passes through the gas exhaust hole 8 provided on the wall of the inner tube 2, and is exhausted from the exhaust port 9. .. As shown in FIG. 1(b), the nozzle tube group includes a nozzle tube 10 and a nozzle tube 11 for supplying a reaction gas containing S i H 2 C Q 2 that mainly contributes to film formation.
and a second nozzle group consisting of a nozzle pipe 12 and a nozzle pipe 13 for supplying a reaction gas containing HCQ that mainly contributes to etching a reaction product. There is. The reaction gas ejection direction from each nozzle tube varies depending on the flow conductance of the reaction gas flow on the wafer surface, which is determined by the reaction tube diameter, wafer diameter, wafer weight loading interval, distance between the nozzle tube and wafer, etc. Now, we will discuss the case where the inner tube diameter is 250 m, the wafer diameter is 150 m, the wafer loading interval is 10+m+, and the distance between the nozzle tube center axis and the wafer center is 1151 m. In this case, as a result of examining the gas flow line by changing the gas ejection direction, it was found that if the angle between the gas ejection direction and a straight line passing through the center of the nozzle tube cross section and the wafer center is in the range of 0° to 30''. It has become clear that the gas flow line passes over the wafer growth surface, and does not pass over the wafer growth surface in other cases.Therefore, in this example, the gas flow line passes over the wafer growth surface. As shown above, the arrangement is such that the reaction gas is ejected from the nozzle pipe 10 at 0°, from the nozzle pipe 11 at 301°, and from the nozzle pipes 12 and 13 at 180°, that is, in the direction of the inner wall of the reaction tube. The gas exhaust hole 8 was provided only in the area of the inner tube wall facing the nozzle tube lP1180°.In this arrangement, rlcpA is performed by the first nozzle tube group (nozzle tube 10 and nozzle tube 11), and rlcpA is performed by the second nozzle tube group. Tube group (nozzle pipe 12
and the nozzle pipe 13) to prevent reaction product from forming on the reaction tube wall. At this time, since the gas exhaust hole is provided only on the side of the inner tube opposite to the nozzle tube, the etching gas ejected from the second nozzle tube group flows along the inner wall of the inner tube to the gas exhaust hole 8 opposite to the nozzle. This allows for efficient etching of a wide range of the inner wall of the inner tube. An example of growing a silicon epitaxial film according to this example will be described below. Fifty silicon single crystal substrates 5 with a diameter of 150 mm were set at 10-im intervals on a substrate holder 4, and rotated at a rotation speed of 5 revolutions per minute (5 rpm). The substrate holder 4 is rotated, and the temperature inside the reaction tube is raised to 1050°C by the resistance heating furnace 6.
It was set to °C. The reaction gas is supplied from the nozzle pipes 10 and 11 of the first nozzle pipe group at a rate of Hz 10Q/nin.
, S I H2 C Q2 200nQ/ISIn
, P H s about 2 iQ/min, and H2t from the second nozzle tube group nozzle tube 12 and nozzle tube 13, respectively.
OQ/nin, HC Q200nQ/1in. The degree of vacuum in the reaction tube was set to 10 tOrr, and an N-type silicon epitaxial film was grown by 5 μl on a P-type silicon single crystal substrate. As a result of repeating the above epitaxial growth process, a high-quality epitaxial film was obtained. For this purpose, conventional equipment required reaction tube cleaning every 5 batches, but with the device of the present invention, reaction tube cleaning frequency was reduced to 20.
It decreased with each batch. Moreover, in conventional equipment, dopant re-diffuses into the gas phase from the reaction products deposited on the reaction tube wall, so in order to control the resistivity, the pH and concentration in the reaction gas must be delicately controlled for each batch. However, with this device, there was almost no change in resistivity even when 20 consecutive batches of growth were performed with the P H s concentration kept constant, indicating that resistivity control could be easily performed. It was revealed. (Example 2) Figure 2 (a). (b) is a diagram showing Example 2 of the present invention. The second embodiment differs from the first embodiment in that the second nozzle tube group (16, 17) is provided on the opposite side of the first nozzle tube group (14, 15), that is, in the vicinity of the gas discharge hole 8. The structure is the same as Example 1 except for the nozzle tube arrangement. In this embodiment, the second nozzle tube group (16, 17) is connected to the gas exhaust hole 8.
Since the etching gas is easily discharged from these nozzle pipes, the influence of the etching gas on shrimp growth is further reduced than in the case of Example 1. Therefore, the SI required to obtain the same growth rate is
This has the advantage that the H2cQ2 flow rate can be lower than in the first embodiment. In the case of this embodiment, almost no etching gas is supplied to the region of the inner tube wall where no gas discharge hole is provided, but a certain length of gas supplied from the first nozzle tube group is ejected toward the wafer. ,
As a result, the growth gas is ejected in the direction of the gas exhaust hole, and the reaction products are deposited near the exhaust hole, so there are few problems caused by this.

(実施例3) 第3図(a) . (b)は本発明の実施例3を示す図
であ゛る. 実施例3では、第2のノズル管群(20. 21)のう
ち1本を45゜の方向にガスを噴出するように配置した
ことが実施例1と異なる.ノズル管配置以外は実施例1
と同一である. この実施例では、第2のノズル管群(20. 21)の
180゜方向に向いたノズル管20により反応管壁の堆
積物をエッチングするとともに、35゜方向を向いたノ
ズル管21により基板ホルダー4の堆積物を各々エッチ
ングすることができるという利点がある, (実施例4) 第4図(a) . (b)は本発明の実施例4を示す図
である. 実施例4では、第2のノズル管群(24. 25)のう
ちの1本のノズル管25を内管2と外管1の間に配置し
たことが実施例1と異なる.ノズル管配置以外は実施例
1と同一である. この実施例では、内管2のみでなく、外管1の内壁面へ
の反応生戒物堆積を防ぐ効果がある。通常のエビ成長で
は、外管壁への堆積は内管壁へのそれと比較して少ない
ため、本実施例の効果は小さいが、選択エビ成長あるい
はエピー基板界面のドーバントグロフィルを急峻にする
ために低温で成長を行う場合のように、内管内で反応ガ
スの分解が十分に行われないような成長条件では、本実
施例の効果は大きい。
(Example 3) Figure 3(a). (b) is a diagram showing Example 3 of the present invention. The third embodiment differs from the first embodiment in that one of the second nozzle tube groups (20, 21) is arranged to eject gas in a 45° direction. Example 1 except for the nozzle tube arrangement
is the same as In this embodiment, the nozzle tubes 20 of the second nozzle tube group (20, 21) oriented at 180° are used to etch the deposits on the reaction tube wall, and the nozzle tubes 21 oriented at 35° are used to etch the substrate holder. (Example 4) FIG. 4(a). (b) is a diagram showing Example 4 of the present invention. The fourth embodiment differs from the first embodiment in that one nozzle pipe 25 of the second nozzle pipe group (24, 25) is arranged between the inner pipe 2 and the outer pipe 1. The structure is the same as Example 1 except for the nozzle tube arrangement. This embodiment has the effect of preventing reaction substances from being deposited not only on the inner wall surface of the inner tube 2 but also on the inner wall surface of the outer tube 1. In normal shrimp growth, the amount of deposition on the outer tube wall is smaller than that on the inner tube wall, so the effect of this example is small, but it can be used to selectively increase shrimp growth or to steepen the dopant globules at the epi-substrate interface. The effect of this embodiment is significant under growth conditions where the reaction gas is not sufficiently decomposed within the inner tube, such as when growth is performed at low temperatures.

本実麹例は、実施例2及び実施例3と組み合せて行うこ
とも可能である。尚、実施例2〜4についても実施例1
と同様堆積物を防止する効果があり、反応管洗浄頻度を
減らすことができた。
This actual koji example can also be carried out in combination with Example 2 and Example 3. Note that Examples 2 to 4 also apply to Example 1.
It was also effective in preventing deposits, and the frequency of reaction tube cleaning could be reduced.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明のシリコンエピタキシャル或
長装置は、被威長基板結晶面上にシラン系の成長ガスを
含む反応ガスを供給するノズル管群に加え、被成長基板
結晶面上を避ける方向にHCQ等のヱッチングガスを供
給するノズル管群を有するため、戊膜と同時に反応管に
堆積する不要な反応生戒物の量を大幅に減少させる効果
がある.その結果、反応管のエッチング頻度が減り、装
置スループットを向上させることができる効果を有する
As explained above, the silicon epitaxial growth apparatus of the present invention has a nozzle tube group that supplies a reaction gas containing a silane-based growth gas onto the crystal plane of the substrate to be grown, as well as a nozzle tube group that supplies a reaction gas containing a silane-based growth gas onto the crystal plane of the substrate to be grown. Since the reactor has a nozzle tube group that supplies etching gas such as HCQ to the reactor, it has the effect of greatly reducing the amount of unnecessary reaction products that accumulate in the reaction tube at the same time as the film is removed. As a result, the frequency of etching the reaction tube is reduced, which has the effect of improving the device throughput.

【図面の簡単な説明】[Brief explanation of drawings]

第1図[a)は本発明の実m例1に係るシリコンエピタ
キシャル成長装置を示す縦断面図、第1図(b)は第1
図(a)のa−a’線断面拡大図、第2図(a)は本発
明の実施例2に係るシリコンエピタキシャル成長装置を
示す縦断面図、第2図(b)は第2図(a)のa−a’
4i断而拡大図、第3図(a)は本発明の実施例3に係
るシリコンエピタキシャル成長装置を示すltI断面図
、第3図(b)は第3図(a)のa−a’ a断面拡大
図、第4図(a)は本発明の実施S4に係るシリコンエ
ピタキシャル成長装置を示す縦断面図、第4図(b)は
第4図(a)のa−a’線断面拡大図、第5図(a)は
従来のシリコンエピタキシャル成長装置を示す縦断面図
、第5図(b)は第5図(a)のa−a’線断面拡大図
である. 1・・・外管       2・・・内管3・・・架台
       4・・・基板ホルダー5・・・単結晶基
板    6・・・抵抗加熱炉7・・・ノズル管群  
  8・・・ガス排出孔9・・・排気口 10, 11, 14, 15. 20・・・ノズル管
(第1のノズル管群) t2, 13, 16, 17, 21, 24. 2
5・・・ノズル管(第2のノズル管群) ε,刀゛ス4非出コし ((:L) 第1 図 (b) 槃1図 5.単結晶基板 (α) 第2図 ((L) 第3図 (b) 第2図 (b) 第3図 (α) 第4図 (CL) 第5図 1.グト管 (b) 第4図 4 (b) 第5図
FIG. 1 [a] is a vertical cross-sectional view showing a silicon epitaxial growth apparatus according to Example 1 of the present invention, and FIG.
2(a) is a vertical sectional view showing a silicon epitaxial growth apparatus according to Example 2 of the present invention, and FIG. ) of a-a'
4i is an enlarged view, FIG. 3(a) is an ltI cross-sectional view showing a silicon epitaxial growth apparatus according to Example 3 of the present invention, and FIG. 3(b) is a cross-sectional view taken along a-a' a of FIG. 3(a). An enlarged view, FIG. 4(a) is a longitudinal cross-sectional view showing a silicon epitaxial growth apparatus according to implementation S4 of the present invention, and FIG. 4(b) is an enlarged cross-sectional view taken along the line aa' of FIG. FIG. 5(a) is a vertical cross-sectional view showing a conventional silicon epitaxial growth apparatus, and FIG. 5(b) is an enlarged cross-sectional view taken along line aa' in FIG. 5(a). 1... Outer tube 2... Inner tube 3... Frame 4... Substrate holder 5... Single crystal substrate 6... Resistance heating furnace 7... Nozzle tube group
8... Gas exhaust hole 9... Exhaust port 10, 11, 14, 15. 20... Nozzle pipe (first nozzle pipe group) t2, 13, 16, 17, 21, 24. 2
5... Nozzle pipe (second nozzle pipe group) ε, blade 4 non-extrusion ((:L) Fig. 1 (b) Katsu 1 Fig. 5. Single crystal substrate (α) Fig. 2 ( (L) Fig. 3 (b) Fig. 2 (b) Fig. 3 (α) Fig. 4 (CL) Fig. 5 1. Gut tube (b) Fig. 4 4 (b) Fig. 5

Claims (2)

【特許請求の範囲】[Claims] (1)外管と内管とから構成される二重管構造の反応管
を縦置きに設置し、該反応管内に複数枚のシリコン単結
晶基板を所定の間隔でほぼ水平に積み重ねるように保持
し、その長手方向に複数本の反応ガス放出孔を有する複
数のノズル管より、前記複数枚のシリコン単結晶基板の
それぞれの被成長面にほぼ水平に前記反応ガスを流し、
前記被成長面に気相成長法で膜を成長させるホットウォ
ール方式のシリコンエピタキシャル成長装置において、
前記複数本のノズル管は、前記被成長面上にシラン系の
成長ガスを含む反応ガスを供給する第1のノズル管群と
、前記被成長面を避ける方向に塩酸(HCl)等のエッ
チングガスを含む反応ガスを供給する第2のノズル管群
とから構成されることを特徴とするシリコンエピタキシ
ャル成長装置。
(1) A reaction tube with a double tube structure consisting of an outer tube and an inner tube is installed vertically, and multiple silicon single crystal substrates are held in the reaction tube so as to be stacked almost horizontally at predetermined intervals. and flowing the reaction gas almost horizontally onto the growth surface of each of the plurality of silicon single crystal substrates from a plurality of nozzle pipes having a plurality of reaction gas discharge holes in the longitudinal direction,
In a hot wall type silicon epitaxial growth apparatus for growing a film on the growth surface by a vapor phase growth method,
The plurality of nozzle tubes include a first group of nozzle tubes that supplies a reaction gas containing a silane-based growth gas onto the growth surface, and an etching gas such as hydrochloric acid (HCl) in a direction that avoids the growth surface. a second nozzle tube group for supplying a reaction gas containing a silicon epitaxial growth apparatus.
(2)前記第2のノズル管群に属するノズル管を前記外
管と内管の間にも配置したことを特徴とする請求項第(
1)項記載のシリコンエピタキシャル成長装置。
(2) A nozzle pipe belonging to the second nozzle pipe group is also arranged between the outer pipe and the inner pipe.
1) The silicon epitaxial growth apparatus described in item 1).
JP15123089A 1989-06-14 1989-06-14 Apparatus for silicon epitaxial growth Pending JPH0316208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15123089A JPH0316208A (en) 1989-06-14 1989-06-14 Apparatus for silicon epitaxial growth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15123089A JPH0316208A (en) 1989-06-14 1989-06-14 Apparatus for silicon epitaxial growth

Publications (1)

Publication Number Publication Date
JPH0316208A true JPH0316208A (en) 1991-01-24

Family

ID=15514091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15123089A Pending JPH0316208A (en) 1989-06-14 1989-06-14 Apparatus for silicon epitaxial growth

Country Status (1)

Country Link
JP (1) JPH0316208A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007042671A (en) * 2005-07-29 2007-02-15 Hitachi Kokusai Electric Inc Substrate treatment device
JP2007130074A (en) * 2005-11-08 2007-05-31 Karasawa Shin Evacuation display board
JP2009206489A (en) * 2008-01-31 2009-09-10 Hitachi Kokusai Electric Inc Substrate processing apparatus
JP2010118462A (en) * 2008-11-12 2010-05-27 Hitachi Kokusai Electric Inc Substrate processing apparatus
JP4620288B2 (en) * 2001-06-13 2011-01-26 東京エレクトロン株式会社 Batch heat treatment equipment
KR101037961B1 (en) * 2008-01-31 2011-05-30 가부시키가이샤 히다치 고쿠사이 덴키 Substrate processing apparatus and method of manufacturing semiconductor device
US8461062B2 (en) 2008-01-31 2013-06-11 Hitachi Kokusai Electric Inc. Substrate processing apparatus and method for manufacturing semiconductor device
US8652258B2 (en) 2006-11-10 2014-02-18 Hitachi Kokusai Electric Inc. Substrate treatment device
JP2015517210A (en) * 2012-03-28 2015-06-18 クックジェ エレクトリック コリア カンパニー リミテッド Equipment and cluster equipment for selective epitaxial growth
CN112640061A (en) * 2018-09-11 2021-04-09 株式会社国际电气 Substrate processing apparatus, method of manufacturing semiconductor device, and program

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4620288B2 (en) * 2001-06-13 2011-01-26 東京エレクトロン株式会社 Batch heat treatment equipment
JP2007042671A (en) * 2005-07-29 2007-02-15 Hitachi Kokusai Electric Inc Substrate treatment device
JP2007130074A (en) * 2005-11-08 2007-05-31 Karasawa Shin Evacuation display board
US8652258B2 (en) 2006-11-10 2014-02-18 Hitachi Kokusai Electric Inc. Substrate treatment device
JP4560575B2 (en) * 2008-01-31 2010-10-13 株式会社日立国際電気 Substrate processing apparatus and semiconductor device manufacturing method
JP2009218600A (en) * 2008-01-31 2009-09-24 Hitachi Kokusai Electric Inc Method for manufacturing semiconductor device
KR101037961B1 (en) * 2008-01-31 2011-05-30 가부시키가이샤 히다치 고쿠사이 덴키 Substrate processing apparatus and method of manufacturing semiconductor device
US8461062B2 (en) 2008-01-31 2013-06-11 Hitachi Kokusai Electric Inc. Substrate processing apparatus and method for manufacturing semiconductor device
JP2009206489A (en) * 2008-01-31 2009-09-10 Hitachi Kokusai Electric Inc Substrate processing apparatus
US8828141B2 (en) 2008-01-31 2014-09-09 Hitachi Kokusai Electric Inc. Substrate processing apparatus and method for manufacturing semiconductor device
JP2010118462A (en) * 2008-11-12 2010-05-27 Hitachi Kokusai Electric Inc Substrate processing apparatus
JP2015517210A (en) * 2012-03-28 2015-06-18 クックジェ エレクトリック コリア カンパニー リミテッド Equipment and cluster equipment for selective epitaxial growth
US10006146B2 (en) 2012-03-28 2018-06-26 Kookje Electric Korea Co., Ltd. Cluster apparatus for treating substrate
CN112640061A (en) * 2018-09-11 2021-04-09 株式会社国际电气 Substrate processing apparatus, method of manufacturing semiconductor device, and program
CN112640061B (en) * 2018-09-11 2024-05-14 株式会社国际电气 Substrate processing apparatus, method for manufacturing semiconductor device, and storage medium

Similar Documents

Publication Publication Date Title
JP3040212B2 (en) Vapor phase growth equipment
US4989540A (en) Apparatus for reaction treatment
EP0854210B1 (en) Vapor deposition apparatus for forming thin film
US20010047764A1 (en) Method and apparatus for improved chemical vapor deposition processes using tunable temperature controlled gas injectors
KR20050117573A (en) Substrate processing apparatus and method for manufacturing semiconductor device
JPH0316208A (en) Apparatus for silicon epitaxial growth
JP2745819B2 (en) Vapor phase film growth equipment
JP3345929B2 (en) Semiconductor grade polycrystalline silicon production reactor
US6537924B2 (en) Method of chemically growing a thin film in a gas phase on a silicon semiconductor substrate
JPH0758030A (en) Apparatus for manufacturing semiconductor
JPS62263629A (en) Vapor growth device
JPH1050615A (en) Single wafer processing gas-phase growth device
JP3948577B2 (en) Manufacturing method of semiconductor single crystal thin film
JPH01157519A (en) Vapor growth apparatus
KR19980064236A (en) Meteorological growth apparatus and vapor growth method
WO1999036588A1 (en) Method and apparatus for improved chemical vapor deposition processes using tunable temperature controlled gas injectors
JPH04163912A (en) Vapor growth equipment
JP3231312B2 (en) Vapor phase growth equipment
JPH1050613A (en) Epitaxial growth device
JP2762576B2 (en) Vapor phase growth equipment
JPS6316617A (en) Vapor growth equipment
JP5206613B2 (en) Epitaxial wafer susceptor, manufacturing method thereof, and epitaxial growth apparatus using the same
JP3057716B2 (en) Thin film formation method
JPH02212393A (en) Vapor growth method and its device
JPS5825224A (en) Vapor growth unit