JPS5825224A - Vapor growth unit - Google Patents

Vapor growth unit

Info

Publication number
JPS5825224A
JPS5825224A JP12451381A JP12451381A JPS5825224A JP S5825224 A JPS5825224 A JP S5825224A JP 12451381 A JP12451381 A JP 12451381A JP 12451381 A JP12451381 A JP 12451381A JP S5825224 A JPS5825224 A JP S5825224A
Authority
JP
Japan
Prior art keywords
tube
gas
wall
supply pipe
susceptors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12451381A
Other languages
Japanese (ja)
Inventor
Kaoru Tanabe
田辺 薫
Mamoru Maeda
守 前田
Yoshio Akai
赤井 良夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP12451381A priority Critical patent/JPS5825224A/en
Publication of JPS5825224A publication Critical patent/JPS5825224A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45578Elongated nozzles, tubes with holes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber

Abstract

PURPOSE:To rialize a homogeneous growth of a film by a method wherein susceptor-suported semiconductor wafers with some specified distance between them are vertically arranged and a gas supply pipe provided between the tube inner wall and the susceptors injects gas in a direction 10-30 deg. apart from the center of the axis and the supply pipe itself rotates along the tube wall, in a vapor growth unit with a horizontally set reactor tube. CONSTITUTION:In a reaction tube 1 surrounded with a high frequency coil 4, a plurality of semiconductor substrates 3 on susceptors 2 are vertically arranged with some distance between them. In the gap between the wall and the susceptors 2, a gas supplying pipe 6 lies provided with a multiplicity of nozzles and the supply end of the pipe 6 is bent to run along the axis of the tube 1. In the tube wall opposite to the supply pipe 6, a suction port 5 is provided wherethrough the used gas is taken out. In this construction, the direction of the nozzles is so oriented that the injected gas therefrom is 10-30 deg. deviated from the tube central axis, and the supply pipe 6 is caused to rotate along the tube wall. This setup ensures a homogeneous distribution of impurities.

Description

【発明の詳細な説明】 本発明は気相成長装置、特に膜厚分布を改善した気相成
長装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vapor phase growth apparatus, and particularly to a vapor phase growth apparatus with improved film thickness distribution.

半導体装置を製造する際に、単結晶シリコン(Sl)を
エピタキシャル成長させた9、又半導体基板面上に絶縁
膜や多結晶Stを成長させる気相成長方法は重要で、そ
の成長装置も種々の形式が開発されているが、横型反応
管を用いた装置は最も良く使用されている。11図にこ
のような成長装置の一例を示しており、この例は円板サ
セプタを用いた減圧気相成長装置の側断面図で、全長1
m、直径200−の石英反応管1内部に20−間隔でサ
セプタ2を垂直にあき、その両面に半導体基板3を保持
し、管外の高周波コイル4によゆサセプタ2を加熱し【
、半導体基板を高温度にする構造である。反応管内はガ
ス吸引口5より真空吸引して減圧し、反応ガスはガス供
給細管6より噴射して、高温となった半導体基板3上で
分解させて、その面上に彼着させる。
When manufacturing semiconductor devices, the epitaxial growth of single crystal silicon (Sl)9 and the vapor phase growth method of growing insulating films and polycrystalline St on the semiconductor substrate surface are important, and there are various types of growth equipment. have been developed, but devices using horizontal reaction tubes are the most commonly used. Figure 11 shows an example of such a growth apparatus. This example is a side sectional view of a reduced pressure vapor phase growth apparatus using a disk susceptor, and the total length is 1.
Susceptors 2 are perpendicularly spaced at 20-m intervals inside a quartz reaction tube 1 with a diameter of 200 m and a semiconductor substrate 3 is held on both sides, and the susceptors 2 are heated by a high-frequency coil 4 outside the tube.
This is a structure in which the semiconductor substrate is heated to a high temperature. The inside of the reaction tube is depressurized by vacuum suction from the gas suction port 5, and the reaction gas is injected from the gas supply capillary 6 to be decomposed on the semiconductor substrate 3 which has reached a high temperature, and is then deposited on the surface thereof.

例えば半導体基板3上に単結晶S1をエピタキシャル成
長させようとすれば、ガス供給細管6に投砂た多数の噴
射口よゆ水素偽)ガスを中ヤリャガスとして、反応ガス
のモノシラン(Si&)ガスを噴射するが、エピタキシ
ャル成長膜の膜厚を均一にするためにガス供給細管6は
反応管1内部で、管壁に沿って上部を左右に反覆移動り
ながら反応ガスを噴射する。第2図は箒1図のAA’断
面を拡大して図示した横断面図であるが、図示のように
ガス供給顔管6は噴射ロアが反応管の軸中心即ち半導体
基板3の中心に(矢印で示す)常に向けられていて、破
線で示している行程を左右に反覆移動させながら、単結
晶Siを成長させる。
For example, when trying to epitaxially grow a single crystal S1 on a semiconductor substrate 3, monosilane (Si&) gas, which is a reactive gas, is injected through a large number of injection ports that are thrown into the gas supply capillary 6. However, in order to make the thickness of the epitaxially grown film uniform, the gas supply thin tube 6 injects the reaction gas inside the reaction tube 1 while repeatedly moving from side to side along the upper part of the tube wall. FIG. 2 is an enlarged cross-sectional view of the AA' cross section in FIG. Single-crystal Si is grown while repeatedly moving left and right through the steps shown by broken lines.

このようにガス供給細管6を反応管内にその長手方向に
設け、しかも管壁に沿って左右に移動する構造とするこ
とは、勿論均質な成長膜を形成するためであるが、必ず
しも満足な成長膜が得られていない。従来のデータがら
例えば1つの基板内でもその膜厚の差が4511生じる
こともあり、又複数の基板間でもそり膜厚平均値が3μ
輌からl5paまでのバラツキがあって、決して小さい
ものではない。本発明はこのような構造の成長装置を用
いて一層均一な膜質の成長膜を形成させることを目的と
するもので、その特徴は反応管内に長手方向に設けられ
、反応管の肩内壁に沿って管内を移動しながら反応ガス
を供給するガス供給細管のブス噴射ロアの噴射方向を反
応管の軸中心からたえず10〜30°外れた方向とした
構造の気相成長装置であり、以下Il!1wを参照して
詳顧に説明する。
The purpose of providing the gas supply thin tube 6 in the longitudinal direction inside the reaction tube and moving it from side to side along the tube wall is, of course, to form a homogeneous grown film, but it does not necessarily ensure satisfactory growth. No membrane was obtained. According to conventional data, for example, there may be a difference in film thickness of 4511 even within one substrate, and even between multiple substrates, the average value of warpage film thickness may be 3μ.
There is a variation from 15 to 15 pa, which is by no means small. The purpose of the present invention is to form a grown film with a more uniform quality using a growth apparatus having such a structure.The feature of the present invention is that it is provided in the reaction tube in the longitudinal direction, and is provided along the shoulder inner wall of the reaction tube. This is a vapor phase growth apparatus with a structure in which the injection direction of the bus injection lower of the gas supply thin tube that supplies the reaction gas while moving inside the tube is constantly deviated by 10 to 30 degrees from the axial center of the reaction tube. This will be explained in detail with reference to 1w.

1記説明した一例のガス供給細管6の菅径は16−で、
孔径1−の多数の噴射ロアが設けられているが、その孔
方向を色々と換えて、エビタ中シャル層を成長させた実
験データを第3図の図表に示している。図は噴射ロアの
孔方向が反応管の軸中心に向けられた場合を0・として
、それに対し角度(θ)が215”、 45° (J3
0となッt;場合のデータであり縦軸は膜厚、横軸は反
応管の横方向位置でサセプタの画面に保持させた約30
枚の半導体基板3の膜厚(平均値)を図表にしたもので
ある。図がら明らかなように、噴射ロアが軸中心に向け
られたθ−〇°の場合が、その膜厚差が最も大きく、θ
−匍。
The pipe diameter of the gas supply thin tube 6 in the example described in Section 1 is 16-,
A large number of injection lowers with a hole diameter of 1-10 mm are provided, and the chart in FIG. 3 shows experimental data for growing the Evita mid-Shall layer by changing the hole directions in various ways. In the figure, the case where the hole direction of the injection lower is directed toward the axial center of the reaction tube is assumed to be 0, and the angle (θ) is 215" and 45° (J3
The data is for the case where the vertical axis is the film thickness, and the horizontal axis is the horizontal position of the reaction tube, which is about 30 mm when held on the screen of the susceptor.
This is a chart showing the film thickness (average value) of a number of semiconductor substrates 3. As is clear from the figure, the film thickness difference is largest when the injection lower is oriented toward the axis center at θ−〇°, and θ
- 匍.

の場合には反応ガスは反応せずに排出されるため、その
膜厚はうすくてしかも膜厚差も生じるが、θ−22,5
°のと1最も膜厚差が少ない結果となった。
In the case of
The result was that the difference in film thickness was the smallest between No.1 and No.1.

又、1枚の半導体基板内の膜厚分布はI−0°の場合に
は前記したように45−膜厚差も生じたが、θ−90°
の場合29Lθ■45″の場合1411.#−215゜
の場合S*程度で、基板内膜厚分布もθ−n、5@のと
き最も差異が少ない測定値が得られた。この実験は半導
体基板の加熱温度約900℃、爲ガス中に含有されるS
t H,ガス濃度2Lガス重量1°54−で得られた結
果であるが、その条件が変化しても前記のような傾向と
なることは明白であり、更に詳しく噴射方向を変えて実
験したところ、10〜30°間が前記の22.5°のと
きとは一〇同様の好結果がえられた。したがって、本発
明は噴射ロアの噴射方向を軸中心よりや2ずらせて角度
10〜30″の方向に向けて噴射させる構造とするもの
である。第4図は本発明にか−る成長装置の横断面図で
、ガス供給細管6の噴射ロアが反応管の軸中心よ022
.5・外れた方向に向いている構造を示しており、噴射
ガスはガス供給細管6の回転に伴って矢印の方向に噴象
出される。
Furthermore, when the film thickness distribution within one semiconductor substrate is I-0°, a 45-film thickness difference occurs as described above, but when θ-90°
In the case of 29Lθ ■ 1411 in the case of 45'', the measurement value with the smallest difference was obtained when the film thickness distribution within the substrate was θ-n, 5@. The heating temperature of the substrate is approximately 900°C, and the S contained in the heating gas is
The results were obtained at tH, gas concentration 2L, gas weight 1°54-, but it is clear that the above-mentioned tendency will occur even if the conditions change, and we conducted a more detailed experiment by changing the injection direction. However, when the angle between 10° and 30° was 22.5°, similar good results were obtained in 10. Therefore, the present invention has a structure in which the injection direction of the injection lower is shifted slightly from the axial center by 2 degrees, and the injection is directed at an angle of 10 to 30''. Fig. 4 shows a growth apparatus according to the present invention. In the cross-sectional view, the injection lower of the gas supply capillary 6 is located 022 from the axial center of the reaction tube.
.. 5. The structure is oriented in the opposite direction, and the injection gas is ejected in the direction of the arrow as the gas supply capillary 6 rotates.

以上は一実施例をこよる説明であるが、ガス供給細管6
の噴射口は片方ばかりに方向をずらさずに、左右何れに
もずれさせて設ければ一層好結果が得られることは確実
である。このように本発明は基板内の膜厚を均一にし、
又、同時に成長させる多数の基板の膜厚をも均一化する
気相成長装置で、当然不純物濃度分布も均一となり半導
体装置の歩留並びに品質向上に極めて貢献するものであ
る。
The above description is based on one embodiment, but the gas supply thin tube 6
It is certain that even better results will be obtained if the injection ports are arranged so that they are shifted to both the left and right sides, rather than being shifted to only one direction. In this way, the present invention makes the film thickness uniform within the substrate,
Furthermore, this is a vapor phase growth apparatus that uniformizes the film thickness of a large number of substrates grown at the same time, which naturally results in a uniform impurity concentration distribution, which greatly contributes to improving the yield and quality of semiconductor devices.

尚、本発明はサセプタを用いないヒータ加熱式の成長装
置にも同様の効果を与えるものであり、又エピタキシャ
ル成長層のみならず、燐けい酸ガラス膜、窒化シリコン
膜、酸化シリコン族、あるいは多結晶Siの成長にも適
用して有効なことは言うまでもない。
It should be noted that the present invention provides a similar effect to a heater-heated growth apparatus that does not use a susceptor, and is applicable not only to epitaxially grown layers but also to phosphosilicate glass films, silicon nitride films, silicon oxide groups, or polycrystalline growth layers. Needless to say, it is also effective when applied to the growth of Si.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は気相成長装置の側断面図、第2図は従来の気相
成長装置の横断面図、11!3図はガス噴射方向を換え
た実験データの図表、第4図は本発明にか−る気相成長
装置の横断面図である。図中、1は反応管、2はサセプ
タ、3は半導体基板、4は高周波コイル、5はガス吸引
口、6はガス供給細管、7はガス噴射口を示す。 第1図 第2図 klε音の槽力′自1(tt置 第4図 97−
Figure 1 is a side cross-sectional view of a vapor phase growth apparatus, Figure 2 is a cross-sectional view of a conventional vapor phase growth apparatus, Figures 11 and 3 are graphs of experimental data when the gas injection direction is changed, and Figure 4 is a diagram of the present invention. 1 is a cross-sectional view of a vapor phase growth apparatus according to the present invention. In the figure, 1 is a reaction tube, 2 is a susceptor, 3 is a semiconductor substrate, 4 is a high frequency coil, 5 is a gas suction port, 6 is a gas supply thin tube, and 7 is a gas injection port. Fig. 1 Fig. 2 klε sound tank force'self 1 (tt position Fig. 4 97-

Claims (1)

【特許請求の範囲】[Claims] 複数の基板を反応管の長手方向に垂直に並べて該基板面
上に被膜を成長する横型反応管を用いた気相成長装置に
ふいて、前記反応管内に該長手方向に設けられ、前記反
応管の周内壁に沿って管内を移動しながら、反応ガスを
供給するガス供給細管のガス噴射方向を、前記反応管の
軸中心から10”ないし30°外れた方向としたことを
特徴とする気相成長装置。
In a vapor phase growth apparatus using a horizontal reaction tube in which a plurality of substrates are arranged perpendicularly to the longitudinal direction of the reaction tube and a film is grown on the surface of the substrate, A gas phase characterized in that the gas injection direction of the gas supply thin tube that supplies the reaction gas while moving inside the tube along the circumferential inner wall of the reaction tube is deviated by 10" to 30 degrees from the axial center of the reaction tube. growth equipment.
JP12451381A 1981-08-08 1981-08-08 Vapor growth unit Pending JPS5825224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12451381A JPS5825224A (en) 1981-08-08 1981-08-08 Vapor growth unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12451381A JPS5825224A (en) 1981-08-08 1981-08-08 Vapor growth unit

Publications (1)

Publication Number Publication Date
JPS5825224A true JPS5825224A (en) 1983-02-15

Family

ID=14887342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12451381A Pending JPS5825224A (en) 1981-08-08 1981-08-08 Vapor growth unit

Country Status (1)

Country Link
JP (1) JPS5825224A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62173712A (en) * 1986-01-27 1987-07-30 Hitachi Ltd Vapor growth equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62173712A (en) * 1986-01-27 1987-07-30 Hitachi Ltd Vapor growth equipment
JPH0545054B2 (en) * 1986-01-27 1993-07-08 Hitachi Ltd

Similar Documents

Publication Publication Date Title
KR950012910B1 (en) Vapor phase growth apparatus
KR950001839B1 (en) Lateral cvd apparatus
JPH06318551A (en) Formation of thin film and its apparatus
JP2000012870A (en) Multistage cvd method for thin-film transistor
JPH0316208A (en) Apparatus for silicon epitaxial growth
JPH0786173A (en) Film deposition
JPS5825224A (en) Vapor growth unit
JPH0758030A (en) Apparatus for manufacturing semiconductor
JPS62263629A (en) Vapor growth device
JP2550024B2 (en) Low pressure CVD equipment
JP3057744B2 (en) Low pressure CVD equipment
JPH11240794A (en) Epitaxial growth apparatus
JPH01157519A (en) Vapor growth apparatus
JPS6240720A (en) Vapor phase epitaxial growing device
JP2762576B2 (en) Vapor phase growth equipment
JPH04163912A (en) Vapor growth equipment
JP2963310B2 (en) Chemical vapor deposition equipment
JPS6058613A (en) Epitaxial apparatus
JPH06338490A (en) Low pressure cvd device of triple tank structure
TW202324505A (en) Epitaxial growth method and equipment of wafer
JPS63300512A (en) Chemical vapor deposition apparatus
JPH05121337A (en) Method for gas reaction on solid surface
JPS5961120A (en) Vapor phase growing device
JPH05304093A (en) Vertical type low-pressure cvd device
JPH05243161A (en) Vapor growth device and method of growing epitaxial film