JPS62263629A - Vapor growth device - Google Patents

Vapor growth device

Info

Publication number
JPS62263629A
JPS62263629A JP10662886A JP10662886A JPS62263629A JP S62263629 A JPS62263629 A JP S62263629A JP 10662886 A JP10662886 A JP 10662886A JP 10662886 A JP10662886 A JP 10662886A JP S62263629 A JPS62263629 A JP S62263629A
Authority
JP
Japan
Prior art keywords
wafer
gas
vapor phase
gas injection
phase growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10662886A
Other languages
Japanese (ja)
Inventor
Noboru Akiyama
登 秋山
Hironori Inoue
洋典 井上
Takaya Suzuki
誉也 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10662886A priority Critical patent/JPS62263629A/en
Publication of JPS62263629A publication Critical patent/JPS62263629A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a uniform thin-film onto the surface of a wafer by shaping a raw gas supply nozzle in constitution in which the quantity of a raw gas fed to the peripheral section of the wafer is made more than that fed in the central direction of the wafer. CONSTITUTION:The quantity of a raw gas supplied to the peripheral section of a wafer is made more than the quantity of the raw-material gas caused to flow substantially in parallel with the surface of the wafer in the plural and fed in the central direction of the wafer in H2 gas containing an Si raw gas. A waste gas after used for epitaxial growth is evacuated to the outside of a bell jar 3 by an exhaust nozzle 7. Epitaxial layers having desired film thickness are formed on the surfaces of the wafers, the supply of the Si raw gas from a gas supply nozzle 6 is stopped, purging by H2 gas is conducted, heating by a high-frequency coil 5 is suspended, and the temperature of a susceptor 4 is lowered. Accoridngly, the film thickness of the epitaxial layers shaped onto the wafers having a large diameter can be equalized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体ウェハ表面に気相成長層を形成する装置
に係り、特に気相成長層を多数の半導体ウェハ表面上に
均一に形成するための気相成長装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an apparatus for forming a vapor phase growth layer on the surface of a semiconductor wafer, and particularly for forming a vapor phase growth layer uniformly on the surface of a large number of semiconductor wafers. The present invention relates to a vapor phase growth apparatus.

〔従来の技術〕[Conventional technology]

半導体製造プロセスにおいては、半導体ウェハ上に気相
化学反応を利用してSiO2膜、窒化膜(SiaN4)
、多結晶シリコン膜、単結晶シリコン膜などを形成する
CVD (Chemical VaporDeposi
tion)技術が広く適用されている。このうち、単結
晶シリコン膜形成は特にエピタキシャル成長と呼ばれる
In the semiconductor manufacturing process, SiO2 films and nitride films (SiaN4) are deposited on semiconductor wafers using vapor phase chemical reactions.
CVD (Chemical Vapor Deposit) to form polycrystalline silicon films, single crystal silicon films, etc.
tion) technology is widely applied. Among these, single crystal silicon film formation is particularly called epitaxial growth.

近年、プロセスコストの低減や製品歩留りの向上を目的
とした半導体ウェハの大口径化が進められており、現在
では直径125〜150mmのウェハが主流となりつつ
ある。
In recent years, the diameter of semiconductor wafers has been increasing in order to reduce process costs and improve product yields, and wafers with a diameter of 125 to 150 mm are now becoming mainstream.

一方、プロセスコストの低減のため、各種装置において
、一度に処理できるウェハの枚数、すなわちバッチ処理
を行う際のチャージ枚数の増大も進められている。
On the other hand, in order to reduce process costs, efforts are being made to increase the number of wafers that can be processed at one time in various apparatuses, that is, the number of wafers that can be charged when performing batch processing.

CVD装置においてもウェハの大口径化や大量処理化が
進められているが、一方、デバイスの高集積化や高速化
に伴い、形成する薄膜の高精度の均一性も合わせて要求
されている。
In CVD apparatuses as well, wafer diameters are becoming larger and wafers are being processed in larger quantities. On the other hand, as devices become more highly integrated and operate at higher speeds, highly accurate uniformity of the thin films formed is also required.

以上の要求に応えるCVD装置として特開昭59−59
878号公報に示されるような装置が提案されている。
JP-A-59-59 as a CVD device that meets the above requirements.
A device as shown in Japanese Patent No. 878 has been proposed.

この方法は、ウェハをその面を垂直として等間隔に並べ
反応容器内に収納し1反応容器外に設置し容器全体を実
質的に囲繞する加熱手段により前述ウェハを均一に加熱
し、反応ガスを導管により前述反応容器内に導きウェハ
上方よりノズルによって各ウェハそれぞれに均一に供給
し。
In this method, the wafers are arranged with their surfaces perpendicular and arranged at equal intervals and housed in a reaction vessel, and the wafers are uniformly heated by a heating means installed outside the reaction vessel and substantially surrounding the entire vessel, and the reaction gas is heated. It is introduced into the reaction vessel through a conduit and uniformly supplied to each wafer from above the wafer through a nozzle.

ウェハ下方に設けた排気口より廃ガスを排出する方法で
一度に大量のウェハに均一なCVD薄膜の形成を目的と
している。
The purpose of this method is to form a uniform CVD thin film on a large number of wafers at once by discharging waste gas from an exhaust port provided below the wafer.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来の気相成長装置においては、より高精度な膜厚
の均一性の要求に対しては、大口径ウェハの面内膜厚分
布の十分な均一性を得難い欠点がある。
The above-mentioned conventional vapor phase growth apparatus has the drawback that it is difficult to obtain sufficient uniformity in the in-plane film thickness distribution of a large diameter wafer in response to the demand for more precise film thickness uniformity.

本発明の目的は、大口径ウェハに対しても均一な膜厚分
布をもった薄膜を形成できる気相成長装置を提供するこ
とにあ′る。
An object of the present invention is to provide a vapor phase growth apparatus that can form a thin film with a uniform thickness distribution even on large diameter wafers.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、原料ガス供給ノズルからウェハ面に供給す
る原料ガス流の数を複数にし、かつウェハの中心方向へ
供給する原料ガス量よりもウェハの周辺部へ供給する原
料ガス量を多くすることにより達成される。
The above purpose is to increase the number of raw material gas flows supplied from the raw material gas supply nozzle to the wafer surface, and to increase the amount of raw material gas supplied to the periphery of the wafer than the amount of raw material gas supplied toward the center of the wafer. This is achieved by

具体的には、例えば、原料ガス供給ノズルに設けられた
複数のガス噴射孔又はガス噴射スリットのうち、ウェハ
周辺部に向って原料ガスを噴射するものの数を、ウェハ
中心方向に向って原料ガスを噴射するiれよりも多くし
たり、ウェハ周辺部に向って原料ガスを噴射するガス噴
孔の大きさ又はガス噴射スリットの幅を、ウェハ中心方
向に向って原料ガスを噴射するそれの大きさや幅よりも
大きくすることにより実現できる。
Specifically, for example, among the plurality of gas injection holes or gas injection slits provided in the source gas supply nozzle, the number of gas injection holes or gas injection slits that inject source gas toward the wafer periphery is increased by the number of gas injection holes or gas injection slits that inject source gas toward the wafer center. The size of the gas injection hole or the width of the gas injection slit that injects the source gas toward the wafer periphery may be increased to the size that injects the source gas toward the center of the wafer. This can be achieved by making it larger than the pod width.

また、個別にガス流量やガス噴射孔(又はスリット幅)
を調整された各々が独立の複数の原料ガス供給ノズルを
炉内の必要最適箇所に設けて同上趣旨の原料ガスの供給
がなされる様にしてもよい。
In addition, the gas flow rate and gas injection hole (or slit width) can be determined individually.
A plurality of independently adjusted raw material gas supply nozzles may be provided at optimal locations in the furnace to supply the raw material gas as described above.

〔作用〕[Effect]

ガス供給ノズルから常に原料ガスが供給されているウェ
ハ中心部に対して、ウェハの回転により間欠的な供給し
か受けていないウェハ周辺部に。
The center of the wafer is constantly supplied with raw material gas from the gas supply nozzle, while the periphery of the wafer receives only intermittent supply due to the rotation of the wafer.

中心部よりも多量の原料ガスを供給することにより、ウ
ェハ周辺部に原料ガスが間欠的に供給された際の成長量
を大きくできるので、中心部と周辺部の膜厚をほぼ同じ
にすることができ、均一な膜厚分布が得られる。
By supplying a larger amount of source gas than the center, the amount of growth can be increased when source gas is intermittently supplied to the periphery of the wafer, so the film thicknesses at the center and periphery can be made approximately the same. A uniform film thickness distribution can be obtained.

〔実施例〕〔Example〕

以下本発明をSiのエピタキシャル成長を例として第1
図、第2図に従って詳細に説明する。
The present invention will be explained below using Si epitaxial growth as an example.
This will be explained in detail with reference to FIGS.

直径150mの大口径ウェハ1を第1図に示すように、
ホルダ2に相互に隔離した積層状態で多段にチャージし
、ホルダ2を回転することによりウェハ1の中心のまわ
りに自転させる。ベルジャ3内をH2ガス雰囲気とした
後、サセプタ4を高周波コイル5により1100℃まで
昇温する。
As shown in FIG. 1, a large diameter wafer 1 with a diameter of 150 m is
The holder 2 is charged in multiple stages in a stacked state separated from each other, and the holder 2 is rotated to rotate around the center of the wafer 1. After creating an H2 gas atmosphere inside the bell jar 3, the temperature of the susceptor 4 is raised to 1100° C. by the high frequency coil 5.

ガス供給ノズル6より81原料ガスを含むH2ガスを供
給し、Siニピタキシャル層を各ウェハ1の表面上に形
成する。この時、Si原料ガスを含むH2ガスを、第2
図に示すようにウェハ面に実質上平行に複数個流し、か
つウェハの中jQ”方向へ供給する原料ガス量よりもウ
ェハ周辺部へ供給する原料ガス量を多くする。
H2 gas containing 81 source gases is supplied from the gas supply nozzle 6 to form a Si nipitaxial layer on the surface of each wafer 1. At this time, the H2 gas containing the Si raw material gas is
As shown in the figure, a plurality of raw material gases are flowed substantially parallel to the wafer surface, and the amount of raw material gas supplied to the periphery of the wafer is larger than the amount of raw material gas supplied to the inside of the wafer in the jQ'' direction.

エピタキシャル成長に使用された後の廃ガスは。The waste gas after being used for epitaxial growth.

排気ノズル7によりベンジャ3外に排気する。The exhaust nozzle 7 exhausts the air outside the venter 3.

所望の膜厚のエピタキシャル層がウェハ1の表面に形成
された後、ガス供給ノズル6からのSi原料ガスの供給
を止め、N2ガスによりパージングの後、高周波コイル
5による加熱を止め、サセプタ4を降温する。
After an epitaxial layer with a desired thickness is formed on the surface of the wafer 1, the supply of Si raw material gas from the gas supply nozzle 6 is stopped, and after purging with N2 gas, heating by the high frequency coil 5 is stopped, and the susceptor 4 is The temperature drops.

以上の装置によれば、大口径ウェハに形成するエピタキ
シャル層の膜厚を均一とすることができる。
According to the above apparatus, the thickness of the epitaxial layer formed on a large-diameter wafer can be made uniform.

次に具体的数値例について説明する。まず、ホルダ2に
直径125mmのウェハ1を2枚ずつ背中合せにし、相
互間に10mmの間隔をおいて25段、計50枚をセッ
トし、ベルジャ3内にチャージする。ウェハホルダ2を
25rpmで回転しながら、ベルジャ3内にガス供給ノ
ズル6よりNzガスを供給し、炉内の空気を置換する6 ガス供給ノズル6には、多段にVC層したウェハの各面
にガスを供給できるように、ガス噴射孔6oが5個一組
で上下方向に10mの間隔で、ウェハ積層数よりも1組
多く5個×26組、計130個設けられている。ガス噴
射孔60の大きさは。
Next, specific numerical examples will be explained. First, two wafers 1 each having a diameter of 125 mm are placed back to back on the holder 2, and a total of 50 wafers are set in 25 stages with an interval of 10 mm between them, and charged into the bell jar 3. While rotating the wafer holder 2 at 25 rpm, Nz gas is supplied into the bell jar 3 from the gas supply nozzle 6 to replace the air in the furnace. In order to supply the gas, gas injection holes 6o are provided in sets of five gas injection holes 6o at intervals of 10 m in the vertical direction, one more set than the number of stacked wafers, 5 x 26 sets, 130 in total. What is the size of the gas injection hole 60?

第2図に示すように、ウェハ中心方向に向うものは直径
2m、ウェハ中心を通る方向から約15゜(θl二15
°)だけずらした方向に向うものは直径5no、約30
’  (θz二30’)だけずらした方向に向うものは
直径7mである。
As shown in FIG.
The one facing the direction shifted by °) has a diameter of 5no, about 30mm.
The one facing in the direction shifted by (θz230') has a diameter of 7 m.

N2ガスを止め、N2ガスを30 Q /minの流量
で流しながら、高周波コイル5に通電し、サセプタ4を
1100℃に加熱する6 サセプタ4が所定温度に達したら、N2ガス中に0 、
5 mo 9%のHCQガス1混入し、ウェハ表面を1
分W’A、相エッチ1..てりl−;ングする。ごの時
、ガス供給、ノズル6か以のガス供給量がウェハ周辺部
はど多く汐れろので、均一なエツチングも合せて達成さ
れろ。
Stop the N2 gas, and while flowing N2 gas at a flow rate of 30 Q/min, energize the high-frequency coil 5 and heat the susceptor 4 to 1100°C. 6 When the susceptor 4 reaches a predetermined temperature, add zero,
5 mo 9% HCQ gas is mixed and the wafer surface is
Min W'A, phase etch 1. .. To start. At this time, the amount of gas supplied from the nozzle 6 and above should be reduced to a large extent around the wafer, so uniform etching must also be achieved.

HCQガスを止め、2分−のガスページを行また後、 
Hz中にS i CQ 4を1.5moQ%混入し。
After stopping the HCQ gas and running the gas page for 2 minutes,
1.5 moQ% of S i CQ 4 was mixed in Hz.

エピタキシャル成長を開始する。20分間の成長で10
μmのエピタキシャル層を形成した後。
Start epitaxial growth. 10 in 20 minutes of growth
After forming an epitaxial layer of μm.

5iCQaの混入を止め、Nzガスで2分間原料ガスの
パージをする。
Stop mixing 5iCQa, and purge the source gas with Nz gas for 2 minutes.

高周波コイル5の通電を徐々に下げ、約15分で400
℃までサセプタ4を降温した後電源を切る。15分間の
N2ガスの冷却の後、炉内をN2ガスで置換し、ベルジ
ャ3を開はウェハ1を取り出す。
Gradually reduce the energization of the high frequency coil 5 to 400 in about 15 minutes.
After cooling the susceptor 4 to ℃, the power is turned off. After cooling with N2 gas for 15 minutes, the inside of the furnace is replaced with N2 gas, the bell jar 3 is opened, and the wafer 1 is taken out.

以上の実験例によれば直径125mmのウェハに形成す
るエピタキシャル層の膜厚分布を均一にすることができ
る。
According to the above experimental example, the thickness distribution of the epitaxial layer formed on a wafer with a diameter of 125 mm can be made uniform.

本実施例ではシリコンのエピタキシャル成長を例とした
が、ウェハ中心を回転中心としウェハ面に平行にガスを
供給しながら薄膜を形成する他のCVD法にも適用可能
である。また、ウェハを多段積層とし実施例を説明した
が、1枚のウェハの場合にも適用できる。さらに、原料
ガスを噴射する噴射孔は孔ではなく垂直方向のスリット
であっても良いことはもちろんである。
In this embodiment, epitaxial growth of silicon is taken as an example, but it is also applicable to other CVD methods in which a thin film is formed by rotating around the wafer center and supplying gas parallel to the wafer surface. Furthermore, although the embodiment has been described with the wafers stacked in multiple stages, the present invention can also be applied to the case of a single wafer. Furthermore, it goes without saying that the injection hole through which the source gas is injected may be a vertical slit instead of a hole.

なお、ガス噴射方向のずれ角θ(θ=01゜θ2.・・
・・・・)及びガス噴射孔の大きさあるいはスリットの
幅は、ウェハ回転速度、ガス流量、噴射速度などによっ
て補正する必要があり、この補正   −量は実験的に
求められる。
Note that the deviation angle θ in the gas injection direction (θ=01°θ2...
...) and the size of the gas injection hole or the width of the slit must be corrected based on the wafer rotation speed, gas flow rate, injection speed, etc., and the amount of correction is determined experimentally.

また、別な実施例として、第3図〜第5図に示すように
個別のガス流量(または濃度)やガス噴射孔(またはス
リット幅)をy4整された各々が独その複数の原料ガス
供給ノズル6A〜6Eを炉内に設けてもよい。
In addition, as another example, as shown in FIGS. 3 to 5, each of the individual gas flow rates (or concentrations) and gas injection holes (or slit widths) arranged y4 can be used to supply a plurality of raw material gases. The nozzles 6A to 6E may be provided inside the furnace.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、気相成長層のウェハ内の膜厚のばらつ
きを、これまでの回転ウェハの中心方向に供給する場合
に比べ1/4以下とすることができ均一な薄膜をウェハ
表面に形成することが可能となる。
According to the present invention, the variation in the thickness of the vapor-phase grown layer within the wafer can be reduced to 1/4 or less compared to the conventional case of supplying the vapor-phase growth layer toward the center of the rotating wafer, and a uniform thin film can be formed on the wafer surface. It becomes possible to form.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明気相成長装置の一実施例を示す概略断面
図、第2図は本発明の詳細な説明する第1図の要部断面
図、第3図〜第5図は本発明の他の実施例を示す要部断
面図である。 1・・・ウェハ、2・・・ウェハホルダ、3・・・ベル
ジャ、4・・・サセプタ、5・・・加熱コイル、6・・
ガス供給ノ高1z 筋2図 帛3図 、、、’ 躬S図 らΔ 、P 躬4−日 1− 本斗限つニへ IC−−〜つ二へ日斡中LS A −一一〇−人供Y≧ノ人Iし E 1−t“作戦 ノンζご1し
FIG. 1 is a schematic sectional view showing one embodiment of the vapor phase growth apparatus of the present invention, FIG. 2 is a sectional view of the main part of FIG. 1 explaining the present invention in detail, and FIGS. FIG. 7 is a sectional view of a main part showing another embodiment of the invention. DESCRIPTION OF SYMBOLS 1... Wafer, 2... Wafer holder, 3... Belljar, 4... Susceptor, 5... Heating coil, 6...
Gas supply height 1z Line 2 Diagram 3,,,' Tsuji S diagram et al. Person Y≧No person IshiE 1-t”strategy non-ζgo1shi

Claims (1)

【特許請求の範囲】 1、ウェハをその中心を回転軸として回転し、該ウェハ
の外周方向からウェハ面に実質上平行に原料ガス供給ノ
ズルから原料ガスを供給し、該ウェハ表面に気相化学反
応により薄膜を形成する気相成長装置において、前記原
料ガス供給ノズルをウェハの中心方向へ供給する原料ガ
ス量よりもウェハの周辺部へ供給する原料ガス量が多く
なる構成としたことを特徴とする気相成長装置。 2、前記特許請求の範囲第1項において、原料ガス供給
ノズル内に配置され、そこから原料ガスを噴射する複数
のガス噴射孔又はガス噴射スリットの数うち、ウェハの
周辺部に向うものがウェハ中心方向に向うものよりも多
いことを特徴とする気相成長装置。 3、前記特許請求の範囲第1項において、原料ガス供給
ノズル内に配置され、そこから原料ガスを噴射する周辺
側のガス噴射孔の大きさ又はガス噴射スリットの幅が、
ウェハ中心方向に向つて原料ガスを噴射するガス噴出孔
の大きさ又はガス噴射スリットの幅よりも大きいことを
特徴とする気相成長装置。 4、前記特許請求の範囲第1項〜第3項において、ウェ
ハが多段積層状態でウェハホルダに収納されていること
を特徴とする気相成長装置。 5、前記特許請求の範囲第1、2項において、個別にガ
ス流量(または濃度)やガス噴射孔(またはスリット幅
)を調整された各々が独立の複数の原料ガス供給ノズル
が設けられていることを特徴とする気相成長装置。
[Claims] 1. The wafer is rotated around its center as a rotation axis, and a raw material gas is supplied from a raw material gas supply nozzle substantially parallel to the wafer surface from the outer circumferential direction of the wafer, and a vapor phase chemical is applied to the wafer surface. A vapor phase growth apparatus for forming a thin film by reaction, characterized in that the source gas supply nozzle is configured such that the amount of source gas supplied to the periphery of the wafer is greater than the amount of source gas supplied toward the center of the wafer. vapor phase growth equipment. 2. In claim 1, among the plurality of gas injection holes or gas injection slits arranged in the source gas supply nozzle and from which source gas is injected, those facing the periphery of the wafer are A vapor phase growth apparatus characterized by having more than one facing the center. 3. In claim 1, the size of the gas injection hole or the width of the gas injection slit on the peripheral side that is arranged in the raw material gas supply nozzle and from which the raw material gas is injected is
A vapor phase growth apparatus characterized in that the size of a gas injection hole or the width of a gas injection slit is larger than that of a gas injection hole that injects source gas toward the center of a wafer. 4. A vapor phase growth apparatus according to any one of claims 1 to 3, characterized in that the wafers are housed in a wafer holder in a multi-stage stacked state. 5. In claims 1 and 2, a plurality of independent source gas supply nozzles are provided, each of which has its gas flow rate (or concentration) and gas injection hole (or slit width) adjusted individually. A vapor phase growth apparatus characterized by:
JP10662886A 1986-05-12 1986-05-12 Vapor growth device Pending JPS62263629A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10662886A JPS62263629A (en) 1986-05-12 1986-05-12 Vapor growth device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10662886A JPS62263629A (en) 1986-05-12 1986-05-12 Vapor growth device

Publications (1)

Publication Number Publication Date
JPS62263629A true JPS62263629A (en) 1987-11-16

Family

ID=14438374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10662886A Pending JPS62263629A (en) 1986-05-12 1986-05-12 Vapor growth device

Country Status (1)

Country Link
JP (1) JPS62263629A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6481217A (en) * 1987-09-22 1989-03-27 Nec Corp Vapor growth apparatus
JPH01105948A (en) * 1987-10-19 1989-04-24 Fuji Photo Film Co Ltd Method for processing silver halide color photographic sensitive material
US5252133A (en) * 1990-12-19 1993-10-12 Kabushiki Kaisha Toshiba Vertically oriented CVD apparatus including gas inlet tube having gas injection holes
US7422635B2 (en) * 2003-08-28 2008-09-09 Micron Technology, Inc. Methods and apparatus for processing microfeature workpieces, e.g., for depositing materials on microfeature workpieces
US8361274B2 (en) * 2004-01-13 2013-01-29 Samsung Electronics Co., Ltd Etching apparatus and etching method
US9023436B2 (en) 2004-05-06 2015-05-05 Micron Technology, Inc. Methods for depositing material onto microfeature workpieces in reaction chambers and systems for depositing materials onto microfeature workpieces
WO2018008088A1 (en) * 2016-07-05 2018-01-11 株式会社日立国際電気 Substrate treatment apparatus, gas nozzle, and semiconductor device manufacturing method
KR20180005489A (en) * 2016-07-06 2018-01-16 우범제 Wafer storage container

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6481217A (en) * 1987-09-22 1989-03-27 Nec Corp Vapor growth apparatus
JPH01105948A (en) * 1987-10-19 1989-04-24 Fuji Photo Film Co Ltd Method for processing silver halide color photographic sensitive material
US5252133A (en) * 1990-12-19 1993-10-12 Kabushiki Kaisha Toshiba Vertically oriented CVD apparatus including gas inlet tube having gas injection holes
US7422635B2 (en) * 2003-08-28 2008-09-09 Micron Technology, Inc. Methods and apparatus for processing microfeature workpieces, e.g., for depositing materials on microfeature workpieces
US8361274B2 (en) * 2004-01-13 2013-01-29 Samsung Electronics Co., Ltd Etching apparatus and etching method
US9023436B2 (en) 2004-05-06 2015-05-05 Micron Technology, Inc. Methods for depositing material onto microfeature workpieces in reaction chambers and systems for depositing materials onto microfeature workpieces
WO2018008088A1 (en) * 2016-07-05 2018-01-11 株式会社日立国際電気 Substrate treatment apparatus, gas nozzle, and semiconductor device manufacturing method
JPWO2018008088A1 (en) * 2016-07-05 2019-01-31 株式会社Kokusai Electric Substrate processing apparatus, gas nozzle, and semiconductor device manufacturing method
KR20180005489A (en) * 2016-07-06 2018-01-16 우범제 Wafer storage container
TWI745393B (en) * 2016-07-06 2021-11-11 南韓商披考安泰拉有限公司 Wafer storage container

Similar Documents

Publication Publication Date Title
JPH021116A (en) Heat treatment apparatus
JPS62263629A (en) Vapor growth device
JP2019519933A (en) Method and apparatus for producing a coated semiconductor wafer
JPH05251359A (en) Vapor silicon epitaxial growth device
JPS62214614A (en) Reduced pressure cvd device
JPH10177961A (en) Vapor growth device and method
JPH1050615A (en) Single wafer processing gas-phase growth device
JPS6316617A (en) Vapor growth equipment
JPH0545054B2 (en)
JPH01157519A (en) Vapor growth apparatus
JP2013016562A (en) Vapor-phase growth method
JP7371510B2 (en) Film formation method and substrate manufacturing method
JP3057716B2 (en) Thin film formation method
JPS63202016A (en) Vapor growth apparatus
JPS6240720A (en) Vapor phase epitaxial growing device
JP4142450B2 (en) Equipment for epitaxial growth of materials by CVD
JPS63199412A (en) Vapor growth device
JPH08274033A (en) Vapor growth method and device
JP3613099B2 (en) Vapor growth equipment
JPS626682Y2 (en)
JPS62158867A (en) Cvd thin film forming device
JPS61251119A (en) Chemical vapor deposition method
JPS61224315A (en) Epitaxial growth method for semiconductor
JPH07142406A (en) Method and system for semiconductor vapor phase epitaxial growth
JP2000091237A (en) Manufacture of semiconductor wafer