JPH05251359A - Vapor silicon epitaxial growth device - Google Patents

Vapor silicon epitaxial growth device

Info

Publication number
JPH05251359A
JPH05251359A JP4263392A JP4263392A JPH05251359A JP H05251359 A JPH05251359 A JP H05251359A JP 4263392 A JP4263392 A JP 4263392A JP 4263392 A JP4263392 A JP 4263392A JP H05251359 A JPH05251359 A JP H05251359A
Authority
JP
Japan
Prior art keywords
gas
nozzle
tube
substrate holder
mixed gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4263392A
Other languages
Japanese (ja)
Other versions
JP2783041B2 (en
Inventor
Tatsuya Suzuki
達也 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4263392A priority Critical patent/JP2783041B2/en
Publication of JPH05251359A publication Critical patent/JPH05251359A/en
Application granted granted Critical
Publication of JP2783041B2 publication Critical patent/JP2783041B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To grow film of uniform thickness and resistivity on a plurality of single-crystal substrates which are housed in a substrate holder. CONSTITUTION:A nozzle pipe which supplies a mixed gas (including silane gas doping gas, etching gas, and carrier gas) and that supplying hydrogen gas are paired adjacently, these pairs of nozzle pipes 7a-7t are laid out with a specified spacing surrounding the perimeter of a substrate holder 4, a gas discharge hole 10 which releases the mixed gas and hydrogen gas is formed so that it is directed toward a single-crystal substrate 5 which is housed at the lower part of the substrate holder 4, and at the same time a gas exhaust hole 8 for exhausting the mixed gas and hydrogen gas is provided at an inner pipe 2 which opposes the gas discharge hole 10, thus making uniform gas concentration within the pipe constantly and a film which is grown on each single-crystal substrate 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は気相シリコンエピタキシ
ャル成長装置に関し、特に反応容器を縦に組み立てた縦
型気相シリコンエピタキシャル成長装置に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vapor phase silicon epitaxial growth apparatus, and more particularly to a vertical vapor phase silicon epitaxial growth apparatus in which a reaction vessel is vertically assembled.

【0002】[0002]

【従来の技術】図8は従来の一例を示す気相シリコンエ
ピタキシャル成長装置の断面図、図9は図8のノズル管
を示す部分側面図である。従来、この種の気相シリコン
エピタキシャル成長装置は、例えば、図8に示すよう
に、基板ホルダー4に単結晶基板5をある間隔で水平に
積み重ねるように保持する基板ホルダ4と、この基板ホ
ルダ4を収納する内管2及び外管1と、減圧下で単結晶
基板5を900〜1200℃程度に加熱する抵抗加熱炉
6と、その単結晶基板表面にジクロルシラン等のシラン
系ガス、ホスフィン等のドーピングガス、塩化水素ガス
等のエッチングガスアルゴンや窒素等のキャリアガスか
らなる混合ガスを供給するノズル管7と、このノズル管
7とは別に水素ガスのみを供給するノズル管(図示せ
ず)と、外管2及び内管を載置する架台を気密に貫通し
基板ホルダ4を回転する回転軸とを有していた。
2. Description of the Related Art FIG. 8 is a sectional view of a conventional vapor phase silicon epitaxial growth apparatus, and FIG. 9 is a partial side view showing the nozzle tube of FIG. Conventionally, this type of vapor phase silicon epitaxial growth apparatus, for example, as shown in FIG. 8, a substrate holder 4 that holds a single crystal substrate 5 horizontally on a substrate holder 4 at a certain interval, and the substrate holder 4 An inner tube 2 and an outer tube 1 to be housed, a resistance heating furnace 6 for heating the single crystal substrate 5 to about 900 to 1200 ° C. under reduced pressure, and a silane-based gas such as dichlorosilane, or phosphine doping on the surface of the single crystal substrate. Gas, an etching gas such as hydrogen chloride gas, a nozzle pipe 7 for supplying a mixed gas consisting of a carrier gas such as argon or nitrogen, and a nozzle pipe (not shown) for supplying only hydrogen gas separately from the nozzle pipe 7. It had a rotary shaft that airtightly penetrates the pedestal on which the outer tube 2 and the inner tube are placed and that rotates the substrate holder 4.

【0003】また、この気相シリコンエピタキシャル成
長装置は、反応容器は架台3により保持される2重構造
で外管1で真空を保持し、回転される単結晶基板5に複
数のノズル管7を用いて混合ガス、水素ガスを供給す
る。ノズル管7は、図9に示すように、長手方向に等間
隔でかつ直径の均しい複数のガス放出孔10を有してい
る。そして、供給された混合ガス、水素ガスは、矢印に
示すように、内管2の円筒面に設けられた多数のガス排
出孔8を通って排出される。
Further, in this vapor phase silicon epitaxial growth apparatus, the reaction container has a double structure in which it is held by a pedestal 3 and a vacuum is held by an outer tube 1, and a plurality of nozzle tubes 7 are used for a rotated single crystal substrate 5. Supply mixed gas and hydrogen gas. As shown in FIG. 9, the nozzle tube 7 has a plurality of gas discharge holes 10 that are equally spaced in the longitudinal direction and have a uniform diameter. Then, the supplied mixed gas and hydrogen gas are discharged through a large number of gas discharge holes 8 provided in the cylindrical surface of the inner pipe 2 as shown by the arrow.

【0004】図8は気相シリコンエピタキシャル成長装
置におけるガス供給系統を示す図である。また、この気
相シリコンエピタキシャル成長装置におけるガス供給系
は、図10に示すように、ジクロルシラン等のシラン系
ガス、ホスフィン等のドーピングガス、塩化水素ガス等
のエッチングガス、アルゴンや窒素等のキャリアガスは
全ての単結晶基板5に対しそれぞれ同一のマスフローコ
ントローラ12により流量制御され、また水素ガスも同
様に制御されていた。
FIG. 8 is a diagram showing a gas supply system in a vapor phase silicon epitaxial growth apparatus. In addition, as shown in FIG. 10, the gas supply system in this vapor phase silicon epitaxial growth apparatus uses a silane-based gas such as dichlorosilane, a doping gas such as phosphine, an etching gas such as hydrogen chloride gas, and a carrier gas such as argon or nitrogen. The flow rate of each single crystal substrate 5 was controlled by the same mass flow controller 12, and the hydrogen gas was controlled in the same manner.

【0005】[0005]

【発明が解決しようとする課題】上述した従来の気相シ
リコンエピタキシャル成長装置では、単結晶基板5に混
合ガス、水素ガスを供給するための複数のノズル管7に
は混合ガス或いは水素ガスが放出される方向が単結晶基
板面とほぼ平行になるようにガス放出孔10が形成され
ている。そのため反応容器をより高くしてより多数枚の
単結晶基板5を収納し、単結晶基板面にエピタキシャル
成長させようとすると、ノズル管7は必然的に長くな
り、混合ガス、水素ガスはノズル管7の上流側のガス放
出孔10から主に放出される。従って下流側では圧力損
失が起こりガス放出孔10から放出されるガス流量が上
流側よりも少なくなる。その結果、基板ホルダ4に収納
される複数枚の単結晶基板5の管ではノズル管7の上流
側に位置する単結晶基板5上のエピタキシャル膜厚の方
が下流側のそれよりも厚く、またエピタキシャル膜の抵
抗率は、上流側の単結晶基板5の方がドーピングガス流
量が大きくドーパント供給料が多いことから、上流側の
単結晶基板5の方が下流側のそれよりも小さくなるとい
う現象が起きる。従って単結晶基板5の成長枚数を増や
すと、単結晶基板5管の膜厚均一性、抵抗率均一性が著
しく悪化するという欠点がある。
In the conventional vapor phase silicon epitaxial growth apparatus described above, the mixed gas or the hydrogen gas is discharged to the plurality of nozzle tubes 7 for supplying the mixed gas and the hydrogen gas to the single crystal substrate 5. The gas release hole 10 is formed so that the direction of the discharge is substantially parallel to the surface of the single crystal substrate. Therefore, when the reaction container is made higher to accommodate a larger number of single crystal substrates 5 and epitaxial growth is performed on the surface of the single crystal substrates, the nozzle tube 7 becomes inevitably long, and the mixed gas and hydrogen gas are mixed in the nozzle tube 7 The gas is mainly discharged from the gas discharge hole 10 on the upstream side of. Therefore, pressure loss occurs on the downstream side, and the gas flow rate released from the gas release holes 10 becomes smaller than that on the upstream side. As a result, in the tubes of the single crystal substrates 5 accommodated in the substrate holder 4, the epitaxial film thickness on the single crystal substrate 5 located upstream of the nozzle tube 7 is thicker than that on the downstream side, and The resistivity of the epitaxial film is smaller in the upstream single crystal substrate 5 than in the downstream single crystal substrate 5 because the doping gas flow rate is larger and the dopant supply amount is larger in the upstream single crystal substrate 5. Occurs. Therefore, if the number of grown single crystal substrates 5 is increased, the film thickness uniformity and the resistivity uniformity of the single crystal substrate 5 tube are significantly deteriorated.

【0006】本発明の目的は、エピタキシャル膜を成長
させるべき単結晶基板枚数を増やしても全ての基板の膜
厚及び膜の抵抗率の均一性を図ることのできる気相シリ
コンエピタキシャル成長装置を提供することである。
An object of the present invention is to provide a vapor phase silicon epitaxial growth apparatus capable of achieving uniform film thickness and film resistivity of all substrates even if the number of single crystal substrates for growing epitaxial films is increased. That is.

【0007】[0007]

【課題を解決するための手段】本発明の気相シリコンエ
ピタキシャル成長装置は、複数枚の半導体基板を所定の
間隔で積み重ねて収納する基板ホルダと、この基板ホル
ダを収納し、シラン系ガス、ドーピングガス、エッチン
グガスおよびキャリアガスからなる混合ガスと水素ガス
とを導入する容器である内管および外管と、この外管の
外側に配置されるとともに前記内管の内部を加熱する加
熱部と、前記混合ガスおよび前記水素ガスを供給すると
ともに前記内管の内部に配置される第1および第2のノ
ズル管と、これら混合ガスおよび水素ガスの流量をそれ
ぞれ独立して制御するマスフロコントローラとを備える
気相シリコンエピタキシャル成長装置において、前記第
1のノズル管と前記第2のノズル管が互に隣接して対を
なし、これら複数対のノズル管が前記基板ホルダの周囲
を囲み所定の間隔をおいて並べ配置され、前記混合ガス
および前記水素ガスの放出する放出孔が前記基板ホルダ
の下部側に収納された前記半導体基板に向くように形成
されているとともに前記混合ガスおよび前期水素ガスを
排気する排気孔が前記放出孔に対向する前記内管に設け
られていることを特徴としている。
A vapor phase silicon epitaxial growth apparatus of the present invention is a substrate holder for accommodating a plurality of semiconductor substrates stacked at a predetermined interval and accommodating the substrate holder, and a silane-based gas and a doping gas. An inner tube and an outer tube which are containers for introducing a mixed gas composed of an etching gas and a carrier gas and hydrogen gas, a heating unit which is arranged outside the outer tube and heats the inside of the inner tube, First and second nozzle pipes for supplying the mixed gas and the hydrogen gas and arranged inside the inner pipe, and a mass flow controller for independently controlling the flow rates of the mixed gas and the hydrogen gas, respectively. In the vapor phase silicon epitaxial growth apparatus, the first nozzle tube and the second nozzle tube are adjacent to each other to form a pair, Nozzle tubes are arranged side by side around the substrate holder at a predetermined interval so that the emission holes from which the mixed gas and the hydrogen gas are emitted face the semiconductor substrate housed in the lower side of the substrate holder. And an exhaust hole for exhausting the mixed gas and the hydrogen gas in the previous period is provided in the inner pipe facing the discharge hole.

【0008】[0008]

【実施例】次に本発明について図面を参照して説明す
る。
The present invention will be described below with reference to the drawings.

【0009】図1は本発明の第1の実施例を示す気相シ
リコンエピタキシャル成長装置の断面図、図2は図1の
内管を含む部分を示す横断面図、図3は図1の気相シリ
コンエピタキシャル成長装置のガス供給系統を示す図、
図4(a)及び(b)は図1のノズル管のガス放出孔を
示す図である。この気相シリコンエピタキシャル成長装
置は、図1及び図2に示すように、ガス供給用のノズル
管7a〜7tを基板ホルダ4の周囲に並べて複数本のノ
ズル管7a〜7tを配置し、それぞれのノズル管7a〜
7tのガス排出孔8を基板ホルダ4の下側にあって内管
2の中心に向ってガス流束となるガス放出孔10を設
け、このガス放出孔と対向する内管2にガス排出孔8を
設けたことである。
FIG. 1 is a sectional view of a vapor phase silicon epitaxial growth apparatus showing a first embodiment of the present invention, FIG. 2 is a transverse sectional view showing a portion including an inner tube of FIG. 1, and FIG. 3 is a vapor phase of FIG. A diagram showing a gas supply system of a silicon epitaxial growth apparatus,
FIGS. 4A and 4B are views showing the gas discharge holes of the nozzle tube of FIG. In this vapor phase silicon epitaxial growth apparatus, as shown in FIGS. 1 and 2, a plurality of nozzle tubes 7a to 7t for gas supply are arranged around the substrate holder 4 to arrange a plurality of nozzle tubes 7a to 7t. Tube 7a ~
The gas discharge hole 8 of 7t is provided on the lower side of the substrate holder 4 toward the center of the inner pipe 2 to form a gas flux, and the gas discharge hole is formed in the inner pipe 2 facing the gas discharge hole. 8 is provided.

【0010】また、これらノズル管7a〜7tのそれぞ
れには、図3に示すように、複数枚のシリコン単結晶基
板5のそれぞれに対して独立に流量制御されたシラン系
ガス、エッチングガス、ドーピングガス、キャリアガス
からなる混合ガスを供給するノズル管7a,7c,7
e,7g,7i,7k,7m,7o,7q及び7sと、
これらとは独立に流量制御された水素ガスは各々のノズ
ル管7b,7d,7f,7h,7j,7l,7n,7p
及び7tとに分けられる。
As shown in FIG. 3, the nozzle tubes 7a to 7t each have a silane-based gas, an etching gas, and a doping gas whose flow rates are independently controlled for each of the plurality of silicon single crystal substrates 5. Nozzle pipes 7a, 7c, 7 for supplying a mixed gas consisting of gas and carrier gas
e, 7g, 7i, 7k, 7m, 7o, 7q and 7s,
Hydrogen gas whose flow rate is controlled independently of each of these nozzles is used for the nozzle tubes 7b, 7d, 7f, 7h, 7j, 7l, 7n, 7p.
And 7t.

【0011】さらにこれらのガス放出孔10と同一の高
さで設けられたガス排出孔8が内管にそれぞれのガス放
出孔10に対向して設けられている。すなわち、各々の
シリコン単結晶基板5に対する混合ガス供給用のノズル
管と水素ガス供給用のノズル管とでなるノズル管対は内
管2の壁面円周上に沿って適当な間隔で配置されること
である。例えばノズル管7aとノズル管7bとをノズル
管対と考える。そして各ノズル管の形状は図4(a)及
び(b)のように内管中心にガス流束が向かうようなガ
ス放出孔10を1個のみ有する構造になっている。ま
た、前述したようにガス放出孔10の高さはそのノズル
管対に対して割り当てれらた基板ホルダ4の直上のシリ
コン単結晶基板5の搭載位置に対応している。すなわち
シリコン単結晶基板5の各々に対して全てのノズル管対
のうちの一つが割り当てられている。一方、上側の単結
晶基板5に対応するガス放出孔及びガス排出孔はコンダ
クタンスを小さくして形成してある。
Further, gas discharge holes 8 provided at the same height as these gas discharge holes 10 are provided in the inner pipe so as to face the respective gas discharge holes 10. That is, a nozzle tube pair consisting of a nozzle tube for supplying a mixed gas and a nozzle tube for supplying a hydrogen gas to each silicon single crystal substrate 5 is arranged at appropriate intervals along the circumference of the wall surface of the inner tube 2. That is. For example, the nozzle tube 7a and the nozzle tube 7b are considered as a nozzle tube pair. The shape of each nozzle tube is such that it has only one gas discharge hole 10 such that the gas flux is directed to the center of the inner tube as shown in FIGS. 4 (a) and 4 (b). Further, as described above, the height of the gas discharge hole 10 corresponds to the mounting position of the silicon single crystal substrate 5 directly above the substrate holder 4 assigned to the nozzle tube pair. That is, one of all nozzle tube pairs is assigned to each of the silicon single crystal substrates 5. On the other hand, the gas discharge hole and the gas discharge hole corresponding to the upper single crystal substrate 5 are formed with a small conductance.

【0012】以上の構造によるガス流により濃度が均一
になり、全ての単結晶基板5上にほぼ同一流量の混合ガ
ス、水素ガスの供給が行われることが出来るため、単結
晶基板5間のエピタキシャル膜厚均一性、抵抗率均一性
は成長枚数が増えても、従来に比べ悪化しない。
Due to the gas flow having the above structure, the concentration becomes uniform, and the mixed gas and the hydrogen gas can be supplied on all the single crystal substrates 5 at substantially the same flow rates, so that the epitaxial growth between the single crystal substrates 5 is performed. The uniformity of film thickness and the uniformity of resistivity are not deteriorated as compared with the conventional case even if the number of grown sheets is increased.

【0013】次に、本実施例による気相シリコンエピタ
キシャル成長装置を使用してエピタキシャル膜の成長さ
せた例を説明する。まず、基板ホルダ4に直径150m
mのシリコン単結晶基板5を8mm間隔で10枚セット
し、1分間に5回転の回転数(5rpm)で基板ホルダ
4を回転させる。次に、反応管内温度を抵抗加熱炉6に
より1050℃にする。そして図2に示したノズル管対
の各々の片側からはシラン系ガスとしてジクロルシラン
を10SCCM、ドーピングガスとしてホスフィンを5
SCCM、エッチングガスとして塩化水素ガスを10S
CCM、キャリアガスとして窒素を1SLMで流し、そ
れとは別の側のノズル管からは水素ガスを1SLMで流
した。これらのガスは図3に示したように独立にマスフ
ローコントローラ12により流量制御される。このこと
により成長時のガス圧力9Torrの条件でシリコン単
結晶基板5上にエピタキシャル膜を膜厚3μm、抵抗率
1Ω・cmで成長した。
Next, an example of growing an epitaxial film using the vapor phase silicon epitaxial growth apparatus according to this embodiment will be described. First, the substrate holder 4 has a diameter of 150 m.
10 pieces of m silicon single crystal substrates 5 are set at intervals of 8 mm, and the substrate holder 4 is rotated at a rotation number of 5 rotations (5 rpm) per minute. Next, the temperature inside the reaction tube is set to 1050 ° C. by the resistance heating furnace 6. Then, from one side of each pair of nozzle tubes shown in FIG. 2, 10 SCCM of dichlorosilane as a silane-based gas and 5 phosphine as a doping gas.
SCCM, hydrogen chloride gas 10S as etching gas
Nitrogen was flowed at 1 SLM as CCM and carrier gas, and hydrogen gas was flowed at 1 SLM from a nozzle tube on the other side. The flow rates of these gases are independently controlled by the mass flow controller 12 as shown in FIG. As a result, an epitaxial film was grown on the silicon single crystal substrate 5 with a film thickness of 3 μm and a resistivity of 1 Ω · cm under a gas pressure of 9 Torr during growth.

【0014】図5及び図6は従来の装置と本発明の装置
によるエピタキシャル膜を比較するグラフである。上述
した実験を従来装置で行って比較してみたところ、従来
の装置では、図5及び図6に示すように、ノズル管の下
流側に行くほど膜厚が減少し、抵抗率が上昇する。従っ
て膜厚均一性は±20%、抵抗率均一性は±25%であ
るが、本発明の成長装置では各々、±3%、±5%と著
しく改善される。またシリコン単結晶基板面内、面間を
共に含んだシリコン単結晶基板5上のエピタキシャル膜
の膜厚均一性、抵抗率均一性でも±6%、10%であり
従来の±25%、±35%に比べやはり改善された。こ
れは従来の成長装置ではノズル管の上流側で原料ガス等
が主に放出され、下流側では原料ガス等の圧力損失が起
こり、そのためにノズル管の下流側程、ガス流量が減少
するが本発明の成長装置ではシリコン単結晶基板毎に別
のノズル管対を配置しているため、石英ノズル管内のポ
リシリコン蒸着以外には上述の圧力損失の原因がなくな
り、そのため放出ガス流量が全ての単結晶基板5につい
てほぼ同一になるためと考えられる。
FIGS. 5 and 6 are graphs comparing the epitaxial films of the conventional device and the device of the present invention. As a result of performing the above-mentioned experiment with a conventional device and comparing them, in the conventional device, as shown in FIGS. 5 and 6, the film thickness decreases and the resistivity increases toward the downstream side of the nozzle tube. Therefore, although the film thickness uniformity is ± 20% and the resistivity uniformity is ± 25%, the growth apparatus of the present invention significantly improves the results by ± 3% and ± 5%, respectively. Further, the film thickness uniformity and resistivity uniformity of the epitaxial film on the silicon single crystal substrate 5 including both in-plane and inter-plane of the silicon single crystal substrate are ± 6% and 10%, which are ± 25% and ± 35% of the conventional values. It was also improved compared to%. This is because in the conventional growth apparatus, the raw material gas, etc. is mainly discharged on the upstream side of the nozzle tube, and the pressure loss of the raw material gas, etc. occurs on the downstream side, which reduces the gas flow rate on the downstream side of the nozzle tube. In the growth apparatus of the invention, since another nozzle tube pair is arranged for each silicon single crystal substrate, the cause of the above-mentioned pressure loss is eliminated except for the polysilicon deposition in the quartz nozzle tube, and therefore the release gas flow rate is not limited to all. It is considered that the crystal substrates 5 are almost the same.

【0015】図7は本発明の第2の実施例におけるノズ
ル管の断面図である。この気相シリコンエピタキシャル
成長装置は、そのノズル管(全実施例のノズル管に対応
する)7a〜7tの内の混合ガスを放出するノズル管7
a,7c,7e,7g,7i,7k,7m,7o,7q
及び7sにおけるガス放出孔をガス流束が内管中心11
に対して左右に15°の方向に向かうように2個8a,
8bを開孔したことである。それ以外は第1の実施例と
同じである。
FIG. 7 is a sectional view of a nozzle tube according to the second embodiment of the present invention. This vapor phase silicon epitaxial growth apparatus has a nozzle tube 7 for discharging a mixed gas in the nozzle tubes (corresponding to the nozzle tubes of all the examples) 7a to 7t.
a, 7c, 7e, 7g, 7i, 7k, 7m, 7o, 7q
And the gas discharge holes at 7s, the gas flux is the inner tube center 11
To the left and right with respect to the direction of 15 °, two 8a,
8b was opened. The other points are the same as in the first embodiment.

【0016】このような構造にすることによりシリコン
単結晶基板上のエピタキシャル膜の基板面内均一性は第
1の実施例の場合と比較して、広範囲にガス流束が供給
されるために改善される。ちなみに前述と同様に実験し
たところ、その結果シリコン単結晶基板面内、面間を共
に含んだシリコン単結晶基板上のエピタキシャル膜の膜
厚均一性、抵抗率均一性は前述の各々第1の実施例では
±6%、±10%であたものが本実施例によれば±4
%、±7%と改善される。
With such a structure, the in-plane uniformity of the epitaxial film on the silicon single crystal substrate is improved because the gas flux is supplied in a wider range as compared with the case of the first embodiment. To be done. By the way, an experiment similar to the above was performed, and as a result, the film thickness uniformity and resistivity uniformity of the epitaxial film on the silicon single crystal substrate including both in-plane and inter-plane of the silicon single crystal substrate were found to be the same as those in the first embodiment. In the example, ± 6% and ± 10% are ± 4% according to the present embodiment.
%, ± 7%.

【0017】[0017]

【発明の効果】以上説明したように本発明の基相シリコ
ンエピタキシャル成長装置によれば、シリコン単結晶基
板のそれぞれに対して、混合ガスを放出するガス放出孔
を有するノズル管と水素ガスを放出するガス放出孔を有
するノズル管とノズル管対をシリコン単結晶基板の円周
に沿って適当な間隔で配置し、前記ガス放出孔を下部側
に配置される単結晶基板に位置するように設け、かつガ
ス排出孔は各々の前記ガス放出孔と同じ高さに位置する
とともに前記ガス放出孔に対向する位置の内管壁面上に
開孔し、内管内のガス濃度を均一にし、積み重ねられた
複数枚の単結晶基板の各々に対して各種ガスを独立に流
量制御することによって、積み重ねられた全てのシリコ
ン単結晶基板に対しほぼ同一流量のガス供給を行なうこ
とができ、その結果シリコン単結晶基板管のエピタキシ
ャル膜厚均一性、抵抗率均一性が著しく改善されるとい
う効果がある。
As described above, according to the basic phase silicon epitaxial growth apparatus of the present invention, the nozzle tube having the gas discharge hole for discharging the mixed gas and the hydrogen gas are discharged to each of the silicon single crystal substrates. Nozzle tubes having gas release holes and nozzle tube pairs are arranged at appropriate intervals along the circumference of the silicon single crystal substrate, and the gas release holes are provided so as to be located on the single crystal substrate arranged on the lower side, Further, the gas discharge holes are located at the same height as each of the gas discharge holes and are opened on the wall surface of the inner pipe at a position facing the gas discharge holes to make the gas concentration in the inner pipe uniform and to stack a plurality of gas discharge holes. By independently controlling the flow rates of various gases for each of the single crystal substrates, it is possible to supply gas at substantially the same flow rate to all the stacked silicon single crystal substrates. Epitaxial film thickness uniformity of the silicon single crystal substrate tube, resistivity uniformity there is an effect that is significantly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を示す気相シリコンエピ
タキシャル成長装置の断面図である。
FIG. 1 is a cross-sectional view of a vapor phase silicon epitaxial growth apparatus showing a first embodiment of the present invention.

【図2】図1の気相シリコンエピタキシャル成長装置に
おける内患を含める部分の横断面図である。
FIG. 2 is a transverse cross-sectional view of a portion including an internal disease in the vapor phase silicon epitaxial growth apparatus of FIG.

【図3】図1の気相シリコンエピタキシャル成長装置の
ガス供給系統を示す図である。
3 is a diagram showing a gas supply system of the vapor phase silicon epitaxial growth apparatus of FIG.

【図4】図1のノズル管のガス放出孔を示す図である。FIG. 4 is a view showing a gas discharge hole of the nozzle tube of FIG.

【図5】従来の装置と本発明の装置によるエピタキシャ
ル成長膜を比較するグラフである。
FIG. 5 is a graph comparing an epitaxially grown film with a conventional device and the device of the present invention.

【図6】従来の装置と本発明の装置によるエピタキシャ
ル成長膜を比較するグラフである。
FIG. 6 is a graph comparing an epitaxially grown film with a conventional device and the device of the present invention.

【図7】本発明の第2の実施例における気相シリコンエ
ピタキシャル成長装置のノズル管の断面を示す断面図で
ある。
FIG. 7 is a cross-sectional view showing a cross section of a nozzle tube of a vapor phase silicon epitaxial growth apparatus in a second embodiment of the present invention.

【図8】従来の一例における気相シリコンエピタキシャ
ル成長装置を示す断面図である。
FIG. 8 is a cross-sectional view showing a conventional vapor phase silicon epitaxial growth apparatus.

【図9】図8のノズル管を示す部分側面図である。9 is a partial side view showing the nozzle tube of FIG. 8. FIG.

【図10】図8の気相シリコンエピタキシャル成長装置
のガス供給系統を示す図である。
10 is a diagram showing a gas supply system of the vapor phase silicon epitaxial growth apparatus of FIG.

【符号の説明】[Explanation of symbols]

1 外管 2 内管 3 架台 4 基板ホルダ 5 単結晶基板 6 抵抗加熱炉 7,7a〜7t ノズル管 8,8a,8b ガス排出孔 9 排気孔 10 ガス放出孔 11 内管中心 12 マスフローコントローラ 1 outer tube 2 inner tube 3 pedestal 4 substrate holder 5 single crystal substrate 6 resistance heating furnace 7, 7a to 7t nozzle tube 8, 8a, 8b gas discharge hole 9 exhaust hole 10 gas discharge hole 11 inner tube center 12 mass flow controller

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 複数枚の半導体基板を所定の間隔で積み
重ねて収納する基板ホルダと、この基板ホルダを収納
し、シラン系ガス、ドーピングガス、エッチングガスお
よびキャリアガスからなる混合ガスと水素ガスとを導入
する容器である内管および外管と、この外管の外側に配
置されるとともに前記内管の内部を加熱する加熱部と、
前記混合ガスおよび前記水素ガスを供給するとともに前
記内管の内部に配置される第1および第2のノズル管
と、これら混合ガスおよび水素ガスの流量をそれぞれ独
立して制御するマスフロコントローラとを備える気相シ
リコンエピタキシャル成長装置において、前記第1のノ
ズル管と前記第2のノズル管が互に隣接して対をなし、
これら複数対のノズル管が前記基板ホルダの周囲を囲み
所定の間隔をおいて並べ配置され、前記混合ガスおよび
前記水素ガスの放出する放出孔が前記基板ホルダの下部
側に収納された前記半導体基板に向くように形成されて
いるとともに前記混合ガスおよび前記水素ガスを排気す
る排気孔が前記放出孔に対向する前記内管に設けられて
いることを特徴とする気相シリコンエピタキシャル成長
装置。
1. A substrate holder for accommodating a plurality of semiconductor substrates stacked at a predetermined interval and accommodating the same, and a mixed gas of a silane-based gas, a doping gas, an etching gas and a carrier gas and hydrogen gas for accommodating the substrate holder. An inner tube and an outer tube which are containers for introducing, and a heating section which is arranged outside the outer tube and heats the inside of the inner tube,
First and second nozzle pipes for supplying the mixed gas and the hydrogen gas and arranged inside the inner pipe, and a mass flow controller for independently controlling the flow rates of the mixed gas and the hydrogen gas, respectively. In the vapor phase silicon epitaxial growth apparatus provided with, the first nozzle tube and the second nozzle tube are adjacent to each other to form a pair,
The semiconductor substrate in which a plurality of pairs of these nozzle tubes surround the periphery of the substrate holder and are arranged side by side at a predetermined interval, and the emission holes through which the mixed gas and the hydrogen gas are emitted are accommodated on the lower side of the substrate holder. And an exhaust hole for exhausting the mixed gas and the hydrogen gas is provided in the inner tube facing the emission hole.
【請求項2】 前記混合ガスを放出する前記第1のノズ
ル管の放出孔は、このノズル管の中心と前記内管の中心
とを結ぶ線上を等角度の位置に開けられる2つの開口で
あることを特徴とする請求項1記載の気相シリコンエピ
タキシャル成長装置。
2. The discharge holes of the first nozzle tube for discharging the mixed gas are two openings that are opened at equiangular positions on a line connecting the center of the nozzle tube and the center of the inner tube. The vapor phase silicon epitaxial growth apparatus according to claim 1, wherein
JP4263392A 1992-02-28 1992-02-28 Vapor phase silicon epitaxial growth equipment Expired - Fee Related JP2783041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4263392A JP2783041B2 (en) 1992-02-28 1992-02-28 Vapor phase silicon epitaxial growth equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4263392A JP2783041B2 (en) 1992-02-28 1992-02-28 Vapor phase silicon epitaxial growth equipment

Publications (2)

Publication Number Publication Date
JPH05251359A true JPH05251359A (en) 1993-09-28
JP2783041B2 JP2783041B2 (en) 1998-08-06

Family

ID=12641421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4263392A Expired - Fee Related JP2783041B2 (en) 1992-02-28 1992-02-28 Vapor phase silicon epitaxial growth equipment

Country Status (1)

Country Link
JP (1) JP2783041B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004296659A (en) * 2003-03-26 2004-10-21 Hitachi Kokusai Electric Inc Substrate treating apparatus and manufacturing method of semiconductor device
JP4620288B2 (en) * 2001-06-13 2011-01-26 東京エレクトロン株式会社 Batch heat treatment equipment
KR101016065B1 (en) * 2009-01-30 2011-02-23 주식회사 테라세미콘 Batch Type Heat Treatment Apparatus
WO2012120991A1 (en) * 2011-03-08 2012-09-13 株式会社日立国際電気 Substrate processing apparatus and method for manufacturing substrate
JP2015503227A (en) * 2011-11-17 2015-01-29 ユ−ジーン テクノロジー カンパニー.リミテッド Substrate processing apparatus for supplying reaction gas having phase difference
JP2015503247A (en) * 2012-01-04 2015-01-29 ユ−ジーン テクノロジー カンパニー.リミテッド Substrate processing apparatus including a processing unit
CN117089924A (en) * 2023-10-17 2023-11-21 凯德芯贝(沈阳)石英有限公司 Quartz nozzle for semiconductor vapor phase epitaxy and preparation and use methods thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4620288B2 (en) * 2001-06-13 2011-01-26 東京エレクトロン株式会社 Batch heat treatment equipment
JP2004296659A (en) * 2003-03-26 2004-10-21 Hitachi Kokusai Electric Inc Substrate treating apparatus and manufacturing method of semiconductor device
KR101016065B1 (en) * 2009-01-30 2011-02-23 주식회사 테라세미콘 Batch Type Heat Treatment Apparatus
WO2012120991A1 (en) * 2011-03-08 2012-09-13 株式会社日立国際電気 Substrate processing apparatus and method for manufacturing substrate
JP2015503227A (en) * 2011-11-17 2015-01-29 ユ−ジーン テクノロジー カンパニー.リミテッド Substrate processing apparatus for supplying reaction gas having phase difference
JP2015503247A (en) * 2012-01-04 2015-01-29 ユ−ジーン テクノロジー カンパニー.リミテッド Substrate processing apparatus including a processing unit
CN117089924A (en) * 2023-10-17 2023-11-21 凯德芯贝(沈阳)石英有限公司 Quartz nozzle for semiconductor vapor phase epitaxy and preparation and use methods thereof
CN117089924B (en) * 2023-10-17 2023-12-19 凯德芯贝(沈阳)石英有限公司 Quartz nozzle for semiconductor vapor phase epitaxy and preparation and use methods thereof

Also Published As

Publication number Publication date
JP2783041B2 (en) 1998-08-06

Similar Documents

Publication Publication Date Title
JP3696632B2 (en) Gas inlet for wafer processing chamber
TW544775B (en) Chemical vapor deposition apparatus and chemical vapor deposition method
US4082865A (en) Method for chemical vapor deposition
JP3121131B2 (en) Low temperature and high pressure silicon deposition method
US20010047764A1 (en) Method and apparatus for improved chemical vapor deposition processes using tunable temperature controlled gas injectors
JP2668687B2 (en) CVD device
JPH05251359A (en) Vapor silicon epitaxial growth device
JP2001250783A (en) Vapor growth device and method
JPH05226263A (en) Vapor phase silicon epitaxial growth device
JPS62263629A (en) Vapor growth device
JPH0658880B2 (en) Vapor phase epitaxial growth system
JP3912293B2 (en) Silicon carbide film deposition system
JPH01157519A (en) Vapor growth apparatus
JPS6168393A (en) Hot wall type epitaxial growth device
JPH04163912A (en) Vapor growth equipment
JPS62214614A (en) Reduced pressure cvd device
WO1999036588A1 (en) Method and apparatus for improved chemical vapor deposition processes using tunable temperature controlled gas injectors
JP2778321B2 (en) Vapor phase silicon epitaxial growth equipment
JPS6369794A (en) Vapor phase epitaxy device
JP2000091237A (en) Manufacture of semiconductor wafer
JP2658213B2 (en) Vapor phase epitaxial growth method
JPH01257321A (en) Vapor growth apparatus
JPS6126217A (en) Vapor growth apparatus
JPH0319324A (en) Vapor growth device
JP3231312B2 (en) Vapor phase growth equipment

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980421

LAPS Cancellation because of no payment of annual fees