WO2005015040A1 - シャフト及びハブの動力伝達機構 - Google Patents

シャフト及びハブの動力伝達機構 Download PDF

Info

Publication number
WO2005015040A1
WO2005015040A1 PCT/JP2004/011079 JP2004011079W WO2005015040A1 WO 2005015040 A1 WO2005015040 A1 WO 2005015040A1 JP 2004011079 W JP2004011079 W JP 2004011079W WO 2005015040 A1 WO2005015040 A1 WO 2005015040A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
hub
tooth
point
tooth portion
Prior art date
Application number
PCT/JP2004/011079
Other languages
English (en)
French (fr)
Inventor
Masahiko Igarashi
Takeshi Mochizuki
Masanori Kosugi
Original Assignee
Honda Motor Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003288918A external-priority patent/JP4340494B2/ja
Priority claimed from JP2004176647A external-priority patent/JP4273044B2/ja
Priority claimed from JP2004176656A external-priority patent/JP3636713B2/ja
Application filed by Honda Motor Co., Ltd. filed Critical Honda Motor Co., Ltd.
Priority to US10/567,134 priority Critical patent/US7972078B2/en
Priority to EP04748211.2A priority patent/EP1653099B1/en
Publication of WO2005015040A1 publication Critical patent/WO2005015040A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D1/00Couplings for rigidly connecting two coaxial shafts or other movable machine elements
    • F16D1/10Quick-acting couplings in which the parts are connected by simply bringing them together axially
    • F16D1/101Quick-acting couplings in which the parts are connected by simply bringing them together axially without axial retaining means rotating with the coupling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D1/00Couplings for rigidly connecting two coaxial shafts or other movable machine elements
    • F16D1/10Quick-acting couplings in which the parts are connected by simply bringing them together axially
    • F16D2001/103Quick-acting couplings in which the parts are connected by simply bringing them together axially the torque is transmitted via splined connections
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T403/00Joints and connections
    • Y10T403/70Interfitted members
    • Y10T403/7026Longitudinally splined or fluted rod
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T403/00Joints and connections
    • Y10T403/70Interfitted members
    • Y10T403/7026Longitudinally splined or fluted rod
    • Y10T403/7035Specific angle or shape of rib, key, groove, or shoulder

Definitions

  • the present invention relates to a power transmission mechanism of a shaft and a hub capable of smoothly transmitting a rotational torque between two members consisting of a shaft and a hub.
  • a set of constant velocity joints is used via a shaft to transmit driving force from an engine to an axle.
  • the constant velocity joint is for transmitting torque between the inner member of the water pump through the torque transfer member disposed between the outer member and the inner member, and is used for the shaft tooth portion formed on the shaft and the hub. It includes a shaft and hub unit having a tooth assembly in engagement with a formed hub tooth.
  • crowning is applied to the tooth surface portion thereof.
  • the technical idea to be provided is disclosed.
  • a shaft tooth having a constant outer diameter along the longitudinal direction is disclosed.
  • a hub tooth portion having a constant base diameter in the longitudinal direction, and the base diameter (dwl) of the shaft tooth portion and the inner diameter (Dnl) of the hub tooth portion at the first portion on the shaft end side It is disclosed that the base diameter (dw2) of the shaft teeth in the second part close to the shaft shank and the inner diameter (Dn2) of the hub teeth are set large (dwl ⁇ dw2, Dnl ⁇ Dn2) ).
  • JP-A-2000-97244 relates to spline connection between the shaft member and the outer peripheral member.
  • the valleys of the teeth on the shaft member side are enlarged to form an enlarged diameter region, and the teeth on the shaft member side and the outer peripheral member side are formed in the enlarged diameter region. It is disclosed to provide a tooth fitting portion.
  • the present applicant sets the position of the crown top of the spline shaft on which the spline is formed at the minimum position when rotational torque is applied to the fitting portion between the spline shaft and the constant velocity joint. Accordingly, it has been proposed to suppress concentration of stress on a predetermined portion and simplify the overall configuration of the device (see Japanese Patent Application Laid-Open No. 2001-287122).
  • a general object of the present invention is to provide a power transmission mechanism of a shaft and a hub capable of further improving static strength and fatigue strength by suppressing stress concentration on a predetermined site. is there.
  • the valley portion of the shaft tooth portion which is a portion to which stress is concentrated.
  • the change point of the outer diameter of the valley portion of the shaft tooth portion and the change point of the inner diameter of the peak portion of the hub tooth portion are offset by a predetermined distance, Stress concentration is relaxed by dispersing the stress to one change point and the other change point. As a result, since the concentration of stress can be relaxed and dispersed, the static strength and the fatigue strength with respect to the engagement portion between the shaft teeth and the hub teeth can be improved.
  • the main load transfer area be different according to the degree of the load applied to the joint portion between the shaft tooth portion and the hub tooth portion.
  • the degree of the load is classified into low load, medium load and high load
  • the main load transfer areas of the low load, medium load and high load are crown crown top to shaft shank. The stress concentration on a specific site is alleviated by setting the direction to be gradually separated toward the side.
  • FIG. 1 is a partially cutaway perspective view of a shaft and hub unit to which a power transmission mechanism according to a first embodiment of the present invention is applied.
  • FIG. 2A shows a no-load state in a state in which the shaft teeth and the hub teeth are engaged
  • FIG. 2B shows a state in which rotational torque is applied in the arrow Y direction from the no-load state.
  • FIG. 6 is a partial enlarged cross-sectional view showing each of
  • FIG. 3 is a partially enlarged longitudinal sectional view along the axial direction of the shaft in a state in which the valleys of the shaft teeth of FIG. 1 and the ridges of the hub teeth are engaged.
  • FIG. 4 is a partially enlarged longitudinal sectional view showing a state in which the inclination angle ⁇ of the first step portion in the shaft of FIG. 3 is formed gently.
  • FIG. 5 is a partially enlarged longitudinal sectional view showing a state in which the outer diameter of the peak portion of the shaft tooth portion in FIG. 4 is changed toward the shaft shank side.
  • FIG. 6 is an explanatory view showing the relationship between the inclination angle ⁇ of the first step portion formed in the shaft tooth portion and stress relaxation and productivity.
  • FIG. 7 shows a state in which the first step portion and the second step portion are formed on the shaft tooth portion and the hub tooth portion, and the state in which the first step portion and the second step portion are formed.
  • FIG. 10 is a characteristic curve diagram showing the relationship between the stress value generated on the shaft and the position at which the stress was measured.
  • FIG. 8 is a characteristic curve diagram showing the relationship between the stress value generated on the shaft and the position at which the stress is measured in a state in which the inclination angle ⁇ of the first step portion is made more gentle.
  • Fig. 9 shows the stress value and the stress generated on the shaft in the state where the change point of the diameter of the shaft tooth and the change point of the diameter of the hub tooth are offset and not offset. It is a characteristic curve figure showing a relation with a position.
  • FIG. 10 is a characteristic curve diagram showing the relationship between the stress value generated on the shaft corresponding to the input load when rotational torque is applied and the position at which the stress is measured.
  • FIG. 11 is a characteristic curve diagram showing the relationship between the position to which the load is applied and the classification of the load.
  • Fig. 12 is a partially enlarged longitudinal sectional view taken along the ridge-ridge line of Fig. 3.
  • FIG. 13 is a partially enlarged longitudinal sectional view taken along line XIII-XIII in FIG.
  • FIG. 14 is a partially enlarged longitudinal sectional view taken along line XIV-XIV of FIG.
  • FIG. 15 is a partially cutaway perspective view of a shaft and hub unit to which a power transmission mechanism according to a second embodiment of the present invention is applied.
  • FIG. 16 is a partially enlarged longitudinal sectional view along the axial direction of the shaft in a state where the valleys of the shaft teeth of FIG. 15 and the peaks of the hub teeth are engaged.
  • FIG. 17 shows that the point P1 which is the starting point of the circular arc formed in the shaft teeth and the point P2 which is the starting point of the step formed in the hub teeth coincide on the vertical line without being offset.
  • FIG. 6 is a partially enlarged vertical sectional view showing the state of FIG.
  • FIG. 18 shows stress values generated in the shaft in the state where no stepped portion is formed on the hub tooth portion and in the state where an arc portion is formed on the shaft tooth portion and the stepped portion is formed on the hub tooth portion. It is a characteristic curve figure showing the relation between and the position which measured the stress.
  • Fig. 19 shows the stress value generated on the shaft and the position where the stress was measured when the point of change of the diameter of the shaft teeth and the point of change of the diameter of the hub teeth were offset and not offset It is a characteristic curve figure showing the relation of.
  • FIG. 20 is a partially enlarged longitudinal sectional view taken along line XX-XX in FIG.
  • FIG. 21 is a partially enlarged longitudinal sectional view taken along line XXI-XXI of FIG.
  • FIG. 22 is a partially enlarged longitudinal sectional view taken along the line XXII-XXII in FIG.
  • FIG. 23 is a partially cutaway perspective view of a shaft and hub unit to which a power transmission mechanism according to a third embodiment of the present invention is applied.
  • FIG. 24 is a partially enlarged longitudinal sectional view along the axial direction of the shaft in a state where the valleys of the shaft teeth of FIG. 23 and the peaks of the hub teeth are engaged.
  • FIG. 25 is a partially enlarged longitudinal sectional view showing a state in which the outer diameter of the peak portion of the shaft tooth portion in FIG. 24 is changed toward the shaft shank side.
  • FIG. 26 is an explanatory view showing the relationship between the rising angle ⁇ of the tapered portion formed on the shaft tooth portion and the stress relaxation and production technology.
  • FIG. 6 is a characteristic curve diagram showing the relationship between the stress value generated on the shaft and the position at which the stress is measured in the state where the taper portion and the step portion are formed without the offset.
  • Figure 28 shows the stress values generated on the shaft in the state where the taper part and the step part are not formed on the shaft tooth part and the hub tooth part, and the starting point of the taper part and the step part is offset. Is a characteristic curve diagram showing the relationship between the stress and the position where the stress was measured
  • Fig. 29 shows the stress value generated on the shaft with and without the offset of the change point of the diameter of the shaft tooth part and the change point of the diameter of the hub tooth part and the position where the stress was measured It is a characteristic curve figure showing the relation of.
  • FIG. 30 is a partially enlarged longitudinal sectional view taken along line XXX-XXX in FIG.
  • FIG. 31 is a partially enlarged vertical sectional view taken along the line XXXI-XXXI in FIG.
  • FIG. 32 is a partially enlarged longitudinal sectional view taken along line XXXII-XXXII in FIG.
  • FIG. 33 is a partially cutaway perspective view of a shaft and hub unit to which a power transmission mechanism according to a fourth embodiment of the present invention is applied.
  • FIG. 34 is a partially enlarged longitudinal sectional view along the axial direction of the shaft in a state where the valleys of the shaft teeth of FIG. 33 and the ridges of the hub teeth are engaged.
  • FIG. 35 is a partially enlarged vertical sectional view showing a state in which a first taper portion is formed at which the step portion of the shaft shown in FIG. 34 has a gentle inclination angle ⁇ .
  • FIG. 36 is a partially enlarged longitudinal sectional view along an axial direction of a shaft in a state where a hub having a second tapered portion is engaged with a hub tooth portion with respect to the shaft of FIG.
  • FIG. 37 is a partially enlarged longitudinal cross-sectional view along the axial direction of the shaft in the state where a hub having an arc having a predetermined radius of curvature is engaged with the hub teeth of the shaft of FIG. is there.
  • FIG. 38 is a partially enlarged vertical sectional view showing a state in which the outer diameter of the peak portion of the shaft tooth portion in FIG. 35 is changed toward the shaft shank side.
  • FIG. 39 is an explanatory view showing the relationship between the inclination angle ⁇ ⁇ of the step portion formed on the shaft tooth portion and the stress relaxation and production technology.
  • FIG. 40 shows a relationship between a state in which no stepped portion is formed on the shaft tooth portion and a stress value generated in the hub in the state where the stepped portion is formed and the position where the stress was measured. It is a characteristic curve figure.
  • FIG. 41 is a characteristic curve diagram showing the relationship between the stress value generated on the shaft and the position at which the stress was measured, in a state in which the inclination angle ⁇ of the step portion is made more gentle.
  • FIG. 42 is a partially enlarged longitudinal sectional view taken along the line XLII-XLII in FIG.
  • FIG. 43 is a partially enlarged longitudinal sectional view taken along the line XLIII-XLIII in FIG.
  • FIG. 44 is a partially enlarged longitudinal sectional view taken along line XLIV-XLIV of FIG.
  • FIG. 45 is an enlarged vertical cross-sectional view showing a modified example in which the cross-sectional shape of the spline teeth in the shaft tooth portion and the hub tooth portion is an involute tooth shape.
  • FIG. 46 is a partially omitted perspective view showing a state in which spline teeth of a shaft tooth portion are roll-formed by a rolling rack.
  • Reference numeral 10 in FIG. 1 denotes a shaft and hub unit to which a power transmission mechanism according to a first embodiment of the present invention is applied.
  • the unit 10 constitutes a part of a constant velocity joint (not shown)
  • the shaft 12 functions as a driving force transmission shaft
  • the hub 14 is housed in the opening of a feeder cup (not shown) and is a ball (not shown). Functions as an inner ring having a guide groove 15 engaged therewith.
  • fitting portions 18 fitted to the shaft holes 16 of the hub 14 are formed. However, in FIG. 1, only one end of the shaft 12 is shown, and the other end is not shown.
  • the fitting portion 18 has a shaft tooth portion 22 having a predetermined tooth length along the axis of the shaft 12 and having a plurality of spline teeth 20 formed along the circumferential direction.
  • the shaft teeth 22 are configured such that convex ridges 22 a and concave valleys 22 b are alternately and continuously formed in the circumferential direction.
  • a shaft shank 24 is provided at a position close to the shaft tooth portion 22 on the center side of the shaft 12, and the end portion side of the shaft 12 has a retaining function of the hub 14.
  • a non-illustrated retaining ring is attached via an annular groove (not shown).
  • the ridges 22 a of the shaft teeth 22 are: As shown in FIG. 2A, the crowning is formed so that the tooth thickness continuously decreases from the crowning top P0 where the tooth thickness is maximum toward both ends of the peak 22a.
  • both sides have a crowned shape curved equally.
  • a hub tooth portion 28 having a plurality of linear spline teeth 26 fitted in the fitting portion 18 of the shaft 12 is formed on the inner peripheral surface of the shaft hole 16 of the hub 14.
  • the hub teeth 28 are formed by alternately forming convex ridges 28 a and concave valleys 28 b (see FIGS. 9 and 11) along the circumferential direction, and the ridges of the hub teeth 28 are formed.
  • 28a has substantially the same tooth thickness and is formed so as to be substantially parallel to the axis of the shaft 12.
  • FIG. 3 is a partially enlarged longitudinal sectional view along the axial direction of the shaft 12 in a state where the valleys 22 b of the shaft teeth 22 and the ridges 28 a of the hub teeth 28 are engaged.
  • P0 indicates the position corresponding to the crown top.
  • a point P 1 moved horizontally by a predetermined distance L 1 from the position corresponding to the crowning top P 0 of the valley 22 b (valley diameter ⁇ A 1) of the shaft tooth 22 (see dashed line) (Change point) is set, the valley 22b is bulged from the point P1 toward the hub tooth 28 side, and the first step 30 obtained by changing the valley diameter ⁇ 1 to the valley diameter ⁇ 2 is changed. Further, it is formed to be continuous with the shaft shank 24 by extending the valley diameter ⁇ 2 by a predetermined distance L 2.
  • the first step portion 30 on the shaft tooth portion 22 side may be formed, for example, by an inclined surface or an arc-shaped curved surface or a composite surface having a predetermined curvature radius.
  • the outer diameter of the ridge 22a of the shaft tooth 22 is, as shown in FIGS. 3 and 4, one which does not change constantly along the axial direction, and as shown in FIG. Both include ones where the outer diameter of 22a gradually changes from the vicinity of point P1 to the shaft shank 24 side (the tooth length decreases).
  • the transfer function of the rotating torque may not be reduced.
  • the symbol H in FIG. 5 indicates a horizontal line for comparison with the change (drop) in the outer diameter of the peak 22a.
  • the shaft shank 24 and the point P 1 of the shaft tooth 22 are A point P2 is set at a position offset by a predetermined distance L4 along the horizontal direction on the opposite side, and a second step 32 is formed by changing the peak diameter ⁇ A3 from the point P2 to a peak diameter ⁇ A4. Further, the peak diameter ⁇ 4 is extended by a predetermined distance L3.
  • the second step portion 32 of the hub tooth portion 28 is formed, for example, by an inclined surface or an arc-like curved surface or composite surface having a predetermined curvature radius, and the shape of the first step portion 30 It may be in a shape different from the shape.
  • the inclination angle of the second step portion 32 is arbitrarily set corresponding to the inclination angle of the first step portion 30.
  • the shape on the hub tooth portion 28 side is not limited to the shape of the second stepped portion 32. For example, it may be a shape including an R shape having a predetermined curvature radius, a tapered shape, and the like.
  • the inner diameter of the valley portion 28b of the hub tooth portion 28 is assumed to be constant and not change along the axial direction.
  • the valley diameters ⁇ 1 and ⁇ 2 respectively indicate the distance from the axial center of the shaft 12 to the bottom surface of the valley portion 22 b of the shaft tooth portion 22, and the ridge diameter ⁇ A 3,
  • the ⁇ 4 indicates the axial center force of the shaft 12 and the distance to the tip of the peak 28 a of the hub tooth 28.
  • L2 on the shaft tooth portion 22 side may be set larger than L1 (LI ⁇ L2).
  • the main load transfer areas such as low load, medium load and high load may be different according to the degree of load applied to the joint between shaft tooth 22 and hub tooth 28. It is for setting.
  • the point P 1 which is the starting point (change point [ ⁇ ]) of the first step portion 30 of the shaft tooth portion 22 and the second step portion 32 of the hub tooth portion 28. It is set at a position where it is offset in a substantially horizontal direction by a predetermined separation distance L4 from the point P2 which is the starting point (change point) of the rising.
  • the concentration of stress can be relaxed and dispersed, the static strength and the fatigue strength with respect to the engagement portion between the shaft teeth 22 and the hub teeth 28 can be reduced. It can be improved.
  • the points P1 and P2 may be set to coincide with each other on a lead straight line which can not offset the points P1 and P2.
  • the first step portion 30 of the shaft tooth portion 22 is cooperatively operated by the first step portion 30 formed on the shaft tooth portion 22 side and the second step portion 32 formed on the hub tooth portion 28 side.
  • the stress applied to the load can be dispersed to ease the stress concentration.
  • the cross-sectional area of a right triangle connecting point P1, point P3 and point P4 is increased, and a line segment P14 connecting point P1 and point P4 to point P1 and point P3 is obtained.
  • the stress concentration is further alleviated by the tapered portion 34 formed in the first step portion 30. Be done.
  • the relationship between the inclination angle ⁇ of the first step portion 30 and the stress relaxation and production technology is shown in FIG. As understood from FIG. 6, setting the inclination angle ⁇ to 5 degrees and 45 degrees is good (see (marks), and setting the inclination angle 10 to 10 degrees and 35 degrees is optimum (see ⁇ marks) It is.
  • the shaft teeth The first step portion 30 is provided in the portion 22 so that a certain amount of stress is concentrated also on the point P1, and the stress concentrated on the shaft shank 24 side is dispersed.
  • the inclination angle ⁇ of the first step portion 30 of the shaft tooth portion 22 is set too large, for example, 90 °, the stress is excessively concentrated on the point P1 to exert a stress dispersion (stress relaxation) effect. I can not. Therefore, by appropriately setting the inclination angle ⁇ ⁇ ⁇ , which is the rising angle of the first step portion 30, the concentration of stress generated in the vicinity of the shaft shank 24 is suitably dispersed, and the stress value at the peak point is reduced. can do.
  • a characteristic curve A (refer to a broken line) of a stress value according to a comparative example in which the first step 30 and the second step 32 are not formed on the shaft tooth 22 and the hub tooth 28, respectively
  • Characteristic curves B (see solid line) of stress values when the inclination angle ⁇ of the first step portion 30 is set large while having points P1 and P2 offset by a distance are shown in FIG. 7 respectively. Comparing the characteristic curve A with the characteristic curve B, it is understood that, in the characteristic curve B of the structure having the tapered portion 34, the peak of the stress value is reduced and the concentration of stress is relaxed.
  • FIG. 8 shows a characteristic curve C of a stress value when the inclination angle ⁇ of the first step portion 30 is set to be loose or a force in comparison with the characteristic curve B, It is understood that the stress is further alleviated by the taper portion 34 by setting the inclination angle ⁇ loose and forming the taper portion 34 large (the ⁇ portion of the characteristic curve B shown in FIG. 7). And the ⁇ part of the characteristic curve C shown in Fig. 8).
  • FIG. 10 showing the relationship between the stress value and the measurement position (see arrow X in FIG. 2A, FIG. 2B), the degree of stress being input is different. It can be seen that the peak point changes along the measurement position.
  • the degree of input load is, for example, three stages of low load, medium load and high load, low load characteristic curve D, medium load characteristic curve E and high load characteristic curve F corresponding to the above stages are obtained. .
  • FIG. 11 is a characteristic diagram showing the relationship between the classification of the input load such as low load, medium load, and high load, and the position to which the load is applied.
  • the joint site force between the shaft tooth 22 and the hub tooth 28 depending on the degree of the input load, the joint site force between the shaft tooth 22 and the hub tooth 28.
  • the joint portion acts in the direction of moving away from the crown top PO toward the shaft shank 24 in accordance with the degree of the load to be input.
  • the region (peak point of the stress value) to which the load is transmitted is changed according to the degree of the input load.
  • the stress concentration to a specific site can be relaxed.
  • FIG. 12 to FIG. 14 show the shafts when the shaft 12 and the hub 14 are assembled at the XII-XII line part, the XIII-XIII line part and the XIV-XIV line part of FIG. 3, respectively. It is a longitudinal cross-sectional view which shows the engaged state of valley part 22b of tooth part 22, and peak part 28a of hub tooth part 28.
  • a contact surface between the shaft tooth 22 and the hub tooth 28 by forming the crown in this manner The product can be reduced, and the press-fit load at the time of assembly of the shaft 12 and the hub 14 can be reduced to reduce the stress acting on the valleys 22 b of the shaft teeth 22.
  • the first step 30 and the first step 30 and the first step 30 are formed at the portions near the shaft shank 24 of the shaft tooth 22 and the hub tooth 28.
  • the two step portions 32 By forming the two step portions 32 respectively, it is possible to increase the diameter of the shaft tooth portion 22 in the region where stress concentrates by ⁇ .
  • FIG. 1 a shaft and hub unit 100 to which a power transmission mechanism according to a second embodiment of the present invention is applied is shown in FIG.
  • the same components as those of the first embodiment are denoted by the same reference numerals, and the detailed description thereof is omitted.
  • FIG. 16 is a partially enlarged longitudinal sectional view along the axial direction of the shaft 12 in a state in which the valleys 22 b of the shaft teeth 22 and the ridges 28 a of the hub teeth 28 are engaged.
  • the arc portion 130 extending from the set point P1 as a starting point toward the hub tooth portion 28 and having a center of curvature as a point P3 and having a predetermined radius of curvature W is formed and is continuous with the shaft shank 24 side.
  • the outer diameter of the peak portion 22a of the shaft tooth portion 22 does not change constantly along the axial direction, as in the case of FIG. Both include ones whose outer diameter gradually decreases toward the shaft shank 24 from the vicinity of the point P1 (the tooth length decreases).
  • the shaft shank 24 and the point P 1 of the shaft tooth 22 are A point P2 is set at a position offset by a predetermined distance L4 along the horizontal direction on the opposite side, and a step 132 is formed by changing the peak diameter ⁇ B2 from the point P2 to a peak diameter ⁇ B3. Further, the ridge diameter ⁇ B3 is formed to extend by a predetermined distance L3.
  • the stepped portion 132 of the hub tooth 28 formed in the opposite direction to the shaft tooth 22 side is, for example, an inclined surface or an arc-shaped curved surface or compound having a predetermined radius of curvature. It may be formed by a surface or the like.
  • the inclination angle of the step portion 132 starting from the point P 2 is arbitrarily set corresponding to the arc portion 130.
  • the shape on the hub tooth portion 28 side is not limited to the shape of the step portion 132, and may be, for example, a shape including an R shape having a predetermined curvature radius, a tapered shape, or the like.
  • the inner diameter of the valley portion 28b of the hub tooth portion 28 is assumed to be constant and not change along the axial direction.
  • the valley diameter ⁇ B1 indicates the axial center force of the shaft 12 as well as the separation distance to the bottom of the valley portion 22 b of the shaft tooth 22, and the ridge diameters ⁇ 2 and ⁇ B 3 are respectively The distance from the axis of the shaft 12 to the tip of the peak 28 a of the hub tooth 28 is shown.
  • L2 on the shaft tooth 22 side is set larger than L1 (LI ⁇ L2), and L3 on the hub tooth 28 side is set smaller than L2 on the shaft tooth 22 side. It shall be (L2> L3)
  • the point PI as the starting point (transition) of the rising of the arc portion 130 of the shaft tooth portion 22 and the starting point of the rising of the step portion 132 of the hub tooth 28 (change point And the point P2 to be) are set at a position substantially offset in the horizontal direction by a predetermined separation distance L4.
  • a point P1 which is a starting point of the arc portion 130 on the shaft tooth portion 22 side.
  • the point P1 and the point P2 may be set to coincide with each other on a lead straight line which can not be offset from the point P2 which is the starting point of the step portion 132 on the hub tooth portion 28 side.
  • the stress applied to the arc portion 130 of the shaft tooth portion 22 is dispersed under the cooperative action of the arc portion 130 formed on the shaft tooth portion 22 side and the step portion 132 formed on the hub tooth portion 28 side. Stress concentration can be relieved.
  • the stress value characteristic curve G (broken line) according to the comparative example in which the step portion 132 is not formed on the hub tooth portion 28 and the point offset by a predetermined distance (L4) as shown in FIG.
  • the characteristic curve K (solid line) of the stress value of the structure having P1 and P2, arc part 130 formed on the shaft tooth part 22 side, and step part 132 formed on the hub tooth part 28 is shown in FIG. Show.
  • the peak of the stress value is dispersed in the tO portion and the tl portion, whereby It is understood that the peak of the stress value is decreasing. That is, the stress value of the tO portion in the characteristic curve K is increased compared to the stress value of the tO portion in the characteristic curve G.
  • the stress value of the tl portion which is the maximum stress value in the characteristic curve K is the characteristic Because it is reduced compared to the curve G, it is possible to reduce the peak of the maximum stress value generated on the shaft 12 and to reduce the stress value over the entire measurement position.
  • the characteristic curve M and the portion with and without the offset of the characteristic curve N are compared (refer to ⁇ part in FIG. 19)
  • the characteristic curve ⁇ which is offset from the starting point ⁇ 2 on the tooth portion side, is a gentle curve, and by offsetting, the concentration of stress at the portion where the diameter changes is relaxed.
  • FIG. 20 and FIG. 22 show shaft teeth when the shaft 12 and the hub 14 are assembled at the portion of the XX-X line, the portion of the XXI-XXI line, and the portion of the XXII-XII line of FIG. It is a longitudinal cross-sectional view which shows the engagement state of valley part 22b of part 22, and peak part 28a of hub tooth part 28.
  • FIG. The action and effect are the same as in FIG. 12 to FIG. 14 in the first embodiment, so a detailed explanation thereof is given. I omit the light.
  • the region (peak point of stress value) to which the load is transmitted changes according to the degree of the input load, as shown in FIG. 2A and FIG. 2B. And as shown in FIGS. 10 and 11, it is identical to the first embodiment.
  • FIG. 23 shows a shaft and hub unit 200 to which a power transmission mechanism according to a third embodiment of the present invention is applied.
  • FIG. 24 is a partially enlarged longitudinal cross-sectional view along the axial direction of the shaft 12 in a state where the valleys 22b of the shaft teeth 22 and the ridges 28a of the hub teeth 28 are engaged.
  • a point moved by a predetermined distance L1 in the horizontal direction from the position (see the broken line) of the valley 22b (valley diameter ⁇ C1) of the shaft tooth 22 corresponding to the crown top 0 (see dashed line) P1 (change point) is set, and a predetermined rising angle repulsive force is generated with respect to the valley 22b along the horizontal direction, and the diameter of the valley 22b is a force toward the hub tooth 28 from the point P1.
  • a tapered portion 230 formed to increase gradually is provided, and the tapered portion 230 is extended to be formed continuously with the shaft shank 24.
  • the outer diameter of the ridge 22a of the shaft tooth 22 is constant as shown in FIG. 24 and does not change along the axial direction, and as shown in FIG. 25, the outer diameter of the ridge 22a is Both include ones whose outer diameter gradually decreases toward the shaft shank 24 from a portion near the point P1 (the tooth length is shortened).
  • the manufacture of a rolled rack which will be described later, is facilitated.
  • the rotational torque transmission function may not be reduced.
  • the symbol H in FIG. 25 indicates a horizontal line for comparison with the change (drop) in the outer diameter of the peak 22a.
  • a point P2 is set at a position offset by a predetermined distance L3 along the horizontal direction from the point P1 of the shaft tooth 22 to the side opposite to the shaft shank 24 at the peak 28a of the hub tooth 28;
  • a stepped portion 232 is formed by changing from P2 to the peak diameter ⁇ C2 to the peak diameter ⁇ C3, and further, the peak diameter ⁇ 3 is formed to extend by a predetermined distance L2.
  • the stepped portion 232 of the hub tooth portion 28 may be formed, for example, by an inclined surface or an arc-shaped curved surface or a composite surface having a predetermined curvature radius. With ⁇ 2 as the starting point The inclination angle of the stepped portion 232 is arbitrarily set corresponding to the rising angle ⁇ of the tapered portion 230.
  • the shape on the hub tooth portion 28 side is not limited to the shape of the step portion 232, and may be, for example, a shape including an R shape having a predetermined curvature radius, a taper shape, or the like. Further, the inner diameter of the valley portion 28b of the hub tooth portion 28 is assumed to be constant and not change along the axial direction.
  • the valley diameter ⁇ C1 indicates the distance from the axial center of the shaft 12 to the bottom surface of the valley 22 b of the shaft tooth portion 22.
  • the ridge diameters ⁇ C2 and ⁇ C3 are respectively The axial force of the shaft 12 also indicates the distance to the tip of the peak 28 a of the hub tooth 28.
  • the point P1 which is the starting point of the rising of the tapered portion 230 of the shaft tooth portion 22 and the point P2 which is the starting point of the rising of the stepped portion 232 of the hub tooth 28 are predetermined. It is set at a position offset in the substantially horizontal direction by the separation distance L3.
  • the point P1 on the shaft teeth 22 side and the hub teeth are provided. Since the point P2 on the part 28 side is offset by a predetermined distance, the stress concentration can be alleviated by dispersing the stress applied to the unit 10 to the point P1 and the point P2.
  • the area of the tapered portion 30 which is a stress acting surface can be increased, and the stress concentration is further alleviated.
  • the relationship between the rising angle ⁇ of the tapered portion 230 and the stress relaxation and production technology is shown in FIG. As understood from FIG. 26, it is good if the rising angle ⁇ ⁇ ⁇ of the tapered portion 230 is set to 6 degrees ⁇ 65 degrees (see ⁇ mark), and it is optimum if the rising angle ⁇ is set to 10 degrees ⁇ 30 degrees ⁇ see).
  • the shaft tooth 22 and the hub tooth 28 have a tapered portion 230 and a stepped portion 232, respectively.
  • the stress value according to the comparative example (refer to the broken line) and the point P1 and the point P2 are set on the vertical line without offset and the step portion 232 is formed.
  • the characteristic curve S (see solid line) of the formed stress value is shown in FIG. 27 respectively.
  • the stress value peak is reduced and the stress concentration is relaxed as compared to the characteristic curve R according to the comparative example. It can be seen that the stress is concentrated at the portions P1 and P2 (see the heel portion in FIG. 27) and the stress value is high.
  • the characteristic curve T (see the solid line) of FIG. 28 has the structure shown in FIG. 24, and the tapered portion 230 and the stepped portion 232 are formed on the shaft tooth portion 22 and the hub tooth portion 28, respectively. It shows the stress value when the point P1 which is the starting point of 230 and the point P2 which is the starting point of the step portion 232 are offset in the horizontal direction by the distance L3, and the characteristic curve S which is not offset is shown. Compared with (see FIG. 27), it is understood that the stress value of the offset portion (the ⁇ portion in FIG. 28) of the point P1 and the point P2 is further relaxed (the ⁇ portion in FIG. Comparison with i3 part in Figure 28).
  • the characteristic curve M and the portion with and without the offset of the characteristic curve N are compared (refer to the ⁇ portion in FIG. 29), the starting point P1 on the shaft tooth side with respect to the non-offset characteristic curve ⁇
  • the characteristic curve ⁇ which is offset from the starting point ⁇ 2 on the tooth portion side, is a gentle curve, and by offsetting, the concentration of stress at the portion where the diameter changes is relaxed.
  • FIG. 30 and FIG. 32 show that the shaft 12 and the hub 14 are assembled at the site of the ⁇ -edge line, the site of the ⁇ -edge line and the site of the X XXII-XXXII line in FIG.
  • the degree of load input by forming the shaft teeth 22 in a crawling shape The region (the peak point of the stress value) to which the load is transmitted changes in accordance with the change, as shown in FIG. 2A, FIG. 2B and FIG. 10, FIG. 11. This is the same as the first embodiment.
  • FIG. 34 is a partially enlarged longitudinal sectional view along the axial direction of the shaft 12 in a state where the valleys 22b of the shaft teeth 22 and the ridges 28a of the hub teeth 28 are engaged.
  • the valley 22 b of the shaft tooth 22 extends horizontally toward the shaft shank 24 by a predetermined distance, and starts from the point P 1 toward the hub tooth 28.
  • a stepped portion 332 bulges while being inclined toward the predetermined angle.
  • the step portion 332 is formed to extend horizontally by a predetermined distance starting from the point P2 and to be continuous with the shaft shank 24.
  • the shaft teeth 22 are formed so as to change from the valley diameter ⁇ E1 of the valley 22b to the valley diameter ⁇ E2 of the stepped portion 332.
  • the stepped portion 332 may be formed, for example, by an inclined surface or an arc-shaped curved surface or a composite surface having a predetermined radius of curvature.
  • the outer diameter of the ridges 22a of the shaft teeth 22 is constant and does not change along the axial direction, as shown in FIG. Both include those in which the outer diameter of the peak portion 22a gradually decreases (the tooth length decreases) from the vicinity of the point P1 toward the shaft shank 24 side.
  • the manufacture by the rolled rack described later is facilitated.
  • the transmission function of rotational torque does not decrease.
  • the symbol H in FIG. 38 indicates a horizontal line for comparison with the change (fall) in the outer diameter of the peak 22a.
  • the peak 28a of the hub tooth 28 is formed so as not to change with a constant outer diameter ⁇ E3 along the axial direction of the hub 14, and, like the peak 30a, the valley 28b Also, the inner diameter of the hub 14 does not change constantly along the axial direction of the hub 14.
  • the cross-sectional area of a right triangle connecting point P1, point P2 ′ and point P3 in valley 22b of shaft tooth 22 is increased to connect point P1 and point P3.
  • the first taper formed on the step portion 332 by setting the angle ⁇ ⁇ formed by the line segment P13 and the line segment P12 ′ connecting the point P1 and the point P2 ′, that is, the inclination angle ⁇ ⁇ of the step portion 332, gently.
  • the stress concentration is further alleviated by the part 334.
  • the relationship between the inclination angle ⁇ of the step portion 332 and the stress relaxation and production technology is shown in FIG. As understood from FIG. 39, it is good if the inclination angle ⁇ is set to 5 degrees and 45 degrees (see ⁇ marks), and optimum when the inclination angle ⁇ is set to 10 degrees and 35 degrees (see ⁇ marks). It is.
  • the step portion 332 is formed on the shaft tooth portion 22.
  • a certain amount of stress is concentrated also on the hub tooth portion 28 facing the point P1 so as to disperse the stress concentrated on the shaft shank 24 side.
  • stress relaxation can not exert the effect. Therefore, by appropriately setting the inclination angle ⁇ ⁇ ⁇ , which is the rising angle of the step portion 332, the concentration of stress generated in the vicinity of the shaft shank 24 is suitably dispersed to reduce the stress value at the peak point.
  • the point P4 is set to the peak 28a of the hub teeth 28 extending in the horizontal direction.
  • a second tapered portion that extends from the shaft shank 24 side at a predetermined angle as a point of rise. 336 may be formed.
  • the second tapered portion 336 is formed to face the point P1 as the starting point of the step portion 332 of the shaft tooth portion 22 and the first tapered portion 334, and the diameter of the peak portion in the direction away from the shaft tooth portion 22. It is formed to expand in diameter from ⁇ E4 to ⁇ E5.
  • a point P1 as a starting point of the step portion 332 in the shaft tooth portion 22 and a point P4 as a starting point of the second tapered portion 336 in the hub tooth portion 28 are predetermined along the axial direction of the shaft 12
  • the points P1 and P4 may be set to be offset by a distance or may be set to coincide with each other.
  • the second tapered portion 336 of the hub tooth portion 28 is formed under the cooperation of the step portion 332 formed on the shaft tooth portion 22 side and the second tapered portion 336 formed on the hub tooth portion 28 side.
  • the applied stress can be dispersed to relieve stress concentration.
  • the hub 14 b engaged with the shaft teeth 22 is pointed to a point P 5 with respect to the ridge 28 a of the hub teeth 28 extending in the horizontal direction.
  • the arc portion 338 may be formed to extend with a predetermined radius of curvature R toward the shaft shank 24 with the point of rise.
  • the arc portion 338 is formed to face the point P1 as the starting point of the step portion 332 of the shaft tooth portion 22 and the first tapered portion 334, and is formed to be recessed in the direction away from the shaft tooth portion 22. There is.
  • a point P1 as the starting point of the step portion 332 in the shaft tooth 22 and a point P5 as the starting point of the arc 338 in the hub tooth 28 are separated by a predetermined distance along the axial direction of the shaft 12 It may be set to be offset, or may be set to match the point P1 and the point P5.
  • the stress applied to the arc portion 338 of the hub tooth portion 28 is generated by the cooperation of the step portion 332 formed on the shaft tooth portion 22 side and the arc portion 338 formed on the hub tooth portion 28 side. It can be dispersed to relieve stress concentration.
  • the characteristic curve of the stress value according to the comparative example in which the stepped portion 332 is not formed in the shaft tooth portion 22! See the broken line
  • the characteristic curve L (see the solid line) of the stress value when formed is shown in FIG. 40 respectively.
  • FIG. 41 shows a characteristic curve M of a stress value when the inclination angle ⁇ ⁇ of the step portion 332 is set to a loose or a force as compared with the characteristic curve L, and the inclination is It is understood that the stress is further alleviated by the first taper portion 334 by forming the first taper portion 334 in which the angle ⁇ is set gently (the characteristic curve shown in FIG. 40). Compare the ⁇ part with the ⁇ part of the characteristic curve ⁇ ⁇ shown in Fig. 41).
  • FIG. 42 to FIG. 44 show the shaft at the time of assembling the shaft 12 and the hub 14 at the site of the XLII-XLII line, the site of the XLIII-XLIII line, and the site of the X LIV- XLIV line in FIG.
  • FIG. 10 is a longitudinal cross-sectional view showing an engaged state of a valley 22 b of the tooth 22 and a peak 28 a of the hub tooth 28.
  • the actions and effects are the same as those of FIGS. 12 to 14 in the first embodiment, and thus the detailed description thereof is omitted.
  • the tooth profiles of the shaft teeth 22 and the hub teeth 28 shown in FIG. 42 to FIG. 44 may be involuted teeth shapes as shown in FIG.
  • the shaft teeth 22c of the shaft teeth 22 and the hub teeth 28c of the hub teeth 28 contact each other on the reference pitch circle diameter D. That is, the shaft teeth 22 and the hub teeth 28 can be easily processed with respect to the shaft 12 and the hub 14 by a rack-shaped tool or the like, and the shaft teeth 22 and the hub teeth 28 are engaged. Can be engaged smoothly.
  • the region (peak point of stress value) to which the load is transmitted changes according to the degree of the input load, as shown in FIG. 2A and FIG. 2B. And as shown in FIGS. 10 and 11, it is identical to the first embodiment.
  • a predetermined shape is formed between the upper and lower rolling racks 40a and 40b formed in a substantially linear shape by a cemented carbide material by a tool cage which is a pre-processing.
  • the rod-like workpiece 42 is inserted, and the pair of rolled racks 40a and 40b press the driven object 42 while facing each other.
  • the outer circumferential surface of the force receiving object 42 is subjected to a spline force having a crowning shape by displacing the rolling racks 40a and 40b in the directions opposite to each other (the arrow direction).
  • the spline teeth 20 of the shaft tooth portion 22 having a crowned shape can be formed easily.
  • a tool groove (not shown) having a depth force of about 50 ⁇ is formed at the tip of the spline tooth 20 of the shaft tooth portion 22 by the tool cover.
  • the durability of forming teeth such as the rolled racks 40a and 40b can be improved as compared with forming (forging) forming, the forming cycle is faster. Furthermore, in roll forming, it is possible to regrind and reuse forming teeth such as the rolled racks 40a and 40b. Therefore, the use of roll forming is advantageous in cost from the viewpoint of life, forming vitality, reuse, etc. as compared to forming (forging) forming.
  • the cross-sectional shape of the tooth tip may not necessarily be uniform because it is formed by the flow of meat toward the tooth tip.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Gears, Cams (AREA)
  • Power Steering Mechanism (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Mechanical Operated Clutches (AREA)

Abstract

 シャフト歯部(22)は、歯厚が変化したクラウニングからなる山部(22a)を有し、ハブ歯部(28)は、歯厚が一定の直線状からなり且つ端部からシャフトシャンク(24)側に向かって内径が変化する山部(28a)を有し、前記シャフト歯部(22)の谷部(22b)には、ハブ歯部(28)側に向かって膨出する第1段差部(30)が形成され、前記ハブ歯部(28)の山部(28a)には、該シャフト歯部(22)側と反対方向に窪んだ第2段差部(32)が形成され、前記第1段差部(30)の起点(P1)と前記第2段差部(32)の起点(P2)とをそれぞれ所定距離(L4)だけオフセットした位置に設定した。

Description

明 細 書
シャフト及びノヽブの動力伝達機構
技術分野
[0001] 本発明は、シャフト及びハブからなる 2部材間で回転トルクを円滑に伝達することが 可能なシャフト及びハブの動力伝達機構に関する。
背景技術
[0002] 自動車等の車両において、エンジンからの駆動力を車軸に伝達するためにシャフト を介して一組の等速ジョイントが用いられている。この等速ジョイントは、ァウタ部材と インナ部材との間に配設されたトルク伝達部材を介してァウタ'インナ部材間のトルク 伝達を行うものであり、シャフトに形成されたシャフト歯部とハブに形成されたハブ歯 部とが係合した歯部組立体を有するシャフト及びハブのユニットを含む。
[0003] ところで、近年、騒音、振動等の動力伝達系のガタに起因して発生する等速ジョイ ントの円周方向のガタを抑制することが要求されている。従来では、内輪とシャフトと のガタを抑制するために、等速ジョイントの軸セレーシヨンにねじれ角を設けたものが あるが、前記ねじれ角の方向とトルク負荷方向によって、内輪及びシャフトの強度、寿 命にばらつきが生じるおそれがある。
[0004] また、歯車等の技術分野において、例えば、特開平 2—62461号公報、特開平 3_ 69844号公報、及び特開平 3 - 32436号公報に示されるように、その歯面部にクラウ ニングを設ける技術的思想が開示されている。
[0005] さらに、トルクを伝達するための歯部組立体を有するシャフト Zハブユニットに関す る特表平 11—514079号公報には、長手方向に沿って一定の外径を有するシャフト 歯部と、長手方向に沿って一定の基部径を有するハブ歯部とが形成され、シャフト端 部側の第 1の部分におけるシャフト歯部の基部径(dwl)及びハブ歯部の内径(Dnl )に対し、シャフトシャンクに近接する第 2の部分におけるシャフト歯部の基部径(dw2 )及びハブ歯部の内径 (Dn2)をそれぞれ大きく設定することが開示されてレ、る (dwl < dw2、 Dnl < Dn2)。
[0006] さらにまた、軸部材と外周部材とのスプライン結合に関する特開 2000-97244号 公報には、軸部材のシャフトシャンク側において、前記軸部材側の歯の谷部を拡径さ せて拡径領域を形成し、前記拡径領域内に軸部材側の歯と外周部材側の歯との嵌 合部を設けることが開示されている。
[0007] ところで、本出願人は、スプラインが形成されたスプラインシャフトのクラウユングトツ プの位置を、スプラインシャフトと等速ジョイントとの嵌合部位に回転トルクが付与され た際に最小となる位置に設けることにより、所定部分に応力が集中することを抑制す ると共に、装置の全体構成を簡素化することを提案している(特開 2001-287122号 公報参照)。
発明の開示
発明が解決しょうとする課題
[0008] 本発明の一般的な目的は、所定部位に対する応力集中を抑制して、より一層、静 的強度及び疲労強度を向上させることが可能なシャフト及びハブの動力伝達機構を 提供することにある。
課題を解決するための手段
[0009] 本発明によれば、シャフト歯部とハブ歯部とが係合した状態においてシャフト及び ハブ間に回転トルクが付与された場合、応力が集中する部位であるシャフト歯部の谷 部の外径を増大させることにより、軸強度を向上させると共に応力を分散させることが できる。
[0010] また、本発明では、シャフト歯部の谷部の外径の変化点とハブ歯部の山部の内径 の変化点とが所定距離だけオフセットしているため、前記シャフト歯部に付与された 応力が一方の変化点と他方の変化点とにそれぞれ分散されることにより応力集中が 緩和される。この結果、応力の集中を緩和して分散させることができるため、シャフト 歯部とハブ歯部との係合部位に対する静的強度及び疲労強度を向上させることがで きる。
[0011] さらに、本発明では、前記シャフト歯部とハブ歯部との嚙合部位に付与される荷重 の度合いに対応して、主たる荷重伝達領域が異なるように設けられるとよい。例えば 、前記荷重の度合を、低荷重、中荷重及び高荷重に分類した場合、前記低荷重、中 荷重及び高荷重の主たる各荷重伝達領域は、クラウユングトップからシャフトシャンク 側に向かって順に離間する方向に設定されることにより、特定部位への応力集中が 緩和される。
図面の簡単な説明
[図 1]図 1は、本発明の第 1の実施の形態に係る動力伝達機構が適用されたシャフト 及びハブのユニットの一部切欠斜視図である。
[図 2]図 2Aは、シャフト歯部とハブ歯部とが係合した状態において、無負荷状態を示 し、図 2Bは、前記無負荷状態から矢印 Y方向に回転トルクが付与された状態をそれ ぞれ示す部分拡大横断面図である。
[図 3]図 3は、図 1のシャフト歯部の谷部とハブ歯部の山部とが係合した状態における シャフトの軸線方向に沿った部分拡大縦断面図である。
[図 4]図 4は、図 3のシャフトにおける第 1段差部の傾斜角度 Θを緩やかに形成した状 態を示す部分拡大縦断面図である。
[図 5]図 5は、図 4において、シャフト歯部の山部の外径をシャフトシャンク側に向かつ て変化させた状態を示す部分拡大縦断面図である。
[図 6]図 6は、シャフト歯部に形成された第 1段差部の傾斜角度 Θと応力緩和及び生 産技術性との関係を示す説明図である。
[図 7]図 7は、シャフト歯部及びハブ歯部に第 1段差部及び第 2段差部が形成されて レ、ない状態と、前記第 1段差部及び第 2段差部が形成された状態におけるシャフトに 発生する応力値とその応力を測定した位置との関係を示す特性曲線図である。
[図 8]図 8は、第 1段差部の傾斜角度 Θをさらに緩やかにした状態におけるシャフトに 発生する応力値とその応力を測定した位置との関係を示す特性曲線図である。
[図 9]図 9は、シャフト歯部の径の変化点及びハブ歯部の径の変化点がオフセットした 状態と、オフセットしていない状態におけるシャフトに発生する応力値とその応力を測 定した位置との関係を示す特性曲線図である。
[図 10]図 10は、回転トルクが付与されたときの入力荷重に対応してシャフトに発生す る応力値とその応力を測定した位置との関係を示す特性曲線図である。
[図 11]図 11は、前記荷重が付与される位置と荷重の分類との関係を示す特性曲線 図である。 園 12]図 12は、図 3の ΧΠ-ΧΙΙ線に沿った部分拡大縦断面図である。
[図 13]図 13は、図 3の XIII— XIII線に沿った部分拡大縦断面図である。
[図 14]図 14は、図 3の XIV— XIV線に沿った部分拡大縦断面図である。
園 15]図 15は、本発明の第 2の実施の形態に係る動力伝達機構が適用されたシャフ ト及びハブのユニットの一部切欠斜視図である。
[図 16]図 16は、図 15のシャフト歯部の谷部とハブ歯部の山部とが係合した状態にお けるシャフトの軸線方向に沿った部分拡大縦断面図である。
園 17]図 17は、シャフト歯部に形成された円弧部の起点である点 P1とハブ歯部に形 成された段差部の起点である点 P2とがオフセットされることなく鉛直線上に一致した 状態を示す部分拡大縦断面図である。
[図 18]図 18は、ハブ歯部に段差部が形成されていない状態と、シャフト歯部に円弧 部が形成され且つハブ歯部に段差部が形成された状態におけるシャフトに発生する 応力値とその応力を測定した位置との関係を示す特性曲線図である。
[図 19]図 19は、シャフト歯部の径の変化点及びハブ歯部の径の変化点がオフセット した状態とオフセットしていない状態におけるシャフトに発生する応力値とその応力を 測定した位置との関係を示す特性曲線図である。
[図 20]図 20は、図 16の XX— XX線に沿った部分拡大縦断面図である。
[図 21]図 21は、図 16の XXI— XXI線に沿った部分拡大縦断面図である。
[図 22]図 22は、図 16の XXII— XXII線に沿った部分拡大縦断面図である。
園 23]図 23は、本発明の第 3の実施の形態に係る動力伝達機構が適用されたシャフ ト及びハブのユニットの一部切欠斜視図である。
[図 24]図 24は、図 23のシャフト歯部の谷部とハブ歯部の山部とが係合した状態にお けるシャフトの軸線方向に沿った部分拡大縦断面図である。
[図 25]図 25は、図 24において、シャフト歯部の山部の外径をシャフトシャンク側に向 かって変化させた状態を示す部分拡大縦断面図である。
園 26]図 26は、シャフト歯部に形成されたテーパ部の立ち上がり角度 Θと応力緩和 及び生産技術性との関係を示す説明図である。
園 27]図 27は、シャフト歯部及びハブ歯部にテーパ部及び段差部が形成されていな い状態と、前記オフセットすることなくテーパ部及び段差部が形成された状態におけ るシャフトに発生する応力値とその応力を測定した位置との関係を示す特性曲線図 である。
園 28]図 28は、シャフト歯部及びハブ歯部にテーパ部及び段差部が形成されていな い状態と、テーパ部及び段差部のそれぞれの起点がオフセットした状態におけるシャ フトに発生する応力値とその応力を測定した位置との関係を示す特性曲線図である
[図 29]図 29は、シャフト歯部の径の変化点及びハブ歯部の径の変化点がオフセット した状態とオフセットしていない状態におけるシャフトに発生する応力値とその応力を 測定した位置との関係を示す特性曲線図である。
[図 30]図 30は、図 24の XXX— XXX線に沿った部分拡大縦断面図である。
[図 31]図 31は、図 24の XXXI— XXXI線に沿った部分拡大縦断面図である。
[図 32]図 32は、図 24の XXXII— XXXII線に沿った部分拡大縦断面図である。
園 33]図 33は、本発明の第 4の実施の形態に係る動力伝達機構が適用されたシャフ ト及びハブのユニットの一部切欠斜視図である。
[図 34]図 34は、図 33のシャフト歯部の谷部とハブ歯部の山部とが係合した状態にお けるシャフトの軸線方向に沿った部分拡大縦断面図である。
園 35]図 35は、図 34のシャフトにおける段差部の緩やかな傾斜角度 Θとなる第 1テ ーパ部が形成された状態を示す部分拡大縦断面図である。
園 36]図 36は、図 35のシャフトに対してハブ歯部に第 2テーパ部を有するハブを係 合させた状態におけるシャフトの軸線方向に沿った一部拡大縦断面図である。
[図 37]図 37は、図 35のシャフトに対してハブ歯部に所定の曲率半径の円弧部を有 するハブを係合させた状態におけるシャフトの軸線方向に沿った部分拡大縦断面図 である。
[図 38]図 38は、図 35において、シャフト歯部の山部の外径をシャフトシャンク側に向 かって変化させた状態を示す部分拡大縦断面図である。
園 39]図 39は、シャフト歯部に形成された段差部の傾斜角度 Θと応力緩和及び生産 技術性との関係を示す説明図である。 [図 40]図 40は、シャフト歯部に段差部が形成されていない状態と、前記段差部が形 成された状態におけるハブに発生する応力値とその応力を測定した位置との関係を 示す特性曲線図である。
[図 41]図 41は、段差部の傾斜角度 Θをさらに緩やかにした状態におけるシャフトに 発生する応力値とその応力を測定した位置との関係を示す特性曲線図である。
[図 42]図 42は、図 34の XLII— XLII線に沿った部分拡大縦断面図である。
[図 43]図 43は、図 34の XLIII— XLIII線に沿った部分拡大縦断面図である。
[図 44]図 44は、図 34の XLIV— XLIV線に沿った部分拡大縦断面図である。
[図 45]図 45は、シャフト歯部及びハブ歯部におけるスプライン歯の断面形状を、イン ボリユート歯形とした変形例を示す拡大縦断面図である。
[図 46]図 46は、シャフト歯部のスプライン歯を転造ラックによつて転造成形する状態 を示す一部省略斜視図である。
発明を実施するための最良の形態
[0013] 図 1において参照数字 10は、本発明の第 1の実施の形態に係る動力伝達機構が 適用されたシャフト及びハブのユニットを示す。このユニット 10は、図示しない等速ジ ョイントの一部を構成するものであり、前記シャフト 12は、駆動力伝達軸として機能し 、ハブ 14は、図示しないァウタカップの開口部内に収納され図示しないボールが係 合する案内溝 15を有するインナリングとして機能するものである。
[0014] 前記シャフト 12の一端部及び他端部には、それぞれ、ハブ 14の軸孔 16に嵌合す る嵌合部 18が形成される。ただし、図 1では、シャフト 12の一端部のみを示し、他端 部の図示を省略している。前記嵌合部 18は、シャフト 12の軸線に沿って所定の歯長 からなり、周方向に沿って形成された複数のスプライン歯 20を有するシャフト歯部 22 を備える。前記シャフト歯部 22は、凸状の山部 22aと凹状の谷部 22bとが周方向に 沿って交互に連続して構成される。
[0015] 前記シャフト 12の中心側の前記シャフト歯部 22に近接する部位には、シャフトシャ ンク 24が設けられ、また、シャフト 12の端部側には、前記ハブ 14の抜け止め機能を 有する図示しない止め輪が環状溝(図示せず)を介して装着される。
[0016] 前記シャフト 12を半径内方向に向かって見た場合、シャフト歯部 22の山部 22aは、 図 2Aに示されるように、歯厚が最大となるクラウニングトップ P0から山部 22aの両端 部に向かって前記歯厚が連続的に減少するように形成されたクラウニングを有する。 換言すると、シャフト歯部 22の山部 22aを平面視した場合、図 2Aに示されるように両 側がそれぞれ等しく湾曲したクラウユング形状を有する。
[0017] 前記ハブ 14の軸孔 16の内周面には、前記シャフト 12の嵌合部 18に嵌合する複数 の直線状のスプライン歯 26を有するハブ歯部 28が形成される。前記ハブ歯部 28は 、凸状の山部 28aと凹状の谷部 28b (図 9一図 11参照)とが周方向に沿って交互に 連続して構成され、前記ハブ歯部 28の山部 28aは、図 2Aに示されるように、略同一 の歯厚からなり、シャフト 12の軸線と略平行となるように形成されている。
[0018] 図 3は、シャフト歯部 22の谷部 22bとハブ歯部 28の山部 28aとが係合した状態にお けるシャフト 12の軸線方向に沿った一部拡大縦断面図である。図 3中において、 P0 はクラウユングトップに対応する位置を示す。
[0019] シャフト歯部 22の谷部 22b (谷部径 φ A1)のクラウニングトップ P0に対応する位置( 破線参照)からシャフトシャンク 24側に向かって水平方向に所定距離 L1だけ移動し た点 P1 (変化点)を設定し、前記点 P1からその谷部 22bをハブ歯部 28側に向かって 膨出させ、谷部径 Φ Α1から谷部径 Φ Α2に変化させた第 1段差部 30を形成し、さら に、所定距離 L2だけ谷部径 Φ Α2を延在させてシャフトシャンク 24に連続させて形 成する。
[0020] この場合、シャフト歯部 22側の前記第 1段差部 30は、例えば、傾斜面または所定 の曲率半径からなる円弧状の曲面または複合面等によって形成するとよい。また、シ ャフト歯部 22の山部 22aの外径は、図 3及び図 4に示されるように、軸線方向に沿つ て一定で変化しないものと、図 5に示されるように、山部 22aの外径が点 P1の近傍部 位からシャフトシャンク 24側に向かって徐々に縮径(歯丈が短縮)するように変化する ものとの両方が含まれる。前記山部 22aの外径をシャフトシャンク 24側に向かって徐 々に縮径させることにより、後述する転造ラックによる製造が容易となる。また、回転ト ルクの伝達機能が低下することがなレ、。なお、図 5中における記号 Hは、山部 22aの 外径の変化(落ち込み)と対比するための水平線を示す。
[0021] ハブ歯部 28の山部 28aでは、前記シャフト歯部 22の点 P1からシャフトシャンク 24と 反対側に水平方向に沿った所定距離 L4だけオフセットした位置に点 P2を設定し、 前記点 P2からその山部径 φ A3を山部径 φ A4に変化させた第 2段差部 32を形成し 、さらに、所定距離 L3だけ山部径 Φ Α4を延在させて形成する。
[0022] この場合、ハブ歯部 28の前記第 2段差部 32は、例えば、傾斜面または所定の曲率 半径からなる円弧状の曲面または複合面等によって形成し、前記第 1段差部 30の形 状と異なる形状であってもよい。前記第 2段差部 32の傾斜角度は、第 1段差部 30の 傾斜角度に対応して任意に設定される。なお、ハブ歯部 28側の形状は、前記第 2段 差部 32の形状に限定されるものではなぐ例えば、所定の曲率半径を有する R形状 、テーパ形状等を含む形状であってもよい。また、ハブ歯部 28の谷部 28bの内径は 、軸線方向に沿って一定で変化しないものとする。
[0023] 前記谷部径 φ Α1、 φ Α2は、それぞれ、シャフト 12の軸心からシャフト歯部 22の谷 部 22bの底面までの離間距離を示したものであり、前記山部径 φ A3、 φ Α4は、それ ぞれ、シャフト 12の軸心力らハブ歯部 28の山部 28aの歯先までの離間距離を示した ものである。
[0024] なお、シャフト歯部 22側の L2は、 L1より大きく設定されるとよい(LI <L2)。後述す るように、シャフト歯部 22とハブ歯部 28との嚙合部位に付与される荷重の度合いに 対応して、例えば、低荷重、中荷重及び高荷重等の主たる荷重伝達領域を異なるよ うに設定するためである。さらに、シャフト歯部 22側の L2とハブ歯部 28側の L3とはそ れぞれ略等しく (L2 = L3)、又はシャフト歯部 22側の L2に対してハブ歯部 28側の L 3が大きくなるように設定されるとよい(L2<L3)。寸法公差及び寸法精度によって後 述するオフセットが設定し易くなると共に、組み付け性を向上させることができるから である。
[0025] 図 3から諒解されるように、シャフト歯部 22の第 1段差部 30の立ち上がりの起点(変 ィ [^点)となる点 P1と、ハブ歯部 28の第 2段差部 32の立ち上がりの起点(変化点)とな る点 P2とが所定の離間距離 L4だけ略水平方向にオフセットした位置に設定されて いる。
[0026] 従って、シャフト歯部 22とハブ歯部 28とが係合したシャフト 12及びハブ 14のュニッ ト 10に対して回転トルクが付与された場合、シャフト歯部 22側の点 P1とハブ歯部 28 側の点 P2とが所定距離だけオフセットしているため、前記ユニット 10に付与された応 力が前記点 P1と点 P2とにそれぞれ分散されることにより応力集中を緩和することが できる。
[0027] この結果、第 1の実施の形態では、応力の集中を緩和して分散させることができる ため、シャフト歯部 22とハブ歯部 28との係合部位に対する静的強度及び疲労強度 を向上させることができる。
[0028] なお、後述する図 17と同様に、前記点 P1と点 P2とをオフセットさせることがなぐ鉛 直線上に前記点 P1及び点 P2とが一致するように設定してもよい。この場合、シャフト 歯部 22側に形成された第 1段差部 30とハブ歯部 28側に形成された第 2段差部 32と の共働作用下に、シャフト歯部 22の第 1段差部 30に付与される応力が分散されて応 力集中を緩和することができる。
[0029] さらに、図 4に示されるように、点 Pl、点 P3、点 P4を結んだ直角三角形の断面積を 増大させ、点 P1及び点 P4を結ぶ線分 P14と点 P1及び点 P3を結ぶ線分 P13とがな す角度 Θ、すなわち、第 1段差部 30の傾斜角度 Θを所定値に設定することにより、 第 1段差部 30に形成されたテーパ部 34によってより一層応力集中が緩和される。
[0030] 前記第 1段差部 30の傾斜角度 Θと応力緩和及び生産技術性との関係を図 6に示 す。図 6から諒解されるように、前記傾斜角度 Θを 5度一 45度に設定すると良好(〇 印参照)であり、前記傾斜角度 Θを 10度一 35度に設定すると最適(◎印参照)であ る。
[0031] 前記傾斜角度 Θを 3度に設定すると、応力分散効果を十分に発揮することができな レ、と共に、後述する転造ラックによる生産が困難であって不適である。一方、前記傾 斜角度 Θを 90度に設定すると、階段状の第 1段差部 30に応力が過剰に集中すると レ、う問題があると共に、後述する転造ラックの耐久性を劣化させるという他の問題があ る。
[0032] 第 1及び第 2段差部 30、 32がない通常のシャフト及びハブのスプライン嵌合では、 シャフトシャンクの近傍部位に応力のピークポイントが発生する力 第 1の実施の形態 では、シャフト歯部 22に第 1段差部 30を設けて点 P1にもある程度の応力が集中する ように構成し、シャフトシャンク 24側に集中する応力を分散させている。この場合、シ ャフト歯部 22の第 1段差部 30の傾斜角度 Θを、例えば、 90度のように大きく設定し すぎると点 P1に応力が過剰に集中しすぎて応力分散 (応力緩和)効果を発揮するこ とができない。従って、前記第 1段差部 30の立ち上がり角度である傾斜角度 Θを適 正に設定することにより、シャフトシャンク 24の近傍に発生する応力の集中を好適に 分散させて、ピークポイントにおける応力値を低減することができる。
[0033] ここで、シャフト歯部 22及びハブ歯部 28にそれぞれ第 1段差部 30及び第 2段差部 32が形成されていない比較例に係る応力値の特性曲線 A (破線参照)と、所定距離 だけオフセットした点 P1及び P2を有すると共に、第 1段差部 30の傾斜角度 Θを大き く設定したときの応力値の特性曲線 B (実線参照)を、それぞれ図 7に示す。特性曲 線 Aと特性曲線 Bとを比較すると、テーパ部 34を有する構造の特性曲線 Bでは、応力 値のピークが減少して応力の集中が緩和されていることが諒解される。
[0034] また、図 8は、前記第 1段差部 30の傾斜角度 Θを、前記特性曲線 Bと比較して緩や 力に設定したときの応力値の特性曲線 Cを示したものであり、前記傾斜角度 Θを緩や かに設定してテーパ部 34を大きく形成することにより、前記テーパ部 34によってより 一層応力が緩和されることが諒解される(図 7に示す特性曲線 Bの α部分と図 8に示 す特性曲線 Cの β部分とを比較参照)。
[0035] 次に、シャフト歯部 22側の点 P1とハブ歯部 28側の点 Ρ2とが所定距離だけオフセ ットした状態における応力値の特性曲線(実線) Μと、前記点 P1と点 Ρ2とがオフセッ トしていない、すなわち水平方向に沿った離間距離が零の状態における応力値の特 性曲線 (破線) Νとを図 9に示す。
[0036] この場合、特性曲線 Μ及び特性曲線 Νのオフセットの有無部分(図 9中の γ部分参 照)を比較すると、オフセットしていない特性曲線 Νに対してシャフト歯部側の起点 P1 とハブ歯部側の起点 Ρ2とがオフセットした特性曲線 Μが緩やかな曲線となっており、 オフセットさせることにより径の変化部分における応力の集中が緩和されている。
[0037] 次に、回転トルクが付与されていない無負荷状態から、回転トルクが付与されてクラ ゥユング形状を有するシャフト歯部 22の山部 22aと直線形状を有するハブ歯部 28の 山部 28aとが嚙合して変形した状態を図 2A及び図 2Bに示す。なお、回転トルクによ る荷重入力方向は、クラウニングの軸線と直交する矢印 Y方向に設定した。 [0038] この場合、応力値と測定位置(図 2A、図 2Bの矢印 X参照)との関係を表した図 10 に示されるように、入力される荷重の度合いが異なることにより、応力値のピークボイ ントが測定位置に沿って変化していることがわかる。前記入力される荷重の度合いを 、例えば、低荷重、中荷重、高荷重の 3段階とすると、前記段階に対応した低荷重特 性曲線 D、中荷重特性曲線 E、高荷重特性曲線 Fとなる。
[0039] また、図 11は、低荷重、中荷重、高荷重のように入力される荷重の分類と、前記荷 重が付与される位置との関係を示す特性図である。図 2Bから諒解されるように、入力 される荷重の度合いによってシャフト歯部 22とハブ歯部 28との嚙合部位力 荷重付 与位置 a、 b、 cに対応する円 a、円 b、円 cのように順次変化している。この嚙合部位は 、入力される荷重の度合いに対応してクラウユングトップ POからシャフトシャンク 24側 に離間する方向に作用している。
[0040] すなわち、低荷重が付与されたときには、円 aの領域が主たる低荷重伝達領域とな り、中荷重が付与されたときには、前記円 aからシャフトシャンク 24側に僅かに離間し た円 bの領域が主たる中荷重伝達領域となり、高荷重が付与されたときには、前記円 bからシャフトシャンク 24側に僅かに離間する円 cの領域が主たる高荷重伝達領域と なる。
[0041] このようにシャフト歯部 22を歯厚が変化したクラウニング形状とすることにより、入力 される荷重の度合いに応じて荷重が伝達される領域 (応力値のピークポイント)が変 化するように設定され、特定の部位に対する応力集中を緩和することができる。
[0042] 図 12—図 14は、それぞれ、図 3の XII— XII線の部位、 XIII— XIII線の部位及び XI V— XIV線の部位における、シャフト 12とハブ 14とを組み付けた際のシャフト歯部 22 の谷部 22bとハブ歯部 28の山部 28aとの係合状態を示す縦断面図である。なお、図 12—図 14中における φ dl φ d3は、それぞれシャフト 12の軸心力ものピッチ円径 を示す。
[0043] シャフト歯部 22をクラウユング形状とすることにより、クラウユングトップ POの近傍領 域のみが接触し(図 13の接触部位参照)、その他の領域では、シャフト歯部 22の谷 部 22bとハブ歯部 28の山部 28aとが非接触状態となる(図 12及び図 14参照)。
[0044] このようにクラウユング形状とすることによりシャフト歯部 22とハブ歯部 28との接触面 積を減少させることができ、シャフト 12及びハブ 14の組み付け時における圧入荷重 を低下させてシャフト歯部 22の谷部 22bに作用する応力を低減することができる。ま た、組み付け時における圧入荷重を増大させることがなぐシャフト歯部 22とハブ歯 部 28との間のバックラッシュを抑制することができる。
[0045] また、図 12及び図 13と、図 14とを比較して諒解されるように、シャフト歯部 22及び ハブ歯部 28のシャフトシャンク 24に近接する部位に第 1段差部 30及び第 2段差部 3 2をそれぞれ形成することにより、応力が集中する領域のシャフト歯部 22の径を δだ け増大させることができる。
[0046] 従って、応力が集中する領域のシャフト歯部 22の径を δだけ増大させることにより、 シャフト歯部 22の谷部 22bの歯底 Rの曲率を大きく設定することが可能となり、応力 を分散させることができる。また、シャフトシャンク 24に近接する部位の径を他の部位 と比較して増大させることにより、全体応力(主応力)を低減させることができる。
[0047] 次に、本発明の第 2の実施の形態に係る動力伝達機構が適用されたシャフト及び ハブのユニット 100を図 15に示す。なお、以下に示す実施の形態において、第 1の 実施の形態と同一の構成要素には同一の参照符号を付し、その詳細な説明を省略 する。
[0048] 図 16は、シャフト歯部 22の谷部 22bとハブ歯部 28の山部 28aとが係合した状態に おけるシャフト 12の軸線方向に沿った一部拡大縦断面図である。 シャフト歯部 22 の谷部 22b (谷部径 φ B1)のクラウニングトップ P0に対応する位置 (破線参照)からシ ャフトシヤンク 24側に向かって水平方向に所定距離 L1だけ移動した点 P1を設定す る。前記設定された点 P1を起点としてハブ歯部 28側に向かって延在し、曲率中心を 点 P3として所定の曲率半径 Wからなる円弧部 130を形成してシャフトシャンク 24側 に連続させる。
[0049] なお、シャフト歯部 22の山部 22aの外径は、図 16及び図 17に示されるように、軸線 方向に沿って一定で変化しないものと、図 5と同様に、山部 22aの外径が点 P1の近 傍部位からシャフトシャンク 24側に向かって徐々に縮径 (歯丈が短縮)するように変 化するものとの両方が含まれる。
[0050] ハブ歯部 28の山部 28aでは、前記シャフト歯部 22の点 P1からシャフトシャンク 24と 反対側に水平方向に沿った所定距離 L4だけオフセットした位置に点 P2を設定し、 前記点 P2からその山部径 φ B2を山部径 φ B3に変化させた段差部 132を形成し、さ らに、所定距離 L3だけ前記山部径 φ B3を延在させて形成する。
[0051] この場合、シャフト歯部 22側と反対方向に窪んで形成されるハブ歯部 28の前記段 差部 132は、例えば、傾斜面または所定の曲率半径からなる円弧状の曲面または複 合面等によって形成するとよい。前記点 P2を起点とする段差部 132の傾斜角度は、 円弧部 130に対応して任意に設定される。なお、ハブ歯部 28側の形状は、前記段差 部 132の形状に限定されるものではなぐ例えば、所定の曲率半径を有する R形状、 テーパ形状等を含む形状であってもよい。また、ハブ歯部 28の谷部 28bの内径は、 軸線方向に沿って一定で変化しないものとする。
[0052] 前記谷部径 φ B1は、シャフト 12の軸心力もシャフト歯部 22の谷部 22bの底面まで の離間距離を示したものであり、前記山部径 φ Β2、 φ B3は、それぞれ、シャフト 12 の軸心からハブ歯部 28の山部 28aの歯先までの離間距離を示したものである。
[0053] なお、シャフト歯部 22側の L2は、 L1より大きく設定され(LI < L2)、し力も、ハブ歯 部 28側の L3は、シャフト歯部 22側の L2よりも小さく設定されるものとする(L2 >L3)
[0054] 図 16から諒解されるように、シャフト歯部 22の円弧部 130の立ち上がりの起点(変 ィ匕 )となる点 PIと、ハブ歯部 28の段差部 132の立ち上がりの起点(変化点)となる 点 P2とが所定の離間距離 L4だけ略水平方向にオフセットした位置に設定されてい る。
[0055] 従って、シャフト歯部 22とハブ歯部 28とが係合したシャフト 12及びハブ 14のュニッ ト 100に対して回転トルクが付与された場合、シャフト歯部 22側の点 P1とハブ歯部 2 8側の点 P2とが所定距離 L4だけオフセットしているため、前記ユニット 100に付与さ れた応力が前記点 P1と点 P2とにそれぞれ分散されることにより応力集中を緩和する こと力 Sできる。
[0056] この結果、応力の集中を緩和して分散させることができるため、シャフト歯部 22とノヽ ブ歯部 28との係合部位に対する静的強度及び疲労強度を向上させることができる。
[0057] さらに、図 17に示されるように、シャフト歯部 22側の円弧部 130の起点となる点 P1 とハブ歯部 28側の段差部 132の起点となる点 P2とをオフセットさせることがなぐ鉛 直線上に前記点 P1及び点 P2がー致するように設定してもよい。この場合、シャフト 歯部 22側に形成された円弧部 130とハブ歯部 28側に形成された段差部 132の共 働作用下に、シャフト歯部 22の円弧部 130に付与される応力が分散されて応力集中 を緩和することができる。
[0058] ここで、ハブ歯部 28に段差部 132が形成されていない比較例に係る応力値の特性 曲線 G (破線)と、図 16に示されるように所定距離 (L4)だけオフセットした点 P1及び P2を有し、シャフト歯部 22側に円弧部 130が形成され且つハブ歯部 28側に段差部 132が形成された構造の応力値の特性曲線 K (実線)を、それぞれ図 18に示す。
[0059] 特性曲線 Gと特性曲線 Kとを比較すると、図 16に示す構造からなる特性曲線 で は、応力値のピークを tO部分と tl部分とに分散させることにより、前記 tl部分におけ る前記応力値のピークが減少していることが諒解される。すなわち、特性曲線 Kにお ける tO部分の応力値は、特性曲線 Gにおける tO部分の応力値と比較して増加してい る力 特性曲線 Kにおける最大応力値である tl部分の応力値は、特性曲線 Gに比べ て減少しているため、シャフト 12に発生する最大応力値のピークを低減させ、しかも 測定位置の全体にわたって応力値を低減させることができる。
[0060] 次に、シャフト歯部 22側の点 P1とハブ歯部 28側の点 P2とが所定距離だけオフセ ットした状態における応力値の特性曲線(実線) Mと、前記点 P1と点 P2とがオフセッ トしていない、すなわち水平方向に沿った離間距離が零の状態における応力値の特 性曲線 (破線) Nとを図 19に示す。
[0061] この場合、特性曲線 M及び特性曲線 Nのオフセットの有無部分(図 19中の α部分 参照)を比較すると、オフセットしていない特性曲線 Νに対してシャフト歯部側の起点 P1とハブ歯部側の起点 Ρ2とがオフセットした特性曲線 Μが緩やかな曲線となってお り、オフセットさせることにより径の変化部分における応力の集中が緩和されている。
[0062] さらに、図 20 図 22は、図 16の XX— XX線の部位、 XXI— XXI線の部位、 XXII— X XII線の部位における、シャフト 12とハブ 14とを組み付けた際のシャフト歯部 22の谷 部 22bとハブ歯部 28の山部 28aとの係合状態を示す縦断面図である。その作用乃 至効果は、第 1の実施の形態における図 12—図 14と同一であるため、その詳細な説 明を省略する。
[0063] なお、シャフト歯部 22をクラウニング形状とすることにより、入力される荷重の度合い に応じて荷重が伝達される領域 (応力値のピークポイント)が変化することは、図 2A、 図 2B及び図 10、図 11に示されるように、第 1の実施の形態と同一である。
[0064] 次に、本発明の第 3の実施の形態に係る動力伝達機構が適用されたシャフト及び ハブのユニット 200を図 23に示す。また、図 24は、シャフト歯部 22の谷部 22bとハブ 歯部 28の山部 28aとが係合した状態におけるシャフト 12の軸線方向に沿った一部 拡大縦断面図である。
[0065] シャフト歯部 22の谷部 22b (谷部径 φ C1)のクラウユングトップ Ρ0に対応する位置( 破線参照)からシャフトシャンク 24側に向かって水平方向に所定距離 L1だけ移動し た点 P1 (変化点)を設定し、水平方向に沿った谷部 22bに対して所定の立ち上がり 角度 Θ力 なり、前記点 P1を起点としてその谷部 22bの径がハブ歯部 28側に向力、つ て徐々に増大するように形成されたテーパ部 230を設け、前記テーパ部 230を延在 させてシャフトシャンク 24に連続させて形成する。
[0066] なお、シャフト歯部 22の山部 22aの外径は、図 24に示されるように、軸線方向に沿 つて一定で変化しないものと、図 25に示されるように、山部 22aの外径が点 P1の近 傍部位からシャフトシャンク 24側に向かって徐々に縮径 (歯丈が短縮)するように変 化するものとの両方が含まれる。前記山部 22aの外径をシャフトシャンク 24側に向か つて徐々に縮径させることにより、後述する転造ラックによる製造が容易となる。また、 前記山部 22aの外径をシャフトシャンク 24側に向かって徐々に縮径させても、回転ト ルクの伝達機能が低下することがなレ、。なお、図 25中における記号 Hは、山部 22a の外径の変化(落ち込み)と対比するための水平線を示す。
[0067] ハブ歯部 28の山部 28aでは、前記シャフト歯部 22の点 P1からシャフトシャンク 24と 反対側に水平方向に沿った所定距離 L3だけオフセットした位置に点 P2を設定し、 前記点 P2からその山部径 φ C2から山部径 φ C3に変化させた段差部 232を形成し 、さらに、所定距離 L2だけ山部径 φ〇3を延在させて形成する。
[0068] この場合、ハブ歯部 28の前記段差部 232は、例えば、傾斜面または所定の曲率半 径からなる円弧状の曲面または複合面等によって形成するとよい。前記 Ρ2を起点と する段差部 232の傾斜角度は、テーパ部 230の立ち上がり角度 Θに対応して任意 に設定される。なお、ハブ歯部 28側の形状は、前記段差部 232の形状に限定される ものではなく、例えば、所定の曲率半径を有する R形状、テーパ形状等を含む形状 であってもよい。また、ハブ歯部 28の谷部 28bの内径は、軸線方向に沿って一定で 変化しないものとする。
[0069] 前記谷部径 φ C1は、シャフト 12の軸心からシャフト歯部 22の谷部 22bの底面まで の離間距離を示したものであり、前記山部径 φ C2、 φ C3は、それぞれ、シャフト 12 の軸心力もハブ歯部 28の山部 28aの歯先までの離間距離を示したものである。
[0070] 図 24力 諒解されるように、シャフト歯部 22のテーパ部 230の立ち上がりの起点と なる点 P1と、ハブ歯部 28の段差部 232の立ち上がりの起点となる点 P2とが所定の 離間距離 L3だけ略水平方向にオフセットした位置に設定されている。
[0071] 従って、シャフト歯部 22とハブ歯部 28とが係合したシャフト 12及びハブ 14のュニッ ト 10に対して回転トルクが付与された場合、シャフト歯部 22側の点 P1とハブ歯部 28 側の点 P2とが所定距離だけオフセットしているため、前記ユニット 10に付与された応 力が前記点 P1と点 P2とにそれぞれ分散されることにより応力集中を緩和することが できる。
[0072] この結果、応力の集中を緩和して分散させることができるため、シャフト歯部 22とハ ブ歯部 28との係合部位に対する静的強度及び疲労強度を向上させることができる。
[0073] なお、テーパ部 30の立ち上がり角度 Θを緩やかに設定することにより、応力作用面 であるテーパ部 30の面積を増大させることができ、より一層応力集中が緩和される。
[0074] 前記テーパ部 230の立ち上がり角度 Θと応力緩和及び生産技術性との関係を図 2 6に示す。図 26から諒解されるように、前記テーパ部 230の立ち上がり角度 Θを 6度 一 65度に設定すると良好(〇印参照)であり、前記立ち上がり角度 Θを 10度一 30度 に設定すると最適(◎印参照)である。
[0075] 前記立ち上がり角度 Θを 4度に設定すると、応力の分散が不十分となり、一方、前 記立ち上がり角度 Θを 65度に設定すると後述する転造ラックによる廉価な転造成形 を使用することができなくなり、生産技術性が劣化するからである。
[0076] ここで、シャフト歯部 22及びハブ歯部 28にそれぞれテーパ部 230及び段差部 232 が形成されてレ、なレ、比較例に係る応力値の特性曲線 R (破線参照)と、点 P1及び点 P2がオフセットすることなく鉛直線上に一致して設定されるとともに、段差部 232が形 成された応力値の特性曲線 S (実線参照)を、それぞれ図 27に示す。
[0077] この場合、オフセットしていない特性曲線 Sでは、比較例に係る特性曲線 Rと比較し て応力値のピークが減少して応力の集中が緩和されているが、鉛直線上に一致する 点 P1及び点 P2の部位(図 27中のひ部分参照)に応力が集中して応力値が高くなつ ていることがわかる。
[0078] また、図 28の特性曲線 T (実線参照)は、図 24に示される構造からなり、シャフト歯 部 22及びハブ歯部 28にそれぞれテーパ部 230及び段差部 232を形成し、テーパ 部 230の起点である点 P1と段差部 232の起点である点 P2とを水平方向に沿って距 離 L3だけオフセットさせたときの応力値を示したものであり、オフセットしていない特 性曲線 S (図 27参照)と比較して、点 P1及び点 P2のオフセットした部位(図 28の β部 分)の応力値が、より一層緩和されていることが諒解される(図 27の α部分と図 28の i3部分とを比較対照)。
[0079] 次に、シャフト歯部 22側の点 P1とハブ歯部 28側の点 P2とが所定距離だけオフセ ットした状態における応力値の特性曲線(実線) Mと、前記点 P1と点 P2とがオフセッ トしていない、すなわち水平方向に沿った離間距離が零の状態における応力値の特 性曲線 (破線) Nとを図 29に示す。
[0080] この場合、特性曲線 M及び特性曲線 Nのオフセットの有無部分(図 29中の γ部分 参照)を比較すると、オフセットしていない特性曲線 Νに対してシャフト歯部側の起点 P1とハブ歯部側の起点 Ρ2とがオフセットした特性曲線 Μが緩やかな曲線となってお り、オフセットさせることにより径の変化部分における応力の集中が緩和されている。
[0081] さらに、図 30 図 32は、図 24の ΧΧΧ—ΧΧΧ線の部位、 ΧΧΧΙ—ΧΧΧΙ線の部位、 X XXII— XXXII線の部位における、シャフト 12とハブ 14とを組み付
けた際のシャフト歯部 22の谷部 22bとハブ歯部 28の山部 28aとの係合状態を示す 縦断面図である。その作用乃至効果は、第 1の実施の形態における図 12 図 14と 同一であるため、その詳細な説明を省略する。
[0082] なお、シャフト歯部 22をクラウユング形状とすることにより、入力される荷重の度合い に応じて荷重が伝達される領域 (応力値のピークポイント)が変化することは、図 2A、 図 2B及び図 10、図 11に示されるように、第 1の実施の形態と同一である。
[0083] 次に、本発明の第 4の実施の形態に係る動力伝達機構が適用されたシャフト及び ハブのユニット 300を図 33に示す。また、図 34は、シャフト歯部 22の谷部 22bとハブ 歯部 28の山部 28aとが係合した状態におけるシャフト 12の軸線方向に沿った一部 拡大縦断面図である。
[0084] シャフト歯部 22の谷部 22bは、図 34に示されるように、シャフトシャンク 24側に向か つて水平方向に所定距離だけ延在され、点 P1を起点としてハブ歯部 28側に向かつ て所定角度傾斜しながら膨出した段差部 332が形成されている。そして、この段差部 332は、点 P2を起点として水平方向に所定距離だけ延在してシャフトシャンク 24に 連続するように形成されている。換言すると、シャフト歯部 22は、谷部 22bにおける谷 部径 φ E1から段差部 332における谷部径 φ E2へと変化するように形成されている。
[0085] この場合、前記段差部 332は、例えば、傾斜面又は所定の曲率半径からなる円弧 状の曲面又は複合面等によって形成するとよい。
[0086] また、シャフト歯部 22の山部 22aの外径は、図 34—図 37に示されるように、軸線方 向に沿って一定で変化しないものと、図 38に示されるように、山部 22aの外径が点 P 1の近傍部位からシャフトシャンク 24側に向かって徐々に縮径(歯丈が短縮)するよう に変化するものとの両方が含まれる。前記山部 22aの外径をシャフトシャンク 24側に 向かって徐々に縮径させることにより、後述する転造ラックによる製造が容易となる。 また、回転トルクの伝達機能は低下しなレ、。なお、図 38中における記号 Hは、山部 2 2aの外径の変化(落ち込み)と対比するための水平線を示す。
[0087] 一方、ハブ歯部 28の山部 28aは、ハブ 14の軸線方向に沿って一定の外径 φ E3で 変化しないように形成されると共に、前記山部 30aと同様に、谷部 28bの内径も前記 ハブ 14の軸線方向に沿って一定で変化しないものとする。
[0088] 従って、シャフト歯部 22とハブ歯部 28とが係合したシャフト 12及びハブ 14のュニッ ト 300に対して回転トルクが付与された場合、前記ユニット 300に付与された応力が、 ハブ歯部 28におけるシャフト歯部 22の点 P1と対向する U1部分と、該シャフト歯部 2 2の段差部 332と対向する U2部分とにそれぞれ分散されることにより応力集中を緩 和することができる(図 34参照)。
[0089] この結果、応力の集中を緩和して分散させることができるため、シャフト歯部 22とハ ブ歯部 28との係合部位に対する静的強度及び疲労強度を向上させることができる。
[0090] また、図 35に示されるように、シャフト歯部 22の谷部 22bにおける点 Pl、点 P2'、点 P3を結んだ直角三角形の断面積を増大させ、点 P1及び点 P3を結ぶ線分 P13と点 P1及び点 P2'を結ぶ線分 P12'とがなす角度 Θ、すなわち、段差部 332の傾斜角度 Θを緩やかに設定することにより、前記段差部 332に形成された第 1テーパ部 334に よって応力集中がより一層緩和される。
[0091] 前記段差部 332の傾斜角度 Θと応力緩和及び生産技術性との関係を図 39に示す 。図 39から諒解されるように、前記傾斜角度 Θを 5度一 45度に設定すると良好(〇印 参照)であり、前記傾斜角度 θを 10度一 35度に設定すると最適(◎印参照)である。
[0092] 前記傾斜角度 Θを 3度に設定すると、応力分散効果を十分に発揮することができな レ、と共に、後述する転造ラックによる生産が困難であって不適である。一方、前記傾 斜角度 Θを 90度に設定すると、階段状の段差部 32に応力が過剰に集中するという 問題があると共に、後述する転造ラックの耐久性を劣化させるという他の問題がある。
[0093] 段差部 332がない通常のシャフト及びハブのスプライン嵌合では、シャフトシャンク の近傍部位に応力のピークポイントが発生する力 第 4の実施の形態では、シャフト 歯部 22に段差部 332を設けて点 P1と対向するハブ歯部 28にもある程度の応力が 集中するように構成し、シャフトシャンク 24側に集中する応力を分散させている。この 場合、シャフト歯部 22の段差部 332の傾斜角度 Θを、例えば、 90度のように大きく設 定しすぎると点 P1と対向するハブ歯部 28に応力が過剰に集中しすぎて応力分散( 応力緩和)効果を発揮することができない。従って、前記段差部 332の立ち上がり角 度である傾斜角度 Θを適正に設定することにより、シャフトシャンク 24の近傍に発生 する応力の集中を好適に分散させて、ピークポイントにおける応力値を低減すること ができる。
[0094] 一方、図 36に示されるように、上述したシャフト歯部 22に係合されるハブ 14aにお いて、水平方向に延在するハブ歯部 28の山部 28aに対して点 P4を立ち上がりの起 点とし、シャフトシャンク 24側に向かって所定角度で傾斜して延在する第 2テーパ部 336を形成するようにしてもよい。この第 2テーパ部 336は、シャフト歯部 22の段差部 332の起点となる点 P1及び第 1テーパ部 334と対向するように形成され、前記シャフ ト歯部 22から離間する方向に山部径 φ E4から φ E5へと拡径するように形成される。
[0095] なお、シャフト歯部 22における段差部 332の起点となる点 P1と、ハブ歯部 28にお ける第 2テーパ部 336の起点となる点 P4とをシャフト 12の軸線方向に沿って所定距 離だけオフセットさせるように設定してもよいし、前記点 P1と点 P4とを一致させるよう に設定してもよい。この場合、シャフト歯部 22側に形成された段差部 332とハブ歯部 28側に形成された第 2テーパ部 336の共働作用下に、前記ハブ歯部 28の第 2テー パ部 336に付与される応力が分散されて応力集中を緩和することができる。
[0096] このように第 2テーパ部 336が形成されたハブ歯部 28とシャフト歯部 22とが係合し たシャフト 12及びハブ 14aのユニット 300に対して回転トルクが付与された場合、該 ユニット 300に付与された応力が第 2テーパ部 336によってハブ歯部 28におけるシャ フト歯部 22の点 P1と対向する VI部分と、点 P2'と対向する V2部分とにそれぞれ分 散され、応力集中を緩和して応力値のピークを低減することができる(図 36参照)。そ の結果、ハブ歯部 28に形成された第 1テーパ部 334によってシャフト歯部 22とハブ 歯部 28との係合部位に対する静的強度及び疲労強度を向上させることができる。
[0097] さらにまた、図 37に示されるように、前記シャフト歯部 22に係合されるハブ 14bにお レヽて、水平方向に延在するハブ歯部 28の山部 28aに対して点 P5を立ち上がりの起 点としてシャフトシャンク 24側に向かって所定の曲率半径 Rで延在する円弧部 338を 形成するようにしてもよレ、。この円弧部 338は、シャフト歯部 22の段差部 332の起点 となる点 P1及び第 1テーパ部 334と対向するように形成され、前記シャフト歯部 22よ り離間する方向に窪んで形成されている。
[0098] なお、シャフト歯部 22における段差部 332の起点となる点 P1と、ハブ歯部 28にお ける円弧部 338の起点となる点 P5とをシャフト 12の軸線方向に沿って所定距離だけ オフセットさせるように設定してもよいし、前記点 P1と点 P5とを一致させるように設定 してもよレ、。この場合、シャフト歯部 22側に形成された段差部 332とハブ歯部 28側に 形成された円弧部 338の共働作用下に、前記ハブ歯部 28の円弧部 338に付与され る応力が分散されて応力集中を緩和することができる。 [0099] このように円弧部 338が形成されたハブ歯部 28とシャフト歯部 22とが係合したシャ フト 12及びハブ 14bのユニット 300に対して回転トルクが付与された場合、該ユニット 300に付与された応力が円弧部 338によってハブ歯部 28におけるシャフト歯部 22の 点 P1と対向する W1部分と、点 P2'と対向する W2部分とにそれぞれ分散され、応力 集中を緩和して応力値のピークを低減することができる(図 37参照)。その結果、ハ ブ歯部 28に形成された円弧部 338によってシャフト歯部 22とハブ歯部 28との係合 部位に対する静的強度及び疲労強度を向上させることができる。
[0100] ここで、シャフト歯部 22に段差部 332が形成されていない比較例に係る応力値の 特性曲!^ (破線参照)と、点 P1を起点としてシャフト歯部 22に段差部 332が形成さ れた場合の応力値の特性曲線 L (実線参照)を、それぞれ図 40に示す。特性曲!^と 特性曲線 Lとを比較すると、段差部 332を有する構造の特性曲線 Lでは、応力値のピ ークが減少して応力の集中が緩和されていることが諒解される。
[0101] また、図 41は、前記段差部 332の傾斜角度 Θを、前記特性曲線 Lと比較して緩や 力に設定したときの応力値の特性曲線 Mを示したものであり、前記傾斜角度 Θが緩 やかに設定された第 1テーパ部 334を形成することにより、前記第 1テーパ部 334に よって応力がより一層緩和されることが諒解される(図 40に示す特性曲線しの α部分 と図 41に示す特性曲線 Μの β部分とを比較参照)。
[0102] さらに、図 42—図 44は、図 34の XLII—XLII線の部位、 XLIII—XLIII線の部位、 X LIV— XLIV線の部位における、シャフト 12とハブ 14とを組み付けた際のシャフト歯部 22の谷部 22bとハブ歯部 28の山部 28aとの係合状態を示す縦断面図である。その 作用乃至効果は、第 1の実施の形態における図 12—図 14と同一であるため、その 詳細な説明を省略する。
[0103] 図 42—図 44に示されるシャフト歯部 22及びハブ歯部 28の歯形形状を、図 45に示 されるように、インボリユート歯形としてもよレ、。その際、シャフト歯部 22のシャフト歯 22 cとハブ歯部 28のハブ歯 28cとが、互いの基準ピッチ円直径 D上で接触した状態とな る。すなわち、ラック形工具等によってシャフト 12及びハブ 14に対して簡便に前記シ ャフト歯部 22及びハブ歯部 28を加工することができると共に、前記シャフト歯部 22と ハブ歯部 28を係合する際に円滑に係合させることができる。 [0104] なお、シャフト歯部 22をクラウニング形状とすることにより、入力される荷重の度合い に応じて荷重が伝達される領域 (応力値のピークポイント)が変化することは、図 2A、 図 2B及び図 10、図 11に示されるように、第 1の実施の形態と同一である。
[0105] 次に、シャフト歯部 22のスプライン歯 20の製造方法について説明する。
[0106] 図 46に示されるように、超硬材料によって略直線状に形成された上下一組の転造 ラック 40a、 40bの間に、前加工であるツールカ卩ェによって所定の形状に形成された 棒状の被加工物 42を揷入し、相互に対向する一組の転造ラック 40a、 40bによって 被力卩ェ物 42を押圧した状態において、図示しないァクチユエータの駆動作用下に前 記一組の転造ラック 40a、 40bを相互に反対方向(矢印方向)に変位させることにより 、被力卩ェ物 42の外周面に対してクラウユング形状を有するスプライン力卩ェが施される
[0107] このように転造成形を用いることにより、クラウユング形状を有するシャフト歯部 22の スプライン歯 20を簡便に成形することができる。なお、前記ツールカ卩ェによりシャフト 歯部 22のスプライン歯 20の歯先には、約 50 μ ΐη程度の深さ力 なる図示しないツー ル溝 (ツール目)が形成される。
[0108] また、転造成形を用いた場合、圧造 (鍛造)成形と比較して、成形サイクルが速ぐ 前記転造ラック 40a、 40b等の成形歯具の耐久性を向上させることができる。さらに、 転造成形では、転造ラック 40a、 40b等の成形歯を再研磨して再利用することが可能 である。従って、転造成形を用いた場合、圧造 (鍛造)成形と比較して、寿命、成形サ イタル、再利用等の点からコスト的に有利である。
[0109] ただし、転造成形の場合は歯先へ向かっての肉流れによって成形されるため、歯 先の断面形状は必ずしも均等でなレ、場合がある。

Claims

請求の範囲
シャフト(12)に形成されたシャフト歯部(22)と、前記シャフト(12)の外周側に配置 されたハブ(14)のハブ歯部(28)とが係合することにより、前記シャフト(12)及びハ ブ(14)間で相互にトルク伝達が可能に結合された機構において、
前記シャフト歯部(22)は、歯厚が変化したクラウニングからなる山部(22a)と、端部 からシャフトシャンク(24)側に向かって外径が変化する谷部(22b)とを有し、 前記ハブ歯部(28)は、歯厚が一定の直線状からなり且つ端部からシャフトシャンク (24)側に向かって内径が変化する山部(28a)と、軸線方向に沿って一定の内径か らなる谷部(28b)とを有することを特徴とするシャフト及びハブの動力伝達機構。 請求項 1記載の機構において、
前記シャフト歯部(22)の谷部(22b)の外径の変化点と、前記ハブ歯部(28)の山 部(28a)の内径の変化点とは、それぞれ軸線方向に沿って所定距離だけオフセット した位置に設定されることを特徴とするシャフト及びハブの動力伝達機構。
請求項 2記載の機構において、
前記シャフト歯部(22)の谷部(22b)には、ハブ歯部(28)側に向かって膨出する 第 1段差部(20)が形成され、前記ハブ歯部(28)の山部(28a)には、該シャフト歯部 (22)側と反対方向に窪んだ第 2段差部(32)が形成され、前記第 1段差部(30)の起 点(P1)と前記第 2段差部(32)の起点(P2)とがそれぞれ所定距離 (L4)だけオフセ ットした位置に設定されることを特徴とするシャフト及びハブの動力伝達機構。
請求項 3記載の機構において、
前記シャフト歯部(22)に形成された第 1段差部(30)の傾斜角度( Θ )は、 5度一 45 度に設定されることを特徴とするシャフト及びハブの動力伝達機構。
請求項 1記載の機構において、
前記シャフト歯部(22)とハブ歯部(28)との嚙合部位に付与される荷重の度合いに 対応して、主たる荷重伝達領域が異なるように設けられることを特徴とするシャフト及 びハブの動力伝達機構。
請求項 5記載の機構において、
前記荷重の度合いは、低荷重、中荷重及び高荷重を含み、前記低荷重、中荷重 及び高荷重の主たる各荷重伝達領域 (a、 b、 c)は、クラウユングトップ (PO)からシャ フトシャンク(24)側に向かって順に離間する方向に設定されることを特徴とするシャ フト及びハブの動力伝達機構。
請求項 1記載の機構において、
前記シャフト歯部(22)の谷部(22b)には、前記ハブ歯部(28)側に向かって所定 の曲率で延在する円弧部(130)が形成され、前記ハブ歯部(28)の山部(28a)には 、前記円弧部(130)に臨み該シャフト歯部(22)側と反対方向に窪んだ段差部(132 )が形成されることを特徴とするシャフト及びハブの動力伝達機構。
請求項 7記載の機構において、
前記シャフト歯部(22)の谷部(22b)に連続する円弧部(130)の起点(P1)と、前 記ハブ歯部(28)の山部(28a)に連続する段差部(132)の起点(P2)とは、それぞれ 所定距離だけオフセットした位置に設定されることを特徴とするシャフト及びハブの動 力伝達機構。
請求項 1記載の機構において、
前記シャフト歯部(22)の谷部(22b)には、ハブ歯部(28)側に向かって徐々に拡 径するテーパ部(230)が形成され、前記ハブ歯部(28)の山部(28a)には、前記テ ーパ部(230)に臨み該シャフト歯部(22)側と反対方向に窪んだ段差部(232)が形 成されることを特徴とするシャフト及びノヽブの動力伝達機構。
請求項 9記載の機構において、
前記テーパ部(230)の起点(P1)と前記段差部(232)の起点(P2)とがそれぞれ 所定距離だけオフセットした位置に設定されることを特徴とするシャフト及びハブの動 力伝達機構。
請求項 9記載の機構において、
前記シャフト歯部(22)に形成されたテーパ部(230)の立ち上がり角度( Θ )は、 6 度一 65度に設定されることを特徴とするシャフト及びハブの動力伝達機構。
請求項 1記載の機構において、
前記ハブ歯部(28)の山部(28a)には、前記シャフト歯部(22)から離間する方向に 向かって徐々に拡径するテーパ部(336)が形成されることを特徴とするシャフト及び ハブの動力伝達機構。
請求項 1記載の機構において、
前記ハブ歯部(28)の山部(28a)には、前記シャフト歯部(22)から離間する方向に 所定の曲率で窪んだ円弧部(338)が形成されることを特徴とするシャフト及びハブの 動力伝達機構。
請求項 1記載の機構において、
前記シャフト歯部(22)の山部(22a)は、軸線方向に沿った一定の外径に形成され ることを特徴とするシャフト及びハブの動力伝達機構。
請求項 1記載の機構において、
前記シャフト歯部(22)の山部(22a)は、軸線方向に沿って外径が変化するように 形成されることを特徴とするシャフト及びハブの動力伝達機構。
請求項 15記載の機構において、
前記シャフト歯部(22)の山部(22a)の外径は、シャフトシャンク(24)側に向かって 徐々に縮径するように形成されることを特徴とするシャフト及びハブの動力伝達機構 シャフト(12)に形成されたシャフト歯部(22)と、前記シャフト(12)の外周側に配置 されたハブ(14)のハブ歯部(28)とが係合することにより、前記シャフト(12)及びハ ブ(14)間で相互にトルク伝達が可能に結合された機構において、
前記シャフト歯部(22)は、歯厚が変化したクラウニングからなる山部(22a)と、前記 シャフト(12)の端部からシャフトシャンク(24)側に向かって外径が変化する谷部(22 b)とを有し、
前記ハブ歯部(28)は、歯厚が一定の直線状からなり、且つ、前記端部から前記シ ャフトシヤンク(24)側に向力 軸線方向に沿って一定の内径からなる山部(28a)と谷 部(28b)とを有することを特徴とするシャフト及びハブの動力伝達機構。
PCT/JP2004/011079 2003-08-07 2004-08-03 シャフト及びハブの動力伝達機構 WO2005015040A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/567,134 US7972078B2 (en) 2003-08-07 2004-08-03 Power transmission mechanism of shaft and hub
EP04748211.2A EP1653099B1 (en) 2003-08-07 2004-08-03 Power transmission mechanism of shaft and hub

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2003288918A JP4340494B2 (ja) 2003-08-07 2003-08-07 シャフト及びハブの動力伝達機構
JP2003-288924 2003-08-07
JP2003288906 2003-08-07
JP2003288924 2003-08-07
JP2003-288906 2003-08-07
JP2003-288918 2003-08-07
JP2004176647A JP4273044B2 (ja) 2004-06-15 2004-06-15 シャフト及びハブの動力伝達機構
JP2004176656A JP3636713B2 (ja) 2003-08-07 2004-06-15 シャフト及びハブの動力伝達機構
JP2004-176656 2004-06-15
JP2004-176647 2004-06-15

Publications (1)

Publication Number Publication Date
WO2005015040A1 true WO2005015040A1 (ja) 2005-02-17

Family

ID=34139871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/011079 WO2005015040A1 (ja) 2003-08-07 2004-08-03 シャフト及びハブの動力伝達機構

Country Status (4)

Country Link
US (1) US7972078B2 (ja)
EP (1) EP1653099B1 (ja)
TW (1) TWI304119B (ja)
WO (1) WO2005015040A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8079912B2 (en) 2006-09-11 2011-12-20 Ntn Corporation Power transmission spline
CN101267901B (zh) * 2005-07-21 2012-10-03 Gkn动力传动系统国际有限责任公司 轴-毂联接件的制造

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8142099B2 (en) * 2007-12-26 2012-03-27 Aisin Aw Co., Ltd. Automatic transmission
DE102009004407B4 (de) 2008-01-15 2023-02-23 Dana Automotive Systems Group, Llc Rohrelement mit einer Vielzahl von unterschiedlich großen Keilverzahnungen
GB2490114B (en) * 2011-04-18 2013-06-12 Rolls Royce Plc Rotational assembly
DE102011057010A1 (de) 2011-12-23 2013-06-27 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Welle-Nabe-Verbindung
CN105026779B (zh) 2013-03-25 2018-02-16 Ntn株式会社 动力传递轴以及花键加工方法
JP6320695B2 (ja) * 2013-07-16 2018-05-09 Ntn株式会社 車輪用軸受装置及びその組立方法
CA2921139A1 (en) 2013-09-05 2015-03-12 Airbus Operations Limited Landing gear drive system flexible interface
EP4215438A1 (en) 2013-09-05 2023-07-26 Airbus Operations Limited Landing gear drive system flexible interface
KR101459959B1 (ko) * 2013-10-17 2014-11-12 현대자동차주식회사 차량용 프로펠러 샤프트
JP6187453B2 (ja) * 2014-12-26 2017-08-30 株式会社豊田自動織機 減速機
US10072712B2 (en) * 2015-06-18 2018-09-11 GM Global Technology Operations LLC Shaft coupling arrangement
DE102016111029A1 (de) * 2016-06-16 2017-12-21 Thyssenkrupp Ag Zahnwelle und Verfahren zu ihrer Herstellung, Verfahren zur Herstellung einer Funktionswelle
US10975915B2 (en) * 2018-01-08 2021-04-13 Raytheon Technologies Corporation Assembly alignment handling damage tolerant spline
US11052937B2 (en) * 2018-01-19 2021-07-06 Steering Solutions Ip Holding Corporation Splined component assembly and method
DE102019117061A1 (de) * 2019-05-24 2020-11-26 Schaeffler Technologies AG & Co. KG Gewindetriebteil eines Gewindetriebs
DE102019117170B4 (de) * 2019-06-26 2023-01-12 Schaeffler Technologies AG & Co. KG Riemenspanner mit einer Pressfüge-Formschlussverbindung

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS3310508B1 (ja) * 1956-07-30 1958-12-06
FR2562969A1 (fr) 1984-04-11 1985-10-18 Peugeot Dispositif de liaison coulissante a cannelures et application de ce dispositif a un embrayage
JPH11514079A (ja) * 1997-05-31 1999-11-30 ジー・ケー・エヌ・オートモーティヴ・アクチェンゲゼルシャフト シャフト/ハブユニット
JP2000097244A (ja) * 1998-07-22 2000-04-04 Ntn Corp 動力伝達機構
JP2001287122A (ja) * 2000-04-07 2001-10-16 Honda Motor Co Ltd 等速ジョイント用スプラインシャフトの製造方法および嵌合構造
JP2001343023A (ja) * 2000-06-01 2001-12-14 Honda Motor Co Ltd 等速ジョイント用スプラインシャフトの嵌合構造

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB855282A (en) * 1957-09-04 1960-11-30 Dana Corp Improvements in or relating to structures comprising a shaft received in a recess ina recessed member
FR1581658A (ja) 1968-07-09 1969-09-19
FR2352209A1 (fr) * 1976-05-17 1977-12-16 Glaenzer Spicer Sa Perfectionnement aux accouplements a cannelures glissantes
DE2656946A1 (de) 1976-12-16 1978-06-29 Daimler Benz Ag Zahnwellenverbindung
JPS58113659A (ja) * 1981-12-26 1983-07-06 Toyota Motor Corp 自動車用歯車変速機における変速ギヤとシヤフトの固定構造
JP2904418B2 (ja) 1988-08-29 1999-06-14 株式会社ハーモニック・ドライブ・システムズ 撓み噛み合い式歯車装置のスプラインの歯形
JPH0332436A (ja) 1989-06-30 1991-02-13 Yamada Seisakusho:Kk クラウニングを有する歯車
JPH0369844A (ja) 1989-08-07 1991-03-26 Hitachi Powdered Metals Co Ltd 歯車
JP2551702Y2 (ja) 1991-03-29 1997-10-27 エヌティエヌ株式会社 等速ジョイントと駆動軸の連結構造
DE9116324U1 (ja) 1991-06-29 1992-08-27 Loehr & Bromkamp Gmbh, 6050 Offenbach, De
DE4229726C2 (de) 1992-09-05 1996-05-23 Gkn Automotive Ag Anordnung aus Antriebswelle und aufgeschobener Nabe
JP3052037B2 (ja) * 1993-07-22 2000-06-12 本田技研工業株式会社 スプライン結合構造
US5580183A (en) 1994-04-29 1996-12-03 United Technologies Corporation Gas turbine engine spline arrangement
DE4415033C1 (de) 1994-04-29 1995-08-10 Loehr & Bromkamp Gmbh Verbindung zur harmonischen Übertragung von Drehmoment
DE19513905C1 (de) * 1995-04-12 1996-06-20 Gkn Automotive Ag Drehfeste Verbindung
DE19523584A1 (de) 1995-06-29 1997-01-02 Zahnradfabrik Friedrichshafen Formschlüssige Wellen-Naben-Verbindung
JPH0942303A (ja) 1995-08-01 1997-02-10 Ntn Corp 等速自在継手
WO2000005514A1 (fr) 1998-07-22 2000-02-03 Ntn Corporation Mecanisme de transmission de puissance
FR2802255B1 (fr) 1999-12-14 2002-01-18 Peugeot Citroen Automobiles Sa Procede de fabrication d'un arbre cannele et arbre obtenu par ledit procede
JP4313014B2 (ja) 2002-09-30 2009-08-12 株式会社ジェイテクト シャフト及びその製造方法
JP2005069741A (ja) 2003-08-20 2005-03-17 Nippon Telegr & Teleph Corp <Ntt> 携帯型誘導装置および誘導システム
ATE407298T1 (de) * 2005-01-03 2008-09-15 Gkn Driveline Int Gmbh Wellen-naben-verbindung mit sicherungssystem

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS3310508B1 (ja) * 1956-07-30 1958-12-06
FR2562969A1 (fr) 1984-04-11 1985-10-18 Peugeot Dispositif de liaison coulissante a cannelures et application de ce dispositif a un embrayage
JPH11514079A (ja) * 1997-05-31 1999-11-30 ジー・ケー・エヌ・オートモーティヴ・アクチェンゲゼルシャフト シャフト/ハブユニット
US6142033A (en) 1997-05-31 2000-11-07 Beigang; Wolfgang Shaft-hub unit
JP2000097244A (ja) * 1998-07-22 2000-04-04 Ntn Corp 動力伝達機構
JP2001287122A (ja) * 2000-04-07 2001-10-16 Honda Motor Co Ltd 等速ジョイント用スプラインシャフトの製造方法および嵌合構造
JP2001343023A (ja) * 2000-06-01 2001-12-14 Honda Motor Co Ltd 等速ジョイント用スプラインシャフトの嵌合構造

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1653099A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101267901B (zh) * 2005-07-21 2012-10-03 Gkn动力传动系统国际有限责任公司 轴-毂联接件的制造
US8079912B2 (en) 2006-09-11 2011-12-20 Ntn Corporation Power transmission spline

Also Published As

Publication number Publication date
TWI304119B (en) 2008-12-11
EP1653099A1 (en) 2006-05-03
TW200510651A (en) 2005-03-16
EP1653099A4 (en) 2009-03-18
EP1653099B1 (en) 2014-12-31
US20080152424A1 (en) 2008-06-26
US7972078B2 (en) 2011-07-05

Similar Documents

Publication Publication Date Title
WO2005015040A1 (ja) シャフト及びハブの動力伝達機構
KR100309980B1 (ko) 샤프트/허브 유니트
CN101611233B (zh) 等速万向接头
JP2003004060A (ja) 継手及び動力伝達シャフト並びに継手の製造方法
WO2005038295A1 (ja) 動力伝達チェーン及びそれを用いた動力伝達装置
WO2005015041A1 (ja) シャフト及びハブの動力伝達機構
WO2008032626A1 (fr) Cannelure de transmission de puissance
EP3173646A1 (en) Torque-transmitting joint and electric power steering device
JP4340494B2 (ja) シャフト及びハブの動力伝達機構
JP4191878B2 (ja) 等速ジョイント用スプラインシャフトの嵌合構造
JP4245106B2 (ja) 等速ジョイント用スプラインシャフトの製造方法および嵌合構造
EP1533534A1 (en) Shaft hub connection for power transmission shaft.
JP6507209B2 (ja) 回転駆動力伝達機構
US20090186709A1 (en) Mechanism for Transmitting Power Between Shaft and Hub
JP2003211985A (ja) Frp製プロペラシャフト用継手
JP4042559B2 (ja) 塑性結合部品
JP4273050B2 (ja) シャフト及びハブの動力伝達機構
WO2010116883A1 (ja) ドライブシャフト用中間軸
JP4302008B2 (ja) シャフト及びハブの動力伝達機構
JP3636713B2 (ja) シャフト及びハブの動力伝達機構
JP4273044B2 (ja) シャフト及びハブの動力伝達機構
JP2005069475A (ja) シャフト及びハブの動力伝達機構
JP2007247771A (ja) トルク伝達機構
CN1875206A (zh) 动力传动链条的动力传动装置
JP2005069474A (ja) シャフト及びハブの動力伝達機構

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480022663.8

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004748211

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10567134

Country of ref document: US

Ref document number: 593/DELNP/2006

Country of ref document: IN

WWP Wipo information: published in national office

Ref document number: 2004748211

Country of ref document: EP