WO2004100293A1 - 負極活物質及びその製造方法、これを用いた非水電解質二次電池 - Google Patents

負極活物質及びその製造方法、これを用いた非水電解質二次電池 Download PDF

Info

Publication number
WO2004100293A1
WO2004100293A1 PCT/JP2004/006473 JP2004006473W WO2004100293A1 WO 2004100293 A1 WO2004100293 A1 WO 2004100293A1 JP 2004006473 W JP2004006473 W JP 2004006473W WO 2004100293 A1 WO2004100293 A1 WO 2004100293A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
active material
electrode active
less
aqueous electrolyte
Prior art date
Application number
PCT/JP2004/006473
Other languages
English (en)
French (fr)
Inventor
Satoshi Mizutani
Hiroshi Inoue
Original Assignee
Sony Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corporation filed Critical Sony Corporation
Priority to JP2005506037A priority Critical patent/JP4207957B2/ja
Priority to US10/519,898 priority patent/US7771876B2/en
Publication of WO2004100293A1 publication Critical patent/WO2004100293A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode active material made of, for example, an alloy-based material (including an intermetallic compound) capable of electrochemically reacting with lithium (L i), and more particularly to an improvement in its cycle characteristics. Furthermore, the present invention relates to a method for producing the same and a non-aqueous electrolyte secondary battery using the same. Background art
  • non-aqueous electrolyte secondary batteries for example, lithium ion secondary batteries
  • conventional aqueous electrolyte secondary batteries such as lead batteries and nickel cadmium batteries. Considerations are being made in various areas.
  • a carbon-based material such as non-graphitizable carbon or graphite having a relatively high capacity and good cycle characteristics is widely used.
  • a carbon-based material such as non-graphitizable carbon or graphite having a relatively high capacity and good cycle characteristics is widely used.
  • alloy materials that utilize the fact that certain metals are electrochemically alloyed with lithium and are reversibly formed and decomposed as higher capacity negative electrodes than carbon-based materials.
  • a high-capacity negative electrode using an Li-A1 alloy has been developed, and a high-capacity negative electrode made of a Si alloy has been developed (for example, US Pat. No. 4,950,566). Refer to the specification etc.).
  • the Li-A1 alloy or the Si alloy expands and contracts with charge and discharge, and the negative electrode becomes finer each time charge and discharge are repeated. Therefore, there is a serious problem that the cycle characteristics are extremely poor.
  • the present invention has been proposed in view of such a conventional situation, and has as its object to provide a negative electrode active material having a high discharge capacity and an excellent capacity retention rate during charge / discharge cycles. It is an object of the present invention to provide a manufacturing method thereof. Another object of the present invention is to provide a non-aqueous electrolyte secondary battery having a higher capacity and superior cycle characteristics than a non-aqueous electrolyte secondary battery using a graphite material for a negative electrode, for example.
  • the first negative electrode active material according to the present invention includes a metal element and a metalloid element, an element M which can be alloyed with lithium, and an element having an atomic number of 20 or less (however, hydrogen (H), lithium and rare metal). Alloys containing at least one element selected from R) It is a material having an element R content of 10% by weight or more and 50% by weight or less.
  • the second negative electrode active material according to the present invention contains tin (Sn) and at least one element R selected from elements having an atomic number of 20 or less (excluding hydrogen, lithium and a rare gas). It is an alloy material with a content of element R of 10% by weight or more and 50% by weight or less.
  • the method for producing a negative electrode active material according to the present invention comprises: an element M which can be alloyed with lithium among metal elements and metalloid elements; and an element having an atomic number of 20 or less (provided that hydrogen, lithium and rare gas are used).
  • the negative electrode active material is made of an alloy-based material containing at least one element R selected from the group consisting of a material containing the element M and a material containing the element R.
  • the method includes a step of synthesizing a negative electrode active material by a rowing method.
  • a first non-aqueous electrolyte secondary battery includes a non-aqueous electrolyte together with a positive electrode and a negative electrode, and the negative electrode includes an element M which can be alloyed with lithium among metal elements and metalloid elements; It contains an alloy material containing at least one element R selected from 20 or less elements (excluding hydrogen, lithium and rare gas), and the content of the element R in the alloy material is 10% by weight. % To 50% by weight.
  • the second non-aqueous electrolyte secondary battery according to the present invention includes a non-aqueous electrolyte together with a positive electrode and a negative electrode.
  • the negative electrode includes tin and an element having an atomic number of 20 or less (excluding hydrogen, lithium, and a rare gas. ), Containing an alloy-based material containing at least one element R selected from the group consisting of: and wherein the content of the element R in the alloy-based material is from 10% by weight to 50% by weight.
  • the content of the element R is set to 10% by weight or more, the crystallinity can be reduced or the amorphous material can be obtained.
  • the charge and discharge efficiency and cycle characteristics can be improved by smoothing out and in. Further, since the content of the element R is set to 50% by weight or less, a high capacity can be obtained.
  • the raw material containing the element M and the raw material containing the element R are synthesized by a mechanical alloying method.
  • the second negative electrode active material can be easily manufactured.
  • the first or second nonaqueous electrolyte secondary battery of the present invention since the first or second negative electrode active material of the present invention is used, a high capacity can be obtained and the charge / discharge efficiency can be improved. And the cycle characteristics can be improved.
  • FIG. 1 is a cross-sectional view illustrating a configuration of a coin-type battery manufactured in an example.
  • the negative electrode active material according to one embodiment of the present invention includes a metal element and a metalloid element, an element M that can be alloyed with lithium, and an element having an atomic number of 20 or less (however, hydrogen, lithium, and a rare gas
  • a special feature of this alloy-based material is that it has a low crystalline or amorphous structure by containing the element R. As a result, it is thought that the smooth flow of lithium in and out improves the charge / discharge efficiency and cycle life.
  • the element R may be any element as long as it has an atomic number of 20 or less excluding hydrogen, lithium, and a rare gas, as described above.
  • the ratio of the element R is desirably 50% or less by weight. If the proportion of the lithium-inactive element R exceeds the above range and is too large, there is a possibility that a capacity exceeding that of the conventional material may not be obtained. Conversely, if the ratio of the element R is too small, a sufficiently low crystalline or amorphous material cannot be obtained.
  • the ratio of the element is more desirably from 10% by weight to 30% by weight.
  • the element M preferably contains, for example, at least one of the elements of groups 11 to 15 and specifically contains silicon or tin (Sn) or both.
  • silicon or tin (Sn) or both since sufficient cycle characteristics cannot be obtained only with element M of tin or silicon, nickel (N i), copper (Cu), and iron (F e) '' At least one element selected from the group consisting of cobalt (Co), manganese ( ⁇ ), zinc ( ⁇ ), indium (In), and silver (Ag) is contained as an element M.
  • alloy-based materials include, for example, 20 Fe—75 Sn—5 B, 30 Co—60 Sn—10 C, 35 Cu—50 Sn—15 P, 30 Zn-50Sn-20A1 (each numerical value represents the ratio of each element by weight ratio).
  • the specific surface area of the negative electrode active material is preferably 1.0 m 2 Zg or more and 70 m 2 / g or less. If the specific surface area is less than 1.Om 2 , the contact with the electrolyte etc. becomes insufficient and it is difficult to secure a high capacity. Conversely, if the specific surface area exceeds 70 m 2 Zg, the capacity This is because a decrease in the retention rate is observed and the cycle characteristics are degraded.
  • the specific surface area is measured, for example, by the BET (Brunauer Emmett Teller) method using the trade name Hmmodel-1208 manufactured by Mountech.
  • the alloy-based material as the negative electrode active material contains a reaction phase that can react with lithium or the like. However, if the crystallinity of the reaction phase is too high, the capacity retention decreases.
  • an index of the crystallinity of the reaction phase for example, RAD-1 IC manufactured by Rigaku Co., Ltd. was obtained by X-ray diffraction analysis using a drawing speed of 1 ° / min and a specific X-ray as CuKo; The half width of the obtained diffraction peak is used as a reference. In this measurement, the half width of the diffraction peak corresponding to this reaction phase is preferably 0.5 ° or more at a diffraction angle of 20.
  • the capacity retention ratio can be ensured when the crystal is a low crystal that has a broad peak with a half width of 0.5 ° or more or is amorphous where a clear peak cannot be found, and the cycle characteristics are improved. Because. Conversely, if a sufficiently low-crystalline or amorphous material whose half-value width is less than 0.5 ° cannot be obtained, the capacity retention rate will decrease and the cycle characteristics will be insufficient. Become. More preferably, the half width is 1 ° or more, and further preferably, the half width is 5 ° or more.
  • the peak corresponding to the reaction phase capable of reacting with lithium It can be easily identified by comparing the X-ray diffraction charts before and after the electrochemical reaction with the polymer.
  • the negative electrode active material may be a crystalline intermetallic compound as long as the above conditions are satisfied, but it is preferably a low crystalline compound, and more preferably an amorphous compound.
  • the low crystalline or amorphous state can be determined using the half width of the corresponding peak as an index, but the crystallinity of the negative electrode active material itself can be determined. Can be determined by directly observing the crystal structure with a transmission electron microscope.
  • the above-described negative electrode active material is used as particles or fine particles, and the finer the particle size distribution, the better the characteristics can be obtained.
  • the median diameter is desirably 50 / zm or less, and more desirably 100 nm or more and 30 m or less.
  • the above-described negative electrode active material various melting methods may be used. However, in consideration of the crystallinity and the like of the obtained alloy-based material, it is preferable to produce the negative electrode active material by a mechanical alloying method.
  • the manufacturing device any device may be used as long as it uses this principle. Specifically, a planetary pole mill device, an attritor, or the like can be used.
  • elemental elements may be mixed and mechanical alloying may be performed.
  • an alloy in which some or all of the contained elements are alloyed is used.
  • mechanical alloying can provide better characteristics.
  • at least a part of an element other than the element R is alloyed in advance, and the element R is added to the alloy to form an alloy by a mechanical alloying method.
  • the raw material alloy may be in the form of powder or lump, and these are obtained by melting the mixed raw material in an electric furnace, high-frequency dielectric furnace, arc melting furnace, etc., and then solidifying it. Can be.
  • powders obtained by various atomizing methods such as gas atomizing and water atomizing and various rolling methods may be crushed and used.
  • the above-described negative electrode active material can be used for a negative electrode of a non-aqueous electrolyte secondary battery.
  • a non-aqueous electrolyte secondary battery includes a negative electrode containing a negative electrode active material, a positive electrode containing a positive electrode active material, and a non-aqueous electrolyte.
  • the negative electrode active material (alloy material) of the present invention is used as the negative electrode active material. Is used.
  • carbon materials such as pyrolytic carbons, coke, glassy carbons, fired organic polymer compounds, activated carbon, and carbon black are used for the negative electrode. You may use together as a negative electrode active material.
  • the negative electrode may include a material that does not contribute to charge and discharge. When the negative electrode is formed from such a material, a known binder or the like can be used.
  • non-aqueous electrolyte examples include a non-aqueous electrolyte in which a lithium salt is dissolved in a non-aqueous solvent, a solid electrolyte in which a lithium salt is contained, and a gel electrolyte in which an organic polymer is impregnated with a non-aqueous solvent and a lithium salt. Can be used.
  • an organic solvent and a lithium salt can be appropriately used in combination.
  • Any organic solvent can be used as long as it is used for a so-called lithium secondary battery, but, for example, propylene carbonate, ethylene carbonate, getyl carbonate, dimethyl carbonate, 1, 2 _ dimethoxyethane, 1,2-dietoxetane, aptyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolan, 4-methyl-1,3-dioxolan, getylether, sulfolane, methylsulfolane, Examples include acetonitrile, propionitrile, anisole, acetate, butyric ester, propionate and the like.
  • an inorganic solid electrolyte or a polymer solid electrolyte can be used as the solid electrolyte.
  • the inorganic solid electrolyte include lithium nitride and lithium iodide.
  • the polymer solid electrolyte is composed of an electrolyte salt and a polymer compound that dissolves the electrolyte salt.
  • the polymer compound include ether polymers such as polyethylene oxide and its crosslinked product, poly (methacrylate) ester, and acrylate polymers. Can be used alone or in the molecule as a copolymer or as a mixture.
  • the matrix polymer of the gel electrolyte various polymers can be used as long as the polymer absorbs the non-aqueous electrolyte and gels.
  • polyvinylidenefluor Fluoropolymers such as mouth-to-poly (vinylidenefluoride-co-hexafluoropropylene), ether-based high molecules such as polyethylene oxide and cross-linked products thereof, and polyacrylonitrile can be used.
  • a fluoropolymer In particular, from the viewpoint of oxidation-reduction stability, it is desirable to use a fluoropolymer.
  • ionic conductivity is imparted by including an electrolyte salt in the matrix polymer.
  • any one can be used as long as it is used for a lithium secondary battery.
  • L i C 1_Rei 4 L i As F 6, L i PF 6, L i BF 4) L i B (C 6 H 5) 4, CH 3 S0 3 L i, CF 3 S_ ⁇ 3 L i, L i C 1, L i B r, etc.
  • a metal oxide, metal sulfide, a specific polymer, or the like is used as the positive electrode active material, depending on the type of the intended battery, and a mixture obtained by mixing this with a known conductive agent and binder is collected. It can be produced by coating on the body.
  • the positive electrode active material for example, Li x Mo 2 (wherein, M represents one or more transition metals, and X varies depending on the charge / discharge state of the battery, and is usually 0.05 ⁇ x ⁇ 1.10.) And the like can be used.
  • the transition metal M constituting the lithium composite oxide is preferably cobalt, nickel, manganese or the like.
  • lithium ⁇ beam composite oxide L i C O_ ⁇ 2, L i N I_ ⁇ 2, L i x N i y C o -! Y 0 2 (wherein, x, y are Depending on the charge / discharge state of the battery, it is generally 0 ⁇ ⁇ 1, 0.7 ⁇ y ⁇ 1.02.), And a lithium manganese composite oxide having a spinel structure can be used. Since these lithium composite oxides can obtain a high voltage, they are positive electrode active materials excellent in energy density. Further, T i S 2, Mo S 2, Nb S e 2, V 2 ⁇ metal sulfides such as 5 Ah Rui containing no lithium is also possible to use an oxide. Further, as the positive electrode active material, a plurality of these may be mixed and used.
  • all the lithium present in the battery system does not necessarily need to be supplied from the positive electrode or the negative electrode, and may be electrochemically doped into the positive electrode or the negative electrode in the electrode or battery manufacturing process. .
  • the shape of the battery produced by the present invention is not particularly limited.
  • the battery may have any shape such as a cylindrical shape, a square shape, a coin shape, and a button shape. Wear.
  • the size is arbitrary, and for example, it can be applied to a large battery for an electric vehicle and the like.
  • a test electrode was prepared as follows. 46% by weight of the above-mentioned negative electrode material and 46% by weight of graphite were mixed to form an active material, 2% by weight of a conductive agent and 6% by weight of vinylidene fluoride as a binder were mixed, and n-methylpyrrolidone was added. A slurry was used as a solvent. This was applied onto a copper foil current collector, dried and punched into a pellet having a diameter of 15.2 mm.
  • the coin-type battery fabricated has a diameter of about 20 mm and a thickness of about 1.6 mm.
  • Fig. 1 shows the structure of the manufactured coin-type battery.
  • the positive electrode can 2 to which the prepared test electrode 1 is attached and the negative electrode can 4 to which the counter electrode 3 is attached are overlapped via a separator 5, and the surroundings are caulked via a gasket 6. In this way, it is sealed.
  • the negative electrode active material of the present invention is originally used for a negative electrode.
  • electrochemical reaction with lithium was carried out using lithium metal as a counter electrode and the negative electrode active material of the present invention as a test electrode (positive electrode) to evaluate the cycle characteristics.
  • a coin-type battery was manufactured in the same manner as in Example 1 except that the type of the element M combined with tin was changed.
  • a negative electrode active material containing the same element M as in Examples 1 to 8 but not containing element R was prepared, and a coin-type battery was produced in the same manner as in Example 1 except for the above.
  • the addition of element R reduces the crystallinity of the reaction phase, and the half-width of the peak corresponding to the reaction phase capable of reacting with lithium in X-ray diffraction analysis is 0.5 ° or more. .
  • the specific surface area is also 1. O m 2 / g or more.
  • a coin-type battery was produced in the same manner as in Example 1 except that the composition was the same as that in Example 2 and the specific surface area was 70 m 2 Zg.
  • a coin-type battery was produced in the same manner as in Example 1 except that the composition was the same as that in Example 2 and the specific surface area was 80 m 2 .
  • Table 2 shows the results of evaluating the cycle characteristics of these coin-type batteries.
  • Comparative Example 9 in which the specific surface area exceeded 70 m 2 / g, a decrease in the capacity retention rate was observed.
  • Example 10 0 to 2 3 A coin-type battery was manufactured in the same manner as in Example 1 except that the type of the element R combined with the element M was changed. In Examples 10 to 14, iron and tin were used as the element M. In Examples 15 to L9, cobalt and tin were used as the element M. In Examples 20 to 23, The element M added with indium was used.
  • Table 3 shows the results of evaluating the cycle characteristics of these coin-type batteries. In all of the examples, the capacity retention ratio was maintained at a high level.
  • a coin-type battery was fabricated in the same manner as in Example 1, except that the mixing ratio between the element M and the element R was changed. Table 4 shows the results of evaluating the cycle characteristics of these coin-type batteries. In Example 24 in which the ratio of the element R exceeded 50% by weight and in Example 29 in which the ratio of the element R was less than 10% by weight, a decrease in the capacity retention ratio was observed.
  • Examples 30 to 34-A coin-type battery was produced in the same manner as in Example 1 except that the half width of the peak corresponding to the reaction phase was variously changed. In Example 34, it was impossible to measure the half width because it was sufficiently amorphous. Table 5 shows the results of evaluating the cycle characteristics of these coin-type batteries. The capacity retention rate gradually increases as the half width increases.
  • a coin-type battery was produced in the same manner as in Example 1 except that the median diameter was changed variously. Table 6 shows the results of evaluating the cycle characteristics of these coin-type batteries. If the median diameter is too large or too small, the capacity retention will decrease.
  • a coin-type battery was manufactured in the same manner as in Example 1 except that an alloy-based material was manufactured by an atomizing method.
  • Comparative Example 1 0, 1 1
  • a negative electrode active material containing no element R was produced by the atomizing method, and a coin-type battery was produced in the same manner as in Example 1 except for the above.
  • Table 7 shows the results of evaluating the cycle characteristics of these coin batteries. It was also found that low crystallization by the addition of element R was effective even when produced by the atomization method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Powder Metallurgy (AREA)

Abstract

高い放電容量を有し、しかも充放電サイクル時の容量維持率に優れた負極活物質を提供する。Liと合金化が可能な元素Mと、原子番号20以下の元素(H,Liおよび希ガスを除く)から選ばれる少なくとも1種からなる元素Rとを含む合金系材料よりなる。元素Mとしては例えば、Snと、Ni,Cu,Fe,Co,Mn,Zn,ln,Agの中から選ばれる少なくとも1種とを含む。元素Rとしては、B,C,Al,Si,P,Sなどである。元素Rにより低結晶若しくは非晶質構造をすることができ、Liの出入りスムースとなる。元素Rの含有量は10重量%~50重量%が好ましい。

Description

明細書 負極活物質及びその製造方法、 これを用いた非水電解質二次電池 技術分野
本発明は、 例えばリチウム (L i ) と電気化学反応可能な合金系材料 (金属間 化合物を含む) からなる負極活物質に関するものであり、 特に、 そのサイクル特 性の改良に関する。 さらには、 その製造方法、 およびそれを用いた非水電解質二 次電池に関する。 背景技術
近年、 カメラ一体型 V T R (ビデオテープレコーダ) , 携帯電話あるいはノー トパソコンなどのポータブル電子機器が多く登場し、 その小型軽量化が図られて いる。 これらの電子機器のポータブル電源として用いられている電池、 特に二次 電池はキーデバィスとして、 エネルギー密度の向上を図る研究開発が活発に進め られている。 中でも、 非水電解質二次電池 (例えば、 リチウムイオン二次電池) は、 従来の水系電解液二次電池である鉛電池、 ニッケルカドミウム電池と比較し て大きなエネルギー密度が得られるため、 その改良に関する検討が各方面で行わ れている。
リチウムイオン二次電池に使用される負極材料としては、 比較的高容量を示し 良好なサイクル特性を有する難黒鉛化性炭素あるいは黒鉛などの炭素系材料が広 く用いられている。 ただし、 近年の高容量化の要求を考えると、 炭素系材料の更 なる高容量化が課題となっている。
このような背景から、 炭素化原料と作成条件とを選ぶことにより炭素系材料で 高容量を達成する技術が開発されている (例えば、 特開平 8— 3 1 5 8 2 5号公 報参照) 。 しかしながら、 かかる炭素系材料を用いた場合には、 負極放電電位が 対リチウムで 0 . 8 V〜 1 . 0 Vであり、 電池を構成したときの電池放電電圧が 低くなることから、 電池エネルギー密度の点では大きな向上が見込めない。 さら には、 充放電曲線形状にヒステリシスが大きく、 各充放電サイクルでのエネルギ 一効率が低いという欠点もある。
一方で、 炭素系材料を上回る高容量負極として、 ある種の金属がリチウムと電 気化学的に合金化し、 これが可逆的に生成 ·分解することを応用した合金材料に 関する研究も進められている。 例えば、 L i一 A 1合金を用いた高容量負極が開 発され、 さらには、 S i合金からなる高容量負極が開発されている (例えば、 米 国特許第 4 9 5 0 5 6 6号明細書等を参照) 。
しかしながら、 L i - A 1合金あるいは S i合金は、 充放電に伴って膨張収縮 し、 充放電を繰り返すたびに負極が微粉化するので、 サイクル特性が極めて悪い という大きな問題がある。
そこで、 サイクル特性を改善する手法として、 合金系材料の表面を導電性の高 い材料で被覆することが検討されている (例えば、 特開 2 0 0 0— 1 7 3 6 6 9 号公報、 特開 2 0 0 0— 1 7 3 6 7 0号公報、 特開 2 0 0 1— 6 8 0 9 6号公報 を参照) 。 これら特許文献に記載される技術では、 導電性材料を溶解した有機溶 媒中に浸漬したり、 あるいはハイブリタィゼーシヨンなどのメカノケミカル反応 を用いた手法により導電性材料を合金表面に被覆することで、 サイクル特性の改 善を図ることが試みられている。
しかしながら、 これらの手法を用いた場合においても、 サイクル特性改善の効 果は十分とは言えず、 合金材料における高容量負極の特長を十分に活かしきれて いないのが実状である。 発明の開示
本発明は、 かかる従来の実状に鑑みて提案されたものであり、 高い放電容量を 有し、 しかも充放電サイクル時の容量維持率に優れた負極活物質を提供すること を目的とし、 さらにはその製造方法を提供することを目的とする。 また、 本発明 は、 例えば負極に黒鉛材料を用いた非水電解質二次電池に比べ、 高容量でサイク ル特性に優れた非水電解質二次電池を提供することを目的とする。
本発明による第 1の負極活物質は、 金属元素および半金属元素のうちリチウム と合金化が可能な元素 Mと、 原子番号 2 0以下の元素 (但し、 水素 (H) , リチ ゥムおよび希ガスを除く) から選ばれる少なくとも 1種の元素 Rとを含む合金系 材料であり、 元素 Rの含有量が 1 0重量%以上 5 0重量%以下のものである。 本発明による第 2の負極活物質は、 スズ (S n ) と、 原子番号 2 0以下の元素 (但し、 水素, リチウムおよび希ガスを除く) から選ばれる少なくとも 1種の元 素 Rとを含む合金系材料であり、 元素 Rの含有量が 1 0重量%以上 5 0重量%以 下のものである。
本発明による負極活物質の製造方法は、 金属元素および半金属元素のうちリチ ゥムと合金化が可能な元素 Mと、 原子番号 2 0以下の元素 (但し、 水素, リチウ ムおよび希ガスを除く) から選ばれる少なくとも 1種の元素 Rとを含む合金系材 料よりなる負極活物質を製造するものであって、 元素 Mを含む原料と、 元素 Rを 含む原料とを用いて、 メカニカルァロイング法により負極活物質を合成する工程 を含むものである。
本発明による第 1の非水電解質二次電池は、 正極および負極と共に、 非水電解 質を備え、 負極は、 金属元素および半金属元素のうちリチウムと合金化が可能な 元素 Mと、 原子番号 2 0以下の元素 (但し、 水素, リチウムおよび希ガスを除く ) から選ばれる少なくとも 1種の元素 Rとを含む合金系材料を含有し、 合金系材 料における元素 Rの含有量は 1 0重量%以上 5 0重量%以下のものである。 本発明による第 2の非水電解質二次電池は、 正極および負極と共に、 非水電 解質を備え、 負極は、 スズと、 原子番号 2 0以下の元素 (但し、 水素, リチウム および希ガスを除く) から選ばれる少なくとも 1種の元素 Rとを含む合金系材料 を含有し、 合金系材料における元素 Rの含有量は 1 0重量%以上 5 0重量%以下 のものである。
本発明の第 1または第 2の負極活物質によれば、 元素 Rの含有量を 1 0重量% 以上とするようにしたので、 結晶性を低くもしくは非晶質とすることができ、 リ チウムの出入りをスムースにして、 充放電効率およびサイクル特性を向上させる ことができる。 また、 元素 Rの含有量を 5 0重量%以下とするようにしたので、 高い容量を得ることができる。
本発明の負極活物質の製造方法によれば、 元素 Mを含む原料と、 元素 Rを含む 原料とを用いて、 メカニカルァロイング法により合成するようにしたので、 本発 明の第 1または第 2の負極活物質を容易に製造することができる。 本発明の第 1または第 2の非水電解質二次電池によれば、 本発明の第 1または 第 2の負極活物質を用いるようにしたので、 高容量を得ることができると共に、 充放電効率およびサイクル特性を向上させることができる。 図面の簡単な説明
第 1図は、 実施例で作製したコイン型電池の構成を示す断面図である。 発明を実施するための最良の形態 ' 以下、 本発明の実施の形態について、 図面を参照して詳細に説明する。
本発明の一実施の形態に係る負極活物質は、 金属元素および半金属元素のうち リチウムと合金化が可能な元素 Mと、 原子番号 2 0以下の元素 (但し、 水素, リ チウムおよび希ガスを除く) から選ばれる少なくとも 1種の元素 Rとを含む合金 系材料である。 なお、 元素 Mと元素 Rとの組み合わせにおいて、 元素 Mと元素 R とが同一の元素である場合は除くものとする。 この合金系材料の特徵は、 元素 R を含有することにより、 低結晶、 若しくは非晶質な構造を有することである。 こ れによりリチウムの出入りをスムースにし、 充放電の効率とサイクル寿命の向上 を果たしているものと考えられる。
具体的には、 元素 Rとしては、 前記の通り水素, リチウム, 希ガスを除く原子 番号 2 0以下のものであれば如何なるものであってもよいが、 望ましくは、 ホウ 素 (B ) , 炭素 (C ) , アルミニウム (A 1 ) , 珪素 (S i ) , リン (P ) , 硫 黄 (S ) 等を挙げることができる。 この元素 Rの割合は、 重量比で 5 0 %以下で あることが望ましい。 リチウム不活性な元素 Rの割合が前記範囲を超えて多すぎ ると、 従来材料を上回る容量が得られなくなる虞れがある。 逆に、 元素 Rの割合 が少なすぎると、 十分に低結晶、 若しくは非晶質なものが得られない。 元素 の 割合としては、 さらに望ましくは 1 0重量%以上 3 0重量%以下である。
元素 Mについては、 例えば 1 1族から 1 5族までの元素のうちの少なくとも 1 種を含むことが好ましく、 具体的には珪素あるいはスズ (S n ) またはそれらの 両方を含むことが望ましい。 また、 元素 Mがスズ、 珪素のみでは十分なサイクル 特性が得られないことから、 さらにニッケル (N i ) , 銅 (C u ) , 鉄 (F e ) ' コバルト (C o) , マンガン (Μη) , 亜鉛 (Ζ η) , インジウム ( I n) , 銀 (Ag) の中から選ばれる少なくとも 1種を元素 Mとして含み、 これらとスズ
(または珪素) とを含む混合物、 若しくは化合物とすることが望ましい。 また、 低結晶化の目的から、 上記の元素以外での元素で 1 1族から 1 5族に属する元素 を 1種以上含むものであってもよい。
このような合金系材料の具体例としては、 例えば 20 F e— 7 5 S n— 5 B, 30 C o- 60 S n- 1 0 C, 35 C u— 50 S n— 1 5 P , 30 Z n- 50 S n— 20A 1 (数値は、 いずれも各元素の割合を重量比で表す。 ) 等を挙げるこ とができる。
負極活物質としては、 このような組成を有する合金系材料の粉体、 あるいは微 粒子を使用する。 負極活物質の比表面積は、 1. 0m2 Zg以上、 70m2 /g 以下であることが好ましい。 比表面積が 1. Om2 未満であると、 電解液等 との接触が不十分なものとなって、 高容量を確保することが難しく、 逆に比表面 積が 70m2 Zgを超えると、 容量維持率の低下が見られ、 サイクル特性が劣化 してしまうからである。 なお、 比表面積の測定は、 例えば Mountech社製、 商品名 Hmmodel-1208 を用いて BET (Brunauer Emmet t Teller) 法により行う。
また、 この負極活物質である合金系材料は、 リチウムなどと反応し得る反応相 を含んでいるが、 この反応相の結晶性が高すぎると容量維持率が低下する。 本発 明では、 この反応相の結晶性の指標として、 例えば Rigaku社製 RAD- 1 ICを用い、 揷引速度を 1 ° /m i n、 特定 X線を CuKo;線とした X線回折分析により得ら れる回折ピークの半値幅を基準とする。 この測定において、 この反応相に対応す る回折ピークの半値幅は、 回折角 20で 0. 5° 以上であることが好ましい。 半 値幅が 0. 5° 以上であるようなブロードなピークとなる低結晶、 あるいは明瞭 なピークが見出せないような非晶質のときに容量維持率を確保することができ、 サイクル特性が向上するからである。 逆に、 この半値幅が 0. 5° 未満であるよ うな十分に低結晶若しくは非晶質なものが得られない場合には、 容量維持率が低 下し、 サイクル特性が不十分なものとなる。 より好ましくは、 この半値幅が 1 ° 以上、 さらに好ましくは半値幅が 5 ° 以上である。
X線回折分析におけるリチウムと反応し得る反応相に対応するピークは、 リチ ゥムとの電気化学的反応の前後における X線回折チャートを比較することにより 容易に特定することができる。 リチウムとの電気化学的反応の後に変化したピー クがリチウムと反応し得る反応相に対応するピークである。 通常、 反応相のピー クは、 2 0 = 3 0 ° 〜 6 0 ° の間に見られる。
この負極活物質は、 前記条件を満たしていれば結晶性の金属間化合物であって も良いが、 低結晶の化合物であることが好ましく、 非晶質の化合物であることが より好ましい。 ここでいう低結晶、 あるいは非晶質は、 前述のリチウムと反応し 得る反応相の場合には対応するピークの半値幅を指標として判定することができ るが、 負極活物質自体の結晶性については、 結晶組織を透過型電子顕微鏡により 直接観察することによって判定することができる。
上述の負極活物質は、 粒体あるいは微粒子として用いられるが、 その粒度分布 については、 細かいものの方が良好な特性が得られる。 粒度分布は、 望ましくは メジアン径が 5 0 /z m以下であるが、 さらに望ましくは 1 0 0 n m以上、 3 0 m以下である。
上述の負極活物質の製造方法としては、 各種溶融法を用いてもよいが、 得られ る合金系材料の結晶性等を考慮すると、 メカニカルァロイング法により作製する ことが望ましい。 製造装置としては、 この原理を用いた装置であれば、 如何なる ものを用いてもよい。 具体的には遊星ポールミル装置やアトライター等を使用す ることができる。
また、 合金化する際には、 元素の単体を混合してメカニカルァロイングを行つ てもよいが、 例えば含有元素の一部、 若しくは全てが合金化しているものを用い 、 これに対してメカニカルァロイングを行った方がより優れた特性のものを得る ことができる。 最も好ましくは、 元素 R以外の元素の少なくとも一部を予め合金 化しておき、 これに元素 Rを加えてメカニカルァロイング法により合金化するこ とである。 なお、 原料である合金の形態は粉体であっても塊状であってもよく、 これらは混合原料を電気炉、 高周波誘電炉、 アーク溶解炉等で溶解し、 その後凝 固させることで得ることができる。 粉体として得るためには、 ガスアトマイズ、 水ァトマイズ等の各種アトマイズ法や各種ロール法で得られたものを粉砕して用 いてもよい。 上述の負極活物質は、 非水電解質二次電池の負極に用いることができる。 非水 電解質二次電池は、 負極活物質を含有する負極と、 正極活物質を含有する正極と 、 非水電解質とを備えるが、 この負極活物質として本発明の負極活物質 (合金系 材料) を用いる。 このとさ、 負極には、 上記の合金系材料の他、 熱分解炭素類、 コ一クス、 ガラス状炭素類、 有機高分子化合物焼成体、 活性炭、 力一ボンブラッ ク類等の炭素質材料を負極活物質として併用してもよい。 また、 負極は、 充放電 に寄与しない材料を含んでいてもよい。 このような材料から負極を形成する場合 には、 公知の結着剤等を用いることが可能である。
非水電解質としては、 例えば、 非水溶媒にリチウム塩を溶解させた非水電解液 、 リチウム塩を含有させた固体電解質、 有機高分子に非水溶媒とリチウム塩を含 浸させたゲル状電解質のいずれも用いることができる。
非水電解液は、 例えば、 有機溶媒とリチウム塩とを適宜組み合わせて用いるこ とが可能である。 有機溶媒は、 いわゆるリチウム二次電池に用いられるものであ ればいずれも使用可能であるが、 例示するならば、 プロピレンカーボネート、 ェ チレン力一ポネート、 ジェチルカーポネート、 ジメチルカ一ポネート、 1, 2 _ ジメトキシェタン、 1, 2—ジエトキシェタン、 ァ一プチロラクトン、 テトラヒ ドロフラン、 2—メチルテトラヒドロフラン、 1, 3 —ジォキゾラン、 4—メチ ル一 1 , 3 —ジォキゾラン、 ジェチルェ一テル、 スルホラン、 メチルスルホラン 、 ァセトニトリル、 プロピオ二トリル、 ァニソール、 酢酸エステル、 酪酸エステ ル、 プロピオン酸エステル等を挙げることができる。
固体電解質としては、 例えばリチウムィオン導電性を有する材料であれば無機 固体電解質、 高分子固体電解質のいずれも用いることができる。 無機固体電解質 としては、 窒化リチウム、 よう化リチウム等が挙げられる。 高分子固体電解質は 、 電解質塩とそれを溶解する高分子化合物からなり、 高分子化合物としては、 ポ リエチレンオキサイドやその架橋体等のエーテル系高分子、 ポリ (メタクリレー ト) エステル系、 ァクリレート系等を単独あるいは分子中に共重合、 または混合 して用いることができる。
ゲル状電解質のマトリックス高分子としては、 上記非水電解液を吸収してゲル 化するものであれば種々の高分子が利用できる。 例えば、 ポリビニリデンフルォ 口ライドゃポリ (ビニリデンフルォロライドー c o—へキサフルォロプロピレン ) 等のフッ素系高分子、 ポリエチレンオキサイドやその架橋体等のエーテル系高 分子、 ポリアクリロニトリル等を使用できる。 特に、 酸化還元安定性の観点から 、 フッ素系高分子を用いることが望ましい。 ゲル状電解質では、 上記マトリック ス高分子に電解質塩を含有させることによりイオン導電性を付与する。
上記各電解質に用いられるリチウム塩は、 リチウム二次電池に用いられるもの であれば、 いずれも使用可能である。 例えば L i C 1〇4, L i As F6, L i P F6, L i B F4) L i B (C6H5) 4, CH3S03L i , CF3S〇3L i, L i C 1 , L i B r等である。
正極は、 目的とする電池の種類に応じて、 金属酸化物、 金属硫化物、 また特定 のポリマー等を正極活物質とし、 これを公知の導電剤及び結着剤と混合した合剤 を集電体上に塗着することにより作製することができる。 正極活物質としては、 例えば、 L i xMo2 (式中、 Mは一種以上の遷移金属を表し、 Xは電池の充放電 状態によって異なり、 通常 0.05≤x≤ 1.1 0である。 ) を主体とするリチウ ム複合酸化物等を使用することができる。 このリチウム複合酸化物を構成する遷 移金属 Mとしてはコバルト, ニッケル, マンガン等が好ましい。 このようなリチ ゥム複合酸化物の具体例としては、 L i C o〇2, L i N i〇2, L i xN i yC o !-y02 (式中、 x, yは電池の充放電状態によって異なり、 通常 0< χ< 1, 0 . 7 < y< 1. 02である。 ) 、 スピネル型構造を有するリチウムマンガン複合 酸化物等を挙げることができる。 これらリチウム複合酸化物は、 高電圧を得るこ とが可能であることから、 エネルギー密度的に優れた正極活物質となる。 また、 リチウムを含有しない T i S2, Mo S2, Nb S e 2, V25等の金属硫化物あ るいは酸化物を用いることも可能である。 さらに正極活物質として、 これらの中 から複数種を混合して使用してもよい。
なお、 電池系内に存在するリチウムは、 必ずしも全て正極あるいは負極から供 給される必要はなく、 電極あるいは電池の製造工程で、 電気化学的に正極あるい は負極にド一プされてもよい。
本発明により作製される電池は、 形状について特に限定されることはなく、 例 えば、 円筒型、 角型、 コイン型、 ポタン型等、 任意の形状の電池とすることがで きる。 また、 その大きさも任意であり、 例えば電気自動車用大型電池等にも適用 することが可能である。
以下、 本発明の具体的な実施例について、 実験結果に基づいて説明する。 (元素 Rの添加効果の確認実験)
実施例 1
粉末状の各原材料を乾式混合した後、 直径 9 mmの鋼玉約 4 0 0 gを伊藤製作 所社製の遊星ポールミルの反応容器中にセットした。 原料である元素 M ( =銅、 スズ) と元素 R ( =ホウ素) の混合比 M: R = 8 : 2 (重量比) とし、 全体の投 入粉末量を 1 0 gとした。 秤量した粉末を反応容器中にセットした後、 反応容器 中をアルゴン雰囲気に置換し、 回転速度を毎分 2 5 0回転にセットした。 運転時 間は 1 0分運転、 1 0分休止を繰り返して、 運転時間の合計が 2 0時間になるよ うにした。 メカニカルァロイング反応終了後、 反応容器を室温まで冷却して合成 された粉末を取り出し、 2 0 0メッシュのふるいを通して粗粉を取り除き、 負極 活物質 (合金系材料) を得た。
次に試験用電極の作製を次のようにして行った。 上述の負極材料 4 6重量%と 黒鉛 4 6重量%を混合して活物質とし、 これに導電剤 2重量%、 結着剤としてポ リフッ化ビニリデン 6重量%を混合し、 n—メチルピロリ ドンを溶媒としてスラ リー状にした。 銅箔集電体上にこれを塗布、 乾燥して直径 1 5 . 2 mmのペレツ 卜に打ち抜いた。
得られた試験用電極の対極として金属リチウムを直径 1 5 . 5 mmに打ち抜い たものを用い、 セパレ一夕を挟んでコイン型電池とした。 電解液は、 エチレン力 一ポネ一ト, プロピレンカーボネート, ジメチルカ一ポネートの混合溶媒に: L i P F 6 を電解質塩として溶解させたものを用いた。
作製したコイン型電池は、 直径が約 2 0 mm、 厚みが約 1 . 6 mmである。 第 1図に、 作製したコイン型電池の構成を示す。 このコイン型電池は、 作製した試 験極 1を貼り付けた正極缶 2と、 対極 3を貼り付けた負極缶 4とをセパレー夕 5 を介して重ね合わせ、 ガスケット 6を介して周囲をかしめることにより封止して なるものである。
なお、 本発明の負極活物質は、 本来負極に用いるものであるが、 前記コイン型 電池においては、 金属リチウムを対極とし、 本発明の負極活物質を試験極 (正極 ) としてリチウムとの電気化学反応を行い、 サイクル特性を評価した。
実施例 2〜 8
元素 Mにおいて、 スズと組み合わせる元素の種類を変え、 他は実施例 1と同様 にしてコイン型電池を作製した。
比較例 1〜 8
実施例 1 ~ 8と同様の元素 Mを含み、 元素 Rを含まない負極活物質を調製し、 他は実施例 1と同様にコイン型電池を作製した。
これらコイン型電池のサイクル特性を評価した。 サイクル特性は、 1サイクル 目の容量に対する 2 0サイクル目の維持率をもって評価することとした。 結果を 表 1に示す。
いずれの組成においても、 元素 Rを加えることで反応相の結晶性が低下し、 X 線回折分析においてリチウムと反応し得る反応相に対応するピークの半値幅が 0 . 5 ° 以上となっている。 また、 比表面積も 1 . O m 2 / g以上である。 その結 果、 容量維持率が 8 0 %以上の高いレベルに維持されていることがわかる。 元素 Rを含まない各比較例では、 前記ピークの半値幅が 0 . 5 ° 未満であり、 容量維 持率も低い。
(比表面積に関する検討)
次に、 負極活物質である合金系材料の比表面積に関する検討を行った。
実施例 9
先の実施例 2と同様の組成とし、 比表面積 7 0 m2 Z gとして実施例 1と同様 にコイン型電池を作製した。
比較例 9
先の実施例 2と同様の組成とし、 比表面積 8 0 m2 として実施例 1と同様 にコイン型電池を作製した。
これらコイン型電池のサイクル特性を評価した結果を表 2に示す。 比表面積が 7 0 m2 / gを超えた比較例 9では、 容量維持率の低下が見られた。
(元素 Rに関する検討)
実施例 1 0 ~ 2 3 元素 Mと組み合わせる元素 Rの種類を変え、 他は実施例 1と同様にコイン型電 池を作製した。 なお、 実施例 1 0〜 1 4では、 元素 Mとして、 鉄, スズを用い、 実施例 1 5〜: L 9では、 元素 Mとしてコバル卜, スズを用い、 実施例 2 0〜 2 3 では、 元素 Mとしてインジウムを加えたものを用いた。
これらコイン型電池のサイクル特性を評価した結果を表 3に示す。 いずれの実 施例においても、 容量維持率が高レベルに維持されていた。
(元素 Mと元素 Rとの混合比に関する検討)
実施例 2 4 ~ 2 9
元素 Mと元素 Rとの混合比を変え、 他は実施例 1と同様にコイン型電池を作製 した。 これらコイン型電池のサイクル特性を評価した結果を表 4に示す。 元素 R の比率が 5 0重量%を超える実施例 2 4や、 元素 Rの比率が 1 0重量%未満であ る実施例 2 9では、 容量維持率の低下が見られた。
(半値幅に関する検討)
実施例 3 0〜 3 4 - 反応相に対応するピークの半値幅を種々変更し、 他は実施例 1と同様にコイン 型電池を作製した。 なお、 実施例 3 4については、 十分に非晶質であるために半 値幅の計測が不可能であつた。 これらコィン型電池のサイクル特性を評価した結 果を表 5に示す。 半値幅が大きくなるに従って次第に容量維持率が向上している
(メジアン径に関する検討)
実施例 3 5 ~ 4 1
メジアン径を種々変更し、 他は実施例 1と同様にコイン型電池を作製した。 こ れらコイン型電池のサイクル特性を評価した結果を表 6に示す。 メジアン径が大 きすぎたり小さすぎたりする場合には、 容量維持率の低下がみられる。
(アトマイズ法による作製)
実施例 4 2 , 4 3
合金系材料をァ卜マイズ法により作製し、 他は実施例 1と同様にコイン型電池 を作製した。
比較例 1 0 , 1 1 元素 Rを含まない負極活物質をアトマイズ法により作製し、 他は実施例 1と同 様にコイン型電池を作製した。
これらコイン型電池のサイクル特性を評価した結果を表 7に示す。 アトマイズ 法で作製した場合にも、 元素 Rの添加による低結晶化が有効であることがわかつ た。
なお、 以上の各実施例においては、 本発明の効果をリチウム金属を対極とする コイン型セルを用いて確認したが、 同様の効果は円筒型電池でも確認することが できた。
Figure imgf000015_0001
urn
£Lt900/t00Zd£/13d £6Ζ00ΐ請 Z: OAV 16 Z 9 S'T 8S画
Z6 z 9 3Ί ZZ画牽
06 z 9 9Ί 0Tini9US8SO008 IZ画
16 z 9 9Ί Onui9USSS3viOS OZ囊
88 9 9 S'T ex m
S8 9 9 9Ί 81闘
^8 9 9 9Ί LI画
S8 9 9 9'T 9T醒牽
98 9 9 9 91圏
98 01 9 9Ί S0SUS8
A8 01 9 9Ί 21闘牽
98 0ΐ Q 9Ί zi m^
68 OT 9 S'T II画第
LS OT 9 S'l οΐ画
% m ri
¾ ; ^ 襲 '
( ε峯
Figure imgf000016_0001
( s峯)
Figure imgf000016_0002
£6Z00I請 OAV (表 4 )
Figure imgf000017_0001
(表 5 ) 比表面積 半値幅 メジアン径 維持率 組成 m2/g μ m. % 実施例 30 36Fe54SnlOC 2.0 0.5 2 80 実施例 31 36Fe54SnlOC 2.0 1 2 85 実施例 32 36Fe54SnlOC 2.0 5 2 90 実施例 33 36Fe54SnlOC 10 25 0.1 94 実施例 34 36Fe54SnlOC 60 0.1 97
Figure imgf000018_0001
d
Figure imgf000018_0002
(9拏)
9T
£L 900/ 00ZdT/lDd £6Z00I請 OAV

Claims

請求の範囲
1. 金属元素および半金属元素のうちリチウム (L i) と合金化が可能な元素 M と、 原子番号 20以下の元素 (但し、 水素 (H) , リチウムおよび希ガスを除く ) から選ばれる少なくとも 1種の元素 Rとを含む合金系材料であり、
前記元素 Rの含有量が 1 0重量%以上 50重量%以下である
ことを特徴とする負極活物質。
2. リチウムとの反応相を含み、 この反応相の X線回折分析により得られる回折 ピークの半値幅は 0. 5° 以上であることを特徴とする請求の範囲第 1項記載の 負極活物質。
3. 前記元素 Rとして、 ホウ素 (B) , 炭素 (C) , アルミニウム (A 1 ) , 珪 素 (S 1 ) , リン (P) および硫黄 (S) の中から選ばれる少なくとも 1種を含 むことを特徴とする請求の範囲第 1項記載の負極活物質。
4. 前記元素 Mとしてスズ (S n) を含むと共に、 更に、 ニッケル (N i ) , 銅 (C u) , 鉄 (F e) , コバルト (C o) , マンガン (Μη) , 亜鉛 (Z n) , インジウム (I n) および銀 (Ag) の中から選ばれる少なくとも 1種を含むこ とを特徴とする請求の範囲第 1項記載の負極活物質。
5. 比表面積が 1. 0m2 Zg以上、 7 Om2 以下であることを特徴とする 請求の範囲第 1項記載の負極活物質。
6. メジアン径が 50 以下であることを特徴とする請求の範囲第 1項記載の 負極活物質。
7. スズ (S n) と、 原子番号 20以下の元素 (但し、 水素 (H) , リチウムお よび希ガスを除く) から選ばれる少なくとも 1種の元素 Rとを含む合金系材料で あり、
前記元素 Rの含有量が 1 0重量%以上 50重量%以下である
ことを特徴とする負極活物質。
8. X線回折分析により 0. 5° 以上の半値幅を有する回折ピークが得られるこ とを特徴とする請求の範囲第 7項記載の負極活物質。
9. 前記元素 Rとして、 ホウ素 (B) , 炭素 (C) , アルミニウム (A 1 ) , 珪 ' 素 (S i) , リン (P) および硫黄 (S) の中から選ばれる少なくとも 1種を含 むことを特徴とする請求の範囲第 7項記載の負極活物質。
1 0. 更に、 ニッケル (N i ) , 銅 (C u) , 鉄 (F e) , コバルト (C o) , マンガン (Μη) , 亜鉛 (Ζ η) , インジウム ( I n) およぴ銀 (Ag) の中か ら選ばれる少なぐとも 1種を含むことを特徴とする請求の範囲第 7項記載の負極 活物質。
1 1. 比表面積が 1. Om2 Zg以上、 7 Om2 /g以下であることを特徴とす る請求の範囲第 7項記載の負極活物質。
1 2. メジアン径が 50 im以下であることを特徴とする請求の範囲第 7項記載 の負極活物質。
1 3. 金属元素および半金属元素のうちリチウム (L i ) と合金化が可能な元素 と、 原子番号 2 0以下の元素 (但し、 水素 (H) , リチウムおよび希ガスを除 く) から選ばれる少なくとも 1種の元素 Rとを含む合金系材料よりなる負極活物 質の製造方法であって、
前記元素 Mを含む原料と、 前記元素 Rを含む原料とを用いて、 メカニカルァロ イング法により負極活物質を合成する工程を含むことを特徴とする負極活物質の 製造方法。
14. 前記元素 Mはスズ (S n) であることを特徴とする請求の範囲第 1 3項記 載の負極活物質の製造方法。
1 5. メカニカルァロイング法により負極活物質を合成する際に、 更に、 ニッケ ル (N i) , 銅 (Cu) , 鉄 (F e) , コバルト (Co) , マンガン (Mn) , 亜鉛 (Ζ η) , インジウム (I n) および銀 (Ag) の中から選ばれる少なくと も 1種を含む原料を用いることを特徴とする請求の範囲第 14項記載の負極活物 質の製造方法。
1 6. スズを含む原料として、 スズと、 ニッケル, 銅, 鉄, コバルト, マンガン , 亜鉛, インジウムおよび銀の中から選ばれる少なくとも 1種とを含む合金を用 いることを特徴とする請求の範囲第 14項記載の負極活物質の製造方法。
1 7. 正極および負極と共に、 非水電解質を備え、
前記負極は、 金属元素および半金属元素のうちリチウム (L i) と合金化が可 能な元素 Mと、 原子番号 20以下の元素 (但し、 水素 (H) , リチウムおよび希 ガスを除く) から選ばれる少なくとも 1種の元素 Rとを含む合金系材料を含有し 前記合金系材料における前記元素 Rの含有量は 1 0重量%以上 50重量%以下 である
ことを特徴とする非水電解質二次電池。
1 8. 前記合金系材料はリチウムとの反応相を含み、 この反応相の X線回折分析 により得られる回折ピークの半値幅は 0. 5° 以上であることを特徴とする請求 の範囲第 1 7項記載の非水電解質二次電池。
1 9. 前記合金系材料は、 前記元素 Rとして、 ホウ素 (B) , 炭素 (C) , アル ミニゥム (A 1 ) , 珪素 (S i) , リン (P) および硫黄 (S) の中から選ばれ る少なくとも 1種を含むことを特徴とする請求の範囲第 1 7項記載の非水電解質 二次電池。
20. 前記合金系材料は、 前記元素 Mとしてスズ (S n) を含むと共に、 更に、 ニッケル (N i ) , 銅 (C u) , 鉄 (F e) , コバルト (C o) , マンガン (M n) , 亜鉛 (Ζ η) , インジウム (I n) および銀 (Ag) の中から選ばれる少 なくとも 1種を含むことを特徴とする請求の範囲第 1 7項記載の非水電解質二次 電池。
2 1. 前記合金系材料は、 比表面積が 1. Om2 /g以上、 70m2 Zg以下で あることを特徴とする請求の範囲第 1 7項記載の非水電解質二次電池。
22. 前記合金系材料は、 メジアン径が 50 /xm以下であることを特徴とする請 求の範囲第 1 7項記載の非水電解質二次電池。
23. 正極および負極と共に、 非水電解質を備え、
前記負極は、 スズ (S n) と、 原子番号 20以下の元素 (但し、 水素 (H) , リチウムおよび希ガスを除く) から選ばれる少なくとも 1種の元素 Rとを含む合 金系材料を含有し、
前記合金系材料における前記元素 Rの含有量は 1 0重量%以上 50重量%以下 である
ことを特徴とする非水電解質二次電池。
24. 前記合金系材料は、 X線回折分析により 0. 5° 以上の半値幅を有する回 折ピークが得られることを特徴とする請求の範囲第 23項記載の非水電解質二次 電池。
25. 前記合金系材料は、 前記元素 Rとして、 ホウ素 (B) , 炭素 (C) , アル ミニゥム (A 1 ) , 珪素 (S i ) , リン (P) および硫黄 (S) の中から選ばれ る少なくとも 1種を含むことを特徴とする請求の範囲第 23記載の非水電解質二 次電池。 '
26. 前記合金系材料は、 更に、 ニッケル (N i ) , 銅 (Cu) , 鉄 (F e) , コバルト (C o) , マンガン (Mn) , 亜鉛 (Z n) , インジウム ( I n) およ び銀 (Ag) の中から選ばれる少なくとも 1種を含むことを特徴とする請求の範 囲第 23記載の非水電解質二次電池。
27. 前記合金系材料は、 比表面積が 1. Om2 Zg以上、 70m2 以下で あることを特徴とする請求の範囲第 23記載の非水電解質二次電池。
28. 前記合金系材料は、 メジアン径が 50 以下であることを特徴とする請 求の範囲第 23記載の非水電解質二次電池。
PCT/JP2004/006473 2003-05-09 2004-05-07 負極活物質及びその製造方法、これを用いた非水電解質二次電池 WO2004100293A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005506037A JP4207957B2 (ja) 2003-05-09 2004-05-07 負極活物質及びその製造方法、これを用いた非水電解質二次電池
US10/519,898 US7771876B2 (en) 2003-05-09 2004-05-07 Anode active material method of manufacturing the same and nonaqueous electrolyte secondary battery using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003131234 2003-05-09
JP2003-131234 2003-05-09

Publications (1)

Publication Number Publication Date
WO2004100293A1 true WO2004100293A1 (ja) 2004-11-18

Family

ID=33432122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/006473 WO2004100293A1 (ja) 2003-05-09 2004-05-07 負極活物質及びその製造方法、これを用いた非水電解質二次電池

Country Status (6)

Country Link
US (1) US7771876B2 (ja)
JP (1) JP4207957B2 (ja)
KR (1) KR20060004597A (ja)
CN (1) CN100492727C (ja)
TW (1) TWI276239B (ja)
WO (1) WO2004100293A1 (ja)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006128051A (ja) * 2004-09-30 2006-05-18 Sony Corp 負極活物質およびそれを用いた電池
JP2006134682A (ja) * 2004-11-05 2006-05-25 Sony Corp 負極および電池、並びにそれらの製造方法
JP2006134673A (ja) * 2004-11-04 2006-05-25 Sony Corp 負極活物質およびそれを用いた電池
EP1667273A1 (en) 2004-12-01 2006-06-07 Sony Corporation Battery
JP2006261072A (ja) * 2005-03-18 2006-09-28 Sony Corp 負極活物質および電池
US7771876B2 (en) 2003-05-09 2010-08-10 Sony Corporation Anode active material method of manufacturing the same and nonaqueous electrolyte secondary battery using the same
US8003243B2 (en) * 2004-11-08 2011-08-23 Sony Corporation Spirally wound secondary battery with uneven termination end portions
WO2012017999A1 (ja) 2010-08-05 2012-02-09 和光純薬工業株式会社 非水系電解液及びそれを用いた非水系電解液電池
WO2012017998A1 (ja) 2010-08-05 2012-02-09 和光純薬工業株式会社 非水系電解液、その製造法、及び該電解液を用いた非水系電解液電池
JP2013134906A (ja) * 2011-12-27 2013-07-08 Nissan Motor Co Ltd 電気デバイス用負極活物質
WO2017208944A1 (ja) 2016-05-30 2017-12-07 セントラル硝子株式会社 非水系電解液及びそれを用いた非水系電解液電池
WO2018190304A1 (ja) 2017-04-10 2018-10-18 セントラル硝子株式会社 ホスホリルイミド塩の製造方法、該塩を含む非水電解液の製造方法及び非水二次電池の製造方法
US10186733B2 (en) 2015-01-23 2019-01-22 Central Glass Co., Ltd. Electrolytic solution for nonaqueous electrolytic solution secondary batteries and nonaqueous electrolytic solution secondary battery
WO2019054417A1 (ja) 2017-09-12 2019-03-21 セントラル硝子株式会社 非水電解液用添加剤、非水電解液電池用電解液、及び非水電解液電池
WO2019054418A1 (ja) 2017-09-12 2019-03-21 セントラル硝子株式会社 非水電解液用添加剤、非水電解液、及び非水電解液電池
WO2019111983A1 (ja) 2017-12-06 2019-06-13 セントラル硝子株式会社 非水電解液電池用電解液及びそれを用いた非水電解液電池
WO2019117101A1 (ja) 2017-12-12 2019-06-20 セントラル硝子株式会社 非水電解液電池用電解液及びそれを用いた非水電解液電池
JP2019164972A (ja) * 2018-03-20 2019-09-26 株式会社Gsユアサ 負極活物質、その製造方法、負極及び非水電解質蓄電素子
US10454139B2 (en) 2015-01-23 2019-10-22 Central Glass Co., Ltd. Electrolytic solution for nonaqueous electrolytic solution secondary batteries and nonaqueous electrolytic solution secondary battery
WO2020036222A1 (ja) 2018-08-16 2020-02-20 セントラル硝子株式会社 非水系電解液、及び非水系電解液二次電池
WO2020246520A1 (ja) 2019-06-05 2020-12-10 セントラル硝子株式会社 非水電解液
WO2020246522A1 (ja) 2019-06-05 2020-12-10 セントラル硝子株式会社 非水電解液及び非水電解液電池
WO2020246521A1 (ja) 2019-06-05 2020-12-10 セントラル硝子株式会社 非水電解液
WO2021006302A1 (ja) 2019-07-08 2021-01-14 セントラル硝子株式会社 非水電解液、及びこれを用いた非水電解液電池
WO2021006238A1 (ja) 2019-07-09 2021-01-14 セントラル硝子株式会社 非水系電解液、及び非水系電解液二次電池
US11101499B2 (en) 2016-07-06 2021-08-24 Central Glass Company Limited Nonaqueous electrolytic solution and nonaqueous electrolytic solution secondary battery
US11114693B2 (en) 2015-08-12 2021-09-07 Central Glass Company, Ltd. Electrolytic solution for nonaqueous electrolytic solution secondary batteries and nonaqueous electrolytic solution secondary battery
WO2022050284A1 (ja) 2020-09-03 2022-03-10 セントラル硝子株式会社 非水電解液、及び非水電解液電池
WO2022244046A1 (ja) 2021-05-17 2022-11-24 セントラル硝子株式会社 非水系電解液及びそれを用いた非水系電解液二次電池
WO2023042871A1 (ja) 2021-09-17 2023-03-23 セントラル硝子株式会社 非水溶液、保持方法、及び、非水電池
EP4235898A2 (en) 2015-12-22 2023-08-30 Central Glass Company, Limited Electrolyte for non-aqueous electrolyte cell, and non-aqueous electrolyte cell in which same is used

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4051686B2 (ja) * 2004-09-30 2008-02-27 ソニー株式会社 負極活物質およびそれを用いた電池
TWI306319B (en) * 2004-09-30 2009-02-11 Sony Corp Anode active material and battery using the same
JP2007128842A (ja) * 2005-05-19 2007-05-24 Sony Corp 負極活物質および電池
US7906238B2 (en) 2005-12-23 2011-03-15 3M Innovative Properties Company Silicon-containing alloys useful as electrodes for lithium-ion batteries
CN100401559C (zh) * 2006-07-13 2008-07-09 上海交通大学 一种锂离子电池用复合负极材料的制备方法
KR100814329B1 (ko) * 2006-10-09 2008-03-18 한국전기연구원 음극 활물질. 그 제조방법 및 이를 구비한 리튬이차전지
US7875388B2 (en) * 2007-02-06 2011-01-25 3M Innovative Properties Company Electrodes including polyacrylate binders and methods of making and using the same
JP5177361B2 (ja) * 2007-07-23 2013-04-03 ソニー株式会社 二次電池用負極および二次電池
KR100922282B1 (ko) * 2007-10-25 2009-10-15 재단법인서울대학교산학협력재단 복합체, 그 제조 방법, 상기 복합체를 포함하는 이차 전지및 그 이용 방법
JP4626679B2 (ja) * 2008-06-23 2011-02-09 ソニー株式会社 負極活物質および二次電池
CN102449823B (zh) * 2009-05-28 2015-05-13 德克萨斯大学系统董事会 用于锂离子电池的新型组合阳极材料
US8137841B2 (en) * 2009-08-31 2012-03-20 3M Innovative Properties Company Cathode compositions for lithium-ion electrochemical cells
DE102009056756B4 (de) 2009-12-04 2020-10-15 Schott Ag Material für Batterie-Elektroden, dieses enthaltende Batterie-Elektroden sowie Batterien mit diesen Elektroden und Verfahren zu deren Herstellung
CN103348508B (zh) 2011-02-18 2016-05-18 3M创新有限公司 复合粒子,其制备方法,以及包括所述复合粒子的物品
WO2012170240A1 (en) 2011-06-07 2012-12-13 3M Innovative Properties Company Lithium- ion electrochemical cells including fluorocarbon electrolyte additives
JP5475934B1 (ja) 2012-07-06 2014-04-16 東レ株式会社 リチウムイオン二次電池用負極材料、リチウムイオン二次電池用複合負極材料、リチウムイオン二次電池負極用樹脂組成物、リチウムイオン二次電池用負極およびリチウムイオン二次電池
CN111628161B (zh) * 2012-08-27 2023-05-05 日本制铁株式会社 负极活性物质材料
US20190088932A1 (en) * 2015-06-23 2019-03-21 Nanyang Technological University Electrode, battery cell and battery cell arrangement
CN109560247B (zh) 2017-09-26 2021-02-23 宁德新能源科技有限公司 锂离子电池及其负极极片
US11217788B2 (en) * 2019-04-16 2022-01-04 Board Of Trustees Of Northern Illinois University Doped lithium anode, battery having a doped lithium anode, and methods of use thereof
CN114503307B (zh) * 2019-09-30 2024-05-31 松下知识产权经营株式会社 非水电解质二次电池用负极活性物质、和非水电解质二次电池

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11102699A (ja) * 1997-09-26 1999-04-13 Asahi Chem Ind Co Ltd リチウム二次電池及びそれに用いる負極
JP2000311681A (ja) * 1998-09-18 2000-11-07 Canon Inc 二次電池用負極電極材、電極構造体、二次電池、及びこれらの製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4950566A (en) 1988-10-24 1990-08-21 Huggins Robert A Metal silicide electrode in lithium cells
JP3002114B2 (ja) 1995-05-15 2000-01-24 鐘紡株式会社 電池用電極の製造方法
JP4487326B2 (ja) 1998-12-02 2010-06-23 パナソニック株式会社 非水電解質二次電池の充電方法
JP4487325B2 (ja) 1998-12-02 2010-06-23 パナソニック株式会社 非水電解質二次電池の充電方法
JP4177529B2 (ja) 1999-08-30 2008-11-05 松下電器産業株式会社 非水電解質二次電池用負極、および非水電解質二次電池
KR20060004597A (ko) 2003-05-09 2006-01-12 소니 가부시키가이샤 부극 활물질 및 그 제조 방법, 이것을 이용한 비수 전해질2차 전지

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11102699A (ja) * 1997-09-26 1999-04-13 Asahi Chem Ind Co Ltd リチウム二次電池及びそれに用いる負極
JP2000311681A (ja) * 1998-09-18 2000-11-07 Canon Inc 二次電池用負極電極材、電極構造体、二次電池、及びこれらの製造方法

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7771876B2 (en) 2003-05-09 2010-08-10 Sony Corporation Anode active material method of manufacturing the same and nonaqueous electrolyte secondary battery using the same
JP2006128051A (ja) * 2004-09-30 2006-05-18 Sony Corp 負極活物質およびそれを用いた電池
JP2006134673A (ja) * 2004-11-04 2006-05-25 Sony Corp 負極活物質およびそれを用いた電池
JP4613584B2 (ja) * 2004-11-04 2011-01-19 ソニー株式会社 負極活物質およびそれを用いた電池
JP2006134682A (ja) * 2004-11-05 2006-05-25 Sony Corp 負極および電池、並びにそれらの製造方法
US8003243B2 (en) * 2004-11-08 2011-08-23 Sony Corporation Spirally wound secondary battery with uneven termination end portions
US9263740B2 (en) 2004-12-01 2016-02-16 Sony Corporation Battery anode containing CoSnC material
EP1667273A1 (en) 2004-12-01 2006-06-07 Sony Corporation Battery
CN100456551C (zh) * 2004-12-01 2009-01-28 索尼株式会社 电池
JP2006261072A (ja) * 2005-03-18 2006-09-28 Sony Corp 負極活物質および電池
WO2012017998A1 (ja) 2010-08-05 2012-02-09 和光純薬工業株式会社 非水系電解液、その製造法、及び該電解液を用いた非水系電解液電池
WO2012017999A1 (ja) 2010-08-05 2012-02-09 和光純薬工業株式会社 非水系電解液及びそれを用いた非水系電解液電池
JP2013134906A (ja) * 2011-12-27 2013-07-08 Nissan Motor Co Ltd 電気デバイス用負極活物質
US10186733B2 (en) 2015-01-23 2019-01-22 Central Glass Co., Ltd. Electrolytic solution for nonaqueous electrolytic solution secondary batteries and nonaqueous electrolytic solution secondary battery
US10454139B2 (en) 2015-01-23 2019-10-22 Central Glass Co., Ltd. Electrolytic solution for nonaqueous electrolytic solution secondary batteries and nonaqueous electrolytic solution secondary battery
US11114693B2 (en) 2015-08-12 2021-09-07 Central Glass Company, Ltd. Electrolytic solution for nonaqueous electrolytic solution secondary batteries and nonaqueous electrolytic solution secondary battery
EP4235898A2 (en) 2015-12-22 2023-08-30 Central Glass Company, Limited Electrolyte for non-aqueous electrolyte cell, and non-aqueous electrolyte cell in which same is used
WO2017208944A1 (ja) 2016-05-30 2017-12-07 セントラル硝子株式会社 非水系電解液及びそれを用いた非水系電解液電池
US11101499B2 (en) 2016-07-06 2021-08-24 Central Glass Company Limited Nonaqueous electrolytic solution and nonaqueous electrolytic solution secondary battery
WO2018190304A1 (ja) 2017-04-10 2018-10-18 セントラル硝子株式会社 ホスホリルイミド塩の製造方法、該塩を含む非水電解液の製造方法及び非水二次電池の製造方法
WO2019054417A1 (ja) 2017-09-12 2019-03-21 セントラル硝子株式会社 非水電解液用添加剤、非水電解液電池用電解液、及び非水電解液電池
WO2019054418A1 (ja) 2017-09-12 2019-03-21 セントラル硝子株式会社 非水電解液用添加剤、非水電解液、及び非水電解液電池
EP4455154A2 (en) 2017-09-12 2024-10-30 Central Glass Company, Limited Additive for non-aqueous electrolyte, electrolyte for non-aqueous-electrolyte cell, and non-aqueous-electrolyte cell
WO2019111983A1 (ja) 2017-12-06 2019-06-13 セントラル硝子株式会社 非水電解液電池用電解液及びそれを用いた非水電解液電池
WO2019117101A1 (ja) 2017-12-12 2019-06-20 セントラル硝子株式会社 非水電解液電池用電解液及びそれを用いた非水電解液電池
JP7163629B2 (ja) 2018-03-20 2022-11-01 株式会社Gsユアサ 負極活物質、その製造方法、負極及び非水電解質蓄電素子
JP2019164972A (ja) * 2018-03-20 2019-09-26 株式会社Gsユアサ 負極活物質、その製造方法、負極及び非水電解質蓄電素子
WO2020036222A1 (ja) 2018-08-16 2020-02-20 セントラル硝子株式会社 非水系電解液、及び非水系電解液二次電池
WO2020246522A1 (ja) 2019-06-05 2020-12-10 セントラル硝子株式会社 非水電解液及び非水電解液電池
WO2020246521A1 (ja) 2019-06-05 2020-12-10 セントラル硝子株式会社 非水電解液
WO2020246520A1 (ja) 2019-06-05 2020-12-10 セントラル硝子株式会社 非水電解液
WO2021006302A1 (ja) 2019-07-08 2021-01-14 セントラル硝子株式会社 非水電解液、及びこれを用いた非水電解液電池
WO2021006238A1 (ja) 2019-07-09 2021-01-14 セントラル硝子株式会社 非水系電解液、及び非水系電解液二次電池
WO2022050284A1 (ja) 2020-09-03 2022-03-10 セントラル硝子株式会社 非水電解液、及び非水電解液電池
WO2022244046A1 (ja) 2021-05-17 2022-11-24 セントラル硝子株式会社 非水系電解液及びそれを用いた非水系電解液二次電池
WO2023042871A1 (ja) 2021-09-17 2023-03-23 セントラル硝子株式会社 非水溶液、保持方法、及び、非水電池

Also Published As

Publication number Publication date
TWI276239B (en) 2007-03-11
KR20060004597A (ko) 2006-01-12
US7771876B2 (en) 2010-08-10
TW200509436A (en) 2005-03-01
JPWO2004100293A1 (ja) 2006-07-13
CN1698224A (zh) 2005-11-16
US20050208378A1 (en) 2005-09-22
CN100492727C (zh) 2009-05-27
JP4207957B2 (ja) 2009-01-14

Similar Documents

Publication Publication Date Title
JP4207957B2 (ja) 負極活物質及びその製造方法、これを用いた非水電解質二次電池
JP4533822B2 (ja) 非水電解質電池および負極活物質
Park et al. A mechano-and electrochemically controlled SnSb/C nanocomposite for rechargeable Li-ion batteries
KR100797099B1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를포함하는 리튬 이차 전지
JP5072323B2 (ja) 非水電解質二次電池、および非水電解質二次電池用負極材料の製造方法
JP4504279B2 (ja) 非水電解質電池および負極活物質
US20060046144A1 (en) Anode composition for lithium ion battery
JP4994631B2 (ja) 非水電解質二次電池およびその正極活物質
CN107534126A (zh) 用于高能量密度二次电池的具有复合涂层的正极活性材料及相应工艺
JP2004362895A (ja) 負極材料およびそれを用いた電池
KR101289012B1 (ko) 전지
JP4375042B2 (ja) 非水系リチウムイオン二次電池用の負極材料及び負極、並びに非水系リチウムイオン二次電池
JP4329676B2 (ja) 負極活物質およびそれを用いた二次電池
CN111628161A (zh) 负极活性物质材料
JP2013191529A (ja) 複合材料、複合材料の製造方法、リチウムイオン二次電池用電極材料、リチウムイオン二次電池用負極、及びリチウムイオン二次電池
JP2002373648A (ja) 負極、非水電解質二次電池及び負極の製造方法
JP2013168328A (ja) 負極材料、負極材料の製造方法、リチウムイオン二次電池用負極、及びリチウムイオン二次電池
JP4144181B2 (ja) 非水系二次電池用負極材料とその製造方法
JP4379971B2 (ja) 電気エネルギー貯蔵素子
WO2003090296A1 (fr) Pile
JP2010003602A (ja) 負極活物質および二次電池
JP3489771B2 (ja) リチウム電池およびリチウム電池の製造法
CN106030866B (zh) 负极活性物质材料、负极和电池
JP2004111202A (ja) 負極材料およびそれを用いた電池
JP4897718B2 (ja) 負極活物質および二次電池

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 1020047020351

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2005506037

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10519898

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20048004702

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1020047020351

Country of ref document: KR

122 Ep: pct application non-entry in european phase