WO2004095590A1 - 自発光装置 - Google Patents

自発光装置 Download PDF

Info

Publication number
WO2004095590A1
WO2004095590A1 PCT/JP2004/005674 JP2004005674W WO2004095590A1 WO 2004095590 A1 WO2004095590 A1 WO 2004095590A1 JP 2004005674 W JP2004005674 W JP 2004005674W WO 2004095590 A1 WO2004095590 A1 WO 2004095590A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
self
control circuit
photoelectric conversion
luminous device
Prior art date
Application number
PCT/JP2004/005674
Other languages
English (en)
French (fr)
Inventor
Josuke Nakata
Hiromi Sugimura
Hiroshi Endo
Original Assignee
Kyosemi Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US10/552,255 priority Critical patent/US7387400B2/en
Application filed by Kyosemi Corporation filed Critical Kyosemi Corporation
Priority to CNB2004800102423A priority patent/CN100550433C/zh
Priority to CA2520824A priority patent/CA2520824C/en
Priority to AU2004231849A priority patent/AU2004231849B2/en
Priority to EP04728460A priority patent/EP1617486A4/en
Priority to JP2005505752A priority patent/JP4046241B2/ja
Priority to KR1020057013465A priority patent/KR100661067B1/ko
Priority to TW093111191A priority patent/TWI265255B/zh
Publication of WO2004095590A1 publication Critical patent/WO2004095590A1/ja
Priority to HK06108658.0A priority patent/HK1088438A1/xx

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/941Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated using an optical detector
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/40Details of LED load circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/105Controlling the light source in response to determined parameters
    • H05B47/11Controlling the light source in response to determined parameters by determining the brightness or colour temperature of ambient light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/32Pulse-control circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a spontaneous light emitting device that causes a light emitting body to emit light by electric power generated by a photoelectric conversion element.
  • Japanese Patent Application Laid-Open No. 9-149213 discloses a flat type solar cell, a plurality of light emitting diodes provided around the solar cell, and power generated by the solar cell.
  • a road-mounted signal device having a storage battery and the like has been proposed. In this signal device, the entire device is installed buried in the road, and the power generated by the solar battery is stored in the storage battery during the daytime, and the light-emitting diode blinks at night by the power stored in the storage battery.
  • Japanese Unexamined Patent Publication No. Hei 8-199513 discloses that a flat-type solar cell, a light-emitting diode, a storage battery, an electric circuit, and the like are provided, and those components are buried in a transparent epoxy resin.
  • Luminescent marker devices have been proposed. In this light-emitting marker device, the power generated by the solar cell is stored in the storage battery during the day, and the light-emitting diode is flashed by the power at night. The weather resistance is improved by burying the constituent members in epoxy resin.
  • An object of the present invention is to provide a small and light-weight self-luminous device that can be manufactured at low cost, regardless of the location of the generated power. Disclosure of the invention
  • the self-luminous device of the present invention includes a spherical photoelectric conversion element having a substantially spherical light receiving surface, a lens member that guides or condenses light on the spherical photoelectric conversion element, and power generated by the spherical photoelectric conversion element. It is characterized by comprising a light-emitting body that emits light, and a sealing material that secures the whole and is integrated.
  • a self-luminous device when the incident light enters the self-luminous device, the incident light is guided or condensed by the lens member, and the incident light is transmitted by the almost spherical light receiving surface of the spherical photoelectric conversion element. The light is received to generate electric power, and the electric power causes the luminous body to emit light.
  • the light receiving surface of the spherical photoelectric conversion element is formed in a substantially spherical shape, so that power is generated on average during the incident light, regardless of the incident angle of the incident light.
  • a plurality of spherical photoelectric conversion elements connected in series are provided as the spherical photoelectric conversion elements.
  • It has a capacitor for storing the electric power generated by the spherical photoelectric conversion element.
  • a light emission control circuit is provided for controlling energization of the light emitter.
  • a light detection sensor is incorporated in the light emission control circuit.
  • the light emission control circuit includes an astable multivibrator including two transistors and a plurality of resistors.
  • a charge control circuit for controlling charging of the storage device is provided.
  • the lens member and the sealing material are made of the same kind of synthetic resin material. 8) A partial spherical reflecting member made of metal capable of reflecting incident light is provided on the lower surface side of each spherical photoelectric conversion element.
  • the reflection member is a lead frame.
  • the light detection sensor is an ultraviolet sensor
  • the light emission control circuit is provided with a DC amplifier circuit that amplifies and outputs a voltage corresponding to the ultraviolet intensity detected by the ultraviolet sensor.
  • the plurality of luminous bodies are provided, and the luminescence control circuit is provided from the ultraviolet sensor. Based on the output of (1), any one of the light emitters emits light.
  • a Schmitt trigger indicator and a resistor are incorporated in parallel in the light emission control circuit to blink the light emitter.
  • the battery is a manganese dioxide-lithium secondary battery.
  • a reflection member made of a transparent resin capable of reflecting light is provided near the spherical photoelectric conversion element and the light emitting body.
  • the light detection sensor is cadmium sulfide (CdS).
  • FIG. 1 is a plan view of a self-luminous device according to Embodiment 1 of the present invention.
  • FIG. 2 is a sectional view taken along the line II-II in FIG.
  • FIG. 3 is a cross-sectional view of the spherical photoelectric conversion element.
  • FIG. 4 is a block diagram illustrating a control system of the light emitting device.
  • FIG. 5 is a circuit diagram illustrating a light emission control circuit.
  • FIG. 6 is a circuit diagram illustrating a charge control circuit.
  • FIG. 7 is a circuit diagram of a light emission control circuit according to a modification.
  • FIG. 8 is a cross-sectional view of a spherical photoelectric conversion element according to a modification.
  • FIG. 1 is a plan view of a self-luminous device according to Embodiment 1 of the present invention.
  • FIG. 2 is a sectional view taken along the line II-II in FIG.
  • FIG. 3 is a cross-sectional view of the
  • FIG. 9 is a plan view of the self-luminous device of the second embodiment.
  • FIG. 10 is a sectional view taken along line X--X of FIG.
  • FIG. 11 is a plan view of a panel-shaped light emitting device.
  • FIG. 12 is a sectional view taken along line XII-XII in FIG.
  • FIG. 13 is a plan view of the ultraviolet monitor device according to the third embodiment.
  • FIG. 14 is a sectional view taken along line XIV-XIV in FIG.
  • FIG. 15 is a circuit diagram of a light emission control circuit of the ultraviolet monitor device of FIG.
  • FIG. 16 is a perspective view of the self-luminous cube of the fourth embodiment.
  • FIG. 17 is a plan view of the self-luminous nameplate of the fourth embodiment.
  • FIG. 18 is a cross-sectional view of the self-luminous name plate of FIG.
  • FIG. 19 is a circuit diagram of a light emission control circuit of the self-luminous name plate of FIG.
  • FIG. 20 is a plan view of the four-color self-luminous device of the sixth embodiment.
  • FIG. 21 is a sectional view taken along line XXI-XXI in FIG.
  • FIG. 22 is a circuit diagram of a light emission control circuit of the four-color self-luminous device of FIG.
  • FIG. 23 is a plan view of the self-luminous pendant of the seventh embodiment.
  • FIG. 24 is a sectional view taken along line XXIV-XXIV of FIG. BEST MODE FOR CARRYING OUT THE INVENTION Example 1 (see FIGS. 1 to 7)
  • This embodiment is an example in which the present invention is applied to a portable self-luminous device in which a light emitting diode blinks only in a low light condition such as at night.
  • the self-luminous device 1 includes six spherical photoelectric conversion elements 2, a light emitting diode 3, a sealing material 4, and a control circuit 5.
  • the spherical photoelectric conversion element 2 is similar to that described in detail in Japanese Patent Application Laid-Open No. 2001-168369, and will be briefly described. As shown in FIG. 3, the spherical photoelectric conversion element 2 has a spherical crystal 10 made of a p-type silicon semiconductor having a diameter of about 1.5 mm and a resistivity of about 1 ⁇ cm, and a substantially spherical pn junction.
  • the electromotive force of the spherical photoelectric conversion element 2 is about 0.6 V, and can output a current of about 3 to 3.5 mA.
  • the six spherical photoelectric conversion elements 2 are arranged around the light emitting diode 3 at intervals of about 60 °.
  • the positive electrode 13 of each spherical photoelectric conversion element 2 is electrically connected to the negative electrode 14 of the adjacent spherical photoelectric conversion element 2 by a copper wire 18, and the six spherical photoelectric conversion elements 2 are connected in series.
  • the positive and negative electrodes 13 and 14 of the spherical photoelectric conversion element 2 are used to charge the generated power. are connected to the control circuit 5.
  • the light emitting diode 3 has an A 1 GaAs heterostructure, and As shown in the figure, the self-luminous device 1 is disposed substantially at the center.
  • the light emitting diode 3 blinks and emits light only in a low light condition such as at night due to the power generated by the spherical photoelectric conversion element 2 and charged in the battery 21 by the light emission control circuit 22 described later.
  • the sealing material 4 is made of a suitable synthetic resin, for example, an epoxy resin, and the whole of the spherical photoelectric conversion element 2, the light emitting diode 3, the control circuit 5, and the like are fixed and integrated.
  • a condensing lens section 6 for guiding or condensing light at a position corresponding to the outer surface side of each spherical photoelectric conversion element 2 is provided on an upper surface of the lapping material 4, and a light projecting lens section at a position corresponding to the light emitting diode. 7 is formed physically.
  • the surface of the condenser lens section 6 is formed in a hemispherical shape with the spherical photoelectric conversion element 2 as a center, and the light incident on the surface of the condenser lens section 6 is converted into a spherical photoelectric conversion element. The light is focused on the element 2.
  • the surface of the light projecting lens unit 7 is formed in a partially spheroidal shape, and light emitted by the light emitting diode 3 is diffused by the light projecting lens unit 7 and emitted to the outside.
  • the epoxy resin constituting the sealing material 4 including the lens portions 6 and 7 can transmit at least light that can be photoelectrically converted by the spherical photoelectric conversion element 2.
  • the control circuit 5 includes a charge control circuit 20, a capacitor 21 composed of a capacitor, and a light emission control circuit 22.
  • the charge control circuit 20, the capacitor 21, and the light emission control circuit 22 are mounted on the same substrate, and are provided below the spherical photoelectric conversion element 2 and the light emitting diode 3, as shown in FIG. I have.
  • the control circuit 5 when power is generated by the spherical photoelectric conversion element 2 such as in the daytime, the light emission of the light emitting diode 3 is inhibited by the light emission control circuit 22, and the generated power is output by the charge control circuit 20.
  • the light emitting diode 3 is driven to blink using the power stored in the battery 21 by the light emission control circuit 22.
  • the charge control circuit 20 controls charging of the battery 21, prevents overcurrent to the battery 21, and also prevents reverse current to the spherical photoelectric conversion element 2. As shown in FIG. 6, the charge control circuit 20 includes a diode D for preventing backflow and a constant voltage element ZD. Next, the operation of the charge control circuit 20 will be described.
  • the electric power generated by the power generation device 2A in which the six spherical photoelectric conversion elements 2 are connected in series is charged in the battery 21 via the diode D.
  • the diode D is connected to the power generation device 2 A from the power storage device 21 when the light incident on the power generation device 2 A decreases and the output voltage of the power storage device 21 is larger than the output voltage of the spherical photoelectric conversion element 2. This is to prevent the current from flowing backward.
  • the constant-voltage element ZD allows the power generated by the power generation device 2A to flow to the ground to prevent an overcurrent to the capacitor 21 and 1 can extend the life.
  • the constant voltage element ZD may be omitted.
  • the light emission control circuit 22 controls the energization of the light emitting diode 3 and blinks the light emitting diode 3 in a low light state such as at night.
  • the light emission control circuit 22 includes a transistor having two transistors Ql and Q2, four resistors Rl, R2, R3 and R4, and capacitors C1 and C2.
  • the light detection sensor 23 is built into a stable multivibrator circuit.
  • the light detection sensor 23 is a light response resistance element mainly composed of CdS, and its resistance value changes according to the amount of light received.
  • the base potential of the transistor Q2 becomes equal to or higher than the threshold value, and the force flowing from the resistor R4 to the ground, the resistance value of the resistor R4 51 k ⁇ and the maximum voltage 3 V applied to the resistor R4,
  • the maximum current that flows is only a few 10 ⁇ A, while the current flowing through the power generating device 2 A ⁇ the current flowing through the capacitor 21 is a few mA, so it is almost impossible to charge the capacitor 21 No effect.
  • the base potential of Q 1 When the base potential of Q 1 reaches the threshold value, the state between the collector and emitter of the transistor Q 1 is instantaneously turned on from the cut-off state.
  • a positive charge is stored on the electrode on the resistor R1 side of the capacitor C1
  • a negative charge is stored on the electrode on the resistor R3 side. Therefore, the conduction between the collector and the emitter of the transistor Q 1 instantaneously lowers the potential of the connection point P 1 between the light emitting diode 3, the resistor R 1, and the capacitor C 1, and the electric charge stored in the capacitor C 1 As a result, the base potential of the transistor Q2 becomes lower than the threshold value, and the transistor Q2 is cut off.
  • the base potential of the transistor Q2 gradually rises.
  • the state between the collector and the emitter of the transistor Q2 is instantaneously turned on from the cutoff state.
  • the collector of the transistor Q2 is short-circuited to the ground by the conduction of the transistor Q2
  • the electric charge stored in the capacitor C2 causes the base potential of the transistor Q1 to instantaneously drop below the threshold value, and The collector-emitter 1 is momentarily cut off from the conductive state.
  • the transistor Q2 When the transistor Q2 conducts, the light emitting diode 3, the capacitor C1, and the transistor Current flows through the path of the base-emitter of the transistor Q2, the resistance R3, and the path of the base-emitter of the transistor Q2.
  • the capacitor C1 When the capacitor C1 is charged by a predetermined amount with the current flowing through the light emitting diode 3, no current flows through the light emitting diode 3, and the light emitting diode 3 is turned off. The accumulated charge is gradually discharged to the capacitor C 2 by the current flowing through the resistor R 2, and then charged.
  • the base potential of the transistor Q1 gradually rises and reaches a threshold value, the transistor Q1 is turned on while the transistor Q2 is turned off, and the light emitting diode 3 is turned on. Emit light again. Thereafter, the above operation is repeated, and the light emitting diode 3 is driven to blink.
  • the internal resistance of the light-emitting diode 3 that serves as the charging path for the capacitors C1 and C2, and the resistance of the resistors R3 and R2 that serve as the discharging paths are sufficiently larger than the resistance of the resistance R4. Therefore, the time between the blinks of the light emitting diode 3 is determined by the discharge times of C 1 and C 2 respectively. That is, the time during which the light is emitted and the time when the light is turned off are (electrical capacity of the capacitor C1) (the resistance of the resistor 13), (electrical capacity of the capacitor C2) X (the resistance of the resistor R2). Value).
  • the sample is charged under the illuminance of 100, OOOlx in the solar simulator and stored in the capacitor 21 1 hour.
  • the light emitting diode 3 can blink for 8 hours or more in a light emitting pattern with a light emission luminance of 1 to 3 mcd and a duty ratio of 30%.
  • the self-luminous device 1 has a diameter of about 20 mm, a thickness of about 3 min, and a weight of about 5 g in plan view.
  • the self-luminous device 1 using a 0.47 F capacitor as the battery 21, the battery was charged under the illuminance of 100, OOOlx in the solar simulator, and stored in the battery 21 in 20 minutes, and the light emission luminance :! It is possible to make the light-emitting diode 3 blink for 2 hours or more in a light-emitting pattern of up to 3 mcd and a duty ratio of 30%.
  • the self-luminous device 1 having this configuration has a diameter of about 12 mm, a thickness of about 3 and a weight of about 3 g in a plan view.
  • the self-luminous device 1 the light receiving surface (pn junction 11) of the spherical photoelectric conversion element 2 for generating electric power is formed in a substantially spherical shape. Power can be generated even for incident light from the outside, power can be generated without choosing the installation location and installation angle, etc., and the electricity can be stored in the battery 21.Therefore, the degree of freedom between the installation location and the installation angle is improved. be able to.
  • the provision of the six spherical photoelectric conversion elements 2 makes it possible to increase the power generation voltage six times as compared with the case where power is generated by one spherical photoelectric conversion element 2, thereby realizing a reduction in charging time.
  • the condenser lens member 6 Since the condenser lens member 6 is formed, the light can be condensed and received by the spherical photoelectric conversion element 2, and the efficiency of introducing light such as sunlight can be improved. As described above, for example, it is possible to blink the light emitting diode 3 for 8 hours by storing electricity for 1 hour, thereby preventing the situation where the light emitting diode 3 does not emit light at night even if the weather is slightly bad during the day. Can be.
  • the self-luminous device 1 can be extremely compact and lightweight, and therefore can be easily carried. Even if the self-luminous device 1 is attached to a bag, a hat, or the like, there is almost no burden on the user. Absent.
  • the spherical photoelectric conversion element 2, light-emitting diode 3, control circuit 5, etc. are fixed and integrated with the sealing material 4 including the lens parts 6 and 7, so they are extremely resistant to rain and dust, and have excellent weather resistance. It can be installed anywhere and will not be damaged when carried. By configuring the lens portions 6 and 7 with the same epoxy resin as the sealing material 4, the strength can be further improved.
  • the light emitting diode 3 can emit light in a state where power cannot be generated by the spherical photoelectric conversion element 2 such as at night.
  • the light emission diode 3 can be made to blink, and the visibility from the surroundings can be improved.
  • the light detection sensor 23 is installed at the position shown in Fig. 5, the current flowing from the battery 21 to the ground is minimized to reduce the charging time and the light emission of the light emitting diode 3 in a situation with much light. Can be banned. Since the charge control circuit 20 shown in FIG.
  • the light emission control circuit 22A is obtained by applying a light detection sensor 23 to a general IC type astable multivibrator 25. This will be briefly described.
  • the current output from the capacitor 21 flows to the ground via the resistor R5 and the light detection sensor 23, and the current is output from the NAND circuit ND4. Since the input terminal I2 is always kept at the low level, the output of the NAND circuit ND4 goes to the high level. Therefore, no current flows through the light emitting diode 3, and the light emitting diode 3 does not emit light.
  • the resistor R5 has a very large resistance value, even if light is detected by the light detection sensor 23, the power is output from the power storage 21 via the resistor R5. The current is small and has little effect on the charging of the capacitor 21.
  • the resistance value of the light detection sensor 23 increases, and the light emission control circuit 22A operates in a state where almost no current flows through the light detection sensor 23.
  • the operation will be described. In this state, almost no current flows through the light detection sensor 23, so that the input terminal I2 of the NAND circuit ND4 is always at a high level.
  • the input side of the NAND circuit ND 1 is at a low level and no charge is stored in the capacitor C 4
  • the output side of the NAND circuit ND 1 is at a high level
  • the output of the NAND circuit ND 1 and the capacitor C 4 are at a high level. 4
  • resistor R7, diode D2 NAND current flows to the output of ND2, and charge is stored in capacitor C4.
  • the output of the NAND circuit ND2 goes high, the input of the NAND circuit ND1 also goes high. No current flows through the diode D2, and current flows to the output of the NAND circuit ND2, the capacitor C3, the resistor R6, the diode Dl, and the output of the NAND circuit ND1. Since the output of the NAND circuit ND 1 is low level, the charge stored in the capacitor C 4 is discharged. When electric charge is accumulated in the capacitor C3 by the current from the output of the NAND circuit ND2, the voltage of the input of the NAND circuit ND1 gradually decreases, and when the voltage falls below the threshold voltage, the output of the NAND circuit ND1 becomes high. Level, the light emitting diode 3 emits light. As described above, the light emitting diode 3 is driven to blink by repeating the above operation.
  • the self-luminous device 1 having the above configuration can be configured to have a diameter of about 20 mm, a thickness of about 8 mm, and a weight of about 7 g in plan view.
  • Example 2 see FIGS. 9 to 12)
  • This embodiment is an example in which the present invention is applied to a self-luminous device having a wavelength conversion display function that receives infrared light of sunlight, converts it into visible light, and emits light. .
  • the self-luminous device 101 includes six spherical photoelectric conversion elements 102 (conversion elements), a visible light LED chip 103, a sealing material 104, and lead frames 131 and 132. It has. Since the six conversion elements 102, the sealing material 104, the circuit for connecting the six conversion elements 102 in series, the lens unit 106, and the like are almost the same as those in the above-described embodiment, only different configurations will be described.
  • the conversion element 102 also generates power by visible light of sunlight, but is particularly excellent in power generation characteristics by infrared rays.
  • the LED chip 103 emits colored visible light by the electric power generated by the conversion element 102.
  • the sealing material 104 is made of, for example, a transparent synthetic resin such as an epoxy resin.
  • the six conversion elements 102, the LED chip 103, and the entirety of the lead frames 131, 132, and the like are integrally fixed in a buried state. .
  • each condenser lens 106 is formed in a hemispherical shape.
  • one light projecting lens unit 107 is formed in a hemispherical shape with the LED chip 103 as a center.
  • Each of the five lead frames 131 and one lead frame 1 32 has a partially spherical reflecting portion capable of reflecting incident light, and the lead frame 132 has an extension 132 a extending toward the center.
  • the conversion elements 102 are respectively located at the focal positions of the reflecting portions of the six lead frames 131 and 132. Therefore, the infrared light transmitted without being incident on the conversion element 102 is reflected by the reflection portions of the lead frames 131 and 132, and is incident on the conversion element 102 disposed at the focal position of the reflection portion.
  • the positive electrode 113 of the conversion element 102 is connected to the corresponding reflection portions of the lead frames 131 and 132 by a conductive adhesive. Extension of lead frame 132 1 3
  • the positive electrode 133 of the LED chip 103 is connected to the lower surface of 2a by a conductive adhesive, and the negative electrode 134 of the LED chip 103 is connected to the electrode 135 adjacent to the LED chip 103 by a copper wire 118. I have.
  • the electrode 135 is connected to the negative electrode 114 of one conversion element 102 by a copper wire 118.
  • each lead frame 131 is electrically connected to the negative electrode 114 of the adjacent conversion element 102 by a copper wire 118, and the six conversion elements 102 are connected to the lead frame 131 as shown in the figure. , 132 and five copper wires 118 connected in series.
  • the self-luminous device 101 generates electric power when receiving infrared light by the six conversion elements 102, and supplies electric power to the LED chip 103 to emit colored light. Therefore, it corresponds to a wavelength conversion device that converts invisible infrared light into visible light.
  • the self-luminous device 101 can be used alone, as shown in FIGS. 11 and 12, a plurality of self-luminous devices 101 are arranged between two transparent panels 137 and embedded in a transparent synthetic resin. By sealing in a shape, a panel-shaped self-luminous device 138 can be formed. In the case of the self-luminous device 138 in FIGS. 11 and 12, the self-luminous devices 101 are arranged in a matrix of 3 rows and 4 columns.
  • the LED chip 103 can be used as a display device that outputs red light indicating a danger display when headlights of an oncoming vehicle are irradiated. Further, by arranging a large number of LED chips 103 in a predetermined figure or character shape, the figure or character can be displayed. In addition, various figures and characters can be displayed by arranging a large number of LED chips 103 in a dot matrix and controlling the on / off thereof. Other configurations, operations, and effects are the same as those in the embodiment.
  • This embodiment is an example in which three light emitting diodes having different emission colors are provided, and the present invention is applied to an ultraviolet light monitor device which is a self light emitting device that emits a light emitting diode selected according to the intensity of ultraviolet light. Only for configurations that differ from the first embodiment explain.
  • the ultraviolet ray monitor device 201 has 24 spherical photoelectric conversion elements 202 (conversion elements) and three light emitting diodes 203 that emit light in three colors of RGB. , An ultraviolet sensor 222, a sealing material 204, a printed circuit board 206, a light emission control circuit 205, and the like.
  • the three light emitting diodes 2 • 3 are a red (R) light emitting diode LED1, a yellow (Y) light emitting diode LED2, and a green (G) light emitting diode LED3.
  • the ultraviolet light intensity detected by the ultraviolet light sensor 22 3 is divided into three stages of level 1 (weak), level 2 (medium), and level 3 (strong).
  • the G, Y, and R light emitting diodes light up in response to steps 2 and 3.
  • the 24 conversion elements 202 are arranged in a matrix of 6 rows and 4 columns on the surface of the printed circuit board 206.
  • the conversion element 202 is the same as the spherical photoelectric conversion element 2 of Example 1, but is arranged on the surface of the printed circuit board 206 with the conductive directions connecting the positive and negative electrodes aligned in the column direction.
  • the conversion elements 202 in each column are connected in series by wire bonding, and the conversion elements 202 in each row are connected in parallel.
  • the 24 conversion elements 202 are connected in series / parallel to form a power generation device 221.
  • This power generation device 222 generates a photovoltaic power of about 3.6 V when it is sunny.
  • the ultraviolet sensor 222 is formed of a photodiode, and generates a voltage corresponding to the intensity of the received ultraviolet light.
  • the encapsulant 204 made of a transparent epoxy resin is composed of 24 conversion elements 202, three light emitting diodes 203, a printed circuit board 206, an emission control circuit 205, and ultraviolet rays. The entirety of the sensor 222 and the like is covered and integrated.
  • a reflection film for reflecting incident light toward the conversion element 202 is formed on the surface of the printed circuit board 206.
  • a lens portion corresponding to the conversion element 202 may be integrally formed on the surface of the sealing material 204.
  • An emission control circuit 205 is incorporated on the back side of the printed circuit board 206 and is covered with the sealing material 204.
  • the light emission control circuit 205 includes a DC amplification circuit 241 and a diode drive circuit 242, and emits light in accordance with an output of the ultraviolet sensor 223.
  • the light emitting diode 203 is driven so that the diode 203 emits light.
  • the DC amplifier circuit 241 is connected to the ultraviolet sensor 223, and the DC amplifier circuit 241 includes operational amplifiers OP1 and OP2, resistors R9 to R15, and capacitors C5 to C7, and is detected by the ultraviolet sensor 223.
  • the voltage generated according to the intensity of the ultraviolet light is amplified and output.
  • the operational amplifiers OP 1 and ⁇ P 2 are inverting amplifiers to which feedback is applied by the resistors R11 and R15, and can operate with a unipolar power supply based on a solar cell output.
  • a reference voltage is applied to the + input terminals of the operational amplifiers P1 and OP2 from the power generation device 221 by the voltage dividing resistors R9, R10; R13, R14.
  • the output terminal of the ultraviolet sensor 223 is connected to one input terminal of the operational amplifier OP1.
  • the ultraviolet sensor 223 When the ultraviolet sensor 223 receives sunlight, it generates a voltage corresponding to the ultraviolet intensity of the sunlight.
  • the input voltage is inverted and amplified by the feedback action of the resistor R11 so that the voltage of one input terminal becomes the same potential as the voltage of the + input terminal.
  • the potential of the output terminal of the operational amplifier OP1 decreases.
  • the operational amplifier OP2 the input voltage is inverted and amplified. Therefore, the output of the ultraviolet sensor 223 is subjected to non-inverting amplification by repeating the inverting amplification twice by the operational amplifiers OP1 and OP2, and the output voltage of the amplifier OP2 increases as the intensity of ultraviolet light increases.
  • the output voltage of the operational amplifier OP2 is applied to one input terminal of the comparators CP1 and CP2 of the diode drive circuit 242.
  • the diode drive circuit 242 for driving the three light emitting diodes 203 (LED1 to LED3) is connected to the power generation device 221.
  • the diode drive circuit 242 includes the comparators CP1 and CP2 and the resistor R16. ⁇ R21.
  • Reference voltages V 1 and V 2 are applied to the comparators CP 1 and CP 2 from the power generation device 221 via the voltage dividing resistors R 16 to R 18.
  • Comparators CP 1 and CP 2 compare the reference voltages V 1 and V 2 at the + input terminal with the voltage at one input terminal, and output a “H” level signal if the reference voltages VI and V 2 are higher. Output, and if the reference voltages VI and V2 are lower, an “L” level signal is output.
  • Driving light emitting diodes LED 1 to LED 3 with different emission colors according to the intensity of ultraviolet light The operation that moves will be described.
  • the output voltage VO of the DC amplifier circuit 241 is lower than the reference voltage V2 applied to the comparator CP2 (the intensity of the ultraviolet light is weak; level 1)
  • the output of the comparator CP2 becomes “H” level, and the light is emitted.
  • the diode LE D3 emits green light.
  • the "H" level signal is also output from the output terminal of the comparator CP1, the light emitting diodes LED1 and LED2 do not emit light because the input terminal and the output terminal have the same potential.
  • the output voltage V0 of the DC amplifier circuit 241 is a value between the reference voltage VI of the comparator CP1 and the reference voltage V2 of the comparator CP2 (the intensity of the ultraviolet light is medium; In 2)
  • an “L” level signal is output from the comparator CP2
  • an “H” level signal is output from the comparator CP1. Therefore, the light emitting diode LED 2 emits yellow light.
  • the light emitting diodes LED 1 and LED 3 do not emit light because the input terminal and the output terminal have the same potential.
  • the output voltage VO of the DC amplifier circuit 241 is higher than the reference voltage of the comparator CP1 (the intensity of ultraviolet light is high; level 3)
  • the outputs of the comparators CP1 and CP2 are both set to the “L” level. Therefore, the light emitting diode LED 1 emits red light.
  • the input terminal and the output terminal do not emit light because they have the same potential.
  • the ultraviolet monitor device 201 activates the green light emitting diode when the ultraviolet light is weak and the yellow light emitting diode when the ultraviolet light is medium, according to the intensity of the ultraviolet light received by the ultraviolet sensor 223. Activate, and if the ultraviolet light is strong, activate the red light emitting diode to display in three stages.
  • examples of the resistance value of the resistor incorporated in the circuit and the capacitance of the capacitor are as follows.
  • R9 750 kQ
  • R 10 220 kQ
  • R ll 220 kQ
  • R 12 10 k ⁇
  • R1 3 750 kQ
  • R 14 220 kQ s
  • R1 5 82 kQ
  • R l 6 1 M ⁇
  • Rl 7 470 kQ
  • R 18 1 M ⁇
  • R 19 56 ⁇
  • R 20 22 ⁇
  • R 21 22 ⁇
  • C 5 68 pF
  • C 6 68 pF
  • ⁇ 7 10.
  • the comparator is not limited to the three-stage display according to the intensity of the ultraviolet light, and that the number of comparators is three By increasing, more than four levels of display are possible.
  • the number of the light emitting diodes 203 can be not limited to one for each color, but a plurality of colors can be emitted, and the emission color of the light emitting diode can be appropriately selected from various applicable light emitting diodes.
  • the power generation device 221 was directly applied as a power source, but a capacitor or a secondary battery was provided instead of the power generation device 221 in FIG. 15 and the power generation device 221 in FIG. 13 was used.
  • the power generation may be configured to be supplied to the capacitor or the secondary battery.
  • This embodiment is an example of a case where the present invention is applied to a self-luminous cube 301 that generates electric power by a plurality of spherical photoelectric conversion elements 302 and emits a white light-emitting diode at the center of a transparent cube.
  • the spherical photoelectric conversion element 302 (conversion element) and its series connection circuit are almost the same as those in the first embodiment, so that the description will be omitted, and different configurations will be described.
  • the self-luminous cube 310 has eight conversion elements 302 on the upper surface side, eight conversion elements 302 on the lower surface side, and a white light emitting diode 303. And a cubic sealing material 304.
  • the encapsulant 304 is made of a transparent epoxy resin formed into a cube with the upper and lower conversion elements 302 and the white light emitting diode 303 embedded and mixed.
  • a white light emitting diode 303 is disposed at the center of the sealing material 304, and the whole of the sealing material 304 functions as a light transmitting member that transmits light.
  • the upper and lower eight spherical photoelectric conversion elements 302 are arranged at an interval of about 45 ° in the circumferential direction inside the outer periphery of the surface of the circular translucent glass epoxy substrate 310, and the eight conversion elements 300 are provided. 2 are connected in series by a copper wire (not shown), eight conversion elements 302 are arranged on the upper surface of the upper substrate 303, and eight conversion elements are arranged on the lower surface of the lower substrate 303.
  • a child 302 is provided, and the upper conversion element serial connection and the lower conversion element serial connection are connected in parallel.
  • the white light diode 303 is caused to emit light directly by the power generated by the conversion element 302. Therefore, the cube shape
  • the white diode 3003 emits light due to the photovoltaic force.
  • the light emission is clearly visible.
  • Other configurations, operations, and effects are the same as those in the embodiment.
  • the present invention is applied to a self-luminous nameplate (corresponding to a self-luminous device) that emits a white light-emitting diode provided on a nameplate by photovoltaic power generated by a plurality of spherical photoelectric conversion elements.
  • a self-luminous nameplate corresponding to a self-luminous device
  • a white light-emitting diode provided on a nameplate by photovoltaic power generated by a plurality of spherical photoelectric conversion elements.
  • the spherical photoelectric conversion element 402 is the same as the spherical photoelectric conversion element 2 of the first embodiment, detailed description will be omitted, and only different configurations will be described.
  • the self-luminous name plate 401 is composed of 21 spherical photoelectric conversion elements 402 (conversion elements), a printed circuit board 406, and a white light-emitting diode 40 3, an encapsulant 404, and a light emission control circuit 405.
  • Each conversion element 402 has a positive electrode 413 and a negative electrode 414. 2
  • One conversion element 402 is arranged at regular intervals along the inner periphery of the upper surface of the rectangular printed circuit board 406, and the conversion elements 402 are divided into three groups of seven.
  • the conversion elements 402 of each group are connected in series by a copper wire 418, and the three serially connected bodies are connected in parallel by a copper wire 419.
  • a light emitting control circuit 405 is provided on the back side of the substrate 406, and these printed circuit boards 406 2 One conversion element 402, a light emitting diode 400, and a light emitting control circuit 405 are sealed.
  • the self-luminous nameplate 401 is formed in a thin rectangular plate shape as a whole, being buried and integrally fixed with a stopper 404.
  • the electric double-layer capacitor 4 2 1 (capacitance) as a capacitor fed from the power generation device 400 A composed of 21 conversion elements 402 through the backflow prevention diode D 3 1 F) is provided.
  • the light emission control circuit 405 consists of a resistor R22, a Schmitt trigger inverter IVI connected to the white light emitting diode 4003, and a resistor R23, inverter IVI and resistor R23 connected in parallel to this. It has a connected capacitor C 8 and so on.
  • the inverter IVI has a higher threshold value when shifting from the “L” level to the “H” level than the threshold value when shifting from the “H” level to the “L” level, and is less likely to malfunction due to noise and is stable Work.
  • the input terminal of the inverter IVI is at "L” level, and the output terminal of the inverter IV1 outputs "H” level.
  • the potential of the input / output terminal of the white light emitting diode 403 becomes the same, so that the white light emitting diode 403 does not emit light.
  • the “H” level voltage output from the output terminal of the inverter I V1 is charged to the capacitor C8 via the resistor R23.
  • the diode 403 repeatedly turns on and off, and blinks.
  • the cycle of this repetition is determined by the resistor R 23 and the capacitor C 8, and the current flowing through the white light emitting diode 400 3 and the light emission intensity are determined by the resistor R 22.
  • the present invention is applied to a four-color self-luminous device that charges a secondary battery with electricity generated by 12 spherical photoelectric conversion elements 502 and causes the four-color light-emitting diode to blink by the power.
  • the spherical photoelectric conversion element 502 (conversion element) This is the same as that of the first embodiment, and the light emission control circuit 505 is provided with four sets of the same ones as the light emission control circuit 405 of the fifth embodiment.
  • the four-color self-luminous device 501 has 12 conversion elements 502, four light-emitting diodes 503 having different emission colors, and a printed circuit board 506. , A sealing material 504, a light emission control circuit 505, a switch 541, and the like.
  • the sealing material 504 is made of, for example, a transparent epoxy resin, and includes 12 conversion elements 502, a light emitting diode 503, a printed circuit board 506, a light emission control circuit 505, and a switch.
  • the entirety of 5 4 1 etc. is fixed and integrated.
  • the surface side of the sealing material 504 is formed in a convex lens shape and has a lens function.
  • the four light emitting diodes 503 are a red light emitting diode (R), a blue light emitting diode (B), a yellow light emitting diode (Y), and a green light emitting diode (G). These are arranged in a matrix of 2 rows and 2 columns at the center of the upper surface of the substrate 506 on which the light emission control circuit 505 is mounted.
  • the two conversion elements 502 are arranged at an interval of about 30 ° near the outer periphery of the circular substrate 506, and these conversion elements 502 are connected in series by copper wires 518. This constitutes the power generation device 502A.
  • the switch 541 is installed near the lower end of the light emission control circuit 505.
  • a diode D4 for preventing backflow a manganese dioxide lithium secondary battery 521 as a capacitor, a switch 541, and a light emission control circuit 505 are mounted. ing.
  • the light emission control circuit 505 has four light emission control circuits for emitting red light emitting diode LED 4, blue light emitting diode LED 5, yellow light emitting diode LED 6, and green light emitting diode LED 7. Part is provided.
  • Each light emission control unit is the same as the light emission control circuit 405 of the fifth embodiment, and the light emission control unit for the red light emitting diode LED 4 includes a resistor R 24, a Schmitt trigger inverter IV 2, It has a resistor R 28 connected in parallel to the impeller IV 2 and a capacitor C 9 connected to the inverter IV 2 and the resistor R 28, and operates in the same manner as the light emission control circuit 405 of the fifth embodiment. .
  • the other three light emission control units have the same configuration and operate similarly.
  • the power generated by the power generation device 502A is charged in the secondary battery 521, and when the switch 541 is turned on, the power is supplied from the secondary battery 521 to the power input units of the inverters IV2 to IV5 and the four light emission control units.
  • the four-color light-emitting diodes LED4 to LED7 blink and emit light.
  • the self-luminous device of the present invention is applied to a self-luminous pendant.
  • the self-luminous pendant 601 includes six spherical photoelectric conversion elements 602, a light-emitting diode 603, a circular printed circuit board 606, a sealing material 604, and a light-emitting control circuit 605. , A light detection sensor 623, twelve beads 651, and a hook 652.
  • the spherical photoelectric conversion element 602 (conversion element) is the same as that of the first embodiment, is arranged on a print substrate 606, and is connected in series by a conductor 607.
  • a light emitting diode 603 and twelve beads 651 are also arranged on a printed circuit board 606, and a light emitting control circuit 605 is mounted on the back surface of the printed circuit board 606.
  • the sealing material 604 is made of a transparent epoxy resin, and the six conversion elements 602, the light emitting diode 603, the lower part of the 12 beads 651, the light emission control circuit 605, and the light detection sensor 623 are used as the sealing material 604. And the whole is integrated and fixed by a sealing material 604.
  • the surface of the sealing material 604 is formed in a convex partial spherical shape and functions as a lens portion. The portion other than the lower part of the 12 beads 651 is exposed outside the surface of the sealing material 604.
  • Beads 651 are made of lightly colored transparent synthetic resin and can reflect light It functions as a reflection member.
  • the hook 652 is formed integrally with the sealing material 604, and protrudes from the lower part of the side of the light emitting pendant 601.
  • the light emitting diode 603 is arranged at the center of the self-luminous pendant 601, and the six conversion elements 602 are arranged in a circular shape around the light emitting diode 603.
  • the 12 beads 651 are arranged on the entire surface side of the self-luminous pendant 601, and are arranged close to the conversion element 62 and the light emitting diode 603.
  • the light emission control circuit 605 is, for example, the same circuit as the circuit of FIG. 5 of the first embodiment, and the light detection sensor 623 has a cadmium sulfide (CdS) element.
  • CdS cadmium sulfide
  • the conversion element 602 is small in size, but has a shape very similar to that of the beads 651, so that the conversion element 602 also exhibits a decoration function together with the beads 651.
  • Fine beads may be dispersed in the sealing member 604 on the surface side of the printed circuit board 606, and in that case, a large amount of light is scattered on the surface of the beads, so that a large amount of light is converted into six conversion elements. Reach 602 and power generation efficiency increases.
  • the light emitting diode 603 emits light, the light emitted therefrom is scattered on the surface of the beads and shines beautifully.
  • a chain or string can be attached to the hook 652 and used as a pendant.
  • a stand for a broach or a safety pin can be attached to the back surface instead of the hook 652, and used as a broach.
  • the self-luminous pendant 61 1 fully charged the electric double layer capacitor (2F) in one hour under outdoor clear weather, and flashed for three hours at night.
  • the light detection sensor 62 3 is provided, so light emission starts automatically at night.However, a switch is provided instead of the light detection sensor 6 23, and light is emitted only when the switch is turned on. Can be done. It is also possible to provide a plurality of light emitting diodes 60.3 having different light emitting colors so that light is emitted only when the switch is turned on. Further, a plurality of light-emitting diodes 603 having different light-emitting colors can be provided, and the light-emitting control circuit 505 as in the sixth embodiment can make the light-emitting diodes blink. Not only broaches and pendants but also smaller ones can be constructed into cell phone straps, rings, buttons, etc., and can be expected to have a variety of uses in the field of light-emitting accessories.
  • the light emitting diode is configured to blink, but the light emitting diode may be configured to be constantly lit.
  • the light emission control circuit includes current control ICs, integrated circuits such as operational amplifiers, and various active elements such as bipolar transistors, FETs, and diodes, as well as antibodies, capacitors, and coils.
  • Various constant current circuits and constant voltage circuits using the passive elements described above can be applied.
  • These electronic components can be ordinary electronic components for board mounting, such as dip-type ICs.However, from the standpoint of size and weight reduction, surface mount ICs, chip resistors, chip capacitors and other surface It is desirable to use electronic components for mounting.
  • the light emission control circuit, the charge control circuit, and the capacitor may be provided on different substrates.
  • the light emission control circuit and the charge control circuit may be provided on a single substrate, provided separately for the capacitor, and connected from the substrate by a copper wire or the like.
  • the secondary battery when a secondary battery is used as a storage battery, when the secondary battery is deteriorated, only the secondary battery needs to be replaced, and the life of the self-luminous device can be extended by simple maintenance.
  • the spherical photoelectric conversion element 2 is formed of the p-type silicon semiconductor in the spherical crystal 10.
  • the spherical photoelectric conversion element 1 OA of the n-type silicon semiconductor forms a spherical photoelectric conversion element.
  • the conversion element 2 B may be configured.
  • the spherical photoelectric conversion element 2 A is electrically connected to the p-type diffusion layer 12 A formed near the surface of the spherical crystal 1 OA to form the pn junction 11 A and the ⁇ -type silicon of the spherical crystal.
  • the negative electrode 13 ⁇ and the negative electrode 13 A formed the positive electrode 14 A and the electrodes 13 A and 14 A formed at the position facing the center of the spherical crystal 1 OA It has an insulating film 15 A formed on the uncoated surface. Furthermore, the surface of the negative electrode 13 A and the positive electrode 14 A The metal paste film 16A, 17A is coated.
  • the spherical photoelectric conversion element is made of silicon.
  • the present invention is not limited to silicon.
  • a group IV semiconductor such as germanium, a group III-V semiconductor, a group II-VI semiconductor it may also constitute a spherical photoelectric conversion element such as by Les, 0
  • the light emitting diode is constituted by the A1GaAs system, but in consideration of visibility and the like, the light emitting diode is constituted by the AIGalnP system, the AIGalnN system, and the like.
  • a light emitting diode that has been used may be applied, or a resin-molded light emitting diode or a surface mounted light emitting diode may be used.
  • the light emitting diode may be provided in an exposed state without forming a light projecting lens.
  • the light emitting diode can be detached, so that the user can wear the light emitting diode of a desired color, and the decorativeness can be improved.
  • a light source other than the light emitting diode may be applied.
  • a reflective film or the like may be formed around the light emitting diode.
  • the sealing material including the lens member is made of epoxy resin.
  • silicone resin, acrylic resin, polycarbonate resin, fluorine resin, polyimide resin, polyvinyl butyral resin, ethylene vinyl acetate It may be made of resin, naphtran resin, cellulose acetate, or any other material that can transmit light of a predetermined wavelength that allows the spherical photoelectric conversion element to generate power.
  • a flexible synthetic resin or the like the self-luminous device can be deformed, and a structure that is extremely resistant to external rags can be obtained.
  • a diffusing agent with the synthetic resin, the uniformity of light emission can be improved.
  • the lens member and the sealing material are integrally formed of the same epoxy resin.
  • the lens member and the sealing material are separately manufactured, and each is formed of an adhesive. May be. In the case of such a configuration, the strength of the bonding by the adhesive can be increased by configuring the lens member and the sealing material with the same material.
  • the lens member and the sealing material may be made of different materials.
  • the condensing lens member only needs to be able to transmit light of a specific wavelength that can be generated by the spherical photoelectric conversion element.
  • the material of the light projecting lens member may be colored, and a phosphor or a phosphor can be contained to provide a self-luminous device with excellent decorativeness.
  • the sealing material may be made of a plastic resin such as polyolefin resin, polyamide resin, polypropylene resin, polyester resin, polystyrene resin, vinyl chloride resin, urethane resin and the like.
  • the shape of the condenser lens member can be changed as appropriate, such as a hemispherical shape or a planar shape.
  • a part of the spherical photoelectric conversion element is located below the light collecting lens.
  • a configuration may be adopted in which a reflection film of the condenser lens member is provided so that light is guided to the spherical photoelectric conversion element.
  • the light detection sensor various sensors such as a photoelectric conversion element such as a photodiode whose output voltage or current changes depending on the amount of received light can be used. Further, a spherical photoelectric conversion element can be provided as a light detection sensor. With this configuration, it is possible to further improve the miniaturization and light weight, and to reduce the manufacturing cost. 11) The number of spherical photoelectric conversion elements and light emitting diodes included in the self-luminous device can be changed as appropriate. It is desirable that the number of spherical photoelectric conversion elements is determined in consideration of a desired power generation amount, a light-collecting rate of a light-collecting lens member, and the like.
  • the arrangement of the spherical photoelectric conversion elements and the light emitting diodes is not particularly limited to the above-described embodiment, and the spherical photoelectric conversion elements may be arranged linearly, or may be arranged in many rows and many columns.
  • a reflective film may be provided below the spherical photoelectric conversion element.
  • the shape of the self-luminous device may be various shapes such as a circle, a rectangle, and a star in plan view.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Secondary Cells (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 自発光装置1は、ほぼ球面状の受光面を有する球状光電変換素子2と、球状光電変換素子2により発電された電力により発光する発光ダイオード3と、制御回路5と、球状光電変換素子2と発光ダイオード3と制御回路5と一体化する封止材4とを有する。制御回路5は、光検知センサ23が組み込まれた発光制御回路と、充電制御回路と、蓄電器とを備えている。球状光電変換素子2は受光面がほぼ球面状のためあらゆる角度からの入射光により発電することができる。封止材4により構成部材を一体化するので破損しにくくなる。

Description

技術分野
本発明は、 光電変換素子により発電された電力により発光体を発光させる自発 光装置に関するものである。 明
背景技術
従来、 太陽電池などの光電変換素子により発電された電力により発光体を発光 させる自発光装置が種々提案されている。 例えば、 特開平 9一 4 9 2 1 3号公報 には、 平面型の太陽電池と、 その太陽電池の周囲に設けられた複数の発光ダイォ ードと、 太陽電池により発電された電力を蓄電する蓄電池などを有する路面設置 型の信号装置が提案されている。 この信号装置においては、 装置全体を道路に埋 没させて設置し、 昼間は太陽電池で発電された電力が蓄電池に蓄電され、 夜間は その蓄電池に蓄電された電力により発光ダイオードが点滅される。
特開平 8—1 9 9 5 1 3号公報には、 平面型の太陽電池と、 発光ダイオードと、 蓄電池と、 電気回路などを備え、 それらの構成部材が透明なエポキシ樹脂内に埋 没された発光標識装置が提案されている。 この発光標識装置においても、 昼間、 太陽電池により発電された電力が蓄電池に蓄電され、 夜間、 その電力により発光 ダイオードが点滅される。 また、 構成部材をエポキシ樹脂内に埋没させることで、 耐候性を向上させている。
し力 し、 特開平 9一 4 9 2 1 3号公報と特開平 8—1 9 9 5 1 3号公報に記載 の装置では、 平面型の太陽電池により発電しているため、 昼間の間、 常に高出力 の発電をすることができる訳ではなく、 太陽光が太陽電池に小さな入射角で略垂 直に入射する数時間しか高出力の発電をすることができない。 即ち、 当該数時間 の間に夜間必要な電力を蓄電池に蓄電しなければならないため、 太陽電池の受光 面積を大きくしなければならず、 装置全体が大型化する問題が生じている。 特開平 9一 4 9 2 1 3号公報と特開平 8—1 9 9 5 1 3号公報の装置を、 平坦 な道路などに設置する場合は蓄電池に蓄電することができるが、 坂道、 例えば、 北側の斜面に形成された坂道などに上述の装置が設置されると、 多くの太陽光が 太陽電池表面で反射されるため、 所望の電力を蓄電池に蓄電することができず、 夜間、 発光ダイオードが発光することができず、 道路を走行する自動車のドライ バーは安全な状況で運転しにくくなる。
近年、 自転車、 かばん、 帽子などに取り付けて夜間の安全のために使用する低 価格で且つ小型軽量の自発光装置が望まれている。 これらの装置を取り付ける場 合には、 鉛直に近い状態で自発光装置を取り付けることも多くなり、 このように 取り付けられた場合には、 平面型の太陽電池では、 太陽光が受光面に対して略平 行に入射するため蓄電池に蓄電できる電力がほとんど発電されず、 実用に供する のは到底不可能である。
本発明の目的は、 発電電力が設置場所などに左右されず、 低コストで製造可能 で、 小型軽量な自発光装置を提供することにある。 発明の開示
本発明の自発光装置は、 ほぼ球面状の受光面を有する球状光電変換素子と、 こ の球状光電変換素子に導光又は集光するレンズ部材と、 前記球状光電変換素子で 発電された電力で発光する発光体と、 全体を固着して一体ィヒする封止材とを備え たことを特徴とする。 この自発光装置によれば、 入射光が自発光装置に入射する と、 入射光がレンズ部材により導光又は集光され、 球状光電変換素子が有するほ ぼ球面状の受光面によりその入射光が受光されて電力が発電され、 その電力によ り発光体が発光する。 この自発光装置は、 球状光電変換素子の受光面がほぼ球状 に形成されているため、 入射光の入射角度に依存することなく、 入射光が入射す る間は平均して電力を発電することができる。 従って、 屋外に設置した場合、 太 陽光の入射角度に関係なく、 日中の間平均して電力を発電することができ、 更に、 発電された電力を蓄電器などに蓄電されるように構成した場合に、 日中の間、 数 時間天気がよければ太陽の位置に関係なく、 蓄電器に十分な電力を蓄電すること ができる。
自転車、 かばん、 帽子などに取り付けた場合にも、 取り付けられた角度に影響 されることなく、 常に十分な電力を発電することができ、 発光体を発光させるこ とができる。 レンズ部材により入射光が導光又は集光されるので、 球状光電変換 素子の受光面積が小さくても、 受光面において強い入射光が受光されることにな るので、 球状光電変換素子の小型化及び軽量化が実現でき、 それに伴い、 自発光 装置の小型化及び軽量化を実現することができる。 封止材により全体が固着して 一体化されているので、 雨などによる球状光電変換素子や発光体の破損を防ぐこ とができる。 また、 各構成部材に安価なものを適用することができるため製造コ ストを削減することができる。
ここで、 前記の構成に加えて、 次のような構成を適宜採用してもよい。
1 ) 前記球状光電変換素子として、 直列接続された複数の球状光電変換素子を 設けている。
2 ) 前記球状光電変換素子で発電された電力を蓄電する為の蓄電器を備えてい · る。
3 ) 前記発光体への通電を制御する発光制御回路を備えている。
4 ) 前記発光制御回路に、 光検知センサを組み込んでいる。
5 ) 前記発光制御回路は、 2つのトランジスタと複数の抵抗とを含む無安定マ ルチバイプレータを備えている。
6 ) 前記蓄電器への充電を制御する充電制御回路を設けている。
7 ) 前記レンズ部材と前記封止材とを同種の合成樹脂材料で構成される。 8 ) 前記各球状光電変換素子の下面側に入射光を反射可能な金属製の部分球面 状の反射部材が設けられる。
9 ) 前記反射部材はリードフレームである。
1 0 ) 前記光検知センサは紫外線センサであって、 前記発光制御回路に、 前記 紫外線センサにより検知された紫外線強度に応じた電圧を増幅して出力する直流 増幅回路を設けている。
1 1 ) 前記発光体が複数設けられ、 前記発光制御回路は前記紫外線センサから の出力に基づいて、 前記各発光体のうち何れかを発光させる。
1 2 ) 前記発光制御回路に、 前記発光体を点滅させるためにシュミツトトリガ ーィンパーターと抵抗とを並列に組み込んでいる。
1 3 ) 前記蓄電器は、 二酸化マンガン ' リチウム二次電池である。
1 4 ) 前記球状光電変換素子と前記発光体に近接するように、 光を反射可能な 透明樹脂からなる反射部材を設けている。
1 5 ) 前記光検知センサは、 硫化カドミウム (C d S ) である。 図面の簡単な説明
図 1は本発明の実施例 1に係る自発光装置の平面図である。 図 2は図 1におけ る II一 II線断面図である。 図 3は球状光電変換素子の断面図である。 図 4は自発 光装置の制御系を説明するブロック図である。 図 5は発光制御回路を説明する回 路図である。 図 6は充電制御回路を説明する回路図である。 図 7は変更形態に係 る発光制御回路の回路図である。 図 8は変更形態に係る球状光電変換素子の断面 図である。 図 9は実施例 2の自発光装置の平面図である。 図 1 0は図 9の X —X 線断面図である。 図 1 1はパネル状自発光装置の平面図である。 図 1 2は図 1 1 における XII -XII線断面図である。 図 1 3は実施例 3の紫外線モニター装置の 平面図である。 図 1 4は図 1 3の XIV -XIV線断面図である。 図 1 5は図 1 3の 紫外線モニター装置の発光制御回路の回路図である。
図 1 6は実施例 4の自発光立方体の斜視図である。 図 1 7は実施例 4の自発光 ネームプレートの平面図である。 図 1 8は図 1 7の自発光ネームプレートの断面 図である。 図 1 9は図 1 7の自発光ネームプレートの発光制御回路の回路図であ る。 図 2 0は実施例 6の 4色自発光装置の平面図である。 図 2 1は図 2 0の XXI -XXI線断面図である。 図 2 2は図 2 0の 4色自発光装置の発光制御回路の回路 図である。 図 2 3は実施例 7の自発光ペンダントの平面図である。 図 2 4は図 2 3の XXIV— XXIV線断面図である。 発明を実施するための最良の形態 実施例 1 (図 1〜図 7参照)
本発明の実施の形態について図面を参照して説明する。
この実施の形態は、 夜間など光が少ない状況でのみ発光ダイォードが点滅する 携帯可能な自発光装置に本発明を適用した一例である。
図 1 , 図 2に示すように、 自発光装置 1は、 6個の球状光電変換素子 2と、 発 光ダイオード 3と、 封止材 4と、 制御回路 5とを備えている。
球状光電変換素子 2は、 特開 2 0 0 1— 1 6 8 3 6 9号公報などに詳細に記載 されているものと同様のものであるので、 簡単に説明する。 図 3に示すように、 球状光電変換素子 2は、 直径が約 1 . 5 mmで、 抵抗率が 1 Ω c m程度の p型シ リコン半導体製の球状結晶 1 0と、 ほぼ球面状の p n接合 1 1を形成するために 球状結晶 1 0の表面近傍に形成された n型拡散層 1 2と、 球状結晶 1 0の p型シ リコンに電気的に接続された正電極 1 3と、 正電極 1 3とは球状結晶 1 0の中心 に対して点対称状に対向する位置に形成され n型拡散層 1 2に電気的に接続され た負電極 1 4と、 電極 1 3 , 1 4が形成されていない球状結晶 1 0の表面に形成 された絶縁被膜 1 5とを備えている。 更に、 正電極 1 3の表面には、 厚さ約 2 0 の A 1ペースト膜 1 6が被膜され、 負電極 1 4の表面には厚さ約 2 0 μ mの A gペースト膜 1 7が被膜されている。 球状光電変換素子 2に太陽光などの光が 入射すると、 入射光は n型拡散層を透過して p n接合 1 1に入射し、 その p n接 合 1 1で光起電力が発生する。 この球状光電変換素子 2の起電力は約 0 . 6 V で あり、 3〜3 . 5 mA程度の電流を出力することができる。
図 1, 図 2に示すように、 6個の球状光電変換素子 2は、 発光ダイオード 3の 周囲に約 6 0 ° 間隔で配設されている。 夫々の球状光電変換素子 2の正電極 1 3 は、 隣接する球状光電変換素子 2の負電極 1 4に銅線 1 8により電気的に接続さ れ、 6個の球状光電変換素子 2は直列接続されている。 但し、 6個の球状光電変 換素子 2の正電極 1 3, 負電極 1 4のうち、 直列接続の両端に当たる正電極 1 3 aと負電極 1 4 aは、 発電した電力を充電するために、 制御回路 5に接続されて いる。
発光ダイオード 3は、 A 1 G a A s系のへテロ構造を有するものであり、 図 1 に示すように、 自発光装置 1の略中央に配設されている。 この発光ダイオード 3 は、 後述する発光制御回路 2 2により、 球状光電変換素子 2により発電され蓄電 器 2 1に充電された電力により夜間など光の少ない状況でのみ点滅発光する。 封止材 4は、 適当な合成樹脂、 例えば、 エポキシ樹脂で構成され、 球状光電変 換素子 2、 発光ダイオード 3、 制御回路 5など全体を固着して一体化している。 才止材 4の上面には、 各球状光電変換素子 2の外表面側に対応する位置に導光ま たは集光する集光レンズ部 6が、 発光ダイオードに対応する位置に投光レンズ部 7がー体的に形成されている。 図 2に示すように、 集光レンズ部 6の表面は、 球 状光電変換素子 2を中心とする半球面状に形成され、 集光レンズ部 6の表面に入 射した光は、 球状光電変換素子 2へと集光される。 投光レンズ部 7の表面は、 部 分回転楕円面状に形成され、 発光ダイオード 3が発光した光は、 投光レンズ部 7 により拡散されて外部に出射される。 尚、 レンズ部 6, 7を含む封止材 4を構成 するエポキシ樹脂は、 少なくとも球状光電変換素子 2が光電変換可能な光を透過 させることができるものである。
次に、 この自発光装置 1の制御系について説明する。
図 4に示すように、 制御回路 5は、 充電制御回路 2 0と、 キャパシタからなる 蓄電器 2 1と、 発光制御回路 2 2とを備えている。 これら充電制御回路 2 0と蓄 電器 2 1と発光制御回路 2 2とは、 同一の基板上に実装され、 図 2に示すように、 球状光電変換素子 2及び発光ダイォード 3の下方に設けられている。 制御回路 5 について簡単に説明すると、 昼間など球状光電変換素子 2により発電する状態で は、 発光制御回路 2 2により発光ダイオード 3の発光が禁止されて発電された電 力が充電制御回路 2 0により蓄電器 2 1に充電され、 夜間など光の少ない状態で は発光制御回路 2 2により蓄電器 2 1に蓄えられた電力を用いて発光ダイオード 3が点滅駆動される。
充電制御回路 2 0は、 蓄電器 2 1への充電を制御し、 蓄電器 2 1への過電流を 防止し、 また、 球状光電変換素子 2への逆電流をも防止するためのものである。 図 6に示すように、 充電制御回路 2 0は、 逆流防止用のダイオード Dと、 定電圧 素子 Z Dとで構成されている。 次に、 充電制御回路 2 0の動作について説明する。
6個の球状光電変換素子 2を直列接続した発電デバィス 2 Aにより発電された 電力は、 ダイオード Dを経由して蓄電器 2 1に充電される。 ダイオード Dは、 発 電デバイス 2 Aへの入射光が減少し、 球状光電変換素子 2の出力電圧よりも蓄電 器 2 1の出力電圧の方が大きい場合に、 蓄電器 2 1から発電デバイス 2 Aへ電流 が逆流するのを防ぐためのものである。 定電圧素子 Z Dは、 蓄電器 2 1に蓄電さ れた電力が所定電圧になると、 発電デバイス 2 Aで発電された電力をアースへと 流し、 蓄電器 2 1への過電流を防止して、 蓄電器 2 1の寿命を延ばすことができ る。 尚、 発電デバイス 2 Aの最大出力が、 蓄電器 2 1の最大許容電圧とダイォー ド Dの閾値電圧との和よりも小さい場合には、 定電圧素子 Z Dを省略してもよい。 発光制御回路 2 2は、 発光ダイオード 3への通電を制御し、 夜間など光の少ない 状態で発光ダイオード 3を点滅させるためものである。 図 5に示すように、 発光 制御回路 2 2は、 2つのトランジスタ Q l, Q 2と、 4つの抵抗 R l, R 2 , R 3 , R 4と、 コンデンサ C l, C 2とを有する無安定マルチバイブレータ回路に光 検知センサ 2 3を組み込んだものである。 光検知センサ 2 3は、 主に C d Sから なる光応答抵抗素子であって、 受光した光量に応じて抵抗値が変化するものであ る。 尚、 各抵抗の抵抗値は、 例えば、 R l =3. 3 Κ Ω、 R 2 = 1 M Q、 R 3 = 5 1 0 k Ω R 4 = 5 1 k Qである。
以下、 この発光制御回路 2 2の動作について説明をする。
まず、 昼間など光検知センサ 2 3により光が検知されている状態での動作を説 明する。 光検知センサ 2 3により光が検知されている状態では、 光検知センサ 2 3の抵抗値が低下しトランジスタ Q 1のベースがアースに短絡された状態になつ ているため、 トランジスタ Q 1のベース電位が閾値以下に低下し、 トランジスタ Q 1のコレクタ一ェミッタ間が導通せず、 抵抗 R 1には電流が流れない。 一方、 トランジスタ Q 2のベース電位は閾値以上になり、 抵抗 R 4からアースに電流が 流れる力 抵抗 R 4の抵抗値 5 1 k Ω及び抵抗 R 4にかかる最大電圧 3 Vより、 抵抗 R 4に流れる最大電流は数 1 0 μ Aにしかならず、 一方、 発電デバイス 2 A 力 ^蓄電器 2 1に流れる電流が数 mAのため、 蓄電器 2 1への充電にはほとんど 影響がない。
次に、 夜間など光検知センサ 2 3により光が検出されず、 この発光制御回路 2 2により発光ダイォード 3が点滅駆動される動作について説明する。
夜間など光が少ない状態では、 光検知センサ 2 3により光が検出されなくなる と、 光検知センサ 2 3の抵抗値が増加し、 Q 1のベース電位が徐々に上昇する。 トランジスタ Q 1のベース電位の上昇に伴い、 抵抗 R 2を流れる電流がコンデン サ C 2を経由して流れるので、 コンデンサ C 2に電荷が溜められる。
Q 1のベース電位が閾値に達すると、 トランジスタ Q 1のコレクターェミッタ '間は、 遮断状態から瞬間的に導通状態となる。 光検知センサ 2 3により光が検知 されている状態では、 コンデンサ C 1の抵抗 R 1側の電極には正電荷が、 抵抗 R 3側の電極には負電荷が溜められている。 従って、 トランジスタ Q 1のコレクタ 一エミッタ間が導通することにより、 発光ダイオード 3と抵抗 R 1とコンデンサ C 1との接続点 P 1 の電位が瞬間的に下がるため、 コンデンサ C 1に溜められた 電荷により トランジスタ Q 2のベース電位は閾値以下になり、 トランジスタ Q 2 は遮断される。
—方、 トランジスタ Q 1が導通することで、 発光ダイオード 3、 抵抗 R 1、 ト ランジスタ Q 1のコレクタ、 ェミッタ間の経路で電流が流れ、 発光ダイオード 3 が発光する。 コンデンサ C 1には抵抗 R 3を経由して電流が流れるので、 コンデ ンサ C 1に溜められた電荷が所定量だけ放電される。 コンデンサ C 2には抵抗 R 4を経由して流れる電流により電荷が放電された後溜められる。
抵抗 R 3に流れる電流によりコンデンサ C 1が徐々に充電されるので、 トラン ジスタ Q 2のベース電位が徐々に上昇する。 トランジスタ Q 2のベース電位が閾 値に達すると、 トランジスタ Q 2のコレクタ一ェミッタ間は遮断状態から瞬間的 に導通状態にされる。 トランジスタ Q 2の導通によってトランジスタ Q 2のコレ クタがアースと短絡された状態になると、 コンデンサ C 2に溜められた電荷によ り、 トランジスタ Q 1のベース電位は閾値以下に瞬間的に下がり、 Q 1のコレク ターェミッタ間は導通状態から瞬間的に遮断される。
トランジスタ Q 2が導通すると、 発光ダイオード 3、 コンデンサ C l、 トラン ジスタ Q 2のベース一ェミッタの経路、 および、 抵抗 R 3、 トランジスタ Q 2の ベース一エミッタの経路で電流が流れる。 コンデンサ C 1が発光ダイオード 3を 経由して流れる電流により所定量充電されると、 発光ダイォード 3には電流が流 れなくなり、 発光ダイォード 3が消灯する。 コンデンサ C 2には抵抗 R 2を経由 して流れる電流により、 溜められていた電荷が徐々に放電され、 その後、 充電さ れる。 コンデンサ C 2が充電されるに連れて、 トランジスタ Q 1のベース電位が 徐々に上昇して閾値に達すると、 トランジスタ Q 1が導通される一方でトランジ スタ Q 2は遮断されて、 発光ダイオード 3は再び発光する。 この後、 上述の動作 が繰り返されて、 発光ダイオード 3が点滅駆動される。
コンデンサ C 1やコンデンサ C 2の充電経路となる発光ダイオード 3の内部抵 抗ゃ抵抗 R 4の抵抗値に比べ、 放電経路となる抵抗 R 3や抵抗 R 2の抵抗値が十 分大きくされているため、 発光ダイォード 3の点滅の間隔の時間はそれぞれ C 1 および C 2の放電時間によって決定される。 即ち、 発光している時間及ぴ消灯し ている時間は、 ( コンデンサ C 1の電気容量) ズ(抵抗1 3の抵抗値) 、 ( コン デンサ C 2の電気容量) X (抵抗 R 2の抵抗値) に依存する。
次に、 実験結果について説明する。 蓄電器 2 1として静電容量 2 Fのキャパシ タを適用した自発光装置 1の場合は、 前記サンプルをソーラーシユミレーター内 100, OOOlx の照度下で充電したところ、 1時間で蓄電器 2 1に蓄電され、 発光輝 度 l〜3 m c d、 デューティ比 3 0 %の発光パターンで発光ダイォード 3を 8時 間以上点滅発光することが可能である。 尚、 この自発光装置 1は、 平面視にて直 径が約 2 0 mm、 厚さが約 3 min、 重量が約 5 g で構成されている。 蓄電器 2 1 として 0 . 4 7 Fのキャパシタを適用した自発光装置 1の場合は、 ソーラーシュ ミレーター内 100, OOOlx の照度下で充電したところ、 2 0分で蓄電器 2 1に蓄電 され、 発光輝度:!〜 3 m c d、 デューティー比 3 0 %の発光パターンで発光ダイ オード 3を 2時間以上点滅発光させることが可能である。 尚、 この構成による自 発光装置 1は、 平面視にて直径が約 1 2 mm、 厚さが約 3匪、 重量が約 3 g で構成 されている。
次に、 自発光装置 1の作用及び効果について説明する。 この自発光装置 1によれば、 電力を発電する球状光電変換素子 2の受光面( p n接合 1 1 ) がほぼ球面状に形成されているため、 本実施例の場合、 上方のあら ゆる角度からの入射光に対しても発電可能であり、 設置場所や設置する角度など を選ぶことなく発電し、 蓄電器 2 1に蓄電することができるので、 設置場所ゃ設 置する角度の自由度を向上させることができる。 6個の球状光電変換素子 2を備 えることで 1個の球状光電変換素子 2により発電する場合に比べ発電電圧を 6倍 に高めることができ、 充電時間の短縮を実現することができる。 集光レンズ部材 6が形成されているので、 光を集光させて球状光電変換素子 2に受光させること ができ、 太陽光などの光.の導入効率を向上させることができる。 上述したように、 例えば、 1時間の蓄電で発光ダイオード 3を 8時間点滅させることが可能である ため、 日中少々天気が悪くても夜間発光ダイォード 3が発光しなくなるような状 態を防ぐことができる。
自発光装置 1は、 上述したように非常に小型化及び軽量ィ匕を実現することがで きるので、 容易に携帯することができ、 かばん、 帽子などに装着してもユーザー への負担がほとんどない。 レンズ部 6 , 7を含む封止材 4により球状光電変換素 子 2、 発光ダイオード 3、 制御回路 5などが固着されて一体化されているので雨 や埃に非常に強く、 耐候性に優れ、 あらゆる場所に設置することができ、 携帯し ても破損することがない。 レンズ部 6, 7を封止材 4と同じエポキシ樹脂で構成 することで更に、 強度を向上させることができる。
蓄電器 2 1を備えているので、 夜間など球状光電変換素子 2により発電不可能 な状態で発光ダイオード 3を発光させることができる。 発光制御回路 2 2に無安 定マルチバイブレータを適用することで発光ダイォード 3を点滅させることがで き、 周囲からの視認性を向上させることができる。 光検知センサ 2 3が図 5に示 す位置に組み込んでいるので、 光の多い状況において、 蓄電器 2 1からアースに 流れる電流を最小限に抑え充電時間を短縮し、 且つ、 発光ダイオード 3の発光を 禁止することができる。 図 6に示す充電制御回路 2 0を備えているので、 蓄電器 2 1への過電流を防止することができ、 また、 蓄電器 2 1から球状光電変換素子 2への逆電流を防ぐことができ、 蓄電器 2 1及び球状光電変換素子 2の寿命を延 ばすことができる。
次に、 前記発光制御回路 2 2の変形例について説明する。
発光制御回路 2 2には、 トランジスタを用いた無安定マルチバイブレータを適 用したが、 図 7に示すように、 I Cを用いた無安定マルチバイブレータを有する 発光制御回路 2 2 Aを適用してもよい。 尚、 光検知センサ 2 3、 発光ダイオード 3、 蓄電器 2 1には、 上述の実施の形態と同じものを適用しているので、 同じ符 号を付け、 説明は省略する。
以下、 この発光制御回路 2 2 Aの動作について説明するが、 この発光制御回路 2 2は、 一般的な I C型の無安定マルチバイブレータ 2 5に光検知センサ 2 3な どを適用したものであるため簡単に説明する。
昼間など光検知センサ 2 3により光が検知されている状態では、 蓄電器 2 1か ら出力される電流は、 抵抗 R 5と光検知センサ 2 3を介してアースに流れ、 NA N D回路 N D 4の入力端子 I 2は常にローレベルに保たれるので、 NAN D回路 N D 4の出力がハイレベルになる。 従って、 発光ダイオード 3に電流が流れるこ ともないため、 発光ダイオード 3が発光することもない。 伹し、 抵抗 R 5には非 常に大きい抵抗値のものを適用しているため、 光検知センサ 2 3により光が検知 されていても、 蓄電 2 1から抵抗 R 5を経由して出力される電流は小さく、 蓄 電器 2 1の充電に影響を与えることはほとんどない。
次に、 夜間など光検知センサ 2 3により光が検知されず、 光検知センサ 2 3の 抵抗値が大きくなり、 光検知センサ 2 3にほとんど電流が流れない状況での発光 制御回路 2 2 Aの動作について説明をする。 この状態では、 光検知センサ 2 3に 電流がほとんど流れないため NAN D回路 N D 4の入力端子 I 2は常にハイレべ ルである。 初め N AN D回路 N D 1の入力側がローレベルで且つコンデンサ C 4 に電荷が溜まっていないとすると、 NA ND回路 ND 1の出力側がハイレベルで あるため、 NAN D回路 N D 1の出力, コンデンサ C 4 , 抵抗 R 7 , ダイオード D 2 , NA N D回路 N D 2の出力に電流が流れ、 コンデンサ C 4に電荷が溜めら れる。
コンデンサ C 4に電荷が溜まり始めた状態ではコンデンサ C 4が短絡した状態 と同じため、 NAND回路 ND 2の入力はハイレベルになり、 その結果 NAND 回路 ND 2の出力はローレベルになる。 この状態では、 NAND回路ND 3の入 力がローレベルになり、 出力がハイレベルになるため NAND回路 ND 4の入力 端子 I 1もハイレベルになり、 その結果、 NAND回路 ND 4の入力端子 I 2も ハイレベルのため NAND回路 ND 4の出力がローレベルになり、 発光ダイォー ド 3に蓄電器 21から電流が流れ、 発光ダイオード 3が発光する。
次に、 コンデンサ C 4に電荷が溜まると、 コンデンサ C 4を流れる電流が減少 し、 NAND回路 ND 2の入力側の電圧も徐々に下がり、 NAND回路 ND 2の 入力側の電圧が閾値電圧になると、 NAND回路 ND2は入力が瞬間的にローレ ベルになり、 それに伴い出力がハイレベルになる。 NAND回路 ND 2の出力が ハイレベルになると NAND回路 ND 3の入力はハイレベルになり、 出力はロー レベルになり、 NAND回路 ND 4の入力端子 I 1がローレベルになり、 その結 果、 NAND回路 ND 4の出力はハイレベルになるため発光ダイォード 3に電流 が流れなくなり、 発光ダイォード 3が発光しなくなる。
次に、 NAND回路 ND 2の出力がハイレベルになると、 NAND回路 ND 1 の入力もハイレベルになる。 ダイオード D 2に電流が流れなくなり、 NAND回 路 ND 2の出力, コンデンサ C 3, 抵抗 R6, ダイオード D l, NAND回路 N D 1の出力へと電流が流れる。 NAND回路 ND 1の出力がローレベルのため、 コンデンサ C 4に溜められた電荷が放電される。 NAND回路 ND 2の出力から の電流によりコンデンサ C 3に電荷が溜められると、 NAND回路 ND 1の入力 の電圧が徐々に下がり、 その電圧が閾値電圧以下になると、 NAND回路 ND 1 の出力がハイレベルになるので、 発光ダイオード 3が発光する。 以上、 上記の動 作を繰り返すことで、 発光ダイォード 3が点滅駆動される。
図 7に示す発電制御回路 22 Aに静電容量 2 Fの蓄電器 21を適用し、 ソーラ ーシユミレーター内 100, OOOlx の照度下で蓄電すると、 1時間で完全に蓄電され、 発光輝度 1〜 3 m c d、 デューティ比 30 %の発光パターンで 16時間以上点滅 発光することがわかった。 尚、 上記構成による自発光装置 1は、 平面視にて直径 が約 20 mm, 厚さが約 8 mm、 重量約 7 gで構成することができる。 実施例 2 (図 9〜図 12参照)
次に実施例 2の自発光装置について説明する。
この実施例は、 太陽光のうちの赤外光を受光してそれを可視光に変換して発光 させるようにした波長変換表示機能を有する自発光装置に本発明を適用した場合 の一例である。
図 9 , 10に示すように、 自発光装置 101は、 6つの球状光電変換素子 10 2 (変換素子) と、 可視光 LEDチップ 103と、 封止材 104と、 リードフレ ーム 131, 1 32とを備えている。 尚、 6つの変換素子 102、 封止材 104、 6つの変換素子 102を直列接続する回路、 レンズ部 106などは前記実施例と ほぼ同様であるので、 異なる構成についてのみ説明する。 尚、 変換素子 102は、 太陽光の可視光によっても発電するが特に赤外線による発電特性に優れるもので ある。
L E Dチップ 103は、 変換素子 102で発電された電力により有色の可視光 を発光する。 封止材 104は例えばエポキシ樹脂などの透明合成樹脂で構成され、 6つの変換素子 102と、 LEDチップ 103と、 リードフレーム 1 31, 13 2などの全体を埋設状に固着して一体化している。
封止材 1'04の上部には、' 6つの変換素子 102に対応する 6つの集光レンズ 部 106が形成され、 各集光レンズ部 106は半球状に形成されている。 封止材 104の下部には、 1つの投光レンズ部 107が LEDチップ 103を中心とし て半球状に形成されている。
5つのリードフレーム 131と 1つのリ一ドフレーム 1 32は、 入射光を反射 可能な部分球面状の反射部を夫々有し、 リ一ドフレーム 1 32は中心側へ延びた 延長部 132 aを有する。 合計 6つのリードフレーム 131, 132の反射部の 焦点の位置に、 夫々変換素子 102が位置している。 そのため、 変換素子 102 に入射されずに透過した赤外光は、 リ一ドフレーム 131, 1 32の反射部で反 射し、 その反射部の焦点位置に配置された変換素子 102に入射する。
変換素子 102の正電極 1 1 3は対応するリ一ドフレーム 1 31, 1 32の反 射部に導電性接着剤により接続されている。 リードフレーム 132の延長部 1 3 2 aの下面には、 L E Dチップ 103の正電極 1 33が導電性接着剤により接続 され、 LEDチップ 103の負電極 134は銅線 1 18により LEDチップ 10 3に近接した電極 135へ接続されている。 その電極 135は銅線 1 18により 1つの変換素子 102の負電極 1 14に接続される。 各リードフレーム 131の 端部付近の正電極 136は隣接する変換素子 102の負電極 1 14に銅線 1 1 8 により電気的に接続され、 6つ変換素子 102は図示のように、 リードフレーム 131, 1 32と 5本の銅線 1 18により直列接続されている。
この自発光装置 101は、 6つの変換素子 102により赤外光を受光すると発 電し、 LEDチップ 103に電力を供給して有色光を発光させる。 従って、 目に 見えない赤外光を、 目に見える可視光に変換する波長変換デバイスに相当するも のである。
この自発光装置 101はそれ自体単独でも使用可能であるが、 図 1 1, 12に 示すように、 2枚の透明パネル 137の間に複数の自発光装置 101を配置して 透明合成樹脂で埋設状に封止することより、 パネル状自発光装置 138に構成す ることもできる。 図 1 1, 図 12の自発光装置 1 38の場合、 自発光装置 101 が 3行 4列のマトリックス状に配列されている。
例えば、 LEDチップ 103が赤色光を発するものとすると、 対向車のヘッド ライトが照射された場合に、 危険表示を示す赤色光を出力する表示装置として用 いることができる。 また、 多数の LEDチップ 103を所定の図形や文字の形に 配置することによりその図形や文字を表示させることができる。 また、 多数の L EDチップ 1 03をドット ·マトリックス状に配置し、 そのオン ·オフを制御す ることにより種々の図形や文字を表示させることもできる。 その他の構成、 作用、 効果については前記実施例と同様である。
実施例 3 (図 1 3〜図 1 5参照)
次に実施例 3に係る自発光装置について説明する。
この実施例は、 発光色の異なる 3つの発光ダイオードを設け、 紫外線の強度に 応じて選択された発光ダイオードを発光させる自発光装置である紫外線モニター 装置に、 本発明を適用した一例である。 前記実施例 1と異なる構成についてのみ 説明する。
図 1 3 , 1 4に示すように、 紫外線モニター装置 2 0 1は、 2 4個の球状光電 変換素子 2 0 2 (変換素子) と、 R G Bの 3色に発光する 3つの発光ダイオード 2 0 3と、 紫外線センサ 2 2 3と、 封止材 2 0 4と、 プリント基板 2 0 6と、 発 光制御回路 2 0 5などを備えている。
図 1 5に示すように、 3つの発光ダイオード 2◦ 3は、 赤色 (R) 発光ダイォ ード LED1 黄色 (Y) 発光ダイオード LED2、 緑色 (G) 発光ダイオード LED3であ る。 この紫外線モニター装置 2 0 1においては、 紫外線センサ 2 2 3により検知 される紫外線強度をレベル 1 (弱) 、 レベル 2 (中位) 、 レベル 3 (強) の 3段 階に分け、 レベル 1, 2, 3に対応して G, Y, Rの発光ダイオードが点灯する。 2 4個の変換素子 2 0 2は、 プリント基板 2 0 6の表面に 6行 4列のマトリック ス状に配置されている。 変換素子 2 0 2は、 実施例 1の球状光電変換素子 2と同 様のものであるが、 正負の電極を結ぶ導電方向を列方向に揃えてプリント基板 2 0 6の表面に配置され、 例えばワイヤボンディングにより、 各列の変換素子 2 0 2が直列接続され、 各行の変換素子 2 0 2が並列接続されている。
つまり、 2 4個の変換素子 2 0 2は直並列接続されて発電デバイス 2 2 1を構 成している。 この発電デバイス 2 2 1は快晴時には約 3. 6 Vの光起電力を発生す る。 紫外線センサ 2 2 3はフォトダイオードで構成され、 受光した紫外光の紫外 線強度に応じた電圧を発生する。 例えば透明エポキシ樹脂からなる封止材 2 0 4 は、 2 4個の変換素子 2 0 2と、 3つの発光ダイオード 2 0 3と、 プリント基板 2 0 6と、 発光制御回路 2 0 5と、 紫外線センサ 2 2 3などの全体を覆って一体 ィ匕している。 プリント基板 2 0 6の表面には入射光を変換素子 2 0 2の方へ反射 させる反射膜が形成されている。 尚、 封止材 2 0 4の表面部分に、 変換素子 2 0 2に対応するレンズ部を一体形成してもよレ、。 プリント基板 2 0 6の裏面側には 発光制御回路 2 0 5が組み込まれ、 前記封止材 2 0 4により覆われている。
図 1 5に示すように、 発光制御回路 2 0 5は、 直流増幅回路 2 4 1と、 ダイォ 一ド駆動回路 2 4 2とを備え、 紫外線センサ 2 2 3の出力に応じた何れかの発光 ダイオード 2 0 3を発光させるように発光ダイオード 2 0 3を駆動する。 直流増幅回路 241は紫外線センサ 223に接続されており、 直流増幅回路 2 41は、 オペアンプ OP 1, OP 2、 抵抗 R 9〜R 15、 コンデンサ C 5〜C 7 を備え、 紫外線センサ 223で検知された紫外線強度に応じて発生した電圧を増 幅して出力する。
オペアンプ OP 1, 〇P 2は、 抵抗 Rl l, R 15による帰還がかけられた反 転増幅器であり、 太陽電池出力による単極性電源で動作可能なものである。 オペ アンプ〇P 1, OP 2の +入力端子には、 発電デバイス 221から、 分圧抵抗 R 9, R 10 ; R 13, R14により、 基準電圧が印加されている。 紫外線センサ 223の出力端子はオペアンプ OP 1の一入力端子に接続されている。
紫外線センサ 223が太陽光を受光すると、 太陽光の紫外線強度に応じた電圧 を発生させる。 オペアンプ OP 1においては、 抵抗 R 1 1による帰還の作用によ り、 一入力端子の電圧が +入力端子の電圧と同電位となるように、 入力電圧が反 転増幅されるので、 紫外線強度が増すほどオペアンプ OP 1の出力端子の電位は 低下する。 同様に、 オペアンプ OP 2においても、 入力電圧が反転増幅される。 そのため、 紫外線センサ 223の出力は、 オペアンプ OP 1, OP 2による 2回 の反転増幅の繰り返しにより非反転増幅が行なわれ、 紫外線強度が強くなる程ォ ぺアンプ OP 2の出力電圧は高くなる。
オペアンプ OP 2の出力電圧は、 ダイォード駆動回路 242のコンパレータ C P 1 , CP 2の一入力端子に印加される。 3つの発光ダイオード 203 (LED 1〜 L E D 3 ) を駆動するためのダイォード駆動回路 242は、 発電デバィス 2 21に接続されており、 このダイオード駆動回路 242は、 コンパレータ CP 1, CP 2と抵抗 R 16〜R 21を有する。
コンパレータ CP 1, CP 2には、 発電デバイス 221から分圧抵抗 R 16〜 R 18を介して基準電圧 V 1, V 2が印加されている。 コンパレータ CP 1, C P 2は、 +入力端子の基準電圧 V 1, V 2と一入力端子の電圧とを比較し、 基準 電圧 VI, V 2の方が高い場合には、 「H」 レベル信号を出力し、 基準電圧 VI, V 2の方が低い場合には、 「L」 レベル信号を出力する。
紫外線の強度に応じて発光色の異なる発光ダイォード LED 1〜LED 3を駆 動する動作について説明する。 直流増幅回路 241の出力電圧 VOがコンパレー タ C P 2に印加される基準電圧 V 2よりも低い場合 (紫外線の強度が弱; レベル 1) は、 コンパレータ CP 2の出力が 「H」 レベルとなり、 発光ダイオード LE D3は緑色に発光する。 但し、 コンパレータ CP 1の出力端子からも 「H」 レべ ル信号が出力されるので、 発光ダイォード L E D 1, LED 2においては、 入力 端子と出力端子が同電位となるためこれらは発光しない。
次に、 直流増幅回路 241の出力電圧 V0が、 コンパレータ CP 1の基準電圧 VIと、 コンパレータ CP 2の基準電圧 V 2との間の値である場合 (紫外線の強 度が中位; レべノレ 2) は、 コンパレータ CP 2からは 「L」 レベル信号が出力さ れ、 コンパレータ CP 1からは 「H」 レベル信号が出力される。 そのため、 発光 ダイオード LED 2が黄色に発光する。 但し、 発光ダイオード LED 1, LED 3においては、 入力端子と出力端子が同電位となるためこれらは発光しない。 次に、 直流増幅回路 241の出力電圧 VOが、 コンパレータ CP 1の基準電圧 よりも高い場合 (紫外線の強度が強; レベル 3) は、 コンパレータ CP 1, CP 2の出力は共に 「L」 レベルとなるので、 発光ダイオード LED 1が赤色に発光 する。 伹し、 発光ダイオード LED 2, LED 3においては、 入力端子と出力端 子が同電位となるためこれらは発光しない。
このように、 この紫外線モニタ一装置 201は、 紫外線センサ 223が受光す る紫外線強度に応じて、 紫外線が弱い場合は緑色の発光ダイォードを作動させ、 紫外線が中位の場合は黄色の発光ダイォードを作動させ、 紫外線が強い場合は赤 色の発光ダイオードを作動させることにより 3段階に分けて表示させることがで さる。
次に、 回路に組み込む抵抗の抵抗値やコンデンサの容量の例は、 次のとおりで ある。 R9 = 750 kQ、 R 10 = 220 kQ, R l l = 220 kQ, R 12 = 10 k Ω, R1 3 = 750 k Q, R 14 = 220 k Qs R1 5 = 82 kQ, R l 6 = 1M Ω、 Rl 7 = 470 kQ, R 18 = 1M Ω、 R 19 = 56 Ω, R 20 = 22Ω、 R 21 = 22 Ω, C 5 = 68 p F、 C 6 = 68 p F、 〇 7 =10 。 尚、 紫外線の強度に応じた 3段階表示に限らず、 コンパレータを 3系統以上に 増やすことによって、 4段階以上の表示も可能である。 発光ダイオード 2 0 3の 数も各色 1個ではなく各色複数個発光させることもできるし、 発光ダイォードの 発光色も、 適用可能な種々の発光ダイオードの中から適宜選択するすることがで きる。 この実施例では、 発電デパイス 2 2 1を電源として直接適用したが、 図' 1 5の発電デバィス 2 2 1の代わりにコンデンサ又は 2次電池を設け、 図 1 3の発 電デパイス 2 2 1の発電電力を前記のコンデンサ又は 2次電池に供給するように 構成してもよい。
実施例 4 (図 1 6参照)
次に実施例 4に係る自発光装置について説明する。
この実施例は、 複数の球状光電変換素子 3 0 2で発電し、 透明な立方体の中心 部の白色発光ダイオードを発光させる自発光立方体 3 0 1に本発明を適応した場 合の一例である。 球状光電変換素子 3 0 2 (変換素子) とその直列接続回路は前 記実施例 1とほぼ同様であるので説明を省略し、 異なる構成について説明する。 図 1 6に示すように、 自発光立方体 3 0 1は、 上面側の 8個の変換素子 3 0 2と、 下面側の 8個の変換素子 3 0 2と、 白色発光ダイオード 3 0 3と、 立方体状の封 止材 3 0 4とを備えている。
封止材 3 0 4は、 上下の変換素子 3 0 2や白色発光ダイォード 3 0 3を埋め混 んだ状態にして、 透明なエポキシ樹脂を立方体に形成したものである。 封止材 3 0 4の中心部には白色発光ダイオード 3 0 3が配置され、 その封止材 3 0 4の全 体が光を透過させる光透過部材として機能する。
上下の 8個の球状光電変換素子 3 0 2は、 円形状の半透明ガラスエポキシ基板 3 0 6の表面の外周内側に周方向に約 4 5 ° 間隔で配設され、 8つの変換素子 3 0 2は銅線 (図示略) により直列接続され、 上側の基板 3 0 6ではその上面に 8 つの変換素子 3 0 2が配設され、 下側の基板 3 0 6ではその下面に 8つの変換素 子 3 0 2が配設され、 上側の変換素子直列接続体と下側の変換素子直列接続体は 並列接続されている。
発光制御回路について説明を省略するが、 変換素子 3 0 2による発電電力で白 色ダイオード 3 0 3を直接発光させるようになつている。 そのため、 立方体形状 の封止材 3 0 4の上下何れかの 8個の球状光電変換素子 3 0 2に受光すると、 そ の光起電力により白色ダイオード 3 0 3を発光させるので、 白熱灯下や屋外の曇 天下でも発光が明瞭に視認できる。 その他の構成、 作用、 効果については、 前記 実施例と同様である。
実施例 5 (図 1 7〜図 1 9参照)
次に、 実施例 5に係る自発光装置について説明する。
この実施例は、 複数の球状光電変換素子で発生する光起電力によりネームプレ ートに設けた白色発光ダイォードを発光させる自発光ネームプレート (自発光装 置に相当する) に、 本発明を適応した一例である。
球状光電変換素子 4 0 2は、 実施例 1の球状光電変換素子 2と同様のものであ るので、 詳細な説明は省略し、 異なる構成についてのみ説明する。
図 1 7 , 1 8に示すように、 自発光ネームプレート 4 0 1は、 2 1個の球状光 電変換素子 4 0 2 (変換素子) と、 プリント基板 4 0 6と、 白色発光ダイォード 4 0 3と、 封止材 4 0 4と、 発光制御回路 4 0 5とを備えている。
各変換素子 4 0 2は正電極 4 1 3と負電極 4 1 4とを有する。 2 1個の変換素 子 4 0 2は、 矩形状のプリント基板 4 0 6の上面の外周部内側に沿うように等間 隔に配設され、 変換素子 4 0 2は 7個ずつの 3群に分けられ、 各群の変換素子 4 0 2は銅線 4 1 8により直列接続され、 3つの直列接続体は銅線 4 1 9により並 列接続されている。
基板 4 0 6の裏面側には発光制御回路 4 0 5が設けられ、 これらプリント基板 4 0 6 2 1個の変換素子 4 0 2、 発光ダイオード 4 0 3、 発光制御回路 4 0 5 は、 封止材 4 0 4に埋設状に覆われて一体的に固定され、 この自発光ネームプレ ート 4 0 1は全体として薄い厚さの矩形板状に構成されている。
図 1 9に示すように、 2 1個の変換素子 4 0 2からなる発電デバイス 4 0 2 A から逆流防止ダイォード D 3を介して給電される蓄電器としての電気二重層キヤ パシタ 4 2 1 (容量 1 F ) が設けられている。 発光制御回路 4 0 5は、 抵抗 R 2 2、 白色発光ダイォード 4 0 3に接続されたシュミットトリガーィンバーター I V Iと、 これに並列接続された抵抗 R 2 3、 インバーター I V Iと抵抗 R 2 3に 接続されたコンデンサ C 8などを備えている。
インバーター I V Iは、 「L」 レベルから 「H」 レベルに移行する場合の閾値 を、 「H」 レベルから 「L」 レベルに移行するときの閾値よりも大きくしたもの であり、 ノィズによる誤動作が少なく安定して動作する。
次に、 発光制御回路 4 0 5の動作について説明する。
初期状態においてはコンデンサ C 8には電荷が充電されていないので、 インバ 一ター I V Iの入力端子は 「L」 レベルであり、 インバーター I V 1の出力端子 からは 「H」 レベルが出力される。 その結果、 白色発光ダイオード 4 0 3の入出 力端子の電位が同電位となるので、 白色発光ダイオード 4 0 3は発光しない。 ィ ンバーター I V 1の出力端子から出力された 「H」 レベルの電圧が抵抗 R 2 3を 経てコンデンサ C 8に充電される。 その充電に伴い、 インバーター I V Iの入力 端子の電位が上昇し閾値に達すると、 インバーター I V Iの出力端子には 「L」 レベル信号が出力され、 ダイオード 4 0 3に電流が流れ、 白色発光ダイオード 4 0 3は発光する。 このとき、 コンデンサ C 8から抵抗 R 2 3を経てインバーター I V 1の出力端子へ電流が流れるので、 ィンバーター I V 1の入力端子の電位は 低下し、 ダイオード 4 0 3は消灯する。
以下同様にして、 ダイォード 4 0 3は点灯 ·消灯を繰り返し、 点滅動作する。 この繰り返しの周期は、 抵抗 R 2 3とコンデンサ C 8によって決まり、 白色発光 ダイォード 4 0 3に流れる電流、 発光強度は抵抗 R 2 2によって決まる。
次にこの発光制御回路 4 0 5に設けた抵抗の抵抗値やコンデンサの容量を次の ように設定して実験した結果は次のとおりである。 R 2 2 = 2 2 Q、 R 2 3 = 2 2 0 k Ω、 コンデンサ C 8 = 1 0 F。 屋外の晴天下で発光が明瞭に視認でき、 3時間後に喑所に移動した後も 3時間点滅発光が継続した。
実施例 6 (図 2 0〜図 2 2参照)
次に実施例 6に係る自発光装置について説明する。
この実施例は、 1 2個の球状光電変換素子 5 0 2で発電した電気を 2次電池に 充電し、 その電力により 4色の発光ダイォードを点滅発光させる 4色自発光装置 に、 本発明を適応した一例である。 球状光電変換素子 5 0 2 (変換素子) は、 実 施例 1のものと同様であり、 発光制御回路 5 0 5には、 実施例 5の発光制御回路 4 0 5と同様のものが 4組設けられる。
図 2 0 , 2 1に示すように、 4色自発光装置 5 0 1は、 1 2個の変換素子 5 0 2と、 発光色の異なる 4つの発光ダイオード 5 0 3と、 プリント基板 5 0 6と、 封止材 5 0 4と、 発光制御回路 5 0 5と、 スィッチ 5 4 1などを備えている。 封止材 5 0 4は例えば透明なェポキシ樹脂で構成され、 1 2個の変換素子 5 0 2と、 発光ダイオード 5 0 3と、 プリント基板 5 0 6と、 発光制御回路 5 0 5と、 スィツチ 5 4 1などの全体を固着して一体化している。 その封止材 5 0 4の表面 側は凸レンズ形状に形成されレンズ機能を奏する。
4個の発光ダイオード 5 0 3は、 赤色発光ダイオード (R) 、 青色発光ダイォ ード (B ) 、 黄色発光ダイオード (Y) 、 緑色発光ダイオード (G) である。 こ れらは、 発光制御回路 5 0 5が実装された基板 5 0 6の上面の中央部に 2行 2列 のマトリックス状に配置されている。 1 2個の変換素子 5 0 2は、 円形な基板 5 0 6上の外周近くに約 3 0 ° 間隔で配設されて、 これら変換素子 5 0 2は銅線 5 1 8により直列に接続され、 発電デバイス 5 0 2 Aを構成している。 スィッチ 5 4 1は発光制御回路 5 0 5の下端部付近に設置されている。 基板 5 0 6の裏面側 には、 逆流防止用のダイオード D 4と、 蓄電器としての二酸化マンガン ' リチウ ムニ次電池 5 2 1と、 スィッチ 5 4 1と、 発光制御回路 5 0 5とが実装されてい る。
図 2 2に示すように、 発光制御回路 5 0 5は、 赤色発光ダイオード L E D 4、 青色発光ダイオード L E D 5、 黄色発光ダイオード L E D 6、 緑色発光ダイォー ド L E D 7を発光させるための 4系統の発光制御部が設けられている。
各発光制御部は、 実施例 5の発光制御回路 4 0 5と同様のものであり、 赤色発 光ダイオード L E D 4の為の発光制御部は、 抵抗 R 2 4と、 シュミットトリガー インバーター I V 2と、 このインパーター I V 2に並列接続された抵抗 R 2 8と、 これらインバーター I V 2と抵抗 R 2 8に接続されたコンデンサー C 9を有し、 実施例 5の発光制御回路 4 0 5と同様に作動する。 その他の 3つの発光制御部も 同様の構成であり、 同様に作動する。 前記発電デバイス 502 Aで発電した電力は二次電池 521に充電され、 スィ ツチ 541をオンにすると、 二次電池 521からインバーター I V 2〜 I V 5の 電源入力部と 4組の発光制御部に供給電され、 4色の発光ダイオード L E D 4〜 LED 7が点滅発光する。
次に、 抵抗の抵抗値とコンデンサーの容量を次のように設定して行った実験結 果について説明する。 R24 = 270 Q、 R 25 = 22 Ω, R26 = 180 Q R 27 = 56 Ω, R28 = 220 kQ、 R29 = 500 kQ、 R30 = 750 k Ω、 R 31 = 1M Ω, C9, C I O, C 1 1 , 〇 12=10 μ Ρ。 日中屋外での 6時間の充電と、 夜間 1時間点滅発光を繰り返し行ない、 1ヶ月後も引き続き発 光が継続された。
実施例 7 (図 23, 図 24)
次に実施例 7について説明する。
この実施例は、 自発光ペンダントに本発明の自発光装置を適応した一例である。 図 23, 24に示すように、 自発光ペンダント 601は、 6個の球状光電変換素 子 602と、 発光ダイォード 603と、 円形のプリント基板 606と、 封止材 6 04と、 発光制御回路 605と、 光検知センサ 623と、 12個のビーズ 651 と、 フック 652とを備えている。
球状光電変換素子 602 (変換素子) は実施例 1のものと同様であり、 プリン ト基板 606上に配置され、 導線 607により直列接続されている。 発光ダイォ ード 603と 12個のビーズ 651もプリント基板 606上に配置され、 プリン ト基板 606の裏面には発光制御回路 605が実装されている。
封止材 604は透明なエポキシ樹脂から構成され、 6つの変換素子 602と、 発光ダイォード 603と、 1 2個のビーズ 651の下部と、 発光制御回路 605 と、 光検知センサ 623が封止材 604に埋設され、 全体が封止材 604により 一体化されて固定されている。 封止材 604の表面は凸の部分球面状に形成され てレンズ部として機能する。 12個のビーズ 651の下部以外の部分は、 封止材 604の表面外へ露出している。
ビーズ 651は、 淡く着色された透明合成樹脂から構成され、 光を反射可能な 反射部材として機能する。 フック 6 5 2は、 封止材 6 0 4と一体形成され、 自発 光ペンダント 6 0 1の側部の下部に突設されている。
発光ダイォード 6 0 3は、 自発光ペンダント 6 0 1の中心部に配置され、 6個 の変換素子 6 0 2は、 発光ダイオード 6 0 3の周囲に円形状に配置されている。 1 2個のビーズ 6 5 1は、 自発光ペンダント 6 0 1の表面側の全域に配置され、 変換素子 6 0 2と発光ダイォード 6 0 3に近接させて配置されている。
発光制御回路 6 0 5は、 例えば実施例 1の図 5の回路と同じ回路であり、 光検 知センサ 6 2 3は硫化カドミウム (C d S ) の素子を有するものである。 光検知 センサ 6 2 3の検出信号から日中や夜間を判別し、 日中 6個の変換素子 6 0 2の 発電電力を充電して夜間のみ発光ダイオード 6 0 3を点滅発光させるためである。 受光時には、 ビーズ 6 5 1の表面で反射された光が変換素子 6 0 2に達し発電に 寄与する。 発光ダイオード 6 0 3の発光時には、 発光ダイオード 6 0 3から出た 光がビーズ 6 5 1で乱反射され美しく光る。
変換素子 6 0 2は、 大きさは小さいが、 ビーズ 6 5 1とよく似た形状を有する ため、 ビーズ 6 5 1と共に装飾機能も発揮する。
プリント基板 6 0 6の表面側の封止部材 6 0 4中に微小なビーズを分散しても よく、 その場合、 それらビーズの表面で光を散乱させることにより多くの光が 6 個の変換素子 6 0 2に達して、 発電効率が高まる。 発光ダイオード 6 0 3の発光 時には、 そこから出た光がビーズの表面で散乱されて美しく光る。
フック 6 5 2には、 鎖や紐を取り付けペンダントとして利用できるし、 フック 6 5 2のかわりに裏面にブローチ用の台や安全ピンなどを取り付けて、 ブローチ として用いることもできる。
次に、 この自発光ペンダント 6 0 1は、 屋外晴天下において 1時間で電気二重 層キャパシタ (2 F ) を満充電し、 夜間 3時間点滅発光した。
以上説明したように、 光検知センサ 6 2 3を設けたため、 夜になると自動的に 発光を開始するが、 光検知センサ 6 2 3の代わりにスィッチを設けて、 スィッチ をオンにした時だけ発光させることができる。 複数の発光色の異なる発光ダイォ ード 6 0. 3を設けて、 スィッチをオンにした時だけ発光させることもできる。 また、 複数の発光色の異なる発光ダイォード 6 0 3を設けて、 実施例 6のよう な発光制御回路 5 0 5により複数の発光ダイォードを点滅させることもできる。 ブローチやペンダントに限らず、 より小型にして、 携帯電話用ストラップ、 指輪 又はポタン等に構成することもでき、 発光するアクセサリーの分野で多様な用途 が期待できる。
次に上述した実施例 1〜 7の形態を部分的に変更する例 ついて説明する。
1 ) 上述の実施の形態においては、 発光ダイオードが点滅されるように構成し たが、 発光ダイオードが常時点灯するように構成してもよい。 このように構成す る場合には、 発光制御回路に、 電流制御用 I C、 オペアンプ等の集積回路やバイ ポーラトランジスタ、 F E T、 ダイオードをはじめとする種々の能動素子と、 抵 抗体、 コンデンサ、 コイル等の受動素子とを用いた各種の定電流回路ゃ定電圧回 路を適用することができる。 これらの電子部品にはディップタイプの I Cをはじ め通常の基板実装用の電子部品を用いることができるが、 小型軽量化の点では、 表面実装型 I Cやチップ抵抗、 チップコンデンサをはじめとする表面実装用の電 子部品を用いることが望ましい。 また、 発光制御回路、 充電制御回路、 蓄電器を 夫々別の基板に設けてもよい。 例えば、 発光制御回路と充電制御回路は一枚の基 板上に設け、 蓄電器のみ別に設け基板から銅線などで接続してもよい。 特に、 2 次電池を蓄電器として適用する場合には、 2次電池が劣化した場合に、 その 2次 電池のみを交換すればよいので、 自発光装置の寿命を簡単なメンテナンスにより 延ばすことができる。
2 ) 上述の実施の形態においては、 p型シリコン半導体を球状結晶 1 0に球状 光電変換素子 2を構成したが、 図 8に示すように、 n型シリコン半導体の球状結 晶 1 O Aにより球状光電変換素子 2 Bを構成してもよレ、。 この球状光電変換素子 2 Aは、 p n接合 1 1 Aを形成するために球状結晶 1 O Aの表面近傍に形成され た p型拡散層 1 2 Aと、 球状結晶の η型シリコンに電気的に接続された負電極 1 3 Αと、 負電極 1 3 Aとは球状結晶 1 O Aの中心に対して対向する位置に形成さ れた正電極 1 4 Aと、 電極 1 3 A, 1 4 Aが形成されていない表面に形成された 絶縁皮膜 1 5 Aとを備えている。 更に、 負電極 1 3 A, 正電極 1 4 Aの表面には、 金属のペースト膜 l 6 A, 1 7 Aが被膜されている。
3 ) 上述の実施の形態においては、 球状光電変換素子がシリコンにより構成し たが、 シリコンに限定されるものではなく、 ゲルマニウムなどの IV族半導体や、 III -V族半導体、 II一 VI族半導体などにより球状光電変換素子を構成してもよ レ、0
4 ) 上述の実施の形態においては、 発光ダイォードを A 1 G a A s系で構成し たが、 視認性などを考慮し、 A l G' a l n P系、 A l G a l n N系などで構成さ れている発光ダイオードを適用してもよく、 また、 樹脂モールドされた発光ダイ オードや表面実装型の発光ダイオードを適用してもよい。 特に、 樹脂モールドさ れた発光ダイオードを適用する場合には、 投光レンズを形成せずに、 発光ダイォ ードを露出させた状態で設けてもよい。 更に、 このように構成する場合には発光 ダイォードを取り外し可能に構成することで、 所望の色の発光ダイォードをユー ザ一が装着することができ、 装飾性を向上させることができる。 更に、 発光ダイ オード以外の光源を適用してもよい。 但し、 少ない電流で高輝度の発光を得られ る発光体を適用することが望ましい。
5 ) 発光ダイオードの周りに反射膜などを形成してもよい。 このように構成す ることで、 発光ダイォードの光を外部に反射させて出射させることができるので、 夜間など外部からの視認性を向上させることができる。
6 ) 上述の実施の形態においては、 レンズ部材を含む封止材をエポキシ樹脂で 構成したが、 シリコーン樹脂、 アクリル樹脂、 ポリカーボネート樹脂、 フッ素樹 脂、 ポリイミド樹脂、 ポリビュルプチノレ樹脂、 エチレンビニルアセテート樹脂、 ナフトラン樹脂、 酢酸セルロースをはじめ、 球状光電変換素子が発電可能な所定 波長の光を透過させることができる材質により構成すればよい。 例えば、 可撓性 を有する合成樹脂などで構成することで、 自発光装置を変形させることができ、 外部からの褸 ί撃に対して非常に強い構成とすることができる。 また、 合成樹脂に 拡散剤を混合することで発光の均一性を向上させることもできる。
7 ) 上述の実施の形態においては、 レンズ部材と封止材とを同じエポキシ樹脂 で一体的に構成したが、 レンズ部材と封止材とを別々に製造し、 夫々を接着材で してもよい。 このように構成する場合には、 レンズ部材と封止材とを同じ材 質で構成することで接着材による接着の強度を高めることができる。
一方、 レンズ部材と封止材とを別々の材質で構成してもよレ、。 このように構成 する場合には、 集光レンズ部材には、 球状光電変換素子により発電可能な特定波 長の光を透過させることができればよく、 投光レンズ部材と封止材を構成する材 質は特に限定されるものではない。 例えば、 投光レンズ部材の材質を着色しても よく、 蛍光体や燐光体などを含有させることで装飾性に優れた自発光装置を提供 することができる。 また、 封止材は、 ポリオレフイン樹脂、 ポリアミド樹脂、 ポ リプロピレン樹脂、 ポリエステル樹脂、 ポリスチレン樹脂、 塩化ビニール樹脂、 ウレタン樹脂などの可塑性の樹脂で構成してもよい。
8 ) 集光レンズ部材の形状は、 半球面状や平面状など適宜変更可能である。 集 光レンズを変形する場合には、 球状光電変換素子の一部が集光レンズよりも下に 位置することが望ましい。 このように構成することで、 真上からの入射光に対し て発電効率を向上させると共に、 斜め方向からの入射光に対しても一定の発光効 率を維持することができる。 また、 集光レンズ部材の反射膜を設け球状光電変換 素子に光が導光されるように構成してもよレ、。
9 ) 蓄電器としては、 マンガン ' リチウム二次電池、 リチウム ·イオン電池、 ニッケル ·水素電池、 ニツカド電池をはじめとする種々の二次電池や、 電気二重 層キャパシタをはじめとする比較的容量の大きなキャパシタを適用することがで きる。 装置全体の小型軽量化を考える場合、 蓄電器にはコイン型のマンガン ' リ チウムニ次電池や電気二重層キャパシタを用いることが望ましい。 但し、 繰り返 し蓄電及び放電することによる劣化を考えると二次電池よりも電気二重層キャパ シタのようなキャパシタを適用することがより望ましい。
1 0 ) 光検知センサとして、 光の受光量により出力電圧あるいは電流が変化す るフォトダイオードのような光電変換素子をはじめとする種々のセンサを用いる ことができる。 更に、 球状光電変換素子を光検知センサとして設けることできる。 このように構成すると、 小型化及び軽量ィヒの面で更に向上させることができ、 ま た、 製造コストを削減することができる。 1 1 ) 自発光装置が備える球状光電変換素子と発光ダイオードの個数は、 適宜 変更可能である。 球状光電変換素子の個数は、 所望の発電量及び集光レンズ部材 の集光率などを考慮して決定することが望ましい。 また、 球状光電変換素子及び 発光ダイォードの配置も特に上記実施の形態に限定されるものでなく、 球状光電 変換素子を直線状に配列することや、 多数行多数列に配設してもよい。
1 2 ) 球状光電変換素子の下方に反射膜を設けてもよい。 このように構成する ことで、 球状光電変換素子に受光されない光を、 球状光電変換素子へと反射させ ることができ、 発光効率を上げることができる。
1 3 ) 自発光装置の形状は、 平面視にて円形や矩形や星形など種々の形状に構 成してもよい。
本発明は以上説明した実施の形態に限定されるものではなく、 当業者であれば、 本発明の趣旨を逸脱しない範囲で、 前記実施の形態に種々の変更を付加して実施 することができ、 本発明はそれらの変更形態をも包含するものである。

Claims

請 求 の 範 囲
1 . ほぼ球面状の受光面を有する球状光電変換素子と、 この球状光電変換素子 に導光又は集光するレンズ部材と、 前記球状光電変換素子で発電された電力で発 光する発光体と、 全体を固着して一体ィヒする封止材とを備えたことを特徴とする
2 . 前記球状光電変換素子として、 直列接続された複数の球状光電変換素子を 設けたことを特徴とする請求の範囲第 1項に記載の自発光装置。
3 . 前記球状光電変換素子で発電された電力を蓄電する為の蓄電器を備えた;! とを特徴とする請求の範囲第 2項に記載の自発光装置。
4 . 前記発光体への通電を制御する発光制御回路を備えたことを特徴とする請 求の範囲第 3項に記載の自発光装置。
5 . 前記発光制御回路に、 光検知センサを組み込んだことを特徴とする請求の 範囲第 4項に記載の自発光装置。
6 . 前記発光制御回路は、 2つのトランジスタと複数の抵抗とを含む無安定マ ルチバイブレータを備え、
前記光検知センサは、 一端をアースに、 他端をトランジスタのベースに接続さ れ、
前記 2つのトランジスタのベースに夫々接続された抵抗は、 コレクタに接続さ れた抵抗に比べ非常に大きい抵抗値を有することを特徴とする請求の範囲第 5項 に記載の自発光装置。
7 . 前記蓄電器への充電を制御する充電制御回路を設けたことを特徴とする請 求の範囲第 3項〜第 6項の何れかに記載の自発光装置。
8 . 前記レンズ部材と前記封止材とを同種の合成樹脂材料で構成したことを特 徴とする請求の範囲第 2項〜第 7項の何れかに記載の自発光装置。
9 . 前記各球状光電変換素子の下面側に入射光を反射可能な金属製の部分球面 状の反射部材が設けられたことを特徴とする請求の範囲第 1項又は第 2項に記載 の自発光装置。
10. 前記反射部材はリードフレームであることを特徴とする請求の範囲第 9 項に記載の自発光装置。
1 1. 前記光検知センサは紫外線センサであって、 前記発光制御回路に、 前記 紫外線センサにより検知された紫外線強度に応じた電圧を増幅して出力する直流 増幅回路を設けたことを特徴とする請求の範囲第 5項に記載の自発光装置。
12. 前記発光体が複数設けられ、 前記発光制御回路は前記紫外線センサから の出力に基づいて、 前記各発光体のうち何れかを発光させることを特徴とする請 求の範囲第 1 1項に記載の自発光装置。
1 3. 前記発光制御回路に、 前記発光体を点滅させるためにシュミツトトリガ ーィンバーターと抵抗とを並列に組み込んだことを特徴とする請求の範囲第 4項 に記載の自発光装置。
14. 前記蓄電器は、 二酸化マンガン ' リチウム二次電池であることを特徴と する請求の範囲第 3項に記載の自発光装置。
1 5. 前記球状光電変換素子と前記発光体に近接するように、 光を反射可能な 透明樹脂からなる反射部材を設けたことを特徴とする請求の範囲第 1項〜第 3項 の何れかに記載の自発光装置。
16. 前記光検知センサは、 硫化カドミウム (C d S) であることを特徴とす る請求の範囲第 5項に記載の自発光装置。
PCT/JP2004/005674 2003-04-21 2004-04-20 自発光装置 WO2004095590A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US10/552,255 US7387400B2 (en) 2003-04-21 2004-04-02 Light-emitting device with spherical photoelectric converting element
CNB2004800102423A CN100550433C (zh) 2003-04-21 2004-04-20 自发光装置
CA2520824A CA2520824C (en) 2003-04-21 2004-04-20 Self light - emitting device
AU2004231849A AU2004231849B2 (en) 2003-04-21 2004-04-20 Selfluminous device
EP04728460A EP1617486A4 (en) 2003-04-21 2004-04-20 AUTOLUMINOUS DEVICE
JP2005505752A JP4046241B2 (ja) 2003-04-21 2004-04-20 自発光装置
KR1020057013465A KR100661067B1 (ko) 2003-04-21 2004-04-20 자기 발광 장치
TW093111191A TWI265255B (en) 2003-04-21 2004-04-21 Voluntary light emitting device
HK06108658.0A HK1088438A1 (en) 2003-04-21 2006-08-04 Selfluminous device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003115512 2003-04-21
JP2003-115512 2003-04-21

Publications (1)

Publication Number Publication Date
WO2004095590A1 true WO2004095590A1 (ja) 2004-11-04

Family

ID=33307956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/005674 WO2004095590A1 (ja) 2003-04-21 2004-04-20 自発光装置

Country Status (10)

Country Link
US (1) US7387400B2 (ja)
EP (2) EP1617486A4 (ja)
JP (1) JP4046241B2 (ja)
KR (1) KR100661067B1 (ja)
CN (2) CN100550433C (ja)
AU (1) AU2004231849B2 (ja)
CA (1) CA2520824C (ja)
HK (2) HK1088438A1 (ja)
TW (1) TWI265255B (ja)
WO (1) WO2004095590A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006190961A (ja) * 2004-12-31 2006-07-20 Ind Technol Res Inst 発光ダイオードパッケージ及びその製造プロセス
WO2007055253A1 (ja) * 2005-11-10 2007-05-18 Kyocera Corporation 光電変換装置
JP2008141149A (ja) * 2006-11-29 2008-06-19 Kaitokui Denshi Kogyo Kofun Yugenkoshi 太陽エネルギー発光装置
JP2009206160A (ja) * 2008-02-26 2009-09-10 Asahi Rubber Inc 太陽電池アセンブリ
JP2011096987A (ja) * 2009-11-02 2011-05-12 Taisei Komu Kk 太陽光発電パネルの診断装置、遮音壁、建造物用の窓ガラス及び乗物用の窓ガラス
JP2013179339A (ja) * 2013-05-13 2013-09-09 Asahi Rubber Inc 太陽電池アセンブリ

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2001277779B2 (en) * 2001-08-13 2005-04-07 Sphelar Power Corporation Semiconductor device and method of its manufacture
AU2001277778B2 (en) * 2001-08-13 2005-04-07 Sphelar Power Corporation Light-emitting or light-receiving semiconductor module and method of its manufacture
KR100619614B1 (ko) * 2001-10-19 2006-09-01 죠스케 나카다 발광 또는 수광용 반도체 모듈 및 그 제조 방법
WO2003094248A1 (en) * 2002-05-02 2003-11-13 Josuke Nakata Light-receiving panel or light-emitting panel, and manufacturing method thereof
AU2002313256B8 (en) 2002-06-21 2006-11-02 Sphelar Power Corporation Light-receiving or light-emitting device and its production method
US7387400B2 (en) 2003-04-21 2008-06-17 Kyosemi Corporation Light-emitting device with spherical photoelectric converting element
WO2004109890A1 (ja) * 2003-06-09 2004-12-16 Kyosemi Corporation 発電システム
CN1771608A (zh) * 2003-10-24 2006-05-10 京半导体股份有限公司 受光或发光模块板及其制造方法
US9657909B2 (en) 2005-06-23 2017-05-23 Rsr Sales, Inc. Self-contained, solar-powered LED illuminator modules and applications thereof
US20110292644A1 (en) * 2005-06-23 2011-12-01 Richard Cohen Apparatus and method for converting gazing globes and other decorative objects into glow-in-the-dark products
GB2444336B (en) * 2005-09-13 2009-02-25 Higher Way Electronic Co Ltd Solar-powered illuminator
US7273294B2 (en) * 2006-01-26 2007-09-25 Kuang-Hung Kao Outdoor solar energy lamp with luminescence efficiency
JP4976388B2 (ja) * 2006-06-14 2012-07-18 京セミ株式会社 ロッド形半導体デバイス
KR100820627B1 (ko) * 2006-07-31 2008-04-10 한국 고덴시 주식회사 반사형 광센서 패키지 및 이의 제조 방법
TWI384633B (zh) * 2007-06-07 2013-02-01 Univ Nat Chunghsing Low - light - generating solar energy installations
CN101505116A (zh) * 2008-02-04 2009-08-12 株式会社Msk 太阳光发电装置
TWM341193U (en) * 2008-02-05 2008-09-21 Tennrich Int Corp Display apparatus for displaying light intensity and its application
KR20100009323A (ko) * 2008-07-18 2010-01-27 삼성전자주식회사 벌브 타입 집광형 태양전지 모듈
US7994735B1 (en) 2009-07-22 2011-08-09 Berman Amy S Solar-controlled light device
US8084780B2 (en) * 2009-08-13 2011-12-27 Semileds Optoelectronics Co. Smart integrated semiconductor light emitting system including light emitting diodes and application specific integrated circuits (ASIC)
WO2011120172A1 (en) * 2010-03-31 2011-10-06 Ats Automation Tooling Systems Inc. Light generator systems and methods
KR20120075946A (ko) * 2010-12-29 2012-07-09 서울반도체 주식회사 전원공급소자 통합형 웨이퍼를 갖는 발광모듈
US20120186627A1 (en) * 2011-01-20 2012-07-26 Colossus EPC, Inc. Electronic power source
US9647162B2 (en) 2011-01-20 2017-05-09 Colossus EPC Inc. Electronic power cell memory back-up battery
US20120187763A1 (en) * 2011-01-25 2012-07-26 Isoline Component Company, Llc Electronic power supply
JP2014086490A (ja) * 2012-10-22 2014-05-12 Toshiba Corp 発光発電モジュール、発光発電装置
CN104066221A (zh) * 2013-03-21 2014-09-24 海洋王(东莞)照明科技有限公司 一种光检测电路及灯具
TWI542826B (zh) * 2013-12-30 2016-07-21 飛立威光能股份有限公司 可撓性照明光伏打複合模組及其製備方法
JP6611036B2 (ja) * 2015-09-10 2019-11-27 パナソニックIpマネジメント株式会社 発光装置及び照明用光源
TWI590433B (zh) * 2015-10-12 2017-07-01 財團法人工業技術研究院 發光元件以及顯示器的製作方法
DE102016113763A1 (de) * 2016-07-26 2018-02-01 Endress+Hauser Conducta Gmbh+Co. Kg Sensoranordnung zum Einsatz in der Prozessautomatisierung
US10433387B2 (en) * 2016-12-28 2019-10-01 Asahi Kasei Microdevices Corporation Light emitting device and light emitting and receiving device
US10327300B2 (en) * 2017-10-20 2019-06-18 Paul Dickie Light source to darken a photochromic lens
USD874715S1 (en) 2018-03-07 2020-02-04 Myotek Holdings, Inc. LED spot lamp lens
TWI667876B (zh) * 2018-04-03 2019-08-01 武史 廖 利用光能產生電力的裝置
US10288234B1 (en) * 2018-11-07 2019-05-14 Bae Systems Information And Electronic Systems Integration Inc. Hand-held UV stimulator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000259992A (ja) * 1999-03-12 2000-09-22 Sekisui Jushi Co Ltd メンテナンス表示システム
JP2001168369A (ja) * 1999-12-09 2001-06-22 Joyu Nakada 球状半導体素子を用いた発電装置および球状半導体素子を用いた発光装置
WO2003017383A1 (en) * 2001-08-13 2003-02-27 Josuke Nakata Semiconductor device and method of its manufacture

Family Cites Families (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3038952A (en) * 1959-05-20 1962-06-12 Hoffman Electronics Corp Method of making a solar cell panel
US3025335A (en) * 1960-02-29 1962-03-13 Hoffman Electronics Corp Flexible solar energy converter panel
US3350775A (en) * 1963-10-03 1967-11-07 Hoffman Electronics Corp Process of making solar cells or the like
US3433676A (en) * 1964-10-21 1969-03-18 Gen Motors Corp Thermophotovoltaic energy convertor with photocell mount
DE1539564A1 (de) 1966-11-09 1969-12-11 Siemens Ag Lumineszenzdiode mit hohem Wirkungsgrad
US3844840A (en) * 1973-09-27 1974-10-29 R Bender Solar energy helmet
US3998659A (en) * 1974-01-28 1976-12-21 Texas Instruments Incorporated Solar cell with semiconductor particles and method of fabrication
JPS5328751B2 (ja) * 1974-11-27 1978-08-16
US4021323A (en) * 1975-07-28 1977-05-03 Texas Instruments Incorporated Solar energy conversion
US4126812A (en) * 1976-12-20 1978-11-21 Texas Instruments Incorporated Spherical light emitting diode element and character display with integral reflector
US4343032A (en) * 1978-07-10 1982-08-03 Cable Electric Products, Inc. Light sensitive electrical device
US4229733A (en) * 1978-08-10 1980-10-21 Thomas N. Tulenko Exposure detecting device
FR2548563B1 (fr) * 1983-07-06 1985-11-22 Stein Industrie Ensemble forme par l'assemblage de tubes en acier inoxydable ferritique sur une plaque tubulaire en acier au carbone, et procede de fabrication dudit ensemble
US4581103A (en) * 1984-09-04 1986-04-08 Texas Instruments Incorporated Method of etching semiconductor material
US4582588A (en) * 1984-09-04 1986-04-15 Texas Instruments Incorporated Method of anodizing and sealing aluminum
JPH0754855B2 (ja) 1984-09-04 1995-06-07 テキサス インスツルメンツ インコーポレイテッド ソーラー・アレーの製造方法
US4691076A (en) * 1984-09-04 1987-09-01 Texas Instruments Incorporated Solar array with aluminum foil matrix
US4704535A (en) * 1985-04-11 1987-11-03 Teledyne Industries, Inc. Ultraviolet dosimetry
US4851686A (en) * 1985-11-26 1989-07-25 Pearson Anthony P Ultraviolet radiation monitoring device
JPH01179374A (ja) 1988-01-05 1989-07-17 Res Dev Corp Of Japan 接合型半導体発光素子
US4985632A (en) * 1989-05-31 1991-01-15 Elexis Corporation Suntan indicator
US5028546A (en) * 1989-07-31 1991-07-02 Texas Instruments Incorporated Method for manufacture of solar cell with foil contact point
US5036443A (en) * 1990-05-02 1991-07-30 Wayne Humble Proximity light
JPH0536997A (ja) 1991-07-26 1993-02-12 Sanyo Electric Co Ltd 光起電力装置
US5231781A (en) * 1991-10-16 1993-08-03 Bret Allen Dunbar Illuminated float
US5428249A (en) * 1992-07-15 1995-06-27 Canon Kabushiki Kaisha Photovoltaic device with improved collector electrode
US5382986A (en) * 1992-11-04 1995-01-17 Reliant Laser Corporation Liquid-crystal sunglasses indicating overexposure to UV-radiation
US5419782A (en) * 1993-05-11 1995-05-30 Texas Instruments Incorporated Array of solar cells having an optically self-aligning, output-increasing, ambient-protecting coating
US5538902A (en) * 1993-06-29 1996-07-23 Sanyo Electric Co., Ltd. Method of fabricating a photovoltaic device having a three-dimensional shape
US5453729A (en) * 1993-07-28 1995-09-26 Chu; Chiu-Tsai Solar warning light
US5469020A (en) * 1994-03-14 1995-11-21 Massachusetts Institute Of Technology Flexible large screen display having multiple light emitting elements sandwiched between crossed electrodes
US5793184A (en) * 1994-04-20 1998-08-11 Opcon, Ltd. Solar power supply unit for battery operated devices
US5498576A (en) * 1994-07-22 1996-03-12 Texas Instruments Incorporated Method and apparatus for affixing spheres to a foil matrix
US5431127A (en) * 1994-10-14 1995-07-11 Texas Instruments Incorporated Process for producing semiconductor spheres
JPH08199513A (ja) 1995-01-27 1996-08-06 Furetsudo:Kk 発光標識装置
US5782552A (en) * 1995-07-26 1998-07-21 Green; David R. Light assembly
JPH0949213A (ja) 1995-08-08 1997-02-18 S T Energ Kk 路面設置型道路信号装置
JPH09162434A (ja) 1995-12-05 1997-06-20 Hitachi Ltd 太陽電池およびその製造方法
JP3231244B2 (ja) 1996-07-22 2001-11-19 仗祐 中田 無機材料製の球状体の製造方法及びその製造装置
US5680033A (en) * 1996-09-06 1997-10-21 Cha; Ting-Jen Solar powered warning device
JP3262174B2 (ja) 1996-10-09 2002-03-04 仗祐 中田 半導体デバイス
US6204545B1 (en) * 1996-10-09 2001-03-20 Josuke Nakata Semiconductor device
CN1134847C (zh) * 1996-10-09 2004-01-14 中田仗祐 半导体器件
US5925897A (en) 1997-02-14 1999-07-20 Oberman; David B. Optoelectronic semiconductor diodes and devices comprising same
CA2269632C (en) * 1997-08-27 2003-09-02 Josuke Nakata Spherical semiconductor device and method of manufacturing same
EP0982780B1 (en) 1998-01-23 2003-09-24 Josuke Nakata Photoelectrolytic device
JPH11238897A (ja) * 1998-02-23 1999-08-31 Canon Inc 太陽電池モジュール製造方法および太陽電池モジュール
JP2000022184A (ja) 1998-07-03 2000-01-21 Nippon Telegr & Teleph Corp <Ntt> 球状または棒状結晶太陽電池およびその製造方法
JP2001102618A (ja) 1999-09-30 2001-04-13 Sony Corp 受光装置
JP4510961B2 (ja) 1999-10-19 2010-07-28 Okiセミコンダクタ株式会社 光モジュール
JP3091846B1 (ja) 1999-11-26 2000-09-25 株式会社三井ハイテック 太陽電池を含む球状半導体及びそれを用いた球状半導体装置
KR100336779B1 (ko) 1999-12-08 2002-05-16 박종섭 반도체 소자의 게이트 절연막 형성방법
JP2001177132A (ja) 1999-12-16 2001-06-29 Mitsui High Tec Inc 球体の切断方法、これを用いた太陽電池およびその製造方法
JP3369525B2 (ja) 2000-01-27 2003-01-20 株式会社三井ハイテック 太陽電池及びその製造方法
JP3436723B2 (ja) 2000-03-23 2003-08-18 株式会社三井ハイテック 太陽電池の製造方法及び太陽電池
US6355873B1 (en) * 2000-06-21 2002-03-12 Ball Semiconductor, Inc. Spherical shaped solar cell fabrication and panel assembly
JP3939082B2 (ja) 2000-08-03 2007-06-27 株式会社三井ハイテック 太陽電池の製造方法
KR100549249B1 (ko) * 2000-10-20 2006-02-03 죠스케 나카다 발광 또는 수광용 반도체 장치 및 그 제조 방법
US7205626B1 (en) 2000-10-20 2007-04-17 Josuke Nakata Light-emitting or light-receiving with plurality of particle-shaped semiconductor devices having light-emitting or light-receiving properties
JP3490969B2 (ja) 2000-11-24 2004-01-26 圭弘 浜川 光発電装置
US6563041B2 (en) * 2000-11-29 2003-05-13 Kyocera Corporation Photoelectric conversion device
US6402338B1 (en) * 2001-04-05 2002-06-11 Mitzel Machining Inc. Enclosure illumination system
JP2002324916A (ja) * 2001-04-24 2002-11-08 Rohm Co Ltd 赤外線データ通信モジュールおよびその製造方法
AU2001277778B2 (en) * 2001-08-13 2005-04-07 Sphelar Power Corporation Light-emitting or light-receiving semiconductor module and method of its manufacture
KR100619614B1 (ko) * 2001-10-19 2006-09-01 죠스케 나카다 발광 또는 수광용 반도체 모듈 및 그 제조 방법
WO2003056633A1 (fr) * 2001-12-25 2003-07-10 Josuke Nakata Appareil semi-conducteur d'emission et de reception de lumiere
WO2003094248A1 (en) * 2002-05-02 2003-11-13 Josuke Nakata Light-receiving panel or light-emitting panel, and manufacturing method thereof
AU2002313256B8 (en) * 2002-06-21 2006-11-02 Sphelar Power Corporation Light-receiving or light-emitting device and its production method
US7387400B2 (en) 2003-04-21 2008-06-17 Kyosemi Corporation Light-emitting device with spherical photoelectric converting element
CN1771608A (zh) * 2003-10-24 2006-05-10 京半导体股份有限公司 受光或发光模块板及其制造方法
US7044616B2 (en) * 2004-09-13 2006-05-16 Yi Cyuan Shih Solar powered warning light device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000259992A (ja) * 1999-03-12 2000-09-22 Sekisui Jushi Co Ltd メンテナンス表示システム
JP2001168369A (ja) * 1999-12-09 2001-06-22 Joyu Nakada 球状半導体素子を用いた発電装置および球状半導体素子を用いた発光装置
WO2003017383A1 (en) * 2001-08-13 2003-02-27 Josuke Nakata Semiconductor device and method of its manufacture

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1617486A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006190961A (ja) * 2004-12-31 2006-07-20 Ind Technol Res Inst 発光ダイオードパッケージ及びその製造プロセス
US7589354B2 (en) 2004-12-31 2009-09-15 Industrial Technology Research Institute Light emitting diode package and process of making the same
WO2007055253A1 (ja) * 2005-11-10 2007-05-18 Kyocera Corporation 光電変換装置
JP2008141149A (ja) * 2006-11-29 2008-06-19 Kaitokui Denshi Kogyo Kofun Yugenkoshi 太陽エネルギー発光装置
JP2009206160A (ja) * 2008-02-26 2009-09-10 Asahi Rubber Inc 太陽電池アセンブリ
JP2011096987A (ja) * 2009-11-02 2011-05-12 Taisei Komu Kk 太陽光発電パネルの診断装置、遮音壁、建造物用の窓ガラス及び乗物用の窓ガラス
JP2013179339A (ja) * 2013-05-13 2013-09-09 Asahi Rubber Inc 太陽電池アセンブリ

Also Published As

Publication number Publication date
AU2004231849B2 (en) 2007-05-24
HK1088438A1 (en) 2006-11-03
CA2520824C (en) 2010-11-30
EP2259333A3 (en) 2016-08-03
EP1617486A4 (en) 2007-10-17
CN101387549B (zh) 2012-10-24
TWI265255B (en) 2006-11-01
CN1774818A (zh) 2006-05-17
EP1617486A1 (en) 2006-01-18
AU2004231849A1 (en) 2004-11-04
KR100661067B1 (ko) 2006-12-22
US20060133073A1 (en) 2006-06-22
CN100550433C (zh) 2009-10-14
KR20050097948A (ko) 2005-10-10
JPWO2004095590A1 (ja) 2006-07-13
CN101387549A (zh) 2009-03-18
JP4046241B2 (ja) 2008-02-13
US7387400B2 (en) 2008-06-17
CA2520824A1 (en) 2004-11-04
TW200426322A (en) 2004-12-01
EP2259333A2 (en) 2010-12-08
HK1127399A1 (en) 2009-09-25

Similar Documents

Publication Publication Date Title
KR100661067B1 (ko) 자기 발광 장치
AU2002313256B8 (en) Light-receiving or light-emitting device and its production method
CN100411196C (zh) 受光或发光用半导体装置
CN100563003C (zh) 太阳能发光装置
KR101038499B1 (ko) 태양전지 모듈을 이용한 엘이디 간판
WO2005104249A1 (ja) 発光素子駆動用半導体チップ、発光装置、及び照明装置
JPH0739930Y2 (ja) 自発光式道路鋲
GB2444336A (en) Solar-powered illuminator
CN204066672U (zh) 一种自持式发光交通标识牌
CN210245535U (zh) 一种全光谱发光二极管
KR102599539B1 (ko) 조명장치, 조명제어장치
JPS5825287A (ja) 半導体感光発光素子
AU2012216818A1 (en) Solar-Powered Illuminator

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005505752

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020057013465

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2520824

Country of ref document: CA

WWP Wipo information: published in national office

Ref document number: 1020057013465

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2004231849

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2004231849

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 20048102423

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2004728460

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006133073

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10552255

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2004231849

Country of ref document: AU

Date of ref document: 20040420

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2004231849

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2004728460

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10552255

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2004231849

Country of ref document: AU