WO2004089993A1 - (メタ)アクリル樹脂系エマルジョンおよびその製造方法 - Google Patents

(メタ)アクリル樹脂系エマルジョンおよびその製造方法 Download PDF

Info

Publication number
WO2004089993A1
WO2004089993A1 PCT/JP2004/004600 JP2004004600W WO2004089993A1 WO 2004089993 A1 WO2004089993 A1 WO 2004089993A1 JP 2004004600 W JP2004004600 W JP 2004004600W WO 2004089993 A1 WO2004089993 A1 WO 2004089993A1
Authority
WO
WIPO (PCT)
Prior art keywords
emulsion
polymerization
meth
acrylic resin
mol
Prior art date
Application number
PCT/JP2004/004600
Other languages
English (en)
French (fr)
Inventor
Seiji Tanimoto
Naoki Fujiwara
Original Assignee
Kuraray Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co., Ltd. filed Critical Kuraray Co., Ltd.
Priority to AT04724773T priority Critical patent/ATE451396T1/de
Priority to DE602004024512T priority patent/DE602004024512D1/de
Priority to JP2005505217A priority patent/JP4152984B2/ja
Priority to EP04724773A priority patent/EP1612226B1/en
Priority to US10/550,025 priority patent/US8030398B2/en
Publication of WO2004089993A1 publication Critical patent/WO2004089993A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • C08F2/24Emulsion polymerisation with the aid of emulsifying agents
    • C08F2/30Emulsion polymerisation with the aid of emulsifying agents non-ionic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/12Esters of monohydric alcohols or phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F261/00Macromolecular compounds obtained by polymerising monomers on to polymers of oxygen-containing monomers as defined in group C08F16/00
    • C08F261/02Macromolecular compounds obtained by polymerising monomers on to polymers of oxygen-containing monomers as defined in group C08F16/00 on to polymers of unsaturated alcohols
    • C08F261/04Macromolecular compounds obtained by polymerising monomers on to polymers of oxygen-containing monomers as defined in group C08F16/00 on to polymers of unsaturated alcohols on to polymers of vinyl alcohol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/40Redox systems
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/122Pulverisation by spraying
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • C08J3/21Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase
    • C08J3/215Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase at least one additive being also premixed with a liquid phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • C08L33/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids

Definitions

  • the present invention relates to a (meth) acrylic resin-based emulsion obtained by emulsifying (co) polymerizing a (meth) acrylic ester-based monomer using a vinyl alcohol-based polymer as a dispersant, and a method for producing the same. More specifically, the present invention provides a (meth) acrylic resin emulsion having excellent film strength, film transparency and mechanical stability, and also excellent alkali resistance, and stability of emulsion (co) polymerization and polymerization. The present invention relates to a method for producing the (meth) acrylic resin emulsion excellent in operability. Background art
  • emulsions obtained by emulsion polymerization of (meth) acrylate monomers have been widely used in fields such as paints, paper processing and textile processing.
  • an anionic or nonionic surfactant is generally used as a stabilizer from the viewpoint of the stability of the emulsion polymerization.
  • emulsions that use surfactants as stabilizers have the disadvantage of poor mechanical stability and can be used for applications that require high mechanical stability, such as admixtures such as cement and mortar. Did not.
  • PVA polyvinyl alcohol
  • Patent Document 1 Patent Document 2
  • Patent Document 2 Patent Document 3
  • Patent Document 3 Patent Document 4, Patent Document 5
  • a commonly used initiator for example, potassium persulfate, ammonium persulfate, hydrogen peroxide alone or a redox initiator in which these peroxides are combined with various reducing agents, etc.
  • graft efficiency is low and it is difficult to secure sufficient practical stability.
  • initiators such as potassium bromate, which generates radicals only by a redox reaction with the mercapto group of the PVA-based polymer, are used.
  • Patent Document 6 A method for producing an emulsion by adding polyvinyl alcohol from the start of polymerization to the start of ripening is disclosed (Patent Document 6).
  • an emulsifier is used when emulsion polymerization is started.
  • the emulsifier causes migration, which adversely affects the physical properties.
  • the emulsion thus obtained has good mechanical stability, as is apparent from Comparative Examples 16 to 17 described later, but the [measure a] 0.3 defined in the present invention. An emulsion having sharp particles having the above particle size distribution cannot be obtained, and the film strength and transparency of the emulsion are not sufficiently excellent.
  • Patent Document 8 A method of emulsifying and dispersing and polymerizing is proposed below (Patent Document 8), and the polymerization stability and the like are improved.
  • Patent Document 8 A method of emulsifying and dispersing and polymerizing is proposed below (Patent Document 8), and the polymerization stability and the like are improved.
  • this technique requires a forced emulsification device such as a homomixer, and requires polymerization under severe conditions such as keeping the oxygen concentration of the aqueous phase at 0.3 ppm or less during polymerization. It is difficult to use them regularly.
  • the emulsion obtained by such a method has good mechanical stability, as is clear from Comparative Examples 14 and 15 described later, but the [measurement a] An emulsion having sharp particles having a particle size distribution of 3 or more cannot be obtained, and the film strength and transparency of the emulsion are not sufficiently excellent.
  • Example 2 of Patent Document 9 acrylate (a small amount), peroxide (a small amount), PVA, and an iron compound were charged in the early stage of polymerization, and acrylate (a large amount), a peroxide and a reducing agent (a small amount) were used. Rongalit) was added sequentially to carry out emulsion polymerization.
  • Example 3 of Patent Document 9 acrylate (total), peroxide (total), PVA, and iron compound were charged in the initial stage of polymerization. It has been proposed to sequentially add a reducing agent (mouth ngarit) to perform emulsion polymerization.
  • PVA used in Patent Document 9 has a low polymerization degree PVA having a molecular weight of 5,000 to 13 000 (approximately 100 to 300 in terms of polymerization degree) or a saponification degree of 96.5 mol% or more. High degree of saponification of PVA.
  • the obtained emulsion has poor film strength and is defined by the present invention.
  • Scale a An emulsion having sharp particles having a particle size distribution of 0.3 or more cannot be obtained, and the transparency of the emulsion film is not sufficiently satisfactory.
  • Patent Document 2
  • Patent Document 4 Japanese Patent Application Laid-Open No. 60-19772229 (Claims) Patent Document 4
  • Patent Document 5
  • JP-A-8-245706 (Claims, Examples 1 and 3)
  • Patent Document 8 Japanese Patent Application Laid-Open No. H11-33 5490 (Claims) Patent Document 8
  • the present invention provides a (meth) acrylic emulsion which is excellent in film strength, film transparency and mechanical stability of emulsion, and is also excellent in alkali resistance. Stability of emulsion (co) polymerization, It is an object of the present invention to provide a method for producing the emulsion which is remarkably excellent in polymerization operability.
  • the object of the present invention is to provide a vinyl alcohol polymer having a saponification degree of 80 to 95 mol% and a polymerization degree of 400 to 2000 as a dispersant, and an acrylate ester monomer unit and An emulsion in which a polymer composed of at least one monomer unit selected from methacrylic acid ester monomer units is used as a dispersoid, and the [scale a] indicating the emulsion particle diameter distribution width is 0.3 or more.
  • FIG. 1 is a graph showing the results obtained by measuring the particle size and the scattering intensity of the emulsion by a dynamic light scattering method.
  • the horizontal axis represents the particle diameter of the emulsion
  • the vertical axis represents the scattering intensity of the emulsion.
  • the horizontal axis indicates the particle size of the emulsion
  • the vertical axis indicates the integrated value of the scattering intensity of the emulsion.
  • the [scale a] indicating the emulsion particle size distribution width is 0.3 or more. It is more preferably at least 0.5, and most preferably at least 0.6.
  • the particle size distribution width of the emulsion is widened, and not only the film strength and the film transparency of the emulsion are reduced, but also the mechanical stability of the emulsion is reduced.
  • the mechanical stability of the emulsion refers to the shear stability of the emulsion, and means that no emulsion particles are precipitated under shear, particularly under high shear, or that precipitation of the emulsion particles is small.
  • [Scale a] is calculated from the particle size and the scattering intensity when the particle size distribution of the emulsion is measured by the dynamic light scattering method. Specifically, the particle diameter of the emulsion is plotted on the X-axis, the integrated value of the scattering intensity is plotted on the Y-axis, the linear expression of X and Y is obtained by the least squares method, and the coefficient indicating the slope of the obtained linear expression is calculated. [Scale a]. The larger the slope of the obtained linear equation, the smaller the particle size distribution width.
  • the average particle size of the (meth) acrylic resin emulsion of the present invention is not particularly limited, but usually the value measured by the dynamic light scattering method is 2 or less from the viewpoints of skin transparency and film strength.
  • the average particle size can be measured by the dynamic light scattering method using, for example, a laser zeta potentiometer ELS-800 manufactured by Otsuka Electronics Co., Ltd.
  • the (meth) acrylic resin emulsion of the present invention can be suitably obtained by the following method.
  • a vinyl alcohol polymer having a saponification degree of 80 to 95 mol% and a polymerization degree of 400 to 2000 (hereinafter sometimes abbreviated as PVA) as a dispersant is described in the present invention. It is important to obtain a (meth) acrylic resin emulsion with excellent film strength, film transparency, mechanical stability, and excellent alkali resistance, which is the object of the emulsion. It is also important in providing a method for producing a (meth) acrylic resin emulsion with excellent polymerization stability.
  • the method for producing the vinyl alcohol polymer is not particularly limited, and it can be obtained by polymerizing a piper ester by a known method and saponifying it.
  • examples of the vinyl ester include vinyl formate, vinyl acetate, vinyl vinyl pionate, and vinyl pivalate, and vinyl acetate is preferably used.
  • a vinyl alcohol-based polymer containing 1 to 20 mol% of a one-year-old fin unit having 4 or less carbon atoms in a molecule may be abbreviated as ⁇ -year-old olefin-modified PVA)
  • ⁇ -year-old olefin-modified PVA a vinyl alcohol-based polymer containing 1 to 20 mol% of a one-year-old fin unit having 4 or less carbon atoms in a molecule
  • the use of the PVA improves the alkali resistance of the (meth) acrylic resin emulsion.
  • —Olefin-modified PVA can be obtained by saponifying a copolymer of bierester and ⁇ -age olefin having 4 or less carbon atoms.
  • examples of the ⁇ -olefin unit having 4 or less carbon atoms include an ethylene, propylene, butylene, and isoptylene unit, and an ethylene unit is preferably used.
  • the content of a; -olefin units represented by ethylene units is preferably 1 to 20 mol%, more preferably 1.5 mol% or more, and even more preferably 2 mol% or more. And preferably 15 mol% or less, more preferably 12 mol% or less.
  • a (meth) acrylic resin emulsion having more excellent alkali resistance can be obtained.
  • a vinyl alcohol-based polymer having at least mol% is also a preferred embodiment of the present invention, and the use of this polymer further improves the stability during emulsion polymerization.
  • Examples of the method for producing this polymer include a method in which vinylene carbonate is copolymerized with bier ester and ethylene so that the amount of 1,2-glycol bond falls within the above range, and a saponification method is used.
  • a method in which the polymerization temperature is higher than usual conditions, for example, 75 to 20 ° C., polymerization under pressure, and saponification is then used.
  • the polymerization temperature is not particularly limited, but is usually 95 to 190 ° C, preferably 100 to 160 ° C.
  • the content of the 1,2-glycol bond is preferably (1.7-X40) mol% or more, more preferably (1.75-X / 40) mol% or more. It is preferably (1.8—X / 40) mol% or more, (1.91 ⁇ 40) mol% or more. Further, the content of the 1,2-glycol bond is preferably 4 mol% or less, more preferably 3.5 mol% or less, and most preferably 3.2 mol% or less.
  • the content of the 1,2-glycol bond can be obtained from the analysis of the NMR spectrum.
  • a vinyl alcohol-based polymer having 1.9 mol% or more of 1,2-glycol bond (sometimes abbreviated as PVA having high 1,2-dalicol bond) Is also one of the preferred embodiments.
  • PVA polyvinyl alcohol-based polymer having high 1,2-dalicol bond
  • stability during emulsion polymerization is improved.
  • the method for producing a PVA containing a high 1,2-glycol bond and a known method can be used.
  • a polymerization temperature of vinyl ester higher than normal conditions for example, a method in which polymerization is carried out under a pressure of 75 to 200 ° C. may be mentioned.
  • the polymerization temperature is preferably from 95 to 190 ° C, particularly preferably from 100 to 180 ° C. It is important to select the pressure conditions so that the polymerization system has a boiling point or lower, preferably 0.2 MPa or more, and more preferably 0.3 MPa or more.
  • the upper limit is preferably 5 MPa or less, and more preferably 3 MPa or less.
  • the above polymerization can be carried out in the presence of a radical polymerization initiator by any of a bulk polymerization method, a solution polymerization method, a suspension polymerization method, and an emulsion polymerization method. All solution polymerization methods are preferred.
  • a vinyl alcohol polymer having a high 1,2-glycol bond can be obtained.
  • the content of 1,2-daricol bonds in the vinyl alcohol polymer is preferably at least 1.9 mol%, more preferably at least 195 mol%, even more preferably at least 2.0 mol%. Optimally, it is at least 2.1 mol%.
  • the content of 1,2-glycol bond is preferably at most 4 mol%, more preferably at most 3.5 mol%, and most preferably at most 3.5 mol%. Suitably it is not more than 3.2 mol%.
  • the content of the 1,2-glycol bond can be obtained from the analysis of the NMR spectrum.
  • the PVA-based polymer may be a copolymer of an ethylenically unsaturated monomer copolymerizable within a range not to impair the effects of the present invention.
  • ethylenically unsaturated monomers include, for example, acrylic acid, methacrylic acid, fumaric acid, (anhydrous) maleic acid, itaconic acid, acrylonitrile, methacrylonitrile, acrylamide, methacrylamide, trimethyl- (3 —Acrylamide—3-dimethylpropyl) monoammonium chloride, acrylamide-2-methylpropanesulfonic acid and its sodium salt, ethyl vinyl ether, butyl vinyl ether, vinyl chloride, biel bromide, vinyl fluoride, vinylidene chloride And N-vinylamides such as vinylidene fluoride, tetrafluoroethylene, sodium vinylsulfonate, sodium arylsulfonate, N-vinylamide
  • a terminal modified product obtained by polymerizing a vinyl ester monomer such as vinyl acetate in the presence of a thiol compound such as thiolacetic acid or mercaptopropionic acid and saponifying the same can also be used.
  • the polymerization degree (viscosity average degree of polymerization) of the PVA-based polymer used as the dispersant in the present invention is from 400 to 200, more preferably from 400 to 130. It is 0. It is important that the degree of saponification of the PVA-based polymer is from 80 to 95 mol%, more preferably from 83 to 93 mol%.
  • the emulsion strength is excellent in film strength, film transparency and mechanical stability
  • a (meth) acrylic resin emulsion excellent in alkali resistance can be obtained, and a method for producing a (meth) acrylic resin emulsion excellent in polymerization operability and polymerization stability can be provided.
  • the amount of the PVA-based polymer used as a dispersant is not particularly limited, but is preferably 1 to 20 parts by weight, and more preferably 2 to 15 parts by weight, based on 100 parts by weight of the monomer used.
  • the amount of the PVA-based polymer used is less than 1 part by weight, the polymerization stability may be reduced.On the other hand, if the amount exceeds 20 parts by weight, the viscosity of the obtained aqueous emulsion becomes high, resulting in a high concentration. It may be difficult to obtain the emulsion.
  • the polymer constituting the dispersoid of the (meth) acrylic resin emulsion is at least one monomer selected from an acrylate monomer and a methacrylate monomer. ) It is polymerized.
  • the monomers include methyl acrylate, ethyl acrylate, n-propyl acrylate, i-propyl acrylate, n-butyl acrylate, i-butyl acrylate, t-butyl acrylate, 2-butyl acrylate Acrylates such as ethylhexyl, dodecyl acrylate, octadecyl acrylate, etc., methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, i-propyl methacrylate, n-butyl methacrylate, And methacrylic acid esters such as i-butyl methyl methacrylate, t-butyl
  • the polymer constituting the dispersoid is preferably a (co) polymer of the (meth) acrylate, but other copolymers that can be copolymerized within a range that does not impair the effects of the present invention.
  • a copolymer of a monomer may be used.
  • the use amount of these other monomers is preferably at most 30% by weight, more preferably at most 20% by weight, based on all monomers.
  • the emulsion particle size distribution width of the present invention is 0.3 or more, and a 500-m-thick film obtained by forming the emulsion at 20% under 65% RH.
  • the (meth) acrylic resin emulsion having a tensile strength of 100 kg Zcm 2 or more is preferably obtained by the following method. That is, the emulsion of the present invention comprises a redox-based polymerization initiator comprising a peroxide and a reducing agent, comprising a Bier alcohol-based polymer having a saponification degree of 80 to 95 mol% and a polymerization degree of 400 to 2000 as a dispersant.
  • the addition of an iron compound, particularly the entire amount thereof, at the beginning of polymerization makes emulsion operability and polymerization stability more excellent, and furthermore, the [measure a] of the present invention It is suitable for obtaining a water-based emulsion having a strength of 0.3 or more and a tensile strength of the film of 100 kg / cm 2 or more.
  • the iron compound is not particularly limited, but at least one iron compound selected from ferrous chloride, ferrous sulfate, ferric chloride, ferric nitrate, and ferric sulfate is preferably used. Ferrous and ferrous sulfate are particularly preferably used.
  • the amount of the iron compound to be used is not particularly limited, but is usually 1 to 50 ppm, more preferably 5 to 30 ppm, based on all monomers usually used. When the amount of the iron compound used is within this range, the operability of polymerization is good.
  • a redox polymerization initiator comprising a peroxide and a reducing agent is used.
  • the peroxide is not particularly limited, but hydrogen peroxide, ammonium persulfate, persulfuric acid lime, t-butyl hydroperoxide, and the like are used, and hydrogen peroxide is particularly preferably used.
  • the peroxide needs to be added continuously or intermittently. By adding it continuously or intermittently, polymerization operability and polymerization stability are improved, and an emulsion having the excellent properties aimed at by the present invention is obtained.
  • a 0.1 to 5% by weight aqueous solution of hydrogen peroxide preferably a 0.2 to 3% by weight aqueous solution, more preferably 0.2% by weight is used.
  • a 5 to 2% by weight aqueous solution the operability of polymerization is improved.
  • hydrogen peroxide is used in an amount of 0.01 to 1 part by weight based on 100 parts by weight of the monomer, polymerization operability and polymerization stability are improved. Thus, an emulsion having excellent characteristics can be obtained.
  • the reducing agent When hydrogen peroxide is used as the peroxide, tartaric acid, L-ascorbic acid, Rongalit, or a metal salt thereof is preferably used as the reducing agent.
  • ammonium persulfate or potassium persulfate is used as the peroxide, sodium hydrogen sulfite or sodium hydrogen carbonate is preferably used as the reducing agent.
  • the method for adding the reducing agent is not particularly limited, and may be either sequential addition or initial stage addition of the reducing agent, but it is 70% by weight or more, preferably 80% by weight or more, and A method of adding 90% by weight or more, most preferably substantially 100% by weight, is preferable from the viewpoint of polymerization operability.
  • the amount of the reducing agent used is not particularly limited, but is usually 0.05 to 3 equivalents, preferably 0.1 to 2 equivalents, more preferably 0.3 to 1 equivalent, based on the polymerization initiator (peroxide). 5 equivalents.
  • tartaric acid is preferably used, specifically tartaric acid and Z or a metal salt thereof.
  • Tartaric acid includes dextrorotatory L (+) tartaric acid, levorotatory D (—) tartaric acid, and DL tartaric acid, a racemic compound of these enantiomers, and is not particularly limited.
  • the polymerization operability is remarkably good, and it is preferably used.
  • a metal salt of tartaric acid and the type of metal is not particularly limited, but sodium tartrate is preferably used.
  • sodium L (+) tartrate is preferably used.
  • L (+) sodium tartrate is used, the polymerization operability is optimal.
  • the production method of the present invention it is important to charge not only an iron compound but also a monomer and a PVA-based polymer at an early stage of polymerization.
  • the initial stage of polymerization means immediately before or immediately after the start of polymerization.
  • the graft polymer in the obtained emulsion (a dispersant and a dispersoid are chemically bonded; ) Can be 50% by weight or more, which is preferable since the solvent resistance is improved.
  • the proportion of the graft polymer is preferably 55% by weight, more preferably 60% by weight or more, and most preferably 65% by weight or more.
  • a chain transfer agent in order to further improve the polymerization stability, can be used in the initial stage of the polymerization, if necessary.
  • the chain transfer agent is not particularly limited as long as it is a compound that causes a chain transfer during emulsion polymerization, and examples thereof include methanol, ethanol, n-propanol, i-propanol, n-butanol, and i-butanol.
  • ketones such as acetone, methyl ethyl ketone, cyclohexanone, and acetophenone
  • aldehydes such as acetoaldehyde, propionaldehyde, n-butyraldehyde, furfural, and benzaldehyde
  • 2-mercaptoethanol, 3-mercaptopropionic acid N-dodecyl mercaptan, t-dodecyl mercaptan, lauryl mercaptan, n-butyl mercaptan, t-butyl mercaptan, 2-ethylhexyl thiodyl alcoholate, octyl thioglycolate, etc.
  • mercapone chain transfer agents are preferred.
  • the addition amount of the chain transfer agent is not particularly limited, but is 0.01 to 50 parts by weight, preferably 0.1 to 30 parts by weight, based on 100 parts by weight of all monomers.
  • polymerization without using a conventionally used nonionic or anionic surfactant can further improve polymerization stability, increase the proportion of the graft polymer, and improve the solvent resistance. To improve This is preferable.
  • the solid content concentration of the emulsion is not particularly limited, but is usually 20 to 70% by weight, preferably 30 to 65% by weight, and more preferably 40 to 60% by weight. If the solid content is less than 20% by weight, the storage stability of the emulsion is reduced, and the emulsion may be separated into two phases. If it exceeds 70% by weight, the stability during polymerization may be reduced.
  • the (meth) acrylic resin-based emulsion of the present invention thus obtained was formed at 20 ° C. and 65% RH under the conditions of 65% RH. ) is, 100 k gZcm it is important that at least 2, preferably in 1 1 0 k gZcm 2 or more, and most preferably at 1 20 k gZcm 2 or more. Although there is no particular upper limit, the upper limit is 300 kg // cm 2 or less, and further, 200 kg / cm 2 or less. When the tensile strength is in this range, the properties of the acrylic resin emulsion (film strength, adhesive strength of the emulsion, adhesive strength, etc.) become excellent.
  • the (meth) acrylic resin emulsion of the present invention was measured at a temperature of 20 ° C. (atmosphere and initial emulsion temperature) with a load of 0.5 kg / cm 2 and 1500 rpm by a Malon-type mechanical stability measuring device. It is preferable that the filtration residue after filtration with a 60 mesh (ASTM standard screen) stainless steel mesh is 0.5% by weight or less based on the solid content of the emulsion. It is preferably at most 0.3% by weight, more preferably at most 0.2% by weight, and most preferably at most 0.1% by weight. When the filtration residue is in the above range, the emulsion can be said to have good mechanical stability. Such an emulsion is suitably obtained by the method described above.
  • the (meth) acrylic resin emulsion obtained by the present invention has an emulsion of 20. C, a film having a thickness of 500 zm obtained by forming a film on a polyethylene terephthalate (PET) film under 65% RH at 20 ° C for 24 hours at a temperature of 20 ° C. 1 hour after soaking the film It is preferably at most 0%, more preferably at most 8%, further preferably at most 7%.
  • the swelling ratio of the coating is preferably 30% or less, more preferably 25% or less, and further preferably 20% or less.
  • the emulsion obtained by the above method can be used as it is, but if necessary, various known emulsions can be used as long as the effects of the present invention are not impaired.
  • the emulsion obtained according to the present invention may contain commonly used additives.
  • the additive include organic solvents (aromatics such as toluene and xylene, alcohols, ketones, esters, octanologen-containing solvents, etc.), plasticizers, sedimentation inhibitors, thickeners, Examples include fluidity improvers, preservatives, antiseptic agents, defoamers, fillers, wetting agents, coloring agents, and the like.
  • the emulsion obtained by the production method of the present invention is excellent in film strength, film transparency, mechanical stability, and also excellent in alkali resistance, so that it can be used for paints, admixtures of hydraulic materials, joining materials, and various adhesives. It is suitably used in the fields of binders for impregnated paper, non-woven products, paints, paper processing and fiber processing, and coating agents.
  • a synthetic resin powder which does not block powders and does not redisperse in water can be obtained.
  • An aqueous emulsion obtained by redispersing this powder in water has excellent film strength, alkali resistance, and film transparency as in the first aqueous emulsion.
  • spray drying normal spray drying in which a fluid is sprayed and dried can be used.
  • a disk type, a nozzle type, a shock wave type, etc., and any of these methods may be adopted.
  • As a heat source hot air, heated water steam, or the like is used. Drying conditions include the size and type of spray dryer, What is necessary is just to select suitably according to the concentration, viscosity, flow rate, etc. of a lution.
  • the drying temperature is
  • 100 ° C. (: up to 150 ° C. is appropriate, and it is desirable to set other drying conditions so as to obtain a sufficiently dried powder within the range of the drying temperature.
  • an inorganic powder for the purpose of improving the storage stability of the synthetic resin emulsion powder and the redispersibility in water.
  • the inorganic powder may be added to the emulsion-dried powder after the spray-drying and uniformly mixed.However, when the synthetic resin emulsion is sprayed in the presence of the inorganic powder during the spray-drying (simultaneous spraying), a uniform powder is obtained. Mixing is preferably performed.
  • the inorganic powder is preferably fine particles having an average particle size of 0.1 to 100 m.
  • the inorganic powder fine inorganic powders are preferable, and calcium carbonate, clay, silicic anhydride, aluminum silicate, white carbon, talc, alumina white and the like are used. Of these inorganic powders, silicic anhydride is preferred.
  • the amount of the inorganic powder used is preferably 20% by weight or less, more preferably 10% by weight or less based on the emulsion powder, since the performance of the synthetic resin emulsion may be deteriorated if too much inorganic powder is added. It is.
  • the lower limit of the amount of the inorganic powder used is preferably at least 0.1% by weight, more preferably at least 0.2% by weight. Organic fillers can also be used.
  • various water-soluble additives can be added. It is preferable to add a water-soluble additive to the synthetic resin emulsion before spray-drying and spray-dry the mixture, since the synthetic resin emulsion and the water-soluble additive can be uniformly mixed.
  • the use amount of the water-soluble additive is not particularly limited, and is appropriately controlled to such an extent that physical properties such as water resistance of the emulsion are not adversely affected.
  • Such additives include polyvinyl alcohol, hydroxyethyl cellulose, methyl cellulose, starch derivatives, polyvinyl pyrrolidone, polyethylene oxide, etc., as well as water-soluble alkyd resins, water-soluble phenol resins, and water-soluble urea resins. , Water-soluble melamine resin, water-soluble naphthalenesulfonic acid resin, water-soluble amino resin, water-soluble polyamide tree Fat, water-soluble acrylic resin, water-soluble polycarboxylic acid resin, water-soluble polyester resin, water-soluble polyurethane resin, water-soluble polyol resin, water-soluble epoxy resin, and the like.
  • Synthetic resin emulsion powder (average particle diameter of 1 to 100,000 m, preferably 2 to 500 m) can be used as it is for various applications, but if necessary, the effects of the present invention may be impaired. To the extent that these do not exist, various known emulsions and emulsion powders can be added and used.
  • the synthetic resin emulsion powder is particularly useful as an admixture for hydraulic substances or a joint material for hydraulic substances.
  • the hydraulic substance include hydraulic cements such as portland cement, alumina cement, slag cement, and fly ash cement, and hydraulic materials other than cement such as gypsum and blaster.
  • the mixing amount of the admixture for hydraulic substances is 5 to 20% by weight based on the cement.
  • examples of the aggregate include fine aggregate such as river sand, crushed sand, colored sand and silica sand, and coarse aggregate such as river gravel and crushed stone.
  • the synthetic resin emulsion powder of the present invention is used as a joint material for hydraulic materials, the above synthetic resin emulsion powder is appropriately re-emulsified with water, and concrete or the like is used as the joint material (primer treated material). This is done by applying a hydraulic substance such as cement mortar to the hydraulic substrate.
  • an AE agent When synthetic resin emulsion powder is used as an admixture for hydraulic materials and a joint material, an AE agent, a water reducing agent, a fluidizing agent, a water retention agent, a thickener, a waterproofing agent, an antifoaming agent, etc. are appropriately used in combination.
  • Synthetic resin emulsion powder can also be used for applications such as adhesives, paints, and paper processing agents.
  • viscosity improvers water retention agents, tackifiers, thickeners, pigment dispersants, stabilizers and the like are appropriately used in combination.
  • Ion-exchanged water 750 g, PVA-1 ⁇ Polymerization degree 500, saponification degree 88 mol%, in a 2-liter glass polymerization vessel equipped with a reflux condenser, thermometer, nitrogen inlet, and Ikari type stirring blade 5140 g of PVA-20 manufactured by Kuraray Co., Ltd. was charged and completely dissolved at 95 ° C. After cooling to 60 ° C., 266 g of methyl methacrylate (MMA) and 266 g of butyl acrylate (n-butyl acrylate) (BA) were charged, and the atmosphere was replaced with nitrogen while stirring at 120 rpm.
  • MMA methyl methacrylate
  • BA butyl acrylate
  • the obtained emulsion polymer had a graft polymer ratio (by the following measurement method) of 74.3% by weight, and had solvent resistance (elution rate by the following measurement method) of 20% (toluene) and 23% (acetone). ) Was 18% (ethyl acetate).
  • the other emulsions were evaluated by the following methods. The results are displayed
  • the transition of the polymerization temperature from the start of the polymerization was measured, and the degree of temperature rise due to the heat of polymerization was observed, and it was judged whether the control of the polymerization was easy.
  • the obtained emulsion was filtered using a 60-mesh (ASTM-type standard sieve) stainless steel wire mesh. After filtration, the residue on the wire mesh was collected and weighed. Table 1 shows the amount of residue per kg of emulsion (solid content).
  • the obtained emulsion was cast on a polyethylene terephthalate (PET) film at 20 ° C. and 65% RH and dried for 7 days to obtain a 500-thick film.
  • PET polyethylene terephthalate
  • the obtained film was conditioned at 20 ° C. and 60% RH for one week, and then the tensile strength of the film (tensile speed 5 cm / in, chuck interval 50 mm) was measured.
  • the obtained emulsion was cast on a polyethylene terephthalate (PET) film at 20 ° C. and 65% RH and dried for 7 days to obtain a dried film having a thickness of 500 m.
  • PET polyethylene terephthalate
  • the film was punched to a diameter of 2.5 cm, and the sample was immersed in a 1N aqueous solution of sodium hydroxide at 20 ° C for 24 hours to determine the elution rate and swelling rate of the film.
  • Dissolution rate (%): ⁇ 1-(dry weight of film after immersion z absolute weight of film before immersion) ⁇
  • Swelling ratio (%): ⁇ (weight of water absorption of film after immersion / absolute weight of film before immersion) 1 ⁇ X 100 * Absolute dry weight of coating before immersion; Weight of coating before immersion (water content) 1 ⁇ Weight of coating before immersion
  • Coating moisture content The coating (a sample different from the sample immersed in a 1N aqueous solution of sodium hydroxide at 20 ° C) was dried completely at 105 ° C for 4 hours, and the moisture content of the coating was measured. Ask in advance. '
  • Weight of absolutely dried film after immersion Weight of absolutely dried film after immersion at 105 ° C for 4 hours. * Water absorption weight of film after immersion: The film after immersion was pulled out of 1N aqueous sodium hydroxide solution, and the water on the film was wiped off with gauze and weighed.
  • the obtained emulsion was subjected to a test for 10 minutes under the conditions of 20 ° C, a load of 0.5 kg / cm 2 , and 1500 rpm using a Maron mechanical stability measuring machine, and then a mesh of 60 mesh was obtained.
  • (ASTM standard screen) Filtration was performed using a stainless steel wire gauze, and the ratio (%) of the weight of the filtration residue to the weight of the solid content of the aqueous emulsion was measured. C 0040 to indicate that the smaller the proportion of the filtration residue weight are excellent mechanical stability
  • the measurement of the solid content concentration and the weight of the filtration residue is as follows.
  • the filtration residue was dried in a dryer at 105 ° C for 24 hours to evaporate water, and the weight of the dried product was taken as the filtration residue weight.
  • the obtained emulsion was diluted to a concentration of 0.05%, and the average particle size and scattering intensity were measured by the dynamic light scattering method ⁇ Otsuka Electronics Co., Ltd .; Laser-Zeta Electrometer EL S—8000 ⁇ . Using the obtained scattering intensity, a scale a indicating the particle size distribution width was obtained by the method described in the text.
  • the obtained emulsion was cast on a polyethylene terephthalate (PET) film under 20 and 65% RH and dried for 7 days to obtain a dry film having a thickness of 500 m. This film was punched out to a diameter of 2.5 cm. Using the sample as a sample, it was extracted with acetone for 24 hours, then extracted in boiling water for 24 hours, and the insoluble content (graft polymer content) of the film after extraction was determined.
  • Graft polymer content (%) (absolute dry weight of the membrane after extraction)
  • X100 Absolute dry weight of the membrane before extraction weight of the membrane before extraction (water content)- ⁇ weight of the membrane before extraction (Water content) X film water content (%) / 100 ⁇
  • Coating water content The coating (a sample different from the sample extracted with acetone and boiling water) is absolutely dried at 105 ° C for 4 hours, and the water content of the coating is determined in advance.
  • Weight of the membrane after extraction The weight of the membrane after extraction at 105 ° C for 4 hours.
  • Moisture content of the film The film (a sample different from the sample immersed in the solvent at 20 ° C) is completely dried at 105 ° C for 4 hours, and the moisture content of the film is determined in advance.
  • Example 2 The addition of the aqueous hydrogen peroxide solution was started in the same manner as in Example 1 except that ferrous chloride was not used in Example 1. An exotherm occurred 15 minutes after the start of the addition of hydrogen peroxide, and emulsion polymerization started. The external temperature was adjusted to 50 ° C, and the addition of hydrogen peroxide was continued. The polymerization temperature reached 65 ° C. However, the addition of hydrogen peroxide was interrupted. However, the exotherm did not stop and the polymerization temperature reached 70 ° C, so it was judged that the polymerization could not be controlled, and the test was stopped.
  • Example 1 2.6 g of n-dodecyl mercaptan was further polymerized. The emulsion polymerization was carried out in the same manner as in Example 1 except that the components were charged. The evaluation of the obtained aqueous emulsion is also shown in Table 1.
  • Emulsion polymerization was attempted in the same manner as in Comparative Example 1, except that 2.6 g of n-dodecylmercaptan was further charged in the initial stage of polymerization. However, the polymerization system gelled 1 hour and 30 minutes after the start of polymerization, and the test was stopped.
  • Emulsion polymerization was attempted in the same manner as in Comparative Example 2, except that 2.6 g of n-dodecylmercaptan was further charged in the initial stage of polymerization. However, as in Comparative Example 2, it was impossible to control fever, and the test was stopped.
  • Example 2 instead of PVA-1, PVA-2 (polymerization degree: 100, saponification degree: 88 mol%, manufactured by Kuraray Co., Ltd.) Emulsion polymerization was carried out in the same manner as in Example 2 except for using -8-210 ⁇ . Table 1 also shows the evaluation of the obtained aqueous emulsion.
  • Emulsion polymerization was attempted in the same manner as in Comparative Example 3 except that PVA-2 was used instead of PVA-1 in Comparative Example 3. However, the polymerization system gelled 1 hour and 40 minutes after the start of polymerization, and the test was stopped.
  • Emulsion polymerization was performed in the same manner as in Example 2, except that PVA-3 (polymerization degree: 500, saponification degree: 80 mol%) was used instead of PVA-1 in Example 2.
  • the evaluation of the obtained aqueous emulsion is also shown in Table 1.
  • Emulsion polymerization was performed in the same manner as in Example 2 except that PVA-4 (polymerization degree: 500, saponification degree: 93 mol%) was used instead of PVA_1.
  • Table 1 also shows the evaluation of the obtained aqueous emulsion.
  • Emulsion polymerization was performed in the same manner as in Example 2 except that a three-stage paddle-type stirring blade was used instead of the squid-type stirring blade in Example 2, and an emulsion was obtained stably.
  • Table 1 also shows the evaluations of the obtained emulsions.
  • the temperature was raised to 80 ° C., and while maintaining the temperature at 80 ° C., an initiator solution obtained by dissolving 0.5 g of ammonium persulfate in 10 g of ion-exchanged water was added. Two minutes later, the addition of the monomer emulsion to the polymerization vessel was started, and the addition was completed over 4 hours. After completion of the addition, stirring was continued for another 2 hours, aging was performed, and then cooling was performed to obtain an emulsion. Table 1 also shows the evaluation of the obtained emulsion.
  • PVA-6 Polymerization degree 100, saponification degree 88% by mole
  • a 2 liter polymerization vessel equipped with a thermometer, an immersion type stirring blade, a reflux condenser, a nitrogen inlet and a dropping funnel 80 g was added to 680 g of ion-exchanged water, heated to 95 ° C. and stirred to dissolve, and then cooled to 70: and replaced with nitrogen.
  • 200 g of methyl methacrylate, 200 g of butyl acrylate, and 6 g of acrylic acid were mixed, followed by purging with nitrogen.
  • Emulsion polymerization was performed in the same manner as in Example 2 except that PVA-7 (ethylene unit content: 3 mol%, polymerization degree: 50,000, saponification degree: 93 mol%) was used in place of PVA-1 in Example 2.
  • PVA-7 ethylene unit content: 3 mol%, polymerization degree: 50,000, saponification degree: 93 mol%
  • Table 1 also shows the evaluation of the obtained water-based emulsion.
  • Example 2 was repeated except that PVA-8 was used in Example 2 instead of PVA-1 (2.5 mol% of 1,2-glycol bond, polymerization degree 500, saponification degree 88 mol%). Emulsion polymerization was performed in the same manner. Table 1 also shows the evaluation of the obtained aqueous emulsion.
  • Example 2 PVA-9 (ethylene unit content 2 mol%, 1,2-glycol bond amount 2.2 mol%, polymerization degree 500, saponification degree 88 mol%) was used in place of PVA-1.
  • Emulsion polymerization was carried out in the same manner as in Example 2 except for the above. Table 1 also shows the obtained emulsion evaluation.
  • ion-exchanged water 150 g was charged into a flask equipped with a stirrer, a thermometer, a reflux condenser, a dropping funnel, and a nitrogen inlet.
  • 60 g of 2-ethylhexyl acrylate, 10 g of methacrylic acid, and 440 g of ion-exchanged water were added to 130 g of PVA-130 g, and pre-emulsified with a homomixer.
  • An emulsion having an average particle size of 0.4 m was prepared using a diminizer. Nitrogen gas was bubbled through the emulsion and the flask at 100 m 1 / min for about 2 hours.
  • An emulsion having an average particle diameter of 0.4 was prepared using a Nizer. Nitrogen gas was bubbled into the emulsion and the flask at 100 m 1 / min for about 2 hours. Thereafter, the emulsion was added dropwise over 4 hours, and 25 g of a 0.4% aqueous solution of cumenehydroperoxide and 25 g of an aqueous solution of 0.4% formaldehyde sodium sulfoxide were added dropwise over 4 hours. During this time, the temperature of the system was kept at 32 ° C ⁇ 2 :. After dripping, the mixture was kept at the same temperature for 1 hour, aged, cooled, and neutralized by adding 5 g of 25% aqueous ammonia. Table 2 also shows the evaluation results of the obtained emulsions.
  • Comparative Example 10 an emulsion was prepared in the same manner as in Comparative Example 10 except that PVA-15 (polymerization degree 800, saponification degree 97.4 mol%) was used instead of PVA-10. Prepared. Table 2 also shows the evaluation results of the obtained emulsions.
  • An emulsion was prepared in the same manner as in Example 1 except that PVA-16 (polymerization degree: 100, saponification degree: 88 mol%) was used instead of PVA_1.
  • Table 2 also shows the evaluation results of the obtained emulsions.
  • An emulsion was prepared in the same manner as in Example 1 except that PVA-13 (polymerization degree: 500, saponification degree: 98 mol%) was used instead of PVA-1.
  • Table 2 also shows the evaluation results of the obtained emulsions.
  • Example 2 The aqueous emulsion obtained in Example 1 and 2% of silica fine powder (average particle size 2, "m) of 2% based on the solid content of the emulsion were separately sprayed simultaneously into hot air at 120 ° C. And dried to obtain an emulsion powder.
  • This powder did not show any blocking between the powders, and was excellent in redispersibility in water.
  • the aqueous emulsion (solid concentration: 50%) obtained by redispersing this powder was excellent in film strength, alkali resistance and film transparency, as in the first aqueous emulsion.
  • the (meth) acrylic resin emulsion of the present invention is excellent in film strength, film transparency and mechanical stability, and is also excellent in alkali resistance, so that it is used for architectural coatings, paper coating agents and coating agents. Widely used as such.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Graft Or Block Polymers (AREA)
  • Polymerization Catalysts (AREA)

Abstract

けん化度80~95モル%、重合度400~2000のビニルアルコール系重合体を分散剤とし、アクリル酸エステル系単量体単位およびメタクリル酸エステル系単量体単位から選ばれる少なくとも一種の単量体単位からなる重合体を分散質とするエマルジョンであって、エマルジョン粒子径分布幅を示す[尺度a]が0.3以上であり、かつエマルジョンを20℃において製膜して得た厚さ500μmの皮膜の引張り強度が100kg/cm2以上である(メタ)アクリル樹脂系エマルジョンを提供することによって、皮膜強度、皮膜透明性および機械的安定性のいずれにも優れ、さらに耐アルカリ性に優れる(メタ)アクリル樹脂系エマルジョンを得ることができる。

Description

明 細
(メタ) ァクリル樹脂系ェマルジヨンおよびその製造方法 技術分野
本発明は、 ビニルアルコール系重合体を分散剤とし、 (メタ) アクリル酸 エステル系単量体を乳化 (共) 重合して得た (メタ) ァクリル榭脂系ェマル ジョンおよびその製造方法に関する。さらに詳しくは、本発明は、皮膜強度、 皮膜透明性および機械的安定性のいずれにも優れ、 さらに耐アルカリ性にも 優れる (メタ) アクリル樹脂系ェマルジヨン、 および乳化 (共) 重合の安定 性、 重合の操作性に顕著に優れる該 (メタ) アクリル樹脂系ェマルジヨンの 製造方法に関する。 背景技術
従来、 (メタ) アクリル酸エステル系単量体を乳化重合したェマルジヨン は塗料、 紙加工および繊維加工などの分野で広く用いられている。 これらの 単量体の乳化重合においては、 乳化重合の安定性の観点から通常、 ァニオン 系またはノニオン系界面活性剤が安定剤として用いられる。 しかし、 界面活 性剤を安定剤として用いるェマルジョンは機械的安定性に乏しいという欠 点があり、 セメント、 モルタル等の混和剤などの高い機械的安定性が必要と される用途には使用し得なかった。
上記問題点を解決する目的で、 重合度 5 0 0以下、 好ましくは 3 0 0以 下のポリビニルアルコール (P V A) を保護コロイドとする、 あるいは P V Aおよび連鎖移動剤の存在下に乳化重合するといつた手法が提案(特許文献 1、 特許文献 2 ) され、 エマルジョンの機械的安定性の改善が試みられた。 しかしながら、 このような P V Aを使用したのでは、 P V Aを保護コロイド とする特長が十分に発現せず、 機械的安定性を完全に満足できず、 また、 ェ マルジヨン皮膜の強度にも劣るという欠点があった。 また、 メルカプト基を 有する P V A系重合体を乳化分散安定剤に用いることが提案 (特許文献 3、 特許文献 4、 特許文献 5 ) されている。 この場合、 通常用いられる開始剤、 例えば、 過硫酸カリウム、 過硫酸アンモニゥム、 過酸化水素の単独あるいは これら過酸化物と各種還元剤とを組合せたレドックス開始剤等では、 該 P V A系重合体へのグラフト効率が低く、 十分実用的な安定性の確保が難しいと いう問題があり、 また、 該 P V A系重合体のメルカプト基とのレドックス反 応によってのみラジカルを発生する臭素酸カリゥム等の開始剤では、 重合安 定性の向上は認められるが、 P V A系重合体のメルカプト基が消費された時 点で、 いわゆる D e a d - E n dとなり重合のコントロール及び完結が難し いという問題点があった。 重合を開始して以降、 熟成を開始するまでの間に ポリビニルアルコールを添加してェマルジョンを製造する方法が開示(特許 文献 6 ) されているが、 この方法では、 乳化重合を開始させるときに乳化剤 を使用しているために、 各種用途に使用する場合に乳化剤がマイグレーショ ンを起こし、 物性に悪影響を及ぼすという問題があった。 さらにまた、 この ようにして得られたェマルジヨンは、 後述する比較例 1 6〜 1 7から明らか なように、 機械的安定性は良好であるが、 本発明で規定する [尺度 a ] 0 . 3以上の粒子径分布のシャープな粒子を有するェマルジヨンは得られない し、 またェマルジヨンの皮膜強度、 透明性も充分優れていない。
また、 (メタ) アクリル酸エステル系単量体、 ジェン系単量体等の単量体 及び水溶性高分子の保護コロイドを連続的または断続的に添加して重合す る方法が提案 (特許文献 7 ) され、 機械的安定性等が改善されている。 しか しながら該手法は、 重合の操作性に劣るばかりでなく、 不均一系である乳化 重合においては、 攪拌翼の形状、 攪拌速度、 重合スケール (重合槽の容量) など種々の因子に大きく影響され、 再現性良くェマルジヨンを得ることが難 しいという欠点があった。
また、 アクリル酸エステル系単量体を P V Aの存在下に粒子径 0 . 5 m 以下に乳化分散し、 重合させる方法が提案 (特許文献 8) され、 重合安定性 などが改善されている。 しかし、 該手法では、 ホモミキサ一など強制乳化装 置が必須となり、 また重合中、 水相の酸素濃度を 0. 3 p pm以下に抑える という厳しい条件下での重合が必要とされるなど、 汎用的に用いることは困 難である。 さらにまた、 このような方法により得られたェマルジヨンは、 後 述する比較例 14および 1 5から明らかなように、 機械的安定性は良好であ るが、 本発明で規定する [尺度 a] 0. 3以上の粒子径分布のシャープな粒 子を有するェマルジョンは得られないし、 またェマルジョンの皮膜強度、 透 明性も充分優れていない。
また、 特許文献 9の実施例 2では、 アクリル酸エステル (少量) 、 過酸化 物(少量) 、 PVA、鉄化合物を重合初期に仕込み、 アクリル酸エステル(多 量) 、 過酸化物および還元剤 (ロンガリット) を逐次添加して乳化重合する ことが提案され、 また特許文献 9の実施例 3では、 アクリル酸エステル (全 量) 、 過酸化物 (全量) 、 PVA、 鉄化合物を重合初期に仕込み、 還元剤 (口 ンガリット) を逐次添加して乳化重合することが提案されている。 さらに特 許文献 9で使用されている PV Aは、 分子量 5000〜 1 3 000 (重合度 に換算すると約 1 00〜30 0) の低重合度 PVA、 またはけん化度 9 6. 5モル%以上の P VAの高けん化度 P VAである。 しかしながら、 特許文献 9で提案されているような方法では、 後述する比較例 1 0〜 12および比較 例 1 8〜 1 9に示すとおり、 得られるェマルジヨンは皮膜強度に劣り、 本発 明で規定する [尺度 a] 0. 3以上の粒子径分布のシャ一プな粒子を有する ェマルジョンは得られないし、 またェマルジヨン皮膜の透明性も充分満足す べきものではない。 )
以上の様に、 これまで、 PVA系重合体を保護コロイドとした (メタ) ァ クリル酸エステル系樹脂ェマルジョンの提案が各種なされているが、 乳化重 合の安定性、 重合の操作性を完全に満足し、 さらに得られるェマルジョンの 皮膜強度、 皮膜透明性および機械的安定性のいずれにも優れ、 さらに耐アル 力リ性にも優れた、 汎用的に使用可能なものは見られないのが現状であつた , 特許文献 1
特開平 4一 1 8 560 6号公報 (特許請求の範囲)
特許文献 2
特開平 4一 18 56 0 7号公報 (特許請求の範囲)
特許文献 3
特開昭 60 - 1 9 7 2 2 9号公報 (特許請求の範囲) 特許文献 4
特開平 6— 128443号公報 (特許請求の範囲)
特許文献 5
特開平 7— 278 2 1 2号公報 (特許請求の範囲)
特許文献 6
特開平 8— 245706号公報 (特許請求の範囲、 実施例 1およ び実施例 3 )
特許文献 7
特開平 1 1一 33 5490号公報 (特許請求の範囲) 特許文献 8
特開 2000 - 2 5 6424号公報 (特許請求の範囲、 実施例 1 および実施例 3)
特許文献 9
特開平 1 0— 600 5 5号公報 (特許請求の範囲、 実施例 2およ び実施例 3 ) 発明の開示
本発明は、 このような事情のもとで、 ェマルジヨンの皮膜強度、 皮膜透明 性および機械的安定性のいずれにも優れ、 さらに耐ァルカリ性にも優れる (メタ) アクリル系榭脂ェマルジヨン、 さらには乳化 (共) 重合の安定性、 重合の操作性に顕著に優れる該ェマルジヨンの製造方法を提供することを' 目的とするものである。
本発明者らは、 上記目的は、 けん化度 8 0〜 9 5モル%、 重合度 4 0 0〜 2 0 0 0のビニルアルコール系重合体を分散剤とし、 ァクリル酸エステル系 単量体単位およびメタクリル酸エステル系単量体単位から選ばれる少なく とも一種の単量体単位からなる重合体を分散質とするェマルジヨンであつ て、 ェマルジョン粒子径分布幅を示す [尺度 a ] が 0 . 3以上であり、 かつ ェマルジョンを 2 0で、 6 5 % R H下において製膜して得た厚さ 5 0 0 m の皮膜の引張り強度が 1 0 0 k g Z c m 2以上である (メタ) アクリル樹脂 系ェマルジヨンを提供することによって、 達成されることを見出した。 図面の簡単な説明
第 1図は、 ェマルジョンの粒子径および散乱強度を動的光散乱法により 測定した結果を示すグラフである。 棒線グラフは、 横軸はェマルジヨンの粒 子径を示し、 縦軸はェマルジヨンの散乱強度を示す。 また、 直線グラフは、 横軸はェマルジヨンの粒子径を示し、 縦軸はェマルジヨンの散乱強度の積算 値を示す。 発明を実施するための最良の形態
本発明の (メタ) アクリル榭脂系ェマルジヨンは、 ェマルジヨン粒子径分 布幅を示す [尺度 a ] が 0 . 3以上であることが必須である。 さらに好適に は 0 . 5以上、 最適には 0 . 6以上である。 該 [尺度 a ] が 0 . 3未満の場 合、 ェマルジヨンの粒子径分布幅が広くなり、 ェマルジヨンの皮膜強度、 お よび皮膜透明性が低下するのみならず、 ェマルジヨンの機械的安定性も低下 する。 ここでェマルジョンの機械的安定性とはェマルジョンの剪断安定性を 意味し、 剪断下、 とくに高剪断下においてェマルジヨン粒子が析出すること がないか、 またはェマルジョン粒子の析出が少ないことを意味する。 [尺度 a ] は、 動的光散乱法によりエマルジョンの粒子径分布を測定した ときの、 粒子径および散乱強度から算出される。 具体的には、 X軸にエマル ジョン粒子径を、 Y軸に散乱強度の積算値をプロットし、 最小二乗法により Xと Yの一次式を求め、 得られた一次式の傾きを示す係数を [尺度 a ] とす る。得られた一次式の傾きが大きいほど、粒子径分布幅が小さいことを示す。 本発明の (メタ) アクリル樹脂系ェマルジヨンの平均粒子径は特に制限さ れないが、 通常、 動的光散乱法による測定値が 2 以下であることが、 皮 膜透明性、 皮膜強度の点から好ましく、 より好ましくは 1 . 5 ^ m以下、 さ らに好ましくは 1 z m以下である。 動的光散乱法による平均粒子径の測定は、 例えば、 大塚電子 (株) 製のレーザーゼータ電位計 E L S— 8 0 0 0等によ り行うことができる。
本発明の (メタ) アクリル樹脂系ェマルジヨンは次の様な方法により好適 に得られる。
まず分散剤としてけん化度 8 0〜9 5モル%、 重合度 4 0 0〜 2 0 0 0の ビニルアルコール系重合体 (以下、 P V Aと略記することがある) を使用す ることは、 本発明の目的とする、 ェマルジヨンの皮膜強度、 皮膜透明性、 機 械的安定性が優れ、 さらには耐アルカリ性にも優れた (メタ) アクリル樹脂 系ェマルジョンを得る上で重要であり、 また重合操作性および重合安定性に 嫿れた (メタ) アクリル樹脂系ェマルジヨンの製造方法を提供する上でも重 要である。 ビニルアルコール系重合体の製造方法としては特に制限はなく、 公知の方法によりピエルエステルを重合し、 けん化することにより得ること ができる。 ここで、 ビニルエステルとしては、 蟻酸ビニル、 酢酸ビニル、 プ 口ピオン酸ビニル、 ピバリン酸ビニルなどが挙げられるが、 酢酸ビニルが好 ましく用いられる。
本発明において、 P V A系重合体として、 分子内に炭素数 4以下のひ一才 レフィン単位を 1〜 2 0モル%含有するビニルアルコール系重合体 ( α—才 レフイン変性 P V Aと略記することがある) を用いることは好ましい態様の ひとつである。 該 PVAを用いることで (メタ) アクリル樹脂系ェマルジョ ンの耐アルカリ性が向上する。 —ォレフィン変性 P V Aは、 ビエルエステ ルと炭素数 4以下の α—才レフインとの共重合体をけん化することにより 得ることができる。 ここで炭素数 4以下の α—ォレフイン単位としては、 ェ チレン、 プロピレン、 ブチレン、 ィソプチレン単位が挙げられるが、 ェチレ ン単位が好ましく用いられる。
エチレン単位を代表とする a;—ォレフィン単位の含有量は、 1〜 20モ ル%であることが好適であり、 より好ましくは 1. 5モル%以上、 さらに好 ましくは 2モル%以上であり、 また好ましくは 1 5モル%以下、 さらに好ま しくは 12モル%以下である。 エチレン単位を代表とする α—才レフイン単 位がこの範囲にある時、 耐アルカリ性により優れる (メタ) アクリル榭脂系 ェマルジョンが得られる。
また、 《—ォレフィン単位を 1〜 20モル%含有するビニルアルコール系 重合体としては、 《—ォレフィン単位を Xモル%とするとき、 1, 2—ダリ コール結合を (1. 7 -Χ/40) モル%以上有するビニルアルコール系重 合体も本発明の好ましい態様の一つであり、 この重合体を使用することによ り、 乳化重合時の安定性がより向上する。
この重合体の製法としては、 例えば、 1, 2—グリコール結合量が上記の 範囲内の値になるように、 ビニレンカーボネートをビエルエステルおよびェ チレンと共重合した後、 けん化する方法、 エチレンとビニルエステル系単量 体を共重合する際に、 重合温度を通常の条件より高い温度、 例えば 75〜2 0 o°cとして加圧下に重合した後、 けん化する方法などが挙げられる。 後者 の方法において、 重合温度は特に制限されないが、 通常 95〜190°C、 好 ましくは 100〜160°Cである。
この場合、 1, 2—グリコール結合の含有量は、 (1. 7 -X 40) モ ル%以上であることが好ましく、 より好ましくは (1. 75 - X/40) モ ル%以上、 さらに好ましくは (1. 8— X/40) モル%以上であり、 最適 には (1. 9一 χΖ40) モル%以上である。 また、 1, 2—グリコール結 合の含有量は 4モル%以下であることが好ましく、 さらに好ましくは 3. 5 モル%以下、 最適には 3.2モル%以下である。 ここで 1 , 2—グリコール 結合の含有量は NMRスぺクトルの解析から求められる。
さらに、 本発明においては、 PVA系重合体として、 1, 2—グリコール 結合を 1. 9モル%以上有するビニルアルコール系重合体 (高 1, 2—ダリ コール結合含有 PV Aと略記することがある) を用いることも好ましい態様 のひとつである。 該 P V Aを用いることで乳化重合時の安定性が向上する。 高 1, 2—グリコール結合含有 PVAの製造方法としては特に制限はなく、 公知の方法が使用可能である。 一例として、 1 , 2—グリコ一ル結合量が上 記の範囲内の値になるようにビニレン力一ポネートをピニルエステルと共 重合する方法、 ビニルエステルの重合温度を通常の条件より高い温度、 例え ば 7 5〜2 00°Cとして加圧下に重合する方法などが挙げられる。後者の方 法においては、 重合温度は 9 5〜 1 90°Cであることが好ましく、 1 00〜 1 80°Cであることが特に好ましい。 また加圧条件としては、 重合系が沸点 以下になるように選択することが重要であり、 好適には 0. 2MP a以上、 さらに好適には 0. 3 MP a以上である。 また上限は 5 MP a以下が好適で あり、 さらに 3MP a以下がより好適である。 上記の重合はラジカル重合開 始剤の存在下、 塊状重合法、 溶液重合法、 懸濁重合法、 乳化重合法などいず れの方法でも行うことができるが、 溶液重合、 とくにメタノールを溶媒とす る溶液重合法が好適である。 このようにして得られたビニルエステル重合体 を通常の方法によりけん化することにより高 1 , 2—グリコール結合含有ビ ニルアルコール系重合体が得られる。 ビニルアルコール系重合体の 1 , 2— ダリコール結合の含有量は 1. 9モル%以上であることが好適であり、 より 好ましくは 1. 9 5モル%以上、 さらに好ましくは 2. 0モル%以上、 最適 には 2. 1モル%以上である。 また、 1, 2—グリコール結合の含有量は 4 モル%以下であることが好ましく、 さらに好ましくは 3. 5モル%以下、 最 適には 3 . 2モル%以下である。 ここで、 1 , 2—グリコール結合の含有量 は N M Rスぺクトルの解析から求められる。
また、 該 P V A系重合体は本発明の効果を損なわない範囲で共重合可能な エチレン性不飽和単量体を共重合したものでも良い。 このようなエチレン性 不飽和単量体としては、例えば、 アクリル酸、 メタクリル酸、 フマル酸、 (無 水) マレイン酸、 ィタコン酸、 アクリロニトリル、 メタクリロニトリル、 ァ クリルアミド、 メタクリルアミド、 卜リメチルー ( 3—ァクリルアミド— 3 ージメチルプロピル) 一アンモニゥムクロリド、 アクリルアミドー 2—メチ ルプロパンスルホン酸およびそのナトリゥム塩、 ェチルビニルエーテル、 ブ チルビニルエーテル、 塩化ビニル、 臭化ビエル、 フッ化ビニル、 塩化ビニリ デン、 フッ化ビニリデン、 テトラフルォロエチレン、 ビニルスルホン酸ナト リウム、 ァリルスルホン酸ナトリウム、 N—ビニルピロリ ドン、 N—ビニ ルホルムアミド、 N—ビエルァセトアミド等の N—ビニルアミド類が挙げ られる。
また、 チオール酢酸、 メルカプトプロピオン酸などのチオール化合物の存 在下で、 酢酸ビニルなどのビニルエステル系単量体を重合し、 それをけん化 することによって得られる末端変性物を用いることもできる。
本発明において分散剤として用いられる P V A系重合体の重合虔 (粘度平 均重合度) は、 4 0 0〜2 0 0 0であることが重要であり、 より好ましくは 4 0 0〜 1 3 0 0である。 また、 P V A系重合体のけん化度は、 8 0〜 9 5 モル%であることが重要であり、 より好ましくは 8 3〜 9 3モル%である。 前記の重合度およびけん化度を満足する P V A系重合体を使用することよ り、 後述する実施例および比較例から明らかなように、 ェマルジヨンの皮膜 強度、 皮膜透明性および機械的安定性に優れ、 さらに耐アルカリ性にも優れ た (メタ) アクリル樹脂系ェマルジヨンが得られ、 さらに重合操作性、 重合 安定性に優れた (メタ) ァクリル榭脂系ェマルジョンの製造方法を提供する ことができる。 ' また、 分散剤として用いられる該 P V A系重合体の使用量は特に制限され ないが、 用いる単量体 1 0 0重量部に対して、 1〜2 0重量部、 好ましくは 2〜 1 5重量部、 より好ましくは 2 . 5〜 1 0重量部である。 該 P V A系重 合体の使用量が 1重量部未満であると、 重合安定性が低下する恐れがあり、 一方、 2 0重量部を越える場合には得られる水性ェマルジヨンの粘度が高く なり、 高濃度のェマルジヨンを得にくい場合がある。
本発明において、 (メタ) アクリル樹脂系ェマルジヨンの分散質を構成す る重合体は、 アクリル酸エステル系単量体およびメタクリル酸エステル系単 量体から選ばれる少なくとも 1種の単量体を (共) 重合したものである。 該 単量体としてはアクリル酸メチル、 アクリル酸ェチル、 アクリル酸 n—プロ ピル、 アクリル酸 i—プロピル、 アクリル酸 n _プチル、 アクリル酸 iーブ チル、 アクリル酸 t 一プチル、 アクリル酸 2—ェチルへキシル、 アクリル酸 ドデシル、 アクリル酸ォクタデシル等のアクリル酸エステル類、 メ夕クリル 酸メチル、 メタクリル酸ェチル、 メ夕クリル酸 n—プロピル、 メ夕クリル酸 i 一プロピル、 メタクリル酸 n—プチル、 メ夕クリル酸 i 一プチル、 メタク リル酸 t—プチル、 メタクリル酸 2—ェチルへキシル、 メ夕クリル酸ドデシ ル、 メタクリル酸ォクタデシル等のメ夕クリル酸エステル類などが挙げられ る。
また、 上記分散質を構成する重合体は、 上記 (メタ) アクリル酸エステル の (共) 重合体であることが好適であるが、 本発明の効果を損なわない範囲 で共重合可能な他の単量体を共重合したものでも構わない。 これら他の単量 体の使用量は全単量体に対し 3 0重量%以下が好ましく、 さらには 2 0重 量%以下が好ましい。
本発明のェマルジョン粒子径分布幅を示す [尺度 a ]が 0 . 3以上であり、 かつエマルジョンを 2 0で、 6 5 % R H下において製膜して得た厚さ 5 0 0 mの皮膜の引張り強度が 1 0 0 k g Z c m 2以上である (メタ) アクリル 樹脂系ェマルジヨンは、 好適には次の方法により得られる。 すなわち、 本発明のェマルジヨンは、 けん化度 80〜9 5モル%、 重合度 400〜2 0 00のビエルアルコール系重合体を分散剤とし、 過酸化物と還 元剤からなるレドックス系重合開始剤を用い、 ァクリル酸エステル系単量体 およぴメタクリル酸エステル系単量体から選ばれる少なくとも一種の単量 体を乳化 (共) 重合する際に、 ( 1) 鉄化合物、 (2) 前記単量体および、 (3) 前記ビニルアルコール系重合体、 を初期に仕込み、 前記過酸化物を重 合系中に連続的または断続的に添加して乳化 (共) 重合することにより得ら れる。
本発明の製造方法では、 重合初期に、 鉄化合物を、 特にその全量を添加す ることが、 乳化重合操作性、 重合安定性をより優れたものにし、 さらに、 本 発明の [尺度 a] が 0. 3以上で、 かつ皮膜の引っ張り強度 1 00 k g/c m2以上の水性ェマルジヨンを得る上で好適である。 鉄化合物としては特に 制限されないが、 塩化第一鉄、 硫酸第一鉄、 塩化第二鉄、 硝酸第二鉄および 硫酸第二鉄から選ばれる少なくとも 1種の鉄化合物が好ましく用いられ、 中 でも塩化第一鉄および硫酸第一鉄が特に好ましく用いられる。
鉄化合物の使用量は特に制限されないが、 通常使用する全単量体に対して l〜50 p pm、 より好ましくは 5〜3 0 p pmである。 鉄化合物の使用量 がこの範囲内にあるとき、 重合の操作性が良好である。
本発明の製造方法では、 過酸化物と還元剤からなるレドックス系重合開始 剤を用いる。 過酸化物としては特に制限されないが、 過酸化水素、 過硫酸ァ ンモニゥム、 過硫酸力リゥムおよび tーブチルヒドロパーォキシドなどが用 いられ、 特に過酸化水素が好ましく用いられる。 過酸化物は、 連続的または 断続的に添加することが必要である。連続的または断続的に添加することに より、 重合操作性、 重合安定性が良好となり、 また本発明の目的とする優れ た特性を有するェマルジョンが得られる。
過酸化物として過酸化水素が用いられる場合、 過酸化水素の 0. 1〜5重 量%水溶液、 好ましくは 0. 2〜 3重量%水溶液、 さらに好ましくは 0. 2 5〜2重量%水溶液を用いることにより、 重合の操作性が向上する。 また、 単量体 1 0 0重量部に対して、 過酸化水素を純分で 0 . 0 1〜 1重量部用い た場合、 重合操作性、 重合安定性が良好となり、 また本発明の目的とする優 れた特性を有するェマルジョンが得られる。
また、 過酸化物として過酸化水素が用いられる場合、 還元剤としては、 酒 石酸、 Lーァスコルビン酸、 ロンガリットまたはこれらの金属塩が好適に用 いられる。 また、 過酸化物として過硫酸アンモニゥム、 過硫酸カリウムが用 いられる場合、 還元剤としては、 亜硫酸水素ナトリウム、 炭酸水素ナトリウ ムが好適に用いられる。 還元剤の添加方法は特に制限されず、 逐次添加、 あ るいは重合初期添加のいずれでもよいが、 重合初期に全還元剤の 7 0重量以 上、 好適には 8 0重量%以上、 さらには 9 0重量%以上、 最適には実質的に 1 0 0重量%を添加する方法が、 重合操作性の観点から好適である。
還元剤の使用量は特に限定されないが、 通常、 重合開始剤 (過酸化物) に 対して、 0 . 0 5〜 3当量、好ましくは 0 . 1〜 2当量、 より好ましくは 0 . 3〜 1 . 5当量である。
上記還元剤のうち、 酒石酸系が好ましく用いられ、 詳しくは酒石酸および Zまたはその金属塩である。 酒石酸としては右旋性の L ( + ) 酒石酸、 左旋 性の D (—)酒石酸、これら対掌体のラセミ化合物である D L酒石酸があり、 特に制限されないが、 これらの中でも L ( + ) 酒石酸を用いた場合、 重合操 作性が顕著に良好であり、 好ましく用いられる。 また、 酒石酸の金属塩を用 いることも可能であり、 金属の種類は特に制限されないが、 酒石酸ナトリウ ムが好適に用いられる。 中でも L ( + ) 酒石酸ナトリウムが好ましく用いら れる。 L ( + ) 酒石酸ナトリウムを用いた場合、 重合操作性が最適となる。 また、 本発明の製造方法では、 鉄化合物のみならず、 単量体、 P V A系重 合体を重合初期に仕込むことが重要である。 特にこれらのそれぞれの 7 0重 量%以上、 好適には 8 0重量%以上、 さらには 9 0重量%、 最適には実質的 に 1 0 0重量%を重合初期に仕込むことが好適である。 該手法をとることに より、 重合の操作性が向上するのみならず、 乳化重合の安定性が顕著に向上 し、 かつ、 本発明の目的とする優れた特性を有する (メタ) アクリル樹脂系 ェマルジヨンが得られる。 なお、 ここで重合初期とは、 重合開始直前または 直後をいう。
本発明の製造方法においては、 連鎖移動剤を実質的に使用しないで重合す ることが、 得られるェマルジョン中のグラフトボリマー (分散剤および分散 質が化学的に結合したもの;測定法は後述) の割合を 5 0重量%以上とする ことができ、 耐溶剤性を向上させることから好適である。 グラフトポリマ一 の割合は好適には 5 5重量%、 さらに好適には 6 0重量%以上、 最適には 6 5重量%以上である。
また、 本発明においては、 重合安定性をより向上させるためには、 必要に 応じ、 連鎖移動剤を重合初期にすることもできる。 ここで、 連鎖移動剤とし ては、 乳化重合時に連鎖移動をおこす化合物であれば特に制限されないが、 例えば、 メタノール、 エタノール、 n—プロパノール、 i—プロパノール、 n—ブタノール、 iーブタノ一ルなどのアルコール類、 アセトン、 メチルェ チルケトン、 シクロへキサノン、 ァセトフエノン等のケトン類、 ァセトアル デヒド、 プロピオンアルデヒド、 n—ブチルアルデヒド、 フルフラール、 ベ ンズアルデヒド等のアルデヒド類、 2 —メルカプトエタノール、 3—メルカ ブトプロピオン酸、 n—ドデシルメルカブタン、 t -ドデシルメルカブタン、 ラウリルメルカブタン、 n—プチルメルカプタン、 t 一プチルメルカプタン、 2 一ェチルへキシルチオダリコレート、 チォグリコール酸ォクチル等のメル 力プ夕ン類などが挙げられる。 このうちメルカプ夕ン系の連鎖移動剤が好適 である。 連鎖移動剤の添加量は特に制限されないが、 全単量体 1 0 0重量部 に対して、 0 . 0 1〜 5 0重量部、 好ましくは 0 . 1〜 3 0重量部である。 また、 本発明においては、 従来使用されてきたノニオンまたはァニオン界 面活性剤を使用しないで重合することが、 重合安定性をより向上させ、 また グラフトポリマーの割合を増加させることができ、 耐溶剤性を向上させるこ とから好適である。
本発明では、 ェマルジヨンの固形分濃度は特に制限されないが、 通常、 2 0〜70重量%、 好ましくは 30〜6 5重量%、 さらに好ましくは 40〜6 0重量%である。 固形分濃度が 20重量%未満の場合、 ェマルジヨンの放置 安定性が低下し、 2相に分離する恐れがあり、 70重量%を越える場合、 重 合時の安定性が低下する懸念が生じる。
このようにして得られた本発明の(メタ)ァクリル樹脂系ェマルジョンを、 20°C, 65 %RH下において製膜して得た厚さ 5 00 mの皮膜の引っ張 り強度 (測定方法は後述) は、 100 k gZcm2以上であることが重要で あり、好適には 1 1 0 k gZcm2以上、 最適には 1 20 k gZcm2以上で ある。 上限についてはとくに制限はないが、 300 k g// cm2以下、 さら には 200 k g/cm2以下である。引っ張り強度がこの範囲にある時、 (メ 夕) アクリル樹脂系ェマルジヨンの特性 (皮膜の強度、 ェマルジヨンの接着 強度、 粘着強度など) が優れたものとなる。
本発明の (メタ) アクリル樹脂系ェマルジヨンは、 マロン式機械的安定性 測定装置により 2 0°C (雰囲気及び初期ェマルジヨンの温度) 、 荷重 0. 5 k g/cm2, 1 5 00 r pmの条件で 1 0分間試験を行った後、 60メッ シュ (ASTM式標準フルィ) ステンレス製金網でろ過したときのろ過残渣 が'ェマルジョンの固形分に対して 0. 5重量%以下であることが好適である 好ましくは 0. 3重量%以下であり、 さらに好ましくは 0. 2重量%以下で あり、 最も好ましくは 0. 1重量%以下である。 ろ過残渣が前記範囲にある 時、 ェマルジヨンは機械的安定性が良好であると言える。 このようなェマル ジョンは上記したとおりの方法により、 好適に得られる。
また、 本発明で得られる (メタ) アクリル樹脂系ェマルジヨンは、 該エマ ルジョンを 2 0。C、 6 5 %RH下において、ポリエチレンテレフタレ一ト (P ET) フィルム上に製膜して得た厚さ 50 0 zmの皮膜を、 1 Nの水酸化ナ トリウム水溶液に 20°Cで 24時間浸漬したときの該皮膜の溶出率が 1 0 %以下であることが好適であり、 より好ましくは 8 %以下であり、 さらに 好ましくは 7 %以下である。 また、 該皮膜の膨潤率は 3 0 %以下であること が好適であり、 より好ましくは 2 5 %以下であり、 さらに好ましくは 2 0 % 以下である。 皮膜の溶出率および膨潤率が前記範囲にあるとき、 耐アルカリ 性に優れた皮膜を形成するェマルジョンであると言える。 溶出率、 膨潤率の 測定法は後述する。
上記の方法で得られるェマルジョンはそのままで用いることができるが、 必要があれば、 本発明の効果を損なわない範囲で、 従来公知の各種ェマルジ
3ンを添加して用いることができる。 また、 本発明により得られるェマルジ ヨンには、 通常使用される添加剤を添加することができる。 この添加剤の例 としては、 有機溶剤類 (トルエン、 キシレン等の芳香族類、 アルコール類、 ケトン類、 エステル類、 含八ロゲン系溶剤類等) 、 可塑剤、 沈殿防止剤、 増 粘剤、 流動性改良剤、 防腐剤、 防鲭剤、 消泡剤、 充填剤、 湿潤剤、 着色剤等 が挙げられる。
本発明の製造方法により得られるェマルジヨンは、皮膜強度、皮膜透明性、 機械的安定性に優れ、 さらには耐アルカリ性に優れるため、 塗料、 水硬性物 質の混和剤、 打継ぎ材、 各種接着剤、 含浸紙用、 不織製品用のバインダ一、 塗料、 紙加工および繊維加工、 コーティング剤などの分野で好適に用いられ る。
また、 本発明で得られた水性ェマルジヨンを乾燥、 とくに噴霧乾燥するこ とにより、 粉末同士がブロッキングしない、 また水への再分散性しない合成 樹脂粉末が得られる。 またこの粉末を水に再分散した水性エマルジョンは、 最初の水性ェマルジヨンと同様、 皮膜強度、 耐アルカリ性、 および皮膜透明 性に優れている。 噴霧乾燥には、 流体を噴霧して乾燥する通常の噴霧乾燥が 使用できる。 噴霧の形式により、 ディスク式、 ノズル式、 衝撃波式などがあ るが、 いずれの方法を採用しても良い。 また、 熱源として、 熱風や加熱水蒸 気等が用いられる。 乾燥条件は、 噴霧乾燥機の大きさや種類、 合成樹脂エマ ルジョンの濃度、 粘度、 流量等によって適宜選択すればよい。 乾燥温度は、
1 0 0 ° (:〜 1 5 0 °Cが適当であり、 この乾燥温度の範囲内で、 十分に乾燥し た粉末が得られるように、 他の乾燥条件を設定することが望ましい。
また、 合成樹脂ェマルジヨン粉末の貯蔵安定性、 水への再分散性を向上さ せる目的で、 無機粉末 (ブロッキング防止剤) を使用することが望ましい。 無機粉末は、 噴霧乾燥後のェマルジヨン粉末に添加して均一に混合しても良 いが、 噴霧乾燥する際に合成樹脂ェマルジョンを無機粉末の存在下に噴霧す ると (同時噴霧) 、 均一な混合を行うことができ好適である。 無機粉末は平 均粒径 0 . 1〜 1 0 0 mの微粒子であることが好適である。 無機粉末とし ては、 微粒子の無機粉末が好ましく、 炭酸カルシウム、 クレー、 無水珪酸、 珪酸アルミニウム、 ホワイトカーボン、 タルク、 アルミナホワイト等が使用 される。 これらの無機粉末のうち、 無水珪酸が好適である。 無機粉末の使用 量は、 無機粉末を多量に添加し過ぎると合成樹脂ェマルジョンの性能が低下 することがあるので、 ェマルジヨン粉末に対して好ましくは 2 0重量%以下、 さらに好ましくは 1 0重量%以下である。 無機粉末の使用量の下限値は好ま しくは 0 . 1重量%以上、 さらに好ましくは 0 . 2重量%以上である。また、 有機系のフィラーも使用できる。
合成樹脂ェマルジョン粉末の水への再分散性をより向上させるために、 各 種の水溶性の添加剤を加えることもできる。 噴霧乾燥前に水溶性の添加物を 合成樹脂ェマルジョンに添加して噴霧乾燥することが、 合成樹脂ェマルジョ ンと水溶性の添加剤を均一に混合できるため好ましい。 水溶性の添加剤の使 用量は特に制限はなく、 ェマルジョンの耐水性等の物性に悪影響を与えない 程度に適宜コントロールされる。 このような添加剤としては、 ポリビニルァ ルコール、 ヒドロキシェチルセルロース、 メチルセルロース、 でんぷん誘導 体、 ポリビニルピロリ ドン、 ポリエチレンォキサイ ド等の他、 水溶性アルキ ッド樹脂、 水溶性フエノール樹脂、 水溶性尿素樹脂、 水溶性メラミン樹脂、 水溶性ナフタレンスルホン酸樹脂、 水溶性ァミノ樹脂、 水溶性ポリアミド樹 脂、 水溶性アクリル樹脂、 水溶性ポリカルボン酸樹脂、 水溶性ポリエステル 樹脂、 水溶性ポリウレタン樹脂、 水溶性ポリオール樹脂、 水溶性エポキシ樹 脂等が挙げられる。
合成樹脂ェマルジヨン粉末 (平均粒径 1〜 1 0 0 0 ." m、 好適には 2 ~ 5 0 0 m) は、 そのまま各種用途に用いることができるが、 必要に応じ、 本 発明の効果を損なわない範囲で、 従来公知の各種ェマルジヨン、 ェマルジョ ン粉末を添加して用いることもできる。
合成樹脂ェマルジヨン粉末は、 とくに水硬性物質用混和材または水硬性物 質用打継ぎ材として有用である。 ここで、 水硬性物質としては、 例えばポル トランドセメント、 アルミナセメント、 スラグセメント、 フライアッシュセ メントなどの水硬セメント、 あるいは石膏、 ブラスタ一などのセメント以外 の水硬性材料が挙げられる。
上記の水硬性物質用混和材を、 例えば、 セメント、 骨材および水からなる セメントモルタルに配合して使用する場合、 水硬性物質用混和材の配合量は、 セメントに対し 5〜 2 0重量%が好適である。ここで、骨材としては、川砂、 碎砂、色砂、けい砂などの細骨材、川砂利、碎石などの粗骨材が挙げられる。 また、 本発明の合成樹脂ェマルジヨン粉末を、 水硬性物質用打継ぎ材とし て使用する場合は、 上記合成樹脂ェマルジヨン粉末を水で適宜再乳化し、 打 継ぎ材 (プライマ一処理材) としてコンクリートなどの水硬性物質基板に塗 り付け、 その後で、 セメントモルタルなどの水硬性物質を塗り付けることに より施工が行われる。 このような打継ぎ材を使用することにより、 優れた接 着性および耐久性、 さらには優れた機械的強度などを付与することができる £ 水硬性物質用混和材および打継ぎ材の分散性をより向上させるために、 各 種の添加剤を加えることもできる。 噴霧乾燥前に水溶性の添加物を合成樹脂 ェマルジョンに添加して噴霧乾燥することが、 合成樹脂ェマルジョンと水溶 性の添加剤を均一に混合できるため好ましい。水溶性の添加剤の使用量は特 に制限はなく、 このような添加剤としては、 前記した水溶性の添加剤等が挙 げられる。
合成樹脂ェマルジヨン粉末を水硬性物質用混和材および打継ぎ材に使用 する場合、 AE剤、 減水剤、 流動化剤、 保水剤、 増粘剤、 防水剤、 消泡剤等 が適宜併用される。
合成樹脂ェマルジヨン粉末は、 接着剤、 塗料、 紙加工剤などの用途に使用 することもできる。 これらの用途では、 粘性改良剤、 保水剤、 粘着付与剤、 増粘剤、 顔料分散剤、 安定剤等が適宜併用される。
以下、 実施例を挙げて本発明を具体的に説明するが、 本発明はこれらによ つて何等限定されるものではない。 なお、 実施例中、 「部」 および 「%」 は いずれも重量基準を意味する。
実施例 1
還流冷却器、 温度計、 窒素吹込口、 イカリ型攪拌翼を備えた 2リットルガ ラス製重合容器に、 イオン交換水 7 50 g, P VA- 1 {重合度 50 0、 け ん化度 88モル%、 (株)クラレ製 P VA— 20 5140 gを仕込み、 9 5 °C で完全に溶解した。 60°Cに冷却後、 メタクリル酸メチル (MMA) 266 g、アクリル酸ブチル(アクリル酸 n—ブチル) (BA) 2 6 6 gを仕込み、 1 20 r pmで攪拌しながら窒素置換を行った。 その後、 塩化第一鉄 0. 0 0 58 g、 L ( + ) 酒石酸ナトリゥム (TAS) の 1 0 %水溶液 2 5 gを添 加した。 次に、 過酸化水素 (HPO) の 0. 5 %水溶液 1 00 gを 3時間か けて添加し、 乳化重合を行った。 過酸化水素の添加開始から 5分後に発熱が 見られ、 乳化重合の開始を確認した。 その後、 外温を 5 0〜5 5°Cに保って 重合を進めたところ、 重合温度は 5 8〜62°Cで推移し、 操作性良く重合が 進行した。 過酸化水素水溶液の添加終了後、 1時間熟成し、 重合反応を完結 したのち冷却した。その結果、固形分濃度 3 9. 8 %のェマルジョンを得た。 得られたェマルジョンのグラフトポリマー割合 (下記の測定法による)は、 74. 3重量%であり、 耐溶剤性 (下記測定法による溶出率) は、 20 % (ト ルェン) 、 2 3 % (アセトン) 、 1 8 % (酢酸ェチル) であった。 その他のェマルジョンの評価を以下の方法により実施した。その結果を表
1に示す。
(ェマルジヨンの評価)
(1) 重合操作性
重合開始からの重合温度の推移を測定し、 重合熱による温度上昇の程度を 観察し、 重合のコントロールが容易か否かで判断した。 重合推移温度の幅が 小さいほど重合のコントロールが容易であることを示す。
(2) 重合安定性
得られたェマルジヨンを、 6 0メッシュ (ASTM式標準フルイ) のステ ンレス製金網を用いろ過した。 ろ過後、 金網上の残渣を採取し、 重量を測定 した。 ェマルジヨン (固形分) 1 k gあたりの残渣量を表 1に示す。
(3) 皮膜強度
得られたェマルジョンを 20°C、 6 5 %RH下で、 ポリエチレンテレフ夕 レート (PET) フィルム上に流延し、 7日間乾燥させて厚さ 500 の 皮膜を得た。 得られた皮膜を 2 0°C、 6 0 %RH下で 1週間調湿したのち、 皮膜の引張り強度 (引張り速度 5 cm/ i n、 チャック間隔 50 mm) を 測定した。
(4) 耐アルカリ性
得られたェマルジョンを 20°C、 6 5 %RH下で、 ポリエチレンテレフ夕 レ一ト (PET) フィルム上に流延し、 7日間乾燥させて厚さ 500 mの 乾燥皮膜を得た。 この皮膜を直径 2. 5 cmに打ち抜き、 それを試料として 1 N水酸化ナトリウム水溶液中に 20°Cで 24時間浸漬した場合の、 皮膜の 溶出率および膨潤率を求めた。
溶出率 (%) : { 1 - (浸漬後の皮膜絶乾重量 z浸漬前の皮膜絶乾重量) }
X 1 0 0
膨潤率 (%) : { (浸漬後の皮膜吸水重量/浸漬前の皮膜絶乾重量) 一 1 } X 1 00 *浸漬前の皮膜絶乾重量;浸漬前の皮膜重量 (含水) 一 {浸漬前の皮膜重量
(含水) X 皮膜含水率 (%) /1 00 }
*皮膜含水率;皮膜 (20°Cで 1 N水酸化ナトリウム水溶液に浸漬するサン プルとは別のサンプル) を、 1 0 5°C、 4時間で絶乾し、 皮膜の含水率をあ らかじめ求める。 '
*浸漬後の皮膜絶乾重量;浸漬後の皮膜を 1 0 5°C、 4時間で絶乾した重量。 *浸漬後の皮膜吸水重量;浸漬後の皮膜を 1 N水酸化ナトリゥム水溶液中か ら引き上げた後、 皮膜についた水分をガーゼで拭き取り秤量した。
(5) 機械的安定性
得られたェマルジヨンを、 マロン式機械的安定性測定機を用い、 2 0°C、 荷重 0. 5 k g/cm2、 1 500 r pmの条件で 1 0分間試験を行った後、 6 0メッシュ (ASTM式標準フルィ) ステンレス製金網を用いてろ過し、 水性ェマルジヨンの固形分重量に対するろ過残渣重量の割合 (%) を測定し た。 ろ過残渣重量の割合が少ないほど機械的安定性が優れていることを示す c 0040
なお、 固形分濃度およびろ過残渣重量の測定は次のとおりである。
固形分濃度測定法
得られたェマルジョン約 3 gをアルミ皿にとり、 精秤後、 1 0 5°Cの乾燥 機で 24時間乾燥し、 水分を揮発させた。 その後の乾燥物の重量を測定し、 重量比から固形分濃度を算出した。
ろ過残渣重量の測定法
ろ過残渣を 1 05°Cの乾燥機で 24時間乾燥し、 水分を揮発させ、 乾燥物 の重量をろ過残渣重量とした。
(6) 皮膜透明性
ェマルジョンを 2 0°Cでキャスト製膜して得た厚さ 5 0 0 mの皮膜を 観察し、 その透明性を評価した。 評価結果を、 〇ほぼ透明、 △やや白濁、 X 完全に白濁、 で示す。 (7) ェマルジヨンの粒子径分布 (尺度 a)
得られたェマルジヨンを 0. 0 5 %の濃度に希釈し、 動的光散乱法によ り、 平均粒子径および散乱強度の測定を行った {大塚電子 (株) 製; レーザ 一ゼータ電位計 EL S— 8000 } 。 得られた散乱強度を用い、 本文中に記 載の方法により、 粒子径分布幅を示す尺度 aを求めた。
(8) グラフ卜ポリマー割合 (重量%)
得られたェマルジョンを 20 、 6 5 %RH下で、 ポリエチレンテレフタ レート (PET) フィルム上に流延し、 7日間乾燥させて厚さ 500 mの 乾燥皮膜を得た。この皮膜を直径 2. 5 cmに打ち抜き、それを試料として、 アセトンにて 24時間ソックスレ一抽出し、 さらに煮沸水中で 24時間抽出 を行い、 抽出後の皮膜の不溶分 (グラフトポリマー分) を求めた。 グラフトポリマー分 (%) = (抽出後の皮膜絶乾重量 抽出前の皮膜絶乾重 量) X 1 00 抽出前の皮膜絶乾重量 =抽出前の皮膜重量(含水)一 {抽出前の皮膜重量(含 水) X皮膜含水率 (%) /1 00 }
*皮膜含水率:皮膜 (アセトンおよび煮沸水で抽出する試料とは別の試料) を、 1 0 5°C、 4時間で絶乾し、 皮膜の含水率をあらかじめ求める。
*抽出後の皮膜絶乾重量:抽出後の皮膜を 1 0 5°C、 4時間で絶乾した重量。
(9) 耐溶剤性 (溶出率) 得られたェマルジョンを 20°C、 6 5 %RH下で、 ポリエチレンテレフ夕 レート (PET) フィルム上に流延し、 7日間乾燥させて厚さ 500 mの 乾燥皮膜を得た。 この皮膜を直径 2. 5 cmに打ち抜き、 それを試料として 3種類の溶剤 (トルエン、 アセトン、 酢酸ェチル) にそれぞれ 20°C、 24 時間浸漬した場合の、 皮膜の溶出率を求めた。 溶出率 (%) : { 1 - (浸漬後の皮膜絶乾重量 z浸漬前の皮膜絶乾重量) }
X 1 0 0
*浸漬前の皮膜絶乾重量;浸漬前の皮膜重量 (含水) 一 {浸漬前の皮膜重量
(含水) X 皮膜含水率 (%) / 1 0 0 }
*皮膜含水率;皮膜 (2 0 °Cで溶剤に浸漬するサンプルとは別のサンプル) を、 1 0 5 °C、 4時間で絶乾し、 皮膜の含水率をあらかじめ求める。
*浸漬後の皮膜絶乾重量;浸漬後の皮膜を 1 0 5 t:、 4時間で絶乾した重量。 比較例 1
還流冷却器、 滴下ロート、 温度計、 窒素吹込口、 イカリ型攪拌翼を備えた 2リットルガラス製重合容器に、 イオン交換水を 7 5 0 g、 P V A - 1を 4 0 g仕込み、 9 5 で完全に溶解した。 次に窒素置換を行い、 1 2 0 r p m で撹拌しながら、 6 0 °Cに調整した後、 塩化第一鉄 0 . 0 0 5 8 g、 L ( + ) 酒石酸ナトリウムの 1 0 %水溶液 2 5 gを添加した。 その後、 メ夕クリル酸 メチル 2 6 6 gとアクリル酸ブチル 2 6 6 gの混合液を滴下ロートから 2 時間目標で連続的に添加し、 併せて 0 . 5 %過酸化水素水溶液 1 0 0 gを 3 時間目標で連続的に添加を開始した。外温を 5 5 °Cに保って重合を行ってい たところ、 1時間後、 重合系がゲル化したため、 試験を中止した。
比較例 2
実施例 1において塩化第一鉄を用いなかった他は、 実施例 1と同様の仕込 みで過酸化水素水溶液の添加を開始した。 過酸化水素の添加開始から 1 5分 後に発熱、 乳化重合が開始したため、 外温を 5 0 °Cに調整し、 過酸化水素の 添加を続けたところ、 重合温度が 6 5 °Cに達したため、 過酸化水素の添加を 中断した。 しかし、 発熱は止まらず、 重合温度が 7 0 °Cに達したため、 重合 のコントロールが出来ないと判断し、 試験を中止した。
実施例 2
実施例 1において、 さらに n—ドデシルメルカブタンを 2 . 6 g重合初期 に仕込んだ他は、 実施例 1と同様に乳化重合を行った。 得られた水性エマル ジョンの評価を併せて表 1に示す。
比較例 3
比較例 1において、 さらに n—ドデシルメルカブタンを 2. 6 g重合初期 に仕込んだ他は、 比較例 1と同様に乳化重合を試みた。 しかし、 重合開始 1 時間 30分後に重合系がゲル化し、 試験を中止した。
比較例 4
比較例 2において、 さらに n—ドデシルメルカブタンを 2. 6 g重合初期 に仕込んだ他は、 比較例 2と同様に乳化重合を試みた。 しかし、 比較例 2と 同様、 発熱をコントロールすることが不可能であり、 試験を中止した。
実施例 3
実施例 2において P VA— 1の代わりに、 PVA— 2 {重合度 1 0 0 0、 けん化度 8 8モル%、 (株) クラレ製? 八ー 2 1 0 } を用いた他は、 実施 例 2と同様に乳化重合を行った。得られた水性ェマルジヨンの評価を併せて 表 1に示す。
比較例 5
比較例 3において P V A— 1の代わりに、 PVA— 2を用いた他は、 比較 例 3と同様に乳化重合を試みた。 しかし、 重合開始 1時間 40分後に重合系 がゲル化し、 試験を中止した。
実施例 4
実施例 2において PVA— 1の代わりに、 PVA— 3 (重合度 50 0、 け ん化度 80モル%) を用いた他は、 実施例 2と同様に乳化重合を行った。 得 られた水性ェマルジョンの評価を併せて表 1に示す。
実施例 5
実施例 2において P VA_ 1の代わりに、 PVA— 4 (重合度 50 0、 け ん化度 93モル%) を用いた他は、 実施例 2と同様に乳化重合を行った。 得 られた水性ェマルジヨンの評価を併せて表 1に示す。 実施例 6
還流冷却器、 温度計、 窒素吹込口、 イカリ型攪拌翼を備えた 2リットルガ ラス製重合容器に、 イオン交換水を 7 5 0 g、 P VA— 1を 40 g仕込み、 9 5 °Cで完全に溶解した。 60 °Cに冷却後、 メ夕クリル酸メチル 266 g、 ァクリル酸プチル 26 6 gを仕込み、 1 20 r pmで攪拌しながら窒素置換 を行った。 その後、 塩化第一鉄 0. 00 58 g、 亜硫酸水素ナトリウム (S HS) 溶液 1 0 gを添加した。 次に、 過硫酸カリウム (KP S) 水溶液 50 gを 3時間かけて添加し、 乳化重合を行った。 過硫酸カリウムの添加開始か ら 1 0分後に発熱が見られ、 乳化重合の開始を確認した。 その後、 外温を 5 0〜5 5 °Cに保って重合を進めたところ、 重合温度は 56〜6 5°Cで推移し た。 過硫酸カリウム水溶液の添加終了後、 1時間熟成し、 重合反応を完結し たのち冷却した。 その結果、 固形分濃度 39. 7 %のェマルジヨンを得た。 得られたェマルジヨンのグラフトポリマ一割合は、 6 5重量%であり、 耐溶 剤性は、 2 7 % (トルエン) 、 28 % (アセトン) 、 24% (酢酸ェチル) であった。
得られた水性ェマルジヨンの評価を併せて表 1に示す。
実施例 7
還流冷却器、 温度計、 窒素吹込口、 イカリ型攪拌翼を備えた 2リットルガ ラス製重合容器に、 イオン交換水を 7 5 0 g、 P VA— 1を 40 g仕込み、 9 5°Cで完全に溶解した。 60°Cに冷却後、 メ夕クリル酸メチル 3 9 9 g、 アクリル酸ブチル 1 3 3 g、 n—ドデシルメルカブタン 2. 6 gを仕込み、 1 2 0 r pmで攪拌しながら窒素置換を行った。 その後、 塩化第一鉄 0. 0 0 5 8 g、 L ( + ) 酒石酸ナトリウムの 1 0 %水溶液 2 5 gを添加した。 次 に、 過酸化水素の 0. 5 %水溶液 1 00 gを 3時間かけて添加し、 乳化重合 を行った。 過酸化水素の添加開始から 5分後に発熱が見られ、 乳化重合の開 始を確認した。 その後、 外温を 5 0〜 5 5°Cに保って重合を進めたところ、 重合温度は 58〜62°Cで推移し、 操作性良く重合が進行した。 過酸化水素 水溶液の添加終了後、 1時間熟成し、 重合反応を完結したのち冷却した。 そ の結果、 固形分濃度 3 9. 8 %のェマルジヨンを得た。 水性ェマルジヨンの 評価を併せて表 1に示す。
比較例 6
還流冷却器、 滴下ロート、 温度計、 窒素吹込口、 イカリ型攪拌翼を備えた 2リットルガラス製重合容器に、 イオン交換水を 7 50 g、 P VA- 5 (重 合度 500、 けん化度 88モル%、 末端にメルカプト基 1. 5 X 1 0 -5当量 /gを含有)を 40 g、 n -ドデシルメルカブタンを 2. 6 g仕込み、 9 5°C で完全に溶解した。 次に窒素置換を行い、 1 2 0 r pmで撹拌しながら、 6 0°Cに調整した後、 塩化第一鉄 0. 005 8 g、 L ( + ) 酒石酸ナトリウム の 1 0 %水溶液 25 gを添加した。 その後、 メタクリル酸メチル 3 99 gと アクリル酸ブチル 1 3 3 gの混合液を滴下ロートから 2時間で連続的に添 加、 併せて 0. 5 %過酸化水素水溶液 1 00 gを 3時間で連続的に添加を行 つた。 添加後、 1時間熟成を行った後、 系を冷却していたところ、 系がゲル 化したため、 試験を中止した。
実施例 8
還流冷却器、 温度計、 窒素吹込口、 イカリ型攪拌翼を備えた 2リットルガ ラス製重合容器に、 イオン交換水を 750 g、 P VA— 1を 40 g仕込み、 9 5 °Cで完全に溶解した。 6 0°Cに冷却後、 メタクリル酸メチル 1 33 g、 アクリル酸ブチル 3 9 9 g、 n—ドデシルメル力プ夕ン 2. 6 gを仕込み、 1 20 r pmで攪拌しながら窒素置換を行った。 その後、 塩化第一鉄 0. 0 0 58 g、 L ( + ) 酒石酸ナトリゥムの 1 0 %水溶液 2 5 gを添加した。 次 に、 過酸化水素の 0. 5 %水溶液 1 00 gを 3時間かけて添加し、 乳化重合 を行った。 過酸化水素の添加開始から 5分後に発熱が見られ、 乳化重合の開 始を確認した。 その後、 外温を 50〜5 5°Cに保って重合を進めたところ、 重合温度は 58〜6 2°Cで推移し、 操作性良く重合が進行した。 過酸化水素 水溶液の添加終了後、 1時間熟成し、 重合反応を完結したのち冷却した。 そ の結果、 固形分濃度 3 9 . 7 %のェマルジヨンを得た。 得られたェマルジョ ンの評価を併せて表 1に示す。
実施例 9
実施例 2においてイカリ型攪拌翼の代わりに、 3段パドル型攪拌翼を用い た他は、 実施例 2と同様に乳化重合を行い、 安定にェマルジヨンを得た。 得 られたェマルジョンの評価を併せて表 1に示す。
比較例 7 (特開平 1 1 一 3 3 5 4 9 0号公報に記載の方法に準ずる)
P V A - 1の 4 0 gをイオン交換水 4 0 0 に添加して、 9 5でに加熱、 溶解した水溶液を 2 0 °Cに冷却し、 メタクリル酸メチル 2 6 6 gおよびァク リル酸ブチル 2 6 6 gからなる単量体混合物を混合、 撹拌して、 単量体乳化 物を得た。 別途、 還流冷却器、 滴下ロート、 温度計、 窒素吹込口、 3段パド ル型撹拌翼を備えた 2リットルガラス製重合容器に、 イオン交換水 3 5 0 g およびエタノール 1 0 gを装入して温度を 8 0 °Cに昇温し、 8 0 °Cを維持し た状態で、 過硫酸アンモニゥム 0 . 5 gをイオン交換水 1 0 gに溶解した開 始剤溶液を添加した。 2分後に重合容器に前記単量体乳化物の添加を開始し、 4時間かけて添加を終了した。 添加終了後、 さらに 2時間撹拌を継続し、 熟 成を行った後、 冷却してェマルジヨンを得た。 得られたェマルジヨンの評価 を併せて表 1に示す。
比較例 8 (特開平 4一 1 8 5 6 0 6号公報に記載の方法に準ずる)
温度計、 イカリ型攪拌翼、 還流冷却器、 窒素吹き込み口および滴下ロート を備えた内容量 2リットルの重合容器中で P V A— 6 (重合度 1 0 0、 けん 化度 8 8モル%) 8 0 gをイオン交換水 6 8 0 gに添加して、 9 5 °Cに加熱、 攪拌して溶解し、 その後 7 0 :に冷却、 窒素置換を行った。 別の容器にメタ クリル酸メチル 2 0 0 g、 アクリル酸ブチル 2 0 0 g、 アクリル酸 6 gを混 合し、 窒素置換を行った。 0 . 5 %過硫酸カリウム水溶液 1 0 gと混合単量 体の 4 0 gを重合容器に添加して初期重合を行い、 ついで残りの混合単量体 を 3時間にわたって滴下した。 その間、 0 . 5 %過硫酸カリウム水溶液 1 5 gを同時に連続添加した。滴下終了後、さらに 1時間熟成を行った後、冷却、 1 0 %アンモニア水で pH 7. 5に調整した。 得られたェマルジョンの評価 を併せて表 1に示す。
実施例 1 0
実施例 2において PV A— 1の代わりに、 PVA— 7 (エチレン単位含有 量 3モル%、 重合度 5 0 0、 けん化度 93モル%) を用いた他は、 実施例 2 と同様に乳化重合を行った。得られた水性ェマルジョンの評価を併せて表 1 に示す。
実施例 1 1
実施例 2において PVA— 1の代わりに、 PVA— 8 (1, 2—グリコ一 ル結合量 2. 5モル%、重合度 500、 けん化度 88モル%)を用いた他は、 実施例 2と同様に乳化重合を行った。得られた水性ェマルジヨンの評価を併 せて表 1に示す。
実施例 1 2
実施例 2において P VA— 1の代わりに、 PVA— 9 (エチレン単位含有 量 2モル%、 1, 2—グリコール結合量 2. 2モル%、 重合度 500、 けん 化度 88モル%) を用いた他は、 実施例 2と同様に乳化重合を行った。 得ら れたェマルジョンの評価を併せて表 1に示す。
比較例 9
還流冷却器、 温度計、 窒素吹込口、 イカリ型攪拌翼を備えた 2リットルガ ラス製重合容器に、 イオン交換水を 7 5 0 g、 P VA— 1を 40 g仕込み、 9 5 °Cで完全に溶解した。 6 0°Cに冷却後、 酢酸ビュル 5 3 2 gを仕込み、 1 20 r pmで攪拌しながら窒素置換を行った。 その後、 塩化第一鉄 0. 0 0 5 8 g、 L ( + ) 酒石酸ナトリゥムの 1 0 %水溶液 2 5 gを添加した。 次 に、 過酸化水素の 0 · 5 %水溶液 1 00 gを 3時間かけて添加し、 乳化重合 を行った。 過酸化水素の添加開始から 5分後に発熱が見られ、 乳化重合の開 始を確認した。 その後、 外温を 50〜 5 5°Cに保って重合を進めたところ、 重合温度は 58〜62 °Cで推移した。 過酸化水素水溶液の添加終了後、 1時 間熟成し、 重合反応を完結したのち冷却した。 得られたェマルジヨンの評価 を併せて表 1に示す。
比較例 1 0 (特開平 1 0 - 60 05 5号公報の実施例 2に準ずる)
還流冷却器、 温度計、 窒素吹込口、 イカリ型攪拌翼を備えた 2リットルガ ラス製重合容器に、イオン交換水を 5 3 6 g、 PVA— 1 0 (重合度 1 50、 けん化度 9 7 · 4モル%)を.34 g仕込み、 9 5 で完全に溶解した。 70 °C に冷却後、 メタクリル酸メチル 1 96 g、 アクリル酸プチル 1 6 1 gを仕込 み、 1 20 r pmで攪拌しながら窒素置換を行った。 その後、 硫酸アンモニ ゥム第一鉄( 1 %水溶液) 5 g、 t e r tプチルヒドロパ一ォキシド(70 % 水溶液) l g、 酢酸 3. 9 gを添加した。 次に、 ホルムアルデヒドスルホキ シル酸ナトリウムの 2 %水溶液 330 gを 2時間かけて添加し、 乳化重合を 開始した。 重合による反応熱が確認された後、 イオン交換水 1 70 g、 t e r tプチルヒドロパーォキシド (70 %水溶液) 1 0. 7 g、 メ夕クリル酸 メチル 46 7 g、 アクリル酸ブチル 383 g、 n—ドデシルメルカブタン 7 gの混合物を 2時間かけて添加した。 添加後、 90分間 70°Cを維持し、 重 合を完結した後冷却した。 得られたェマルジヨンの評価結果を表 2に示す。 比較例 1 1 (特開平 1 0— 600 5 5号公報の実施例 3に準ずる)
還流冷却器、 温度計、 窒素吹込口、 イカリ型攪拌翼を備えた 2リットルガ ラス製重合容器に、イオン交換水を 284 g、 P VA- 1 1 (重合度 200、 けん化度 98モル%) を 1 6 g仕込み、 9 5 °Cで完全に溶解した。 40 に 冷却後、 メタクリル酸メチル 1 58 g、 アクリル酸ブチル 141 g、 n—ド デシルメルカブタン 0. 9 g、 t e r tプチルヒドロパ一ォキシド (70 % 水溶液) 2. 3 g、 硫酸アンモニゥム第一-鉄 ( 1 %水溶液) 5 gを仕込み、 1 20 r pmで攪拌しながら窒素置換を行った。 その後、 ホルムアルデヒド スルホキシル酸ナトリウムの 5 %水溶液 2 5 0 gを 2時間かけて添加し、 乳 化重合を開始し、 添加後 90分間 40°Cを維持し、 重合を完結した後冷却し た。 得られたェマルジヨンの評価結果を併せて表 2に示す。
比較例 1 2
比較例 1 1において PVA— 1 1の代わりに PVA— 1 2 (重合度 200、 けん化度 8 8モル%) を用いた他は、 比較例 1 1と同様にしてェマルジョン を調製した。 得られたェマルジョンの評価結果を併せて表 2に示す。 · 比較例 1 3
比較例 1 1において PV A— 1 1の代わりに PV A— 1 3 (重合度 500、 けん化度 9 8モル%) を用いた他は比較例 1 1と同様にしてェマルジヨンを 調製した。 得られたェマルジヨンの評価結果を併せて表 2に示す。
比較例 14 (特開 2 000— 256424公報の実施例 1に準ずる)
攪拌装置、 温度計、 還流冷却器、 滴下ロート、 窒素吹込口を備えたフラス コにイオン交換水 1 50 gを仕込んだ。 別のビーカ一にァクリル酸 2—ェチ ルへキシル 3 60 g、 メタクリル酸 1 0 g、 P VA- 1 3 0 gにイオン交 換水 440 gを加えホモミキサーによって予備乳化を行い、 さらに高圧ホモ ジナイザーを用いて、 平均粒子径 0. 4 ^ mの乳化物を調製した。 乳化物及 びフラスコに窒素ガスを 1 00m 1 /分、 約 2時間バブリングを行った。 そ の後乳化物を 4時間かけて滴下し、 1 0 %ホルムアルデヒドナトリウムスル ホキシレート水溶液 2 5 gを 5時間かけて滴下した。 この間、 系の温度は 6 0°C± 2°Cに保った。 滴下終了後 1時間同温度に保持し熟成後、 冷却した。 得られたェマルジョンの評価結果を併せて表 2に示す。
比較例 1 5 (特開 2 000— 2 56424公報の実施例 3に準ずる)
攪拌装置、 温度計、 還流冷却器、 滴下ロート、 窒素吹込口を備えたフラス コにイオン交換水 1 50 g、 第一硫化鉄 0. 0 02 g、 エチレンジァミン 4 酢酸ナトリウム 0. 0 1 gを仕込んだ。 別のビーカーにアクリル酸ブチル 9 0 g、 ァクリル酸ェチル 1 80 g、 アクリロニトリル 1 0 0 g、 ダイァセト ンァクリルアミド 8 g、 ィタコン酸 5 g、 PVA— 1 30 g、 イオン交換 水 440 gを加えホモミキサーによって予備乳化を行い、 さらに高圧ホモジ 2004/004600
ナイザ一を用いて、 平均粒子径 0. 4 の乳化物を調製した。 乳化物及び フラスコに窒素ガスを 1 00m 1 /分、 約 2時間バブリングを行った。 その 後乳化物を 4時間かけて滴下し、 0. 4%クメンヒドロパーォキシド水溶液 25 g、 0. 4 %ホルムアルデヒドナトリゥムスルホキシレート水溶液 2 5 gを 4時間かけて滴下した。 この間、 系の温度は 32°C±2 :に保った。 滴 下終了後 1時間同温度に保持し熟成後、 冷却、 2 5 %アンモニア水を 5 g添 加し中和した。 得られたェマルジョンの評価結果を併せて表 2に示す。
比較例 1 6 (特開平 8— 245 7 06号公報の実施例 1に準ずる)
還流冷却器、 滴下ロート、 温度計、 窒素吹込口を備えたガラス製重合容器 にイオン交換水 147 g、 ァニオン性界面活性剤 NEWCOL 70 7 S F {日本乳化剤(株)製 } 1. 5 g、重合開始剤として過硫酸アンモニゥム 0. 5 gを入れ、 窒素雰囲気下で加熱して 80°Cに昇温した。 次にアクリル酸ブ チル 1 0 0 gを 2時間かけて連続的に添加し、 添加開始後 2 0分の間に反応 液が青白く変色し、 内温が一旦上昇したことにより重合開始を確認した。 重 合が開始して 1時間後に 3 gの PVA— 14 (重合度 1 0 00、 けん化度 9 6モル%) を 1 0 %水溶液として添加した。 アクリル酸ブチルの連続添加終 了後 2時間、 同温度を維持して熟成を行い、 乳化重合を完結した。 得られた ェマルジョンの評価結果を併せて表 2に示す。
比較例 1 7 (特開平 8— 2457 0 6号公報の実施例 3に準ずる)
比較例 1 6において PV A— 14の代わりに P VA— 1を用いた他は、 比 較例 1 6と同様にしてェマルジョンを調製した。得られたェマルジョンの評 価結果を併せて表 2に示す。
比較例 1 8
比較例 1 0において、 PV A— 1 0の代わりに、 PVA— 14 (重合度 2 0 0、 けん化度 9 7. 4モル%) を用いた他は、 比較例 1 0と同様にして、 ェマルジョンを調製した。得られたェマルジヨンの評価結果を併せて表 2に 示す。 比較例 1 9
比較例 1 0において、 PVA— 1 0の代わりに、 PVA— 1 5 (重合度 8 0 0、 けん化度 97. 4モル%) を用いた他は、 比較例 1 0と同様にして、 ェマルジョンを調製した。得られたェマルジョンの評価結果を併せて表 2に 示す。
比較例 2 0
実施例 1において、 P VA_ 1の代わりに、 P VA— 1 6 (重合度 1 00、 けん化度 88モル%) を用いた他は、 実施例 1と同様にして、 ェマルジヨン を調製した。 得られたェマルジョンの評価結果を併せて表 2に示す。
比較例 2 1
実施例 1において、 PVA— 1の代わりに、 PVA— 1 3 (重合度 500、 けん化度 98モル%) を用いた他は、 実施例 1と同様にして、 ェマルジヨン を調製した。 得られたェマルジョンの評価結果を併せて表 2に示す。
比較例 22
実施例 1において、 PVA— 1の代わりに、 PVA— 1 7 (重合度 240 0、 けん化度 88モル%) を用いた他は、 実施例 1と同様にして、 ェマルジ ョンを調製した。 得られたェマルジヨンの評価結果を併せて表 2に示す。 比較例 2 3
還流冷却器、 滴下ロート、 温度計、 窒素吹込口を備えた 1 リットルガラ ス製重合容器に、 イオン交換水 228 g、 エチレン変性 PVA (PVA— 1 8) (重合度 1 5 0 0、 けん化度 9 8モル%、 エチレン変性量 5. 5モ ル%) 6 gを仕込み、 9 5°Cで完全に溶解した。 次に、 窒素置換を行い、 20 0 r pmで攪拌しながら、 7 0°Cに昇温した後、 1 0 %過硫酸アンモ ニゥム水溶液 3 gを添加し、 次にァクリル酸ブチル 1 20 gとメタクリル 酸メチル 8 0 g、 n -ドデシルメルカブタン 1 gを混合した溶液を約 2時 間にわたって添加した。 前記単量体の添加と同時に別途準備したエチレン 変性 PVA— 1 8の 1 0 %水溶液 60 gを 2時間にわたって添加した。 単 量体およびエチレン変性 P V A水溶液の添加終了後、 1 0 %過硫酸アンモ ニゥム水溶液 3 gを添加し、 内温を 7 0〜7 5 °Cに 2時間保って重合反応 を完結した後冷却した。 その結果、 固形分濃度 3 7 . 8 %の水性ェマルジ ョンを得た。 得られた水性ェマルジョンの評価結果を表 2に示す。
実施例 1 3
実施例 1で得られた水性ェマルジョンとェマルジョンの固形分に対して 2 %の無水珪酸微粉末 (平均粒径 2 ," m) とを別々に 1 2 0 °Cの熱風中に同 時噴霧して乾燥し、 ェマルジョン粉末を得た。
この粉末は、 粉末同士のブロッキングが見られず、 また水への再分散性も 優れていた。 また、 この粉末を再分散して得た水性ェマルジヨン (固形分濃 度 5 0 % ) の皮膜強度、 耐アルカリ性、 皮膜透明性はいずれも、 最初の水性 ェマルジヨンと同様、 優れていた。
Figure imgf000035_0001
Figure imgf000036_0001
産業上の利用可能性
本発明の (メタ) アクリル樹脂系ェマルジヨンは、 皮膜強度、 皮膜透明性 および機械的安定性のいずれにも優れ、 さらに耐ァルカリ性に優れるため、 建築用塗料、 紙用の塗工剤、 コーティング剤などとして広範に用いられる。

Claims

請 求 の 範 囲
1. けん化度 80〜9 5モル%、 重合度 400〜20 0 0のビニルアルコー ル系重合体を分散剤とし、 アクリル酸エステル系単量体単位およびメタクリ ル酸エステル系単量体単位から選ばれる少なくとも一種の単量体単位から なる重合体を分散質とするエマルジョンであって、 ェマルジョン粒子径分布 幅を示す [尺度 a]が 0. 3以上であり、かつェマルジヨンを 20。C、 6 5 % RH下において製膜して得た厚さ 500 mの皮膜の引張り強度が 1 00 k g/cm2以上である (メタ) アクリル樹脂系ェマルジヨン。
2. 20 :、 6 5 %RH下において製膜して得た厚さ 50 0 の皮膜を、 1 Nの水酸化ナトリウム水溶液に 20°Cで 24時間浸漬したときの該皮膜 の溶出率が 1 0 %以下である請求項 1記載の (メタ) アクリル樹脂系ェマル ジョン。
3. ビエルアルコール系重合体が、 分子内に炭素数 4以下のひ —ォレフィン 単位を 1〜 20モル%含有するピニルアルコール系重合体である請求項 1 記載の (メタ) アクリル樹脂系ェマルジヨン。
4. ビニルアルコール系重合体が、 1 , 2ーグリコール結合を 1. 9モル% 以上含有するビエルアルコール系重合体である請求項 1記載の (メタ) ァク リル樹脂系ェマルジョン。
5. ビニルアルコール系重合体が、 分子内に炭素数 4以下の α—才レフイン 単位を 1〜20モル%含有し、 かつひ一才レフィン単位の含有量を Xモル% とするとき、 1, 2—グリコール結合を ( 1. 7— ΧΖ40) 〜4モル%含 有するビニルアルコール系重合体である請求項 1記載の (メタ) アクリル樹 脂系ェマルジヨン。
6. けん化度 80〜9 5モル%、 重合度 400〜2000のピニルアルコー ル系重合体を分散剤とし、 過酸化物と還元剤からなるレドックス系重合開始 剤を用い、 ァクリル酸エステル系単量体およびメ夕クリル酸エステル系単量 体から選ばれる少なくとも一種の単量体を乳化 (共) 重合する際に、 (1) 鉄化合物、 (2)前記単量体および、 (3)前記ビニルアルコール系重合体、 を初期に仕込み、 前記過酸化物を重合系中に連続的または断続的に添加して 乳化 (共) 重合して、 ェマルジヨン粒子径分布幅を示す [尺度 a] が 0. 3 以上であり、 かつェマルジヨンを 20°C、 65 % RH下において製膜して得 た厚さ 50 0 mの皮膜の引張り強度が 10 0 k gZ cm2以上である (メ タ) アクリル樹脂系ェマルジヨンを製造する方法。
7. 還元剤を重合初期に系中に仕込む請求項 6記載の (メタ) アクリル樹脂 系ェマルジョンの製造方法。
8. 過酸化物の使用量が単量体 1 00重量部に対して、 純分で 0. 0 1〜 1 重量部である請求項 6記載の (メタ) アクリル樹脂系ェマルジヨンの製造方 法。
9. 還元剤が、 L ( + ) 酒石酸および/または L ( + ) 酒石酸ナトリウムで ある請求項 6記載の (メタ) アクリル樹脂系ェマルジヨンの製造方法。
1 0. 鉄化合物の使用量が全単量体に対して 1〜 5 0 p pmである請求項 6 記載の (メタ) アクリル樹脂系ェマルジヨンの製造方法。
1 1. 連鎖移動剤を実質的に用いない請求項 6記載の (メタ) アクリル樹脂 系ェマルジヨンの製造方法。
1 2. 界面活性剤を実質的に用いない請求項 6記載の (メタ) アクリル樹脂 系ェマルジヨンの製造方法。
1 3. 請求項 1記載の (メタ) アクリル樹脂系ェマルジヨンを乾燥して得た 合成樹脂粉末。
PCT/JP2004/004600 2003-04-09 2004-03-31 (メタ)アクリル樹脂系エマルジョンおよびその製造方法 WO2004089993A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AT04724773T ATE451396T1 (de) 2003-04-09 2004-03-31 (meth)acrylharzemulsion und herstellungsverfahren dafür
DE602004024512T DE602004024512D1 (de) 2003-04-09 2004-03-31 (meth)acrylharzemulsion und herstellungsverfahren dafür
JP2005505217A JP4152984B2 (ja) 2003-04-09 2004-03-31 (メタ)アクリル樹脂系エマルジョンおよびその製造方法
EP04724773A EP1612226B1 (en) 2003-04-09 2004-03-31 (meth)acrylic resin emulsion and process for producing the same
US10/550,025 US8030398B2 (en) 2003-04-09 2004-03-31 Method for producing a (meth)acrylic resin emulsion

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003-105901 2003-04-09
JP2003105901 2003-04-09
JP2003-137931 2003-05-15
JP2003137931 2003-05-15

Publications (1)

Publication Number Publication Date
WO2004089993A1 true WO2004089993A1 (ja) 2004-10-21

Family

ID=33161543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/004600 WO2004089993A1 (ja) 2003-04-09 2004-03-31 (メタ)アクリル樹脂系エマルジョンおよびその製造方法

Country Status (9)

Country Link
US (1) US8030398B2 (ja)
EP (1) EP1612226B1 (ja)
JP (1) JP4152984B2 (ja)
KR (1) KR100715925B1 (ja)
AT (1) ATE451396T1 (ja)
DE (1) DE602004024512D1 (ja)
ES (1) ES2337686T3 (ja)
TW (1) TWI247780B (ja)
WO (1) WO2004089993A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016125255A (ja) * 2014-12-27 2016-07-11 太平洋マテリアル株式会社 セメント打継ぎ用プライマー及びセメントの打継ぎ方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004339291A (ja) * 2003-05-13 2004-12-02 Kuraray Co Ltd 水性塗料
EP1857503B1 (en) * 2005-03-09 2010-10-06 Kuraray Co., Ltd. Aqueous emulsion and coating
EP1967534B1 (en) * 2005-12-27 2011-08-24 Kuraray Co., Ltd. Adhesive composition
JP2009051876A (ja) * 2007-08-23 2009-03-12 Three M Innovative Properties Co コーティング組成物及びそれを使用した物品
WO2009069644A1 (ja) * 2007-11-28 2009-06-04 The Nippon Synthetic Chemical Industry Co., Ltd. 水性エマルジョン及びその製造方法
DE102011076407A1 (de) 2011-05-24 2012-11-29 Wacker Chemie Ag Verfahren zur Herstellung von Schutzkolloid-stabilisierten Polymerisaten
EP3075770A1 (de) * 2015-03-31 2016-10-05 Evonik Röhm GmbH Herstellung feinporiger pmma-schäume mittels verwendung von nukleierungsmitteln

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09302006A (ja) * 1996-05-20 1997-11-25 Kanegafuchi Chem Ind Co Ltd ポリマーラテックスの製造方法
JP2000239473A (ja) * 1999-02-23 2000-09-05 Kanegafuchi Chem Ind Co Ltd アクリル酸エステル系樹脂
JP2000256424A (ja) * 1999-03-11 2000-09-19 Showa Highpolymer Co Ltd ポリビニルアルコールを保護安定剤とするアクリルエマルジョンの製造方法およびその組成物
JP2001323006A (ja) * 2000-05-12 2001-11-20 Rohm & Haas Co プラスチック添加剤ポリマー組成物
JP2002308939A (ja) * 2001-04-09 2002-10-23 Kuraray Co Ltd エチレン−酢酸ビニル系樹脂エマルジョンの製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6044321B2 (ja) * 1981-01-17 1985-10-03 三菱化学株式会社 懸濁重合法
JPS60197229A (ja) 1984-03-19 1985-10-05 Kuraray Co Ltd 乳化重合用分散安定剤
US5240771A (en) * 1990-04-02 1993-08-31 Basf Aktiengesellschaft Copolymers based on C1 -C8 -alkyl acrylates and/or methacrylates and preparation and use thereof
JP3162367B2 (ja) 1990-11-21 2001-04-25 クラリアント インターナショナル リミテッド 保護コロイド系再分散性アクリル樹脂エマルジョン粉末およびその製造方法
JPH04185607A (ja) 1990-11-21 1992-07-02 Hoechst Gosei Kk 保護コロイド系再分散性アクリル樹脂エマルジョン粉末とその製造方法
JP3190744B2 (ja) 1992-10-21 2001-07-23 株式会社クラレ 水性エマルジョン
JPH07278212A (ja) 1994-04-07 1995-10-24 Kuraray Co Ltd 水性エマルジョンの製造方法
JPH08245706A (ja) 1995-03-10 1996-09-24 Unitika Chem Kk 機械的安定性に優れた水性エマルジョンの製造方法
US5741871A (en) 1996-06-14 1998-04-21 Air Products And Chemicals, Inc. Acrylic emulsions prepared in the presence of fully hydrolyzed poly (vinyl alcohol)
US5869950A (en) 1997-10-30 1999-02-09 Lockheed Martin Corp. Method for equalizing the voltage of traction battery modules of a hybrid electric vehicle
JP4099862B2 (ja) 1998-05-28 2008-06-11 日本ゼオン株式会社 水性エマルションおよびその製造方法
JP4185607B2 (ja) 1998-12-15 2008-11-26 ダイセル化学工業株式会社 新規な微生物及びアミド化合物の製造方法
US6451898B1 (en) * 1999-10-01 2002-09-17 Kuraray Co., Ltd. Aqueous emulsion and method for producing it
EP1152032B1 (en) * 1999-12-03 2015-01-07 Kuraray Co., Ltd. Aqueous emulsion and method for suspension polymerization of vinyl compound
JP2002167403A (ja) * 2000-09-19 2002-06-11 Kuraray Co Ltd ビニルエステル系樹脂エマルジョンの製法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09302006A (ja) * 1996-05-20 1997-11-25 Kanegafuchi Chem Ind Co Ltd ポリマーラテックスの製造方法
JP2000239473A (ja) * 1999-02-23 2000-09-05 Kanegafuchi Chem Ind Co Ltd アクリル酸エステル系樹脂
JP2000256424A (ja) * 1999-03-11 2000-09-19 Showa Highpolymer Co Ltd ポリビニルアルコールを保護安定剤とするアクリルエマルジョンの製造方法およびその組成物
JP2001323006A (ja) * 2000-05-12 2001-11-20 Rohm & Haas Co プラスチック添加剤ポリマー組成物
JP2002308939A (ja) * 2001-04-09 2002-10-23 Kuraray Co Ltd エチレン−酢酸ビニル系樹脂エマルジョンの製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016125255A (ja) * 2014-12-27 2016-07-11 太平洋マテリアル株式会社 セメント打継ぎ用プライマー及びセメントの打継ぎ方法

Also Published As

Publication number Publication date
KR100715925B1 (ko) 2007-05-08
EP1612226A4 (en) 2006-11-22
DE602004024512D1 (de) 2010-01-21
US20060217484A1 (en) 2006-09-28
US8030398B2 (en) 2011-10-04
KR20060006024A (ko) 2006-01-18
EP1612226A1 (en) 2006-01-04
JPWO2004089993A1 (ja) 2006-07-06
TW200504141A (en) 2005-02-01
EP1612226B1 (en) 2009-12-09
JP4152984B2 (ja) 2008-09-17
TWI247780B (en) 2006-01-21
ES2337686T3 (es) 2010-04-28
ATE451396T1 (de) 2009-12-15

Similar Documents

Publication Publication Date Title
JP3270450B2 (ja) 保護コロイド−安定化されたポリマーの製法
US8993668B2 (en) Polyvinyl ester dispersions, process for preparation thereof and use thereof
US5753036A (en) Poly(vinyl alcohol) stabilized acrylic polymer modified hydraulic cement systems
KR100440703B1 (ko) 연속 에멀젼중합에 의한 보호콜로이드 안정화 폴리머의 제조방법
JP2006523594A (ja) 凝結促進作用を有する再分散粉末組成物の使用
JP3624172B2 (ja) 2相ポリマーの製造法、この種のポリマー、および該ポリマーの使用
US6770722B2 (en) Process for preparing protective-colloid-stabilized polymers by continuous emulsion polymerization
EP2033991B1 (en) Water based emulsion and use thereof
JP2006057019A (ja) 水性アクリル共重合エマルジョン、再分散性アクリル共重合エマルジョン粉末、およびそれらの製造方法
WO2004089993A1 (ja) (メタ)アクリル樹脂系エマルジョンおよびその製造方法
JPH1060055A (ja) 十分に加水分解されたポリ(ビニルアルコール)の存在下で製造されたアクリルエマルジョン
AU779679B2 (en) Emulsion polymers
KR20040018443A (ko) 고형물 농도가 높은 에틸렌-비닐 아세테이트 라텍스
TW200523313A (en) Redispersible dispersion powders for composite thermal insulation systems
WO1986000882A1 (en) Emulsion for modifying inorganic molding and process for its production
JP4444747B2 (ja) アクリルエマルジョンの製造方法およびアクリルエマルジョン
JP4405352B2 (ja) 水性エマルジョンおよびその製造方法
JP2004323571A (ja) 合成樹脂エマルジョン粉末およびその製造方法
KR100864007B1 (ko) 아크릴계 재유화형 수지, 그 제조방법, 및 이를 포함하는시멘트 조성물
JP5546442B2 (ja) 木工用接着剤用合成樹脂エマルジョン、木工用接着剤用再乳化性エマルジョン粉末、及びそれを用いた木工用接着剤組成物
JPH0226855A (ja) セメント組成物
JP3002182B2 (ja) カルボキシル基およびカルボキシルアミド基含有ポリマーを基礎とする増粘剤およびその製造方法
JP2004307762A (ja) (メタ)アクリル系樹脂エマルジョンの製造方法
JP2004339291A (ja) 水性塗料
JP2004307763A (ja) (メタ)アクリル樹脂系エマルジョンの製法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004724773

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005505217

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006217484

Country of ref document: US

Ref document number: 10550025

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004808771X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020057019110

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004724773

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057019110

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10550025

Country of ref document: US