WO2004085315A1 - 多孔質酸化チタン粉体及びその製造方法 - Google Patents

多孔質酸化チタン粉体及びその製造方法 Download PDF

Info

Publication number
WO2004085315A1
WO2004085315A1 PCT/JP2004/004268 JP2004004268W WO2004085315A1 WO 2004085315 A1 WO2004085315 A1 WO 2004085315A1 JP 2004004268 W JP2004004268 W JP 2004004268W WO 2004085315 A1 WO2004085315 A1 WO 2004085315A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium oxide
oxide powder
acid
porous titanium
porous
Prior art date
Application number
PCT/JP2004/004268
Other languages
English (en)
French (fr)
Inventor
Shoichiro Shio
Original Assignee
Shiseido Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shiseido Co., Ltd. filed Critical Shiseido Co., Ltd.
Priority to EP04723739A priority Critical patent/EP1616840A4/en
Priority to US10/550,461 priority patent/US7758844B2/en
Priority to KR1020057018064A priority patent/KR101133964B1/ko
Priority to AU2004223979A priority patent/AU2004223979A1/en
Publication of WO2004085315A1 publication Critical patent/WO2004085315A1/ja
Priority to HK06106556.7A priority patent/HK1086545A1/xx
Priority to AU2010202400A priority patent/AU2010202400A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3607Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3607Titanium dioxide
    • C09C1/3669Treatment with low-molecular organic compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area

Definitions

  • Porous titanium oxide powder and method for producing the same are Porous titanium oxide powder and method for producing the same.
  • the present invention relates to a porous titanium oxide powder and a method for producing the same, and further relates to its ability to control ultraviolet rays, usability, transparency and the like.
  • Titanium oxide has been widely used as a pigment in paints, plastics, cosmetics, and the like because of its high refractive index, excellent hiding power, coloring power, and UV protection. Titanium oxide, which is contained in these product bases as an ultraviolet ray protective agent, is mainly composed of fine powder having an average primary particle diameter of not more than 0.1 ⁇ as a result of pursuing ultraviolet ray protection and transparency.
  • titanium oxide As a method for producing titanium oxide, a method of heating and hydrolyzing titanyl sulfate / titanium tetrachloride in an aqueous phase and a method of neutralizing and hydrolyzing are known (for example, Japanese Patent Application Laid-Open No. 55-55). — See Japanese Patent Publication No. 10428).
  • the fine particle powder had a very small particle size, it had a high oil absorption, was apt to agglomerate, and was difficult to disperse in the product base system.
  • cosmetics and the like containing this fine particle powder have a high UV protection effect in the UV- UV region (290 to 320 nm), but have a high UV-A region (320 to 400 nm). It has a low protective effect against ultraviolet rays, and has problems such as roughness and poor quality even in actual use.
  • fan-shaped titanium oxide powder in which needle-shaped titanium oxide primary particles are aggregated has been proposed in order to improve dispersibility and UV-A protection ability (for example, Japanese Patent Application Laid-Open No. Reference is made to Japanese Patent Application Publication No.
  • titanium oxide has a high refractive index, its transparency is higher than that of zinc oxide. There was a problem of inferiority. .
  • the present invention has been made in view of the above-described conventional problems, and has as its object to provide a titanium oxide powder having excellent ultraviolet protection ability, usability, and transparency, and a method for producing the same.
  • the titanium salt solution is heated and hydrolyzed with an additive such as an aliphatic alcohol, and then heated with an acid, whereby the fine titanium oxide primary particles become spherical. It was found that powders having a very large specific surface area could be obtained. And, it has been found that such a powder has excellent ultraviolet protection ability, usability, and transparency. Also, the present inventors have found that a compound having a carboxylic acid group or a carboxyl group can be used in combination with an aliphatic alcohol as an additive, and that the particle size, crystal type, and the like can be adjusted by adjusting the concentration of the additive. did.
  • the porous titanium oxide powder according to the present invention is a porous powder having an average particle size of 0.01 to 100 m formed by aggregating primary particles of titanium oxide, and has a specific surface area of characterized in that There are 2 5 0 ⁇ 5 0 0 m 2 Z g.
  • the average particle size of the primary particles of titanium oxide is 1 to 50 nm.
  • the powder be roughly spherical with a ratio of the major axis to the minor axis of 0.75 or more.
  • the crystal type is preferably a rutile type. Further, the crystal type is preferably an anatase type.
  • the titanium salt solution is heated and hydrolyzed in the presence of a substance having an aliphatic alcohol and / or a carboxyl group or a carbonyl group, and then further heated with an acid. It is characterized by processing.
  • the titanium salt solution is heated and hydrolyzed in the presence of an aliphatic alcohol, and then heat-treated with an acid.
  • the titanium salt solution is heated and hydrolyzed in the presence of an aliphatic alcohol and a substance having a carboxyl group or a carboxyl group, followed by further heat treatment with an acid. .
  • the aliphatic alcohol may be a polyhydric alcohol. It is suitable.
  • polyhydric alcohols include ethylene glycol, propylene glycol, 1,4-butylene glycol, 2,3-butylene glycol, 1,3-butylene glycol, and dimethinoref P, pandiolone, and getinoleffe P It is preferably one or more selected from the group consisting of pandiole, glycetone, trimethylolpropane, triethylonolepropane, erythritol, xylitol, mannitol, sorbitol, and maltitol It is.
  • the titanium salt solution is hydrolyzed by heating in the presence of a substance having a carboxyl group or a polyol group, and then further heat-treated with an acid.
  • the substance having a carboxyl group or a carbonyl group is preferably an aliphatic carboxylic acid or a derivative thereof.
  • the substance having a carbonyl group is acetic acid.
  • FIG. 1 is a photograph of a porous titanium oxide powder according to the present invention taken by a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • FIG. 2 is a photograph of the porous titanium oxide powder according to the present invention taken by a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • FIG. 3 is a graph showing the results of measurement of the ultraviolet protective effect and the visible light transmittance of the porous titanium oxide powder according to the present invention and a comparative commercially available ultrafine titanium oxide powder.
  • the diameter of the porous titanium oxide powder of the present invention can be from 0.01 to 100 ⁇ , but is preferably from 0.01 to 10 ⁇ m. If the diameter is small, aggregation occurs in the base material, and if the diameter is large, usability may be impaired.
  • the average particle diameter of the titanium oxide particles serving as the primary particles is preferably 0.001 to 0.05 m. If it is shorter than 0.0 1 ⁇ , the cohesiveness becomes stronger, If the porosity cannot be obtained and the porosity is longer than 0.05, the specific surface area is reduced, and the UV protection effect is reduced.
  • the titanium salt solution is heated and hydrolyzed in the presence of an aliphatic alcohol and / or a carbonyl substance having a carbonyl group or a carbonyl group, and thereafter, It is characterized by heat treatment with an acid.
  • an aliphatic alcohol or the like is added to a titanium salt solution, and this is heated and hydrolyzed to obtain metatitanic acid, which is further heat-treated with an acid, and further p-treated by an alkaline treatment. It is preferred that H be adjusted to form orthotitanic acid and then dried (further calcination is possible).
  • the above alkali treatment can be omitted, the yield and quality may be poor.
  • the starting material of the titanium salt solution used in the present invention is not particularly limited, but an aqueous solution of an inorganic titanium salt such as titanium sulfate, titanyl sulfate, and titanium tetrachloride is preferably used. It is also possible to use an organic titanium salt such as titanium tetraisopropoxide as a starting material.
  • the concentration of the titanium salt solution is preferably from 0.1 to 5 mol / L.
  • the particle diameter ⁇ specific surface area of the powder can be changed by the amount of the aliphatic alcohol added when the titanium salt solution is hydrolyzed by heating. This is thought to be because the aliphatic alcohol affects the particle size and aggregation state of the primary particles, and as a result, the particle size, specific surface area, and the like of the porous powder, which is the secondary particles, change.
  • the concentration of the aliphatic alcohol may be appropriately determined according to the purpose, but is usually 0.1 to 5 mol / L, preferably 0.5 to 3 mol / L in a titanium salt solution. If the aliphatic alcohol concentration is too low or too high, it may be difficult to obtain a porous powder having a desired particle size and specific surface area.
  • examples of the aliphatic alcohol to be added when the titanium salt solution is hydrolyzed by heating include those having 1 to 22 carbon atoms, such as methanol, ethanol, isopropyl alcohol, butyl alcohol, octanol, and stearyl. Alcohol and the like can be exemplified, but it is preferable to use a polyhydric alcohol in order to obtain a clean shape.
  • polyhydric alcohol examples include, but are not limited to, ethylene glycol, propylene glycol, 1,4-butylene glycol, and 2,3-butylene Gurikonore, 1, 3-butylene glycol Honoré, dimethyl propane di O over Honoré, Jechi Norepurono Njio one Honoré, glycerol, preparative Rimechironorepu 'Ronokun, preparative Ryechironore Purono ⁇ 0 down, erythritol tall, xylylene Tonore, Man'ni Torr Sonorebitonore, Multitol and the like are preferably used.
  • the heating hydrolysis conditions are appropriately determined depending on the type of raw materials to be used, the type and concentration of additives such as aliphatic alcohols, and the like, but it is generally preferable that the temperature is 50 to 100 ° C. for 1 to 12 hours. is there.
  • heat treatment with an acid is performed. Specifically, after heating and hydrolyzing treatment, an acid is added to a slurry in which the filtration residue is resuspended in water, and the slurry is heated.
  • an acid examples include sulfuric acid, nitric acid, and hydrochloric acid, and hydrochloric acid is preferred.
  • a porous powder having a very high specific surface area of not less than 250 m 2 / g can be obtained. If the acid heat treatment is not performed, or if additives such as aliphatic alcohols are not added at the time of heat hydrolysis, such a powder having a large specific surface area cannot be obtained. Also, the acid heat treatment tends to make the powder particle size smaller and more uniform than before the treatment.
  • the amount of the acid to be added in the acid heat treatment is usually 1 to 8 molar equivalents relative to titanium in the slurry.
  • the heating conditions may be appropriately determined depending on the raw materials, additives, concentrations, and the like to be used, but are usually in the same range as the heating hydrolysis conditions.
  • an alkali is added to the reaction solution (or a slurry obtained by filtering and washing the reaction solution, and then resuspended in water) to adjust the pH to 6 to 8, preferably pH 6.5. It is preferable to adjust (neutralize) to 7.5.
  • the alkali used is not particularly limited, but Na salts, K salts, and Ca salts such as sodium hydroxide, sodium carbonate, potassium hydroxide, and calcium hydroxide are preferably used.
  • the particle size of the porous powder is larger than when not used together. Tend to be smaller. In addition, the amount of additives used can often be reduced.
  • the substance having a carboxyl group or a carboxy group (hereinafter sometimes referred to as a carboxyl Z-carbonyl compound) is not limited as long as there is no particular problem, but an aliphatic compound having 1 to 22 carbon atoms is preferable. Typical examples thereof include aliphatic carboxylic acids and derivatives thereof.
  • Examples of the aliphatic carboxylic acids include monobasic acids such as formic acid, acetic acid, propionic acid, caprylic acid, and stearic acid, and dibasic acids such as oxalic acid, malonic acid, succinic acid, adipic acid, and maleic acid. Alternatively, higher polybasic acids are possible.
  • Typical derivatives include salts such as alkali metal salts, alkaline earth metal salts, quaternary ammonium salts and the like, and esters such as methyl ester and ethyl ester.
  • preferred are carboxylic acids and carboxylate salts preferred are particularly preferred are acetic acid and propionic acid.
  • the concentration of the carboxyl / carbonyl compound may be appropriately determined depending on the type of the compound and other conditions, but is usually preferably 0.1 to 5 mo1 / L in a titanium salt solution. Preferably it is 0.5-5 mo1 / L. If the concentration is too low, the effect of addition is not exhibited, and if added excessively, the effect corresponding thereto is not exhibited.
  • a porous titanium oxide powder can be obtained by using a lipoxyl / carbonyl compound instead of an aliphatic alcohol as an additive.
  • acetic acid is preferred as the carboxyl Z-carbonyl compound.
  • the particle size and shape may be inferior to those in the case where the aliphatic alcohol is used.
  • Anatase and rutile are produced as white pigments industrially. Both crystals belong to the tetragonal system, and the atomic arrangement of unit cells is more dense in the rutile type than in the anatase type. Further, the rutile type is more stable than the anatase type. When the anatase type is heated at a high temperature, it is transformed into the rutile type.
  • Titanium oxide is known to act as a photocatalyst when irradiated with light, particularly ultraviolet light, and is intended to act as a photocatalyst.
  • light particularly ultraviolet light
  • the lath is used as an antifouling function-imparting agent for making it super hydrophilic, it is very useful to use anatase type titanium oxide.
  • rutile-type or anatase-type titanium oxide depending on the concentration of an aliphatic alcohol or a carboxyl / carbonyl compound.
  • a rutile type is obtained when the concentration of aliphatic alcohol or carboxyl / carbonyl compound is low
  • an anatase type is obtained when the concentration of aliphatic alcohol or carboxyl / carbonyl compound is high. It is in.
  • the crystal form of titanium oxide can be selected according to the purpose of use.
  • an anatase type can be produced by the production method of the present invention, and this can be transferred to a rutile type by a conventional method.
  • the primary particles are aggregated in a coarse state, exhibit a porous shape having many pores (voids), and have a specific surface area of 250 m 2 / g or more. It also becomes.
  • the refractive index of the powder is a product of the refractive index of titanium oxide and the refractive index of the medium, and the apparent refractive index is lower than the refractive index of titanium oxide itself.
  • the porous titanium oxide powder of the present invention has a feature that the transmittance in the visible region is high and almost constant, and that the transparency is higher than that of the conventional titanium oxide powder. In the UV-AB region, the transmittance is reduced, and it has UV protection. Furthermore, since the titanium oxide powder of the present invention has a substantially spherical shape, when it is blended in paints, plastics, cosmetics, etc., it has excellent usability without roughness.
  • the titanium oxide powder of the present invention is porous, its specific surface area is as large as 250 to 50 On ⁇ / g. Therefore, when used as a photocatalyst, the activity can be expected to increase.
  • the porous titanium oxide powder of the present invention can be used after being subjected to a surface treatment by an ordinary method.
  • a surface treatment for example, an aluminum treatment, a silicone treatment, a fatty acid stone treatment, a dextrin fatty acid ester treatment, a fluorine treatment, or the like may be performed.
  • an aluminum treatment, a silicone treatment, a fatty acid stone treatment, a dextrin fatty acid ester treatment, a fluorine treatment, or the like may be performed.
  • by further coating the surface with other metal species it can be expected that the ultraviolet absorption characteristics will be changed.
  • the porous titanium oxide powder of the present invention is thermally and chemically stable, and contains oil, water, powder, surfactant, lower alcohol, polyhydric alcohol, humectant, preservative, polymer, Antioxidants, fragrances, various chemicals, and the like can be incorporated in a qualitative and quantitative range that does not impair the effects of the present invention such as ultraviolet protection.
  • oils that can be blended with the porous titanium oxide powder of the present invention include oils that are usually used in cosmetics. Examples thereof include liquid fats and oils, solid fats and oils, waxes, hydrocarbons, higher fatty acids, higher alcohols, ester oils, and silicones, but are not limited to the above oil components. One or more of these oils can be arbitrarily selected and used.
  • Examples of the powder that can be blended with the porous titanium oxide powder of the present invention include powders generally used in cosmetics. Examples include inorganic pigments, pearl pigments, metal powder pigments, organic pigments, and natural pigments, but are not limited to the above powders.
  • a surfactant that can be blended with cosmetics can be used regardless of its ionicity.
  • examples thereof include anionic surfactants, cationic surfactants, amphoteric surfactants, lipophilic nonionic surfactants, hydrophilic nonionic surfactants, and silicone surfactants.
  • this invention is not limited only to the said surfactant.
  • One or more of these surfactants can be arbitrarily selected and blended.
  • the form in which the cosmetic can be taken is not particularly limited, and examples thereof include powder, cream, stick, pencil, and liquid. It can be in various forms depending on the application, and it is possible to provide various cosmetics such as makeup base, foundation, white powder, lipstick, lipstick, mascara, eye shadow, eyeliner, cream, emulsion, lotion, etc. is there.
  • a substance having an aliphatic alcohol and / or a carboxyl group or a carboxy group as an additive when hydrolyzing a titanium salt such as titanyl sulfate / titanium tetrachloride By co-existing and heat-treating with acid, it is possible to obtain a porous titanium oxide powder having a very large specific surface area and excellent ultraviolet protection ability, usability and transparency.
  • the particle size and particle size can be improved by using aliphatic alcohols and carboxyl / carbonyl compounds in combination, or by adjusting the concentration of additives. Specific surface area and crystal type can be changed.
  • Fig. 1 shows a TEM photograph of the obtained titanium oxide powder.
  • This powder was a porous titanium oxide having a crystal type of rutile, a particle diameter of about 9 O nm, and a specific surface area of 361 m 2 Z g, and was spherical in shape.
  • a powder was prepared in the same manner as in Example 1 except that the glycerin concentration was changed. Table 1 shows the results.
  • the concentration of the aliphatic alcohol is from 0.1 to 5 mol / L, preferably from 0.5 to 3 mol / L. Also, as is clear from Table 1, the crystal form of the powder changes depending on the amount of the aliphatic alcohol added.
  • a powder was obtained in the same manner as in Example 1 except that, after the heat hydrolysis, a treatment with sodium hydroxide was performed without a treatment with hydrochloric acid.
  • the obtained powder was a titanium oxide powder having a rutile crystal form, a particle size of about 200 nm, and a specific surface area of 220 m 2 / g.
  • a powder was produced in the same manner as in Example 1 except that 3 mol of acetic acid was added together with glycerin.
  • the resulting powder was a porous material having an anatase crystal type, a particle diameter of about 30 nm, and a specific surface area of 389 m 2 / g. Titanium oxide was obtained.
  • Fig. 2 shows a TEM photograph of this powder.
  • Example 3 As can be seen by comparing Example 3 with Example 1, the combined use of the lipoxyl Z-carbonyl compound reduced the particle size, and also changed the crystal form from rutile to anatase.
  • a powder was produced in the same manner as in Example 1 except that lmol of propionic acid was added together with glycerin.
  • the crystal type was rutile, the particle size was about 60 nm, and the specific surface area was
  • This powder was a porous titanium oxide having a rutile crystal type, a particle size of about 20 nm, and a specific surface area of 334 m 2 / s.
  • a powder was produced in the same manner as in Example 3 except that titanyl sulfate was used instead of titanium tetrachloride.
  • the crystal type was anatase type, the particle size was about 60 nm, and the specific surface area was 327 m 2 / g. Was obtained.
  • a powder was produced in the same manner as in Example 3 except that the glycerin concentration was changed to 0.1 mol / L.
  • the crystal type was anatase type, the particle size was about 10 nm, and the specific surface area was 455 m 2 / g. Was obtained.
  • a powder was produced in the same manner as in Example 1 except that acetic acid was used instead of glycerin.
  • the crystal type was anatase type, the particle diameter was about 20 nm and 600 nm, and the specific surface area was 285 m 2 / g of porous titanium oxide was obtained.
  • FIG. 3 is a transmittance curve of the powder of Example 3.
  • the transmittance was measured for a powder obtained by dispersing the powder in castor oil using three rollers, and applying a 5% dispersion of the powder on a transparent quartz plate using a 5 ⁇ applicator.
  • As a control using a commercially available ultrafine acid titanium (titanium Industry Co., Ltd. ST4 85). From FIG. 3, it is understood that the powder of the present invention has an ultraviolet absorbing ability and is excellent in transparency.
  • Preservatives Appropriate amount After adding polyethylene glycol to purified water and dissolving by heating, add zinc white and veegum and uniformly disperse them with a homomixer and keep at 70 ° C (aqueous phase). Mix with other components, heat and maintain at 70 ° C (oil phase). Add the oil phase to the water phase, emulsify and disperse the mixture uniformly with a homomixer, and cool to 35 ° C with stirring after emulsification. As described above, an OZW emulsion type sunscreen was obtained.
  • the obtained sunscreen was subjected to a sensory test by a professional panel of 10 people. As a result, it was evaluated that the sunscreen had good usability and that the color did not float white and fit into bare skin. In addition, they were used for several days and tested for their UV protection effect, and were evaluated as good without sunburn.
  • Porous titanium oxide powder of the present invention 1 2
  • Disperse 14 and 15 in 13 heated to 60 ° C add the uniformly dissolved 12 and 16 to this, stir well, and add to 3 to 11 separately heated and more thoroughly Mix. Then, components 1, 2, and 16 to 18 were added, stirred, dispersed, and then filled in a container to obtain a lipstick.
  • This lipstick had an excellent UV protection effect.
  • the A component was emulsified by gradually adding the B component while stirring with a homomixer to obtain a W / O emulsified sunscreen agent.
  • the obtained sunscreen was subjected to a sensory test by a professional panel of 10 people. As a result, it was evaluated that the sunscreen had a good feeling of use, and did not appear white, and was adapted to bare skin. In addition, they were used for several days and tested for their UV protection effect, and were evaluated as good without sunburn.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Cosmetics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

優れた紫外線防御能、使用性、透明性を有する酸化チタン粉体及びその製造方法を提供する。酸化チタン一次粒子が集合して形成された平均粒径0.01~100μm、比表面類が250~500m2/gの多孔質酸化チタン粉体。チタン塩溶液を脂肪族アルコール及び/又はカルボキシル基あるいはカルボニル基を有する物質の存在下で加熱加水分解し、その後さらに酸で加熱処理することにより多孔質酸化チタン粉体を得ることができる。酸化チタン一次粒子の平均粒径が1~50nm、粉体の長径と短径との比が0.75以上の概略球形であることが好適である。

Description

明 細 書
多孔質酸化チタン粉体及びその製造方法
本出願は、 2003年 0 3月 2 7付出願の日本国特許出願 2 0 0 3 - 8 9 0 8 1の優 先権を主張しており、 ここに折り込まれるものである。
[発明の属する技術分野]
本発明は多孔質酸化チタン粉体及びその製造方法に関し、 さらにはその紫外線防 御能や使用性、 透明性等に関する。
[背景技術]
酸化チタンは、 屈折率が高く、 隠蔽力、 着色力、 紫外線防御力に優れているこ とから、 従来より、 顔料として塗料、 プラスチック、 化粧料等に広く使用されて いる。 紫外線防御剤としてこれらの製品基剤に含まれる酸化チタンは、 紫外線防 御能、 透明性を追求した結果、 平均一次粒子径が 0 . Ι μ πι以下の微粒子粉体が 主流となっている。
酸化チタンの製造方法としては、 硫酸チタ二ルゃ四塩化チタンを水相中で加熱 加水分解する方法や、 中和加水分解する方法などが知られている (例えば日本国 特許 特開昭 5 5— 1 0 4 2 8号公報を参照) 。
しかしながら、 微粒子粉体は粒子径が非常に小さいことから、 吸油量が高く、 凝集を起こしやすく、 製品基剤系において分散し難いものであった。 また、 この 微粒子粉体を含有する化粧料等は U V— Β領域 ( 2 9 0〜 3 2 0 n m) の紫外線 防止効果は高いものの、 U V— A領域 (3 2 0〜4 0 0 n m) の紫外線に対して は防止効果が低く、 実使用時においてもざらつきやのぴの悪さ等の問題点を有し ていた。
このような状況から、 分散性、 及び U V— A防御能を上げるために、 針状酸化 チタン一次粒子が集合した扇状酸化チタン粉体が提案されている (例えば、 日本 国特許 特開平 1 0— 2 4 5 2 2 8号公報を参照) 。
しかしながら、この粒子は分散性、 U V— A防御能の改善は認められるものの、 使用性の面で問題を残していた。
また、 酸化チタンは屈折率が高いため、 酸化亜鉛などに比べるとその透明性に 劣るという問題があった。 .
[発明の開示]
本発明は、 前記従来の課題に鑑みなされたものであり、 優れた紫外線防御能、 使用性、 透明性を有する酸化チタン粉体及びその製造方法を提供することを目的 とする。
前記目的を達成するために本発明者が鋭意検討した結果、 チタン塩溶液を脂肪 族アルコール等の添加剤と共に加熱加水分解し、 その後酸で加熱処理すると、 微 細な酸化チタン一次粒子が球状に集合し、 比表面積が非常に大きな粉体が得られ ることが判明した。 そして、 このような粉体は、 優れた紫外線防御能、 使用性、 透明性を有することを見出した。 また、 添加剤として脂肪族アルコールとともに 力ルポキシル基又はカルボ二ル基を有する化合物を併用したり、 添加剤の濃度調 製により、 粒径や結晶型等を調節できることをも見出し、 本発明を完成した。 すなわち、 本発明にかかる多孔質酸化チタン粉体は、 酸化チタン一次粒子が集 合して形成された平均粒径 0 . 0 1〜 1 0 0 mの多孔質粉体であって、 その比 表面積が 2 5 0〜5 0 0 m 2Z gであることを特徴とする。
本発明の多孔質酸化チタン粉体において、 酸化チタン一次粒子の平均粒径が 1 〜 5 0 n mであることが好適である。
また、 粉体の長径と短径との比が 0 . 7 5以上の概略球形であることが好適で ある。 また、 結晶型がルチル型であることが好適である。 また、 結晶型がアナタ ーゼ型であることが好適である。
本発明にかかる多孔質酸化チタン粉体の製造方法は、 チタン塩溶液を、 脂肪族 アルコール及び/又はカルボキシル基あるいはカルボ二ル基を有する物質の存在 下で加熱加水分解し、 その後さらに酸で加熱処理することを特徴とする。
本発明の製造方法において、 チタン塩溶液を脂肪族アルコール存在下で加熱加 水分解し、 その後さらに酸で加熱処理することが好適である。
また、 本発明に製造方法において、 チタン塩溶液を脂肪族アルコール及びカル ボキシル基あるいはカルボ二ル基を有する物質の存在下で加熱加水分解し、 その 後さらに酸で加熱処理することが好適である。
本発明の製造方法において、 脂肪族アルコールが多価アルコールであることが 好適である。
また、 多価アルコールが、 エチレングリ コーノレ、 プロピレングリコーノレ、 1 , 4一プチレングリコ一ノレ、 2, 3一プチレングリコーノレ、 1 , 3ーブチレングリ コ一./レ、ジメチノレフ P口パンジォーノレ、ジェチノレフ P口パンジォーノレ、グ'リセ口一ノレ、 トリメチロールプロパン、 トリェチローノレプロパン、 エリスリ トール、 キシリ ト ール、 マンニトール、 ソルビトール、 マルチトールからなる群より選択された 1 種又は 2種以上であることが好適である。
また、 本発明の製造方法において、 チタン塩溶液をカルボキシル基あるいは力 ルポ-ル基を有する物質の存在下で加熱加水分解し、 その後さらに酸で加熱処理 することが好適である。
本発明の製造方法において、 カルボキシル基あるいはカルボ二ル基を有する物 質が、 脂肪族カルボン酸又はその誘導体であることが好適である。
また、 力ルポキシル基ある 、はカルボ二ル基を有する物質が酢酸であることが 好適である。
また、 本発明の製造方法において、 酸加熱処理後、 さらにアルカリにより p H 調整することが好適である。
[図面の簡単な説明] .
図 1は本発明にかかる多孔質酸化チタン粉体の透過型電子顕微鏡 (T E M) によ る写真である。
図 2は本発明にかかる多孔質酸化チタン粉体の透過型電子顕微鏡 (T E M) によ る写真である。
図 3は本発明にかかる多孔質酸化チタン粉体、 及び比較の市販超微粒子酸化チタ ン粉体の紫外線防御効果及び可視光透過性の測定結果を示す図である。
[発明を実施するための最良の形態]
本発明の多孔質酸化チタン粉体は、 直径が 0 . 0 1〜1 0 0 μ πιであることが できるが、 0 . 0 1〜 1 0 μ mであることが好適である。 直径が小さいと基剤中 で凝集を起こしゃすく、 直径が大きいと使用性が損なわれることがある。
また、 一次粒子となる酸化チタン粒子は平均粒径が 0 . 0 0 1〜0 . 0 5 m であることが好適である。 0 . 0 0 1 μ πιより短い場合は、 凝集性が強くなり、 多孔質が得られなくなり、 0 . 0 5 より長い場合は、比表面積が小さくなり、 紫外線防御効果が小さくなる。
本発明の多孔質酸化チタン粉体の製造方法は、 チタン塩溶液を脂肪族アルコー ル及ぴ /又は力ルポキシル基あるいは力ルポ二ル基を有するカルボニル性物質の 存在下で加熱加水分解し、 その後酸で加熱処理することを特徴とする。 具体的に は、 例えば、 チタン塩溶液に脂肪族アルコール等を添加して、 これを加熱加水分 解してメタチタン酸を得、 これをさらに酸で加熱処理後、 さらにアル力リ処理に より p H調整してオルトチタン酸とし、 乾燥 (さらに焼成も可) することが好適 である。 なお、 上記アルカリ処理を省略することも可能ではあるが、 収率や品質 に劣ることがある。
本発明において用いるチタン塩溶液の出発原料としては、特に限定されないが、 硫酸チタン、 硫酸チタニル、 四塩化チタン等の無機チタン塩の水溶液が好適に用 いられる。 また、 出発原料としてチタンテトライソプロボキシド等の有機チタン 塩を使用することも可能である。
チタン塩溶液の濃度は、 0 . l〜5 mol/Lであることが好適である。
本発明では、 チタン塩溶液を加熱加水分解する際に添加する脂肪族アルコール の添加量によって、粉体の粒子径ゃ比表面積を変化させることができる。これは、 脂肪族アルコールが一次粒子の粒径や集合状態に影響を及ぼし、 その結果二次粒 子である多孔質粉体の粒径、 比表面積等が変化するためであると考えられる。 脂肪族アルコール濃度としては、 目的に応じて適宜決定すればよいが、 通常は チタン塩溶液中 0 . 1〜 5 m o 1 / L、好ましくは 0 . 5〜 3 m o 1 Z Lである。 脂肪族アルコール濃度が低すぎる場合あるいは高すぎる場合には、 所望の粒径や 比表面積を有する多孔質粉体を得ることが困難となる場合がある。
本発明において、 チタン塩溶液を加熱加水分解する際に添加される脂肪族ァル コールとしては、 炭素数 1〜 2 2のものが挙げられ、 メタノール、 エタノール、 イソプロピルアルコール、 プチルアルコール、 ォクタノール、 ステアリルアルコ ール等が例示できるが、 きれいな形状とするためには多価アルコールを用いるこ とが好ましい。 多価アルコールとしては、 特に限定されないが、 エチレングリコ 一ノレ、 プロピレングリ コーノレ、 1, 4―ブチレングリコ一ノレ、 2, 3—ブチレン グリコーノレ、 1, 3—ブチレングリコーノレ、 ジメチルプロパンジォーノレ、 ジェチ ノレプロノ ンジォ一ノレ、 グリセロール、 ト リメチローノレプ'ロノくン、 ト リェチローノレ プロノヽ0ン、 エリスリ トール、 キシリ トーノレ、 マンニ トール、 ソノレビトーノレ、 マル チトール等が好適に用いられる。 1価アルコールを用いても多孔質粉体を形成す るが、 多価アルコールに比べてきれいな形状のものが得難い。 1価アルコールを 使用する場合、 後述の力ルポキシル /カルボニル化合物を併用することで、 この 点は改善可能である。
加熱加水分解条件は、 用いる原料、 脂肪族アルコール等の添加剤の種類や濃度 等により適宜決定されるが、 通常 5 0〜1 0 0 °Cにて 1〜1 2時間であることが 好適である。
本発明においては、 加熱加水分解後、 酸で加熱処理する。 具体的には、 加熱加 水分解処理後、 濾過残分を水中に再懸濁したスラリーに対して酸を添加し、 加熱 する。 このような酸としては、 硫酸、 硝酸、 塩酸等が挙げられ、 好ましくは塩酸 である。
このような酸加熱処理により、 比表面積が 2 5 0 m 2/ g以上という非常に高 い比表面積を有する多孔質粉体を得ることができる。 酸加熱処理を行わなかった り、 あるいは加熱加水分解時に脂肪族アルコール等の添加剤を添加しない場合に は、 このような比表面積の大きい粉体を得ることができない。 また、 酸加熱処理 により、 処理前に比べて粉体の粒径が小さく、 且つ均一になる傾向がある。
該酸加熱処理における酸の添加量は、 通常スラリー中のチタンに対して 1〜8 モル当量である。 加熱条件としては、 用いる原料、 添加剤、 濃度等に応じて適宜 決定すればよいが、 通常は、 前記加熱加水分解条件と同様の範囲である。
本発明においては、 酸加熱処理後、 反応液 (あるいは反応液を濾過 ·水洗後、 水中に再懸濁したスラリー) にアルカリを添加して p Hを 6〜8、 好ましくは p H 6 . 5〜7 . 5に調整 (中和) することが好適である。 使用されるアルカリに ついては特に限定されないが、 水酸化ナトリウム、 炭酸ナトリウム、 水酸化カリ ゥム、 水酸化カルシウム等の N a塩、 K塩、 C a塩が好適に用いられる。
本発明においては、 脂肪族アルコールとともに力ルポキシル基又はカルボニル 基を有する物質を共存させると、 併用しない場合に比して多孔質粉体の粒径がよ り小さくなる傾向がある。 また、 添加剤の使用量も低減できることが多い。 カルボキシル基又はカルボ二ル基を有する物質 (以下、 力ルポキシル Zカルボ ニル化合物ということがある) としては、 特に支障のない限り限定されないが、 炭素数 1〜 2 2の脂肪族化合物が好適であり、 代表的な例として脂肪族カルボン 酸又はその誘導体等が挙げられる。 脂肪族カルボン酸としては、 ギ酸、 酢酸、 プ ロピオン酸、 力プリル酸、 ステアリン酸等の一塩基酸、 シユウ酸、 マロン酸、 コ ハク酸、 アジピン酸、 マレイン酸等の二塩基酸の他、 あるいはそれ以上の多塩基 酸も可能である。 誘導体としては、 アル力リ金属塩、 アルカリ土類金属塩、 4級 アンモニゥム塩等の塩、 メチルエステル、 ェチルエステル等のエステル等が代表 的であるが、 アミノ酸、 アミ ドなども特に支障のない範囲で使用可能である。 力 ルポン酸又はその誘導体のうち、 好ましいものとしてカルボン酸、 カルボン酸塩 が挙げられ、 特に好ましいものとして酢酸、 プロピオン酸が挙げられる。
カルボキシル /カルポニル化合物の濃度は、 該化合物の種類やその他の条件に よって適宜決定すればよいが、 通常はチタン塩溶液中 0 . l〜5 m o 1 / Lであ ることが好適であり、 より好ましくは 0 . 5〜5 m o 1 / Lである。 該濃度が小 さすぎると添加効果が発揮されず、 また、 過剰に添加してもそれに見合った効果 が発揮されない。
また、 添加剤として、 脂肪族アルコールの代わりに力ルポキシル /カルボニル 化合物を用いても、 多孔質酸化チタン粉体を得ることができる。 この場合、 カル ボキシル Zカルポニル化合物として好ましくは酢酸である。 なお、 脂肪族アルコ ールの代わりにカルポキシル /カルボ二ル化合物を用いた場合には、 脂肪族アル コールを用いた場合に比べて粒度や形状が劣ることがある。
酸化チタンの結晶型にはアナターゼ、 ルチル、 プルッカイ トの三種類があり、 工業的には白色顔料としてアナターゼ型、 ルチル型が製造されている。 両結晶と も正方晶系に属し、 ュニットセルの原子の配列についてはルチル型の方がアナタ ーゼ型よりも緻密になっている。 また、 ルチル型はアナターゼ型よりも安定であ り、 アナターゼ型を高温加熱すればルチル型に転移する。
また、 酸化チタンは光、 特に紫外線の照射によって光触媒として作用すること が知られており、 光触媒としての作用を目的とし、 脱臭剤、 脱色剤や、 また、 ガ ラスを超親水性とする防汚機能付与剤などとして使用する場合には、 アナターゼ 型酸化チタンを用いることが非常に有用である。
本発明の製造方法においては、 脂肪族アルコールやカルボキシル /カルボニル 化合物の濃度によって、 ルチル型あるいはアナターゼ型の酸化チタンを得ること が可能である。 例えば、 四塩化チタン水溶液を加熱加水分解する場合、 脂肪族ァ ルコールやカルボキシル /カルボニル化合物の濃度が低いとルチル型が、 脂肪族 アルコールやカルボキシル /カルボニル化合物の濃度が高いとアナターゼ型が得 られる傾向にある。 このように、 本発明の製造方法においては、 使用目的に応じ て酸化チタンの結晶型を選択することができる。 また、 本発明の製造方法により アナターゼ型を製造し、 これを常法によりルチル型に転移させることもできる。 本発明の酸化チタン粉体は、 一次粒子同士が粗な状態で集合し、 多くの細孔 ( 空隙) を有する多孔質状を呈しており、 その比表面積は 2 5 0 m 2/ g以上にも なる。 このため、 粉体の屈折率が酸化チタンの屈折率と媒体の屈折率との掛け合 わせとなり、 みかけの屈折率が酸化チタン自体の屈折率よりも低くなる。 その結 果、 本発明の多孔質酸化チタン粉体は可視領域の透過率が高くほぼ一定で、 従来 の酸化チタン粉体に比して透明性が高いという特徴を有する。 また、 U V— A B 領域においては透過率が低減し、 紫外線防御能も有する。 さらに、 本発明の酸化 チタン粉体は概略球状であるため、 塗料、 プラスチック、 化粧料等に配合した場 合、 ざらつきがなく使用性に優れる。
また、 本発明の酸化チタン粉体は多孔質であるため、 その比表面積が 2 5 0〜 5 0 O n^/ gと非常に大きい。 従って、 光触媒として用いる場合には、 その活 性の増大が期待できる。
なお、 本発明の多孔質酸化チタン粉体は、 常法により表面処理を施して使用す ることも可能である。 例えばアルミニウム処理、 シリコーン処理、 脂肪酸石鹼処 理、 デキス トリン脂肪酸エステル処理、 フッ素処理等を行ってもよい。 また、 そ の他の金属種でさらに表面を被覆することにより、 紫外線吸収特性を変化させる ことも期待できる。
本発明の多孔質酸化チタン粉体は、 熱的、 化学的にも安定であり、 油分、 水、 粉末、界面活性剤、低級アルコール、多価アルコール、保湿剤、 防腐剤、高分子、 酸化防止剤、 香料、 各種薬剤等を本発明の持つ紫外線防御等の効果を損なわない 質的、 量的範囲で配合することが可能である。
本発明の多孔質酸化チタン粉体とともに配合され得る油分としては、 通常化粧 料において用いられる油分を挙げることができる。例えば、液体油脂、固体油脂、 ロウ、 炭化水素、 高級脂肪酸、 高級アルコール、 エステル油、 シリコーンなどが 挙げられるが、 上記油分に限定されるものではない。 またこれらの油分は、 1種 または 2種以上を任意に選択して用いることができる。
本発明の多孔質酸化チタン粉体とともに配合され得る粉末としては、 通常化粧 料において用いられる粉末を挙げることができる。 例えば、 無機顔料、 パール顔 料、 金属粉末顔料、 有機顔料、 天然色素等が挙げられるが、 上記粉末に限定され るものではない。
本発明の多孔質酸化チタン粉体とともに配合され得る界面活性剤としては、 通 常化粧料に配合され得る界面活性剤をそのイオン性の有無に関わらず用いること ができる。 例えば、 ァニオン性界面活性剤、 カチオン性界面活性剤、 両性界面活 性剤、 親油性非イオン系界面活性剤、 親水性非イオン系界面活性剤、 シリコーン 系界面活性剤等が挙げられる。 なお本発明は前記界面活性剤のみに限定されるも のではない。 また、 これらの界面活性剤は、 1種或いは 2種以上を任意に選択し て配合することが可能である。
本発明の多孔質酸化チタン粉体を化粧料に配合して用いる場合、 化粧料のとり 得る形態は特に限定されず、 例えば粉末状、 クリーム状、 スティック状、 ペンシ ル状、液体状等、その用途に応じて各種形態をとることが可能であり、化粧下地、 ファンデーション、 白粉、頰紅、 口紅、 マスカラ、 アイシャドー、 アイライナー、 クリーム、 乳液、 ローション等各種化粧料を提供することが可能である。
以上説明したように、 本発明によれば、 硫酸チタ二ルゃ四塩化チタン等のチタ ン塩を加水分解する際に添加剤として脂肪族アルコール及び/又はカルボキシル 基あるいはカルボ二ル基を有する物質を共存させ、 さらに酸で加熱処理すること で、 比表面積が非常に大きく、 優れた紫外線防御能、 使用性、 透明性を有する多 孔質酸化チタン粉体を得ることができる。 また、 脂肪族アルコールとカルボキシ ル /カルボニル化合物を併用したり、 添加剤濃度を調整することにより、 粒径や 比表面積、 結晶型を変えることができる。
[実施例]
以下、 本発明の好適な実施例を説明する。 なお、 本発明はこれにより限定され るものではない。
実施例 1
lmol/Lの四塩化チタン水溶液 1 Lに lmolのグリセリンを添加し、 90。Cにて 3時間加熱した。 その後、 濾過した残分を 1 L.のイオン交換水に再分散し、 さら に 4 molの塩酸を添加し、 90°Cにて 3時間加熱した。 この溶液を水酸化ナトリゥ ムにより p H 7に調整した。 この後、 濾過水洗、 乾燥 (105°C、 1 2時間) し て粉体を得た。
得られた酸化チタン粉体の TEM写真を図 1に示す。 この粉体は結晶型がルチ ル型で、 粒子径が約 9 O nm、 比表面積 361 m2Z gの多孔質酸化チタンであ り、 その形状は球状をしていた。
実施例 2
実施例 1において、 グリセリン濃度を変えた他は、 実施例 1と同様にして粉体 を調製した。 結果を表 1に示す。
[表 1] ク、、リセ 'ン
Figure imgf000011_0001
粒子径 結晶型 比表面積
Figure imgf000011_0002
扇状又は 1〜 5 ノレチル 125 亀裂のある球状
多孔質球状 0. 3〜 2 ルチル 134
(二次粒子間の凝集あり)
多孔質球状 0. 04 ノレチノレ t * * 多孔質球状 0. 09 ノレチノレ 36 1 多孔質球状 0. 10 アナター 333 多孔質球状 0. 06 アナター 302 (やや形状の崩れあり)
微粒子の凝集体 - (形状不定、 細孔ほとんどなし) 表 1から、 脂肪族アルコール濃度 (グリセリン濃度) により粒子径、 比表面積 が変化することが理解される。 脂肪族アルコール無添加の場合や過剰に添加した 場合には比表面積が小さく、 球状の多孔質粉体が得られない。 よって、 脂肪族ァ ルコール濃度としては、 0 · l〜5mol/L、好ましくは 0. 5〜3mol/Lである。 また、 表 1から明らかなように、 脂肪族アルコールの添加量により粉体の結晶 型も変化する。
比較例 1
実施例 1において、 加熱加水分解後、 塩酸処理せずに、 水酸化ナトリウム処理 を行った以外は、 実施例 1と同様にして粉体を得た。
得られた粉体は、 結晶型がルチル型で、 粒子径が約' 200 nm、 比表面積 22 0m2/gの酸化チタン粉体であった。
実施例 3
グリセリンとともに、 3molの酢酸を加えた他は、実施例 1と同様にして粉体を 製造したところ、 結晶型がアナターゼ型で、 粒子径が約 30 nm、 比表面積 38 9m2/gの多孔質酸化チタンを得た。 本粉体の T EM写真を図 2に示す。
本実施例 3と実施例 1とを比較すればわかるように、 力ルポキシル Zカルボ二 ル化合物の併用により、 粒径がより小さくなり、 また、 結晶型もルチル型からァ ナターゼ型に変化した。
実施例 4
グリセリンとともに、 lmolのプロピオン酸を加えた他は、実施例 1と同様にし て粉体を製造したところ、 結晶型がルチル型で、 粒子径が約 60 nm、 比表面積
3 33 m2/gの多孔質酸化チタンを得た。
実施例 5
lmol/Lの四塩化チタン水溶液 1 Lに 3molの 1, 3—プチレングリコールを添 加し、 70°Cにて 5時間加熱した。 その後、 濾過した残分を 1 Lのイオン交換水 に再分散し、 さらに 4molの塩酸を添加し、 70°Cにて 5時間加熱した。 この溶液 を炭酸ナトリゥムにより pH7に調整した。 この後、濾過水洗、乾燥(105°C、
1 2時間) して粉体を得た。
この粉体は結晶型がルチル型で、 粒子径が約 20 nm、 比表面積 334 m2/ sの多孔質酸化チタンであった。
実施例 6
四塩化チタンの代わりに、 硫酸チタニルを使用した他は、 実施例 3と同様にし て粉体を製造したところ、 結晶型がアナターゼ型で、 粒子径が約 60 nm、 比表 面積 327m2/gの多孔質酸化チタンを得た。
実施例 7
グリセリン濃度を 0. lmol/Lとした他は、実施例 3と同様にして粉体を製造し たところ、 結晶型がアナターゼ型で、 粒子径が約 1 0 nm、 比表面積 45 5m2 / gの多孔質酸化チタンを得た。
実施例 8
グリセリンの代わりに酢酸を用いた他は、 実施例 1と同様にして粉体を製造し たところ、 結晶型がアナターゼ型で、 粒子径が約 20 nm及び 600 nm、 比表 面積 285 m2/gの多孔質酸化チタンを得た。
図 3は、 実施例 3の粉体の透過率曲線である。 透過率測定は、 粉体をひまし油 に 3本ローラーを用いて分散し、 その 5%分散液を 5 μπιのアプリケーターで透 明石英板上に塗布したものについて行った。 比較対照として、 市販の超微粒子酸 化チタン (チタン工業 (株) 製 ST485) を用いた。 図 3力ゝら、 本発明の粉体が紫 外線吸収能を有し、 透明性に優れるものであることが理解される。
以下、 本発明の多孔質酸化チタン粉体を配合した化粧料について説明する。 な お、 配合表において示された数値の単位は質量%である。
[処方例 1 ] O/W乳液型サンスクリーン
1. 本発明の多孔質酸化チタン粉体 1 0
2. 亜鉛華 5
3. ステアリン酸 2
4. セチルアルコール 1 5 . ワセリン 5
6 . シリコン油 2
7 . 流動パラフィン 1 0
8 . グリセリルモノステアリン酸エステル (自己乳化型) 1
9 . ポリオキシエチレン ( 2 5モル) モノォレイン酸エステノレ 1
1 0 · ポリエチレングリ コ一ノレ 1 5 0 0 5
1 1 . ビーガム 0 . 5
1 2 . 精製水 5 7 . 5
1 3 . 香料 適量
1 4 . 防腐剤 適量 精製水にポリエチレングリコールを加え加熱溶解後、 亜鉛華、 ビーガムを加え ホモミキサーで均一に分散し 7 0 °Cに保つ (水相) 。 他の成分を混合し加熱溶解 して 7 0 °Cに保つ(油相)。水相に油相を加えホモミキサーで均一に乳化分散し、 乳化後かき混ぜながら 3 5 °Cまで冷却する。 以上のようにして OZW乳液型サン スクリーン得た。
得られたサンスクリーンを、 1 0名の専門パネルにより、 官能試験を行なった ところ、 使用感も良好で、 色も白浮きせず素肌になじむという評価を得られた。 また数日間使用してもらい紫外線防御効果について試験したが、 日焼けせず良好 であるという評価が得られた。
[処方例 2 ] パウダーファンデーション
1 . 本発明の多孔質酸化チタン粉体 1 2
2 . 雲母チタン 6
3 . タルク 1 5
4 . セリサイ ト 2 5
5 . 酸化鉄 5
6 . 球状ナイ口ン粉末 2
7 . 球状 P MM A粉末 4 8 • 窒化ホウ素粉末 1
9 • マイ力 残余
1 0 . ポリエーテノレ変性シリコーン 0 .
1 1 . セスキイソステアリン酸ソノレビタン 1
1 2 . 流動ノペラフィン 3
1 3 . ジメチルポリシロキサン 1
1 4 . ヮセリン 2
1 5 . パラメ トキシケィ皮酸 2—ェチルへキシル 2
1 6 . トリイソオクタン酸グリセリン 0 .
1 7 . 防腐剤 適量
1 8 . 香料 適景 上記 1〜9の成分を均一に混合し、 これに加熱溶解した 1 0〜 1 8の成分を加 えて再ぴ均一に混合し、 容器に充填することによってパウダーファンデーション を調整した。 このパウダーファンデーションで官能試験を行ったところ白浮きせ ず、 使用感も優れ、 紫外線防御効果も高いという評価が得られた。
[処方例 3 ]
1 . 本発明の多孔質酸化チタン粉体 8
2 . 雲母チタン 4
3 . 力ノレナノ 口ゥ 1
4 . キャンデリラロウ ' 2
5 . セレシン 1 0
6 · トリイソオクタン酸グリセリン 9
7 . ジィソステアリン酸グリセリン 1 3
8 . ジメチルポリシロキサン (粘度 : 90, OOOmPa · s at 25°C) 5
9 . ジメチルポリシロキサン (粘度 : lOmPa « s at 25°C) 5
1 0 . シリコーン樹脂 8
1 1 . スクヮラン 残余 2. ヒ ドロキシプロピノレー j3—シクロデキス トリン
13. マカデミアナッツ油脂肪酸コレステリル 3. 5
14· 合成ケィ酸ナトリゥムマグネシウム 0. 5
1 5. 疎水性シリ力 0. 5
16. 精製水 2 1 7. 色剤 適量
1 8. 防腐剤 適量
1 9. 香料 適量
. 60°Cに加熱した 1 3に 14、 15を分散させ、 これに均一溶解した 12と 1 6を加えて十分攪拌し、 別に加熱溶解しておいた 3〜 1 1に加えてさらに十分に ^拌する。 そして 1、 2および 16〜18の各成分を加えて攪拌し、 分散させ、 その後容器に充填して口紅を得た。 この口紅は優れた紫外線防御効果を有するも のであった。
[処方例 4 ] W/O乳化型サンスクリーン剤
A成分
ォクチルメ トキシシンナメート
デカメチルシク口ペンタシロキサン
トリメチルシ口キシシリケィ ト
ジメチルシリコン
POEポリメチルシロキサンコポリマー
Figure imgf000016_0001
ステアリ.ン酸処理多孔質酸化チタン
(実施例 1で得られた粉体をステアリン酸で処理したもの)
B成分
1, 3—ブタンジォ一ノレ
精製水 (製法及び評価)
A成分をホモミキサーで攪拌しながら、 B成分を徐々に添加することによって 乳化し、 W/ O乳化型サンスクリーン剤を得た。
得られたサンスクリーンを、 1 0名の専門パネルにより、 官能試験を行なった ところ、 使用感も良好で、 色も白浮きせず素肌になじむという評価を得られた。 また数日間使用してもらい紫外線防御効果について試験したが、 日焼けせず良好 であるという評価が得られた。

Claims

請 求 の 範 囲
1 . 酸化チタン一次粒子が集合して形成された平均粒径 0 . 0 1〜1 0 0 μ πιの 多孔質粉体であって、 その比表面積が 2 5 0〜 5 0 0 m 2/ gであることを特徴 とする多孔質酸化チタン粉体。
2 . 請求項 1記載の酸化チタン粉体において、酸化チタン一次粒子の平均粒径が
1〜5 0 n mであることを特徴とする多孔質酸化チタン粉体。
3 . 請求項 1又は 2記載の酸化チタン粉体において、粉体の長径と短径との比が
0 . 7 5以上の概略球形であることを特徴とする多孔質酸化チタン粉体。
4 .請求項 1〜 4の何れかに記載の酸化チタン粉体において、結晶型がルチル型で あることを特徴とする多孔質酸化チタン粉体。
5 .請求項 1〜4の何れかに記載の酸化チタン粉体において、結晶型がアナターゼ 型であることを特徴とする多孔質酸化チタン粉体。
6 .チタン塩溶液を、脂肪族アルコール及ぴ Z又はカルボキシル基あるいはカルボ 二ル基を有する物質の存在下で加熱加水分解し、 その後さらに酸で加熱処理する ことを特徴とする多孔質酸化チタン粉体の製造方法。
7 .請求項 6記載の製造方法において、チタン塩溶液を脂肪族アルコール存在下で 加熱加水分解し、 その後さらに酸で加熱処理することを特徴とする多孔質酸化チ タン粉体の製造方法。
8 . 請求項 6記載の製造方法において、チタン塩溶液を、脂肪族アルコール及ぴ カルボキシル基あるいはカルボ二ル基を有する物質の存在下で加熱加水分解し、 その後さらに酸で加熱処理することを特徴とする多孔質酸化チタン粉体の製造方 法。
9 .請求項 6〜 8の何れかに記載の製造方法において、脂肪族アルコールが多価ァ ルコールであることを特徴とする多孔質酸化チタン粉体の製造方法。
10.請求項 9記載の製造方法において、多価アルコールが、エチレンダリコール、 プロピレングリコーノレ、 1, 4—ブチレングリコーノレ、 2, 3一プチレングリコ ール、 1, 3一ブチレングリコ一ノレ、 ジメチノレプロパンジオール、 ジェチルプロ パンジォーノレ、 グリセローノレ、 トリメチローノレプロパン、 トリェチローノレプロパ ン、 エリスリ トーノレ、 キシリ トーノレ、 マンニトーノレ、 ソルビトール、 マノレチトー ルから 'なる.群より選択された 1種又は 2種以上であることを特徴とする多孔質酸 化チタン粉体の製造方法。
11.請求項 6記載の製造方法において、チタン塩溶液をカルボキシル基あるいは力 ルポ二ル基を有する物質の存在下で加熱加水分解し、 その後さらに酸で加熱処理 することを特徴とする多孔質酸化チタン粉体の製造方法。
12.請求項 8〜 1 1の何れかに記載の製造方法において、カルボキシル基あるいは 力ルポ二ル基を有する物質が、 脂肪族カルボン酸又はその誘導体であることを特 徴とする多孔質酸化チタンの製造方法。
13.請求項 1 1記載の製造方法において、カルボキシル基あるいはカルボ二ル基を 有する物質が酢酸であることを特徴とする多孔質酸化チタンの製造方法。
14.請求項 6〜 1 3の何れかに記載の製造方法において、酸加熱処理後、 さらにァ ルカリにより p H調整することを特徴とする多孔質酸化チタン粉体の製造方法。
PCT/JP2004/004268 2003-03-27 2004-03-26 多孔質酸化チタン粉体及びその製造方法 WO2004085315A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP04723739A EP1616840A4 (en) 2003-03-27 2004-03-26 POROUS TITANIUM OXIDE POWDER AND PROCESS FOR PRODUCING THE SAME
US10/550,461 US7758844B2 (en) 2003-03-27 2004-03-26 Porous titanium oxide powder and method for production thereof
KR1020057018064A KR101133964B1 (ko) 2003-03-27 2004-03-26 다공질 산화티탄 분체 및 그 제조방법
AU2004223979A AU2004223979A1 (en) 2003-03-27 2004-03-26 Porous titanium oxide powder and method for production thereof
HK06106556.7A HK1086545A1 (en) 2003-03-27 2006-06-08 Porous titanium oxide powder and method for production thereof
AU2010202400A AU2010202400A1 (en) 2003-03-27 2010-06-09 Porous titanium oxide powder and method for production thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-89081 2003-03-27
JP2003089081A JP4105971B2 (ja) 2003-03-27 2003-03-27 多孔質酸化チタン粉体及びその製造方法

Publications (1)

Publication Number Publication Date
WO2004085315A1 true WO2004085315A1 (ja) 2004-10-07

Family

ID=33095134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/004268 WO2004085315A1 (ja) 2003-03-27 2004-03-26 多孔質酸化チタン粉体及びその製造方法

Country Status (9)

Country Link
US (1) US7758844B2 (ja)
EP (1) EP1616840A4 (ja)
JP (1) JP4105971B2 (ja)
KR (1) KR101133964B1 (ja)
CN (1) CN100513317C (ja)
AU (2) AU2004223979A1 (ja)
HK (1) HK1086545A1 (ja)
TW (1) TW200508153A (ja)
WO (1) WO2004085315A1 (ja)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004048651A1 (de) * 2004-10-06 2006-04-13 Rhodia Acetow Gmbh Tabakrauchfilter oder -filterelemente mit einem Gehalt an Zusatzstoffen
CN100357184C (zh) * 2005-10-19 2007-12-26 清华大学 一种制备单分散金属氧化物纳米粒子的方法
CN100441514C (zh) * 2005-12-20 2008-12-10 中国科学院兰州化学物理研究所 油溶性锐钛矿型纳米氧化钛颗粒的制备方法
US20090258068A1 (en) * 2006-07-07 2009-10-15 Shiseido Company Ltd. Titanium Oxide-Zinc Oxide Aggregate Powder And Production Method Thereof
JP4684970B2 (ja) * 2006-08-31 2011-05-18 チタン工業株式会社 ルチル型酸化チタン凝集粒子およびそれを配合した化粧料
JP5075385B2 (ja) 2006-09-28 2012-11-21 株式会社 資生堂 多孔質酸化チタン及びその製造方法
KR100773134B1 (ko) * 2006-11-30 2007-11-02 재단법인서울대학교산학협력재단 사이클로덱스트린을 이용한 다공성 이산화티탄의 제조 방법
EP2125623B1 (en) * 2007-02-27 2015-10-14 Basf Se Method of forming a (rutile) titanium dioxide-coated platelet-like pigment
KR100833530B1 (ko) 2007-04-10 2008-05-29 나노케미칼 주식회사 자외선 차단용 Ti 복합체 제조 방법
FR2915374B1 (fr) * 2007-04-27 2011-06-10 Oreal Composition cosmetique sous forme de poudre
WO2008147359A1 (en) * 2007-05-31 2008-12-04 Carrier Corporation Deactivation resistant photocatalyst and method of preparation
JP5435416B2 (ja) * 2007-07-04 2014-03-05 千葉県 磁性粉体及び磁性粉体の製造方法
WO2009017480A1 (en) * 2007-07-31 2009-02-05 Carrier Corporation Siloxane removal via silicate formation for lifetime extension of photocatalytic devices
IL206909A0 (en) * 2008-01-11 2010-12-30 Antaria Ltd Mesoporous zinc oxide powder and method for production thereof
EP2249771B1 (en) 2008-01-11 2018-07-11 Antaria Limited Mesoporous zinc oxide powder and method for production thereof
JP5374248B2 (ja) * 2009-06-16 2013-12-25 チタン工業株式会社 束状に凝集したルチル型酸化チタンならびにそれを使用した化粧料
KR100945742B1 (ko) * 2009-07-28 2010-03-05 (주)켐웰텍 염료감응형 태양전지의 광전극 제조방법
JP5484025B2 (ja) * 2009-12-15 2014-05-07 キヤノン株式会社 酸化チタンゾル、それを用いた樹脂組成物、光学材料および光学素子
KR101238379B1 (ko) 2009-12-15 2013-02-28 주식회사보광화학 자외선흡수제가 포집된 이산화티타늄 캡슐 및 이를 함유하는 화장료 조성물
EP2619138B1 (de) * 2010-09-22 2014-11-12 Sachtleben Chemie GmbH Poröses, sphärisches titandioxid
EP2752239A4 (en) * 2011-08-31 2015-08-12 Shanghai World Prospect Chemtech Co Ltd COMPOSITE MATERIAL BASED ON INORGANIC NON-METALLIC MINERAL COVERED WITH TITANIUM DIOXIDE LAYER, PREPARATION METHOD AND USE THEREOF
WO2013147012A1 (ja) * 2012-03-29 2013-10-03 株式会社 資生堂 凹凸補正効果を有する酸化チタン
TWI613261B (zh) * 2012-06-29 2018-02-01 克洛諾斯國際有限公司 將無機色素粒子作表面處理的方法
JP5955137B2 (ja) * 2012-07-06 2016-07-20 大東化成工業株式会社 球状二酸化チタンの製造方法
CN103627217B (zh) * 2013-11-29 2015-02-25 深圳清华大学研究院 环保钛系颜料及该颜料采用接枝架桥法制备的工艺
CN110526288A (zh) 2014-07-02 2019-12-03 石原产业株式会社 氧化钛细粒及其制备方法
EP3271288A4 (en) * 2015-03-18 2018-11-14 Phinergy Ltd. Metal oxide particles and method of producing thereof
CN105055261B (zh) * 2015-09-15 2018-09-11 广州智媛生物科技有限公司 一种抗污染护肤产品及其制备方法
KR102487544B1 (ko) * 2016-04-22 2023-01-11 (주)석경에이티 고굴절률 TiO2 와 그를 이용한 고굴절 분산체의 제조방법
JP7224767B2 (ja) * 2018-03-29 2023-02-20 大阪瓦斯株式会社 チタニアナノ粒子及びそれを用いた紫外線遮蔽材

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02196029A (ja) * 1989-01-25 1990-08-02 Sanyo Shikiso Kk 多孔質性酸化チタン微粒子及びその製造法
JP2001031422A (ja) * 1999-07-19 2001-02-06 Agency Of Ind Science & Technol メソポーラス酸化チタン多孔体およびその製造方法
JP2001114519A (ja) * 1999-08-12 2001-04-24 Sumitomo Chem Co Ltd 多孔質チタニア、それを用いた触媒およびその製造方法
JP2003246620A (ja) * 2001-12-20 2003-09-02 Ube Ind Ltd 多孔質酸化チタン前駆体及び多孔質酸化チタン微粒子

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5510428A (en) 1978-07-06 1980-01-24 Ishihara Sangyo Kaisha Ltd Finely divided titanium dioxide composition and production thereof
US4732750A (en) * 1986-08-11 1988-03-22 Allied-Signal Inc. Preparation of monodisperse titania by titanium alkoxide hydrolysis
JPH03503045A (ja) * 1988-03-03 1991-07-11 アライド‐シグナル・インコーポレーテッド 単分散チタニア球状体の製造法
US6740312B2 (en) * 1996-02-15 2004-05-25 Rhodia Chimie Titanium dioxide particles
FR2744914B1 (fr) * 1996-02-15 1998-03-20 Rhone Poulenc Chimie Dispersion de dioxyde de titane, poudre a base de dioxyde de titane, leur utilisation dans les formulations cosmetiques
JP4018770B2 (ja) 1997-02-28 2007-12-05 チタン工業株式会社 扇状酸化チタン、及び扇状又は盤状酸化チタンの製造方法、並びにその用途
US6399540B1 (en) * 1999-08-12 2002-06-04 Sumitomo Chemical Co., Ltd. Porous titania, catalyst comprising the porous titania
JP4048775B2 (ja) * 2001-12-26 2008-02-20 住友化学株式会社 酸化チタン、それを用いてなる光触媒体及び光触媒体コーティング剤

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02196029A (ja) * 1989-01-25 1990-08-02 Sanyo Shikiso Kk 多孔質性酸化チタン微粒子及びその製造法
JP2001031422A (ja) * 1999-07-19 2001-02-06 Agency Of Ind Science & Technol メソポーラス酸化チタン多孔体およびその製造方法
JP2001114519A (ja) * 1999-08-12 2001-04-24 Sumitomo Chem Co Ltd 多孔質チタニア、それを用いた触媒およびその製造方法
JP2003246620A (ja) * 2001-12-20 2003-09-02 Ube Ind Ltd 多孔質酸化チタン前駆体及び多孔質酸化チタン微粒子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1616840A4 *

Also Published As

Publication number Publication date
JP2004292266A (ja) 2004-10-21
JP4105971B2 (ja) 2008-06-25
EP1616840A4 (en) 2010-12-22
US7758844B2 (en) 2010-07-20
KR101133964B1 (ko) 2012-04-05
KR20050111621A (ko) 2005-11-25
US20060188432A1 (en) 2006-08-24
AU2010202400A1 (en) 2010-07-01
CN1764603A (zh) 2006-04-26
CN100513317C (zh) 2009-07-15
TW200508153A (en) 2005-03-01
AU2004223979A1 (en) 2004-10-07
HK1086545A1 (en) 2006-09-22
TWI329619B (ja) 2010-09-01
EP1616840A1 (en) 2006-01-18

Similar Documents

Publication Publication Date Title
JP4105971B2 (ja) 多孔質酸化チタン粉体及びその製造方法
JP2852487B2 (ja) 二酸化チタン水性分散体
JP5624460B2 (ja) チタニア微粒子複合体及び該チタニア微粒子複合体を含有する組成物
US10696563B2 (en) Hexagonal plate-shaped zinc oxide particles, method for production of the same, and cosmetic, filler, resin composition, infrared reflective material, and coating composition containing the same
JPH0661457B2 (ja) 油分散体およびその製造法
JPH11193354A (ja) シリカ被覆酸化亜鉛粒子、その製法及びその粒子を含有する 組成物
KR101243466B1 (ko) 무기 분체 복합체를 제조하는 방법
JP3224750B2 (ja) 微粒子二酸化チタンシリコ−ン分散体
JP5075385B2 (ja) 多孔質酸化チタン及びその製造方法
JP3894597B2 (ja) 超微粒子酸化チタンおよびその製造方法
JP2005529940A (ja) 疎水性金属酸化物微細粒子および分散助剤を含む高濃度水性分散液
JP4178013B2 (ja) 毬栗状酸化チタン粉体及びその製造方法
JP2008094917A (ja) 表面を被覆した酸化亜鉛及びその製造方法並びにそれを用いた紫外線遮蔽性組成物
JP6682950B2 (ja) 表面処理酸化亜鉛粒子、分散液、化粧料および酸化亜鉛粒子
JP6922529B2 (ja) 表面処理酸化亜鉛粒子の製造方法
US20090258068A1 (en) Titanium Oxide-Zinc Oxide Aggregate Powder And Production Method Thereof
JP2004115342A (ja) 針状二酸化チタン微粒子及びその製造方法
JP2019119694A (ja) 酸化チタン粉体、並びに、それを用いた分散液および化粧料
JPH11171753A (ja) 微粒子二酸化チタン被覆組成物を有効成分として含有する化粧料
WO1998016193A1 (fr) Dispersion de dioxyde de titane particulaire dans du silicone
JP2008094646A (ja) 表面を被覆した酸化亜鉛及びその製造方法並びにそれを用いた紫外線遮蔽性組成物

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20048078091

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2004723739

Country of ref document: EP

Ref document number: 2006188432

Country of ref document: US

Ref document number: 1020057018064

Country of ref document: KR

Ref document number: 10550461

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004223979

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2004223979

Country of ref document: AU

Date of ref document: 20040326

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2004223979

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 1020057018064

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004723739

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10550461

Country of ref document: US