WO2004083339A1 - 蛍光変換媒体及びそれを用いた表示装置 - Google Patents

蛍光変換媒体及びそれを用いた表示装置 Download PDF

Info

Publication number
WO2004083339A1
WO2004083339A1 PCT/JP1999/006403 JP9906403W WO2004083339A1 WO 2004083339 A1 WO2004083339 A1 WO 2004083339A1 JP 9906403 W JP9906403 W JP 9906403W WO 2004083339 A1 WO2004083339 A1 WO 2004083339A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
fine particles
fluorescent
fluorescent dye
fluorescence
Prior art date
Application number
PCT/JP1999/006403
Other languages
English (en)
French (fr)
Original Assignee
Tomoike, Kazuhiro
Eida, Mitsuru
Ishikawa, Motoharu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tomoike, Kazuhiro, Eida, Mitsuru, Ishikawa, Motoharu filed Critical Tomoike, Kazuhiro
Priority to US09/582,215 priority Critical patent/US6464898B1/en
Priority to US10/206,237 priority patent/US6641755B2/en
Publication of WO2004083339A1 publication Critical patent/WO2004083339A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]

Definitions

  • the present invention relates to a fluorescence conversion medium and a display device using the same. More specifically, the present invention has a stable fluorescence conversion ability, is excellent in heat resistance and light resistance, and is suitable for high-definition multicolor light emission display, and the fluorescence conversion medium.
  • the present invention relates to the display device used.
  • the “fluorescence conversion medium” is a concept including a fluorescent converter having a comparatively thick thickness from a thin-film fluorescence conversion film.
  • An electronic display device is an electronic device that communicates various machine forces and various information to a human (man) through vision, as generally referred to as man-machine-interface. It plays an important bridging role (interface).
  • This electronic device has a light emitting type and a light receiving type.
  • the light emitting type include CRT (cathode ray tube), PDP (plasma display), ELD (electroluminescence display), VFD (fluorescent display tube), LED (Light emitting diode).
  • the light receiving type for example, LCD (Liquid Crystal Display), ECD (Electric Port Chemical Display), EPID (Electrophoretic Display), SPD (Dispersed Particle Oriented Display), TBD (Colored Particle Rotating Display) , PLZT (transparent ferroelectric PLZT [(Pb, La) (Zr, Ti) Oj ceramic display).
  • a multicolor (for example, three primary colors of red, blue, and green) light emitting portions are planar
  • Including LCD but the method of separating the white light of the backlight into multiple colors using a color filter, and (3) Planar emission of one color (for example, blue)
  • Planar emission of one color for example, blue
  • the fluorescent conversion film finely separated and arranged in a plane should be installed separately from the position where the light can be absorbed. Therefore, it can be inferred that the process is easy, and in principle, the brightness of each color is not reduced by fluorescence conversion.
  • organic light emitting luminescence (hereinafter referred to as “EL light luminescence” is abbreviated as “EL.)
  • EL light luminescence In the case of light-emitting elements, high-efficiency, high-brightness blue light emission has been realized, and it is composed of organic materials. Therefore, it is highly expected that light emission of all colors can be achieved by designing organic materials.
  • fluorescent conversion films have been typified by CRT cathode ray tubes.
  • Inorganic fluorescent pigments are used, for example, high-purity phosphors of zinc sulfide and alkaline earth metal sulfides, and trace amounts of metals (copper, silver, manganese) , Bismuth, lead), etc. are added as activators.
  • the activator emits green light for copper, yellow for manganese, purple for silver, and red for bismuth.
  • a fluorescent conversion film can be formed by mixing and dispersing such a fluorescent pigment in various binder resins, forming a slurry or paste, and applying it.
  • the above-mentioned fluorescence conversion film containing the inorganic fluorescent pigment has a drawback that the light source of the luminescent material for emitting fluorescence is limited to high energy light up to electron beams and ultraviolet rays, and there are few types. .
  • fluorescent pigments other than inorganic fluorescent pigments are generally daylight fluorescent pigments, and there are pigment dye types and synthetic resin solid solution types, and it is possible to use visible light as a light emitter.
  • the pigment dye type is a pigment type that is insoluble in water and has a specific color of yellow, green, orange, red, and blue, but it is inferior in fluorescence intensity and color vividness.
  • a fluorescent dye is dissolved in a synthetic resin such as melamine resin, urea resin, or sulfonamide resin, cured, and then physically pulverized into a pigment.
  • this is relatively strong in fluorescence, but because it is physically pulverized, the particle size of the pigment is large, and it is mixed and dispersed in various binder resins to form a slurry or paste and then apply.
  • the fluorescent conversion film is formed, the light emitted from the illuminant is scattered by the pigment particles, and there is a problem that the transparency or flatness of the film is deteriorated or the conversion efficiency is lowered.
  • JP-A-9 1 7 6 3 6 6 discloses that fluorescent particles are made of transparent resin.
  • a resin composition having light permeability and light diffusibility dispersed in the resin composition is disclosed, and incident light is scattered by fine particles blended in the resin composition to impart light diffusibility.
  • Such a fluorescent conversion film is usually composed in a form in which a fluorescent dye is solubilized or dispersed in a binder resin, and the kind of dye that can be converted to an ultraviolet or visible light source. Is abundant.
  • a fluorescent dye is solubilized or dispersed in a photosensitive resin, and the fluorescence conversion film is patterned by a photolithography method (Japanese Patent Laid-Open No. 5-2558). 60).
  • a photolithography method Japanese Patent Laid-Open No. 5-2558. 60.
  • fluorescent dyes usually deteriorate in fluorescence performance due to UV light.
  • Durability against UV light is required.
  • Japanese Patent Laid-Open No. 10-3 3 8 87 2 proposes a color conversion material that converts blue light directly into red light with high efficiency by dispersing fluorescent pigment particles in the color conversion material.
  • the fluorescent dye (pigment) and the fluorescent pigment particles are blended at the same time, as described above, when patterning is performed on the fluorescent conversion film by the photolithography method, it is blended.
  • the dye content is degraded by UV light, and the conversion performance of the fluorescent conversion film after patterning decreases.
  • the display is required to be reliable in an environment at room temperature or higher, and particularly in an in-vehicle application, reliability in an environment of 80 ° C or higher is required.
  • the fluorescence conversion film receives a thermal history higher than the glass transition temperature of the matrix resin in which the fluorescent dye is embedded, phase separation between the dye and the resin, aggregation between adjacent pigments, etc. May occur, resulting in a change in fluorescence conversion performance. Therefore, from the viewpoint of reliability, a material that does not change the fluorescence conversion performance due to high-temperature environmental conditions and thermal history is desired as a fluorescence conversion film.
  • the present invention is a fluorescence conversion medium comprising at least a fluorescent dye and a binder resin, wherein there is little association between the fluorescent dyes, concentration quenching is reduced, and stable fluorescence conversion ability is achieved.
  • a fluorescence conversion medium comprising at least a fluorescent dye and a binder resin, wherein there is little association between the fluorescent dyes, concentration quenching is reduced, and stable fluorescence conversion ability is achieved.
  • it is easy to pattern (planarly separated and arranged), and is suitable for high-definition multicolor light emitting display. It is an object of the present invention to provide a fluorescence conversion medium, and a display device using the fluorescence conversion medium.
  • the present inventors disperse fine particles containing a fluorescent dye and preferably an ultraviolet absorber or a light stabilizer in a binder resin. We found out that we could achieve that purpose.
  • the present invention has been completed based on such findings.
  • the present invention provides a fluorescent conversion medium comprising at least a fluorescent dye and a binder resin, and absorbing visible light emission to emit visible light fluorescence. Fine particles containing the fluorescent dye are contained in a binder resin.
  • the present invention provides a fluorescence conversion medium characterized by being dispersed in a liquid crystal.
  • the fine particles containing the fluorescent dye physically adsorb or absorb the fluorescent dye on the surface. It is preferable that is chemically bonded, or a fluorescent dye is embedded or included therein.
  • the present invention also provides a display device characterized by using a light emitter and the above-described fluorescence conversion medium.
  • the fluorescence conversion medium of the present invention includes a binder resin containing fine particles containing a fluorescent dye, and the fluorescent dye is in a solid state (including solubilized and dispersed state in the medium).
  • the fluorescent dye is in a solid state (including solubilized and dispersed state in the medium).
  • it is not particularly limited as long as it absorbs light emitted from the luminescent material and emits visible light.
  • it is a commercially available fluorescent dye, and a laser dye is preferable.
  • fluorescent dyes that convert ultraviolet light or violet light into blue light emission include 1,4 monobis (2-methylstyryl) benzene ( ⁇ MSB); trans-1,4'-diphenylstilbene And stilbene dyes such as 7-hydroxyl 4-methylcoumarin.
  • 2, 3, 5, 6-1 H, 4 H—tetrahydrodraw 8 trifluoromethylquinoline as a fluorescent dye that converts light emission from blue organic EL elements to green light emission.
  • fluorescent dyes such as zino (9, 9a, 1-gh) coumarin (coumarin 15 3).
  • coumarin dye-based dye the basic yellow can also be mentioned.
  • fluorescent dye that converts light emission of blue or green organic EL elements into orange or red light emission
  • Cyanine dyes such as 1) -ethyl-2- (4) (p-dimethylaminophenol) 1, 1, 3—Ptagenyl]
  • Pyridine dyes such as pyruvyl-mula collate (pyridine 1), rhodami B, Rhodamin Examples include xanthene dyes such as 6 G, and oxazine dyes.
  • various dyes direct dyes, acid dyes, basic dyes, disperse dyes
  • These dyes can be mixed and used as necessary.
  • the efficiency can be increased by using a mixture of the above dyes.
  • the fine particles containing these fluorescent dyes those containing an ultraviolet absorber or a light stabilizer are particularly preferred from the viewpoint of improving the light resistance against UV light or the like.
  • UV absorbers can generally be classified into salicylates, benzophenones, benzotriazoles, cyanoacrylates, and others.
  • salicylate-based UV absorbers include phenol salicylate, ⁇ —octyl / refeni / resalicylate, p — t petit / refenyl salicylate, and benzophenol-based UV absorbers.
  • absorbents are 2, 2, 1-dihydroxy-4-methoxybenzophenone; 2, 2'-dihydroxy-4, 4'-dimethoxybenzophenone; 2, 2 ', 4, 4 '— Tetrahydroxybenzophenone; 2 — Hydroxy — 4 — Methoxybenzophenone; 2, 4-Dihydroxybenzophenone; 2 — Hydroxy-4-octoxybenzo Examples include phenon.
  • benzotriazole-based UV absorbers examples include 2— (2′-Hydroxyl 3,, 5 ′ —Di-tert-petit-refue-norre) _ 5 _ (2, 1 Hydroxy-3, 1 tert 1 Petitrou 5'-methylphenyl) 1-5-Crozobenzolazole; 2-(2, 1 Hydroxy 3'-tert-Amiru 5'-I (Sobutylbutyl) _ 5 —Cro-oral benzotriazole; 2 — (2, Hydroxy _3, 1-isobutyl 1-5'-methylphenol-nore) _ 5 —Cro-oral Benzotriazole; 2— (2'—Hydroxy 3, —Isobutinole 1,5 Methylphenol- / Le) 1—Chromatic Benzo Triazol; 2 1 (2, —Hydroxy 1 3 ' —Isoptyl 1 5 ′ —Propyrphenyl) 1 5—
  • UV absorbers examples include, for example, resogresino / remonobenzoate; 2, 4-t 1 t-Putinolef e-Nole 1, 5--t t-Peti / Lae 4-hydroxy benzoate G: N— (2-Ethinolevue-Nole) 1 N ′ — (2-Ethoxy _ 5— t—Puchinorefhini / Le)
  • Examples include oxalic acid amide.
  • UV absorbers other than the above-mentioned low molecular weight compounds include reactive UV absorbers and polycondensation type UV absorbers with reactive functional groups such as acrylic groups, and UV absorption in the polymer main chain.
  • a polymeric ultraviolet absorber to which the agent is bonded may be used.
  • light stabilizers include hindered amines and nickel
  • hindered amine light stabilizers include, for example, bis (2, '2, 6, 6-tetramethyl-4-piperidyl) sebacate, Dimethyl succinate 1 — (2 — Hydroxetyl)-4-Hydroxy-2, 2, 6, 6-Tetramethylpiperidine polycondensate, Poly [6-(1, 1, 3, 3 -Tet Rametylptyl) imino-1, 3, 5-triazine-2, 4-diyl] [(2, 2, 6, 6-tetramethyl-4-piperidyl) imino] Hexamethylene [2, 2, 6, 6-tetramethyl-4-piperidyl) imino], Tetrakis (2, 2, 6, 6-tetramethyl-4-piperidyl)-1, 2, 3 , 4 -Butante Tolerol Noboxylate, 2, 2, 6, 6-Tetramethyl-4-Piperidylbenzoate, Bis-(1, 2, 6, 6-Pent
  • nickel-based light stabilizers examples include nickel bis (octylphenyl) sulfide, [2,2'-thiobis (4—tert-octyl / refenolate)], 1-n-butylamine-keggre, Nikkenole dibino chinoresio carbamate, nickel complex 1, 5 —di 1 tert 1 petit 4 4-hydroxy benzenore monophosphate monoethylate.
  • ultraviolet absorbers and light stabilizers may be used alone or in combination of two or more.
  • the fluorescent dye and, if necessary, an ultraviolet absorber or light stabilizer used as desired are contained in fine particles.
  • the fine particles include various polymer fine particles (latex) and inorganic fine particles. It is done. These fine particles are preferably transparent, but there is no problem as long as they are transparent to visible light at the time of thinning. Therefore, it is preferable that the fine particles in the thin film have a distribution in which particles having a particle size of 500 to 1111 m or less are contained in an amount of 80% by weight or more of the total particles. It is preferable to have a distribution containing 80% by weight or more.
  • Polymer fine particles include natural rubber, polystyrene, styrene-butadiene copolymer, polybutadiene rubber, polyisoprene rubber, chloroprene rubber, butadiene-acrylonitrile copolymer, butadiene-styrene butylpyridine copolymer, methyl methacrylate.
  • Takureito Totobutadiene Copolymer Polyurethane, Acetate Bule Resin, Etch Polyethylene butyl acetate copolymer, polychlorinated bur, poly (vinylidene chloride), polyethylene, silicon corn resin, polybutene, poly acrylate, polymethacrylate, poly (atrate one meter) (Relate) system or a polymer obtained by polymerization crosslinking of the above-mentioned polymer monomers.
  • inorganic fine particles examples include titanium oxide (titania), silicon oxide (silica), and aluminum oxide (alumina).
  • the inorganic fine particles are commercially available in a colloidal state having an average particle size of 500 nm or less.
  • the form in which the fluorescent dye is contained in the fine particles a form in which the dye is mainly dispersed in the fine particles, and a form in which the dye is physically adsorbed or chemically bonded to the surface of the fine particles. There are things.
  • the method for preparing the fine particles in which the fluorescent dye is dispersed is not particularly limited.
  • the following method can be preferably used.
  • a monomer for forming the polymer fine particles (latex), a fluorescent dye, a polymerization initiator, an emulsifier, or a dispersing agent is put into a solvent such as water and emulsified, and then heated or irradiated with ultraviolet rays under a required condition.
  • a dispersion of fine particles (polymer latex) in which a fluorescent dye is dispersed is obtained.
  • the dispersion may be obtained without using a dispersant or an emulsifier.
  • the particle size of the polymer latex fine particles can be controlled by appropriately selecting the monomer concentration and polymerization conditions, and fine particles having an average particle size of 500 nm or less can be easily prepared.
  • the resulting fine particles have a crosslinked structure, and fine particles having a high glass transition temperature are obtained. It is done. Furthermore, in this polymerization step, if an ultraviolet absorber and a light stabilizer are added at the same time, fine particles containing them can be obtained.
  • a method for obtaining fine particles containing a fluorescent dye a method can also be used in which a fluorescent pigment is mechanically pulverized using a disperser or the like to reduce the particle size.
  • Fluorescent pigments are obtained by dissolving fluorescent dyes in synthetic resins such as melamine resin, urea resin, sulfonamide resin, benzoguanamine resin, acrylic resin, and vinyl chloride resin, or by mixing the dye during the polymerization process.
  • the colored resin is mechanically pulverized to a size of several microns. It is also possible to disperse this together with a dispersant in water or an organic solvent to obtain fluorescent pigment particles having an average particle size of 500 nm or less.
  • a disperser such as Bonoremi / Le, bead mill, sand mill, 3-roll minole, high-speed impact mill is used.
  • the method for preparing the fine particles in which the fluorescent dye is physically adsorbed or chemically bonded to the surface of the fine particles there is no particular limitation on the method for preparing the fine particles in which the fluorescent dye is physically adsorbed or chemically bonded to the surface of the fine particles.
  • the following method can be preferably used.
  • a fluorescent dye is added to the dispersion liquid, and electrostatic interaction between the dye and the fine particles or By the acid-base interaction, the fluorescent dye is physically adsorbed on the surface of the fine particle, or the functional group of the fluorescent dye and the functional group of the fine particle are chemically bonded by a method such as heating or ultraviolet irradiation under the required conditions.
  • a dispersion of fine particles in which the dye is adsorbed or bound to the surface can be obtained.
  • an ultraviolet absorber or a light stabilizer together with the fluorescent dye a dispersion of fine particles in which they are adsorbed or bonded to the surface can be obtained.
  • Solvents used in these methods include hexane, glycols, alcohols, ketones, etc., in addition to water.
  • an ionic or nonionic surfactant is preferably used.
  • the surfactant include alkyl sulfates, alkyl sulfonates, dialkyl succinates, alkyl naphthalene sulfonates and alkyl sulfonates, and cationic surfactants include aliphatic amines. And alkyl quaternary ammonium salts.
  • nonionic surfactants include polyoxyethylene alkyl ether and polyoxyethylene alkyl aryl ether.
  • organic solvents other than water aliphatic or aromatic acids and their metal stalagmites, aliphatic amides, aliphatic esters, cocoons, stearins, proteins, aliphatic amines and These salts, quaternary ammonium salts, and fatty acid partial esters of polyhydric alcohols.
  • polymer surfactants are also used.
  • polymerization initiator for the monomers forming the polymer fine particles examples include ammonium persulfate, potassium persulfate, and hydrogen peroxide.
  • the fine particles containing the formed dye have the role of both stabilization by electrostatic repulsion and a polymerization initiator.
  • azobis isopropyl nitrile sodium sulfate
  • AIBA azobis (isoptylamidine hydrochloride)
  • additives include sodium styrene sulfate (abbreviated Na SS) and 2-sulfonethyl methacrylate sodium salt (abbreviated Na SEM).
  • Na SS sodium styrene sulfate
  • Na SEM 2-sulfonethyl methacrylate sodium salt
  • the particle size of the fine particles containing the pigment can be reduced.
  • atalic acid, maleic acid, fumaric acid, etc. can be used to introduce weak acid groups to the surface of the fine particles.
  • amine catalysts such as dimethylaminoethanol and jetylaminoethanol, which help crosslink various monomers, can also be used as additives. It is also possible to form a layer containing a fluorescent dye on the surface layer of the fine particles using a microcapsule technique.
  • Microcapsule methods include interfacial polymerization method, in-situ polymerization method, phase separation method, in-liquid drying method, melt dispersion cooling method, spray drying method, pan coating method, etc.
  • desired particles can be obtained.
  • fine particles in which a fluorescent dye is contained in an inorganic substance such as silica or a layer containing the fluorescent dye on the surface layer of the fine particles by a sol-gel method using a metal alkoxide or the like.
  • the fine particles containing the fluorescent dye thus obtained and, if desired, an ultraviolet absorber or a photostabilizer have a glass transition temperature of 80 ° C. or more from the viewpoint of heat resistance of the obtained fluorescence conversion medium. In particular, those having a temperature of 110 ° C. or higher are suitable.
  • the fluorescence conversion medium of the present invention is a dispersion for forming a fluorescence conversion medium using a fluorescent dye thus obtained and a dispersion of fine particles containing an ultraviolet absorber or a light stabilizer as required, and a binder resin.
  • the fluorescent dye is used in an amount of 0.1 to 20% by weight, preferably 0.5 force to 10% by weight, and most preferably 1 to 7% by weight, based on the total amount of the fluorescent dye and the fine particles.
  • the ratio of the dye is less than 0.1% by weight, the color is not sufficiently developed.
  • the ratio is more than 20% by weight, the fluorescence performance deteriorates due to concentration quenching due to the combination of the dyes contained in the fine particles.
  • the binder resin may be an oligomer or polymer melamine resin, phenol resin, alkyd resin, epoxy resin, polyurethane resin, maleic resin, polyamide resin, or polymethyl methacrylate.
  • examples include relate, polyacrylate, polycarbonate, polybular alcohol, polypyrrolopyrrolidone, hydrocheti / recellulose, and caspoxymethylcellulose. These may be used alone or in combination of two or more.
  • Photosensitive resins can also be used for the purpose of patterning the fluorescence conversion film.
  • a photocrosslinking type such as acrylic acid having a reactive vinyl group containing a photosensitizer and a photopolymerization type methacrylate based on polyvinyl methacrylate is usually used.
  • a thermosetting type may be used.
  • a dispersion liquid for forming a fluorescence conversion medium comprises a suitable solvent, a dispersion liquid of fine particles containing an ultraviolet absorber or a light stabilizer according to the above-mentioned fluorescent dye, and a binder resin. It can be prepared by mixing so as to have a viscosity suitable for film formation and patterning and, if necessary, dispersing treatment with a dispersing machine such as ultrasonic irradiation, a ball mill, a sand mill, or a triple roll.
  • the fine particles containing a fluorescent dye and, optionally, an ultraviolet absorber or a light stabilizer are 1 to 70% by weight, preferably 5 to 60% by weight, most preferably, based on the total amount of the fine particles and the binder resin.
  • the proportion of the fine particles is less than 1% by weight, color development is not sufficient, and when the proportion exceeds 70% by weight, the film formation is poor due to aggregation of the fine particles, resulting in a film with poor transparency.
  • the fluorescence conversion medium of the present invention is usually prepared by using a dispersion liquid for forming a fluorescence conversion film prepared in this manner, for example, by spin coating, roll coating, casting, electrodeposition, or the like. After the film is formed, the pattern is separated (planarly separated) and cured. Can be manufactured.
  • it may be used as a fluorescence conversion plate by being mixed in a polymer plate, or may be a medium that covers the phosphor.
  • it is preferably used as a color conversion medium added to a housing resin of a blue or green LED.
  • Fluorescent conversion plates can be used as backlight light guide plates, and blue light can be converted into green, red, and white.
  • the patterning may be performed by a photolithography method if a photosensitive resin (resist) is used as the binder resin, or by selecting an appropriate plate material for either photosensitive or non-photosensitive resin. It may be printed (letter printing, screen printing, offset printing, intaglio printing).
  • the dispersion for forming a fluorescent conversion film has good dispersion stability, it is possible to remove the solvent component and keep the fine particle diameter containing the dye in the dispersion as it is and disperse it in the binder resin. And is solidified.
  • the light emitter in the present invention is not particularly limited, and examples thereof include EL, LED, VFD, PDP and the like.
  • organic EL elements are preferable.
  • organic EL elements as described above, high-efficiency and high-brightness blue light emission is achieved, and because it is composed of organic matter, light emission of all colors can be achieved by designing organic matter. This is because there are high expectations. Even if the type of illuminant is different, the light from the illuminant can be easily converted into visible light fluorescence by overlapping the fluorescence conversion film at a position where it can absorb the luminescence of a certain color illuminant.
  • This organic EL element basically has a structure in which a light emitting layer is held between a pair of electrodes, and a hole injection layer and an electron injection layer are interposed as required. In particular,
  • the light emitting layer is (1) an injection function capable of injecting holes through an anode or a hole injection layer when an electric field is applied, and (2) injection.
  • a transport function that moves the generated charges (electrons and holes) by the force of an electric field
  • a light-emitting function that provides a field for recombination of electrons and holes inside the light-emitting layer and connects it to light emission.
  • the transport function represented by the mobility of holes and electrons may be large or small. Those having a function of moving one charge are preferable.
  • the type of the light emitting material used for the light emitting layer is not particularly limited, and a conventionally known light emitting material in the organic EL device can be used.
  • Such light-emitting materials are mainly organic compounds, and specific examples include the following compounds depending on the desired color tone.
  • X represents the following group ⁇
  • m is an integer of 2-5.
  • Y represents a phenyl group or a naphthyl group.
  • the groups represented by the above X and Y are alkyl groups having 1 to 4 carbon atoms, alkoxy groups, hydroxyl groups, sulfo groups, carbonyl groups, amino groups.
  • a group, a dimethylamino group, a diphenylamino group or the like may be substituted singly or in plural. They may also be bonded to each other to form a saturated 5-membered or 6-membered ring.
  • a phenyl group, a phenylene group, and a naphthyl group bonded at the para position have good bonding property (adhesion) to the substrate, and are preferable for forming a smooth deposited film.
  • Specific examples include the following compounds.
  • PQP is ⁇ -quarter-phenyl
  • TBS is 3, 5, 3 ''',', 5, ..., one tert-petit p-sexi-phenyl
  • TBQ is 3, 5, 3 "", 5,, ', one tetra-tert-petit-p-quink phenyl.
  • p-quarterphenol derivatives and p-quinkphenol derivatives are particularly preferred.
  • fluorescent brighteners such as benzothiazol, benzimidazole, and benzoxazole, metal chelated oxinoid compounds, and styrylbenzene compounds, etc. Can be mentioned.
  • Specific examples of the compound name include those disclosed in Japanese Patent Application Laid-Open No. 59-194034. Typical examples are 2,5 one bis (5,7-di t one pentyl one 2-benzoxazolyl) one 1,3,4-thiadiazole; 4,4 'one bis (5,7- t — Pentyl-2-benzoxazolyl) stilbene; 4, 4, -bis [5,7-di- (2-methyl_2-butyl) -2-benzoxazolyl] stilbene; 2, 5- Bis (5,7-di-t-pentyl-1-2-benzoxazolyl) thiophene; 2,5-bis (6- ⁇ , ⁇ -dimethenorebenzyl-1-2-benzoxazolyl) thiophene; 2,5_bis [5 , 7—G
  • Examples of the styrylbenzene compound include European Patent No. 0.
  • Typical examples include 1,4-bis (2-methylstyrylore) benzene; 1,4-bis (3-methylstyryl) benzene; 1,4-bis (4-methylstyryl) benzene; distyrylbenzene; 1,4-bis (2-ethylstyryl) benzene; 1,4 monobis (3-ethylstyrylol) benzene; 1,4 monobis (2-methylstyryl) _ 2-methyl / madzene; 1,4-bis (2 —Methylolestyryl) 1-Ethylbenzene and the like.
  • oxadiazole Derivatives (Oxadiazole derivatives disclosed by Hamada et al. In Japanese Laid-Open Patent Application No. 2-2 1 6 7 9 1 or the 36th Applied Physics Related Lecture), Aldazine Derivatives (Japanese Laid-Open Patent Application No. 2-220 9 3), virazirine derivatives (Japanese Patent Laid-Open No. 2-2 0 3 9 4 ), Cyclopentadiene derivatives (Japanese Laid-Open Patent Publication No. Hei 2-28896 75), pyrrole pyrrole derivatives (Japanese Laid-open Patent Publication No.
  • an aromatic dimethylidene compound is particularly used as a material for the light emitting layer.
  • L represents a hydrocarbon group having 6 to 24 carbon atoms including a benzene ring
  • O—L represents a phenolate ligand
  • Q represents a substituted 8-quinolinolato ligand
  • R represents an aluminum atom.
  • the compound represented by these can also be mentioned.
  • An example of this compound is bis (2-methyl-1-quinolinolato) (p-phenolphenola).
  • the above-mentioned light-emitting material that is a host and a dopant added JP-A-6-9953, etc.
  • the dopant include a fluorescent dye in a blue region or a green region, specifically, a fluorescent dye similar to that used as a coumarin-based or the above-described host.
  • a luminescent material of an aromatic dimethylidin compound as a host preferably DPVB i
  • DPAVB benzene
  • a method for forming a light emitting layer using the above-mentioned material it can be formed by thinning it by a known method such as a vapor deposition method, a spin coat method, a cast method, or an LB method.
  • a molecular deposited film is preferable.
  • the molecular deposited film is a thin film formed by deposition from the gas phase state of the compound, or a film formed by solidification from the molten state or liquid phase state of the compound. .
  • this molecular deposited film can be distinguished from the thin film (molecular accumulation film) formed by the LB method and the difference in aggregation structure and higher order structure, and the functional difference resulting from it.
  • this light-emitting layer is prepared by dissolving the light-emitting material in a solvent together with a binder such as a resin, It can be formed into a thin film by a spin coating method or the like.
  • the film thickness of the light emitting layer formed in this way is not particularly limited, It can be selected according to the situation, but usually 5 nn! It is in the range of ⁇ 5 ⁇ m.
  • an electrode material made of a metal, an alloy, an electrically conductive compound or a mixture thereof having a large work function (4 eV or more) is preferably used as the anode in this EL element.
  • the good UNA metal such as A u Specific examples of the electrode material, C u I, indium tin O sulfoxide (ITO), Print ⁇ beam zinc oxide (I n- Z n - O) , S N_ ⁇ 2, Z n Examples include conductive transparent materials such as ⁇ .
  • the anode may be formed by depositing these electrode materials by a method such as vapor deposition or sputtering, and a pattern of a desired shape may be formed by a photolithography method, or the pattern accuracy may be increased.
  • the pattern of the electrode material may be formed through a mask having a desired shape at the time of sputtering.
  • the transmittance is larger than 10%, and the sheet resistance as the anode is preferably several hundred ⁇ / mouth or less.
  • the film thickness depends on the material, but usually 10 n n! To 1 Atm, preferably in the range of 10 to 200 nm.
  • cathodes with small work function (4 eV or less) metals referred to as electron-injecting metals
  • alloys electrically conductive compounds and mixtures of these are used as electrode materials.
  • electrode materials include sodium, sodium-calium alloy, magnesium, lithium, magnesium copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium.
  • Examples include Z indium mixtures, aluminum / aluminum oxide (A 1 2 0 3 ) mixtures, indium, lithium / aluminum mixtures, and rare earth metals.
  • a mixture of a metal and a second metal which is a stable metal with a higher work function, such as magnesium Z silver mixture, magnesium z aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (A l 2 3 ) Mixtures, lithium / aluminum mixtures, etc. are suitable.
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the sheet resistance as the cathode is preferably several hundred ⁇ or less, and the film thickness is usually 10 n, n! ⁇ 1 ⁇ ⁇ , preferably in the range of 50 to 20 O nm.
  • the anode or the negative electrode of the organic EL element is transparent or translucent, the light emission efficiency is improved and it is favorable.
  • the hole injection layer provided as necessary has a function of transmitting the holes injected from the anode to the light emitting layer, and the hole injection layer is interposed between the anode and the light emitting layer.
  • Many holes are injected into the light-emitting layer at a lower electric field, so that electrons injected from the cathode or the electron injection layer into the light-emitting layer are electrons present at the interface between the light-emitting layer and the hole injection layer. Due to the barrier, it is accumulated at the interface in the light emitting layer and the light emitting efficiency is improved.
  • the material of the hole injection layer (hereinafter referred to as the hole injection material) is not particularly limited as long as it has the above-mentioned preferable properties. Conventionally, in an optical material, thus, any one of those commonly used and known ones used for the hole injection layer of EL devices can be selected and used.
  • the hole injection material has either a hole injection property or an electron barrier property, and may be either an organic material or an inorganic material.
  • Examples of the hole injection material include triazole derivatives and oxazia. Zole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazones Derivatives, stilbene derivatives, silazane derivatives, polysilanes, aurine-based copolymers, and conductive polymer oligomers, especially thiophene oligomers.
  • the above-mentioned materials can be used as the hole injection material, but porphyrin compounds, aromatic tertiary amine compounds and styrylamine compounds, particularly aromatic tertiary amine compounds are used. It is preferable.
  • polyphilin compounds include polyphyllin; 1, 10, 15, 20-Tetrahedron / Lay 2 1 H, 2 3 H-Polyphyllin copper (II); 1, 1 0, 1 5, 2 0—Tetraflenyl 1 2 1 H, 2 3 H—Polyphyllin zinc (II); 5, 1 0, 1 5, 2 0—Tetrakis (Pentough / Leo) 1) 2 1 H, 2 3 H—Polybutylene; Silicium phthalocyanine oxide; Aluminum phthalocyanine chloride; phthalocyanine (metal-free); dilithium phthalocyanine; copper tetramethyl phthalocyanine Copper phthalocyanine, chromium phthalocyanine, dumbbell phthalocyanine, mouth, phthalocyanine, titanium phthalocyanine oxide, magnesium phthalocyanine, copper octamethylphthalocyanine, and the like.
  • aromatic tertiary amine compounds and styrylamine compounds include N, N, N ′, N′-tetrafenyl 4, 4, diaminophenol; N, N′—diphenyl- Lou N, N '— Bis (3-methylphenyl) One [1, 1, Bi-biphenyl] One 4, 4' — Diamine (TPD); 2, 2-bis (4-Di-p-tolylaminophene -Le) Propane; 1 Bis (4-di-p-tolylaminophenol) cyclohexane; N, N, N ', N, Tetra p-tolyl 4, 4, 1-diamino biphenyl; 1, 1 One-bis (4-ji-p-trilaminophenol) One 4-Fuenyl di-Silicone Hexane; Bis (4-dimethylamino 2-methi / l-phenyl) Hue-lumetane; Bis (4- Di-p-tolylamino
  • No. 5,061,569 for example, 4, 4′-bis [N— (1 -Naphthyl) 1 N-phenylamino] Biphenyl (NPD), three trough-luminous units described in Japanese Patent Laid-Open No. Hei. Concatenated 4, 4 ', 4,, tris [N— (3-methylphenyl) -N-phenylamino] triphenylamine (MTDATA).
  • inorganic compounds such as the above-mentioned aromatic dimethylidene compounds, p-type-Si, and p-type mono-SiC shown as the material for the light-emitting layer can be used as the hole injection material. .
  • the hole injection layer can be formed by thinning the hole injection material by a known method such as a vacuum deposition method, a spin coating method, a casting method, or an LB method. Especially about the thickness of the hole injection layer Unrestricted force, usually 5 nn! ⁇ 5 / im or so.
  • This hole injection layer may have a single layer structure composed of one or more of the above materials, or may have a multilayer structure composed of a plurality of layers having the same composition or different compositions.
  • the electron injection layer used as necessary is only required to have a function of transmitting electrons injected from the cathode to the light emitting layer, and any material can be selected from conventionally known compounds. Can be selected and used.
  • Examples of materials used for this electron injection layer include heterocyclic tetrene derivatives such as nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, and naphthalene perylene.
  • Examples include lacarboxylic anhydride, carpositimide, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, and oxadiazole derivatives.
  • a thiadiazole derivative in which an oxygen atom of the oxaziazole ring is substituted with a sulfur atom, or a quinoxaline derivative having a quinoxaline ring known as an electron-withdrawing group may be used as an electron injection material. it can.
  • metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (A lq), tris (5,7-dichloroquinone 8-quinolinol) aluminum, tris ( 5, 7—Jib mouth mode 8 —quinolinol) Aluminum, tris (2-methyl-8-quinolinol) Aluminum-trim (5-methyl-1-quinolinol) Aluminum, bis (8-quinolinol) zinc (Znq), etc. and these gold Metal complexes in which the central metal of the genus complex is replaced with In, Mg, Cu, Ca, Sn, Ga or Pb can also be used as the electron injection material.
  • metal-free or metal phthalocyanine or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron injecting material.
  • the distyrylvirazine derivative exemplified as the material of the light emitting layer can also be used as the electron injection material, and n-type single Si and n-type single Si as well as the hole injection layer.
  • An inorganic semiconductor such as C can also be used as an electron injecting material.
  • This electron injection layer can be formed by forming the above compound by a known thinning method such as a vacuum deposition method, a spin coating method, a casting method, or an LB method.
  • the thickness of the electron injection layer is not particularly limited, but is usually selected in the range of 5 nm to 5 mm.
  • the electron injection layer may have a single layer structure composed of one or two or more of these electron injection materials, or may have a laminated structure composed of a plurality of layers having the same composition or different compositions.
  • a manufacturing method of an EL device composed of the above-mentioned anode Z hole injection layer / light emitting layer Z electron injection layer / cathode will be described.
  • a desired electrode material such as an anode material is formed on a suitable substrate.
  • a thin film is formed by a method such as vapor deposition or sputtering so that the film thickness is 1 // m or less, preferably in the range of 10 to 200 nm, and an anode is produced.
  • a thin film made of the material of the hole injection layer, the light emitting layer, and the electron injection layer, which are element materials, is formed thereon.
  • the thinning method there are a spin coating method, a casting method, a vapor deposition method and the like as described above.
  • a vacuum is used because a homogeneous film is easily obtained and pinholes are not easily generated. Vapor deposition is preferred.
  • the vapor deposition conditions are the type of chemical used, Depending on the target crystal structure and association structure of the molecular deposited film, the boat heating temperature is typically 50 to 45 ° C, the degree of vacuum is 10- e to 10 — 3 Pa, and evaporation It is desirable to select the speed appropriately within the range of 0.01 to 50 nm Zsec, substrate temperature—50 to 300 ° C, and film thickness of 5 nm to 5 m.
  • a thin film made of a cathode material is formed thereon, for example, by vapor deposition or sputtering so as to have a film thickness of ⁇ or less, preferably in the range of 50 to 20 O nm.
  • a desired EL element can be obtained by forming the cathode by a method and providing a cathode. It is preferable to fabricate this organic EL device consistently from the hole injection layer to the cathode by a single evacuation. However, the fabrication sequence is reversed, and the cathode, electron injection layer, light emitting layer, hole injection are prepared. It is also possible to fabricate layers and anodes in this order.
  • the display device of the present invention uses a light emitter and the above-described fluorescence conversion film of the present invention, and the organic EL element is preferable as the light emitter.
  • the fluorescence conversion film of the present invention and a light emitter (for example, an organic EL element) will be described.
  • a light emitter for example, an organic EL element
  • the fluorescence conversion film must be present in a location other than the light emitter (for example, the inside between both electrodes of the organic EL element) and satisfy the above conditions. Then, the red fluorescence conversion film pattern is applied by photolithography or printing.
  • the portion of the light emitter corresponding to the pattern emits blue light, it emits red light.
  • a portion corresponding to the green fluorescent conversion film pattern formed in the same manner is caused to emit light, green light can be emitted if light is emitted from a portion corresponding to the remaining portion.
  • magenta if the phosphor corresponding to the red fluorescent conversion film pattern and the blue light emitting portion emits light, and yellow and green fluorescent conversion film if the light emitting material corresponding to the red fluorescent conversion film pattern and green fluorescent conversion film pattern portion emits light. If light is emitted corresponding to the pattern and the blue light emitting portion, cyan light emission can be obtained.
  • Red fluorescent conversion film pattern and green fluorescent conversion film pattern blue light emitting part can emit white light if it emits light corresponding to all, and black background if not all light emitting. In this way, multicolor emission is possible.
  • a fluorescent conversion film for converting green is formed, and further converted from green to red.
  • a fluorescent conversion film may be laminated.
  • the light emission obtained by fluorescence conversion may be passed through a color filter of each color as necessary.
  • the deposition rate of MT D ATA is 0.1 to 0.3 nmZ
  • the film thickness is 60 nm
  • the deposition rate of NPD is 0.1 to 0.3 nm / sec.
  • the film thickness is 20 nm.
  • DPVB i is deposited at a deposition rate of 0.1 to 0.3 nmZ
  • the film thickness is 50 nm
  • a 1 q is deposited at a deposition rate of 0.
  • Evaporation was performed at 1 to 0.3 nmsec, film thickness of 20 nm, and magnesium and silver were deposited as negative electrodes, with deposition rates of 1.3 to 1.4 nm / sec and 0.1 nm sec, respectively.
  • the film thickness was 200 nm.
  • the emission luminance is 2 0 0 C d / m 2 , C
  • a reaction vessel equipped with a reflux tube was charged with 60 g of ion-exchanged water, 2 g of sodium lauryl sulfate, and 0.1 g of ammonium persulfate, and the temperature was raised to 90 ° C. with mixing and stirring in an argon atmosphere.
  • the average particle size was 200 nm, and the particles having a particle size of 500 nm or less accounted for 90% by weight of the total particles.
  • the liquid was centrifuged to separate fine particles, and the glass transition temperature of the fine particles was measured by DSC (differential scanning calorimeter), and found to be 92 ° C.
  • the emission luminance is 19 0 cd.
  • Zm 2 efficiency 95%)
  • green fluorescence is emitted
  • blue emitter is green with high efficiency of 95% Was converted to fluorescence.
  • a reaction vessel equipped with a reflux tube was charged with 60 g of ion-exchanged water, 2 g of sodium lauryl sulfate, and 0.1 g of ammonium persulfate, and the temperature was raised to 90 ° C. with mixing and stirring in an argon atmosphere.
  • methacrylonitrile 3 g, methacrylic acid 7.5 g, daricidyl methacrylate 6 g, methyl methacrylate A mixture of 10 g of relate and 13.5 g of methyl acrylate was slowly added dropwise to the previous reaction solution with a dropping funnel over 1 hour. After the dropwise addition, the reaction was completed by further stirring for 2 hours to form emulsion polymer fine particles of the previous monomer.
  • the average particle size was 130 nm, and the particles having a particle size of 500 nm or less accounted for 9 7% by weight of the total particles.
  • the glass transition temperature was 90 ° C.
  • ion exchange water 60 g, sodium lauryl sulfate 2 g and ammonium persulfate 0.1 g into a reaction vessel equipped with a reflux tube and mix in an argon atmosphere. The temperature was raised to 90 ° C with stirring. Next, methyl mouth-tolyl 3 g, methacrylate 7.5 g, glycidyl methacrylate 6 g, methyl methacrylate 10 g, methyl acrylate 13.5 g, jetylamino ethanol 0 2 g of the mixed solution was slowly added dropwise to the previous reaction solution with a dropping funnel over 1 hour. Further, this liquid was stirred at 80 ° C. for 1 hour.
  • Acetic acid is added to 10 g of melamine, 20 g of formalin aqueous solution (35 wt%) and 40 g of ion-exchanged water to obtain pH 6, and this solution is heated at 80 ° C.
  • a lamin-formalin initial condensate was obtained.
  • This initial condensate and 8 g of coumarin fluorescent dye (Basic Yellow 40) and 0.4 g of UV absorber 2,4-dihydroxybenzophenone were added to the above reaction solution, and the solution temperature was 65 ° C.
  • the mixture was stirred for 30 minutes, and further stirred at 80 for 2 hours to complete the reaction, whereby fine particles containing a fluorescent dye and an ultraviolet absorber in the surface layer were obtained.
  • the reaction solution was deionized by passing through a cation exchange resin to prepare a fine particle dispersion containing a fluorescent dye in the surface layer.
  • the average particle size was 3500 nm, and the particles having a particle size of 500 nm or less accounted for 83% by weight of the total particles.
  • the transition temperature was 1 13 ° C.
  • a reaction vessel with a reflux tube is charged with 60 g of ion-exchanged water, 2 g of polyoxyethylene-nor-ether ether and 0, lg of calcium persulfate, and argon The temperature was raised to 80 ° C. with mixing and stirring in an atmosphere. Next, 5 g of methacrylonitrile, 2 g of methacrylate, 3 g of glycidyl methacrylate, 28 g of methyl methacrylate, 2 g of styrene, 0.1 g of jetylaminoethanol The mixture was slowly dropped into the previous reaction solution with a dropping funnel over 2 hours. After the dropwise addition, the reaction was completed by stirring for 2 hours to form emulsion polymer fine particles of the previous monomer.
  • the average particle size was 120 nm, and the particles having a particle size of 500 nm or less accounted for 90% by weight of the total particles.
  • the glass transition temperature was 1 18 ° C.
  • the average particle size was 105 nm, and particles with a particle size of 500 nm or less were 9 2
  • the weight was 0 / o and the glass transition temperature was 1 1 8 ° C.
  • the emission luminance is 60 cd / m 2 (efficiency 30%)
  • This mixed solution is dropped onto a 1.1 mm thick glass substrate and spin-coated,
  • 2.5 g of 2-sulfonethyl methacrylate at a concentration of 5 wt% and sodium salt solution of 3 wt% persulfate solution were mixed with 5 g of the aqueous solution of sodium sulfate.
  • the suspension was slowly dropped into the suspension with a dropping funnel. After dropping, the reaction was completed by stirring for 24 hours while maintaining 65 ° C.
  • reaction solution was deionized through a cation exchange resin to prepare a liquid containing coumarine 15 3 dispersed fine particles.
  • the solid content was 35 wt%.
  • the particle size distribution was measured in the same manner as in Example 1. As a result, the average particle size was 90 nm, and particles having a particle size of 500 nm or less accounted for 15% by weight.
  • 10 g of this fine particle-containing solution and 3.5 g of polypyrrolopyrrolidone having a weight average molecular weight of 3600 and 0,00 are mixed, and this mixture is dropped onto a glass substrate with a thickness of 1.1 mm. Then, it was covered and dried in an oven at 80 ° C. for 15 minutes to obtain a fluorescent conversion film having a thickness of 14 ⁇ m. However, it became an opaque film with extremely severe irregularities.
  • the reaction vessel was charged with 30 g of methylol A 30 g obtained by reacting ⁇ -toluenesulfonamide and formalin and 70 g of methylol B obtained by reacting benzoguanamine and formalin.
  • methylol A 30 g obtained by reacting ⁇ -toluenesulfonamide and formalin
  • Loader 5 so R 0.5 ⁇ force ⁇ 5 "I ⁇ temperature is stirred at 90 ° C, melted, and further reacted at 110 ° C for 4 hours
  • the mixture was allowed to cool to obtain a prepolymer, which was placed in a vacuum dryer, reacted at 13 ° C. under reduced pressure for 5 hours, allowed to cool, and then cooled in a mortar.
  • a fluorescent dye-containing resin composition was obtained, which had a glass transition temperature of 124 ° C. Further, 50 g of this composition and 50 g of toluene were added. The mixture was mixed and dispersed in a bead mill for 5 hours to obtain a red fluorescent pigment fine particle dispersion, and the particle size distribution of the obtained fine particles was measured, and the average particle size was 400 nm. Particles of 0 nm or less were 80% by weight of all particles.
  • the emission luminance is 60 cd / m 2 (efficiency 3 0%)
  • the fluorescence intensity change of the fluorescence conversion film of Example 5 is less than that of Comparative Example 3, and it has excellent durability against UV irradiation and heat treatment performed in the photosensitive resin film forming process. Have.
  • the present invention there is little association between fluorescent dyes, concentration quenching is reduced, stable fluorescence conversion ability, excellent heat resistance and light resistance, and good transparency and flatness. Moreover, patterning (planar separation and arrangement) is easy, and a fluorescence conversion film that is suitably used for high-definition multicolor light-emitting display can be easily obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)

Description

明 細 書
蛍光変換媒体及びそれを用いた表示装置
技術分野
本発明は蛍光変換媒体及びそれを用いた表示装置に関する。 さらに詳 しく は、 本発明は、 安定した蛍光変換能を有すると ともに、 耐熱性及 び耐光性などに優れ、 高精細な多色発光表示に好適な蛍光変換媒体、 及ぴ該蛍光変換媒体を用いた表示装置に関するものである。 なお、 本 明細書において 「蛍光変換媒体」 とは、 薄膜状の蛍光変換膜から比較 的厚さのある蛍光変換体等を含む概念である。
背景技術
電子ディスプレイデバイスは、 一般に m a n— m a c h i n e — i n t e r f a c e とレヽわれるよ うに、 各種装置 (m a c h i n e ) 力、ら の各種情報を視覚を通して人間 (m a n) に伝達する電子デバイスで あって、 人間と装置とを結ぶ重要な橋渡し的役割 ( i n t e r f a c e ) を担っている。
この電子デバイスには、 発光形と受光形とがあり、 発光形としては、 例えば C RT (陰極線管) , P D P (プラズマディスプレイ) , E L D (エレク トロルミネッセンスディスプレイ) , V F D (蛍光表示管) , L E D (発光ダイオード) などが挙げられる。 一方、 受光形としては、 例えば L C D (液晶ディスプレイ) , E C D (エレク ト口ケミカルデ イスプレイ) , E P I D (電気泳動ディスプレイ) , S P D (分散粒 子配向形デ'イスプレイ) , T B D (着色粒子回転形ディスプレイ) , P L Z T (透明強誘電性 P L Z T 〔 (P b, L a ) (Z r, T i ) Oj セラミ ックスディスプレイ) などが挙げられる。
ここで、 上記発光形のディスプレイにおけるフルカラー化の方法とし ては、 ( 1 ) 多色 (例えば赤、 青、 緑の三原色) の発光部分を平面的 に分離配置して、 それぞれ発光させる方法、 ( 2 ) L C Dを含むが、 バックライ トの白色光をカラーフィルターで多色に分解させる方法、 及び ( 3 ) ある一色 (例えば青) の発光を平面的に分離配置した蛍光 変換膜に吸収させ、 それぞれの蛍光変換膜から異なる蛍光 (例えば赤、 緑) を発光させる方法が知られている。
しかしながら、 上記 ( 1 ) の方法においては、 赤、 胄、 緑の発光体 (素 子) をそれぞれ作製する必要があり、 各発光体の材料の選択や発光体 を平面的に微細に分離配置するプロセスにおいて、 困難を伴う場合が あるし、 また、 ( 2 ) の方法においては、 白色光を多色に分解するた めに、 各色の明るさが低減する (三原色の場合は 3分の 1 ) のを免れ ないという問題がある。
これに対し、 上記 ( 3 ) の蛍光変換膜を用いる方法においては、 ある 一色の発光体があれば、 平面的に微細に分離配置した蛍光変換膜を発 光を吸収できる位置とは別に設置すればよいので、 プロセスが容易で あることが'類推されるし、 原理的に蛍光変換によって各色の明るさが 低減しない。
そこで、 蛍光変換膜を用いて、 一色の発光体から多色の発光を蛍光変 換する方法については、 一色はエネルギー的に高い発光であることが 望ましく、 可視光の場合、 青色であればよりエネルギーの低い緑色や 赤色への変換が可能となり'、 三原色の多色発光が可能となる。 また、 紫外光の場合も同様に三原色の多色発光が可能となる。
特に有機エレク ト 口ルミネッセンス、 (以下、 「エレク ト 口ルミネッ センス」 を E L と略記する。 ) 発光素子の場合には、 高効率で高輝度 の青色発光が実現されており、 また、 有機物で構成されるため、 あら ゆる色の発光が有機物の設計により達成される期待が大きい。
このよ うな蛍光変換膜には、 従来、 C R Tのブラウン管に代表されて いるよ うに無機蛍光顔料が用いられており、 例えば、 硫化亜鉛やアル 力リ土類金属の硫化物の高純度蛍光体に、 発光をよ り強くするために 微量の金属 (銅, 銀, マンガン, ビスマス, 鉛) などを賦活剤と して 加えた無機物の結晶が用いられている。 そして、 例えば硫化亜鉛と賦 活剤とを組み合わせた場合、 賦活剤が銅では緑色に、 マンガンでは黄 色に、 銀では紫色に、 ビスマスでは赤色に発光する。 このよ うな蛍光 顔料を各種バインダー樹脂に混合、 分散し、 スラ リ ー又はペース トを 形成して、 塗布することにより蛍光変換膜を形成することができる。 しかしながら、 上記の無機蛍光顔料を含む蛍光変換膜は、 蛍光を発す るための発光体の光源が電子線及ぴ紫外線までの高エネルギー光に限 定されて種類も少ないという欠点を有している。
一方、 無機蛍光顔料以外の蛍光顔料は、 一般に昼光蛍光顔料があり、 顔料色素型と合成樹脂固溶体型があり、 可視光を発光体に使用するこ とは可能である。
顔料色素型はそれ自体蛍光を有する水に不溶な顔料タイプで、 特にル モゲンカラーの名称で黄、 緑、 橙、 赤、 青の各色があるが、 蛍光の強 さ、 色の鮮やかさに劣るため、 現在はルモゲンイェロー以外はあま り 使用に適さず、 結局は種類が少ない。 また合成樹脂固溶体型は、 蛍光 のもつ染料をメ ラ ミ ン樹脂、 尿素樹脂、 スルホンアミ ド樹脂などの合 成樹脂に溶解し、硬化した後物理的に粉砕して顔料と したものである。 しかし、 このものは、 蛍光は比較的強いが、 物理的な粉砕であるので 顔料の粒径が大きく、 各種バインダー樹脂に混合、 分散し、 スラ リ ー 又は、 ペース トを形成して、 塗布することにより蛍光変換膜を形成し た際に、 発光体の発光が顔料粒子で散乱されて、 膜の透明性又は平坦 性が悪くなったり、 変換効率が低下するという問題がある。
また、 特開平 9一 1 7 6 3 6 6号公報には、 蛍光性粒子を透明性榭脂 に分散させた光透過性及び光拡散性を有する樹脂組成物が開示され、 樹脂組成物に配合された微粒子によつて入射光を散乱させて、 光拡散 性を付与している。 しかしながら、 入射光を十分に散乱させるために は可視光の波長以上 (約 7 0 0 n m以上)の直径の粒子を配合する必要 がある。 そのため、 この樹脂組成物を用いた蛍光変換膜では透明性が 得られず、 く も りガラス状の膜となり変換効率が低下するという問題 があつた。
そこで、 このような問題を解決したものと して、 近年、 色素 (蛍光色 素) を用いた蛍光変換膜が開示されている (特開平 3— 1 5 2 8 9 7 号公開) 。
このよ うな蛍光変換膜は、 通常、 バイ ンダー樹脂中に蛍光色素を可溶 化又は分散された形態で構成されており、 紫外線ないし可視の発光体 の光源に対して蛍光変換可能な色素の種類は豊富である。
一方、 蛍光変換膜を作る方法と して感光性樹脂に蛍光色素を可溶化又 は分散させて、 蛍光変換膜をフォ ト リ ソグラフィ一法でパターユング する方法 (特開平 5— 2 5 8 8 6 0号公報) がある。 この方法では一 般に U V光を照射する工程があるが、 通常蛍光色素は U V光によ り蛍 光性能が低下することが知られており、 フォ ト リ ソグラフィ一法を用 いる場合には、 U V光に対する耐久性が必要となってく る。
この他、 特開平 1 0— 3 3 8 8 7 2号公報には、 色変換材料中に蛍光 顔料粒子を分散させることで青色光から直接赤色光に高効率で変換す る色変換材料が提案されている。 この場合、 蛍光染料 (色素)と蛍光顔 料粒子とが同時に配合されているので、 上記したよ うに、 この蛍光変 換膜にフォ ト リ ソグラフィ一法でのパターユングを行う と、 配合され ている色素分が U V光により劣化し、 パター-ング後の蛍光変換膜の 変換性能は低下する。 また、ディスプレイでは室温以上の環境での信頼性も求められており、 特に車載用途では 8 0 °C以上の環境における信頼性が要求されている。 一方、 蛍光色素を包埋しているマ ト リ ックス樹脂のガラス転移温度以 上の熱履歴を蛍光変換膜が受けた場合、 色素と樹脂との相分離の発生 や隣接する顔料同士の凝集等が発生し、 結果と して蛍光変換性能が変 化する現象がおきる可能性がある。 したがって、 信頼性の観点から蛍 光変換膜として高温度の環境状態や熱履歴によつて蛍光変換性能が変 化しない材料が望まれている。
本発明は、 このよ うな状況下で、 少なく とも蛍光色素とバインダー樹 脂とからなる蛍光変換媒体であって、 蛍光色素間の会合が少なく、 濃 度消光が低減され、 安定した蛍光変換能を有すると ともに、 耐熱性及 び耐光性に優れ、 かつ良好な透明性と平坦性を有する上、 パターユン グ (平面的に分離配置) が容易で、 高精細な多色発光表示に好適に用 いられる蛍光変換媒体、 及ぴ該蛍光変換媒体を用いた表示装置を提供 することを目的とするものである。
発明の開示
本発明者らは、 前記の優れた機能を有する蛍光変換媒体を開発すべく 鋭意研究を重ねた結果、 蛍光色素と好ましく は紫外線吸収剤や光安定 剤を含む微粒子をバインダ一樹脂中に分散させることにより、 その目 的を達成しうることを見出した。 本発明は、 かかる知見に基づいて完 成したものである。
すなわち、 本発明は、 少なく とも蛍光色素とバインダー樹脂とからな り、 かつ発光体の発光を吸収して可視光の蛍光を発光する蛍光変換媒 体において、 蛍光色素を含む微粒子をバインダ一樹脂中に分散させた ことを特徴とする蛍光変換媒体を提供するものである。
前記蛍光色素を含む微粒子が、 その表面に蛍光色素を物理的に吸着又 は化学的に結合しているもの、 あるいはその内部に蛍光色素を埋設又 は包含したものであることが好ましい。
また、 本発明は、 発光体と上記蛍光変換媒体を用いたことを特徴とす る表示装置をも提供するものである。
発明を実施するための最良の形態
本発明の蛍光変換媒体は、 バインダ一樹脂中に蛍光色素を含む微粒子 を含有させたものであって、 上記蛍光色素と しては、 固体状態 (媒体 中での可溶化、 分散状態を含む) で、 発光体の発光を吸収して可視光 を発光するものであればよく、 特に制限されず、 例えば市販の蛍光色 素で、 レーザー色素などが好ましく挙げられる。
具体的には、 紫外光ないし紫色光を青色発光に変換する蛍光色素と し ては、 1 , 4 一ビス ( 2 —メチルスチリル) ベンゼン (〇 M S B ) ; トランス一 4 , 4 ' ージフエニルスチルベンなどのスチルベン系色素、 7 —ヒ ドロキシ一 4 —メチルクマリ ンなどのクマリ ン系色素などが挙 げられる。
次に、 青色の有機 E L素子の発光から緑色発光に変換する蛍光色素と しては、 例えば、 2, 3, 5, 6 - 1 H , 4 H—テ ト ラヒ ドロー 8 — ト リ フロルメ チルキノ リ ジノ ( 9, 9 a , 1 - g h ) クマリ ン (クマ リ ン 1 5 3 ) などのクマリ ン色素などが挙げられる。 また、 クマリ ン 色素系染料であるが、 ベーシックイェローも挙げることができる。
また、 青色ないし緑色の有機 E L素子の発光を橙色ないし赤色発光に 変換する蛍光色素と しては、 例えば 4—ジシァノメチレン一 2—メチ ルー 6— ( p —ジメチルアミ ノスチルリル) 一 4 H—ピラン (D C M ) などのシァニン系色素, 1 —ェチル— 2— 〔 4一 (p—ジメチルアミ ノ フエ -ル) 一 1, 3 —プタジェニル〕 一ピリ ジゥムーバーコラ レイ ト (ピリ ジン 1 ) などのピリ ジン系色素, ローダミ ン B, ローダミ ン 6 Gなどのキサンテン系色素、 他にォキサジン系などが挙げられる。 さらに、 各種染料 (直接染料, 酸性染料, 塩基性染料, 分散染料) も 蛍光性があれば可能である。
これらの色素は、 必要に応じて、 混合して用いてもよレ、。 特に赤色へ の蛍光変換効率が低いので、 上記色素を混合して用いて、 効率を高め ることもできる。
本発明においては、 これらの蛍.光色素を含む微粒子として、 特に紫外 線吸収剤や光安定剤を含有するものが UV光等に対する耐光性を向上 させる点から好ましい。
紫外線吸収剤は、 一般に、 サリシレー ト系、 ベンゾフエノ ン系、 ベン ゾ ト リアゾール系、 シァノアク リ レー ト系、 その他に分類することが できる。 サリシレート系紫外線吸収剤の例と しては、 フエ-ルサリ シ レー ト, ρ —ォクチ/レフェ二/レサ リ シレー ト, p — t 一プチ/レフェニ ルサリシレートなどが挙げられ、 ベンゾフエ ノ ン系紫外線吸収剤の例 と しては、 2 , 2, 一ジヒ ドロキシ一 4—メ トキシベンゾフエノ ン ; 2 , 2 ' —ジヒ ドロキシ一 4, 4 ' —ジメ トキシベンゾフエノン ; 2, 2 ' , 4, 4 ' —テ トラ ヒ ドロキシベンゾフエノ ン ; 2 —ヒ ドロキシ — 4 —メ トキシベンゾフエノ ン ; 2, 4—ジヒ ドロキシベンゾフエノ ン ; 2 —ヒ ドロキシ一 4ーォク トキシベンゾフエノンなどが挙げられ る。 また、 ベンゾ トリアゾール系紫外線吸収剤の例としては、 2— ( 2 ' ーヒ ドロキシー 3, , 5 ' —ジ一 t e r t —プチ レフエ -ノレ) _ 5 _ クロ口べンゾ ト リ ァゾーノレ ; 2 — ( 2 , 一 ヒ ドロキシ一 3, 一 t e r t 一プチルー 5 ' —メチルフエニル) 一 5—ク ロ口べンゾ ト リァゾー ル ; 2 - ( 2 , 一ヒ ドロキシ一 3 ' — t e r t —アミルー 5 ' —イ ソ ブチルフエ -ル) _ 5 —ク ロ 口べンゾ ト リ ァゾール ; 2 — ( 2 , ーヒ ドロキシ _ 3, 一イ ソブチル一 5 ' —メチルフエ -ノレ) _ 5 —ク ロ 口 ベンゾ ト リ ァゾール ; 2— ( 2 ' —ヒ ドロキシー 3 , —イ ソブチノレ一 5, 一メチルフエ-/レ) 一 5—ク ロ 口べンゾ ト リァゾーノレ ; 2一 ( 2, ーヒ ドロキシ一 3 ' —イ ソプチル一 5 ' —プロ ピルフエニル) 一 5— ク ロ 口べンゾ ト リ アゾール ; 2— ( 2 ' —ヒ ドロキシー 3,, 5 ' —ジ 一 t e r t —ブチルフエ二ノレ) ベンゾ ト リ ァゾーノレ ; 2 - ( 2, — ヒ ドロキシー 5—, 一メ チルフエニル) ベンゾ ト リ ァゾール ; 2— [ 2 ' ーヒ ドロキシ一 5, 一 ( 1, 1, 3, 3—テ ト ラメチル) フエ -ル〕 ベンゾ ト リァゾールなどが挙げられ、 シァノアク リ レー ト系紫外線吸 収剤の例としては、 2 —シァノ一 3, 3—ジフエ二ルアク リル酸ェチ ル ; 2—シァノ 一 3, 3—ジフエ -ルアク リル酸 2—ェチルへキシル などが挙げられる。 さ らに、 その他紫外線吸収剤と しては、 例えばレ ゾグレシノー/レモノベンゾエー ト ; 2, 4ージ一 t —プチノレフ エ -ノレ一 3, 5—ジー t —プチ/レー 4— ヒ ドロキシベンゾエー ト ; N— ( 2 - ェチノレフエ -ノレ) 一 N' — ( 2—エ トキシ _ 5— t —プチノレフエ二/レ) シユウ酸ジアミ ドなどが挙げられる。
この他、 上記した低分子化合物以外の紫外線吸収剤として、 アク リル 基等の反応性官能基が結合している反応型紫外線吸収剤や重縮合型紫 外線吸収剤、 高分子主鎖に紫外線吸収剤が結合した高分子紫外線吸収 剤を用いてもよい。
一方、 光安定剤には、 ヒ ンダードアミン系ゃニッケル系などがあり、 ヒンダードアミ ン系光安定剤と しては、 例えばビス ( 2, '2 , 6, 6 —テ トラメチルー 4—ピペリジル) セバケート, コハク酸ジメチル一 1 — ( 2—ヒ ドロキシェチル) - 4 - ヒ ドロキシ - 2 , 2, 6, 6 - テ トラメチルピぺリ ジン重縮合物、 ポリ [ 6 - ( 1, 1 , 3, 3 -テ ト ラメ チルプチル) ィ ミ ノ - 1, 3, 5 - ト リ アジン - 2, 4 - ジィ ル] [ ( 2, 2, 6, 6 -テ トラメチル - 4 - ピぺリジル) ィ ミ ノ ] へキサメチレン [ 2, 2 , 6, 6 - テ トラメ チル - 4 - ピペリ ジル) ィ ミ ノ ] 、 テ トラキス ( 2, 2, 6 , 6 - テ トラメチル - 4 - ピペリ ジル) - 1 , 2 , 3 , 4 - ブタンテ トラ力ノレボキシレー ト 、 2 , 2 , 6, 6 - テ ト ラメ チル - 4 - ピペリ ジルベンゾエー ト、 ビス - ( 1, 2 , 6 , 6 - ペンタメチル - 4 - ピペリ ジル) - 2 - ( 3, 5 - ジ - t -プチノレ - - ヒ ドロキシべンジノレ) - 2 - n - プチルマロネー ト、 ビ ス - (N - メチル - 2, 2 , 6 , 6 - テ トラメチル - 4 - ピペリ ジル) セバケー ト、 1 , 1 ' - ( 1 , 2 - エタンジィル) ビス ( 3, 3, 5, 5 - テ トラメ チルピペラジノ ン) 、 (ミ ックス ト 2, 2, 6, 6 - テ トラメ チル - 4 - ピペリ ジル Zト リ デシル) - 1, 2 , 3 , 4 - ブタ ンテ ト ラカルポキシレー ト、 (ミ ックス ト 1, 2, 2, 6, 6 -ペン タメ チル - 4 - ピぺリ ジル / ト リ デシル) - 1 , 2 , 3, 4 - プタン テ ト.ラカルボキシレー ト、 ミ ックス ト 〔 2 , 2 , 6, 6 - テ ト ラメ チ ル - 4 - ピぺリ ジルノ β , β , β; , β ' - テ トラメチル - 3, 9 - [ 2, 4, 8, 1 0 - テ トラオキサスピロ ( 5, 5 ) ゥンデカン] ジェチル〕 - 1 , 2 , 3, 4 - ブタンテ トラカルボキシレー ト、 ミ ックス ト 〔 1 , 2, 2, 6, 6 -ペンタメチル - 4 - ピぺリ ジル / β , β , β ' , β ' -テ ト ラメ チル - 3 , 9 - [ 2, 4, 8, 1 0 - テ ト ラオキサス ピロ ( 5 , 5 ) ゥンデカ ン] ジェチル〕 - 1, 2 , 3 , 4 - ブタンテ ト ラ カルボキシレー ト、 N, N' - ビス ( 3 - ァミ ノ プロ ピ /レ) エチレン ジァミ ン - 2 , 4 - ビス [Ν - プチル - Ν - ( 1 , 2 , 2 , 6 , 6 -ぺ ンタメチル - 4 - ピぺリ ジル) ァミ ノ ] - 6 - ク ロ口 - 1, 3, 5 - ト リ アジン縮合物、 ポリ [ 6 - Ν - モルホリル - 1 , 3, 5 - ト リ アジ ン - 2, 4 - ジィル] [ ( 2, 2 , 6 , 6 - テ トラメチル - 4 一 ピぺリ ジル) ィ ミ ノ ] へキサメ チレン [ ( 2, 2, 6, 6 - テ トラメチル - 4 - ピペリ ジル) イ ミ ド] 、 Ν, Ν ' - ビス ( 2, 2 , 6 , 6 - テ ト ラメチル - 4 - ピペリ ジル) へキサメチレンジアミ ンと 1 , 2 - ジブ ロモェタンとの縮合物、 [ N - ( 2 , 2 , 6 , 6 -テ トラメチル - 4 - ピぺリジル) - 2 -メチル - 2 - ( 2 , 2 , 6 , 6 -テ トラメチル一 4 - ピペリ ジル) ィ ミ ノ ] プロピオンアミ ドなどを挙げることができ る。
また、 ニッケル系光安定剤の例としては、 ニッケルビス (ォクチルフ ェニル) サルファイ ド, 〔 2 , 2 ' —チォビス ( 4 — t e r t —ォク チ /レフエノ ラー ト) 〕 一 n—プチルァミ ン-ッケグレ, ニッケノレ一ジブ チノレジチォカーバメイ ト, ニッケルコンプレックス一 3 , 5 —ジ一 t e r t 一プチルー 4ーヒ ドロキシベンジノレ一リ ン酸モノェチレートな どが挙げられる。
これらの紫外線吸収剤や光安定剤は単独で用いてもよく、 二種以上を 組み合わせて用いてもよい。
本発明においては、 前記蛍光色素及び所望により用いられる紫外線吸 収剤ゃ光安定剤を微粒子に含有させて用いるが、 該微粒子と しては、 各種のポリマー微粒子 (ラテックス) 及ぴ無機微粒子が挙げられる。 この微粒子は、 透明なものが好ましいが、 薄膜化した際に、 少なく と も可視光に対して透明であれば、 問題はない。 したがって、 薄膜中の 微粒子は、 粒径 5 0 0 11 m以下の粒子が全粒子の 8 0重量%以上含ま れた分布を持つことが好ましく、 特に粒径 2 0 0 n m以下の粒子が全 粒子の 8 0重量%以上含まれた分布を持つことが好適である。
ポリマー微粒子 (ラテックス) としては、 天然ゴム, ポリスチレン, スチレン一ブタジエン共重合体, ポリブタジエンゴム, ポリイソプレ ンゴム, ク ロロプレンゴム, ブタジエンーァク リ ロニ ト リル共重合体, プタジェンースチレン一ビュルピリジン共重合体, メチルメ タク リ レ 一トーブタジエン共重合体, ポリ ウレタン, 酢酸ビュル樹脂系, ェチ レン—酢酸ビュル共重合体, ポリ塩化ビュル, ポリ塩化ビ-リデン, ポリエチレン, シリ コーン榭脂, ポリ ブテン, ポリ アタ リ レー ト系, ポリメタク リ レー ト系, ポリ (アタ リ レー ト一メ タク リ レー ト) 系、 あるいは上記ポリマーのモノマーが重合架橋したポリマー等が挙げら れる。
無機微粒子と しては、 酸化チタン (チタニア) 、 酸化ケィ素 (シリカ) 、 酸化アルミニウム (アルミナ) などが挙げられる。 この無機微粒子は、 平均粒径 5 0 0 n m以下のコロイ ド状態のものが市販されている。
前記蛍光色素を微粒子に含ませた形態としては、 主と して微粒子中に 該色素を分散させた形態のものと、 微粒子表面に該色素を物理的に吸 着又は化学的に結合させた形態のものがある。
蛍光色素を分散させた微粒子を調製する方法としては特に制限はなく - 例えば以下に示す方法を好ましく用いることができる。
まず、 水などの溶媒中に、 前記ポリマー微粒子 (ラテックス) を形成 するモノマー, 蛍光色素, 重合開始剤, 乳化剤又は分散剤を投入して 乳化させたのち、 所要の条件で加熱又は紫外線照射して乳化重合させ ることにより、 蛍光色素を分散した微粒子 (ポリマ一ラテックス) の 分散液を得る。 なお、 分散剤又は乳化剤を使用しないで、 上記分散液 を得る場合もある。 ここで、 ポリマーラテックス微粒子の粒径は、 モ ノマー濃度や重合条件を適宜選定することにより制御することができ、 平均粒径 5 0 0 n m以下の微粒子を容易に調製することができる。
また、 微粒子重合工程において、 ビュル基等の重合性二重結合基を分 子中に複数個有する架橋剤をモノマーに配合すると、 得られる微粒子 は架橋構造を持ち、 ガラス転移温度の高い微粒子が得られる。 さらに、 ' この重合工程において、 紫外線吸収剤や光安定剤を同時に添加してお けば、 それを含有する微粒子が得られる。 この他、 蛍光色素を含む微粒子を得る方法と して、 分散機等を利用し て蛍光顔料を機械的に粉砕し、 粒径を小さくすることにより得る方法 も可能である。 蛍光顔料は、 蛍光色素をメ ラ ミ ン樹脂、 尿素樹脂、 ス ルホンアミ ド樹脂、 ベンゾグアナミ ン樹脂、 アク リル樹脂、 塩ビ樹脂 等の合成樹脂中に溶解、 又は重合過程中に色素を混入し、 得られた着 色樹脂を機械的に数ミ クロンのサイズまで粉砕したものである。 これ を水又は有機溶媒中に分散剤と ともに分散させ、 平均粒径 5 0 0 n m 以下の蛍光顔料粒子を得ることも可能である。 粉砕及び分散は、 ボー ノレミ /レ、 ビーズミル、 サンドミル、 3本ロールミノレ、 高速度衝撃ミル等 の分散機が用いられる。
一方、 蛍光色素を微粒子の表面に物理的に吸着又化学的に結合させた 微粒子を調製する方法と しては特に制限はなく、 例えば以下に示す方 法を好ましく用いることができる。
まず、 水などの溶媒中に、 前記ポリマー微粒子 (ラテックス) や無機 微粒子などを分散させて分散液を作製したのち、 これに蛍光色素を加 えて、 該色素と微粒子との静電的相互作用又は酸塩基相互作用によつ て、 微粒子表面に蛍光色素を物理吸着させたり、 あるいは蛍光色素の 官能基と微粒子の官能基とを、 所要の条件で加熱又は紫外線照射など の方法により、 化学的に結合させたり じて、 該色素を表面に吸着又は 結合させた微粒子の分散液を得ることができる。 なお、 この際、 蛍光 色素と ともに、 紫外線吸収剤や光安定剤を加えることにより、 それら が表面に吸着又は結合した微粒子の分散液が得られる。
これらの方法において用いられる溶媒としては、 水の他に、 へキサン, グリ コール類, アルコール類, ケトン類な.どが用いられる。 また、 分 散剤や乳化剤と しては、 イオン性や非イオン性界面活性剤が好ましく 用いられる。 例えば、 水分散の場合は、 イオン性のァニオン性界面活 性剤と しては、 アルキルサルフェー ト, アルキルァリルスルホネー ト, ジアルキルサクシネー ト, アルキルナフタ レンスルホネー ト, アルキ ルァミ ドスルホネート等が挙げられ、カチオン性界面活性剤としては、 脂肪族ァミ ン塩, アルキル第 4級アンモニゥム塩等が挙げられる。 一 方非ィオン性界面活性剤としては、 ポリォキシエチレンアルキルエー テル, ポリ ォキシエチレンアルキルァリールエーテル等が挙げられる。 水以外の有機溶剤に分散させる場合は、 脂肪族又は芳香族の酸及ぴそ れらの金属石鹼, 脂肪族アミ ド, 脂肪族エステル, 蠟, ステアリ ン, プロテイン, 脂肪族ァミ ン及びその塩, 第 4級アンモニゥム塩, 多価 アルコールの脂肪酸部分エステル等が挙げられる。 さ らに、 高分子界 面活性剤なども用いられる。
また、 ポリマー微粒子を形成するモノマーの重合開始剤としては、 例 えば過硫酸アンモニゥム, 過硫酸カ リ ウム, 過酸化水素などが挙げら れる。 さらに、 乳化剤, 分散剤を用いない場合には、 形成した色素を 含む微粒子の静電的反発による安定化と重合開始剤の両方の役割を持 つものと して、 先の過硫酸塩の他に、 ァゾービス (イ ソプチロニ ト リ ル硫酸ナ ト リ ウム) (略して A I B N ) , ァゾービス (イ ソプチルァ ミジン塩酸塩) (略して A I B A ' 2 H C I ) がある。
また添加剤と して、 スチレン硫酸ナトリ ウム (略して N a S S ) , 2 ースルホンェチルメタク リ レートナト リ ゥム塩 (略して N a S E M ) などがあり、 この添加剤を加える濃度によ り色素を含む微粒子の粒径 を小さくすることができる。 他には、 アタ リル酸, マレイン酸, フマ ール酸などが微粒子表面に弱酸基を導入するために使用することがで きる。 さ らに、 各種モノマーの架橋を助けるジメチルアミ ノエタノ一 ル, ジェチルァミ ノエタノールなどのァミ ン触媒も添加剤と して用い ることができる。 また、 マイ ク ロカプセルの手法を用いて、 微粒子の表面層に蛍光色素 を含む層を形成することも可能である。 マイ ク ロカプセルの方法と し ては、 界面重合法, i n — s i t u重合法, 相分離法, 液中乾燥法, 融解分散冷却法, スプレードライ ング法, パンコーティ ング法等があ り、 適宜選択して所望の粒子を得ることができる。 この場合、 紫外線 吸収剤や光安定剤を同時に添加することで、 表面層に紫外線吸収層又 は光安定化層を形成することが可能となる。
その他、 金属アルコキシド等を用いたゾル—ゲル法によって、 シリカ 等の無機物質中に蛍光色素が含有された微粒子や微粒子の表層に蛍光 色素を含む層を形成することが可能である。
このよ うにして得られた蛍光色素及び所望により紫外線吸収剤や光安 定剤を含む微粒子は、 得られる蛍光変換媒体の耐熱性の面から、 ガラ ス転移温度が 8 0 °C以上のものが好ましく、 特に 1 1 0 °C以上のもの が好適である。 ' 本発明の蛍光変換媒体は、 このようにして得られた蛍光色素及ぴ所望 によ り紫外線吸収剤や光安定剤を含む微粒子の分散液と、 バインダー 樹脂を用いて蛍光変換媒体形成用分散液を調製したのち製膜し、 硬化 させることにより、 好ましくは薄膜状に製造することができる。
ここで、 蛍光色素は蛍光色素と微粒子の合計量に対し、 0 . 1から 2 0重量%、 好ま しく は、 0 . 5力 ら 1 0重量%、 最も好ましく は 1 か ら 7重量%使用される。 この色素の割合が 0 . 1重量%未満では発色 が十分なく、 2 0重量%を越えると微粒子中に含まれる色素同志の会 合による濃度消光によって、 蛍光性能が低下してしまう。
パインダ一樹脂と しては、 ォリ ゴマー又はポリマー形態のメラミン樹 脂, フエノール樹脂, アルキド樹脂, エポキシ樹脂, ポリ ウレタン樹 脂, マレイ ン酸樹脂, ポリアミ ド系樹脂, あるいはポリメチルメタク リ レート, ポリアク リ レー ト, ポリカーボネート, ポリ ビュルアルコ 一ノレ, ポリ ビニルピロ リ ドン, ヒ ドロキシェチ /レセルロース, カスレボ キシメチルセルロールなどが挙げられる。 これらは単独で用いてもよ く、 二種以上を組み合わせて用いてもよい。
また、 蛍光変換膜のパターユングの目的で、 感光性樹脂を使用するこ ともできる。 この感光性樹脂と しては、 通常感光剤を含む反応性ビ.二 ル基を有するアク リル酸, メタク リル酸系の光重合型ゃポリケィ皮酸 ビニルなどの光架橋型などが用いられる。 なお、 感光剤を含まない場 合は、 熱硬化型のものを用いてもよい。
いずれにしても、 このバインダー樹脂と しては、 可視光に対して透明 性の高いものを用いるのが有利である。
蛍光変換媒体形成用分散液は、 適当な溶剤と、 前記の蛍光色素及ぴ所 望によ り紫外線吸収剤や光安定剤を含む微粒子の分散液と、 バインダ 一樹脂とを、 蛍光変換膜の製膜やパターニングに適した粘度になるよ うに混合し、 必要に応じ、 超音波照射やボールミル, サンドミル, 三 本ロールなどの分散機により分散処理することにより、 調製すること ができる。 ここで、 蛍光色素及び所望により紫外線吸収剤や光安定剤 を含む微粒子は該微粒子とバインダ一樹脂の合計量に対し、 1から 7 0重量%、 好ましく は、 5から 6 0重量%、 最も好ましく は 1 0から 5 0重量%使用される。 この微粒子の割合が 1重量%未満では発色が 十分でなく、 7 0重量%を越えると微粒子同志の凝集によって製膜性 が悪く、 透明性が悪い膜となってしま う。
本発明の蛍光変換媒体、 特に蛍光変換膜は、 通常このよ うにして調製 した蛍光変換膜形成用分散液を用い、 例えばスピンコート, ロールコ ー ト, キャスティ ング, 電着などの方法で、 所望の厚さに製膜したの ち、 パターユング (平面的に分離配置) し、 硬化させることによ り、 製造することができる。 なお、 蛍光変換膜での使用の他に、 ポリマー 板に混入することによ り蛍光変換板と して用いてもよく、 また蛍光体 を覆う媒体としてもよい。 例えば、 青色又は緑色 L E Dのハウジング 樹脂中に添加された色変換媒体と しても好ましく用いられる。 蛍光変 換板をバックライ ト導光板に用い、 青色光を緑色, 赤色, 白色などに 変換することができる。
上記パターニングは、 感光性樹脂 (レジス ト) をバイ ンダ一樹脂と し て用いればフォ トリ ソグラフィ一法でもよいし、 感光性又は非感光性 のいずれの樹脂でも、 適当な版材を選んで、 印刷 (凸版印刷法, スク リーン印刷法, オフセッ ト印刷法, 凹版印刷法) してもよい。
製膜及びパターニング後は、 常温〜 2 5 0 °C (榭脂の硬化温度以上) 程度の温度で乾燥又はべ一ク して、 硬化させれば、 蛍光色素を含む微 粒子を含有する所望の本発明の蛍光変換膜が得られる。 通常、 蛍光変 換膜形成用分散液の分散安定性がよければ、溶剤成分を除いただけで、 分散液中の該色素を含んだ微粒子め粒径がそのまま保持されてバイ ン ダー樹脂中に分散して固化されている。
本発明における発光体と しては、 特に制限はなく、 例えば E L, L E D , V F D , P D Pなどの各素子を挙げることができるが、 これらの 素子の中で、 有機 E L素子が好適である。 有機 E L素子の場合には、 先に記載したよ うに、 高効率で高輝度の青 発光が実現されており、 また、 有機物で構成されるため、 あらゆる色の発光が有機物の設計に より達成される期待が大きいためである。 なお、 発光体の種類が異な つても、 ある一色の発光体の発光を吸収できる位置に蛍光変換膜を重 ね併せれば、 容易に発光体の光を可視光の蛍光に変換は可能である。 この有機 E L素子は、 基本的には一対の電極の間に発光層を挾持し、 必要に応じ正孔注入層や電子注入層を介在させた構造を有している。 具体的には、
( 1 ) 陽極 Z発光層/陰極
( 2 ) 陽極 正孔注入層/発光層ノ陰極
( 3 ) 陽極 発光層 Z電子注入層 Z陰極
( 4 ) 陽極/正孔注入層/発光層/電子注入層 陰極
などの構造がある。 '
上記発光層は ( 1 ) 電界印加時に、 陽極又は正孔注入層により正孔を 注入することができ、 かつ陰極又は電子注入層より電子を注入するこ. とができる注入機能、 ( 2 ) 注入した電荷 (電子と正孔) を電界の力 で移動させる輸送機能、 ( 3 ) 電子と正孔の再結合の場を発光層内部 に提供し、 これを発光につなげる発光機能などを有している。 ただし、 正孔の注入されやすさ と電子の注入されやすさに違いがあってもよく、 また、 正孔と電子の移動度で表される輸送機能に大小があってもよい が、 どちらか一方の電荷を移動させる機能を有するものが好ましい。 この発光層に用いられる発光材料の種類については特に制限はなく 、 従来有機 E L素子における発光材料と して公知のものを用いることが できる。 このよ うな発光材料は主に有機化合物であり、 具体的には所 望の色調により、 次の化合物が挙げられる。
まず、 紫外領域ないし紫色領域の発光を得る場合には、 下記の一般式 で表される化合物が挙げられる。
Figure imgf000018_0001
の一般式において、 Xは下記の基を示す <
Figure imgf000018_0002
ここで、 mは 2〜 5の整数である。 また Yはフエ-ル基又はナフチル 基を示す。
上記 X及ぴ Yで表される基, すなわちフエ二レン基, フエ-ル基, ナ フチル基は炭素数 1〜 4のアルキル基, アルコキシ基, 水酸基, スル ホ-ル基, カルボニル基, アミノ基, ジメチルァミノ基, ジフエニル アミ ノ基等が単独又は複数置換したものであってもよい。 また、 これ らは互いに結合し、. 飽和 5員環, 6員環を形成してもよい。 またフエ -ル基, フエ-レン基, ナフチル基はパラ位で結合したものが基板と の結合性 (密着性) がよく、 平滑な蒸着膜の形成のために好ましい。 具体的には下記化合物を挙げることができる。
(1 )
(PQP)
Figure imgf000019_0001
Figure imgf000019_0002
Figure imgf000019_0003
(5)
じ—
/厂 G H3 s
Figure imgf000020_0001
Figure imgf000021_0001
Figure imgf000021_0002
Figure imgf000021_0003
Figure imgf000021_0004
なお、 上記 P Q Pは ρ—クォータ一フエニル, T B Sは 3, 5, 3 ' ' ',', 5,,,,,一テ トラ一 t e r t —プチルー p—セキシフエ-ル, T B Qは 3 , 5, 3 " " , 5,,',一テ トラ— t e r t —プチルー p—ク インクフエニルである。
これらの中で、 特に p—クォーターフエ-ル誘導体及ぴ p—クインク フェ -ル誘導体が好ましい。
次に、 青色ないし緑色の発光を得るためには、 例えば、 ベンゾチアゾ ール系, ベンゾイミダゾール系, ベンゾォキサゾール系等の蛍光增白 剤, 金属キレー ト化ォキシノイ ド化合物, スチリ ルベンゼン系化合物 などを挙げることができる。
具体的に化合物名を示せば、 例えば、 特開昭 5 9— 1 9 4 3 9 3号公 報に開示されているものが挙げられる。 その代表例と しては、 2, 5 一ビス ( 5, 7—ジー t 一ペンチル一 2—べンゾォキサゾリル) 一 1, 3, 4ーチアジアゾール ; 4, 4 ' 一ビス ( 5, 7— t —ペンチル— 2—ベンゾォキサゾリル) スチルベン ; 4 , 4, —ビス 〔 5, 7—ジ - ( 2—メチル _ 2—プチル) - 2—ベンゾォキサゾリル〕 スチルベ ン ; 2, 5—ビス ( 5, 7—ジ一 t —ペンチル一 2—ベンゾォキサゾ リ ル) チォフェン ; 2 , 5— ビス 〔 6— α, α—ジメチノレベンジル一 2—ベンゾォキサゾリ ル〕 チォフェン ; 2, 5 _ビス 〔 5 , 7—ジー
( 2—メチル一 2—プチル) _ 2—ベンゾォキサゾリ ル〕 一 3, 4一 ジフエ二ルチオフェン ; 2, 5 —ビス ( 5—メチルー 2—ベンゾォキ サゾリ ル) チォフェン ; 4, 4 ' 一 ビス ( 2—ベンゾォキサゾリ ル) ビフエ-ル ; 5 —メチル一 2— 〔 2— [ 4 - ( 5—メチノレ一 2—ベン ゾォキサゾリ ル) フエ -ル〕 ビニグレ〕 ベンゾォキサゾ一/レ ; 2— 〔 2 一 ( 4—クロ口フエニル) ビュル〕 ナフ ト 〔 1 , 2— d〕 ォキサゾー /レ等のベンゾォキサゾ一/レ系、 2, 2 ' - ( p—フエ二レンジビニレ ン) 一ビスべンゾチアゾール等のベンゾチアゾール系、 2— 〔 2— 〔4 ― (ベンゾイ ミダゾリル) フエニル〕 ビュル〕 ベンゾイ ミダゾール ;
2 - 〔 2— ( 4一カルボキシフエ二ノレ) ビ二ル〕 ベンゾイ ミダゾ一ノレ 等のベンゾイ ミダゾール系等の蛍光増白剤が挙げられる。 さ らに、 他 の有用な化合物は、 ケミス ト リー ' ォブ ' シンセティ ック · ダイズ 1 9 7 1, 6 2 8〜6 3 7頁及ぴ 6 4 0頁に列挙されている。
また、 前記スチリルベンゼン系化合物としては、 例えば欧州特許第 0
3 1 9 8 8 1号明細書や欧州特許 0 3 7 3 5 8 2号明細書に開示され ているものを用いることができる。 その代表例と しては、 1 , 4—ビ ス ( 2—メ チルスチリノレ) ベンゼン ; 1 , 4—ビス ( 3—メチルスチ リスレ) ベンゼン ; 1 , 4—ビス ( 4ーメチルスチリル) ベンゼン ; ジ スチリルベンゼン ; 1, 4—ビス ( 2—ェチルスチリ ル) ベンゼン ; 1, 4一ビス ( 3—ェチルスチリノレ) ベンゼン ; 1, 4一ビス ( 2— メチルスチリ ル) _ 2—メチ /レベンゼン ; 1 , 4—ビス ( 2—メ チノレ スチリル) 一 2—ェチルベンゼン等が挙げられる。
さらに、 上述した蛍光増白剤, スチリルベンゼン系化合物等以外に、 例えば 1 2—フタ口ペリ ノ ン (J. Appl. Phys.,第 2 7卷, L 7 1 9 ( 1 9 8 8年) ) ; 1, 4ージフエ -/レ一 1, 3—ブタジエン ; 1 , 1, 4, 4—テ トラフエ二ルー 1, 3—ブタジエン (以上、 Appl. Phys. Let t.,第 5 6卷, L 7 9 9 ( 1 9 9 0年) ) , ナフタルイミ ド誘導体 (特 開平 2 - 3 0 5 8 8 6号公報) , ぺリ レン誘導体 (特開平 2— 1 8 9 8 9 0号公報) , ォキサジァゾール誘導体 (特開平 2— 2 1 6 7 9 1 号公報、 又は第 3 6回応用物理学関係連合講演会で浜田らによって開 示されたォキサジァゾール誘導体) , アルダジン誘導体 (特開平 2— 2 2 0 3 9 3号公報) , ビラジリ ン誘導体 (特開平 2— 2 2 0 3 9 4 号公報) 、 シク ロペンタジヱン誘導体 (特開平 2— 2 8 9 6 7 5号公 報) , ピロ 口 ピロール誘導体 (特開平 2— 2 9 6 8 9 1号公報) , ス チリルアミ ン誘導体 (Appl. Phys. Lett.,第 5 6卷 L 7 9 9 ( 1 9 9 0 年) ) , クマリ ン系化合物 (特開平 2 — 1 9 1 6 9 4号公報) , 国際 公開公報 W〇 9 0 / 1 8 1 4 8や Appl. Phys. Lett., vol. 5 8, 1 8, P 1 9 8 2 ( 1 9 9 1 ) に記載されているよ うな高分子化合物等も、 発光層の材料として用いることができる。
本発明では、 特に発光層の材料として、 芳香族ジメチリデン系化合物
(欧州特許第 0 3 8 8 7 6 8号明細書ゃ特開平 3— 2 3 1 9 7 0号公 報に開示のもの) を用いることが好ま しい。 具体例と しては、 1, 4 —フエ-レンジメチリディ ン ; 4, 4', 一フエ二レンジメチリディ ン ; 2, 5—キシリ レンジメチリディ ン ; 2, 6—ナフチレンジメチリ デ イ ン ; 1, 4—ビフエ -レンジメチリ ディ ン ; 1, 4— p—テレフエ 二レンジメ チリ ディ ン ; 4 , 4 ' —ビス ( 2, 2—ジ一 t —プチルフ ェ -ルビ-ル) ビフエ -/レ (以下、 D T B P V B i と略記する) ; 4, 4 ' — ビス ( 2, 2—ジフエニノレビ-ノレ) ビフエ -ル (以下、 D P V B i と略記する) 等、 及びそれらの誘導体が挙げられる。
さらに、 特開平 5— 2 5 8 8 6 2号公報などに記載されている一般式
(R— Q)2— A 1 - O - L
(式中、 Lはベンゼン環を含む炭素数 6〜 2 4の炭化水素基、 O— L はフエノラ一ト配位子、 Qは置換 8—キノ リ ノラート配位子を示し、 Rはアルミニウム原子に置換 8—キノ リ ノラート配位子が 2個を上回 り結合するのを立体的に妨害するよ うに選ばれた 8—キノ リ ノラー ト 環置換基を示す。 )
で表される化合物も挙げることができる。 この化合物の例としては、 ビス ( 2—メチル一 8 _キノ リ ノ ラー ト) ( p—フエユルフェノ ラ一 ト) アルミニウム (Ι Π) (以下、 P C— 7 ) , ビス ( 2—メチルー 8 一キノ リノラート) ( 1—ナフ トラート) アルミユウム (I II) (以下、 P C - 1 7 ) などが挙げられる。
その他、 高効率の青色と緑色の混合発光を得るために、 ホス トである 上記発光材料に ドーパントを加えたもの (特開平 6 - 9 9 5 3号公報 など) を挙げることができる。 該ドーパント と しては、 例えば青色領 域ないし緑色領域の蛍光色素、 具体的にはクマリ ン系あるいは上記の ホス ト と して用いられるものと同様な蛍光色素などが挙げられる。 特 に、 ホス トと して芳香族ジメチリディ ン化合物の発光材料、 好ましく は D P V B i と、 ドーパン トと してジフエ-ルアミノスチリルァリー レン骨格を有するもの、 好ましく は 1, 4 —ビス 〔4一 〔N, N—ジ フエ-ルァミ ノ) スチリル〕 ベンゼン (D P A V B ) との組合せを好 ましく挙げることができる。
上記材料を用いて発光層を形成する方法と しては、 例えば蒸着法, ス ピンコー ト法, キャス ト法, L B法などの公知の方法によ り薄膜化す ることにより形成することができるが、 特に分子堆積膜であることが 好ましい。 ここで、 分子堆積膜とは、 該ィ匕合物の気相状態から沈着さ れ形成された薄膜や、 該化合物の溶融状態又は液相状態から固体化さ れ形成された膜のことである。 通常、 この分子堆積膜は L B法によ り 形成された薄膜 (分子累積膜) と凝集構造, 高次構造の相違や、 それ に起因する機能的な相違により区別することができる。
また、 この発光層は、 特開昭 5 7— 5 1 7 8 1号公報に記載されてい るよ うに、 樹脂などの結着剤とともに上記発光材料を溶剤に溶かして 溶液と したのち、 これをスピンコート法などにより薄膜化して形成す ることができる。
このよ うにして形成された発光層の膜厚については特に制限はなく、 状況に応じて適宜選択することができるが、 通常は 5 n n!〜 5 μ mの 範囲である。
この E L素子における陽極としては、 仕事関数の大きい (4 e V以上) 金属, 合金, 電気伝導性化合物及びこれらの混合物を電極物質とする ものが好ま .しく用いられる。 このよ うな電極物質の具体例としては A uなどの金属, C u I , インジウムチンォキシド ( I T O ) , インジ ゥムジンクオキシド ( I n— Z n — O ) , S n〇2, Z n〇などの導電 性透明材料が挙げられる。 該陽極は、 これらの電極物質を蒸着ゃスパ ッタリ ングなどの方法によ り、 薄膜を形成させ、 フォ ト リ ソグラフィ 一法で所望の形状のパターンを形成してもよく、 あるいはパターン精 度をあまり必要と しない場合は ( 1 0 0 /i m以上程度) 、 上記電極物 質の蒸着ゃスパッタ リ ング時に所望の形状のマスクを介してパターン を形成してもよい。 この陽極より発光を取り 出す場合には、 透過率を 1 0 %より大き くすることが望ましく 、 また、 陽極と してのシート抵 抗は数百 Ω /口以下が好ましい。
さらに膜厚は材料にもよるが、 通常 1 0 n n!〜 1 At m, 好ましくは 1 0〜 2 0 0 n mの範囲で選ばれる。
一方、 陰極としては、 仕事関数の小さい ( 4 e V以下) 金属 (電子注 入性金属と称する) , 合金, 電気伝導性化合物及ぴこれらの混合物を 電極物質とするものが用いられる。 このよ うな電極物質の具体例と し ては、 ナト リ ウム, ナ ト リ ウム—カ リ ウム合金, マグネシウム, リチ ゥム, マグネシウム 銅混合物, マグネシウム/銀混合物, マグネシ ゥム /アルミニウム混合物, マグネシウム Zインジウム混合物, アル ミニゥム /酸化アルミニウム (A 1 2 0 3 ) 混合物, インジウム, リチ ゥム /アルミニウム混合物, 希土類金属などが挙げられる。 これらの 中で、 電子注入性及び酸化などに対する耐久性の点から、 電子注入性 金属とこれよ り仕事関数の値が大きく安定な金属である第二金属との 混合物、 例えばマグネシウム Z銀混合物, マグネシウム zアルミ -ゥ ム混合物, マグネシウム/インジウム混合物, アルミ ニウム/酸化ァ ルミニゥム (A l 23 ) 混合物, リチウム/アルミニウム混合物など が好適である。 該陰極は、 これらの電極物質を蒸着やスパッタ リ ング などの方法によ り、 薄膜を形成させることによ り、 作製することがで きる。 また、 陰極と してのシート抵抗は数百 Ω Ζ口以下が好ましく、 膜厚は通常 1 0 n, n!〜 1 ζ ΐη, 好ましく は 5 0〜 2 0 O n mの範囲で 選ばれる。 なお、 発光を透過させるため、 有機 E L素子の陽極又は陰 極のいずれか一方が、 透明又は半透明であれば発光効率が向上し好都 合である。
次に、 必要に応じて設けられる正孔注入層は、 陽極より注入された正 孔を発光層に伝達する機能を有し、 この正孔注入層を陽極と発光層の 間に介在させることにより、 より低い電界で多く の正孔が発光層に注 入され、 そのう え、 発光層に陰極又は電子注入層より注入された電子 は、 発光層と正孔注入層の界面に存在する電子の障壁によ り、 発光層 内の界面に累積され発光効率が向上するなど発光性能の優れた素子と なる。
この正孔注入層の材料 (以下、 正孔注入材料という) については、 前 記の好ましい性質を有するものであれば特に制限はなく、 従来、 光導 伝材料において、 正孔の電荷注入輸送材料と して慣用されているもの や E L素子の正孔注入層に使用される公知のものの中から任意のもの を選択して用いることができる。
上記正孔注入材料は、 正孔の注入、 電子の障壁性のいずれかを有する ものであり、 有機物, 無機物のいずれであってもよい。
この正孔注入材料としては、 例えばトリァゾール誘導体, ォキサジァ ゾール誘導体, イ ミダゾール誘導体, ポリアリールアルカン誘導体, ピラゾリン誘導体及ぴピラゾロン誘導体, フエ二レンジァミン誘導体, ァリールァミ ン誘導体, ァミ ノ置換カルコン誘導体, ォキサゾール誘 導体, スチリルアントラセン誘導体, フルォレノ ン誘導体, ヒ ドラゾ ン誘導体, スチルベン誘導体, シラザン誘導体, ポリ シラン, ァユリ ン系共重合体、 また、 導電性高分子オリ ゴマー、 特にチォフェンオリ ゴマーなどが挙げられる。
正孔注入材料としては、 上記のものを使用することができるが、 ポル フイ リ ン化合物, 芳香族第三級ァミ ン化合物及ぴスチリルアミ ン化合 物、 特に芳香族第三級ァミン化合物を用いることが好ましい。
上記ポリ フイ リ ン化合物の代表例としては、 ポリ フィ リ ン ; 1, 1 0 , 1 5, 2 0—テ トラフエ二/レー 2 1 H, 2 3 H—ポリ フィ リ ン銅 ( I I ) ; 1, 1 0, 1 5 , 2 0—テ トラフエニル一 2 1 H, 2 3 H—ポ リ フィ リ ン亜鉛 ( I I ) ; 5, 1 0, 1 5 , 2 0—テ トラキス (ペン タフ/レオ口フエニル) 一 2 1 H, 2 3 H—ポリ ブイ リ ン ; シリ コンフ タロシアニンォキシ ド ; アルミ ニウムフタ ロシアニンク ロ リ ド ; フタ ロシアニン (無金属) ; ジリチウムフタロシアニン ; 銅テ トラメチル フタ ロシア-ン ; 銅フタロシアニン ; ク ロムフタロシアニン ; 亜鈴フ タロシアニン ; 口、フタシァニン;チタニウムフタロシアニンォキシ ド ; マグネシウムフタロシアニン ; 銅ォクタメチルフタロシアニン等が挙 げられる。
上記芳香族第三級ァミン化合物及びスチリルァミ ン化合物の代表例と しては、 N, N, N ' , N ' ーテ トラフエニル一 4, 4, ージァミ ノ フエ -ル ; N, N ' —ジフエ -ルー N, N ' —ビス ( 3—メチルフエ ニル) 一 〔 1, 1, ービフエ-ル〕 一 4 , 4 ' —ジァミ ン (T P D) ; 2, 2—ビス ( 4—ジ一 p— トリルァミ ノ フエ-ル) プロパン ; 1, 1 一ビス ( 4ージ一 p— ト リルァミ ノ フエ-ル) シク ロへキサン ; N, N, N ' , N, ーテ トラー p— ト リル一 4, 4, 一ジアミ ノ ビフエ - ル ; 1 , 1 一ビス (4ージー p— ト リルァミ ノ フエ -ル) 一 4—フエ 二ルシク 口へキサン ; ビス (4ージメチルァミ ノ 一 2—メチ /レフエ - ル) フエ -ルメ タン ; ビス (4—ジ一 p— ト リルァミ ノ フエ二ル) フ ェニルメ タン ; N, N ' ージフエ -ルー N, N ' ージ ( 4—メ トキシ フエニル) 一 4 , 4 ' ージアミ ノ ビフエ -ル ; N, N , N, , N, - テ ト ラフエ -ルー 4 , 4, ージア ミ ノ ジフ エ -ノレエーテル ; 4, 4, 一ビス (ジブェニルァ ミ ノ) クオー ドリ フエ -ル ; N, N, N— ト リ ( p— ト リ ル) ァミ ン ; 4一 (ジー p— ト リルァミ ノ) 一 4 ' ― 〔 4 - (ジ一 p— ト リルァ ミ ノ) スチリル〕 スチルベン ; 4一 N, N—ジ フエ二/レアミ ノ ー ( 2 —ジフエ -ルビニル) ベンゼン ; 3—メ トキシ 一 4 ' - N , N—ジフエ二ルアミ ノスチルベンゼン ; N—フエ二ルカ ルバゾール、 さ らには、 米国特許第 5 0 6 1 5 6 9号明細書に記載さ れている 2個の縮合芳香族環を分子内に有するもの、 例えば 4, 4 ' ―ビス 〔N— ( 1 —ナフチル) 一 N—フエニルァミ ノ〕 ビフエ-ル (N P D) 、 特開平 4一 3 0 8 6 8 8号公報に記載されている ト リ フエ - ルァミ ンユニッ トが 3つスターバース ド型に連結された 4, 4 ' , 4, ,ー ト リ ス 〔N— ( 3—メチルフエニル) 一 N—フエ-ルァミ ノ〕 ト リ フエ-ルァミ ン (MTDATA) などが挙げられる。
また、 発光層の材料と して示した前述の芳香族ジメチリディ ン系化合 物、 p型— S i , p型一 S i Cなどの無機化合物も正孔注入材料と し て使用することができる。
この正孔注入層は、 上記正孔注入材料を、 例えば真空蒸着法, スピン コー ト法, キャス ト法, L B法などの公知の方法によ り、 薄膜化する ことにより形成することができる。 正孔注入層の膜厚については特に 制限はない力 、 通常は 5 n n!〜 5 /i m程度である。 この正孔注入層は、 上記材料の一種又は二種以上からなる一層構造であつてもよく、 同一 組成又は異種組成の複数層からなる積層構造であってもよい。
さらに、 必要に応じて用いられる電子注入層は、 陰極より注入された 電子を発光層に伝達する機能を有していればよく、 その材料と しては 従来公知の化合物の中から任意のものを選択して用いることができる。 この電子注入層に用いられる材料 (以下、 電子注入材料という) の例 と しては、 ニ トロ置換フルオレン誘導体, ジフエ二ルキノ ン誘導体, チォピランジオキシド誘導体, ナフタレンペリ レンなどの複素環テ ト ラカルボン酸無水物, カルポジイ ミ ド, フレオレニリデンメタン誘導 体, アントラキノジメ タン及びアントロン誘導体, ォキサジァゾール 誘導体などが挙げられる。'
また、 特開昭 5 9— 1 9 4 3 9 3号公報に記載されている一連の電子 伝達性化合物は、 該公報では発光層を形成する材料と して開示されて いるが、 本発明者らが検討の結果、 電子注入材料と して用いうること が分かった。
さらに、 上記ォキサジァゾール誘導体において、 ォキサジァゾール環 の酸素原子を硫黄原子に置換したチアジアゾール誘導体、 電子吸引基 と して知られているキノキサリ ン環を有するキノキサリ ン誘導体も、 電子注入材料と して用いることができる。
また、 8—キノ リ ノール誘導体の金属錯体、 例えばトリス ( 8—キノ リ ノール) アルミニウム (A l q) , トリ ス ( 5, 7—ジク ロ口一 8 —キノ リ ノール) アルミニウム, ト リ ス ( 5, 7—ジブ口モー 8 —キ ノ リ ノール) アルミニウム, ト.リス ( 2—メチルー 8—キノ リ ノール) アルミ -ゥム, トリス ( 5—メチル一 8 _キノ リ ノール) アルミニゥ ム, ビス ( 8—キノ リ ノール) 亜鉛 ( Z n q ) など、 及ぴこれらの金 属錯体の中心金属が I n , M g , C u, C a, S n , G a又は P bに 置き替わった金属錯体も、 電子注入材料として用いることができる。 その他、 メ タルフリー若しく はメタルフタロシアニン、 又はそれらの 末端がアルキル基ゃスルホン酸基などで置換されているものも、 電子 注入材料と して好ましく用いることができる。 また、 発光層の材料と して例示したジスチリルビラジン誘導体も、 電子注入材料と して用い ることができる し、 正孔注入層と同様に、 n型一 S i, n型一 S i C などの無機半導体も電子注入材料として用いることができる。
この電子注入層は、 上記化合物を、 例えば真空蒸着法, スピンコート 法, キャス ト法, L B法などの公知の薄膜化法により製膜して形成す ることができる。 電子注入層と しての膜厚は、 特に制限はないが、 通 常は 5 n m〜 5 i mの範囲で選ばれる。
この電子注入層は、 これらの電子注入材料一種又は二種以上からなる 一層構造であってもよいし、 あるいは、 同一組成又は異種組成の複数 層からなる積層構造であってもよい。
次に、 該有機 E L素子を作製する好適な例を説明する。 例として、 前 記の陽極 Z正孔注入層/発光層 Z電子注入層/陰極からなる E L素子 の作製法について説明すると、 まず適当な基板上に、 所望の電極物質、 例えば陽極用物質からなる薄膜を、 1 // m以下、 好ましく は 1 0〜 2 0 0 n mの範囲の膜厚になるよ うに、 蒸着ゃスパッタ リ ングなどの方 法によ り形成させ、 陽極を作製する。 次に、 この上に素子材料である 正孔注入層, 発光層, 電子注入層の材料からなる薄膜を形成させる。 この薄膜化の方法と しては、 前記の如くスピンコート法, キャス ト法, 蒸着法などがあるが、 均質な膜が得られやすく、 かつピンホールが生 成しにくいなどの点から、 真空蒸着法が好ましい。 この薄膜化に、 こ の蒸着法を採用する場合、 その蒸着条件は、 使用する化合杨の種類, 分子堆積膜の目的とする結晶構造, 会合構造などによ り異なるが、 一 般にボート加熱温度 5 0〜 4 5 0 °C , 真空度 1 0 - e〜 1 0— 3 P a, 蒸 着速度 0. 0 1 〜 5 0 n m Z秒, 基板温度— 5 0〜 3 0 0 °C, 膜厚 5 n m〜 5 mの範囲で適宜選ぶことが望ましい。
これらの層の形成後、 その上に陰極用物質からなる薄膜を、 Ι μ κι以 下好ましく は 5 0〜 2 0 O n mの範囲の膜厚になるよ うに、 例えば蒸 着やスパッタリ ングなどの方法によ り形成させ、 陰極を設けることに よ り、 所望の E L素子が得られる。 この有機 E L素子の作製は、 一回 の真空引きで一貫して正孔注入層から陰極まで作製するのが好ましい が、 作製順序を逆にして、 陰極, 電子注入層, 発光層, 正孔注入層, 陽極の順に作製することも可能である。
このよ うにして得られた E L素子に、 直流電圧を印加する場合には、 陽極を十, 陰極を—の極.性と して電圧 5〜 4 0 V程度を印加すると、 発光が観測できる。 また、 逆の極性で電圧を印加しても電流は流れず に発光は全く生じない。 さ らに、 交流電圧を印加する場合には、 陽極 が十, 陰極が一の状態になったときのみ発光する。 なお、 印加する交 流の波形は任意でよい。
本発明の表示装置は、 発光体と前述の本発明の蛍光変換膜を用いたも のであり、 該発光体としては上記有機 E L素子が好適である。
次に、 本発明の蛍光変換膜と発光体 (例えば、 有機 E L素子) を用い、 多色発光を行う場合について説明する。 この場合、 発光体の発光が減 衰、 散乱されず、 効率よく蛍光変換膜に吸収され、 かつ、 発光した蛍 光が減衰、 散乱されず、 外部へ取り出せる構造である必要がある。 し たがって、 蛍光変換膜は発光体 (例えば、 有機 E L素子の両電極間内 部) 以外に存在させ、 上記の条件を満たす位置になければならない。 そして、 赤色蛍光変換膜パターンをフォ ト リ ソグラフィ一法又は印刷 法等で形成し、 そのパターンに対応する部分の発光体の青色発光を行 えば、 赤色を発光する。 また、 同様にして形成した緑色蛍光変換膜パ ターンに対応する部分を発光させれば、 緑色、 残りの部分に対応する 部分を発光させれば、 青色の発光が可能である。 また、 赤色蛍光変換 膜パターン及び青色発光部分に対応する発光体を発光させればマゼン タ、 赤色蛍光変換膜パターン及び緑色蛍光変換膜パターン部分に対応 して発光させればィエロー、 緑色蛍光変換膜パターン及び青色発光部 分に対応して発光させればシアンの発光が得られる。
赤色蛍光変換膜パターン及ぴ緑色蛍光変換膜パターン、 青色発光部分 全てに対応する発光体を発光させれば白色、 全てを発光させなければ 黒色のバックグラウンドとなり うる。 このよ うにして、 多色発光は可 能である。
なお、 ここで、 発光体の例えば近紫外や青色の発光を、 赤色蛍光へ変 換する効率が一般に低いので、 例えば、 緑色に変換する蛍光変換膜を 製膜し、 さらに緑色から赤色に変換する蛍光変換膜を積層製膜しても よい。
さらに、 蛍光変換で得られた発光の色純度を高めるために、 必要に応 じて各色のカラーフィルターを通過させてもよい。
次に、 本発明を実施例により、 さらに詳細に説明するが、 本発明は、 これらの例によってなんら限定されるものではない。
製造例 1青色発光体として有機 E L素子の作製
2 5 m m X 7 5 m m X 1. 1 m mのガラス基板 (コーユング 7 0 5 9 ) 上全面に蒸着 (E B蒸着) によ り、 1 2 0 n mの膜厚で I T O膜を成 膜後、 イソプロピルアルコール洗浄し、 次いで U V洗浄し、 蒸着装置
(日本真空技術社製) の基板ホルダーに固定した。 それぞれのモリプ デン製の抵抗加熱ボートに、 正孔注入材料と して、 4, 4 ' , 4 " - ト リス 〔N— ( 3—メ チルフエニル) 一N—フエ -ルァミ ノ〕 ト リ フ ェ -ルァミ ン (MT D AT A) 及ぴ 4, 4, 一 ビス 〔N— ( 1 —ナフ チル) 一N—フエ -ルァミ ノ〕 ビフエ -ル (N P D) 、 発光材料と し て 4, 4, 一ビス ( 2, 2—ジフエ -ルビ-ル) ビフエ -ル (D P V B i ) 、 電子注入材料と してト リス ( 8—キノ リ ノール) アルミ -ゥ ム (A l q ) をそれぞれ仕込み、 さ らに陰極の第二金属と して銀ワイ ヤーをタングステン製フィ ラメ ントに、 陰極の電子注入性金属と して マグネシウムリボンをモリプデン製ボートに装着した。
その後、 真空槽を 5 X 1 0— 7 t o r rまで減圧にしたのち、 以下の順 序で正孔注入層から陰極まで途中で真空を破らず一回の真空引きで、 順次積層していった。 まず、 正孔注入層としては、 MT D AT Aを蒸 着速度 0. 1〜0. 3 n mZ秒, 膜厚 6 0 n m及ぴ N P Dを蒸着速度 0. 1 〜0. 3 n m/秒, 膜厚 2 0 nm、 発光層と しては、 D P V B i を蒸着 速度 0. 1〜0. 3 n mZ秒, 膜厚 5 0 n m、 電子注入層と しては、 A 1 qを蒸着速度 0. 1〜0. 3 n mZ秒, 膜厚 2 0 n mで蒸着し、 さらに陰 極としては、 マグネシウムと銀を、 それぞれ蒸着速度 1. 3〜1. 4 n m /秒及ぴ 0· 1 n m 秒で同時蒸着し、 膜厚を 2 0 0 n mとした。
このよ うにして、 有機 E Lによる青色発光体を作製し、 直流 1 0 Vの 電圧を有機 E L素子に印加すると、 発光輝度は、 2 0 0 C d /m2、 C
I E色度座標は x =0. 1 4、 y =0. 2 0で青色の発光が出ていること を確認した。
実施例 1
還流管付き反応容器にイオン交換水 6 0 g、 ラウリル硫酸ナト リ ウム 2 g、 過硫酸アンモユウム 0. l gを仕込み、 アルゴン雰囲気下で混合 攪拌しながら 9 0°Cまで昇温した。
次に、 メタク リ ロニトリル 3 g, メタタリル酸 7. 5 g, グリシジルメ タク リ レート 6 g, メチルメタク リ レート 1 0 g, メチルァク リ レー ト 1 3. 5 g, ジェチルァミ ノエタノール 0. 2 g, クマリ ン 1 5 3を 4. 8 g及ぴ紫外線吸収剤 2, 4一ジヒ ドロキシベンゾフエノン 0, 4 gか らなる混合液を先の反応液に 1時間かけて滴下ロー トでゆつく り滴下 した。 滴下後さ らに 2時間攪拌して反応を完結させた。 最後に反応液 を陽イオン交換樹脂に通して脱イオン化し、 蛍光色素及び紫外線吸収 剤を内部に含む微粒子の分散液を調製した。 得られた微粒子の粒径分 布を光散乱によ り測定したところ、 平均粒径 2 0 0 n mであり、 粒径 5 0 0 n m以下の粒子が全粒子の 9 0重量%であった。 また、 上記液 を遠心分離で微粒子を分取し、 微粒子のガラス転移温度を D S C (示 差走查型熱量計) で測定したところ、 9 2 °Cであった。
次に、 この微粒子含有液 1 0 gを重量平均分子量 1 5, 0 0 0のポリ ビ -ルアルコール水溶液 2 0 g (固形分濃度 2 0 w t %) に攪拌しなが ら滴下し、 得られた混合液を 1 mm厚のガラス基板に滴下してスピン コート し、 製膜した。 この膜を 8 0 °Cのオーブンで 1 5分間乾燥し、 1 3 μ m厚の蛍光変換膜を得た。
さらに、 蛍光変換膜製膜基板を、 製造例 1で作製した有機 E L素子基 板と重ね合わせ、 有機 E L素子に対し、 直流 1 0 Vの電圧を印加する と、 発光輝度は、 1 9 0 c d Zm2 (効率 9 5 %) 、 C I E色度座標は x =0, 1 7、 y =0. 4 3で緑色の蛍光の発光であり、 9 5 %の高い効 率で青色の発光体を緑色の蛍光に変換できた。
実施例 2
還流管付き反応容器にイオン交換水 6 0 g、 ラウリル硫酸ナト リ ウム 2 g, 過硫酸アンモユウム 0. 1 gを仕込み、 アルゴン雰囲気下、 混合 攪拌しながら 9 0 °Cまで昇温した。 次に、 メタク リ ロニ ト リル 3 g、 メタク リル酸 7. 5 g、 ダリ シジルメ タク リ レート 6 g、 メチルメタク リ レー ト 1 0 g、 メチルァクリ レー ト 13. 5 gの混合物を先の反応液 に 1時間かけて滴下ロートでゆつく り滴下した。 滴下後さらに 2時間 攪拌して反応を完結させ、 さきのモノマーの乳化重合体微粒子を形成 した。
この乳化重合体に蛍光色素としてクマリ ン系蛍光色素 (ベーシックィ エロー 4 0 ) を 8 g、 紫外線吸収剤 2, 4—ジヒ ドロキシベンゾフエ ノ ン 0. 4 g、 ラウリル硫酸ナト リ ウム 0. 4 g、 イオン交換水 2 0 gの 混合物を常温で滴下し、 2時間かけてゆつく り と 9 0°Cまで昇温して、 先の微粒子に蛍光色素と紫外線吸収剤を吸着させた。 固形分濃度は 4 0 w t %であった。. '
実施例 1 と同様に粒径分布及ぴガラス転移温度を測定したところ、 平 均粒径 1 3 0 n mであり,、 粒径 5 0 0 n m以下の粒子が全粒子の 9 7 重量%であり、 ガラス転移温度は 9 0 °Cであった。
次に、 この微粒子含有液 1 0 gを重量平均分子量 15, 0 0 0のポリ ビ ニルアルコール水溶液 2 0 g (固形分濃度 2 0 w t %) に攪拌しなが ら滴下し、 この混合液を 1. 1 mm厚のガラス基板へ滴下してスピンコ ー トし、 8 0 °Cのオープンで 1 5分間乾燥して、 1 2 μ πα厚の蛍光変 換膜を得た。
さ らに、 蛍光変換膜製膜基板を、 製造例 1で作製した有機 E L素子基 板と重ね合わせ、 有機 E L素子に対し、 直流 1 0 Vの電圧を印加する と、 発光輝度は、 1 9 4 c d/m2 (効率 9 7 %) 、 C I E色度座標は =0. 2 2 , y =0. 4 3で緑色の蛍光の発光であり、 9 7 %の高い効 率で青色の発光体を緑色の蛍光に変換できた。
実施例 3
還流管付き反応容器にイオン交換水 6 0 g、 ラウリル硫酸ナトリ ウム 2 g , 過硫酸アンモ-ゥム 0. 1 gを仕込み、 アルゴン雰囲気下、 混合 攪拌しながら 9 0 °Cまで昇温した。 次に、 メ タク リ 口 - ト リル 3 g、 メタク リル酸 7. 5 g、 グリ シジルメタク リ レー ト 6 g、 メチルメ タク リ レート 1 0 g、 メチルァク リ レー ト 13. 5 g、 ジェチルァミ ノエタ ノール 0. 2 gからなる混合液を先の反応液に 1時間かけて滴下ロー ト でゆっく り滴下した。 さらに、 この液を 8 0 °Cで 1時間攪拌した。
メ ラ ミ ン 1 0 g、 ホルマリ ン水溶液 ( 3 5 w t %) 2 0 g及びイオン 交換水 4 0 gに酢酸を加えて p H 6 と し、 この液を 8 0 °Cで加熱して メ ラミ ンーホルマリ ン初期縮合物を得た。 この初期縮合物とクマリ ン 系蛍光色素 (ベーシックイェロー 4 0 ) 8 g及ぴ紫外線吸収剤 2, 4 ージヒ ドロキシベンゾフエノン 0. 4 gを上記反応液に加え、液温 6 5 °C で 3 0分間攪拌し、 さらに 8 0 で 2時間攪拌して反応を完結させ、 表面層に蛍光色素及び紫外線吸収剤を含む微粒子を得た。 最後に反応 液を陽イオン交換樹脂に通して脱イオン化し、 蛍光色素を表面層に含 む微粒子の分散液を調製した。
実施例 1 と同様に粒径分布及びガラス転移温度を測定したところ、 平 均粒径 3 5 0 n mであり、 粒径 5 0 0 n m以下の粒子が全粒子の 8 3 重量%であり、 ガラス転移温度は 1 1 3°Cであった。
この液を用い、 実施例 1 と同様にして蛍光変換膜 ( 1 0 m) を得た。 さらに、 蛍光変換膜製膜基板を、 製造例 1で作製した有機 E L素子基 板と重ね合わせ、 有機 E L素子に対し、 直流 1 0 Vの電圧を印加する と、 発光輝度は、 1 9 0 c d /m2 (効率 9 5 %) 、 C I E色度座標は X =0. 2 1 y =0. 4 1で緑色の蛍光の発光であり、 9 5 %の高い効 率で青色の発光体を緑色の蛍光に変換できた。
実施例 4
還流管付き反応容器にイオン交換水 6 0 g、 ポリオキシエチレンノ - ルフエ -ルエーテル 2 g, 過硫酸カ リ ウム 0, l gを仕込み、 アルゴン 雰囲気下、 混合攪拌しながら 8 0 °Cまで昇温した。 次に、 メ タク リ ロ 二 ト リル 5 g, メタク リル酸 2 g, グリシジルメ タク リ レー ト 3 g , メチルメ タク リ レー ト 2 8 g, スチレン 2 g, ジェチルアミ ノエタ ノ ール 0. 1 gの混合物を先の反応液に 2時間かけて滴下ロー トでゆつく り滴下した。 滴下後さ らに 2時間攪拌して反応を完結させ、 さきのモ ノマーの乳化重合体微粒子を形成した。
この乳化重合体に蛍光色素としてフエノ キサゾン 9を 6. 2 g、 紫外線 吸収剤 2, 4—ジヒ ドロキシベンゾフエノン 0. 4 g、 ラウリル硫酸ナ ト リ ウム 7 g、 エチレンダリ コール 2 0 gの混合物を常温で滴下し、 2時間かけてゆつく り と 9 0 °Cまで昇温して、 先の微粒子に蛍光色素 及ぴ紫外線吸収剤を吸着させた。
実施例 1 と同様にして粒径分布及ぴガラス転移温度を測定したところ, 平均粒径 1 2 0 n mであり、 粒径 5 0 0 n m以下の粒子が全粒子の 9 0重量%であり、 ガラス転移温度は 1 1 8 °Cであった。
次に、 この微粒子含有液 1 0 gを重量平均分子量 1 5 , 0 0 0 のポリ ビ -ルアルコール水溶液 1 8 g (固形分濃度 2 0 w t % ) に攪拌しなが ら滴下し、 この混合液を 1. 1 m m厚のガラス基板へ滴下してスビンコ ー ト し、 8 0 °Cのオーブンで 1 5分間乾燥して、 7 μ πι厚のフエノキ サンゾン 9の蛍光変換膜を得た。 一方、 先の同条件で調製した乳化重 合体に蛍光色素と してピリジン 1 を 7. 4 g、 紫外線吸収剤と して 2, 4 —ジヒ ドロキシベンゾフエノ ン 0. 4 g、 ラウリル硫酸ナト リ ウム 7 g、 エチレングリ コール 2 0 g の混合物を常温で滴下し、 2時間かけ てゆっく り と 9 0 °Cまで昇温して、 先の微粒子に蛍光色素と してピリ ジン 1 を吸着させた。
実施例 1 と同様に粒径分布及びガラス転移温度を測定したところ、 平 均粒径 1 0 5 n mであり、 粒径 5 0 0 n m以下の粒子が全粒子の 9 2 重量0 /oであり、 ガラス転移温度は 1 1 8°Cであった。
次に、 この微粒子含有液 1 0 gを重量平均分子量 15, 0 0 0のポリ ビ ニルアルコール水溶液 20. 5 g (固形分濃度 2 0 w t %) に攪拌しな がら滴下し、 この混合液を、 先に形成したフヱノキサゾン 9の蛍光変 換膜上に滴下してスピンコー ト し、 8 0°Cのオーブンで 1 5分間乾燥 して、 さらに 8 μ m厚のピリジン 1の蛍光変換膜を積層した。
さらに、 蛍光変換膜製膜基板を、 製造例 1で作製した有機 E L素子基 板と重ね合わせ、 有機 E L素子に対し、 直流 1 0 Vの電圧を印加する と、 発光輝度は、 6 0 c d /m 2 (効率 3 0 %) 、 C I E色度座標は x =0. 5 6、 y =0. 3 3で赤色の蛍光の発光であり、 青色の発光体を赤 色の蛍光に変換できた。
比較例 1
蛍光色素と してクマリン 1 5 3を 0. 6 g とポリ ビュルピロリ ドン (重 量平均分子量 3 60, 0 0 0 ) 1 0 g と溶剤と してジメチルホルムアミ ド 2 7 gを混合し、 クマリ ン 1 5 3を完全に可溶化させた。 混合溶液 の固形分濃度は 4 0重量%である。
この混合溶液を 1. 1 mm厚のガラス基板へ滴下してスピンコートし、
8 0 °Cのオーブンで 1 5分間乾燥して、 1 2 m厚の蛍光変換膜を得 た。
この蛍光変換膜製膜基板を、 製造例 1で作製した有機 E L素子基板と 重ね合わせ、 有機 E L素子に対し、 直流 1 0 Vの電圧を印加すると、 発光輝度は、 1 2 0 c d /m2 (効率 6 0 %) 、 C I E色度座標は x = 0. 1 7、 y =0. 4 3で緑色の蛍光の発光であり、 微粒子中に含有させ た場合とクマリ ン 1 5 3の濃度が同一にもかかわらず、 6 0 %の低い 効率で青色の発光体を緑色の蛍光に変換した。
次に、 実施例 1〜 4及ぴ比較例 1で得られた蛍光変換膜に 1 5 0 0 m J Z c m2の UV光 ( 3 6 5 n m) 照射及ぴ 8 0 °C, 1 0 0 0時間の長 期保存をそれぞれ施し、 各処理の蛍光強度の変化を測定した。 結果を 第 1表に示す。
第 1表
Figure imgf000040_0001
(初期状態を 1 とした場合の蛍光強度変化の程度で表す。 )
この第 1表からわかるよ うに、 本発明により UV光に対する耐久性及 ぴ耐熱性に優れた変換膜を得ることができる。
比較例 2
還流管付き反応容器にイオン交換水 1 2 0 g、 活性アルミナを通して 重合禁止剤を除去したスチレン 7 0 g、 蛍光色素と してクマリ ン 1 5 3を 8. 7 g、 2 w t %硫酸マグネシウム水溶液 2. 5 gを仕 み、 アル ゴン雰囲気下、 激しく混合攪拌しながら 6 5 °Cまで昇温した。 次に、 濃度 5 w t %の 2—スルホンェチルメ タク リ レー トのナ ト リ ゥム塩水 溶液 2. 5 g と 3 w t %過硫酸力 リ ゥム水溶液 5 gを混合して、 先の反 応懸濁液中に滴下ロートでゆつく り滴下した。 滴下後 2 4時間 6 5 °C を維持しながら攪拌して、 反応を完結させた。
最後に、 反応液を陽イオン交換樹脂を通して、 脱イオン化して、 クマ リ ン 1 5 3分散微粒子の含有液を調製した。 なお、 固形分濃度は 3 5 w t %とした。 実施例 1 と同様に粒径分布を測定したところ、 平均粒径 9 0 0 n mで あって、 粒径 5 0 0 n m以下の粒子が全体の 1 5重量%であった。 次に、 この微粒子含有液 1 0 g と重量平均分子量 3 6 0, 0 0 0のポリ ビュルピロ リ ドン 3. 5 g とを混合し、 この混合液を 1. 1 m m厚のガラ ス基板へ滴下してスビンコ一ト し、 8 0 °Cのオーブンで 1 5分間乾燥 して、 1 4 μ m厚の蛍光変換膜を得たが、 非常に凹凸の激しい不透明 な膜となった。
したがって、 明らかに微粒子の粒径が大きいと膜の平坦性が悪く、 透 過する可視光の波長よ り大きいことから、 可視光が散乱して不透明な 膜となった。
実施例 5
ρ - トルエンスルホンァミ ドとホルマリ ンとを反応させたメチロール 体 A 3 0 g とベンゾグァナミンとホルマリ ンとを反応させたメチロー ル体 B 7 0 gを反応容器に仕込み、 これにクマリ ン 6 を 0 . 5 g、 口 —^? .V R O n . 5 cr 7& ϊ?ローダ 5 ソ R 0 . 5 σ力 Π 5" I 內 の温度を 9 0 °Cで撹枠、 溶融させ、 さらに 1 1 0 °Cにて 4時間反応を行 つた。 反応終了後、 放冷して、 予備重合物を得た。 この予備重合物を 減圧乾燥機に入れ、 減圧下 1 3 0 °Cにて 5時間反応を行ない、 放冷後、 乳鉢で粉砕化し、 蛍光色素含有の樹脂組成物を得た。 この組成物のガ ラス転移温度は 1 2 4 °Cであった。 さ らに、 この組成物 5 0 g及ぴト ルェン 5 0 gを混合し、 ビーズミルにて 5時間分散し、 赤色の蛍光顔 料微粒子分散液を得た。得られた微粒子の粒径分布を測定したところ、 平均粒径 4 0 0 n mであり、 粒径 5 0 0 n m以下の粒子が全粒子の 8 0重量%であった。
この分散液 1 0 g とァク リル系の感光性樹脂 V 2 5 9 P A (新日鉄化 学社製、 固形分濃度 5 0 w t。/0 ) 3 0 gをフラスコにと り 3 0分攪拌 し、 この混合液を厚さ l mmのガラス基板に滴下してスピンコートし、 製膜した。 この膜を 8 0 °Cのオープンで 1 0分乾燥後、 露光量が 1 5 0 0 m J / c m2 (波長 3 6 5 n m)となるよ うに U Vを照射し、 さら に温度 1 6 0 °Cで 3 0分間加熱硬化させ、 蛍光変換膜 (厚さ 1 0 i m) を得た。
さらに、 蛍光変換膜を、 製造例 1で作製した有機 E L素子基板と重ね 合わせ、 有機 E L素子に対し、 直流 1 0 Vの電圧を印加すると、 発光 輝度は、 6 0 c d /m 2 (効率 3 0 %) 、 C I E色度座標は x =0· 5 5、 y =0. 3 3で赤色の蛍光の発光であり、 青色の発光体を赤色の蛍光に 変換できた。
次に、 実施例 1〜 5及ぴ比較例 2で得られた蛍光変換膜の透過率を測 定した。 その結果を第 2表に示す。
第 2表
Figure imgf000042_0001
同表に示すよ うに、 実施例 1〜 5の蛍光変換膜の透過率は、 比較例 2 に対し大幅に優れていた。
比較例 3
0. 0 3 gのクマリ ン、 0. 0 3 g のローダミ ン 6 G及ぴ 0. 0 3 g のローダミ ン Bをシクロへキサノン 5 gに溶かし、 この分散液とァク リル系の感光性樹脂 V 2 5 9 P A (新日鉄化学社製、 固形分濃度 5 0 w t % ) 3 O gをフラスコにと り 3 0分攪拌し、 実施例 5 と同様にし て蛍光変換膜 (厚さ 1 2 μ πι )を得た。
次に、 実施例 5及び比較例 3の蛍光変換膜を作製する過程における U V照射後と、 1 6 0 °Cで 3 0分間加熱処理後における蛍光強度変化を 測定した。 その結果を第 3表に示す。
3表
Figure imgf000043_0001
(蛍光強度変化は、 U V光照射前の蛍光変換膜の蛍光強度を 1 とした 相対強度値で表す。 )
同表に示すよ うに、 実施例 5の蛍光変換膜の蛍光強度変化は、 比較例 3に対し少なく、 感光樹脂の成膜プロセスにおいて行なわれる U V照 射及び加熱処理に対して優れた耐久性を有している。
産業上の利用可能性
本発明によれば、 蛍光色素間の会合が少なく、 濃度消光が低減され、 安定した蛍光変換能を有すると ともに、 耐熱性及ぴ耐光性に優れ、 か つ良好な透明性と平坦性を有する上、 パターニング (平面的な分離配 置) が容易で、 高精細な多色発光表示に好適に用いられる蛍光変換膜 が容易に得られる。

Claims

, 請 求 の 範 囲
1 . 少なく とも蛍光色素とバインダー樹脂とからなり、 かつ発光体 の発光を吸収して可視光の蛍光を発光する蛍光変換媒体において、 蛍 光色素を含む微粒子をバインダ一樹脂中に分散させたことを特徴とす る蛍光変換媒体。
2 . 蛍光色素を含む微粒子が、 その表面に蛍光色素を物理的に吸着又 は化学的に結合しているものであることを特徴とする請求項 1記載の 蛍光変換媒体。
3 . 蛍光色素を含む微粒子が、 その内部に蛍光色素を埋設又は包含 したものであることを特徴とする請求項 1記載の蛍光変換媒体。
4 . 蛍光色素を含む微粒子は、 粒径 5 0 0 n m以下の粒子を全粒子 の 8 0重量%以上含んでいることを特徴とする請求項 1 ないし 3のい ずれかに記載の蛍光変換媒体。
5 . 蛍光色素を含む微粒子がガラス転移温度 8 0 °C以上のものであ る請求項 1ないし 3のいずれかに記載の蛍光変換媒体。
6 . 蛍光変換媒体中の微粒子が、 紫外線吸収剤及ぴ光安定剤の中か ら選ばれた少なく とも一種を含有するものである請求項 1 ないし 3の いずれかに記載の蛍光変換媒体。
7 . 蛍光色素を含む微粒子が、 その表面に紫外線吸収層又は光安定 化層を設けたものである請求項 1ないし 3のいずれかに記載の蛍光変 換媒体。
8 . 発光体が、 有機エレク ト口ルミネッセンス素子である請求項 1 ないし 3に記載の蛍光変換媒体。
9 . 発光体と、 請求項 1ないし 3に記載の蛍光変換媒体を用いたこ とを特徴とする表示装置。
1 0 . 発光体が有機エレク トロルミネッセンス素子である請求項 9記 載の表示装置 <
PCT/JP1999/006403 1998-11-20 1999-11-17 蛍光変換媒体及びそれを用いた表示装置 WO2004083339A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US09/582,215 US6464898B1 (en) 1998-11-20 1999-11-17 Fluorescence conversion medium and display device comprising it
US10/206,237 US6641755B2 (en) 1998-11-20 2002-07-29 Fluorescence conversion medium and display device comprising it

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP10/330905 1998-11-20
JP33090598 1998-11-20
JP11/308058 1999-10-29
JP11308058A JP2000212554A (ja) 1998-11-20 1999-10-29 蛍光変換媒体及びそれを用いた表示装置

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US09/582,215 A-371-Of-International US6464898B1 (en) 1998-11-20 1999-11-17 Fluorescence conversion medium and display device comprising it
US10/206,237 Continuation US6641755B2 (en) 1998-11-20 2002-07-29 Fluorescence conversion medium and display device comprising it

Publications (1)

Publication Number Publication Date
WO2004083339A1 true WO2004083339A1 (ja) 2004-09-30

Family

ID=26565394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/006403 WO2004083339A1 (ja) 1998-11-20 1999-11-17 蛍光変換媒体及びそれを用いた表示装置

Country Status (3)

Country Link
US (2) US6464898B1 (ja)
JP (1) JP2000212554A (ja)
WO (1) WO2004083339A1 (ja)

Families Citing this family (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000212554A (ja) * 1998-11-20 2000-08-02 Idemitsu Kosan Co Ltd 蛍光変換媒体及びそれを用いた表示装置
DE10051242A1 (de) * 2000-10-17 2002-04-25 Philips Corp Intellectual Pty Lichtemittierende Vorrichtung mit beschichtetem Leuchtstoff
JP2002216962A (ja) * 2001-01-17 2002-08-02 Fuji Electric Co Ltd 色変換フィルタ基板、および色変換フィルタ基板を具備する色変換カラーディスプレイ
JP2002246175A (ja) * 2001-02-16 2002-08-30 Sony Corp 有機材料薄膜の形成方法及びその装置、並びに有機電界発光素子の製造方法
JP2003022894A (ja) * 2001-07-09 2003-01-24 Morio Taniguchi 有機エレクトロルミネッセンス発光表示装置
JP2003064135A (ja) * 2001-08-30 2003-03-05 Idemitsu Kosan Co Ltd 色変換材料組成物及びそれを用いた色変換膜
JP3479062B2 (ja) * 2001-10-31 2003-12-15 サンユレック株式会社 発光ダイオード
JP3848188B2 (ja) * 2002-03-18 2006-11-22 株式会社東芝 有機el表示装置およびその製造方法
US7618709B2 (en) * 2002-04-30 2009-11-17 Avery Dennison Corporation Fluorescent articles having multiple film layers
US7264880B2 (en) * 2002-04-30 2007-09-04 Avery Dennison Corporation Fluorescent articles having multiple film layers
TW587395B (en) * 2002-05-28 2004-05-11 Ritdisplay Corp Full color organic light-emitting display device
DE10228937A1 (de) 2002-06-28 2004-01-15 Philips Intellectual Property & Standards Gmbh Elektrolumineszierende Vorrichtung mit verbesserter Lichtauskopplung
AU2003278009A1 (en) * 2002-10-18 2004-05-04 Ifire Technology Inc. Color electroluminescent displays
JP2004207065A (ja) 2002-12-25 2004-07-22 Fuji Electric Holdings Co Ltd 色変換発光デバイスおよびその製造方法ならびに該デバイスを用いるディスプレイ
TW591566B (en) * 2003-06-03 2004-06-11 Ritdisplay Corp Full color display panel and color-separating substrate thereof
JP2005064233A (ja) 2003-08-12 2005-03-10 Stanley Electric Co Ltd 波長変換型led
US7923917B2 (en) 2003-10-01 2011-04-12 Idemitsu Kosan Co., Ltd. Color conversion layer and light-emitting device
WO2005086539A1 (ja) * 2004-03-05 2005-09-15 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス表示装置
JP4770125B2 (ja) * 2004-04-16 2011-09-14 凸版印刷株式会社 印刷インキ、およびこれを用いた高分子el素子の製造方法
US7315119B2 (en) * 2004-05-07 2008-01-01 Avago Technologies Ip (Singapore) Pte Ltd Light-emitting device having a phosphor particle layer with specific thickness
US7625501B2 (en) * 2004-05-18 2009-12-01 Ifire Ip Corporation Color-converting photoluminescent film
KR20070085321A (ko) * 2004-10-12 2007-08-27 코닌클리즈케 필립스 일렉트로닉스 엔.브이. 전계 발광 광원
JP4775692B2 (ja) * 2005-02-28 2011-09-21 富士電機株式会社 色変換フィルター基板及び色変換フィルターを具備した有機発光素子
JP4756318B2 (ja) * 2005-03-23 2011-08-24 富士電機株式会社 色変換フィルタおよびそれを用いた色変換発光デバイス
US7244508B2 (en) * 2005-05-25 2007-07-17 Int'l Cellulose Corp. Frosting coating materials, articles, and methods
US20080241567A1 (en) * 2005-05-25 2008-10-02 Sarfraz Ahmed Siddiqui Frosting methods, frosted articles, & frosting liquids
US9297092B2 (en) 2005-06-05 2016-03-29 Qd Vision, Inc. Compositions, optical component, system including an optical component, devices, and other products
US8718437B2 (en) 2006-03-07 2014-05-06 Qd Vision, Inc. Compositions, optical component, system including an optical component, devices, and other products
WO2007103310A2 (en) 2006-03-07 2007-09-13 Qd Vision, Inc. An article including semiconductor nanocrystals
JP4699158B2 (ja) * 2005-09-30 2011-06-08 大日本印刷株式会社 色変換層形成用塗工液
CA2629944C (en) * 2005-10-27 2016-02-09 Avery Dennison Corporation Fluorescent article having multiple layers
US8849087B2 (en) 2006-03-07 2014-09-30 Qd Vision, Inc. Compositions, optical component, system including an optical component, devices, and other products
US9874674B2 (en) 2006-03-07 2018-01-23 Samsung Electronics Co., Ltd. Compositions, optical component, system including an optical component, devices, and other products
WO2007117668A2 (en) 2006-04-07 2007-10-18 Qd Vision, Inc. Methods and articles including nanomaterial
WO2008111947A1 (en) 2006-06-24 2008-09-18 Qd Vision, Inc. Methods and articles including nanomaterial
US7501355B2 (en) 2006-06-29 2009-03-10 Applied Materials, Inc. Decreasing the etch rate of silicon nitride by carbon addition
JP2010508620A (ja) 2006-09-12 2010-03-18 キユーデイー・ビジヨン・インコーポレーテツド 所定のパターンを表示するために有用なエレクトロルミネセントディスプレイ
US8836212B2 (en) 2007-01-11 2014-09-16 Qd Vision, Inc. Light emissive printed article printed with quantum dot ink
TW200831658A (en) * 2007-01-19 2008-08-01 Kismart Corp Wavelength converting structure and manufacture and use of the same
AU2008239120B2 (en) * 2007-04-06 2012-06-14 Asahi Glass Company, Limited Wavelength conversion film, film for agricultural use, structure, and composition for forming coating film
KR100897260B1 (ko) 2007-05-23 2009-05-14 제일모직주식회사 백색 발광 나노입자 분산액 및 이를 이용한 유기광전소자
JP5773646B2 (ja) 2007-06-25 2015-09-02 キユーデイー・ビジヨン・インコーポレーテツド ナノ材料を被着させることを含む組成物および方法
EP3345983B1 (de) * 2007-07-05 2020-08-26 UDC Ireland Limited Verbindungen enthaltend mindestens eine disilylverbindung ausgewählt aus disilylcarbazolen, disilyldibenzofuranen, disilyldibenzothiophenen, disilyldibenzophospholen, disilyldibenzothiophen-s-oxiden und disilyldibenzothiophen-s, s-dioxiden
WO2009014707A2 (en) 2007-07-23 2009-01-29 Qd Vision, Inc. Quantum dot light enhancement substrate and lighting device including same
US8128249B2 (en) 2007-08-28 2012-03-06 Qd Vision, Inc. Apparatus for selectively backlighting a material
JP5683268B2 (ja) * 2007-09-28 2015-03-11 オークランド ユニサービシズ リミテッドAuckland Uniservices Limited 生物活性アニリンコポリマー
WO2009145813A1 (en) 2008-03-04 2009-12-03 Qd Vision, Inc. Particles including nanoparticles, uses thereof, and methods
US20090230247A1 (en) * 2008-03-17 2009-09-17 Harris John N Methods and apparatus for incorporating luminophores into decorative laminates
US9525148B2 (en) 2008-04-03 2016-12-20 Qd Vision, Inc. Device including quantum dots
WO2009123763A2 (en) 2008-04-03 2009-10-08 Qd Vision, Inc. Light-emitting device including quantum dots
US9207385B2 (en) 2008-05-06 2015-12-08 Qd Vision, Inc. Lighting systems and devices including same
WO2009137053A1 (en) 2008-05-06 2009-11-12 Qd Vision, Inc. Optical components, systems including an optical component, and devices
WO2009151515A1 (en) 2008-05-06 2009-12-17 Qd Vision, Inc. Solid state lighting devices including quantum confined semiconductor nanoparticles
US20100264371A1 (en) * 2009-03-19 2010-10-21 Nick Robert J Composition including quantum dots, uses of the foregoing, and methods
WO2011020098A1 (en) 2009-08-14 2011-02-17 Qd Vision, Inc. Lighting devices, an optical component for a lighting device, and methods
US20110043543A1 (en) * 2009-08-18 2011-02-24 Hui Chen Color tuning for electrophoretic display
WO2011031876A1 (en) 2009-09-09 2011-03-17 Qd Vision, Inc. Formulations including nanoparticles
WO2011031871A1 (en) 2009-09-09 2011-03-17 Qd Vision, Inc. Particles including nanoparticles, uses thereof, and methods
CN103384794B (zh) 2010-12-23 2018-05-29 三星电子株式会社 包含量子点的光学元件
JP4952842B2 (ja) * 2010-12-24 2012-06-13 大日本印刷株式会社 色変換層形成用塗工液および有機エレクトロルミネッセンス素子用基板、ならびにこれらの製造方法
EP3848092A1 (en) 2011-03-07 2021-07-14 The Trustees of Columbia University in the City of New York Apparatus, method, and system for selectively effecting and/or killing bacteria
JP2012234809A (ja) * 2011-04-22 2012-11-29 Toray Ind Inc 面発光体
JP2013064031A (ja) * 2011-09-15 2013-04-11 Hitachi Chemical Co Ltd 球状蛍光体、波長変換フィルタ及びこれを用いた色変換発光デバイス
US9864121B2 (en) 2011-11-22 2018-01-09 Samsung Electronics Co., Ltd. Stress-resistant component for use with quantum dots
KR101992864B1 (ko) * 2012-02-13 2019-06-25 스미또모 가가꾸 가부시키가이샤 착색 경화성 수지 조성물
US9929325B2 (en) 2012-06-05 2018-03-27 Samsung Electronics Co., Ltd. Lighting device including quantum dots
JP2016033185A (ja) * 2014-07-31 2016-03-10 積水化学工業株式会社 波長変換材料及び光エネルギーデバイス
JP2016044232A (ja) * 2014-08-22 2016-04-04 積水化学工業株式会社 波長変換材料及び光エネルギーデバイス
JP6891117B2 (ja) * 2014-12-19 2021-06-18 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung 電気泳動ディスプレイのための粒子
JP5935869B2 (ja) * 2014-12-26 2016-06-15 日立化成株式会社 球状蛍光体の製造方法、波長変換型太陽電池封止材の製造方法、及び太陽電池モジュールの製造方法
KR101968901B1 (ko) * 2015-02-06 2019-04-15 주식회사 엘지화학 색변환 필름, 및 이를 포함하는 백라이트 유닛 및 디스플레이 장치
US10407614B2 (en) 2015-02-06 2019-09-10 Lg Chem, Ltd. Photoconversion film, and photoconversion element and display device comprising same
SG11201800454TA (en) 2015-07-17 2018-03-28 Toray Industries Color conversion composition, color conversion film and backlight unit, display and lighting device each comprising same
WO2017029797A1 (ja) * 2015-08-19 2017-02-23 パナソニックIpマネジメント株式会社 波長変換フィルタ及びその製造方法並びに太陽電池モジュール
US10512922B2 (en) * 2016-08-04 2019-12-24 Brian Cvetezar Spray gun
JP7380216B2 (ja) * 2018-09-06 2023-11-15 東レ株式会社 色変換部材、光源ユニット、ディスプレイ、照明装置、色変換基板およびインク
CN114958215B (zh) * 2022-06-23 2023-07-07 苏州赛伍应用技术股份有限公司 一种uv光转换封装胶膜及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0387715A2 (en) * 1989-03-15 1990-09-19 Idemitsu Kosan Company Limited Electroluminescent element
JPH02288188A (ja) * 1989-04-28 1990-11-28 Sumitomo Chem Co Ltd 耐候性有機分散型el発光体
JPH08100173A (ja) * 1994-09-30 1996-04-16 Idemitsu Kosan Co Ltd 白色蛍光変換膜及びそれを用いた白色発光素子
JPH08185981A (ja) * 1994-12-27 1996-07-16 Nippon Kasei Chem Co Ltd 白色発光elランプ
JPH09106888A (ja) * 1995-10-11 1997-04-22 Idemitsu Kosan Co Ltd 蛍光変換膜
JPH09176366A (ja) * 1995-12-22 1997-07-08 Nippon Shokubai Co Ltd 光拡散性樹脂組成物
JPH09208944A (ja) * 1996-02-06 1997-08-12 Idemitsu Kosan Co Ltd 蛍光変換膜
JPH10306279A (ja) * 1997-05-07 1998-11-17 Mitsubishi Chem Corp 赤色蛍光変換膜及びそれを用いた発光素子
JPH10316964A (ja) * 1997-05-21 1998-12-02 Mitsubishi Chem Corp 赤色蛍光変換膜及びそれを用いた発光素子
EP0884370A2 (en) * 1997-06-09 1998-12-16 TDK Corporation Color conversion material, and organic electroluminescent color display using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5294870A (en) 1991-12-30 1994-03-15 Eastman Kodak Company Organic electroluminescent multicolor image display device
WO1997029163A1 (fr) * 1996-02-09 1997-08-14 Idemitsu Kosan Co., Ltd. Membrane rougissant par fluorescence et dispositif emettant de la lumiere rouge
JP2000212554A (ja) * 1998-11-20 2000-08-02 Idemitsu Kosan Co Ltd 蛍光変換媒体及びそれを用いた表示装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0387715A2 (en) * 1989-03-15 1990-09-19 Idemitsu Kosan Company Limited Electroluminescent element
JPH02288188A (ja) * 1989-04-28 1990-11-28 Sumitomo Chem Co Ltd 耐候性有機分散型el発光体
JPH08100173A (ja) * 1994-09-30 1996-04-16 Idemitsu Kosan Co Ltd 白色蛍光変換膜及びそれを用いた白色発光素子
JPH08185981A (ja) * 1994-12-27 1996-07-16 Nippon Kasei Chem Co Ltd 白色発光elランプ
JPH09106888A (ja) * 1995-10-11 1997-04-22 Idemitsu Kosan Co Ltd 蛍光変換膜
JPH09176366A (ja) * 1995-12-22 1997-07-08 Nippon Shokubai Co Ltd 光拡散性樹脂組成物
JPH09208944A (ja) * 1996-02-06 1997-08-12 Idemitsu Kosan Co Ltd 蛍光変換膜
JPH10306279A (ja) * 1997-05-07 1998-11-17 Mitsubishi Chem Corp 赤色蛍光変換膜及びそれを用いた発光素子
JPH10316964A (ja) * 1997-05-21 1998-12-02 Mitsubishi Chem Corp 赤色蛍光変換膜及びそれを用いた発光素子
EP0884370A2 (en) * 1997-06-09 1998-12-16 TDK Corporation Color conversion material, and organic electroluminescent color display using the same

Also Published As

Publication number Publication date
US6641755B2 (en) 2003-11-04
US20030015689A1 (en) 2003-01-23
US6464898B1 (en) 2002-10-15
JP2000212554A (ja) 2000-08-02

Similar Documents

Publication Publication Date Title
WO2004083339A1 (ja) 蛍光変換媒体及びそれを用いた表示装置
JP3224352B2 (ja) 多色発光装置
JP4011649B2 (ja) 多色発光装置およびその製造方法
JP3187695B2 (ja) 多色発光装置およびその製造方法
JP3962436B2 (ja) 多色発光装置
WO1996025020A1 (fr) Dispositif emetteur de lumiere en plusieurs couleurs et procede de production de ce dispositif
EP1550707B1 (en) Organometallic complexes, organic el devices, and organic el displays
TWI271118B (en) Color emission device
US7348208B2 (en) Organic electroluminescent device using mixture of phosphorescent material as light-emitting substance
US20100164364A1 (en) Light emitting device
JP5655795B2 (ja) 有機エレクトロルミネッセンス素子及び照明装置
WO2011148823A1 (ja) 光取り出しシート、有機エレクトロルミネッセンス素子及び照明装置
JP3304287B2 (ja) 有機el多色発光表示装置
JP2001135482A (ja) 有機電界発光素子
JPH09245511A (ja) 蛍光変換フィルター及びその製造方法
WO2004077886A1 (ja) 有機電界発光素子
JP5034220B2 (ja) 有機エレクトロルミネッセンス素子用カラーフィルタ基板
JP2005123205A (ja) 有機el素子
JPH11279426A (ja) ローダミン系色素、色変換膜および有機エレクトロルミネッセンス素子
JP2838064B2 (ja) 発光色変換膜
JP3959943B2 (ja) 有機エレクトロルミネッセンス素子
JP3858075B2 (ja) 蛍光変換膜
JPH09296166A (ja) ポルフィリン誘導体を含有する有機エレクトロルミネッセンス素子
JPH09106888A (ja) 蛍光変換膜
JP2000044824A (ja) 色変換膜及び有機エレクトロルミネッセンス素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 09582215

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): US