WO2004077460A1 - 薄膜容量素子用組成物、高誘電率絶縁膜、薄膜容量素子、薄膜積層コンデンサ、電子回路および電子機器 - Google Patents

薄膜容量素子用組成物、高誘電率絶縁膜、薄膜容量素子、薄膜積層コンデンサ、電子回路および電子機器 Download PDF

Info

Publication number
WO2004077460A1
WO2004077460A1 PCT/JP2003/014651 JP0314651W WO2004077460A1 WO 2004077460 A1 WO2004077460 A1 WO 2004077460A1 JP 0314651 W JP0314651 W JP 0314651W WO 2004077460 A1 WO2004077460 A1 WO 2004077460A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
composition
thin
film capacitor
dielectric constant
Prior art date
Application number
PCT/JP2003/014651
Other languages
English (en)
French (fr)
Inventor
Yukio Sakashita
Hiroshi Funakubo
Original Assignee
Tdk Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003051897A external-priority patent/JP2004165596A/ja
Application filed by Tdk Corporation filed Critical Tdk Corporation
Priority to EP03772856A priority Critical patent/EP1598840A1/en
Priority to US10/547,134 priority patent/US7319081B2/en
Publication of WO2004077460A1 publication Critical patent/WO2004077460A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/55Capacitors with a dielectric comprising a perovskite structure material
    • H01L28/56Capacitors with a dielectric comprising a perovskite structure material the dielectric comprising two or more layers, e.g. comprising buffer layers, seed layers, gradient layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/20Dielectrics using combinations of dielectrics from more than one of groups H01G4/02 - H01G4/06
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/33Thin- or thick-film capacitors 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02197Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides the material having a perovskite structure, e.g. BaTiO3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02269Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by thermal evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31691Inorganic layers composed of oxides or glassy oxides or oxide based glass with perovskite structure

Definitions

  • composition for thin film capacitor, high dielectric constant insulating film, thin film capacitor, thin film multilayer capacitor, electronic circuit and electronic equipment are listed.
  • the present invention relates to a composition for a thin film capacitor, a high dielectric constant insulating film, a thin film capacitor, a thin film multilayer capacitor, an electronic circuit, and an electronic device.
  • the dielectric compositions used such as a multilayer ceramic capacitor, for example, lanthanum titanate (L a 2 O 3 ⁇ 2T i 0 2), zinc titanate (Z ⁇ ⁇ T i O 2 ), magnesium titanate (M g T i O 3), titanium oxide (T i 0 2), Chita Nsan bismuth (B i 2 0 3 ⁇ 2 T i 0 2), calcium titanate (C a T I_ ⁇ 3) titanium Sens strontium ( S r T I_ ⁇ 3) bulk (mass) shaped capacitor materials such as are known. Since this kind of capacitor material has a small temperature coefficient, it can be suitably used for a coupling circuit, a gag circuit, an image processing circuit, or the like.
  • this type of capacitor material has a lower temperature coefficient (eg, within ⁇ 100 ppm / ° C), a lower dielectric constant (eg, less than 40), and conversely, a higher dielectric constant (eg, greater than 90).
  • the temperature coefficient tends to be large (for example, ⁇ 750 pp mZ ° C or more).
  • the temperature coefficients of L a 2 Os ⁇ 2 T i 0 2 , ⁇ ⁇ ⁇ i 0 2 , and MgT i Oa are +60 and 1-60, respectively.
  • the dielectric constant (measurement frequency 1 MHz, no unit) is reduced to 35-38, 35-38, and 16-18, respectively.
  • the dielectric constants of T i ⁇ 2 , B i 2 ⁇ 3 ⁇ 2T i O 2 , C a T i Oa, and S r T i Oa are respectively 90 to: 110, 104 to; L 10 , 150-160, 240-260 and large, but with this temperature coefficient Are 1750, -1500, 1500, and 1300, respectively. Therefore, it is desirable to develop a capacitor material for temperature compensation that can maintain a relatively high dielectric constant even if the temperature coefficient is small.
  • a thin film capacitor using a single-layer dielectric thin film has been delayed in miniaturization of integrated circuits with active elements such as transistors, and has become a factor hindering the realization of ultra-high integrated circuits.
  • the reason why the miniaturization of thin-film capacitors was delayed was that the dielectric constant of the dielectric material used was low. Therefore, it is important to use a dielectric material with a high dielectric constant in order to reduce the size of a thin film capacitor and achieve a relatively high capacitance.
  • this kind of dielectric material is not a material for temperature compensation, and therefore has a large temperature coefficient (for example, 4000 p for BST).
  • a temperature coefficient for example, 4000 p for BST.
  • the temperature characteristic of the dielectric constant sometimes deteriorates.
  • the dielectric constant was sometimes reduced as the thickness of the dielectric film was reduced.
  • leak characteristics and breakdown voltage were sometimes degraded due to holes formed in the dielectric film as the thickness was reduced.
  • the formed dielectric film tends to have poor surface smoothness.
  • high-capacitance capacitors that do not contain lead have been desired because of the large impact of lead compounds such as PMN on the environment.
  • each dielectric layer in order to reduce the size and increase the capacity of the multilayer ceramic capacitor, the thickness of each dielectric layer must be as small as possible (thinning), and the dielectric layer in a given size must be reduced. It is desired to increase the number of stacked layers as much as possible (multilayering).
  • a dielectric green sheet layer is formed on a carrier film by a doctor blade method or the like using a sheet method (using a dielectric employment paste), and an internal electrode layer paste is printed thereon in a predetermined pattern.
  • a dielectric green sheet layer is formed on a carrier film by a doctor blade method or the like using a sheet method (using a dielectric employment paste), and an internal electrode layer paste is printed thereon in a predetermined pattern.
  • the dielectric layer thinner than the ceramic raw material powder when producing a multilayer ceramic capacitor.
  • the thickness of each dielectric layer was reduced, the number of stacked layers was limited.
  • the multilayer ceramic capacitor is printed by a printing method (for example, by printing a plurality of dielectric layer pastes and internal electrode layer paste alternately on a carrier film using a screen printing method and then peeling off the carrier film). Also has the same problem
  • Patent Document 1 Japanese Patent Application Laid-Open No. 56-144245
  • Patent Document 2 Japanese Patent Application Laid-Open No. Hei 5-3
  • Patent Document 3 Japanese Patent Application Laid-Open No. Hei 5-3315174
  • Patent Document 4 JP-A-11-214245
  • Patent Document 5 JP-A-2000-124056, etc.
  • These patent documents disclose a method of manufacturing a multilayer ceramic capacitor in which dielectric thin films and electrode thin films are alternately stacked by using various thin film forming methods such as a CVD method, an evaporation method, and a sputtering method.
  • the dielectric thin films formed by the methods described in these patent documents have poor surface smoothness, and if they are laminated too much, the electrodes may be short-circuited. For this reason, it is possible to manufacture at most only about 12 to 13 layers, and even if the capacitor can be miniaturized, it is not possible to achieve a high capacitance without deteriorating the temperature characteristics of the dielectric constant. could not.
  • Non-Patent Document 1 (Tadashi Takenaka, "Particle Orientation of Bismuth Layered Ferroelectric Ceramics and Its Application to Piezoelectric and Pyroelectric Materials", Kyoto University Doctoral Dissertation (1984), Chapter 3, Chapters 23- as shown in page 77), formula: (B i) is represented by 2+ (a m -t B m Oam + l) 2 or ⁇ ⁇ Am-l Bm 0 3m + 3,, in the composition formula
  • the symbol ⁇ 1 is a positive number from 1 to 8
  • the symbol ⁇ is at least one element selected from Na, K, Pb, Ba, Sr, Ca and Bi
  • the symbol B is Fe, C0
  • At least one composition selected from the group consisting of Cr, Ga, Ti, Nb, Ta, Sb, V, Mo and W is obtained by sintering. Itself is known.
  • composition represented by the above composition formula is thin-film (eg, 1 or less) under any conditions (eg, the relationship between the substrate surface and the degree of c-axis orientation of the compound).
  • any conditions eg, the relationship between the substrate surface and the degree of c-axis orientation of the compound.
  • the composition represented by the above composition formula is thin-film (eg, 1 or less) under any conditions (eg, the relationship between the substrate surface and the degree of c-axis orientation of the compound).
  • any conditions eg, the relationship between the substrate surface and the degree of c-axis orientation of the compound.
  • Patent Document 6 PCT / JP 02/08574.
  • the bismuth layered compound is represented by a composition formula: (B i 2 0 2 ) 2+ (A m -i B m 0 3m + i) 2 or B i 2 A m -i B m 0 3m + 3 ,
  • the symbol m is an even number
  • the symbol A is at least one element selected from Na, K, Pb, Ba, Sr, Ca and Bi
  • the symbol B is Fe, Co, Cr , G a T i, N b, T a, S b, V, Mo and W W, ⁇ a composition for a thin film capacitive element characterized by being at least one element selected from the group consisting of Filed.
  • the present inventors have found that a thin-film capacitive element made of a bismuth layered compound having a specific composition, which is included in the claims of Patent Document 6, but not described in the Examples of the specification.
  • the present inventors have found that the composition for use is particularly excellent in the temperature characteristics of the capacitance and that the temperature characteristics can be controlled, and have completed the present invention.
  • An object of the present invention is to have excellent temperature characteristics of dielectric constant, a relatively high dielectric constant and low loss even when thin, excellent in leak characteristics, improved withstand voltage, and excellent in surface smoothness.
  • An object of the present invention is to provide a composition for a thin film capacitor and a thin film capacitor using the same. Further, the present invention provides a thin film multilayer capacitor which is small in size, has excellent dielectric constant temperature characteristics, and can provide a relatively high capacitance by using such a composition for a thin film capacitor as a dielectric thin film. Also aim. Further, the present invention has excellent temperature characteristics of dielectric constant, and can provide a relatively high dielectric constant and low loss even when thin, and has excellent leakage characteristics, improved withstand voltage, and improved surface smoothness.
  • Another object is to provide an excellent high dielectric constant insulating film. Furthermore, the composition of the composition of the present invention is controlled. Thus, an object of the present invention is to provide an electronic circuit and an electronic device having excellent humidity compensation characteristics by freely controlling the temperature coefficient of the dielectric constant of a dielectric thin film or the like.
  • the present inventors have conducted intensive studies on the material of the dielectric thin film used for the capacitor and the crystal structure thereof. As a result, a bismuth layered compound having a specific composition was used, and the coercive force of the bismuth layered compound was also determined. [0 0 1] orientation perpendicular to the substrate surface to form a dielectric thin film as a composition for a thin film capacitor, that is, a c-axis oriented film (thin film) of a bismuth layered compound with respect to the substrate surface. By forming a normal (parallel to the c-axis), the temperature characteristics of the dielectric constant are excellent, and even if the thickness is reduced, the dielectric constant is relatively high and the loss is low (tan S is low). It has been found that it is possible to provide a composition for a thin film capacitor, which is excellent, has improved withstand voltage, and is excellent in surface smoothness, and a thin film capacitor using the same.
  • the number of layers can be increased, the size is small, the temperature characteristics of the dielectric constant are excellent, and the thin film stack that can provide a relatively high capacity is provided. They have also found that a capacitor can be provided, and have completed the present invention. Furthermore, they have found that by using such a composition as a high dielectric constant insulating film, it can be applied to uses other than the thin film capacitor.
  • composition of the composition of the present invention it is possible to freely control the temperature coefficient of the dielectric constant of a dielectric thin film and the like, and to provide an electronic circuit and an electronic device having excellent humidity compensation characteristics. And found that the present invention was completed.
  • composition for a thin film capacitor according to the present invention is:
  • At least the following three embodiments can be considered as a composition for a thin film capacitor containing the first bismuth layered compound and the second bismuth layered compound at an arbitrary mixing ratio.
  • composition for a thin film capacitor in which the first bismuth layered compound and the second bismuth layered compound are present as a complete solid solution
  • the first and second bismuth layered compounds are
  • composition formula (B i 2 ⁇ 2) 2+ (A m -1 Bm 0 3m + l) 2 — or ⁇ ⁇ 2 A m -1 Bm
  • ni in the above composition formula is a positive number
  • the symbol A is at least one element selected from Na, K, Pb, Ba, Sr, Ca and Bi
  • B is at least one element selected from Fe, Co, Cr, Ga, Ti, Nb, Ta, Sb, V, Mo, W and Mn.
  • composition formula of the second bismuth layered compound is
  • the first bismuth layered compound is represented by a composition formula: X (MB i 4 T i 4 ⁇ ⁇ 5)
  • the second bismuth layered compound is represented by a composition formula: (1 X) S r B i represented by 4 ⁇ i 4 0 15
  • M is C a in the composition formula, B a
  • the X indicating the composition ratio of the first bismuth layer compound to the total is at least one of and composition of P b 0 ⁇ X ⁇ 1.
  • the compounds of the first bismuth layer compound and the second bismuth layer compound is represented by the composition formula: C a X S r B i 4 T i 4 ⁇ 15 is represented by, x in the composition formula is 0 1 It is.
  • the composition for a thin film capacitor according to the present invention includes rare earth elements (Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb And at least one element selected from Lu).
  • rare earth elements Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb And at least one element selected from Lu.
  • the composition for a thin film capacitor in which the first bismuth layered compound and the second bismuth layered compound are contained at an arbitrary composition ratio is not necessarily required to be c-axis oriented.
  • the temperature characteristics of the capacitance can be controlled, and the temperature characteristics of the capacitance can be further improved.
  • composition for a thin film capacitor of the present invention is a composition for a thin film capacitor of the present invention.
  • the bismuth layer compound is represented by the composition formula: C a X S r (i- x) is represented by B i 4 T i 4 ⁇ 15, the can in the composition formula characterized in that it is a 0 ⁇ x ⁇ 1.
  • the thin film capacitor according to the present invention is a thin film capacitor in which a lower electrode, a dielectric thin film and an upper electrode are sequentially formed on a substrate,
  • the dielectric thin film is composed of the composition for a thin film capacitor according to any of the above.
  • a thin film capacitor in which a lower electrode, a dielectric thin film and an upper electrode are sequentially formed on a substrate An element,
  • the dielectric thin film is composed of a composition for a thin film capacitor
  • composition for a thin film capacitor has a bismuth layer compound in which a C-axis is oriented substantially perpendicular to a substrate surface for forming a thin film,
  • the bismuth layer compound is represented by the composition formula: C a x S r - is represented by (1 x) B i 4T i 4 0 1S, x in the composition formula is characterized in that it is a 0 ⁇ x ⁇ 1.
  • a thin film laminated capacitor in which a plurality of dielectric thin films and internal electrode thin films are alternately laminated on a substrate,
  • the dielectric thin film is composed of the composition for a thin film capacitor according to any of the above.
  • a thin film multilayer capacitor according to another aspect of the present invention is a thin film multilayer capacitor according to another aspect of the present invention.
  • a thin film laminated capacitor in which a plurality of dielectric thin films and internal electrode thin films are alternately laminated on a substrate,
  • the dielectric thin film is composed of a composition for a thin film capacitor
  • composition for a thin film capacitor has a bismuth layered compound in which a c-axis is oriented substantially perpendicular to a substrate surface for forming a thin film,
  • the bismuth layer compound is represented by the composition formula: C a X S r (1 -x, is represented by B i 4 T i 4 ⁇ 15, characterized in that x in said composition formula is O X ⁇ 1.
  • a high-dielectric-constant insulating film according to the present invention comprises the composition for a thin-film capacitor described in any one of the above, and has a c-axis oriented substantially perpendicular to the surface of the thin-film-forming substrate.
  • the bismuth layer compound is represented by the composition formula: C a X S r (ix ) represented by B i 4 T i 4 0 15 , X in the composition formula is characterized in that it is a 0 ⁇ ⁇ 1.
  • X in the composition formula is preferably 0 ⁇ x ⁇ 1, more preferably 0.25 ⁇ x ⁇ 0.75, and particularly preferably 0.5 ⁇ X ⁇ 0.75. .
  • thin film in the present invention means a film of a material having a thickness of several A to several / im formed by various thin film forming methods, and a thickness of several hundred ⁇ m formed by a sintering method. The purpose is to exclude the above thick-film pulp.
  • the thin film includes not only a continuous film that continuously covers a predetermined region, but also an intermittent film that intermittently covers an arbitrary interval.
  • the thin film may be formed on a part of the substrate surface, or may be formed on the entire surface.
  • the thickness of the dielectric thin film (or the high dielectric constant insulating film) formed by the composition for a thin film capacitor according to the present invention is preferably 5 to 1,000 nm. In the case of such a thickness, the operation and effect of the present invention are large.
  • the method for producing the composition for a thin film capacitor according to the present invention is not particularly limited.
  • a substrate oriented in the [001] direction such as cubic, tetragonal, orthorhombic, or monoclinic It can be manufactured using In this case, the substrate is preferably made of a single crystal.
  • the degree of orientation of the composition may be random or c-axis oriented.
  • the c-axis of the bismuth layered compound is oriented 100% perpendicular to the substrate surface, that is, the degree of c-axis orientation of the bismuth layered compound is 100%.
  • the degree does not have to be 100%.
  • the degree of c-axis orientation of the bismuth layered compound is 80% or more, more preferably 90% or more, and particularly preferably 95% or more.
  • the operational effects of the present invention are improved.
  • the internal electrode thin film is made of a noble metal, a base metal, or a conductive oxide.
  • the substrate may be made of an amorphous material.
  • the lower electrode (or the internal electrode thin film) formed on the substrate is preferably formed in the [001] direction.
  • the c-axis of the bismuth layered compound constituting the dielectric thin film formed thereon can be oriented perpendicular to the substrate surface.
  • the thin film capacitor configured to have the bismuth layered compound having the specific composition being c-axis aligned.
  • Thin film capacitors such as capacitors have excellent temperature characteristics of dielectric constant.
  • the average change rate of the dielectric constant with respect to temperature is ⁇ 100 ppmZ ° at a reference temperature of 25 ° C.
  • a relatively high dielectric constant for example, 200 or more
  • low loss for example, 0.02 or less
  • excellent leakage characteristics for example, electric field strength
  • Leakage current measured at 50 kV / cm is 1 X 10—TA / cm 2 or less
  • withstand voltage is improved (for example, 1000 kVZcm or more)
  • surface smoothness is excellent (for example, surface roughness Ra is 2 nm or less).
  • the composition for a thin film capacitor according to the present invention is said to have excellent temperature characteristics of dielectric constant.
  • a relatively high dielectric constant can be provided even when the film thickness is reduced, and the surface smoothness is good, the number of stacked dielectric thin films as the composition for a thin film capacitor should be increased. Is also possible. Therefore, by using such a composition for a thin film capacitor, it is possible to provide a thin film multilayer capacitor as a thin film capacitor which is small in size, has excellent temperature characteristics of dielectric constant, and can provide a relatively high capacitance.
  • composition for a thin film capacitor and the thin film capacitor of the present invention are excellent in frequency characteristics (for example, the value of the dielectric constant at a high frequency region of 1 MHz at a specific temperature and the value of 1 kHz at a lower frequency region thereof).
  • z eiom The ratio of the electric power values-and-is-. 0-a ⁇ i in absolute value:
  • the thin film capacitor examples include, but are not limited to, a capacitor having a conductor-insulator-conductor structure (for example, a single-layer thin film capacitor ⁇ a stacked thin-film multilayer capacitor) and a capacitor (for example, a DRAM). And the like.
  • a capacitor having a conductor-insulator-conductor structure for example, a single-layer thin film capacitor ⁇ a stacked thin-film multilayer capacitor
  • a capacitor for example, a DRAM.
  • the composition for a thin film capacitor is not particularly limited, and examples thereof include a dielectric thin film composition for a capacitor ⁇ a dielectric thin film composition for a capacitor.
  • the high dielectric constant insulating film according to the present invention is composed of the same composition as the composition for a thin film capacitor according to the present invention.
  • the high-dielectric-constant insulating film of the present invention is not limited to a thin-film dielectric film of a thin-film capacitive element or a capacitor, for example, a gate insulating film of a semiconductor device, an intermediate insulating film between a gate electrode and a floating gate, and the like. Can also be used.
  • FIG. 1 is a sectional view showing an example of the thin film capacitor according to the present invention.
  • FIG. 2 is a cross-sectional view showing one example of the thin-film multilayer capacitor according to the present invention.
  • FIG. 3 is a graph showing temperature characteristics of the capacitor sample of the example.
  • FIG. 4 is a graph showing frequency characteristics of the capacitor sample of the example.
  • FIG. 5 is a graph showing the voltage characteristics of the capacitor sample of the example.
  • a thin film capacitor in which a dielectric thin film is formed in a single layer will be described as an example of the thin film capacitor.
  • a thin film capacitor 2 according to one embodiment of the present invention has a thin film forming substrate 4, on which a lower electrode thin film 6 is formed. On the lower electrode thin film 6, a dielectric thin film 8 is formed. An upper electrode thin film 10 is formed on the dielectric thin film 8.
  • lattice-match well monocrystal e.g., S r T i 0 3 single crystal, M g O single crystal, such as L a A 1 0 3 single crystal
  • Amorufasu material e.g., glass, fused quartz, etc.
  • S I_ ⁇ 2 ZS i other materials
  • the substrate is formed of a substrate oriented in the [011] direction such as cubic, tetragonal, orthorhombic, or monoclinic.
  • the thickness of the substrate 4 is not particularly limited, and is, for example, about 100 to 1000 / im.
  • a silicon single crystal substrate is used as the substrate 4, and an insulating layer 5 having a thermal oxide film (silicon oxide film) is formed on the surface thereof, and a lower electrode thin film 6 is formed on the surface. Is done.
  • the material for forming the lower electrode thin film 6 is not particularly limited as long as it is a conductive material.
  • the lower electrode thin film 6 can also be formed using an oxide and a mixture thereof. [0 0 6 0]
  • the lower electrode thin film can be made of, for example, conductive glass such as ITO.
  • the thickness of the lower electrode thin film 6 is not particularly limited, it is preferably about 10 to 100 nm, more preferably about 50 to 100 nm.
  • the upper electrode thin film 10 can be made of the same material as the lower electrode thin film 6.
  • the thickness may be the same.
  • Dielectric thin film 8 is an example of a composition for a thin film capacitor of the present invention.
  • a second bismuth layered compound having a negative temperature characteristic in which the relative dielectric constant decreases with an increase in temperature in at least a part of the predetermined temperature range, at an arbitrary mixing ratio.
  • At least the following three aspects can be considered as a composition inspection for a thin film capacitor in which the first bismuth layered compound and the second bismuth layered compound are contained at an arbitrary mixing ratio.
  • composition for a thin film capacitor in which the first bismuth layered compound and the second bismuth layered compound are present in a completely solid solution;
  • the thin film and the layer of the first bismuth layer compound and the layer of the second bismuth layer compound is present to laminate across the (B i 2 0 2) 2 + layer And a composition for a capacitive element.
  • the first and second bismuth layered compounds are
  • m in the composition formula is a positive number
  • the symbol A is at least one element selected from Na, K, Pb, Ba, Sr, Ca and Bi.
  • B is at least one element selected from Fe, Co, Cr, Ga, Ti, Nb, Ta, Sb, V, Mo, W and Mn.
  • the second bismuth layer compound, S r B i 4 T i 4 ⁇ 15 or bismuth layered compound represented by S r B i 2 T a 2 ⁇ 9, are exemplified. It has been found by the present inventors that these bismuth layered compounds have negative temperature characteristics in which the relative dielectric constant decreases with an increase in temperature in at least a part of the predetermined temperature range. S r B i 4 T i 4 ⁇ 15 in this case, the c-axis orientation degree is preferably greater than 9 4%.
  • first bismuth layer compound S r B i ⁇ ⁇ " ⁇ 1 ⁇ or S r B i 2 T a 2 0
  • Most bismuth layer compound other than the bismuth layer compound represented by 9, are exemplified.
  • S r B i 4 T i 4 0 15 or S r B i 2 T 2 Q most bismuth layer compound other than bismuth scan lamellar compound represented by 9, a positive temperature relative dielectric constant increases with increasing temperature, It has properties in at least a part of the predetermined temperature range
  • Particularly preferred first bismuth layered compound is represented by a composition formula: MB i 4 T i ⁇ S 1S , and M in the above composition formula Is a bismuth layered compound in which is at least one of C a, B a, and P b .
  • the bismuth layered compound has a positive temperature characteristic in which the relative dielectric constant increases as the temperature rises. Having at least some of the temperature ranges within the temperature range It has been
  • the temperature characteristics (temperature coefficient) of the thin film capacitor composition can be freely controlled. It can.
  • the first bismuth layer compound and the second The temperature coefficient can be changed from negative to positive or vice versa by changing the composition ratio X (0 ⁇ x ⁇ 1) of the first bismuth layered compound to the entire composition containing the bismuth layered compound.
  • the thin film capacitor element composition of this embodiment the composition formula: C a x S r - x ) is represented by B i 4 T i 4 0 15 , x in the composition formula is 0 ⁇ Contains bismuth layered compound with x ⁇ 1.
  • a bismuth layered compound has a layered structure in which a layer of perovskite lattice composed of AB is sandwiched between a pair of Bi and O layers above and below a layered perovskite layer.
  • the orientation of the bismuth layered compound in the [001] direction that is, the c-axis orientation, is enhanced. That is, the dielectric thin film 8 is formed such that the c-axis of the bismuth layered compound is oriented perpendicular to the substrate 4.
  • the c-axis orientation of the bismuth layered compound is particularly preferably 100%, but the c-axis orientation may not necessarily be 100%, and the bismuth layered compound is preferably 80%. % Or more, more preferably 90% or more, and even more preferably 95% or more, as long as it is c-axis oriented.
  • the degree of c-axis orientation of the bismuth layered compound is preferably at least 80%.
  • the degree of c-axis orientation of the bismuth layered compound is preferably 90% or more, more preferably 95% or more.
  • the c-axis orientation degree F of the bismuth layered compound is defined by the following equation (1).
  • ⁇ 0 is the c-axis X-ray diffraction intensity of a polycrystal having a completely random orientation, that is, (00) of a polycrystal having a completely random orientation.
  • the c-axis of the bismuth layered compound means a direction connecting a pair of (B i 2 O 2) 2+ layers, that is, a [001] direction.
  • the temperature characteristics of the capacitance can be controlled to some extent, and the temperature characteristics of the capacitance can be further improved.
  • the composition for a thin film capacitive element containing the first bismuth layered compound and the second bismuth layered compound at an arbitrary composition ratio is not necessarily required to be c-axis oriented.
  • the temperature characteristics of the capacitance can be controlled by including the rare earth element, and the temperature characteristics of the capacitance can be further improved.
  • the dielectric thin film 8 preferably has a thickness of 200 nm or less, and more preferably 10 O nm or less from the viewpoint of increasing the capacity.
  • the lower limit of the film thickness is preferably about 30 nm in consideration of the insulating properties of the film.
  • the dielectric thin film 8 has a surface roughness (Ra) force in accordance with, for example, JIS-BO601, preferably 2 nm or less, and more preferably 1 nm or less.
  • the dielectric constant of the dielectric thin film 8 at 25 ° C. (room temperature) and a measurement frequency of 100 kHz (AC 20 mV) is preferably more than 150, more preferably 200 or more.
  • the tan ⁇ force at 25 ° C. (room temperature) and a measurement frequency of 100 kHz (20 mV AC) is preferably 0.02 or less, more preferably 0.01 or less. Further, the loss Q value is preferably 50 or more, more preferably 100 or more.
  • the change (particularly, decrease) of the dielectric constant is small.
  • the change in capacitance is small.
  • the ratio between the value of the dielectric constant at a measurement voltage of 0.1 V under a specific frequency and the value of the dielectric constant at a measurement voltage of 5 V is 0.9 to: 1.
  • Such a dielectric thin film 8 can be formed by vacuum deposition, sputtering, pulsed laser deposition (PLD), metal-organic chemical vapor deposition (MOC VD), organic metal separation, etc. It can be formed using various thin film forming methods such as a liquid phase method (CSD method) such as a metal-organic decomposition method.
  • a liquid phase method such as a metal-organic decomposition method.
  • the dielectric thin film 8 is formed using a substrate or the like oriented in a specific direction (such as the [001] direction). From the viewpoint of reducing the manufacturing cost, it is more preferable to use the substrate 4 made of an amorphous material.
  • a bismuth layered compound having a specific composition is configured to be c-axis oriented.
  • the dielectric thin film 8 and the thin film capacitor 2 using the same have excellent temperature characteristics of the dielectric constant, and have a relatively high dielectric thin film thickness of, for example, 100 nm or less. It can provide a dielectric constant and low loss, has excellent leakage characteristics, improves withstand voltage, and has excellent surface smoothness.
  • Such a dielectric thin film 8 and a thin film capacitor 2 have excellent frequency characteristics and voltage characteristics.
  • a thin film multilayer capacitor in which a dielectric thin film is formed in multiple layers will be described as an example of a thin film capacitor.
  • the thin-film multilayer capacitor 20 has a capacitor body 22.
  • the capacitor element 22 has a plurality of dielectric thin films 8a and a plurality of internal electrode thin films 24, 26 alternately arranged on a substrate 4a, and furthermore, a dielectric thin film 8a arranged at the outermost side. It has a multilayer structure in which a protective layer 30 is formed so as to cover the surface.
  • a pair of external electrodes 28 and 29 are formed at both ends of the capacitor body 22. The pair of external electrodes 28 and 29 are electrically connected to exposed end faces of the internal electrode thin films 24 and 26 alternately arranged inside the capacitor body 22 to form a capacitor circuit.
  • the shape of the capacitor body 22 is not particularly limited, but is usually a rectangular parallelepiped.
  • the dimensions are not particularly limited, but are, for example, about vertical (0.01 to 1 Omm) X horizontal (0.01 to 10 mm) X height (0.01 to 1 mm).
  • the substrate 4a is made of the same material as the substrate 4 of the first embodiment described above.
  • the dielectric thin film 8a is made of the same material as the dielectric thin film 8 of the first embodiment described above.
  • the internal electrode thin films 24 and 26 are made of the same material as the lower electrode thin film 6 and the upper electrode thin film 10 of the first embodiment described above.
  • the material of the external electrodes 28 and 29 is not particularly limited, and conductive oxides such as Ca RuOs and Sr RuOs; base metals such as Cu and Cu alloys or Ni and Ni alloys; Precious metals such as Ag, Pd and Ag-Pd alloy;
  • the thickness is not particularly limited, but may be, for example, about 10 to about 100 nm.
  • the material of the protective layer 30 is not particularly limited, and is made of, for example, a silicon oxide film, an aluminum oxide film, or the like.
  • the thin-film multilayer capacitor 20 is formed by forming a first-layer internal electrode thin film 24 on a substrate 4 a by applying a mask such as a metal mask, and then forming a dielectric thin film 8 a on the internal electrode thin film 24. Then, a second-layer internal electrode thin film 26 is formed on the dielectric thin film 8a. After repeating such a process a plurality of times, the outermost dielectric thin film 8a opposite to the substrate 4a is covered with the protective film 30, so that the internal electrode thin film 24, A capacitor element body 22 in which a plurality of 26 and the dielectric thin film 8 are alternately arranged is formed. By covering with the protective film 30, the effect of moisture in the air on the inside of the capacitor body 22 can be reduced.
  • the odd-numbered internal electrode thin film 24 is electrically connected to the negative external electrode 28.
  • the even-numbered inner electrode thin film 26 is electrically connected to the other outer electrode 29.
  • the thin film multilayer capacitor 20 is obtained.
  • the substrate 4a made of an amorphous material.
  • the dielectric thin film 8a used in the present embodiment has excellent temperature characteristics of dielectric constant, can provide a relatively high dielectric constant even when thin, and has good surface smoothness. As described above, preferably 50 or more layers can be formed. Therefore, it is possible to provide the thin film laminated capacitor 20 which is small in size, has excellent temperature characteristics of dielectric constant, and can provide a relatively high capacitance.
  • the S r RuOs to be the lower electrode film [001] S r T i O 3 single crystal substrate was Epitakisharu growth orientation ((001) S r RuO 3 ⁇ (001) S r T i Os
  • a Pt upper electrode thin film of 0.1 ⁇ was formed on the surface of these dielectric thin films by a sputtering method, and a thin film capacitor sample was manufactured.
  • the electrical characteristics (dielectric constant, t an S, loss Q value, leak current, breakdown voltage) of the obtained capacitor samples and the temperature characteristics of the dielectric constant were evaluated.
  • Dielectric constant (no unit) is measured on a capacitor sample using a digital LCR meter (4274A manufactured by YHP) at room temperature (25 ° C) and measurement frequency of 100 kHz (AC 2 OmV) It was calculated from the measured capacitance and the electrode dimensions of the capacitor sample and the distance between the electrodes. ⁇ Ta ⁇ ⁇ was measured under the same conditions as those for measuring the capacitance, and the loss Q value was calculated accordingly.
  • the temperature characteristics of the dielectric constant were measured for the capacitor sample under the above conditions, and when the reference temperature was set at 25 ° C, the dielectric constant was measured at a temperature in the temperature range of 150 to 150 ° C.
  • the average change rate ( ⁇ ) of the dielectric constant was measured, and the temperature coefficient (ppm / ° C) was calculated.
  • the withstand voltage (unit: kVZcm) was measured by increasing the voltage in the leak characteristic measurement.
  • Example 1 As shown in Table 1, c-axis oriented film of the bismuth layer compound obtained in Example 1, the breakdown voltage is higher than 1000 k VZcm, leakage current low enough 1 X 10- 7 or less, the dielectric constant is 200 From the above, it was confirmed that & 113 was 0.02 or less and the loss Q value was 50 or more. As a result, further thinning can be expected, and a higher capacity as a thin film capacitor can be expected. In Example 1, the temperature coefficient was
  • Example 1 it has been confirmed that the dielectric constant is relatively large at 200 or more even though it is extremely small at ⁇ 150 ppm / ° C or less, and that it has excellent basic characteristics as a temperature compensation capacitor material. Further, in Example 1, it was confirmed that the thin film material was suitable for producing a laminated structure because of its excellent surface smoothness. That is, Example 1 confirmed the effectiveness of the bismuth layered compound c-axis oriented film.
  • the value of X is preferably 0 ⁇ X ⁇ 1, more preferably 0.25 ⁇ 0.75, and particularly preferably 0.5 ⁇ X ⁇ 0.75. Can be further reduced to within ⁇ 100 pp mZ ° C (reference temperature 25 ° C), within ⁇ 70 pp111, and within ⁇ 30 ppm / ° C.
  • the temperature coefficient of the dielectric thin film is controlled by changing the composition ratio X of the first bismuth layered compound having a positive temperature coefficient and the second bismuth layered compound having a negative temperature coefficient. I was able to confirm what I could do.
  • the frequency characteristics and the voltage characteristics were evaluated using the thin film capacitor samples manufactured in Example 1.
  • the frequency characteristics were evaluated as follows. For the capacitor sample, the frequency was changed from 1 kHz to 1 MHz at room temperature (25 ° C), the capacitance was measured, and the results of calculating the permittivity are shown in Fig. 4. Use an LCR meter to measure capacitance Using. As shown in Fig. 4, it was confirmed that the value of the dielectric constant did not change even when the frequency at a specific temperature was changed to 1 MHz. That is, it was confirmed that the frequency characteristics were excellent.
  • the voltage characteristics were evaluated as follows. For the capacitor sample, change the measured voltage (applied voltage) at a specific frequency (100 kHz) from 0.4 (electric field strength 5 kV / cm) to 5 V (electric field strength 250 kVZcm), and Figure 5 shows the results of measuring the capacitance at the bottom (measuring temperature 25 ° C) and calculating the permittivity. An LCR meter was used to measure the capacitance. As shown in Fig. 5, it was confirmed that the value of the dielectric constant did not change even when the measurement voltage at a specific frequency was changed to 5 V. That is, it was confirmed that the voltage characteristics were excellent.
  • [0 0 1] Prepare the S r T i 0 3 single crystal substrate oriented in the direction (thickness 0. 3m m) 4 a (see FIG. Hereinafter the same), the substrate 4 on a subjected to main Tarumasuku a predetermined pattern, at pulse laser one evaporation to form a S r Ru0 3 made electrode thin film as an internal electrode thin film 24 with a thickness of 1 00 nm (pattern 1).
  • a C a, S r B i 4 T i 4 ⁇ 15 thin film (dielectric thin film) as a dielectric thin film 8 a is applied on the entire surface of the substrate 4 a including the internal electrode thin film 24 by a pulse laser deposition method.
  • X 0.5
  • a film thickness of 100 nm was formed in the same manner as in Example 1.
  • a metal mask having a predetermined pattern was formed on the dielectric thin film, and an SrRuOs electrode thin film having a thickness of 100 nm was formed as the internal electrode thin film 26 by a pulsed laser single vapor deposition method (pattern 2). ).
  • a dielectric thin film as a dielectric thin film 8a having a thickness of 100 nm was formed on the entire surface of the substrate 4a including the internal electrode thin film 26 in the same manner as described above by a pulse laser vapor deposition method. . [0 1 08]
  • external electrodes 28 and 29 made of Ag are formed on both ends of the capacitor element body 22, and a rectangular parallelepiped thin film laminated capacitor having a length of l mm, a width of 0.5 mm, and a thickness of 0.4 mm is formed. Sample was obtained.
  • the electrical properties (dielectric constant, dielectric loss, Q value, leakage current, short-circuit rate) of the obtained capacitor sample were evaluated in the same manner as in Example 1.
  • the dielectric constant was 210 and tan ⁇ was 0.02 or less.
  • the loss Q value was 50 or more, and the leak current was 1 ⁇ 10 17 A / cm 2 or less, and good results were obtained.
  • the temperature coefficient was found to be 20 ppm / ° C.
  • the present invention not only the temperature characteristic of the dielectric constant is excellent, but also a relatively high dielectric constant and low loss can be given even when the thickness is small, and the leakage characteristic is excellent and the withstand voltage is excellent. It is possible to provide a composition for a thin film capacitor which is improved and has excellent surface smoothness, and a thin film capacitor using the same. Further, according to the present invention, there is provided a thin film multilayer capacitor which is small in size, has excellent temperature characteristics of dielectric constant, and can provide a relatively high capacitance by using such a composition for a thin film capacitor as a dielectric thin film. You can also.
  • the present invention it is possible to provide a relatively high dielectric constant and a low loss even when the thickness is reduced, as well as excellent temperature characteristics of the dielectric constant, excellent leak characteristics, improved withstand voltage, and surface smoothness. It is also possible to provide a high-dielectric-constant insulating film excellent in the above.
  • the temperature coefficient of the dielectric constant in a dielectric thin film or the like is changed by changing the mixing ratio of the first bismuth layered compound having a positive temperature coefficient and the second bismuth layered compound having a negative temperature coefficient. Can be freely controlled according to the application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

 温度の上昇と共に比誘電率が上昇する正温度特性を、所定温度範囲の内の少なくとも一部の温度範囲で有する第1ビスマス層状化合物と、温度の上昇と共に比誘電率が低下する負温度特性を、前記所定温度範囲の内の少なくとも一部の温度範囲で有する第2ビスマス層状化合物と、が任意の混合比で含有してある。具体的には、組成式:CaxSr(1−x)Bi4Ti4O15で表されるビスマス層状化合物である。

Description

明 細 書 薄膜容量素子用組成物、 高誘電率絶縁膜、 薄膜容量素子、 薄膜積層コンデンサ、 電子回路およぴ電子機器 技術分野 .
【0001】
本発明は、 薄膜容量素子用組成物、 高誘電率絶縁膜、 薄膜容量素子、 薄膜積層 コンデンサ、 電子回路および電子機器に関する。
背景技術
【0002】
積層セラミックコンデンサなどに用いられる誘電体組成物としては、 たとえば、 チタン酸ランタン (L a 2 O 3 · 2T i 02 ) 、 チタン酸亜鉛 (Z ηθ■ T i O 2 ) 、 チタン酸マグネシウム (M g T i O 3 ) 、 酸化チタン (T i 02 ) 、 チタ ン酸ビスマス (B i 2 03 · 2 T i 02 ) 、 チタン酸カルシウム (C a T i〇3) チタン酸ス トロンチウム (S r T i〇3 ) などのバルク (塊) 状のコンデンサ材 料が知られている。 この種のコンデンサ材料は、 温度係数が小さいため、 カップ リング回路、 音轡回路または画像処理回路などに好適に用いることができる。
【0003】
しかしながら、 この種のコンデンサ材料は、 温度係数が小さくなると (たとえ ば ± 100 p pm/°C以内) 、 誘電率も小さくなり (たとえば 40未満) 、 逆に 誘電率が大きくなると (たとえば 90以上) 、 温度係数も大きくなる (たとえば ± 750 p p mZ°C以上) 傾向がある。 たとえば、 L a 2 Os · 2 T i 02 、 Ζ ηθ · Τ i 02 、 MgT i Oa の温度係数 (基準温度は 25°C、 単位は p p m/ °C) は、 それぞれ +60、 一 60、 + 100と小さいが、 これに伴って誘電率 (測定周波数 1 MHz、 単位はなし) は、 それぞれ 35~38、 35〜38、 1 6〜18と小さくなる。 その一方で、 たとえば、 T i〇2 、 B i 23 · 2T i 02 、 C a T i Oa 、 S r T i Oa の誘電率は、 それぞれ 90〜: 1 10、 104 〜; L 10、 1 50〜 160、 240〜 260と大きいが、 これに伴って温度係数 は、 それぞれ一 750、 - 1500, 一 1 500、 一 3300と大きくなる。 し たがって、 温度係数が小さくても、 比較的高い誘電率を保持しうる温度補償用コ ンデンサ材料を開発することが望まれる。
【0004】
ところで、 近年、 電子部品の分野では、 電子回路の高密度化 '高集積化に伴い、 各種電子回路に必須の回路素子である容量素子などの一層の小型化が望まれてい る。
【0005】
たとえば、 単層の誘電体薄膜を用いた薄膜コンデンサは、 トランジスタなどの 能動素子との集積回路において、 小型化が遅れており、 超高集積回路の実現を阻 害する要因となっている。 薄膜コンデンサの小型化が遅れていたのは、 これに用 いる誘電体材料の誘電率が低かったためである。 したがって、 薄膜コンデンサを 小型化し、 比較的高い容量を実現するためには、 高い誘電率を持つ誘電体材料を 用いることが重要である。
【0006】
また、 近年、 容量密度の観点から、 次世代 DRAM (ギガビット世代) 用のキ ャパシタ材料が従来の S i〇2 と S i 3 N 4 の積層膜では対応しきれなくなって おり、 より高い誘電率を持つ材料系が注目されている。 このような材料系の中で
T a Οχ (ε =〜30) の適用が主として検討されていたが、 他の材料の開発も 活発に行われるようになってきている。
【0007】
比較的高い誘電率を持つ誘電体材料として、 (B a, S r ) T i 03 (B S T) や、 P b (Mg 1/3 Nb 2/3 ) Os (PMN) が知られている。
【0008】
そこで、 この種の誘電体材料を用いて薄膜容量素子を構成すれば、 その小型化 を図ることができるのではないかとも考えられる。
【0009】
しかしながら、 この種の誘電体材料は、 温度補償用材料ではないため、 温度係 数が大きく (たとえば B STでは 4000 p
Figure imgf000004_0001
、 こうした材料を用い て薄膜容量素子を構成した場合には、 誘電率の温度特性が悪化することがあった。 また、 この種の誘電体材料を用いた場合、 誘電体膜の薄層化に伴って誘電率が低 下することもあった。 さらに、 薄層化に伴って誘電体膜に生じる孔により、 リー ク特性や耐圧が劣化することもあった。 さらには形成された誘電体膜は、 表面平 滑性が悪くなる傾向もあった。 なお、 近年、 P MNなどの鉛化合物の環境へ与え る影響の大きさから、 鉛を含有しない高容量コンデンサが望まれている。
【0 0 1 0】
これに対し、 積層セラミックコンデンサの小型化おょぴ大容量化を実現するに は、 1層あたりの誘電体層の厚みを可能な限り薄くし (薄層化) 、 所定サイズに おける誘電体層の積層数を可能な限り増やすこと (多層化) が望まれる。
【0 0 1 1】
しかしながら、 たとえばシート法 (誘電体雇用ペース トを用いてキャリアフィ ルム上にドクターブレード法などにより誘電体グリーンシート層を形成し、 この 上に内部電極層用ペーストを所定パターンで印刷した後、 これらを 1層ずつ剥離、 積層していく方法) により積層セラミックコンデンサを製造する場合に、 セラミ ック原料粉末よりも誘電体層を薄く形成することは不可能であり、 しかも誘電体 層の欠陥によるショートや内部電極切れなどの問題から、 誘電体層をたとえば 2 μ πι以下に薄層化することは困難であった。 また、 1層あたりの誘電体層を薄層 化した場合には、 積層数にも限界があった。 なお、 印刷法 (たとえばスクリーン 印刷法を用いて、 キャリアフィルム上に誘電体層用ペーストと内部電極層用ぺー ストとを交互に複数印刷した後、 キヤリァフィルムを剥離する方法) により積層 セラミックコンデンサを製造する場合も同様の問題を有している。
【0 0 1 2】
このような理由により、 積層セラミックコンデンサの小型化および高容量化に は限界があった。
【0 0 1 3】
そこで、 この問題を解決するために種々の提案がなされている (たとえば、 下 記の特許文献 1 :特開昭 5 6— 1 4 4 5 2 3号公報、 特許文献 2 :特開平 5— 3 3 5 1 7 3号公報、 特許文献 3 :特開平 5— 3 3 5 1 7 4号公報、 特許文献 4 : 特開平 1 1— 214245号公報、 特許文献 5 :特開 2000— 124056号 公報など) 。 これらの特許文献では、 CVD法、 蒸着法、 スパッタリング法など の各種薄膜形成方法を用いて、 誘電体薄膜と電極薄膜とを交互に積層する積層セ ラミックコンデンサの製造方法が開示されている。
【0014】
しかしながら、 これらの特許文献に記載された技術では、 温度係数が小さく、 比較的高い誘電率を保持しうる誘電体材料を用いて誘電体薄膜を構成する旨の記 載はなく、 温度補償用の薄膜積層コンデンサを開示するものではない。
【001 5】
また、 これらの特許文献に記載された方法により形成される誘電体薄膜は、 表 面平滑性が悪く、 あまりに多く積層すると電極がショートすることがあった。 こ のため、 せいぜい 12~13層程度の積層数のものしか製造することができず、 コンデンサを小型化できても、 誘電率の温度特性を悪化させることなく、 高容量 化を達成することはできなかった。
【001 6】
なお、 非特許文献 1 (竹中正著 「ビスマス層状構造強誘電体セラミックスの粒 子配向とその圧電 ·焦電材料への応用」 、 京都大学工学博士論文 (1984) の 第 3章の第 23〜77頁) に示すように、 組成式: (B i ) 2+ (Am-t B m Oam+l) 2 、 または Β ί Am-l Bm 03m+3で表され、 前記組成式中の記号 Π1 が 1〜8の正数、 記号 Αが N a、 K、 P b、 B a、 S r、 C aおよび B iから選 ばれる少なくとも 1つの元秦、 記号 Bが F e、 C 0、 C r、 G a、 T i、 N b、 T a、 S b、 V、 Moおよび Wから選ばれる少なくとも 1つの元泰である組成物 が、 焼結法により得られるバルタのビスマス層状化合物誘電体を構成すること自 体は知られている。
【001 7】
しかしながら、 この文献には、 上記の組成式で表される組成物を、 どのような 条件 (たとえば基板の面と化合物の c軸配向度との関係) で薄膜ィヒ (たとえば 1 以下) した場合に、 誘電率の温度特性に優れるとともに、 薄くしても、 比較 的高誘電率かつ低損失を与えることができ、 リーク特性に優れ、 耐圧が向上し、 表面平滑性にも優れる薄膜を得ることができるかについては、 何ら開示されてい なかった。
【0018】
また、 本発明者は、 特許文献 6 (PCT/ J P 02/08574) に示すよう に、
「 c軸が基板面に対して垂直に配向しているビスマス層状化合物を有する薄膜 容量素子用組成物であって、
該ビスマス層状化合物が、 組成式: (B i 2 02 ) 2+ (Am-i Bm 03m+i) 2一、 または B i 2 Am-i Bm 03m+3で表され、 前記組成式中の記号 mが偶数、 記号 A が Na、 K、 P b、 B a、 S r、 C aおよび B iから選ばれる少なくとも 1つの 元素、 記号 Bが F e、 C o、 C r、 G aゝ T i、 N b、 T a、 S b、 V、 Moお ょぴ Wから選ばれる少なくとも 1つの元素であることを特徴とする薄膜容量素子 用組成物」 を開発し、 先に出願している。
【001 9】
本発明者等は、 さらに実験を進めた結果、 特許文献 6の請求の範囲には含まれ るが、 その明細書の実施例には記載のない特定組成のビスマス層状化合物から成 る薄膜容量素子用組成物が、 特に、 静電容量の温度特性に優れると共に、 その温 度特性の制御が可能になることを見出し、 本発明を完成させるに至った。
発明の開示
【0020】
本発明の目的は、 誘電率の温度特性に優れるとともに、 薄くしても、 比較的高 誘電率かつ低損失を与えることができ、 リーク特性に優れ、 耐圧が向上し、 表面 平滑性にも優れる薄膜容量素子用組成物およぴこれを用いた薄膜容量素子を提供 することである。 また、 本発明は、 このような薄膜容量素子用組成物を誘電体薄 膜として用いて、 小型で、 誘電率の温度特性に優れ、 比較的高容量を与えうる薄 膜積層コンデンサを提供することも目的とする。 さらに、 本発明は、 誘電率の温 度特性に優れるとともに、 薄くしても、 比較的高誘電率かつ低損失を与えること ができ、 リーク特性に優れ、 耐圧が向上し、 表面平滑性にも優れる高誘電率絶縁 膜を提供することも目的とする。 さらにまた、 本発明の組成物の組成を制御する 事により、 誘電体薄膜などにおける誘電率の温度係数を自由に制御し、 湿度捕償 特性に優れた電子回路 ·電子機器を提供する事を目的とする。
【0 0 2 1】
本発明者らは、 コンデンサに用いられる誘電体薄膜の材質とその結晶構造に関 して鋭意検討した結果、 特定組成のビスマス層状化合物を用い、 し力 も該ビスマ ス層状化合物の c軸 ( [ 0 0 1 ] 方位) を基板面に対して垂直に配向させて薄膜 容量素子用組成物としての誘電体薄膜を構成することにより、 すなわち基板面に 対してビスマス層状化合物の c軸配向膜 (薄膜法線が c軸に平行) を形成するこ とにより、 誘電率の温度特性に優れるとともに、 薄くしても、 比較的高誘電率か つ低損失 (t a n Sが低い) であり、 リーク特性に優れ、 耐圧が向上し、 表面平 滑性にも優れる薄膜容量素子用組成物、 およびこれを用いた薄膜容量素子を提供 できることを見出した。
【0 0 2 2】
また、 このような薄膜容量素子用組成物を誘電体薄膜として用いることにより、 積層数を増大させることができ、 小型で、 誘電率の温度特性に優れ、 比較的高容 量を与えうる薄膜積層コンデンサを提供できることも見出し、 本発明を完成させ るに至った。 さらに、 このような組成物を高誘電率絶縁膜として用いることによ り、 薄膜容量素子以外の用途にも適用することが可能であることを見出した。
【0 0 2 3】
さらにまた、 本発明の組成物の組成を制御する事により、 誘電体薄膜などにお ける誘電率の温度係数を自由に制御し、 湿度補償特性に優れた電子回路 ·電子機 器を提供する事ができることを見出し、 本発明を完成させるに至つた。
【0 0 2 4】
すなわち、 本発明に係る薄膜容量素子用組成物は、
温度の上昇と共.に比誘電率が上昇する正温度特性を、 所定温度範囲の内の少な くとも一部の温度範囲で有する第 1 ビスマス層状化合物と、
温度の上昇と共に比誘電率が低下する負温度特性を、 前記所定温度範囲の内の 少なくとも一部の温度範囲で有する第 2ビスマス層状化合物と、 が任意の混合比 で含有してあることを特徴とする。 【0025】
本発明において、 第 1ビスマス層状化合物と第 2ビスマス層状化合物とが任意 の混合比で含有してある薄膜容量素子用組成物としては、 少なくとも次に示す 3 つの態様が考えられる。
【0026】
①第 1ビスマス層状化合物と第 2ビスマス層状化合物とが完全固溶して存在す る薄膜容量素子用組成物と、
②第 1ビスマス層状化合物と第 2ビスマス層状化合物とが完全固溶することな く、 それぞれの粒子が混じり合つて存在する薄膜容量素子用組成物と、
③ビスマス層状化合物を構成する結晶構造の内部で、 第 1ビスマス層状化合物 の層と第 2ビスマス層状化合物の層とが、 (B i 2 02 ) 2+層を挟んで積層する ように存在する薄膜容量素子用組成物と、 が考えられる。
いずれの態様においても、 本発明の作用効果を奏することになる。
【0027】
好ましくは、 前記第 1およぴ第 2ビスマス層状化合物が、
組成式: (B i 2 〇2 ) 2+ (Am-1 Bm 03m+l) 2—、 または Β ί 2 Am-1 Bm
03m+3で表され、 前記組成式中の記号 niが正数、 記号 Aが Na、 K、 Pb、 B a、 S r、 C aおよぴ B iから選ばれる少なくとも 1つの元素、 記号 Bが F e、 C o、 C r、 G a、 T i、 N b、 T a、 S b、 V、 Mo、 Wおよぴ M n力ゝら選ばれる少 なくとも 1つの元素である。
【0028】
好ましくは、 前記第 2ビスマス層状化合物の組成式が、
S r B i 4T i 4 O i 5, または S r B i 2Ta 29で表される。
【0029】
好ましくは、 前記第 1ビスマス層状化合物が、 組成式: X (MB i 4 T i 4 θ χ 5) で表され、 前記第 2ビスマス層状化合物が、 組成式: (1一 X ) S r B i 4 Τ i 4015で表され、 前記組成式中の Mが C a , B a, P bの少なくとも 1つであり 組成物全体に対する前記第 1ビスマス層状化合物の組成比を示す Xが 0≤ X ≤ 1 である。 【0030】
好ましくは、 前記第 1ビスマス層状化合物と第 2ビスマス層状化合物との化合 物が、 組成式: C a XS r B i 4T i 415で表され、 前記組成式中の xが 0 1である。
【0031】
本発明の薄膜容量素子用組成物には、 希土類元素 (S c、 Y、 L a、 Ce、 P r、 Nd、 Pm、 Sm、 Eu、 Gd、 Tb、 Dy、 Ho、 E r、 Tm、 Ybおよ ぴ L uから選ばれる少なくとも 1つの元素) をさらに含ませても良い。 希土類元 素を含ませることでも、 ある程度の静電容量の温度特性の制御が可能であり、 静 電容量の温度特性をさらに向上させることができる。
[0032]
本発明では、 第 1ビスマス層状化合物と第 2ビスマス層状化合物とが任意の組 成比で含有してある薄膜容量素子用組成物は、 必ずしも c軸配向している必要は なく、 その場合にも、 希土類元素を含ませることで、 静電容量の温度特性の制御 が可能であり、 静電容量の温度特性をさらに向上させることができる。
【0033】
また、 本発明の薄膜容量素子用組成物は、
c軸が薄膜形成用基板面に対して実質的に垂直に配向しているビスマス層状化 合物を有する薄膜容量素子用組成物であって、
該ビスマス層状化合物が、 組成式: C a XS r (i-x) B i 4 T i 415で表され、 前記組成式中の が 0≤x≤ 1であることを特徴とする。
【0035】
本発明に係る薄膜容量素子は、 基板上に、 下部電極、 誘電体薄膜おょぴ上部電 極が順次形成してある薄膜容量素子であって、
前記誘電体薄膜が、 上記の何れかに記載の薄膜容量素子用組成物で構成してあ る。
【0036】
また、 本発明に係る薄膜容量素子は、
基板上に、 下部電極、 誘電体薄膜および上部電極が順次形成してある薄膜容量 素子であって、
前記誘電体薄膜が、 薄膜容量素子用組成物で構成してあり、
該薄膜容量素子用組成物が、 C軸が薄膜形成用基板面に対して実質的に垂直に 配向しているビスマス層状化合物を有し、
該ビスマス層状化合物が、 組成式: C axS r (1-x) B i 4T i 401Sで表され、 前記組成式中の xが 0≤x≤ 1であることを特徴とする。
【0037】
本発明では、 少なくとも一 55°C〜+ 150°Cの温度範囲における温度に対す る誘電率の平均変化率 (Δ ε ) カ、 好ましくは ± 100 p pmZ°C以内 (基準温 度 25°C) 、 さらに好ましくは ± 70 p pmZ°C以内 (基準温度 25 °C) 、 特に 好ましくは ±30 p pm/°C以内 (基準温度 25 °C) である。
【0038】
本発明に係る薄膜積層コンデンサは、
基板上に、 誘電体薄膜と内部電極薄膜とが交互に複数積層してある薄膜積層コ ンデンサであって、
前記誘電体薄膜が、 上記のいずれかに記載の薄膜容量素子用組成物で構成して 【0039】
本発明の別の観点に係るに係る薄膜積層コンデンサは、
基板上に、 誘電体薄膜と内部電極薄膜とが交互に複数積層してある薄膜積層コ ンデンサであって、
前記誘電体薄膜が、 薄膜容量素子用組成物で構成してあり、
該薄膜容量素子用組成物が、 c軸が薄膜形成用基板面に対して実質的に垂直に 配向しているビスマス層状化合物を有し、
前記ビスマス層状化合物が、 組成式: C a XS r (1-x, B i 4 T i 415で表され、 前記組成式中の xが O x≤ 1であることを特徴とする。
【0040】
本発明に係る高誘電率絶縁膜は、 上記のいずれかに記載の薄膜容量素子用組成 物で構成してあり、 c軸が薄膜形成用基板面に対して実質的に垂直に配向してい る。
【004 1】
本発明の別の観点に係る高誘電率絶縁膜は、
c軸が薄膜形成用基板面に対して実質的に垂直に配向しているビスマス層状化 合物を有する高誘電率絶縁膜であつて、
該ビスマス層状化合物が、 組成式: C a XS r (i-x) B i 4T i 4015で表され、 前記組成式中の Xが 0≤ χ≤ 1であることを特徴とする。
【0042】
本発明において、 好ましくは、 前記組成式中の Xが 0 < x < 1、 さらに好まし くは 0. 25 < x < 0. 75、 特に好ましくは 0. 5 < X < 0. 7 5である。
【0043】
なお、 本発明でいう 「薄膜」 とは、 各種薄膜形成法により形成される厚さ数 A から数/ i m程度の材料の膜をいい、 焼結法により形成される厚さ数百 μ m程度以 上の厚膜のパルク (塊) を除く趣旨である。 薄膜には、 所定の領域を連続的に覆 う連続膜の他、 任意の間隔で断続的に覆う断続膜も含まれる。 薄膜は、 基板面の 一部に形成してあってもよく、 あるいは全部に形成してあってもよい。
【0044】
本発明に係る薄膜容量素子用組成物により形成される誘電体薄膜 (または高誘 電率絶縁膜) の厚さは、 好ましくは、 5〜1 000 nmである。 このような厚さ の場合に、 本発明の作用効果が大きい。
【0045】
本発明に係る薄膜容量素子用組成物の製造方法は、 特に限定されないが、 たと えば、 立方晶、 正方晶、 斜方晶、 単斜晶などの [00 1] 方位などに配向してい る基板を用いて、 製造することができる。 この場合、 前記基板が単結晶で構成さ れていることが好ましい。
【004 6】
本発明では、 組成物の配向度は、 ランダムでも、 c軸配向でも、 いずれでも良 レヽ。 ただし、 組成式: C axS r - x) B i 4T i 4〇15で表されるビスマス層状化 合物を含む薄膜容量素子用組成物の場合には、 c軸配向していることが好ましレヽ。 【0047】
この場合に、 ビスマス層状化合物の c軸が基板面に対して垂直に 100%配向 していること、 すなわちビスマス層状化合物の c軸配向度が 100%であること が特に好ましいが、 必ずしも c軸配向度が 100%でなくてもよい。
好ましくは、 前記ビスマス層状化合物の c軸配向度が 80%以上、 さらに好ま しくは 90%以上、 特に好ましくは 95%以上である。 c軸配向度を向上させる ことで、 本発明の作用効果が向上する。
【0048】
好ましくは、 本発明に係る薄膜積層コンデンサは、 前記内部電極薄膜が、 貴金 属、 卑金属または導電性酸化物で構成してある。
【0049】
本発明に係る薄膜容量素子おょぴ薄膜積層コンデンサでは、 前記基板がァモル ファス材料で構成されていてもよい。 基板の上に形成される下部電極 (または内 部電極薄膜) は、 [001] 方位に形成してあることが好ましい。 下部電極を
[001] 方位に形成することで、 その上に形成される誘電体薄膜を構成するビ スマス層状化合物の c軸を、 基板面に対して垂直に配向させることができる。
【0050】
本発明に係る薄膜容量泰子用組成物において、 特定組成のビスマス層状化合物 が c軸配向して構成されている場合には、 この特定組成のビスマス層状化合物が c軸配向して構成される薄膜容量素子用組成物およびこれを用いたコンデンサゃ キャパシタなどの薄膜容量素子は、 誘電率の温度特性に優れる (温度に対する誘 電率の平均変化率が、 基準温度 25°Cで、 ± 100 p pmZ°C以内) とともに、 その膜厚を薄くしても、 比較的高誘電率 (たとえば 200以上) かつ低損失 (t a n Sが 0. 02以下) を与えることができ、 リーク特性に優れ (たとえば電界 強度 50 kV/cmで測定したリーク電流が 1 X 10— TA/cm2 以下) 、 耐圧 が向上し (たとえば 1000 k VZc m以上) 、 表面平滑性にも優れる (たとえ ば表面粗さ R aが 2 nm以下) 。
【0051】
また、 本発明に係る薄膜容量素子用組成物は、 誘電率の温度特性に優れるとと もに、 その膜厚を薄くしても比較的高誘電率を与えることができ、 しかも表面平 滑性が良好なので、 該薄膜容量素子用組成物としての誘電体薄膜の積層数を増大 させることも可能である。 したがって、 このような薄膜容量素子用組成物を用い れば、 小型で、 誘電率の温度特性に優れ、 比較的高容量を与えうる薄膜容量素子 としての薄膜積層コンデンサを提供することもできる。
【0 0 5 2】
さらに、 本発明の薄膜容量素子用組成物および薄膜容量素子は、 周波数特性に 優れ (たとえば特定温度下における高周波領域 1 MH zでの誘電率の値と、 それ よりも低周波領域の 1 k H z eiom電率の値-と-の比が、 - .絶対値で 0— a~ i :
1 ) 、 電圧特性にも優れる (たとえば特定周波数下における測定電圧 0 . I Vで の誘電率の値と、 測定電圧 5 Vでの誘電率の値との比が、 絶対値で 0 . 9〜1 .
1 )
【0 0 5 3 1
薄膜容量素子としては、 特に限定されないが、 導電体一絶縁体一導電体構造を 有するコンデンサ (たとえば単層型の薄膜コンデンサゃ積層型の薄膜積層コンデ ンサなど) やキャパシタ (たとえば D R AM用など) などが挙げられる。
【0 0 5 4】
薄膜容量素子用組成物としては、 特に限定されないが、 コンデンサ用誘電体薄 膜組成物ゃキャパシタ用誘電体薄膜組成物などが挙げられる。
[ 0 0 5 5 ]
本発明に係る高誘電率絶縁膜は、 本発明に係る薄膜容量素子用組成物と同じ組 成の組成物で構成してある。 本発明の高誘電率絶縁膜は、 薄膜容量素子またはコ ンデンサの薄膜誘電体膜以外に、 たとえば半導体装置のゲート絶縁膜、 ゲ一ト電 極とフローティングゲ一トとの間の中間絶縁膜などとしても用いることができる。 図面の簡単な説明
【0 0 5 6】
以下、 本発明を、 図面に示す実施形態に基づき説明する。
図 1は本発明に係る薄膜コンデンサの一例を示す断面図である。
図 2は本発明に係る薄膜積層コンデンサの一例を示す断面図である。 図 3は実施例のコンデンササンプルの温度特性を示すグラフである。
図 4は実施例のコンデンササンプルの周波数特性を表すグラフである。
図 5は実施例のコンデンササンプルの電圧特性を表すグラフである。
発明を実施するための最良の態様
【0 0 5 7】
第 1実施形態
本実施形態では、 薄膜容量素子として、 誘電体薄膜を単層で形成する薄膜コン デンサを例示して説明する。 図 1に示すように、 本発明の一実施形態に係る薄膜 コンデンサ 2は、 薄膜形成用基板 4を有し、 この基板 4の上には下部電極薄膜 6 が形成されている。 下部電極薄膜 6の上には誘電体薄膜 8が形成されている。 誘 電体薄膜 8の上には上部電極薄膜 1 0が形成されている。
【0 0 5 8】
基板 4としては、 格子整合性の良い単結晶 (たとえば、 S r T i 03 単結晶、 M g O単結晶、 L a A 1 03 単結晶など) 、 ァモルファス材料 (たとえば、 ガラ ス、 溶融石英、 S i〇2 ZS iなど) 、 その他の材料 (たとえば、 Z r 02 /S i、 C e 02 /S iなど) などで構成される。 特に、 立方晶、 正方晶、 斜方晶、 単斜晶などの [0 0 1] 方位などに配向している基板で構成していることが好ま しい。 基板 4の厚みは、 特に限定されず、 たとえば 1 0 0〜1 0 0 0 /im程度で あ ο。
【0 0 5 9】
本実施形態では、 基板 4としては、 シリコン単結晶基板を用い、 その表面に熱 酸化膜 (シリコン酸化膜) 力 ^成る絶縁層 5が形成してあり、 その表面に下部電 極薄膜 6が形成される。 下部電極薄膜 6を形成する材料は、 導電性を有する材料 であれば、 格別限定されるものではなく、 白金 (P t ) 、 ルテニウム (Ru) 、 ロジウム (Rh) 、 パラジウム (P d) 、 イリジウム (I r ) 、 金 (Au) 、 銀 (A g) 、 銅 (C u) 、 ニッケル (N i ) などの金属おょぴこれらを主成分とす る合金や、 S u R u 03% C a R u〇3、 S r VOs, S r C r〇3、 S r C o〇3、 L a N i 03、 Nb ドープ S r T i〇3などのぺロブスカイ ト構造を有する導電性 酸化物およびこれらの混合物を用いて、 下部電極薄膜 6を形成することもできる。 【0 0 6 0】
基板 4にアモルファス材料を用いる場合の下部電極薄膜としては、 たとえば、 I T Oなどの導電性ガラスで構成することもできる。
下部電極薄膜 6の厚みは、 特に限定されないが、 好ましくは 1 0〜 1 0 0 0 n m、 より好ましくは 5 0〜: 1 0 0 n m程度である。
【0 0 6 1】
上部電極薄膜 1 0としては、 前記下部電極薄膜 6と同様の材質で構成すること ができる。 また、 その厚みも同様とすればよい。
【0 0 6 2】
誘電体薄膜 8は、 本発明の薄膜容量素子用組成物の一例であり、
温度の上昇と共に比誘電率が上昇する正温度特性を、 所定温度範囲の内の少な くとも一部の温度範囲で有する第 1 ビスマス層状化合物と、
温度の上昇と共に比誘電率が低下する負温度特性を、 前記所定温度範囲の内の 少なくとも一部の温度範囲で有する第 2ビスマス層状化合物と、 が任意の混合比 で含有してある。
【0 0 6 3】
本発明において、 第 1 ビスマス層状化合物と第 2ビスマス層状化合物とが任意 の混合比で含有してある薄膜容量素子用組成檢としては、 少なくとも次に示す 3 つの態様が考えられる。
【0 0 6 4】
①第 1 ビスマス層状化合物と第 2ビスマス層状化合物とが完全固溶して存在す る薄膜容量素子用組成物と、
②第 1 ビスマス層状化合物と第 2ビスマス層状化合物とが完全固溶することな く、 それぞれの粒子が混じり合って存在する薄膜容量素子用組成物と、
③ビスマス層状化合物を構成する結晶構造の内部で、 第 1 ビスマス層状化合物 の層と第 2ビスマス層状化合物の層とが、 (B i 2 0 2 ) 2 +層を挟んで積層する よう 存在する薄膜容量素子用組成物と、 が考えられる。
【0 0 6 5】
いずれの態様においても、 本発明の作用効果を奏することになる。 【0 0 6 6】
第 1およぴ第 2ビスマス層状化合物は、
組成式: (B i 〇 ) 2+ (Am-! Bm 03m+l) 、 または B i A Bm
3m+3で表され、 前記組成式中の記号 mが正数、 記号 Aが N a、 K、 P b、 B a、 S r、 C aおよび B iから選ばれる少なくとも 1つの元素、 記号 Bが F e、 C o、 C r、 G a、 T i、 N b、 T a、 S b、 V、 Mo、 Wおよぴ M nから選ばれる少 なくとも 1つの元素である。
【0 0 6 7】
具体的には、 第 2ビスマス層状化合物としては、 S r B i 4T i 415、 または S r B i 2T a 29で表されるビスマス層状化合物が例示される。 これらのビスマ ス層状化合物が、 温度の上昇と共に比誘電率が低下する負温度特性を、 前記所定 温度範囲の内の少なくとも一部の温度範囲で有することは、 本発明者により見出 された。 この場合の S r B i 4T i 415は、 その c軸配向度が、 好ましくは 9 4 %より大きい。
【0 0 6 81
また、 第 1 ビスマス層状化合物としては、 S r B i Ί Τ "〇、 または S r B i 2T a 209で表されるビスマス層状化合物以外のほとんどのビスマス層状化合物 が例示される。 S r B i 4T i 4015、 または S r B i 2T 2Q9で表されるビスマ ス層状化合物以外のほとんどのビスマス層状化合物は、 温度の上昇と共に比誘電 率が上昇する正温度特性を、 所定温度範囲の内の少なくとも一部の温度範囲で有 する。 特に好ましい第 1 ビスマス層状化合物としては、 組成式: MB i 4T i Λ Ό 1Sで表され、 前記組成式中の Mが C a , B a , P bの少なくとも 1つであるビス マス層状化合物が例示される。 これらのビスマス層状化合物が、 温度の上昇と共 に比誘電率が上昇する正温度特性を、 前記所定温度範囲の内の少なくとも一部の 温度範囲で有することは、 本発明者により見出された。
【0 0 6 9】
本発明では、 これらの第 1 ビスマス層状化合物と第 2ビスマス層状化合物とを 所定の混合比で化合物を形成することで、 薄膜容量組成物の温度特性 (温度係 数) を自由に制御することができる。 たとえば、 第 1 ビスマス層状化合物と第 2 ビスマス層状化合物とを含む組成物全体に対する第 1ビスマス層状化合物の組成 比 X (0≤ x≤ 1) を変化させることで、 温度係数を負から正、 またはその逆に 変化させることができる。 なお、 x = 0に近くなると、 温度係数が負になり、 X = 1に近づくと、 温度係数が正となる傾向にある。
【00 70】
さらに具体的には、 この実施形態の薄膜容量素子用組成物は、 組成式: C a xS r - x) B i 4T i 4015で表され、 前記組成式中の xが 0≤ x≤ 1であるビスマス 層状化合物を含有する。 一般に、 ビスマス層状化合物は、 AB〇 で構成される ぺロブスカイ ト格子が連なった層状べロブスカイト層の上下を、 一対の B iおよ ぴ Oの層でサンドイッチした層状構造を示す。 本実施形態では、 このようなビス マス層状化合物の [00 1] 方位への配向性、 すなわち c軸配向性が高められて いる。 すなわち、 ビスマス層状化合物の c軸が、 基板 4に対して垂直に配向する ように誘電体薄膜 8が形成されている。
ί 00 7 1】
本発明では、 ビスマス層状化合物の c軸配向度が 1 0 0%であることが特に好 ましいが、 必ずしも c軸配向度が 1 00%でなくてもよく、 ビスマス層状化合物 の、 好ましくは 80%以上、 より好ましくは 90%以上、 さらに好ましくは 9 5 %以上が c軸配向していればよい。 たとえば、 ガラスなどのアモルファス材料で 構成される基板 4を用いてビスマス層状化合物を c軸配向させる場合には、 該ビ スマス層状化合物の c軸配向度が、 好ましくは 8 0%以上であればよい。 また、 後述する各種薄膜形成法を用いてビスマス層状化合物を c軸配向させる場合には、 該ビスマス層状化合物の c軸配向度が、 好ましくは 90%以上、 より好ましくは 9 5%以上であればよレ、。
【00 7 2】
ここでいうビスマス層状化合物の c軸配向度 Fは、 次式 (1) によって定義 される。
F (%) = (Ρ-Ρ 0) / (1— Ρ 0) X 1 00 ·■· (1)
式 (1) において、 Ρ 0は、 完全にランダムな配向をしている多結晶体の c軸の X線回析強度、 すなわち、 完全にランダムな配向をしている多結晶体の (00 1) 面からの反射強度 I (00 1 ) の合計∑ I (00 1 ) と、 その多結晶体の各 結晶面 (h k 1 ) からの反射強度 I (11 1 ) の合計∑ 1 (h k 1 ) との比
( {∑ I (00 1) /∑ I (h k 1 ) } ) であり、 Pは、 ビスマス層状化合物の c軸の X線回析強度、 すなわち、 ビスマス層状化合物の (00 1) 面からの反射 強度 I (00 1) の合計∑ I (00 1) と、 そのビスマス層状化合物の各結晶面 (h k 1 ) からの反射強度 I (h k 1) の合計∑ I (h k 1 ) との比 ( {∑ I (00 1) /∑ I (h k 1 ) } ) である。 ここに、 h、 k、 1は、 それぞれ、 0 以上の任意の整数値を取ることができる。
ここに、 P 0は定数であるから、 (00 1 ) 面からの反射強度 I (00 1) の 合計 Σ Ι (00 1) と、 各結晶面 (h k 1) からの反射強度 I (hk l ) の合計 ∑ I (h k 1 ) が等しいとき、 すなわち、 P = 1のときに、 異方性を有する材料 の c軸配向度 Fは 100 %となる。
【0073】
なお、 ビスマス層状化合物の c軸とは、 一対の (B i 2 O2 ) 2+層同士を結ぶ 方向、 すなわち [001] 方位を意味する。 このようにビスマス層状化合物を c 軸配向させることで、 誘電体薄膜 8の誘電特性が最大限に発揮される。 すなわち、 誘電率の温度特性に優れるとともに、 锈電体薄膜 8の膜厚をたとえば 100 n m 以下と薄くしても、 比較的高誘電率かつ低損失 (t a n δが低い) を与えること ができ、 リーク特性に優れ、 耐圧が向上し、 表面平滑性にも優れる。 & 11 5カ 減少すれば、 損失 Q (1/t a η δ ) 値は上昇する。
【0074】
誘電体薄膜 8には、 前記ビスマス層状化合物に対し、 S c、 Y、 L a、 C e、 P r、 Nd、 Pm、 Sm、 Eu、 Gd、 Tb、 Dy、 Ho、 E r、 Tm、 Ybお よび L uから選ばれる少なくとも 1つの元素 (希土類元素 R e ) をさらに含有さ せても良い。 希土類元素を含ませることでも、 ある程度の静電容量の温度特性の 制御が可能であり、 静電容量の温度特性をさらに向上させることができる。
【0075】
本発明では、 第 1ビスマス層状化合物と第 2ビスマス層状化合物とが任意の組 成比で含有してある薄膜容量素子用組成物は、 必ずしも c軸配向している必要は なく、 その場合には、 希土類元素を含ませることで、 静電容量の温度特性の制御 が可能であり、 静電容量の温度特性をさらに向上させることができる。
【0076】
誘電体薄膜 8は、 膜厚が 200 nm以下であることが好ましく、 高容量化の点 からは、 より好ましくは 10 O nm以下である。 なお、 膜厚の下限は、 膜の絶縁 性を考慮すると、 好ましくは 30 nm程度である。
【0077】
誘電体薄膜 8は、 たとえば J I S— B O 601に準拠した表面粗さ (Ra) 力 好ましくは 2 nm以下、 より好ましくは 1 nm以下である。
【 0078】
誘電体薄膜 8では、 25°C (室温) および測定周波数 100 kHz (AC 20 mV) における誘電率が、 150超であることが好ましく、 より好ましくは 20 0以上である。
【0079】
誘電体薄膜 8では、 25°C (室温) および測定周波数 1 O O kHz (AC 20 mV) における t a n δ力 0. 02以下であることが好ましく、 より好ましく は 0. 01以下である。 また、 損失 Q値が、 好ましくは 50以上、 より好ましく は 100以上である。
【0080】
誘電体薄膜 8では、 特定温度 (たとえば 25 °C) 下での周波数を、 たとえば 1 MH z程度の高周波領域まで変化させても、 誘電率の変化 (特に低下) が少ない。 具体的には、 たとえば、 特定温度下における高周波領域 1 MHzでの誘電率の値 と、 それよりも低周波領域の 1 k H zでの誘電率の値との比を、 絶対値で 0. 9 〜1. 1とすることができる。 すなわち周波数特性が良好である。
【0081】
誘電体薄膜 8では、 特定周波数 (たとえば 10 kHz、 100 kHz、 1 MH zなど) 下での測定電圧 (印加電圧) を、 たとえば 5 V程度まで変化させても、 静電容量の変化が少ない。 具体的には、 たとえば特定周波数'下における測定電圧 0. 1 Vでの誘電率の値と、 測定電圧 5 Vでの誘電率の値との比を、 0. 9〜: 1. 1とすることができる。 すなわち電圧特性が良好である。
【0 0 8 2】
このような誘電体薄膜 8は、 真空蒸着法、 スパッタリング法、 パルスレーザー 蒸着法 (P LD) 、 有機金属化学気相成長法 (metal- organic chemical vapor d eposition: MOC VD) 、 有機金属分角?法 (metal-organic decomposition) な どの液相法 (C S D法) 、 などの各種薄膜形成法を用いて形成することができる。 とくに低温で、 誘電体薄膜 8を形成する必要がある場合には、 プラズマ CVD、 光 CVD、 レーザー CVD、 光 C SD、 レーザー C SD法を用いることが好まし レ、。
【0 0 8 3】
本実施形態では、 特定方位 ( [0 0 1 ] 方位等) に配向している基板等を用い て誘電体薄膜 8を形成する。 製造コス トを低下させる観点からは、 アモルファス 材料で構成された基板 4を用いることがより好ましい。 このようにして形成され た誘電体薄膜 8を用いれば、 特定組成のビスマス層状化合物が c軸配向して構成 される。'このような誘電体薄膜 8およびこれを用いた薄膜コンデンサ 2では、 誘 電率の温度特性に優れるとともに、 誘電体薄膜の膜厚をたとえば 1 0 0 nm以下 と薄くしても、 比較的高誘電率かつ低損失を与えることができ、 リーク特性に優 れ、 耐圧が向上し、 表面平滑性にも優れる。
また、 このような誘電体薄膜 8およぴ薄膜コンデンサ 2は、 周波数特性や電圧 特性にも優れる。
【0 0 8 3】
第 2実施形態
本実施形態では、 薄膜容量素子として、 誘電体薄膜を多層で形成する薄膜積層 コンデンサを例示して説明する。
図 2に示すように、 本発明の一実施形態に係る薄膜積層コンデンサ 2 0は、 コ ンデンサ素体 2 2を有する。 コンデンサ素体 2 2は、 基板 4 a上に、 誘電体薄膜 8 aと、 内部電極薄膜 2 4, 2 6とが交互に複数配置してあり、 しかも最外部に 配置される誘電体薄膜 8 aを覆うように保護層 3 0が形成してある多層構造を持 つ。 コンデンサ素体 2 2の両端部には、 一対の外部電極 2 8, 2 9が形成してあ り、 該一対の外部電極 28, 29は、 コンデンサ素体 22の内部で交互に複数配 置された内部電極薄膜 24, 26の露出端面に電気的に接続されてコンデンサ回 路を構成する。 コンデンサ素体 22の形状は、 特に限定されないが、 通常、 直方 体状とされる。 また、 その寸法は特に限定されないが、 たとえば縦 (0. 0 1〜 1 Omm) X横 (0. 0 1〜1 0mm) X高さ (0. 0 1 ~ 1 mm) 程度とされ る。
【0084】
基板 4 aは、 上述した第 1実施形態の基板 4と同様の材質で構成される。 誘電 体薄膜 8 aは、 上述した第 1実施形態の誘電体薄膜 8と同様の材質で構成される。
【008 5】
内部電極薄膜 24, 26は、 上述した第 1実施形態の下部電極薄膜 6 , 上部電 極薄膜 1 0と同様の材質で構成される。 外部電極 28, 29の材質は、 特に限定 されず、 C a RuOs や S r RuOs などの導電性酸化物; C uや C u合金ある いは N iや N i合金等の卑金属; P t、 Ag、 P dや Ag— P d合金などの貴金 属;などで構成される。 その厚みは、 特に限定されないが、 たとえば 1 0〜; I 0 00 nm程度とすればよい。 保護層 30の材質は、 特に限定されないが、 たとえ ばシリコン酸化膜、 アルミニウム酸化膜などで構成される。
【008 6】
薄膜積層コンデンサ 20は、 基板 4 a上に、 たとえばメタルマスクなどのマス クを施して 1層目の内部電極薄膜 24を形成した後、 この内部電極薄膜 24の上 に誘電体薄膜 8 aを形成し、 この誘電体薄膜 8 aの上に 2層目の内部電極薄膜 2 6を形成する。 このような工程を複数回繰り返した後、 基板 4 aとは反対側の最 外部に配置される誘電体薄膜 8 aを保護膜 30で被覆することにより、 基板 4 a 上に内部電極薄膜 24, 26と誘電体薄膜 8とが交互に複数配置されたコンデン サ素体 22が形成される。 保護膜 30で被覆することで、 コンデンサ素体 2 2の 内部に対する大気中の水分の影響を小さくすることができる。 そして、 コンデン サ素体 2 2の両端部に、 デイツピングゃスパッタ等によって、 外部電極 28, 2 9を形成すると、 奇数層目の内部電極薄膜 24がー方の外部電極 28と電気的に 接続されて導通し、 偶数層目の内部電極薄膜 2 6が他方の外部電極 29と電気的 に接続されて導通し、 薄膜積層コンデンサ 20が得られる。
【0087】
本実施形態では、 製造コストを低下させる観点からは、 アモルファス材料で構 成された基板 4 aを用いることがより好ましい。
【0088】
本実施形態で用いる誘電体薄膜 8 aは、 誘電率の温度特性に優れるとともに、 薄くしても比較的高誘電率を与えることができ、 しかも表面平滑性が良好なので、 その積層数を 20層以上、 好ましくは 5 0層以上とすることが可能である。 この ため、 小型で、 誘電率の温度特性に優れ、 比較的高容量を与えうる薄膜積層コン デンサ 20を提供することができる。
【0089】
以上のような本実施形態に係る薄膜コンデンサ 2および薄膜積層コンデンサ 2 0では、 少なくとも一 5 5°C〜+ 150°Cの温度範囲における温度に対する誘電 率の平均変化率 (Δ ε) 力 ±1 00 p pmZ°C以内 (基準温度 25°C) である ことが好ましく、 より好ましくは土 70 p pmZ°C以内、 特に好ましくは ± 30 p p mZ°C以内である。
【0090】
次に、 本発明の実施の形態をより具体化した実施例を挙げ、 本発明をさらに詳 細に説明する。 但し、 本発明は、 これらの実施例のみに限定されるものではない。
【0091】
実施例 1
下部電極薄膜となる S r RuOs を [001] 方位にェピタキシャル成長させ た S r T i O 3 単結晶基板 ( (001) S r RuO3 〃 (001) S r T i Os
) を 700°Cに加熱した。 次に、 S r R uOs 下部電極薄膜の表面に、 C a (C HH1902) 2 (CeHasNe) 2、 S r (CiiHi902) 2 (CsH23N 5) 2、 B i
(CH3) 3及ぴ T i (O- i -C3H7) 4を原料に用い、 MOCVD法にて、 膜厚 約 100 nmの C a x S r (i-x) B i 4T i 4015薄膜 (誘電体薄膜) を、 x = 0, 0. 25, 0. 5, 0. 6, 0. 75, 1と変化させて複数形成した。 xの値の 制御は、 C a原料および S r原料のキャリアガス流量を調整することにより行つ た。
【00 9 2】
これらの誘電体薄膜の結晶構造を X線回折 (XRD) 測定したところ、 [0 0 1] 方位に配向していること、 すなわち S r T i〇3 単結晶基板表面に対して垂 直に c軸配向していることが確認できた。 また、 これらの誘電体薄膜の表面粗さ (R a) を、 J I S— B 060 1に準じて、 AFM (原子間力顕微鏡、 セイコー ィンスツルメンッ社製、 S P I 3 800) で測定した。
【00 9 3】
次に、 これらの誘電体薄膜の表面に、 0. Ιηιαιφの P t上部電極薄膜をスパ ッタリング法により形成し、 薄膜コンデンサのサンプルを作製した。
【00 94】
得られたコンデンササンプルの電気特性 (誘電率、 t a n S、 損失 Q値、 リー ク電流、 耐圧) および誘電率の温度特性を評価した。
誘電率 (単位なし) は、 コンデンササンプルに対し、 デジタル LCRメータ (YHP社製 42 74 A) を用いて、 室温 (25 °C) 、 測定周波数 1 00 kH z (AC 2 OmV) の条件で測定された静電容量と、 コンデンササンプルの電極寸 法おょぴ電極間距離とから算出した。 · t a η δは、 上記静電容量を測定した条件と同一条件で測定し、 これに伴って 損失 Q値を算出した。
【009 5】
リーク電流特性 (単位は AZ c m2 ) は、 電界強度 50 k V/ c mで測定した。 【009 6】
誘電率の温度特性は、 コンデンササンプルに対し、 上記条件で誘電率を測定し、 基準温度を 2 5°Cとしたとき、 一 5 5〜+ 1 50°Cの温度範囲内での温度に対す る誘電率の平均変化率 (Δ Ε ) を測定し、 温度係数 (p pm/°C) を算出した。 耐圧 (単位は kVZcm) は、 リーク特性測定において、 電圧を上昇させること により測定した。
【0 09 7】
これらの結果を表 1と図 3に示す。 X 基板の 膜の配向 膜厚 表面粗さ 耐圧 リ-ク電流 誘電率 温度係数 tan δ 損失 Q値 面方 1i£ 方向 (nm) Ra (nm) (kV/cm) (A/cm2) (ppm/°C) 実施例 1 0 [100] [001] 100 < 2 〉1000 く 1 X 10—7 200 -150 く 0.02 >50 実施例 1 0.25 [100] [001] 100 ぐ 2 〉1000 < 1 X 10—7 200 - 90 く 0.02 〉50 実施例 1 0.5 [100] [001] 100 ぐ 2 〉1000 < 1 X 10— 7 210 - 40 く 0.02 〉50 実施例 1 0.6 [100] [001] 100 く 2 >1000 く 1 X 10"7 210 0 く 0.02 〉50 実施例 1 0.75 [100] [001] 100 < 2 〉1000 < 1 X 10— 7 220 30 く 0.02 >50 実施例 1 1 [100] [001] 100 く 2 >1000 < 1 X 10—7 220 100 く 0.02 〉50
【0098】
評価
表 1に示すように、 実施例 1で得られたビスマス層状化合物の c軸配向膜は、 耐圧が 1000 k VZcm以上に高く、 リーク電流が 1 X 10— 7以下程度に低く、 誘電率が 200以上で、 & 113が0. 02以下であり、 損失 Q値も 50以上で あることが確認できた。 これにより、 より一層の薄膜化が期待でき、 ひいては薄 膜コンデンサとしての高容量化も期待できる。 また、 実施例 1では、 温度係数が
± 1 50 p pm/°C以下と非常に小さいのに、 誘電率が 200以上と比較的大き く、 温度補償用コンデンサ材料として優れた基本特性を有していることも確認で きた。 さらに、 実施例 1では、 表面平滑性に優れることから、 積層構造作製に好 適な薄膜材料であることも確認できた。 すなわち、 実施例 1により、 ビスマス層 状化合物の c軸配向膜の有効性が確認できた。
【0099】
また、 実施例 1において、 Xの値を好ましくは 0 < X < 1、 さらに好ましくは 0. 25 < < 0. 75、 特に好ましくは 0. 5 < X < 0. 75とすることで、 温度係数を、 ± 100 p p mZ°C以内 (基準温度 25 °C) 、 ± 70 p p 111 で以 内、 ± 30 p pm/°C以内と、 さらに小さくすることができることが確認できた。
【0100】
さらにまた、 正の温度係数を持つ第 1ビスマス層状化合物と負の温度係数を持 つ第 2ビスマス層状化合物の組成比 Xを変化させることで、 誘電体薄膜 (組成物 膜) の温度係数を制御できることも確認できた。
【01 01】
実施例 2
本実施例では、 実施例 1で作製された薄膜コンデンサのサンプルを用いて、 周 波数特性および電圧特性を評価した。
【0102】
周波数特性は、 以下のようにして評価した。 コンデンササンプルについて、 室 温 (25°C) にて周波数を 1 kHzから 1 MHzまで変化させ、 静電容量を測定 し、 誘電率を計算した結果を図 4に示した。 静電容量の測定には LCRメータを 用いた。 図 4に示すように、 特定温度下での周波数を 1 MH zまで変化させても、 誘電率の値が変化しないことが確認できた。 すなわち周波数特性に優れてレ、るこ とが確認された。
【0 1 03】
電圧特性は、 以下のようにして評価した。 コンデンササンプルについて、 特定 の周波数 (1 00 kH z) 下での測定電圧 (印加電圧) を 0. I V (電界強度 5 k V/cm) から 5V (電界強度 250 k VZcm) まで変化させ、 特定電圧下 での静電容量を測定 (測定温度は 25 °C) し、 誘電率を計算した結果を図 5に示 した。 静電容量の測定には LCRメータを用いた。 図 5に示すように、 特定周波 数下での測定電圧を 5 Vまで変化させても、 誘電率の値が変化しないことが確認 できた。 すなわち電圧特性に優れていることが確認された。
【0 1 04】
実施例 3
まず、 [0 0 1] 方位に配向している S r T i 03 単結晶基板 (厚さ 0. 3m m) 4 a (図 2参照。 以下同様) を準備し、 この基板 4 a上に所定パターンのメ タルマスクを施し、 パルスレーザ一蒸着法にて、 内部電極薄膜 24としての S r Ru03 製電極薄膜を膜厚 1 00 nmで形成した (パターン 1) 。
ί 0 1 05】
次に、 パルスレーザー蒸着法にて、 内部電極薄膜 24を含む基板 4 aの全面に、 誘電体薄膜 8 aとしての C a ,S r B i 4T i 415薄膜 (誘電体薄膜) を、 x = 0. 5で、 実施例 1と同様にして膜厚 1 00 nmで形成した。
【0 1 0 6】
次に、 この誘電体薄膜上に所定パターンのメタルマスクを施し、 パルスレーザ 一蒸着法にて、 内部電極薄膜 26としての S r RuOs 製電極薄膜を膜厚 1 0 0 nmで形成した (パターン 2) 。
【0 1 0 7】
次に、 パルスレーザー蒸着法にて、 内部電極薄膜 26を含む基板 4 aの全面に、 再ぴ、 誘電体薄膜 8 aとしての誘電体薄膜を前記と同様にして膜厚 1 00 nmで 形成した。 【0 1 08】
これらの手順を繰り返して誘電体薄膜を 20層積層させた。 そして、 最外部に 配置される誘電体薄膜 8 aの表面をシリカで構成される保護層 30で被覆してコ ンデンサ素体 2 2を得た。
【0 1 0 9】
次に、 コンデンサ素体 22の両端部に、 A gで構成される外部電極 28, 2 9 を形成し、 縦 l mm X横 0. 5mmX厚さ 0. 4 mmの直方体形状の薄膜積層コ ンデンサのサンプルを得た。
【0 1 1 0】
得られたコンデンササンプルの電気特性 (誘電率、 誘電損失、 Q値、 リーク電 流、 ショート率) を実施例 1と同様に評価したところ、 誘電率は 2 1 0、 t a n δは 0 · 02以下、 損失 Q値は 50以上、 リーク電流は 1 X 10一7 A/cm2 以 下であり、 良好な結果が得られた。 また、 コンデンササンプルの誘電率の温度特 性を実施例 1と同様に評価したところ、 温度係数は一 20 p pm/°Cであった。
【0 1 1 1】
以上、 本発明の実施形態および実施例について説明してきたが、 本発明はこう した実施形態おょぴ実施例に何等限定されるものではなく、 本発明の要旨を逸脱 しなレ、範囲内において種々なる態様で実施し得ることは勿論である。
【0 1 1 2】
以上説明してきたように、 本発明によれば、 誘電率の温度特性に優れるととも に、 薄くしても、 比較的高誘電率かつ低損失を与えることができ、 リーク特性に 優れ、 耐圧が向上し、 表面平滑性にも優れる薄膜容量素子用組成物およびこれを 用いた薄膜容量素子を提供することができる。 また、 本発明によれば、 このよう な薄膜容量素子用組成物を誘電体薄膜として用いて、 小型で、 誘電率の温度特性 に優れ、 比較的高容量を与えうる薄膜積層コンデンサを提供することもできる。 さらに、 本発明によれば、 誘電率の温度特性に優れるとともに、 薄くしても、 比 較的高誘電率かつ低損失を与えることができ、 リーク特性に優れ、 耐圧が向上し、 表面平滑性にも優れる高誘電率絶縁膜を提供することもできる。
【0 1 1 3】 また、 本発明では、 正の温度係数を持つ第 1ビスマス層状化合物と、 負の温度 係数を持つ第 2ビスマス層状化合物との混合比を変化させることで、 誘電体薄膜 などにおける誘電率の温度係数を、 その用途などに応じて自由に制御することが できる。

Claims

請 求 の 範 囲
1. 温度の上昇と共に比誘電率が上昇する正温度特性を、 所定温度範囲 の内の少なくとも一部の温度範囲で有する第 1ビスマス層状化合物と、
温度の上昇と共に比誘電率が低下する負温度特性を、 前記所定温度範囲の内の 少なくとも一部の温度範囲で有する第 2ビスマス層状化合物と、 が任意の混合比 で含有してある薄膜容量素子用組成物。
2. 前記第 1および第 2ビスマス層状化合物が、
組成式: ( i 〇 、 または ί
3m+3で表され、 前記組成式中の記号 mが正数、 記号 Aが Na、 K:、 Pb、 B a、 S r、 Caおよび B iから選ばれる少なくとも 1つの元素、 記号 Bが F e、 C o、 C r、 G a、 T i、 N b、 T a、 S b、 V、 Mo、 Wおよび M nから選ばれる少 なくとも 1つの元素である請求項 1に記載の薄膜容量素子用組成物。
3 · 前記第 2ビスマス層状化合物の組成式が、
S r B i T i 4Q15、 または S r B i 2T a 209で表される請求項 1または 2に 記載の薄膜容量素子用組成物。
4. 前記第 1ビスマス層状化合物が、 組成式: X (MB i i 4 θ 1 5) で表され、 前記第 2ビスマス層状化合物が、 組成式: (1— X ) S r B i 4T i 4 015で表され、 前記組成式中の Mが C a , B a, P bの少なくとも 1つであり、 組成物全体に対する前記第 1ビスマス層状化合物の混合比を示す Xが 0≤ X ≤ 1 であることを特徴とする請求項 1〜 3のいずれかに記載の薄膜容量素子用組成物。
5. 前記第 1ビスマス層状化合物と第 2ビスマス層状化合物との化合物 が、 組成式: C a r (i B i 4T i 415で表され、 前記組成式中の xが 0≤ X ≤ 1であることを特徴とする請求項 4に記載の薄膜容量素子用組成物。
6. 希土類元素 (S c、 Y、 L a、 Ce、 P r、 Nd、 Pm、 Sm、 E u、 Gd、 Tb、 Dy、 Ho、 E r、 Tm、 Y bおよび L uから選ばれる少なく とも 1つの元素) をさらに有する請求項 1〜 5のいずれかに記載の薄膜容量素子 用組成物。
7. c軸が薄膜形成用基板面に対して実質的に垂直に配向しているビス マス層状化合物を有する薄膜容量素子用組成物であって、
該ビスマス層状化合物が、 組成式: C a XS r (i-x) B i 4 T i 4〇15で表され、 前記組成式中の xが 0≤ X≤ 1であることを特徴とする薄膜容量素子用組成物。
8. 前記組成式中の Xが 0< χ< 1であることを特徴とする請求項 7に 記載の薄膜容量素子用組成物。
9. 前記組成式中の Xが 0. 25< x<0. 75であることを特徴とす る請求項 7に記載の薄膜容量素子用組成物。
10. 前記組成式中の Xが 0. 5< x<0. 75であることを特徴とす る請求項 7に記載の薄膜容量素子用組成物。
1 1. c軸配向している請求項 1〜 10のいずれかに記載の薄膜容量素 子用組成物。
12. c軸配向度が 80 %以上である請求項 1 1に記載の薄膜容量素子 用組成物。
13. 基板上に、 下部電極、 誘電体薄膜および上部電極が順次形成して ある薄膜容量素子であって、
前記誘電体薄膜が、 請求項 1〜12のいずれかに記載の薄膜容量素子用組成物 で構成してある薄膜容量素子。
14. 基板上に、 下部電極、 誘電体薄膜および上部電極が順次形成して ある薄膜容量素子であって、
前記誘電体薄膜が、 薄膜容量素子用組成物で構成してあり、
該薄膜容量素子用組成物が、 c軸が薄膜形成用基板面に対して実質的に垂直に 配向しているビスマス層状化合物を有し、
該ビスマス層状化合物が、 組成式: C a S r B i 4T i 4015で表され、 前記組成式中の Xが 0≤ χ≤ 1であることを特徴とする薄膜容量素子。
15. 前記組成式中の Xが 0< x < 1であることを特徴とする請求項 1 4に記載の薄膜容量素子。
16. 少なくとも一 55°C〜+ 150°Cの温度範囲における温度に対す る誘電率の平均変化率 (Δ ε ) が、 ± 100 p pmZ°C以内 (基準温度 25°C) である請求項 13〜15のいずれかに記載の薄膜容量素子。
17. 少なくとも一 55°C〜+ 150°Cの温度範囲における温度に対す る誘電率の平均変化率 (Δ ε ) 力 ± 70 p pm/^C以内 (基準温度 25 °C) で ある請求項 16に記載の薄膜容量素子。
18. 少なくとも— 55°C〜+ 150°Cの温度範囲における温度に対す る誘電率の平均変化率 (Δ ε) が、 ±30 p pm/°C以内 (基準温度 25 °C) で ある請求項 17に記載の薄膜容量素子。
1 9. 基板上に、 誘電体薄膜と内部電極薄膜とが交互に複数積層してあ る薄膜積層コンデンサであって、
前記誘電体薄膜が、 請求項 1〜1 2のいずれかに記載の薄膜容量素子用組成物 で構成してある薄膜積層コンデンサ。
20. 基板上に、 誘電体薄膜と内部電極薄膜とが交互に複数積層してあ る薄膜積層コンデンサであって、
前記誘電体薄膜が、 薄膜容量素子用組成物で構成してあり、
該薄膜容量素子用組成物が、 c軸が薄膜形成用基板面に対して実質的に垂直に 配向しているビスマス層状化合物を有し、
前記ビスマス層状化合物が、 組成式: C a xS r B i 4 T i 4015で表され、 前記組成式中の が 0 ≤ 1であることを特徴とする薄膜積層コンデンサ。
2 1. 前記組成式中の Xが 0 < x < 1であることを特徴とする請求項 2 0に記載の薄膜積層コンデンサ。
22. 請求項 1〜 1 2のいずれかに記載の薄膜容量素子用組成物で構成 してあり、 c軸が薄膜形成用基板面に対して実質的に垂直に配向しているビスマ ス層状化合物を有する高誘電率絶縁膜。
2 3. c軸が薄膜形成用基板面に対して実質的に垂直に配向しているビ スマス層状化合物を有する高誘電率絶縁膜であって、
該ビスマス層状化合物が、 組成式: C a x S r B i 4T i 415で表され、 前記組成式中の xが 0≤χ≤ 1であることを特徴とする高誘電率絶縁膜。
24. 前記組成式中の Xが 0<x< 1であることを特徴とする請求項 2 3に記載の高誘電率絶縁膜。
2 5. 請求項 1〜 1 2のいずれかに記載の薄膜容量素子用組成物を有す る電子回路。
2 6 . 請求項 1〜 1 2のいずれかに記載の薄膜容量素子用組成物を有す る電子機器。
PCT/JP2003/014651 2003-02-27 2003-11-18 薄膜容量素子用組成物、高誘電率絶縁膜、薄膜容量素子、薄膜積層コンデンサ、電子回路および電子機器 WO2004077460A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP03772856A EP1598840A1 (en) 2003-02-27 2003-11-18 Composition for thin-film capacitor device, high dielectric constant insulator film, thin-film capacitor device, thin-film multilayer capacitor, electronic circuit and electronic device
US10/547,134 US7319081B2 (en) 2003-02-27 2003-11-18 Thin film capacity element composition, high-permittivity insulation film, thin film capacity element, thin film multilayer capacitor, electronic circuit and electronic apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-051897 2003-02-27
JP2003051897A JP2004165596A (ja) 2002-09-24 2003-02-27 薄膜容量素子用組成物、高誘電率絶縁膜、薄膜容量素子、薄膜積層コンデンサ、電子回路および電子機器

Publications (1)

Publication Number Publication Date
WO2004077460A1 true WO2004077460A1 (ja) 2004-09-10

Family

ID=32923380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/014651 WO2004077460A1 (ja) 2003-02-27 2003-11-18 薄膜容量素子用組成物、高誘電率絶縁膜、薄膜容量素子、薄膜積層コンデンサ、電子回路および電子機器

Country Status (6)

Country Link
US (1) US7319081B2 (ja)
EP (1) EP1598840A1 (ja)
KR (1) KR20050108366A (ja)
CN (1) CN1768403A (ja)
TW (1) TWI247320B (ja)
WO (1) WO2004077460A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2415295A (en) * 2004-06-14 2005-12-21 Cambridge Capacitors Ltd Metallised plastics film capacitor

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005102958A1 (ja) * 2004-04-26 2005-11-03 Tdk Corporation 薄膜容量素子用組成物、高誘電率絶縁膜、薄膜容量素子、薄膜積層コンデンサおよび薄膜容量素子の製造方法
WO2006060191A2 (en) * 2004-11-19 2006-06-08 The University Of Akron Lead-free ferroelectric/electrostrictive ceramic material
JP4462432B2 (ja) * 2005-08-16 2010-05-12 セイコーエプソン株式会社 ターゲット
JP4910390B2 (ja) * 2005-12-26 2012-04-04 株式会社村田製作所 圧電セラミックおよびその製造方法ならびに圧電共振子およびその製造方法
JP2007258280A (ja) * 2006-03-20 2007-10-04 Tdk Corp 積層型圧電素子
US9646766B2 (en) * 2012-06-14 2017-05-09 Uchicago Argonne, Llc Method of making dielectric capacitors with increased dielectric breakdown strength
CN102875145B (zh) * 2012-09-29 2014-09-24 中国科学技术大学 一种层状钙钛矿结构陶瓷及其制备方法
CN102875146B (zh) * 2012-09-29 2014-09-24 中国科学技术大学 一种层状钙钛矿结构陶瓷及其制备方法
US9564270B2 (en) 2013-12-27 2017-02-07 Tdk Corporation Thin film capacitor
JP6446877B2 (ja) 2014-07-16 2019-01-09 Tdk株式会社 薄膜キャパシタ
CN104230342B (zh) * 2014-09-11 2016-01-20 华中科技大学 一种负温度系数热敏电阻材料及其制备方法
JP6365216B2 (ja) 2014-10-15 2018-08-01 Tdk株式会社 薄膜キャパシタ
JP6641872B2 (ja) 2015-10-15 2020-02-05 Tdk株式会社 電子デバイスシート
CN106007705B (zh) * 2016-05-11 2018-08-03 中国科学技术大学 一种类钙钛矿层状结构固溶体系材料及其制备方法
JP6841036B2 (ja) * 2016-12-28 2021-03-10 Tdk株式会社 積層セラミック電子部品
JP7379899B2 (ja) * 2019-07-22 2023-11-15 Tdk株式会社 セラミック電子部品
KR102259923B1 (ko) * 2019-11-15 2021-06-02 광주과학기술원 유전박막, 이를 포함하는 멤커패시터, 이를 포함하는 셀 어레이, 및 그 제조 방법
CN113663665B (zh) * 2021-08-09 2023-09-22 中国科学院大学 适用于克劳斯工艺的有机硫水解催化剂及其制备方法和应用
CN113830829A (zh) * 2021-09-30 2021-12-24 西安交通大学 一种片状钛酸铋锶钡模板晶粒及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56144523A (en) * 1980-04-11 1981-11-10 Tdk Electronics Co Ltd Method of manufacturing laminated capacitor
JPS6486510A (en) * 1987-09-29 1989-03-31 Mitsubishi Mining & Cement Co Laminated ceramic capacitor and manufacture thereof
JPH08249876A (ja) * 1995-03-14 1996-09-27 Olympus Optical Co Ltd 強誘電体デバイス
JPH10265261A (ja) * 1997-03-26 1998-10-06 Mitsubishi Materials Corp 誘電体磁器組成物
JP2000169297A (ja) * 1998-09-29 2000-06-20 Sharp Corp 酸化物強誘電体薄膜の製造方法、酸化物強誘電体薄膜及び酸化物強誘電体薄膜素子
JP2000281434A (ja) * 1999-03-31 2000-10-10 Kyocera Corp 誘電体磁器
JP2001338834A (ja) * 2000-05-26 2001-12-07 Sharp Corp 誘電体キャパシタの製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05335174A (ja) 1992-05-28 1993-12-17 Murata Mfg Co Ltd 積層セラミック電子部品
JPH05335173A (ja) 1992-05-28 1993-12-17 Murata Mfg Co Ltd 積層セラミック電子部品及びその製造方法
JPH09293629A (ja) 1996-04-26 1997-11-11 Mitsubishi Materials Corp 薄膜コンデンサ
JP3123448B2 (ja) 1996-11-13 2001-01-09 日本電気株式会社 薄膜キャパシタ
JPH10297967A (ja) 1997-02-25 1998-11-10 Tdk Corp 高誘電率誘電体磁器組成物およびその製造方法
JPH11163273A (ja) 1997-12-01 1999-06-18 Tokyo Ohka Kogyo Co Ltd 誘電体薄膜、誘電体キャパシタの製造方法、および誘電体メモリ
JPH11214245A (ja) 1998-01-23 1999-08-06 Murata Mfg Co Ltd 薄膜積層コンデンサおよびその製造方法
JP4228437B2 (ja) 1998-10-21 2009-02-25 株式会社村田製作所 薄膜積層コンデンサおよびその製造方法
JP2000223352A (ja) 1999-01-29 2000-08-11 Kyocera Corp 積層セラミックコンデンサ
JP2000252152A (ja) 1999-02-24 2000-09-14 Hitachi Aic Inc 積層セラミックコンデンサ
JP2000260655A (ja) 1999-03-09 2000-09-22 Matsushita Electric Ind Co Ltd 積層セラミックコンデンサ及びその製造方法
WO2003021606A1 (fr) * 2001-08-28 2003-03-13 Tdk Corporation Composition pour dispositif capacitif a couches minces, couche isolante a constante dielectrique elevee, dispositif capacitif a couches minces et condensateur ceramique multicouche a couches minces
JP4088477B2 (ja) 2002-05-27 2008-05-21 Tdk株式会社 薄膜容量素子および薄膜積層コンデンサ
JP2004165370A (ja) * 2002-11-12 2004-06-10 Tdk Corp 電源ノイズ低減用薄膜コンデンサ
CN1761776A (zh) * 2003-01-21 2006-04-19 Tdk株式会社 薄膜电容元件用组合物、高介电常数绝缘膜、薄膜电容元件、薄膜积层电容器及薄膜电容元件的制造方法
KR20050100699A (ko) * 2003-02-26 2005-10-19 티디케이가부시기가이샤 박막용량소자 및 그것을 포함한 전자회로 및 전자기기
CN1754261A (zh) * 2003-02-27 2006-03-29 Tdk株式会社 薄膜电容元件和包括它的电子电路和电子器件

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56144523A (en) * 1980-04-11 1981-11-10 Tdk Electronics Co Ltd Method of manufacturing laminated capacitor
JPS6486510A (en) * 1987-09-29 1989-03-31 Mitsubishi Mining & Cement Co Laminated ceramic capacitor and manufacture thereof
JPH08249876A (ja) * 1995-03-14 1996-09-27 Olympus Optical Co Ltd 強誘電体デバイス
JPH10265261A (ja) * 1997-03-26 1998-10-06 Mitsubishi Materials Corp 誘電体磁器組成物
JP2000169297A (ja) * 1998-09-29 2000-06-20 Sharp Corp 酸化物強誘電体薄膜の製造方法、酸化物強誘電体薄膜及び酸化物強誘電体薄膜素子
JP2000281434A (ja) * 1999-03-31 2000-10-10 Kyocera Corp 誘電体磁器
JP2001338834A (ja) * 2000-05-26 2001-12-07 Sharp Corp 誘電体キャパシタの製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2415295A (en) * 2004-06-14 2005-12-21 Cambridge Capacitors Ltd Metallised plastics film capacitor

Also Published As

Publication number Publication date
KR20050108366A (ko) 2005-11-16
EP1598840A1 (en) 2005-11-23
TWI247320B (en) 2006-01-11
TW200423166A (en) 2004-11-01
US7319081B2 (en) 2008-01-15
CN1768403A (zh) 2006-05-03
US20060098385A1 (en) 2006-05-11

Similar Documents

Publication Publication Date Title
JP4108602B2 (ja) 薄膜容量素子用組成物、高誘電率絶縁膜、薄膜容量素子および薄膜積層コンデンサ
WO2004077460A1 (ja) 薄膜容量素子用組成物、高誘電率絶縁膜、薄膜容量素子、薄膜積層コンデンサ、電子回路および電子機器
JP4561629B2 (ja) 薄膜積層コンデンサ
US7580241B2 (en) Thin film capacitor element composition, high permittivity insulation film, thin film capacitor element, thin film multilayer capacitor, and method of production of thin film capacitor element
JP4706479B2 (ja) 薄膜容量素子用組成物、高誘電率絶縁膜、薄膜容量素子、薄膜積層コンデンサおよび薄膜容量素子の製造方法
JP3856142B2 (ja) 薄膜容量素子用組成物、高誘電率絶縁膜、薄膜容量素子および薄膜積層コンデンサ
JP4529902B2 (ja) 薄膜容量素子用組成物、高誘電率絶縁膜、薄膜容量素子、薄膜積層コンデンサおよび薄膜容量素子の製造方法
JP2004165596A (ja) 薄膜容量素子用組成物、高誘電率絶縁膜、薄膜容量素子、薄膜積層コンデンサ、電子回路および電子機器
WO2004044934A1 (ja) 電源ノイズ低減用薄膜コンデンサ
JP4088477B2 (ja) 薄膜容量素子および薄膜積層コンデンサ
WO2004077463A1 (ja) 電極層および誘電体層を含む積層体ユニット
WO2004044935A1 (ja) コンデンサ複合回路素子およびicカード積層コンデンサ

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020057015838

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2006098385

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10547134

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003772856

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20038B02801

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057015838

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003772856

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10547134

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2003772856

Country of ref document: EP