WO2004074495A1 - 微生物による高効率水素製造方法 - Google Patents

微生物による高効率水素製造方法 Download PDF

Info

Publication number
WO2004074495A1
WO2004074495A1 PCT/JP2004/002092 JP2004002092W WO2004074495A1 WO 2004074495 A1 WO2004074495 A1 WO 2004074495A1 JP 2004002092 W JP2004002092 W JP 2004002092W WO 2004074495 A1 WO2004074495 A1 WO 2004074495A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
cells
microorganism
highly efficient
solution
Prior art date
Application number
PCT/JP2004/002092
Other languages
English (en)
French (fr)
Inventor
Hideaki Yukawa
Noriyuki Yamamoto
Original Assignee
Research Institute Of Innovative Technology For The Earth
Sharp Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Institute Of Innovative Technology For The Earth, Sharp Corporation filed Critical Research Institute Of Innovative Technology For The Earth
Priority to US10/546,210 priority Critical patent/US7432091B2/en
Priority to JP2005502806A priority patent/JP4275666B2/ja
Publication of WO2004074495A1 publication Critical patent/WO2004074495A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P3/00Preparation of elements or inorganic compounds except carbon dioxide

Definitions

  • the present invention relates to a method for producing hydrogen using a microorganism, and more particularly, to a method for producing hydrogen efficiently using an anaerobic microorganism using an organic substrate as a carbon source. Hydrogen produced by the method of the present invention can be suitably used as fuel for fuel cells and the like. Background art
  • Hydrogen unlike fossil fuels, is attracting attention as the ultimate clean energy source that does not generate substances of concern due to environmental issues such as carbon dioxide and sulfur oxides when burned, and has more than three times the amount of heat per unit mass of petroleum When supplied to a fuel cell, it can be converted to electric energy and thermal energy with high efficiency.
  • the reaction conditions are normal temperature and normal pressure, and since the generated gas does not contain CO, its removal is unnecessary.
  • biological hydrogen production by microorganisms is a more preferable method as a fuel supply method for a fuel cell.
  • Biological hydrogen production methods can be broadly divided into methods using photosynthetic microorganisms and methods using non-photosynthetic microorganisms (mainly anaerobic microorganisms). Since the former method uses light energy for hydrogen generation, there are many problems that must be solved, such as the price problem and difficulties in maintenance and management of a hydrogen generator that requires a large light-collecting area due to its low light energy use efficiency. Not at a typical level.
  • Patent Document 1 U.S. Patent No. 5,834,264
  • the above-mentioned problems of the conventional hydrogen production method relying on the division and propagation of the anaerobic microorganisms are, in other words, the conventional technology is not capable of obtaining a high density of anaerobic microorganisms in the hydrogen generation reactor. And a method to simultaneously obtain the hydrogen generation function of anaerobic microorganisms in a short time.
  • An object of the present invention is to solve these technical problems relating to a method for producing hydrogen by an anaerobic microorganism.
  • An object of the present invention is to provide a method for obtaining an anaerobic microorganism having a sufficient number of cells for the hydrogen generation reaction, obtaining a hydrogen generating function of the anaerobic microorganism in a short time, and achieving industrially advantageous production of hydrogen. Is to do. That is, the present invention does not rely on the long-term division and growth of anaerobic microorganisms as much as 10 times as described in the above-mentioned U.S. Patent Publication, but the hydrogen generation rate is sufficiently high from the beginning of the reaction, It is an object of the present invention to provide a method capable of operating a fuel cell at a practical level.
  • the steps involved in the method for producing hydrogen of the present invention are the following first to third steps. That is, as a whole, the present invention provides a first step of culturing specific cells under aerobic conditions to grow the cells, and then anaerobically growing the cells in a culture solution containing formic acids. A second step of culturing the cells under the conditions to impart hydrogen-generating ability to the cells, and adding the cells imparted with hydrogen-generating ability to a hydrogen-generating solution in a reduced state to supply an organic substrate to supply hydrogen. Including the third step of generating.
  • the present invention relates to a method for producing biological hydrogen using a metabolic pathway in which hydrogen is produced from formic acid in microbial cells in a third step.
  • the first step of the present invention aims at obtaining the number of cells required for hydrogen generation by culturing the above specific cells under aerobic conditions to proliferate and divide the cells.
  • cells cultured under aerobic conditions do not have the ability to generate hydrogen.
  • Ethanol, acetic acid, and lactic acid generated during aerobic cultivation are used to generate hydrogen from anaerobic microorganisms in the third step. It is preferable to collect the cells from the aerobic culture solution before subjecting the cells to the second step, since they have an inhibitory effect on the expression of E.
  • the expression of the hydrogen generating function can be carried out under anaerobic conditions without repeating mitotic multiplication many times.
  • the hydrogen generating function can be exhibited by dividing and growing about once in a culture solution containing formic acid under anaerobic conditions.
  • Enzyme proteins involved in the pathway to generate hydrogen from formic acid are formate dehydrogenase and hydrogenase. These enzyme proteins usually function as a pair of units, and exist in a biological membrane of a microbial cell or partially embedded in the membrane. In a conversion from a state in which the unit function is not expressed to a state in which the unit function is expressed as in the case of aerobic division and growth, the above-mentioned pair of units functions to generate hydrogen by the microorganism undergoing at least once division and growth. Is completed. This configuration requires strict anaerobic control because the presence of oxygen has a very large inhibitory effect.
  • the third step of the present invention is a method in which hydrogen generation is different from the prior art and does not depend on the division and growth of the microorganism used, that is, in a state where the division and growth of the microorganism during the hydrogen generation reaction are stopped or substantially stopped. It relates to a high-efficiency hydrogen production method.
  • This high-efficiency hydrogen production technology under mitotic growth arrest is mainly based on the results of various studies conducted by the present inventors using anaerobic microorganisms, that is, microorganisms having formate dehydrogenase and hydrogenase gene. The basis is based on the conclusions discussed above in detail. Of course, the present invention is not limited to this consideration.
  • the present inventors have conducted further intensive studies based on the above conclusions. Acquisition of hydrogen generation function in time and efficient hydrogen generation The present inventors have found a method for industrially realizing the production of fuel, and have found that this technology can operate a fuel cell at a practical level, and have reached the present invention.
  • a microorganism having a formate dehydrogenase gene and a hydrogenase gene is cultured under aerobic conditions, and the obtained cells are cultured under anaerobic conditions in a culture solution containing formic acids.
  • a high-efficiency microbial hydrogen production method characterized by using hydrogen for hydrogen generation,
  • a microorganism having a formate dehydrogenase gene and a hydrogenase gene is cultured under aerobic conditions, and the obtained cells are cultured under anaerobic conditions in a culture solution containing formic acids, so that the number of bacterial cells is at least After more than doubling, the cells obtained therefrom are used for hydrogen generation.
  • the cell concentration of the hydrogen generating solution in the reduced state is 0.1% (WZW) to 80% (w / w) (based on the wet cell mass).
  • WZW 0.1%
  • w / w 80%
  • w / w based on the wet cell mass
  • Microorganisms containing the formate dehydrogenase gene and the hide mouth genease gene are cultured under aerobic conditions, and the resulting cells are cultured under anaerobic conditions in a culture solution containing formic acids. Microorganisms that have a high-efficiency biological hydrogen-generating ability and that are recovered after the number of somatic cells has increased at least twice
  • the microorganism used in the present invention is a formate dehydrogenase gene (F. Zinoni, et al., Proc. Atl. Acad. Sci. USA, Vol. 83, pp4650-4654, July 1986 Biochemistry) and a hydrogenase gene (R Boehm, et al., Molecular Microbiology (1990) 4 (2), 231-243) and are mainly anaerobic microorganisms.
  • anaerobic microorganisms used in the present invention include microorganisms of the genus Escherichia, such as Escherichia coli (Escherichia coli A TCC 9637, ATCC 11775, ATCC 4157, etc.), and microorganisms of the genus Klebsiella, such as Klebsiella pneumoniae (AT CC 13883, AT CC 8044, etc.), Enterobacter bacteria of the genus Enterobacter, for example, Enterobacter aerogenes (Enterobacter aerogenes ATCC 13048, ATCC29007, etc.) and microorganisms belonging to the genus Clostridium, such as Clostridium beijerinckii ATCC 25752, ATCC 17795 and the like.
  • these anaerobic microorganisms are first cultured under aerobic conditions or anaerobic conditions. It was found that culture under aerobic conditions was preferred first, and then under anaerobic conditions, because they were extremely slow. In this sense, of the anaerobic microorganisms, facultative anaerobic microorganisms (anaerobic microorganisms that can survive under both aerobic and anaerobic conditions) are preferably used rather than obligate anaerobic microorganisms (anaerobic microorganisms that cannot survive under aerobic conditions). It is. Among the above microorganisms, Escherichia coli, Enterobacter aerogenes, and the like are preferably used.
  • the cultivation under aerobic conditions in the first step can be performed using a normal nutrient medium containing a carbon source, a nitrogen source, inorganic salts, and the like.
  • a carbon source for example, glucose, molasses, etc.
  • ammonia, ammonium sulfate, etc. As the nitrogen source, ammonium chloride, ammonium nitrate, urea, etc. can be used alone or in combination.
  • the inorganic salt for example, potassium hydrogen phosphate, potassium dihydrogen phosphate, magnesium sulfate, or the like can be used.
  • nutrients such as various vitamins such as peptone, meat extract, yeast extract, corn steep liquor, casamino acid, biotin, and thiamine can be appropriately added to the medium as needed.
  • the cultivation can usually be performed at a temperature of about 20 ° C to about 40 ° C, preferably about 25 ° C to about 40 ° C under aerobic conditions such as aeration and shaking and shaking.
  • the pH during the culture is preferably in the range of 5 to 10, and preferably around 6 to 8.
  • the pH during the culture can be adjusted by adding an acid or alkali.
  • the carbon source concentration at the start of the culture is 0.1 to 20% (W / V), preferably 1 to 5% (W / V).
  • culture period Is usually half a day to 5 days.
  • the bacterial cells obtained in the first step have an increased number of bacteria, but do not have the ability to generate hydrogen.
  • the cells cultured in the first step in this manner are preferably separated and recovered from the culture solution once and used in the second step. It is preferable to separate the cells from a culture solution containing a component (eg, ethanol, acetic acid, lactic acid, etc.) that inhibits hydrogen generation from bacteria grown under aerobic conditions. However, cells grown under aerobic conditions do not have the ability to generate hydrogen. Examples of the separation include centrifugation, filtration and the like.
  • the recovered cells are suspended and cultured in a formic acid-containing culture medium (hydrogen generating ability induction medium) under anaerobic conditions to impart the cells with hydrogen generating ability. That is, the hydrogen generation ability is imparted to the cells by the second step.
  • the formic acids contained in the induction medium include formic acid and formate (for example, sodium formate), and it is preferable that about 1 mM to 5 O mM (mmol) is generally contained per 1 L of the culture solution.
  • This operation is performed under anaerobic conditions for the purpose of inducing and expressing a unit function consisting of formate dehydrogenase and hydrogenase in the cells of the microorganism used.
  • it is preferable to carry out the treatment in a culture solution containing formic acids under strict anaerobic conditions. It suffices if it is possible to confirm the preferable degree of division and proliferation, that is, that the number of cells is increased by about 2 times or more.
  • the degree of the division growth can be easily determined by a usual measurement of the optical density of the cells, for example, by using a spectrophotometer DU-800 manufactured by Beckman Coulter.
  • trace metal components required for inducible expression of formate dehydrogenase and hydrogenase the metal components required depend on the microorganism used, but iron, molybdenum, etc. are generally used.
  • this trace metal component is contained in a considerable amount in natural nutrients usually used for microorganism culture components (for example, yeast extract, corn starch, beef extract, fish meat extract, etc.). is there.
  • a carbon source is also a necessary component.
  • sugars such as darcos, organic acids and alcohols are usually used.
  • a so-called glucose suppression effect in which the hydrogen generation ability is suppressed by a carbon source such as glucose present in the culture medium may be observed.
  • an amount of carbon source such as glucose necessary for about one division of the cells. The amount can be easily determined by a person skilled in the art.
  • nitrogen sources ammonium sulfate, ammonium nitrate, phosphorus phosphorus, etc.
  • phosphorus, potassium, etc. are added as necessary.
  • the amount of cells obtained by aerobic cultivation up to about 30 g (gram) (wet mass) is determined using, for example, a formic acid-containing culture solution (induction medium composition) having the following composition. Will be implemented.
  • % is% by mass unless otherwise specified.
  • a known method may be used to realize the anaerobic condition for imparting hydrogen generating ability to the cells in the second step.
  • a method for preparing a culture solution for sulfate-reducing microorganisms P fermig, N et. L. (1981): The dissimi latory sul fate-reducing bacteria, In The Prokaryotes, A Handbook on Habitats, Isolation and Identification of Bacteria, Ed. By Starr, MP et. Al. P.926-940, Berlin, Springer Verlag. And "Agricultural Chemistry Experiment Book Vol. 3, Kyoto University Faculty of Agriculture, Department of Agricultural Chemistry", 1990, 26th edition, Sangyo Tosho Co., Ltd. With reference to “publishing” and the like, an aqueous solution under desired anaerobic conditions can be obtained.
  • the dissolved gas by subjecting the aqueous solution for the induction medium to a reduced pressure treatment before use in the culture. More specifically, about 13. 3 3 X 1 0 2 P a or less, preferably about 6. 67 X 10 2 P a or less, and more preferably from about 4. 0 0 X 10 2 P a reduced pressure of not more than under
  • a heat treatment may be performed if desired. The heating temperature is usually about 80 ° C to 150 ° C. Such treatment removes oxygen and is useful for creating anaerobic conditions.
  • an appropriate reducing agent e.g., thioglycolic acid, ascorbic acid, cysteine hydrochloride, mercaptoacetic acid, thiolacetic acid, glutathione, sodium sulfide, etc.
  • an aqueous solution e.g., the aqueous solution in Table 1.
  • an aqueous solution used as a culture solution in the second step under anaerobic conditions can be adjusted.
  • an appropriate combination of these methods is also an effective method for preparing an anaerobic aqueous solution.
  • the anaerobic state of the induction medium can be easily estimated to some extent with a resazurin indicator (blue to colorless decolorization), but is specified by the redox potential measured with an oxidation-reduction potentiometer (for example, ORP Electrodes manufactured by BROADLEY JAMES). You.
  • the oxidation-reduction potential of the induction medium maintained in the anaerobic state is preferably about ⁇ 20 OmV to about 500 m. V, more preferably about 150 mV to -500 mV.
  • the time and temperature required for the cell number to multiply and multiply twice or more are 0.5 to 24 hours and 25 hours. (: Up to 40 ° C.
  • the pH of the culture solution at the time of culturing the cells is usually about 5.0 to 9.0.
  • the method for recovering the cells having the desired function in this manner is not particularly limited, and for example, a known method such as centrifugation or membrane separation can be used.
  • the cells having the ability to generate hydrogen that have been collected and separated as described above are added to the hydrogen generating solution in a reduced state, and the organic substrate is continuously or intermittently converted into biological hydrogen.
  • the organic substrate is preferably supplied continuously, but when supplied intermittently, it is necessary that a sufficient amount of hydrogen is present in the reaction system for hydrogen generation.
  • the recovered cells can be used without any treatment, and the recovered cells immobilized with acrylamide, carrageenan, etc. should also be used. Can be.
  • the cells cultured under aerobic conditions are not directly used for hydrogen generation under reduced conditions, but are aerobically cultured and further anaerobically cultured as in the present invention. After the cells have acquired the hydrogen generation unit function, they are once separated and collected, and then added to a hydrogen generation solution to generate hydrogen in a reduced state. It is preferable to exhibit the effect of the light method.
  • the same or similar composition as the induction medium solution used in the second step is used.However, since hydrogen generation is intense, an antifoaming agent (a commercially available antifoaming agent, for example, a silicone-based antifoaming It is recommended to use antifoaming agents and polyether antifoaming agents.
  • an antifoaming agent a commercially available antifoaming agent, for example, a silicone-based antifoaming It is recommended to use antifoaming agents and polyether antifoaming agents.
  • the cell concentration is about 0.1% (w / w) to 80% (w / w) (based on wet cell mass), preferably about 5% (w / w) to 70% (w / w). w) (based on wet cell mass), and more preferably about 10% (w / w) to 70% (w / w) (based on wet cell mass).
  • the same medium as the composition of the medium for inducing hydrogen generation in the second step is used. It is the same as in the second step that a reducing agent may be used.
  • the amount of saccharide necessary for the growth of the cells is not normally included in the liquid composition because the cells do not grow.
  • a carbon source such as glucose used for the growth of the bacteria in the medium is unnecessary.
  • the carbon source may be used, the carbon source may be used in an amount necessary only for maintaining the hydrogen generating ability of the microbial cells (because the present invention relates to a method for producing biological hydrogen using cells that have substantially stopped growing. by).
  • the hydrogen generating solution is usually carried out using a hydrogen generating solution having the following composition with respect to the amount of about 800 g (gram) (wet mass) of the cells.
  • the reduction state of the hydrogen generation solution can be realized according to the method for realizing the anaerobic condition of the culture solution containing formic acids.
  • the state of reduction of the hydrogen generating solution is specified so that its oxidation-reduction potential is about -100 mV to -500 mV, and more preferably, 120 mV to 150 mV.
  • formic acids are supplied not as formic acids necessary for inducing and expressing the protein function unit in the second step, but as an organic substrate required for a hydrogen generating material.
  • Formic acids which are organic substrates supplied to the hydrogen generation solution continuously or intermittently, are converted to formic acid (eg, glucose, fructose, Monosaccharides such as xylose and arabinose, disaccharides such as sucrose and maltose, and molasses), and formic acid and formate directly supplied from outside (for example, sodium formate and potassium formate).
  • formic acid eg, glucose, fructose, Monosaccharides such as xylose and arabinose, disaccharides such as sucrose and maltose, and molasses
  • formic acid and formate directly supplied from outside for example, sodium formate and potassium formate.
  • an indirect supply method using a compound convertible to formic acid and a direct supply method can be used in combination, a direct supply method from the outside is preferred.
  • the hydrogen evolution reaction is carried out at a temperature of about 20 ° ( ⁇ 40 ° C, preferably about 30 ° C to 40 ° C). Will be applied.
  • the hydrogen generation container in which the hydrogen generation reaction is performed may be a conventionally known one. According to the method of the present invention, it is possible to realize a remarkably high hydrogen generation rate (STY), supply of an organic substrate and a quick response of hydrogen generation, and to provide an excellent technology as a hydrogen supply system for a fuel cell. .
  • STY hydrogen generation rate
  • a biological hydrogen production method using an Escherichia coli W strain (ATCC9637).
  • This strain was added to 500 ml of a culture solution having the composition shown in Table 3 below, and cultured under shaking at 37 ° C overnight under aerobic conditions.
  • Aerobic culture medium composition (LB medium)
  • the culture was centrifuged (5000 rpm, 15 minutes) to remove the effects caused by aerobic culture, and the cells obtained by separating the cells from the culture solution were collected as described above.
  • the cells were suspended in 6 L (liter) of an induction medium for expressing the enzyme protein unit function under anaerobic conditions having the composition shown in Table 1.
  • the induction medium solution is heated in advance at 120 ° C for 10 minutes, and then immediately under reduced pressure ( ⁇ about 4. Remove the dissolved oxygen at 20 ⁇ 10 2 Pa) for 20 minutes, and stir the device under a nitrogen atmosphere, maintain the temperature, and measure the oxidation-reduction potential with an internal volume of 10 L (liter). Has been introduced into a glass container.
  • the anaerobicity of the induction medium was qualitatively confirmed by examining the color change of the resazurin indicator (from blue to colorless).
  • the cells were subjected to induction expression culture of the enzyme protein unit function in the cells for 2 hours at 30 ° C under anaerobic conditions with stirring.
  • the oxidation-reduction potential of the culture solution was maintained at around 140 OmV.
  • the cell concentration in the induction culture solution was measured using a Beekm anCou ter spectrophotometer DU_800, and the initial cell optical density (OD 610 ) was 1.5 to 3. Had increased to seven.
  • About 6500 g of the induction culture solution thus obtained was centrifuged (5000 rpm, 12 minutes) to collect the cells.
  • the reaction vessel for hydrogen generation with an internal volume of 200 ml is composed of a formic acid supply nozzle, a stirrer,
  • H adjusting device It is equipped with an H adjusting device, a temperature maintaining device and an oxidation-reduction potential measuring device, and is fixed in a constant temperature water tank set at 37.
  • the amount of gas generated by continuously supplying the reaction vessel at a feed rate of 16 ml / hr was measured.
  • the pH of the system was controlled at around 6.5 by the phosphate buffer, and the oxidation-reduction potential of the system dropped rapidly from around 200 OmV at the beginning of the hydrogen evolution reaction and was maintained at around 390 mV. .
  • the gas generation rate measured by the gas flow meter is an almost constant average speed of 92 m 1 Z
  • the collected gas was analyzed by gas chromatography and found to contain 49% hydrogen and the remaining carbon dioxide. Therefore, the rate of hydrogen generation is 54 L (H 2 ) / hr / L (reaction volume).
  • This hydrogen generation rate has the ability to immediately operate a 1 kW capacity fuel cell of a home-use dispersed type when needed.
  • the present invention by using a microorganism having a formate dehydrogenase gene and a hydrogenase gene, it is possible to supply useful hydrogen for a fuel cell with a remarkably high hydrogen generation rate (STY). It is possible to provide a highly efficient biological hydrogen production method.

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本発明の課題は、水素発生反応に充分な菌体数の嫌気性徴生物の獲得、嫌気性微生物の短時間での水素発生機能の獲得及び水素の工業的有利な製造を実現する方法を提供することにある。解決手段は、蟻酸脱水素酵素遺伝子およびヒドロゲナーゼ遺伝子を有する微生物を好気的条件で培養し、得られた菌体を嫌気的条件で蟻酸類含有培養液中で培養し、そこで得られた菌体を水素発生のために用いることを特徴とする高効率な微生物的水素製造方法である。

Description

明 細 書 微生物による高効率水素製造方法 技術分野
本発明は、 微生物による水素製造方法に係わり、 さらに詳しくは有機性基質 を炭素源とする嫌気性微生物による高効率な水素製造方法に関する。 本発明の 方法で製造される水素は燃料電池等の燃料として好適に使用することができる。 背景技術
水素は化石燃料と異なり、 燃焼しても炭酸ガスや硫黄酸化物など環境問題よ り懸念される物質を発生しない究極のクリーンエネルギー源として注目され、 単位質量当たりの熱量は石油の 3倍以上あり、 燃料電池に供給すれば電気エネ ルギ一および熱エネルギーに高い効率で変換できる。
水素の製造は従来より化学的製法として、 天然ガスやナフサの熱分解水蒸気 改質法などの技術が提案されている。 この方法は高温高圧の反応条件を必要と すること、 そして製造される合成ガスには C O (一酸化炭素) が含まれるため 燃料電池用燃料として使用する場合には燃料電池電極触媒劣化防止のため、 技 術的課題解決難度の高い c o除去を行うことが必要となる。
一方、 微生物による生物的水素製造方法は常温常圧の反応条件であること、 そして発生するガスには C Oが含まれないためその除去も不要である。
このような観点から、 微生物による生物的水素製造は燃料電池用燃料供給方 法としてより好ましい方法となる。
生物的水素製造方法がこのような優れた特長を有するにもかかわらず燃料電 池用燃料供給方法としてこれまで大きな進展が無かつたのは水素製造の生産性、 特に単位容積当たりの水素発生速度 (S T Y; Space Time Yie l d) が低く経済 的に実用性が無かったためである。
生物的水素製造方法には大別して光合成微生物を使用する方法と非光合成微 生物 (主に嫌気性微生物) を使用する方法に分けられる。 前者の方法は水素発 生に光エネルギーを用いるため、 その低い光エネルギー利用効率により広大な 集光面積を要する水素発生装置の価格問題や維持管理の難しさ等解決しなけれ ばならない課題が多く実用的なレベルではない。
後者の嫌気性微生物を使用する従来の水素製造方法は、 これら嫌気性微生物 の分裂増殖に依存したものである。嫌気性微生物は、分裂増殖が極めて遅く(特 許文献 1、非特許文献 1 )、そして嫌気性微生物の分裂増殖は他の微生物のそれ に比して、 その理由は明らかにされていないが、 分裂増殖の際に必要な自由空 間(培養に必要な「場」即ち反応器容積に比例する)がより大きく必要である。 そのため、 一定の大きさの培養の 「場」 における嫌気性微生物が水素発生に必 要な嫌気条件の培養で到達できる定常状態の菌体濃度は他の微生物のそれに比 較して絶対的に低い。これらの理由により、嫌気性微生物の水素発生速度(STY) が十分ではない。 この点に関して一段の向上が求められている。
また、 生物的製造方法により製造される水素が一定の電気容量の燃料電池に 供給される場合には、 水素源となる有機性基質の水素発生反応容器への供給と 電流の発生の迅速な応答が実用上必要である。 この点に関しても技術的解決が 求められている。
【特許文献 1】 米国特許第 5, 834, 264号
【非特許文献 1 J R. andi et al .、 Enzyme and Mi crobi al Technology 19 : 20 - 25、 1996 発明の開示
嫌気性微生物の分裂増殖に依存した従来の水素製造方法の上記の問題は、 換 言すれば、 従来の技術では水素発生反応器内で高密度の嫌気性微生物の獲得及 び嫌気性微生物の水素発生機能の獲得を短時間で同時に実現する方法を見出せ なかったことによる。
本発明は嫌気性微生物による水素製造方法に関するこれら技術的課題を解決 することを目的とする。 本発明の目的は、 水素発生反応に充分な菌体数の嫌気 性微生物の獲得、 嫌気性微生物の短時間での水素発生機能の獲得及び水素のェ 業的有利な製造を実現する方法を提供することにある。 すなわち、 本発明は、 前記米国特許公報に記載されているような 1 0倍にも達する嫌気性微生物の長 時間の分裂増殖に依存する方法ではなく、 水素発生速度が反応初期から充分に 高く、 実用的レベルで燃料電池を稼動させることのできる方法を提供すること を目的とする。
本発明の水素の製造方法に関与する工程は下記第 1〜第 3工程である。 すなわち、 本発明は全体として、 特定の菌体を好気的条件で培整して菌体を 増殖させる第 1工程と、 ついで増殖した菌体を蟻酸類を含有する培養液中で嫌 気的条件下培養して菌体に水素発生能力を付与する第 2工程と、 このように水 素発生能力を付与した菌体を還元状態にある水素発生溶液に加え有機性基質を 供給して水素を発生させる第 3工程を含む。
嫌気性微生物内における水素発生に関する代謝経路は色々な経路が知られて いる (グルコースのピルビン酸への分解経路における代謝産物としての水素発 生、 ピルビン酸がァセチル C o Aをへて酢酸が生成する経路での代謝産物とし ての水素発生そしてピルピン酸由来の蟻酸より水素が発生する経路等)。本発明 は微生物細胞内の蟻酸より水素が生成する代謝経路を第 3工程で利用する生物 的水素製造方法に関する。
本発明の第 1工程は、 上記特定の菌体を好気的条件で培養することによって 菌体を増殖分裂させて、 水素発生に必要な菌数を得ることを目的とする。 しか し好気的条件で培養した菌体は水素発生能力を有しない。 好気的培養時に生成 するエタノール、 酢酸や乳酸は第 3工程における嫌気性微生物の水素発生機能 の発現に阻害効果をもたらすので、 好気的培養液から菌体を第 2工程に付する 前に回収するのが好ましい。
また、 第 2工程については、 水素発生機能の発現は嫌気的条件で分裂増殖を 多数回繰り返さなくても (多数回分裂を繰り返しながら水素を発生させること は分裂増殖に依存する従来技術の水素発生方法)、嫌気的条件下、蟻酸含有培養 液中、 一回程度分裂増殖させる事により水素発生機能を発現させることができ る。 この一回程度の分裂増殖で機能が発現できる理由は明らかではないが、 本 発明者等は以下の推論を考えている。
蟻酸から水素を生成する経路に関与する酵素蛋白は蟻酸脱水素酵素およびヒ ドロゲナ一ゼである。 これら酵素蛋白は通常は一対のユニットとして機能し、 微生物菌体の生体膜内かもしくは膜に一部埋め込まれた状態で存在する。 好気 的分裂増殖時のようにュニット機能が発現しない状態からュニット機能が発現 する状態への変換は微生物が、 少なくとも一回程度分裂増殖を経ることにより 上記一対のュニットが水素発生のために機能する構成が完了する。 この構成に は酸素の存在は極めて大きな阻害効果をもたらすので厳密な嫌気条件の管理が 必要である。
また、 本発明の第 3工程は水素発生が従来技術と異なり、 使用する微生物の 分裂増殖に依存しない方法、 すなわち、 水素発生反応中における微生物の分裂 増殖を停止もしくは実質的に停止した状態での高効率水素製造方法に関する。 この分裂増殖停止下での高効率水素製造技術は、 主として嫌気性微生物、 す なわち、 蟻酸脱水素酵素およびヒドロゲナーゼ遗伝子を有する微生物を用いて 本発明者等が実施した各種の検討結果を詳細に考察した上記の結論にその基礎 を置く。 勿論、 本発明はこの考察内容に限定されるものではない。
本発明者等は上記の結論に基づきさらに鋭意検討を行った結果、 水素発生反 応器内において高密度で使用される、 すなわち菌体数が充分な嫌気性微生物の 獲得及び嫌気性微生物の短時間での水素発生機能の獲得並びに効率的な水素発 生を工業的有利に実現する方法を見出し、 また、 この技術が実用的なレベルで 燃料電池を稼動することができること見出し、 本発明に到達した。
すなわち、 本発明は、
( 1 ) 蟻酸脱水素酵素遺伝子およびヒドロゲナーゼ遺伝子を有する微生物 を好気的条件で培養し、 得られた菌体を嫌気的条件で蟻酸類含有培養液中で培 養し、 そこで得られた菌体を水素発生のために用いることを特徴とする高効率 な微生物的水素製造方法、
( 2 ) 蟻酸脱水素酵素遺伝子およびヒドロゲナーゼ遺伝子を有する微生物 を好気的条件で培養し、 得られた菌体を嫌気的条件で蟻酸類含有培養液中で培 養して菌体細胞数が少なくとも 2倍以上に増加後、 そこで得られた菌体を水素 発生のために用いることを特徴とする髙効率な微生物的水素製造方法、
(3) 前記 (1)、 (2) のいずれかに記載の方法にて得られた菌体を還元 状態にある水素発生用溶液に加え、 該溶液に有機性基質を供給して、 水素を発 生させることを特徴とする高効率な生物的水素製造方法、
(4) 前記 (1)、 (2) のいずれかに記載の方法にて得られた菌体を回収 し、 回収された菌体を還元状態にある水素発生用溶液に加え、 該溶液に連続的 に有機性基質を供給して、 水素を発生させることを特徴とする高効率な生物的 水素製造方法、
( 5 ) 上記蟻酸類含有培養液の酸化還元電位が嫌気的条件で培養中、 一 2 00ミリボルト乃至— 500ミリボルトの範囲に維持されることを特徴とする 前記 (1) または (2) に記載の高効率な生物的水素製造方法、
( 6 ) 上記還元状態にある水素発生用溶液の酸化還元電位が、 一 100ミ リポルト乃至一 500ミリポルトの範囲であることを特徴とする前記 (3) ま たは (4) に記載の高効率な生物的水素製造方法、
(7) 上記有機性基質が蟻酸、 蟻酸塩または菌体内代謝により蟻酸に変換 しうる化合物であることを特徴とする前記 (3) または (4) に記載の高効率 な生物的水素製造方法、
(8) 上記還元状態にある水素発生用溶液の菌体濃度が 0. 1% (WZW) 乃至 80 % (w/w) (湿潤状態菌体質量基準)であることを特徴とする前記( 3 ) または (4) に記載の高効率な生物的水素製造方法、
(9) 上記水素発生用溶液の pHを 5.0〜9.0に保持し、 有機性基質を 連続的に供給することを特徴とする前記 (3) 〜 (8) に記載の高効率な生物 的水素製造方法、
(10) 前記 (1) 〜 (9) のいずれかに記載の方法で製造される水素の 燃料電池用燃料としての使用、
(11) 蟻酸脱水素酵素遺伝子およびヒド口ゲナ一ゼ遺伝子を有する微生 物を好気的条件で培養し、 得られた菌体を嫌気的条件で蟻酸類含有培養液中で 培養して菌体細胞数が少なくとも 2倍以上に増加後回収されてなる、 高効率な 生物的水素発生能力を有する微生物、
に関する。 発明を実施するための最良の形態
本発明で使用される微生物は蟻酸脱水素酵素遺伝子 (F.Zinoni,et al., Proc. atl. Acad. Sci. USA, Vol.83, pp4650-4654, July 1986 Biochemistry) お よびヒドロゲナーゼ遺伝子 (R.Boehm, et al. , Molecular Microbiology (1990) 4(2), 231-243) を有する微生物で主として嫌気性微生物である。
本発明で使用される具体的な嫌気性微生物の例としては、 ェシエリキア (Escherichia)属微生物一例えばェシエリキア コリ (Escherichia coli A TCC 9637、 ATCC 1 1775, ATCC4157等)、 クレブシエラ (Klebsiella) 属微生物一例えばクレブシエラ ニューモニエ (Klebsiella pneumoniae AT C C 13883、 AT C C 8044等)、 ェンテロパクター (Enterobacter) 属微生物一例えばェンテロバクタ一 ァエロギネス (Enterobacter aerogenes ATCC 13048、 ATCC29007等) そ してクロストリジゥム (Clostridium) 属微生物一例えばクロストリジゥム ベ イェリンキイ (Clostridium beijerinckii ATCC 25752, ATCC 1 7795等) 等が挙げられる。
これらの嫌気性微生物は一般的には先ず好気的条件あるいは嫌気的条件で培 養されるが、 本発明者らは、 嫌気的条件による分裂増殖は好気的条件によるそ れと比較して極めて遅いことより、 最初好気的条件による培養、 ついで嫌気的 条件による培養が好ましいことを見出した。 この意味では嫌気性微生物の内、 偏性嫌気性微生物 (好気条件では生存できない嫌気性微生物) より通性嫌気性 微生物 (好気条件でも嫌気条件でも生存できる嫌気性微生物) が好適に使用さ れる。 上記微生物の内ではェシェリキア コリ (Escherichia col i)、 ェンテロ バクタ一 ァエロギネス (Enterobacter aerogenes) 等が好適に使用される。 第 1工程における好気的条件による培養は、 炭素源、 窒素源、 無機塩等を含 む通常の栄養培地を用いて行うことができる。 培養には、 炭素源として、 例え ばグルコース、 廃糖蜜等を., そして窒素源としては、 例えばアンモニア、 硫酸 アンモニゥム.. 塩化アンモニゥム、 硝酸アンモニゥム、 尿素等をそれぞれ単独 もしくは混合して用いることができる。 また、 無機塩として、 例えばリン酸一 水素カリウム、 リン酸ニ水素力リウム、 硫酸マグネシゥム等を使用することが できる。 この他にも必要に応じて、 ペプトン、 肉エキス、 酵母エキス、 コーン スティ一プリカ一、 カザミノ酸、 ピオチン、 チアミン等の各種ビタミン等の栄 養素を培地に適宜添加することもできる。
培養は、 通常、 通気攪拌、 振盪等の好気的条件下、 約 20°C〜約 40°C、 好 ましくは約 25 °C〜約 40°Cの温度で行うことができる。 培養時の pHは 5〜 10、 好ましくは 6〜8付近の範囲がよく、 培養中の pH調整は酸またはアル カリを添加することにより行うことができる。培養開始時の炭素源濃度は、 0. 1〜20% (W/V) 好ましくは 1〜5% (W/V) である。 また、 培養期間 は通常半日〜 5日間である。 第 1工程により得られる菌体は菌数は増加してい るが、 水素発生能力を有しない。
次に第 2工程について、 このように第 1工程で培養された菌体は好ましくは 培養液から一旦分離して回収し第 2工程に使用される。 好気的条件で増殖させ た菌を水素発生の阻害になる成分 (例えば、 エタノール、 酢酸、 乳酸など) を 含む培養液から菌体を分離することが好ましい。 ただし、 好気的条件で増殖さ せた菌体は水素発生能力を有しない。 分離には例えば遠心分離、 ろ過等が挙げ られる。 回収された菌体は、 嫌気的条件で蟻酸類含有培養液 (水素発生能力誘 導培地) 中に懸濁して培養して、 菌体に水素発生能力を付与する。 すなわち、 水素発生能力が第 2工程によって菌体に付与される。 菌体細胞数が、 通常少な くとも 2倍以上に増加後回収するのが好ましい。 ここに誘導培地に含ませる蟻 酸類とは、 蟻酸、 蟻酸塩 (例えば蟻酸ナトリウム) が挙げられ、 培養液 1 Lあ たり、 一般に約 l mM〜5 O mM (ミリモル) 含ませるのが好ましい。
本操作は嫌気的条件で使用微生物細胞内に蟻酸脱水素酵素およびヒドロゲナ —ゼからなるユニット機能を誘導発現させることを目的にして実施される。 こ のためには蟻酸類を含む培養液中で厳密な嫌気条件の管理の下に実施すること が好ましい要件である。 好ましい分裂増殖の程度、 つまり、 その細胞数が 2倍 以上程度増加していることが確認できればよい。 この分裂増殖の程度は通常の 菌体光学密度測定、例えば、 Beckman Coul ter社製 spec trophotometer DU-800 による測定を行う事により容易に知ることができる。
蟻酸類含有培養液の誘導培地組成に関しては、 用いる微生物菌体細胞が少な くとも 1回程度分裂しうる条件が満足されることが好ましいが、 菌体の分裂増 殖は必ずしも必須ではなく、 培養誘導により菌体に水素発生能力を付与するこ とが必須である。 さらに付言すれば、 蟻酸脱水素酵素およびヒドロゲナ一ゼの 誘導発現に必要な微量金属成分 (用いる微生物種により必要な金属成分は異な るが鉄、 モリブテン等が一般的である) を含むことが好ましい条件である。 な お、 この微量金属成分は通常微生物培養成分に用いられる天然栄養源 (例えば 酵母エキス、 コーンスチ一プリカ一、 牛肉エキス、 魚肉エキス等) に相当程度 含まれることから必ずしも別途添加を必要としない場合もある。
微生物菌体細胞が分裂するには炭素源も必要な成分である。 これにはダルコ —ス等の糖類、 有機酸、 アルコール類が通常用いられる。 この場合留意すべき は用いる微生物種によっては培養培地中に存在するグルコース等の炭素源によ り水素発生能力が抑制される所謂グルコース抑制効果が見られる場合があり、 この場合には、 用いる微生物菌体の一回程度の分裂に必要な量のグルコース等 の炭素源を用いるのが好ましい。 その量は当業者には容易に定めることができ る。 炭素源以外には窒素源 (硫安、 硝安、 リン安等) や、 リン、 カリ等が必要 に応じて添加される。
具体的には好気的培養で得られた菌体 3 0 g (グラム) (湿潤質量)程度まで の量に対して例えば下記の組成からなる蟻酸類含有培養液 (誘導培地組成) を 用いて実施される。
第 1表
誘導培地組成
Figure imgf000010_0001
なお、 本発明において、 %は特にことわりのない限り ¾量%である。 本第 2工程の菌体に水素発生能力を付与する嫌気的条件の実現には公知の方 法が用いられてもよい。例えば、硫酸還元微生物用の培養液調整方法 (P f erm i g, N et. l. (1981): The dissimi latory sul fate-reducing bacteria, In The Prokaryotes, A Handbook on Habitats, Isolation and Identification of Bacteria, Ed. by Starr, M. P. et. al. P.926-940, Berlin, Springer Verlag. や「農芸化学実験書 第三巻、京都大学農学部農芸化学教室編、 1990年第 26刷、 産業図書 (株) 出版」 などが参考として、 所望する嫌気的条件の水溶 液を得ることもできる。
具体的には培養に使用する前に、 誘導培地用水溶液を減圧処理することによ り溶解ガスを除去することが好ましい。 より具体的には、 約 13. 3 3 X 1 0 2P a以下、 好ましくは約 6. 67 X 102P a以下、 より好ましくは約 4. 0 0 X 102 P a以下の減圧下で約 1〜 60分程度、 好ましくは 5〜60分程度、 誘導培地を処理する事により、 溶解ガス、 特に溶解酸素を除去し、 嫌気状態の 誘導培地を調製することができる。 減圧処理の間に、 所望により加熱処理して もよい。 加熱温度は通常約 80°C〜150°C程度である。 このような処理は酸 素を除去するので、 嫌気的条件を作るのに有用である。
また、 所望により適切な還元剤 (例えば、 チォグリコール酸、 ァスコルビン 酸、 システィン塩酸塩、 メルカプト酢酸、 チオール酢酸、 グル夕チオンそして 硫化ソ一ダ等) を水溶液 (例えば第 1表の水溶液) に添加して嫌気的条件の第 2工程の培養液として使用される水溶液を調整することができる。 また、 場合 により、 これらの方法を適宜組み合わせることも有効な嫌気状態の水溶液を調 整する方法となる。
誘導培地の嫌気状態は簡便にはレサズリン指示薬 (青色から無色への脱色) である程度推定できるが、酸化還元電位差計(例えば、 BROADLEY JAMES 社製、 ORP Electrodes) で測定される酸化還元電位で特定される。 嫌気状態が維持さ れている誘導培地の酸化還元電位は、 好ましくは約— 20 OmV〜一 500m V、 より好ましくは約一 2 5 O mV〜― 5 0 0 mVである。
反応途中における嫌気状態の維持は、 反応系外からの酸素の混入を可能な限 り防止することが望ましく、 反応系を窒素ガス等の不活性ガスや炭酸ガス等で 封入する方法が通常用いられる。
酵素蛋白ユニット機能発現の際には、 菌体内の代謝機能を効率よく機能させ るために反応系の P H維持調整液の添加や各種栄養素溶解液を適宜添加する必 要が生じる場合もあるが、 このような場合には機能発現阻害となる酸素混入を 防止するため、 添加溶液から酸素を予め除去しておくことが有効である。
本工程において菌体数が 2倍以上に分裂増殖するに要する時間および温度、 すなわち、目的とする酵素蛋白ュニット機能発現に要する時間および温度は 0 . 5時間〜 2 4時間、 2 5。 (:〜 4 0 °Cの条件で実施することができる。 菌体培養 時の培養液の p Hは通常約 5 . 0〜9 . 0である。
このようにして目的とする機能を有する菌体の回収する方法としては、 特に 限定されないが、 例えば遠心分離や膜分離等の公知の方法を用いることができ る。
ついで第 3工程について. 上記の如くして回収分離された水素発生能力を有 する菌体は還元状態にある水素発生用溶液に加えられ、 連続的にあるいは間歇 的に有機性基質が生物的水素製造方法に供せられる。 有機性基質は連続的に供 給するのが好ましいが、 間歇的に供給する場合には水素発生に充分な量が反応 系に存在していることが必要である。 なお、 回収された菌体の使用形態として は、 何らの処理も加えずに使用する事もでき、 また、 回収菌体をアクリルアミ ドまたはカラギ一ナン等で固定化処理したものも使用することができる。
なお、 菌体の回収分離に関して、 好気的条件で培養された菌体をそのまま還 元状態下での水素発生に使用するのではなく、 本発明の如く、 好気的培養され さらに嫌気的培養され、 菌体が水素発生ュニット機能を獲得した後に一度分離 回収し、 これを水素発生用溶液に加え還元状態で水素を発生させることは本発 明の方法の効果を発揮する上で好ましい。
水素発生用溶液としては前記第 2工程で使用した誘導培地溶液組成と同一又 は類似したものが使用されるが、水素発生が激しいので消泡剤 (市販の消泡剤、 例えばシリコーン系消泡剤、 ポリエーテル系消泡剤等) を使用することが推奨 される。
菌体濃度は約 0 . 1 % (w/w) 乃至 8 0 % (w/w) (湿潤状態菌体質量基 準)、 好ましくは約 5 % (w/w) 乃至 7 0 % (w/w) (湿潤状態菌体質量基 準)、 さらにこのましくは約 1 0 % (w/w) 乃至 7 0 % (w/w) (湿潤状態 菌体質量基準) で使用される。
水素発生用液の組成に関しては、 前記第 2工程の水素発生能力誘導培地組成 と同様の培地が用いられる。 還元剤を使用してもよいことは第 2工程と同様で ある。 ただし、 菌体の増殖は起こさないので菌体の増殖に必要な量の糖質は、 通常は液組成に含まれない。 この場合には菌を実質的に増殖させないのが重要 なポイントであるから、 培地中に菌の増殖に用いられるグルコース等の炭素源 は不要である。 炭素源は用いられることがあっても微生物細胞の水素発生能力 維持にのみ必要なだけの量でよい (なぜならば、 本発明は実質的に増殖を停止 した細胞による生物的水素製造方法であることによる)。
具体的には、 水素発生用溶液は、 菌体 8 0 0 g (グラム) (湿潤質量) 程度ま での量に対して通常下記の組成からなる水素発生用溶液を用いて実施される。
第 2表 水素発生用溶液組成
Figure imgf000014_0001
水素発生用溶液の還元状態の実現は、 前記蟻酸類含有培養液の嫌気的条件の 実現方法に準じて行うことができる。 水素発生用溶液の還元状態の特定は、 そ の酸化還元電位が約— 1 0 O mV〜― 5 0 0 mV、 より好ましくは一 2 0 0 m V〜一 5 0 O mVである。
蟻酸類は、 第 3工程では第 2工程における蛋白機能ュニッ卜の誘導発現に必 要である蟻酸類としてではなく、 水素発生原料に必要な有機性基質として供給 される。 連続的にまたは間歇的に水素発生用溶液に供給される有機性基質であ る蟻酸類は培養液内の菌体内代謝でおこる経路において蟻酸に変換される化合 物(例えばグルコース、 フラクト一ス、キシロース、ァラビノース等の単糖類、 スクロース、 マルトース等の二糖類や糖蜜等) であってもよく、 また、 直接的 に外部より供給される蟻酸や蟻酸塩 (例えば蟻酸ソ一ダ、 蟻酸カリウム) であ つてもよい。 蟻酸に変じうる化合物を使用する間接的供給方法と直接的供給方 法の併用もできるが、 外部からの直接的供給方法が好適である。 水素発生用溶 液に連続的にまたは間歇的に供給される有機性基質の量と速度は溶液の P Hが 約 5 . 0〜9 . 0の範囲で制御されている限り特に制限はない。
水素発生反応は約 2 0 ° (:〜 4 0 °C、 好ましくは約 3 0 °C〜 4 0 °Cの条件で実 施される。
水素発生反応が行われる水素発生容器は従来公知のものであってよい。 本発明の方法により、 顕著に高い水素発生速度 (STY) および有機性基質 の供給と水素発生の迅速な応答の実現が可能となり、 燃料電池用水素供給方式 として優れた技術を提供することができる。 実施例
以下、 実施例でもって本発明を説明するが、 本発明はこのような実施例に限 定されるものではない。
実施例 1
ェシエリキア コリ株 (Escherichia coli W strain; ATCC9637) による生 物的水素製造方法。
本菌株を下記第 3表で示される組成の培養液 500m lに加え、 好気的条件 下、 37 °Cで一晩振盪培養を行った。
第 3表
好気的培養培地組成 (LB培地〉
Figure imgf000015_0001
ついで、 好気的培養に起因する影響を除去するため本培養液を遠心分離機に かけ(5000回転、 15分)、 菌体を培養液から分離して得られた菌体を、 前 記第 1表で示される組成の嫌気的条件下にある酵素蛋白ュニット機能発現の為 の誘導培地 6 L (リットル) に懸濁した。
誘導培地溶液は、 予め、 120°Cで 10分間加熱後、 直ちに減圧条件 (〜約 4. 00 X 102P a) にて 20分間溶解している酸素の除去を行い、 窒素雰 囲気下にある攪拌装置、 温度維持装置および酸化還元電位測定装置を備えた内 容積 10L (リットル) のガラス製容器に導入されている。
なお、 誘導培地の嫌気度の定性的な確認はレサズリン指示薬の色調変化 (青 色から無色への変化) で調べた。
窒素ガス雰囲気下、 攪拌を行いながら嫌気条件下 30°Cで 2時間、 菌体内で の酵素蛋白ユニット機能の誘導発現培養を行った。 誘導培養中、 培養液の酸化 還元電位は一 40 OmV近傍で推移して維持されていた。 また、 誘導培養液中 の菌体濃度は、 B e e km a n C o u 1 t e r社製 spectrophotometer D U_ 800で測定すると、 初期の菌体光学密度 (OD610) 1. 5から最終的 には 3. 7に増大していた。 このようにして得られた誘導培養液約 6500 g を遠心分離機にかけ (5000回転、 12分間)、 菌体を回収した。
次に、 回収された菌体を前記第 2表の組成で示される還元状態下の水素発生 用溶液 50mlに懸濁調製した (菌体濃度約 40% 湿潤状態菌体質量基準)。 内容積 200mlの水素発生用反応容器は、 蟻酸供給ノズル、 攪拌装置、 p
H調整装置、 温度維持装置および酸化還元電位測定装置を備え付け、 37 に 設定されている恒温水槽内に固定されている。
5M (モル) ZL (リットル) 濃度の蟻酸水溶液をマイク口ポンプを用いて
16ml /h rのフィ一ド速度で連続的に反応容器に供給して発生するガス量 を測定した。
系の pHはリン酸バッファ剤により 6. 5近傍に制御されており、 また系の 酸化還元電位は水素発生反応初期の一 20 OmV付近から急速に低下し一 39 0 mV近傍で維持されていた。
蟻酸の供給と同時にガス発生が起こり、 蟻酸の連続的供給の間 (実験時間約 6時間の間) ガス発生が継続した。
ガス流量計より測定されたガス発生速度は、 ほぼ一定の平均速度 92 m 1 Z m i n. (分)であり、捕集されたガスをガスクロマトグラフィーにより分析し たところ、 発生ガス中には 49%の水素と残余の炭酸ガスを含んでいた。 従って、 水素発生速度は 54L (H2) /h r/L (反応容積) である。 この水素発生速度は家庭用分散設置型の 1 KW容量燃料電池を必要なときに 直ちに稼動することができる能力を有するものである。 産業上の利用可能性
本発明によれば、 蟻酸脱水素酵素遺伝子およびヒドロゲナーゼ遺伝子を有す る微生物を使用することにより、 顕著に高い水素発生速度 (STY) でもって 燃料電池用として有用な水素を供給することができ、 高効率な生物的水素製造 方法の提供が可能となる。

Claims

請 求 の 範 囲
1 . 蟻酸脱水素酵素遺伝子およびヒドロゲナ一ゼ遺伝子を有する微生物を好気 的条件で培養し、 得られた菌体を嫌気的条件で蟻酸類含有培養液中で培養し、 そこで得られた菌体を水素発生のために用いることを特徴とする高効率な微生 物的水素製造方法。
2 . 蟻酸脱水素酵素遺伝子およびヒドロゲナーゼ遺伝子を有する微生物を好気 的条件で培養し、 得られた菌体を嫌気的条件で蟻酸類含有培養液中で培養して 菌体細胞数が少なくとも 2倍以上に増加後、 そこで得られた菌体を水素発生の ために用いることを特徴とする高効率な微生物的水素製造方法。
3 . 請求の範囲第 1項、 第 2項のいずれかに記載の方法にて得られた菌体を還 元状態にある水素発生用溶液に加え、 該溶液に有機性基質を供給して、 水素を 発生させることを特徴とする髙効率な生物的水素製造方法。
4. 請求の範囲第 1項、 第 2項のいずれかに記載の方法にて得られた菌体を回 収し、 回収された菌体を還元状態にある水素発生用溶液に加え、 該溶液に連続 的に有機性基質を供給して、 水素を発生させることを特徴とする髙効率な生物 的水素製造方法。
5 . 上記蟻酸類含有培養液の酸化還元電位が嫌気的条件で培養中、 一 2 0 0ミ リポルト乃至一 5 0 0ミリポルトの範囲に維持されることを特徴とする請求の 範囲第 1項または第 2項に記載の高効率な生物的水素製造方法。
6 . 上記還元状態にある水素発生用溶液の酸化還元電位が、 一 1 0 0ミリポル ト乃至一 5 0 0ミリポルトの範囲であることを特徴とする請求の範囲第 3項ま たは第 4項に記載の高効率な生物的水素製造方法。
7 . 上記有機性基質が蟻酸、 蟻酸塩または菌体内代謝により蟻酸に変換しうる 化合物であることを特徴とする請求の範囲第 3項または第 4項に記載の高効率 な生物的水素製造方法。
8 . 上記還元状態にある水素発生用溶液の菌体濃度が 0 . 1 % (w/w) 乃至 8 0 % (w/w) (湿潤状態菌体質量基準)であることを特徴とする請求の範囲 第 3項または第 4項に記載の高効率な生物的水素製造方法。
9 . 上記水素発生用溶液の p Hを 5 . 0〜9 . 0に保持し、 有機性基質を連続的 に供給することを特徴とする請求の範囲第 3項〜第 8項に記載の高効率な生物 的水素製造方法。
1 0 . 請求の範囲第 1項〜第 9項のいずれかに記載の方法で製造される水素の 燃料電池用燃料としての使用。
1 1 . 蟻酸脱水素酵素遺伝子およびヒドロゲナーゼ遺伝子を有する微生物を好 気的条件で培養し、 得られた菌体を嫌気的条件で蟻酸類含有培養液中で培養し て菌体細胞数が少なくとも 2倍以上に増加後回収されてなる、 高効率な生物的 水素発生能力を有する微生物。
PCT/JP2004/002092 2003-02-24 2004-02-23 微生物による高効率水素製造方法 WO2004074495A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/546,210 US7432091B2 (en) 2003-02-24 2004-02-23 Highly efficient hydrogen production method using microorganism
JP2005502806A JP4275666B2 (ja) 2003-02-24 2004-02-23 微生物による高効率水素製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-46095 2003-02-24
JP2003046095 2003-02-24

Publications (1)

Publication Number Publication Date
WO2004074495A1 true WO2004074495A1 (ja) 2004-09-02

Family

ID=32905538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/002092 WO2004074495A1 (ja) 2003-02-24 2004-02-23 微生物による高効率水素製造方法

Country Status (3)

Country Link
US (1) US7432091B2 (ja)
JP (1) JP4275666B2 (ja)
WO (1) WO2004074495A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006028063A1 (ja) * 2004-09-09 2006-03-16 Research Institute Of Innovative Technology For The Earth プロモーター機能を有するdna断片
WO2006062130A1 (ja) * 2004-12-08 2006-06-15 Research Institute Of Innovative Technology For The Earth 水素生産能力に関する遺伝子を改良された微生物、及びその微生物を用いた水素の製造方法
JP2006280362A (ja) * 2004-10-15 2006-10-19 Takuma Co Ltd バイオマスの処理システム
JP2006320241A (ja) * 2005-05-18 2006-11-30 Research Institute Of Innovative Technology For The Earth 水素生産能を有する微生物の培養方法および水素生産方法
JP2006333767A (ja) * 2005-06-01 2006-12-14 Research Institute Of Innovative Technology For The Earth 水素製造方法および水素製造装置
JP2007209269A (ja) * 2006-02-10 2007-08-23 Research Institute Of Innovative Technology For The Earth 水素生成能力に関する遺伝子が改良された微生物、その微生物の培養法及び水素生成方法
JP2007209334A (ja) * 2006-01-13 2007-08-23 Research Institute Of Innovative Technology For The Earth 水素生成能力に関する遺伝子が改良された微生物およびその微生物を用いた水素の製造方法
JP2007330113A (ja) * 2006-06-12 2007-12-27 Research Institute Of Innovative Technology For The Earth 微生物を用いた連続水素生成方法
JP2008199916A (ja) * 2007-02-16 2008-09-04 Research Institute Of Innovative Technology For The Earth 微生物を用いた水素生産方法
JP2009273372A (ja) * 2008-05-12 2009-11-26 Sharp Corp 水素生成方法および水素生成装置
WO2010027233A3 (ko) * 2008-09-05 2010-08-19 한국해양연구원 Thermococcus supp.로부터 분리된 신규한 수소화효소, 이를 암호화하는 유전자 및 그 유전자를 갖는 미생물을 이용하여 수소를 생산하는 방법

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7927859B2 (en) * 2003-08-22 2011-04-19 Rice University High molar succinate yield bacteria by increasing the intracellular NADH availability
BRPI0514734B1 (pt) * 2004-08-27 2018-02-06 Rice University VARIEDADE BACTERIANA DE E. Coli MODIFICADA
WO2006034156A2 (en) * 2004-09-17 2006-03-30 Rice University High succinate producing bacteria
US7569380B2 (en) * 2004-12-22 2009-08-04 Rice University Simultaneous anaerobic production of isoamyl acetate and succinic acid
JP2009507493A (ja) * 2005-09-09 2009-02-26 ジェノマティカ・インコーポレイテッド 増殖連動型のコハク酸塩生成のための方法と生物
US7335066B2 (en) * 2005-12-16 2008-02-26 James A. Carroll Network connector and connection system
US8673601B2 (en) * 2007-01-22 2014-03-18 Genomatica, Inc. Methods and organisms for growth-coupled production of 3-hydroxypropionic acid
JP5199693B2 (ja) * 2007-03-30 2013-05-15 住友ゴム工業株式会社 微生物を利用した老化防止剤、加硫促進剤または変性天然ゴムの製造方法
US8026386B2 (en) * 2007-08-10 2011-09-27 Genomatica, Inc. Methods for the synthesis of olefins and derivatives
EP2245137B1 (en) 2008-01-22 2017-08-16 Genomatica, Inc. Methods and organisms for utilizing synthesis gas or other gaseous carbon sources and methanol
EP2262901B1 (en) 2008-03-05 2018-11-21 Genomatica, Inc. Primary alcohol producing organisms
HUE035611T2 (en) * 2008-03-27 2018-05-28 Genomatica Inc Microorganisms suitable for the production of adipic acid and other compounds
US8241877B2 (en) 2008-05-01 2012-08-14 Genomatica, Inc. Microorganisms for the production of methacrylic acid
BRPI0913901A2 (pt) * 2008-06-17 2016-12-13 Genomatica Inc micro-organismos e métodos para a biossíntese de fumarato, malato e acrilato
US20100021978A1 (en) * 2008-07-23 2010-01-28 Genomatica, Inc. Methods and organisms for production of 3-hydroxypropionic acid
CA2746952A1 (en) 2008-12-16 2010-06-24 Genomatica, Inc. Microorganisms and methods for conversion of syngas and other carbon sources to useful products
AU2010242849A1 (en) 2009-04-30 2011-11-24 Genomatica, Inc. Organisms for the production of isopropanol, n-butanol, and isobutanol
LT2424975T (lt) 2009-04-30 2016-10-25 Genomatica, Inc. Organizmai, skirti 1,3-butandiolio gamybai
KR102036265B1 (ko) 2009-05-07 2019-10-24 게노마티카 인코포레이티드 아디페이트, 헥사메틸렌디아민 및 6-아미노카프로산의 생합성을 위한 미생물 및 방법
US8663957B2 (en) * 2009-05-15 2014-03-04 Genomatica, Inc. Organisms for the production of cyclohexanone
US8420375B2 (en) 2009-06-10 2013-04-16 Genomatica, Inc. Microorganisms and methods for carbon-efficient biosynthesis of MEK and 2-butanol
WO2011017560A1 (en) 2009-08-05 2011-02-10 Genomatica, Inc. Semi-synthetic terephthalic acid via microorganisms that produce muconic acid
SG179048A1 (en) 2009-09-09 2012-04-27 Genomatica Inc Microorganisms and methods for the co-production of isopropanol with primary alcohols, diols and acids
CA2777459A1 (en) 2009-10-13 2011-04-21 Genomatica, Inc. Microorganisms for the production of 1,4-butanediol, 4-hydroxybutanal, 4-hydroxybutyryl-coa, putrescine and related compounds, and methods related thereto
WO2011050326A1 (en) 2009-10-23 2011-04-28 Genomatica, Inc. Microorganisms for the production of aniline
EP2510102A4 (en) 2009-12-10 2014-01-22 Genomatica Inc METHODS AND ORGANIZATIONS FOR THE CONVERSION OF SYNTHESIS GAS OR OTHER CARBONACEOUS GAS SOURCES AND METHANOL TO 1,3-BUTANEDIOL
CN102834508A (zh) 2010-01-29 2012-12-19 基因组股份公司 用于生物合成对甲苯甲酸和对苯二甲酸的微生物和方法
US8048661B2 (en) 2010-02-23 2011-11-01 Genomatica, Inc. Microbial organisms comprising exogenous nucleic acids encoding reductive TCA pathway enzymes
US8445244B2 (en) 2010-02-23 2013-05-21 Genomatica, Inc. Methods for increasing product yields
US9023636B2 (en) 2010-04-30 2015-05-05 Genomatica, Inc. Microorganisms and methods for the biosynthesis of propylene
KR101814648B1 (ko) 2010-05-05 2018-01-04 게노마티카 인코포레이티드 부타디엔을 생합성하기 위한 미생물 및 방법
CA2806230A1 (en) 2010-07-26 2012-02-09 Genomatica, Inc. Microorganisms and methods for the biosynthesis of aromatics, 2,4-pentadienoate and 1,3-butadiene
CN111172068B (zh) * 2020-01-09 2023-01-17 江苏大学 细胞周质光敏化的全细胞杂合体系的构筑方法及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5860992A (ja) * 1981-10-08 1983-04-11 Yoshiatsu Miura 緑藻による明暗サイクル利用水素生産方法
JPS61205492A (ja) * 1985-03-11 1986-09-11 Res Inst For Prod Dev 燃焼用ガスの製造法
JPH04169178A (ja) * 1990-11-02 1992-06-17 Fumiaki Taguchi 水素ガス産生菌
US6395521B1 (en) * 1999-07-06 2002-05-28 Yoshiharu Miura Microbial process for producing hydrogen
JP2002270209A (ja) * 2001-03-06 2002-09-20 Sharp Corp 固体高分子型燃料電池

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4532210A (en) 1981-10-08 1985-07-30 Yoshiharu Miura Process for producing hydrogen by alga in alternating light/dark cycle and environmental aerobic/microaerobic conditions
JPH07218469A (ja) 1994-02-01 1995-08-18 Kajima Corp 水素ガスの計測法
US5532210A (en) * 1994-06-08 1996-07-02 E. I. Du Pont De Nemours And Company High temperature superconductor dielectric slow wave structures for accelerators and traveling wave tubes
JPH08294396A (ja) 1995-04-26 1996-11-12 Ebara Corp 水素ガス生産方法
US5705374A (en) * 1996-04-09 1998-01-06 Board Of Trustees Operating Michigan State University Process for anaerobic production of hydrogen using a delta-proteobacterium
JPH1064572A (ja) 1996-08-14 1998-03-06 Matsushita Electric Ind Co Ltd 燃料電池用燃料供給システム及び携帯用電気機器
JP3788491B2 (ja) 1997-06-25 2006-06-21 株式会社ジーエス・ユアサコーポレーション 固体高分子電解質を備えた直接型メタノ−ル燃料電池およびその製造方法
US6294281B1 (en) * 1998-06-17 2001-09-25 Therasense, Inc. Biological fuel cell and method
JP2000331702A (ja) 1999-05-24 2000-11-30 Asahi Glass Co Ltd 低温作動発電装置
DE10025033A1 (de) * 2000-05-20 2001-11-29 Dmc2 Degussa Metals Catalysts Verfahren zur elektrischen Energiegewinnung mit Hilfe einer Brennstoffzelle
JP3688212B2 (ja) 2001-03-06 2005-08-24 シャープ株式会社 固体高分子型燃料電池セット
JP3764862B2 (ja) 2001-10-15 2006-04-12 シャープ株式会社 燃料電池用カートリッジ
JP3851806B2 (ja) 2001-11-06 2006-11-29 株式会社タクマ 微生物を用いた水素製造方法及び装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5860992A (ja) * 1981-10-08 1983-04-11 Yoshiatsu Miura 緑藻による明暗サイクル利用水素生産方法
JPS61205492A (ja) * 1985-03-11 1986-09-11 Res Inst For Prod Dev 燃焼用ガスの製造法
JPH04169178A (ja) * 1990-11-02 1992-06-17 Fumiaki Taguchi 水素ガス産生菌
US6395521B1 (en) * 1999-07-06 2002-05-28 Yoshiharu Miura Microbial process for producing hydrogen
JP2002270209A (ja) * 2001-03-06 2002-09-20 Sharp Corp 固体高分子型燃料電池

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LARSSON G. ET AL: "Kinetics of Escherichia coli hydrogen production during short term repeated aerobic-anaerobic fluctuations", BIOPROCESS ENGINEERING, vol. 9, no. 4, 1993, pages 167 - 172, XP002980304 *
TANISHO S. ET AL: "Fermentative hydrogen evolution by enerobacter aerogenes strain E.82005", INT'L J. OF HYDROGEN ENERGY, vol. 12, no. 9, 1987, pages 623 - 627, XP002980305 *
TANISHO S. ET AL: "Microbial fuel cell using Enterobacter aerogenes", J. OF ELECTROANALYTICAL CHEMISTRY, vol. 275, 1989, pages 25 - 32, XP002980306 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4712716B2 (ja) * 2004-09-09 2011-06-29 財団法人地球環境産業技術研究機構 プロモーター機能を有するdna断片
US8604180B2 (en) 2004-09-09 2013-12-10 Research Institute Of Innovative Technology For The Earth DNA fragment having promoter function
WO2006028063A1 (ja) * 2004-09-09 2006-03-16 Research Institute Of Innovative Technology For The Earth プロモーター機能を有するdna断片
JPWO2006028063A1 (ja) * 2004-09-09 2008-05-08 財団法人地球環境産業技術研究機構 プロモーター機能を有するdna断片
JP2006280362A (ja) * 2004-10-15 2006-10-19 Takuma Co Ltd バイオマスの処理システム
WO2006062130A1 (ja) * 2004-12-08 2006-06-15 Research Institute Of Innovative Technology For The Earth 水素生産能力に関する遺伝子を改良された微生物、及びその微生物を用いた水素の製造方法
JPWO2006062130A1 (ja) * 2004-12-08 2008-08-07 財団法人地球環境産業技術研究機構 水素生産能力に関する遺伝子を改良された微生物、及びその微生物を用いた水素の製造方法
US8728791B2 (en) 2004-12-08 2014-05-20 Research Institute Of Innovative Technology For The Earth Microorganism having the improved gene for hydrogen generation capability, and process for producing hydrogen using the same
JP4746558B2 (ja) * 2004-12-08 2011-08-10 財団法人地球環境産業技術研究機構 水素生産能力に関する遺伝子を改良された微生物、及びその微生物を用いた水素の製造方法
JP2006320241A (ja) * 2005-05-18 2006-11-30 Research Institute Of Innovative Technology For The Earth 水素生産能を有する微生物の培養方法および水素生産方法
JP4652124B2 (ja) * 2005-05-18 2011-03-16 財団法人地球環境産業技術研究機構 水素生産能を有する微生物の培養方法および水素生産方法
JP2006333767A (ja) * 2005-06-01 2006-12-14 Research Institute Of Innovative Technology For The Earth 水素製造方法および水素製造装置
JP4588541B2 (ja) * 2005-06-01 2010-12-01 財団法人地球環境産業技術研究機構 水素製造方法および水素製造装置
JP2007209334A (ja) * 2006-01-13 2007-08-23 Research Institute Of Innovative Technology For The Earth 水素生成能力に関する遺伝子が改良された微生物およびその微生物を用いた水素の製造方法
US7816109B2 (en) 2006-01-13 2010-10-19 Research Institute Of Innovative Technology For The Earth Microorganism having the improved gene for hydrogen-generating capability, and process for producing hydrogen using the same
JP4588693B2 (ja) * 2006-01-13 2010-12-01 財団法人地球環境産業技術研究機構 水素生成能力に関する遺伝子が改良された微生物およびその微生物を用いた水素の製造方法
JP2007209269A (ja) * 2006-02-10 2007-08-23 Research Institute Of Innovative Technology For The Earth 水素生成能力に関する遺伝子が改良された微生物、その微生物の培養法及び水素生成方法
JP2007330113A (ja) * 2006-06-12 2007-12-27 Research Institute Of Innovative Technology For The Earth 微生物を用いた連続水素生成方法
JP2008199916A (ja) * 2007-02-16 2008-09-04 Research Institute Of Innovative Technology For The Earth 微生物を用いた水素生産方法
JP2009273372A (ja) * 2008-05-12 2009-11-26 Sharp Corp 水素生成方法および水素生成装置
WO2010027233A3 (ko) * 2008-09-05 2010-08-19 한국해양연구원 Thermococcus supp.로부터 분리된 신규한 수소화효소, 이를 암호화하는 유전자 및 그 유전자를 갖는 미생물을 이용하여 수소를 생산하는 방법
KR101833975B1 (ko) 2008-09-05 2018-03-06 한국해양과학기술원 Thermoccus spp.을 이용하여 수소를 생산하는 방법

Also Published As

Publication number Publication date
US7432091B2 (en) 2008-10-07
JP4275666B2 (ja) 2009-06-10
JPWO2004074495A1 (ja) 2006-06-01
US20060128001A1 (en) 2006-06-15

Similar Documents

Publication Publication Date Title
WO2004074495A1 (ja) 微生物による高効率水素製造方法
Kanai et al. Continuous hydrogen production by the hyperthermophilic archaeon, Thermococcus kodakaraensis KOD1
Yokoi et al. H2 production from starch by a mixed culture of Clostridium butyricum and Enterobacter aerogenes
KR102015829B1 (ko) 온라인 산소 소비율과 전도율의 통합 제어를 기반으로 한 코엔자임 q10 발효 생산 공정
TWI835833B (zh) 二氧化碳之生物轉換方法
Nanninga et al. Amino acid fermentation and hydrogen transfer in mixed cultures
El-Rab et al. Costless and huge hydrogen yield by manipulation of iron concentrations in the new bacterial strain Brevibacillus invocatus SAR grown on algal biomass
JP3777534B2 (ja) 嫌気的環境における細菌の電気培養方法
JP4574375B2 (ja) 微生物を用いる水素生産装置、およびそれを用いる燃料電池システム
Kovacs et al. Improvement of biohydrogen production and intensification of biogas formation
JP4476285B2 (ja) 微生物の培養装置、それを用いる水素生産装置および燃料電池システム
JP4773045B2 (ja) エネルギー回収システム
CN105264081A (zh) 通过生产蚁酸(甲酸)储存气态氢的方法
JP4647391B2 (ja) コリネ型細菌による高効率なジカルボン酸の製造方法
JP4409893B2 (ja) 微生物を用いた水素製造方法
JP2005211041A (ja) コハク酸の製造方法
JP4860659B2 (ja) 水素生成方法および水素生成装置
JP4440732B2 (ja) 水素生産能を有する微生物の培養装置および生物的水素製造方法
JPS5860992A (ja) 緑藻による明暗サイクル利用水素生産方法
JP5159710B2 (ja) 微生物の培養方法ならびに培養装置、生物的水素製造方法および燃料電池システム
EP0101721A1 (en) Stimulation of bacterial growth by inorganic pyrophosphate
US20130052689A1 (en) Methods and Systems for Producing Products Using Engineered Ammonia Oxidizing Bacteria
JP2006055127A (ja) 微生物の培養方法ならびに培養装置、生物的水素製造方法および燃料電池システム
Lobo et al. A bubble column continuous fermentation system for trimethylamine conversion by Aminobacter aminovorans
JP2005211042A (ja) フマル酸の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005502806

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2006128001

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10546210

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10546210

Country of ref document: US

122 Ep: pct application non-entry in european phase