WO2004057621A1 - Cmis型半導体不揮発記憶回路 - Google Patents

Cmis型半導体不揮発記憶回路 Download PDF

Info

Publication number
WO2004057621A1
WO2004057621A1 PCT/JP2003/016143 JP0316143W WO2004057621A1 WO 2004057621 A1 WO2004057621 A1 WO 2004057621A1 JP 0316143 W JP0316143 W JP 0316143W WO 2004057621 A1 WO2004057621 A1 WO 2004057621A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
transistors
memory circuit
information
semiconductor
Prior art date
Application number
PCT/JP2003/016143
Other languages
English (en)
French (fr)
Inventor
Kazuyuki Nakamura
Original Assignee
Nscore Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nscore Inc. filed Critical Nscore Inc.
Priority to AU2003292559A priority Critical patent/AU2003292559A1/en
Priority to DE60331244T priority patent/DE60331244D1/de
Priority to EP03782793A priority patent/EP1575055B1/en
Priority to CN2003801065484A priority patent/CN1726562B/zh
Priority to AT03782793T priority patent/ATE457517T1/de
Publication of WO2004057621A1 publication Critical patent/WO2004057621A1/ja
Priority to US11/153,113 priority patent/US7151706B2/en
Priority to US11/637,481 priority patent/US7248507B2/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C14/00Digital stores characterised by arrangements of cells having volatile and non-volatile storage properties for back-up when the power is down
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0466Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells with charge storage in an insulating layer, e.g. metal-nitride-oxide-silicon [MNOS], silicon-oxide-nitride-oxide-silicon [SONOS]

Definitions

  • the present invention relates to a configuration of a semiconductor nonvolatile memory capable of retaining stored data without applying a power supply voltage.
  • Non-volatile memories currently in practical use or under development include flash EEPR0M using a floating gate structure, FeRAM using a ferroelectric film, and MRAM using a ferromagnetic film.
  • FIG. 14 shows a circuit diagram of a storage unit (memory cell) of a conventional memory.
  • (1) in Fig. 14 is called a mask ROM, and the storage information of "0" or "1" of each memory cell is determined at the time of manufacture depending on the presence or absence of wiring, etc. Basically, this information cannot be rewritten. It cannot be done.
  • the present invention relates to an information rewritable nonvolatile memory, and this mask ROM does not fall into this category.
  • FIG. 14 (2) shows a memory cell of a dynamic RAM (DRAM)
  • FIG. 14 (3) shows a memory cell of a static RAM (SRAM).
  • DRAM dynamic RAM
  • SRAM static RAM
  • Fig. 14 shows a ROM in which information can be electrically rewritten, which is a memory cell conventionally called EEPROM.
  • Figure 15 shows the basic structure of the special transistor that forms it. A feature is that an electrode, called a floating gate (FG), which is not electrically connected to any one, exists between the gate of the original MOS transistor and the substrate. Structure.
  • FG floating gate
  • the difference between the shifted threshold voltages is read in the form of a current.
  • a current For example, if 5V is applied to the word line, IV is applied to the bit line (BL), and (0V) is applied to the plate line, the read current (cell current) of the transistor with a floating gate connected to each word line can be increased. It flows, but the cell current increases or decreases according to the level of the threshold voltage. Information can be read out by amplifying the cell current.
  • Figure 18 shows the principle of erasing information in a cell, that is, extracting electrons from the floating gate.
  • the word line is fixed at 0V and 12V is applied to the plate line, a large potential difference occurs between the plate and the floating gate, and the electric field causes electrons to be extracted from the floating gate. This operation is performed simultaneously for all the memory cells sharing the plate line.
  • references eg, Tadashi Kanmoto, "CM0S Integrated Circuits-From Introduction to Practical Use", Baifukan, 1996 Year, etc.).
  • EEPROM electrically erasable read-only memory
  • a transistor having a special structure such as a transistor having a floating gate.
  • a nonvolatile memory using a ferroelectric or ferromagnetic material is used.
  • eRAM and MRAM also require film formation and processing of each material, which is a major issue for practical use, and at the same time, increases the manufacturing cost.
  • SRAM and DRAM as memories that store data in a circuit without requiring a special process.
  • SMM does not require a special process at all for a CMOS type process.
  • the problem to be solved is to realize a circuit that is compatible with the CMOS process and has a nonvolatile memory function. Disclosure of the invention
  • the first invention of the present invention has two MISFET transistors having similar characteristics, and sets the voltage of the gate electrode of the first transistor to a voltage value other than the power supply potential or the ground potential for a specific period.
  • the conduction resistance value of the first transistor is degraded with time, and the difference in performance between the first and second transistors caused by the control is controlled by the two transistors.
  • the storage of “0” and its reading out, and conversely, the performance of the second transistor side is deteriorated more than that of the first transistor.
  • "1" This is a semiconductor nonvolatile memory circuit that performs storage.
  • the semiconductor nonvolatile memory circuit according to the first aspect, wherein the second transistor is shared between a plurality of storage units.
  • the third invention of the present invention is the semiconductor nonvolatile memory circuit for storing 1-bit information according to the first invention, wherein the nonvolatile memory circuit for storing 1-bit information is combined with a volatile memory circuit for storing 1-bit information to provide 1-bit information.
  • the semiconductor nonvolatile memory circuit is characterized in that information of the nonvolatile memory circuit is read and written as a storage unit via the volatile memory unit.
  • the currents of the two transistors of the semiconductor non-volatile memory circuit of the first aspect of the present invention are respectively stored in two storage nodes of a static semiconductor memory cell composed of six MIS transistors. An output terminal is connected, and a third transistor connected between a power supply terminal of the static semiconductor memory cell and an actual power supply line is provided.
  • the semiconductor non-volatile memory circuit according to the first aspect of the present invention which controls the activation of the operation of the static type semiconductor memory cell and controls the inactivation of the semiconductor memory cell, and transfers information of the semiconductor non-volatile memory circuit portion of the first invention to the static type memory cell. is there.
  • non-volatile storage can be realized without adding a new material to a CMOS type process, and cost can be reduced and development time can be shortened.
  • FIG. 1 is an explanatory diagram showing a basic circuit of the present invention and its device-like operation principle.
  • FIG. 2 is an explanatory diagram showing a write operation and a device-like operation principle in the basic circuit of the present invention.
  • FIG. 3 is an explanatory diagram showing a read operation and a device-like operation principle in the basic circuit of the present invention.
  • FIG. 4 is an explanatory diagram showing the operation principle of the overwriting operation in the differential basic circuit of the present invention. (Example 1)
  • FIG. 5 is an explanatory diagram showing the operation principle of the write operation in the differential basic circuit of the present invention.
  • FIG. 6 is an explanatory diagram showing the operation principle of the read operation in the differential basic circuit of the present invention. (Example 1)
  • FIG. 7 is an explanatory diagram showing the arrangement of storage circuits in the differential basic circuit of the present invention. (Example 1)
  • FIG. 8 is an explanatory diagram showing the arrangement of the storage circuit elements according to the second invention of the present invention.
  • FIG. 9 is an explanatory diagram showing the basic configuration of the SRAM integrated basic circuit of the present invention.
  • FIG. 10 is an explanatory diagram showing the data read operation of the SRAM section in the SRAM integrated basic circuit of the present invention. (Example 4)
  • FIG. 11 is an explanatory diagram showing the SRAM section data write operation in the SRAM integrated basic circuit of the present invention. (Example 4)
  • FIG. 12 is an explanatory diagram showing a nonvolatile data storage operation in the SRAM integrated basic circuit of the present invention. (Example 4)
  • FIG. 13 is an explanatory diagram showing a nonvolatile data recovery operation in the SRAM integrated basic circuit of the present invention. (Example 4)
  • FIG. 14 is an explanatory diagram showing an example of a conventional semiconductor memory circuit.
  • FIG. 15 is an explanatory diagram showing the structure of a conventional flash EE PROM.
  • FIG. 16 is an explanatory diagram showing the operation principle of a write operation of a conventional flash EEPROM.
  • FIG. 17 is an explanatory diagram showing the operation principle of a read operation of a conventional flash EEPROM.
  • FIG. 18 is an explanatory diagram showing the operating principle of a conventional flash EEPROM erasing operation.
  • reference numerals will be described.
  • WL, WL1, WL2 are word select lines, WLW is a non-volatile word select signal,
  • R E S T O R E is a nonvolatile data recovery signal
  • C, C— are the differential node signals in the memory cell
  • MNT1, MNT2, MN1, NN2, MNRS are n-type MIS transistors
  • MP1, MP2 and MPE0 are p-type MIS transistors
  • t0, tl, t2, t3, t4, 5 are 8 temple times
  • BL, BL—, BL1, BL1_, BL2, BL2—, BL3, BL3— are bit lines, but those ending with — are signals that form a differential pair. Show.
  • BL— is a signal that is a differential pair of BL.
  • WL__REF is a reference transistor selection word line
  • COMM—REF is the common line for the reference transistor
  • n + is an n-type impurity diffusion layer
  • p—s ub is a p-type plate
  • PG is a gate electrode
  • FG is a floating gate electrode
  • PL is a plate electrode terminal
  • OX is an insulating film
  • MN 00, MN 01, M 02, MN 03, MN 10, MN 11, MN 12, MN 13, MN 20, MN 21, MN 22, MN 23, MN 001, MN 002, MN 011, MN 012, MN 101 , MN102, MN111, MN112, MNM1, MNM2 are n-type MIS transistors for nonvolatile data storage,
  • VDD is the power supply pin
  • GND is the ground terminal
  • V p 1 is the plate electrode terminal
  • V t (MNM1) and V t (MNM2) are the threshold voltages of the MIS transistors MNM1 and MNM2, respectively.
  • Vt0, .Vt1, Vt2, Vt3, Vt4, Vt5 are the threshold voltages of the nM I S transistors that perform nonvolatile storage
  • FIG. 1 is an explanatory diagram showing a basic circuit and an operation principle of a device according to the present invention.
  • FIG. 1 shows an example in which a typical n-channel silicon M0S transistor is used as an MIS (metal-insulator-semiconductor) transistor.
  • WL is a word select line
  • BL is a bit line
  • COMM is a common line
  • PG is a gate electrode
  • OX is a silicon oxide film
  • n + is an n-type impurity diffusion layer
  • P-sub is a p-type silicon substrate.
  • the word line voltage forms a channel on the substrate (P-sub) surface through which electrons pass, but the transistor operates in a saturation region, and the channel is pinched off near the drain and close to the drain. There is a strong electric field part, and some of the electrons accelerated by this electric field jump into the oxide film. This phenomenon is known as a change over time in transistor performance due to hot carriers in M0S transistors, and it is inherently undesirable to maintain the performance of semiconductor circuits for a long period of time. For example, measures such as controlling the concentration distribution of the drain diffusion layer to prevent the electric field from concentrating near the drain end Has been.
  • the shift of the threshold voltage of the transistor to a higher voltage by the gate terminal (word line) due to the electrons trapped in the oxide film is considered as information. It is used as writing. Information is written by selectively injecting electrons into the oxide film for each cell. Since the local electric field strength inside the device tends to increase as the depice becomes finer, the phenomenon of electron injection into the oxide film becomes more and more nuanced. It can be said that it will tend to become easier with the progress of development.
  • the shifted threshold voltage difference is read in the form of a current.
  • a current For example, if 5 V is applied to the word line, IV is applied to the bit line (BL), and (0 V) is applied to the common line, the read current (cell current) flows through the transistor connected to the word line, The cell current increases or decreases according to the voltage level.
  • Information can be read out by amplifying the cell current.
  • the fundamental difference is that the electrons injected into the oxide film are extracted again to erase the information.
  • FIG. 4 shows an embodiment corresponding to the first invention of the present invention for avoiding this problem.
  • the two transistors in FIG. 1 are operated in pairs, and for example, the threshold voltage of the first transistor (MNM1): Vt (NMl) is equal to that of the second transistor (MNM2).
  • Threshold voltage A state higher than Vt (M2) is defined as a "0" storage state of information, and the opposite state is defined as a "1" storage state. That is, if the threshold voltage of both NM1 and MM2 is VtO in the initial state immediately after manufacturing, and if “0” is written first, as shown by 1 in Figure 4, The threshold voltage is shifted slightly higher.
  • the word selection signal WL is set to 2.5 V which is about half of the power supply voltage (VDD)
  • the voltage of the bit line (BL) is set to 5 V (VDD), which is the same as the power supply voltage
  • the differential pair of bit lines is used.
  • OV OV
  • MNM1 operates in the saturation region and hot carrier is generated, thereby shifting the threshold voltage of MNM1 to the higher side (Vtl) .
  • the amount of the threshold voltage to be shifted may be higher than a level that can be determined by the capability of the readout circuit.
  • FIG. 6 is an explanatory diagram of the read operation in the circuit of FIG.
  • BL and BL— are precharged (charged) to the power supply potential, then placed in a high-impedance state and connected to MM1 and MNM2, so that the current difference between BL and BL— An example in which the data is converted into a potential difference and read out is shown.
  • FIG. 7 shows a configuration diagram when the circuits in FIG. 4 are arranged in an array and are actually used as a memory.
  • four bits of information can be stored.
  • Word select lines (WLO, WL1) and bit line pairs (BL0, BL0_, BL1, BLl—) are shared with horizontal and vertical memory cells, respectively.
  • the common line (C0MM0, C0MM1) can also be shared between all two-dimensionally arranged cells.
  • FIG. 8 shows an embodiment corresponding to the second invention of the present invention.
  • the second transistor side is shared in a storage unit of a memory composed of a pair of transistors.
  • Fig. 8 shows a memory cell array that can store 12 bits of information. Basically, one transistor can store 1 bit of information. Transistors that should form a differential pair are shared by only one bit line.For example, in Fig. 8, four transistors MN00, N01, N02, and MN03 are compared with MN0R. .
  • a transistor whose threshold voltage is higher than the threshold voltage of M0R stores "0"
  • a transistor whose threshold voltage is lower than that of MN0R a value voltage which is lower
  • the threshold voltage of M0R In particular, there is no need to fluctuate.
  • the transistor is shared for each bit line, but it may be shared for a certain storage capacity unit.
  • FIG. 9 shows an embodiment corresponding to the third invention of the present invention.
  • lines 1 and MNM2 are similar to the circuit of FIG. 4, and write information by shifting the threshold voltage in one direction.
  • the information storage unit includes a volatile memory unit such as a SRAM memory cell and a book memory as shown in FIG.
  • the circuit according to the third aspect of the present invention is provided at the same time, and furthermore, the circuit is configured to read and write information from / to the non-volatile memory unit via the volatile memory unit as needed.
  • FIG. 10 shows an embodiment corresponding to the fourth invention of the present invention.
  • the circuit of FIG. 10 is an example in which an SRAM memory cell is applied as the volatile memory unit of the third invention.
  • three n-channel MISFETs MNRS, MNM1, and MNM2
  • MNM1 and MNM2 become two transistors that store information in a nonvolatile manner, depending on the threshold fluctuation of each MISFET.
  • the RESTORE signal is set to high level (power supply potential)
  • the WLW signal is set to low level (ground potential)
  • the EQ_ signal is set to high level
  • MNM1, MNM2, and MPEQ are turned off, and MNRS is turned on. 4
  • the circuit configuration is the same as that of the conventional SRAM of (3). In this state, by operating the word line (WL) and bit line pair (BL, BL_), as shown in Figs. Information can be written and read.
  • a non-volatile write word line (WLW) is set at a potential between a power supply potential and a ground potential for a certain period as shown in FIG.
  • one of the node potentials C and C— becomes the power supply potential, and the other is the ground potential.
  • the drain voltage of Satsuma 1 is in a high state, and a drain current flows through MNM1.
  • the gate voltage of the MNM1 is a potential between the power supply potential and the ground potential, hot carriers are induced in the channel due to the drain current, and part of the hot carriers is generated in the insulator film of the MIS structure. Trapped in As a result, a change in transistor performance, that is, a slight shift in threshold voltage occurs.
  • the threshold voltage of NM1 can be changed to some extent (several mV to several tens mV). In this way, the threshold voltage difference is intentionally set between NM1 and MNM2. _.
  • the word line (WL) level is set to low level, and the RESTORE signal is lowered to low level.
  • the level of the EQ- signal is kept low for a certain period of time to set the same potential between the nodes C and C-.
  • a latch circuit consisting of four transistors, Maraud 1, Picture 2, MP1, and MP2 is formed.
  • the drain voltage of MNM1 and MNM2 is initially at high level, but NM1 and MNM2 have a threshold voltage of Because the difference is set, the current flowing also differs.
  • the threshold voltage In the case of a threshold voltage shift due to hot carriers, the threshold voltage generally rises, so in the above example, the threshold voltage of MNM1 is higher than that of MNM2. Therefore, more current flows through MNM2. Therefore, the operation of the latch circuit causes the drain terminal of MNM2 to
  • MNM1's gate terminal has a higher force S, and the level is slightly higher than that of Band 1's drain terminal (MNM2's gate terminal).
  • RESTORE signal setting the RESTORE signal to high level, information is transferred and held in the latch circuit of the conventional SRAM cell consisting of four transistors MP1, MP2, M1, and M2.
  • the stored information can be read out of the cell via the normal SRAM read operation.
  • the non-volatile information was transferred using the current difference caused by the threshold voltage difference between MNM2 and MNM1, but a transistor with a low threshold voltage was used by using the threshold voltage difference.
  • a similar readout circuit can be designed even if the principle of turning ON first is used.
  • the fluctuation of the device characteristics has been described by taking the threshold fluctuation due to hot carriers as an example, but this is caused by the aging of the characteristics due to the transistor continuing to flow the drain current. Any phenomena may be used as long as such factors are present.
  • the transistors (MNT 1 and MNT 2 in FIG. 10) that connect the memory cells to the bit lines are used for both normal SRAM operation and information writing for nonvolatile storage.
  • a separate transistor may be provided in order to optimize the production performance of the HI path.
  • the state where the threshold voltage of the first transistor is high is stored as “0”, and the state where the threshold voltage of the second transistor is high is stored as “1”. Conversely It doesn't matter. Industrial applicability
  • An advantage of the present invention is that the configuration described in the claims realizes non-volatile memory without adding a step to a CMOS type process or introducing a new material, thereby reducing costs and shortening a development period. Is achieved.

Abstract

 本発明は、同様な特性をもつ2つのMISFET型トランジスタを有し、ある特定の期間、第1のトランジスタのゲート電極の電圧を、電源電位あるいは接地電位以外の電圧値に制御することにより、第1のトランジスタのみの導通状態を制御して、その導通抵抗値の劣化を誘起し、これにより、生じた、第1と第2のトランジスタの性能差を、2つのトランジスタを同時に導通させて、その電流差で読み出すことにより、「0」の記憶と読み出しを、それとは逆に、第2のトランジスタ側の性能を劣化させ、第1のトランジスタについては、劣化をおこさせないことにより「1」記憶を行うことを特徴とした半導体不揮発記憶回路である。

Description

明 細 書
CMI S型半導体不揮発記憶回路 技術分野
本発明は、 電源電圧を印可しなくても記憶データを保持することが可能な半導体不揮発 メモリの構成に関するものである。 背景技術
現在実用化あるいは開発中の不揮発メモリとしては、 フローティングゲ一ト構造を用い たフラッシュ EEPR0Mや、 強誘電体膜を用いる FeRAM、 強磁性体膜を用いる MRAM等がある。 図 14に、 従来のメモリの記憶単位 (メモリセル) の回路図を示す。 図 14の (1) は、 マスク ROMと呼ばれるもので、 配線の有無等により、 製造時に各メモリセルの 「0」 または 「1」 の記憶情報が決まり、 基本的に、 この情報を書き換えることはできないものである。 本発明は、 情報の再書き換え可能な不揮発メモリに関するものであり、 このマスク ROM は、 この分類には該当しないものである。
図 14 (2) は、 ダイナミック RAM (DRAM) のメモリセルであり、 図 14 (3) は、 スタティック RAM (SRAM) のメモリセルである。 これらは、 電源電圧を印可さ れた状態でしか、 記憶情報を保持できず、 電源を切断すると、 記憶内容は失われてしまう。 特に SRAMは、 MOSトランジスタのみの回路構成であり、 ロジック LS I用の標準 C MOSプロセスで実現でき、 特殊なプロセスは必要としない。
図 14 (4) は、 電気的に情報が書き換え可能な ROMであり、 従来より、 EE PRO Mと呼ばれるメモリセルである。 それを構成する特殊なトランジスタの基本的な構造を図 1 5に示す。 特徴として、 フローティングゲート (FG) と呼ばれる、 電気的にいずれに も接続されていない電極が、 本来の MOSトランジスタのゲートと基板の間に存在してい る構造となっている。
図 16、 図 17、 図 18を例として引用し、 この EE PROMの回路動作の原理を説明 する。 まず、 情報の書き込み動作であるが、 図 1 6のように、 たとえば、 ビット線 (B L) に 6V、 ワード線に 1 2V、 プレート線 (PL) に 0Vを印可する。 ワード線電圧に より、 ゲートには 12 Vの電圧がかかるが、 このとき、 フローティングゲート (FG) 部分 には、 IVないし 3 V程度の電圧がかかっており、 基板 (P- sub) 表面に電子の通り道とな るチャネルが形成されるが、 トランジスタは飽和領域動作になり、 そのチャネルは、 ドレ イン近くでピンチオフしており、 ドレイン近傍に強電界部分が存在し、 この電界により加 速された電子の一部は、 フローティングゲート内に飛び込む。 これにより、 フローテイン グゲート内に電子が保持されることになり、 結果的に、 ゲート端子 (ワード線) からみた トランジスタのしきい値電圧を高いほうへシフトさせることになる。 このフローティング ゲートへの電子の注入をセル毎に選キ尺的に行うことで、 情報の書き込みを行う。
一方、 図 1 7に示される読み出し動作においては、 このシフトさせたしきい値電圧の差 を電流の形にして読み出す。 たとえば、 ワード線に 5V、 ビット線 (B L) に IV、 プ レート線に (0V) を印可すれば、 各ワード線に接続されたフローティングゲートを有す るトランジスタで、 読み出し電流 (セル電流) が流れるが、 しきい値電圧の高低に応じて、 セル電流は増減する。 このセル電流を増幅することで、 情報の読み出しを行うことができ る。
さらに、 図 1 8に、 セル内の情報の消去、 すなわち、 フローティングゲートからの電子 の抜き取りの原理を示す。 ワード線を 0Vに固定して、 プレート線に 1 2 Vを印可すると、 プレートとフローティングゲート間に大きな電位差が生じ、 これによる電界で、 フロー ティングゲートから電子が引き抜かれる。 この動作は、 プレート線を共有するメモリセル のすべてで同時に行われることになる。 以上の従来のメモリの動作の詳細に関しては、 多 くの参考文献 (たとえば、 桓本忠儀 「CM0S集積回路 -入門から実用まで-」 、 倍風館、 1996 年、 他) に記載のとおりである。
しかるに、 この従来の不揮発メモリである E E P R OMでは、 フローティングゲートを 有するトランジスタという特殊な構造のトランジスタを製造する必要があり、 さらに、 強 誘電体や強磁性体を使用して不揮発記憶を行わせる F e R AMや MR AMにおいても、 そ れぞれ材料の製膜と加工が必要となり、 実用化の大きな課題となっており、 また同時に製 造コストの増大を招くことになる。 一方、 特殊なプロセスを必要とせず回路的にデータを 記憶するメモリとしては、 SRAMや DRAMがあり、 特に SMMは、 CMOS型プロセスに対して全く 特殊なプロセスを必要としないが、 電源を切断すると、 記憶内容は失われてしまうという 問題点があった。
解決しょうとする課題は、 CMOS型プロセス互換で、 不揮発記憶機能を有する回路を実 現するという点である。 発明の開示
本発明における、 第 1の発明は、 同様な特性をもつ 2つの MISFET型トランジスタを有し、 ある特定の期間、 第 1のトランジスタのゲート電極の電圧を、 電源電位あるいは接地電位 以外の電圧値に制御することにより、 第 1のトランジスタの導通状態を制御して、 その導 通抵抗値の経時劣化を誘起し、 これにより生じた、 第 1と第 2のトランジスタの性能差を、 2つのトランジスタを同時に導通させて、 その電流差で読み出すことにより、 「0」 の記 憶とその読み出しを、 またそれとは逆に、 第 2のトランジスタ側の性能を、 第 1のトラン ジスタよりも劣化させることにより 「1」 記憶を行うことを特徴とする半導体不揮発記憶 回路である。
本発明における、 第 2の発明は、 第 1の発明の半導体不揮発記憶回路において、 第 2の トランジスタを、 複数の記憶単位の間で共用化したことを特徴とする半導体不揮発記憶回 路である。 本発明における、 第 3の発明は、 第 1の発明の 1ビットの情報を記憶する半導体不揮宪 記憶回路において、 1ビットの情報を記憶する揮発型記憶回路と組み合わせて、 1ビット 分の情報記憶単位とし、 不揮発記憶回路の情報は、 その揮発記憶部を介して、 読み出しと 書き込みが行われることを特徴とした半導体不揮発記憶回路である。
本発明における、 第 4の発明は、 6つの M I Sトランジスタから構成されるスタティッ ク型半導体メモリセルの 2つの記憶ノ一ドに、 それぞれ、 第 1の発明の半導体不揮発記憶 回路の 2つのトランジスタの電流出力端子を接続し、 そのスタティック型半導体メモリセ ^^の電源端子と、 実際の電源線の間に接続する第 3のトランジスタをもち、 その第 3のト ランジスタの導通状態を制御することで、 前記スタティック型半導体メモリセルの動作活 性化 Z非活性化の制御を行い、 第 1の発明の半導体不揮発記憶回路部分の情報をスタ テイツク型メモリセルへ転送することを特徴とした半導体不揮発記憶回路である。
本発明によれば、 CMOS型プロセスに追カ卩の工程や、 新材料の導入なしに、 不揮発記憶を 実現し、 低コスト化や、 開発期間の短縮が図ることが可能となる。 図面の簡単な説明
図 1は、 本発明の基本回路と、 そのデバイス的な動作原理を示す説明図である。
図 2は、 本発明の基本回路において、 書き込み動作と、 そのデバイス的な動作原理を示 す説明図である。
図 3は、 本発明の基本回路において、 読み出し動作と、 そのデバイス的な動作原理を示 す説明図である。
図 4は、 本発明の差動型基本回路において、 上書き動作の動作原理を示す説明図である。 (実施例 1 )
図 5は、 本発明の差動型基本回路において、 書き込み動作の動作原理を示す説明図であ る。 (実施例 1 ) 図 6は、 本発明の差動型基本回路において、 読み出し動作の動作原理を示す説明図であ る。 (実施例 1)
図 7は、 本発明の差動型基本回路において、 記憶回路の配置を示す説明図である。 (実 施例 1 )
図 8は、 本発明の第 2の発明の記憶回路素子の配置を示す説明図である。 (実施例 2 ) 図 9は、 本発明の SRAM融合型基本回路において、 その基本構成を示す説明図である。 (実施例 3)
図 10は、 本発明の SRAM融合型基本回路において、 その S RAM部^ ^'ータ読み出し 動作を示す説明図である。 (実施例 4)
図 1 1は、 本発明の SRAM融合型基本回路において、 その SRAM部データ書き込み 動作を示す説明図である。 (実施例 4)
図 12は、 本発明の SRAM融合型基本回路において、 その不揮発データ保存動作を示 す説明図である。 (実施例 4)
図 13は、 本発明の SRAM融合型基本回路に.おいて、 その不揮発データ復帰動作を示 す説明図である。 (実施例 4)
図 14は、 従来の半導体記憶回路の例を示す説明図である。
図 15は、 従来のフラッシュ EE PROMの構造を示す説明図である。
図 16は、 従来のフラッシュ EE PROMの書き込み動作の動作原理を示す説明図であ る。
図 17は、 従来のフラッシュ EE PROMの読み出し動作の動作原理を示す説明図であ る。
図 18は、 従来のフラッシュ EEPROMの消去動作の動作原理を示す説明図である。 以下、 符号の説明を行う。
WL、 WL 1, WL2は、 ワード選択線、 WLWは、 不揮発ワード選択信号、
R E S T O R Eは、 不揮発データ復帰信号、
EQ—は、 ィコライズ信号、
C、 C—は、 メモリセル内の差動ノード信号、
MNT 1、 MNT2、 MN1、 NN2、 MNRSは、 n型 MI Sトランジスタ、
MP 1、 MP 2、 MPE 0は、 p型 MI Sトランジスタ、
t 0、 t l、 t 2、 t 3、 t 4、 5は、 8寺刻、
BL、 BL―, BL 1、 B L 1_, BL 2、 B L 2—、 BL3、 BL3—は、 ビッ ト線、 ただし、 —が名前の末尾につくものは、 差動対をなす信号であることを示す。 たとえば、 BL—は、 BLの差動対をなす信号である。
さらに、 COMM、 COMMl、 COMM2は、 共通線、
WL__REFは、 基準トランジスタ選択用ワード線、
COMM— REFは、 基準トランジスタ用共通線、
n +は、 n型不純物拡散層、
p— s u bは、 p型 板、
PGは、 ゲート電極、
FGは、 フローティングゲート電極、
PLは、 プレート電極端子、 '
OXは、 絶縁膜、
MN 00、 MN 01、 M 02、 MN 03 , MN 10、 MN 11、 MN 12 , MN 13 , MN 20、 MN 21、 MN 22、 MN 23、 MN 001、 MN 002、 MN 011、 MN 012、 MN 101、 MN 102、 MN 111、 MN 112、 MNM 1、 MNM 2は、 不 揮発データ記憶用の n型 MI Sトランジスタ、
eは、 電子、 VDDは、 電源端子、
GNDは、 グランド端子、
V p 1は、 プレート電極端子、
V t (MNM1) 、 V t (MNM2) は、 それぞれ、 M I Sトランジスタ MNM 1、 M NM 2のしきい値電圧、
V t 0,. V t 1 , V t 2, V t 3, V t 4, Vt 5は、 不揮発記憶を行う nM I Sトラ ンジスタのしきい値電圧、
である。 発明を実施するための最良の形態
図 1は、 本発明の基本回路とデバイス的な動作原理を示す説明図である。 図 1において は、 例として、 MI S (金属一絶縁膜一半導体) トランジスタとして、 典型的な nチャン ネノレ型シリコン M0Sトランジスタを用いた場合を示している。 WLはワード選択線、 BLは ビット線、 COMMは共通線、 PGはゲート電極、 OXはシリコン酸化膜、 n+は、 n型不 純物拡散層、 P- subは p型のシリコン基板である。 図 2、 図 3を用いて、 図 1の回路の動作 原理を説明する。 まず、 情報の書き込み動作であるが、 図 2のように、 たとえば、 ビット 線 (BL) に 5V、 ワード線に 2. 5V、 共通線 (COMM) に 0Vを印可する。 ワード 線電圧により、 基板 (P- sub) 表面に電子の通り道となるチャネルが形成されるが、 トラン ジスタは飽和領域動作になり、 そのチャネルは、 ドレイン近くでピンチオフしており、 ド レイン近傍に強電界部分が存在し、 この電界により加速された電子の一部には、 酸化膜内 に飛ぴ込むものがある。 この現象は、 M0S型トランジスタにおいて、 ホットキャリア'による トランジスタ性能の経時変化として知られている現象であり、 半導体回路の性能を長期間 維持するためには、 本来好ましくない現象であり、 これを回避するために、 たとえば、 ド レイン拡散層の濃度分布を制御して、 ドレイン端付近に電界が集中しないような対策がと られている。 し力 し、 本発明では、 この現象を積極的に利用し、 酸化膜内に捕らえられた 電子による、 ゲート端子 (ワード線) 力^みたトランジスタのしきい値電圧の高い電圧へ のシフトを情報書き込みとして用いるものである。 この酸化膜への電子の注入をセル毎に 選択的に行うことで、 情報の書き込みを行う。 デパイスの微細化が進むほど、 デバイス内 の局所的な電界強度は増す傾向にあるため、 この酸化膜への電子の注入現象は、 より発生 しゃすくなるため、 本原理による情報の書き込みは、 微細化の進展とともに、 より容易に なる傾向にあるといえる。
一方、 図 3に示される読み出し動作においては、 このシフトさせたしいき値電圧の差 を電流の形にして読み出す。 たとえば、 ワード線に 5 V、 ビット線 (B L ) に I V、 共通 線に (0 V) を印可すれば、 ワード線に接続されたトランジスタで、 読み出し電流 (セル 電流) が流れるが、 しきい値電圧の高低に応じて、 セル電流は増減する。 このセル電流を 増幅することで、 情報の読み出しを行うことができる。 し力 し、 従来の技術の部分におい て説明した EEPROMのメモリ回路構造とよく似ているが、 根本的に異なるのは、 酸化膜に注 入された電子を、 再度引き抜いて情報を消去することが、 技術的に非常に困難であること である。 よって、 電子を酸化膜中に注入し、 トランジスタのしきい値電圧を高いほうへは シフトできても、 逆に低い方向へはシフトできないことになるため、 基本的には 1度しか 書き込みができないことになる。
図 4に、 この問題点を回避するための本発明の第 1の発明に対応する、 1実施例を示 す。 図 1のトランジスタを 2個づっ組にして動作させ、 2つのトランジスタのうち、 たと えば、 第 1のトランジスタ (MNM1 ) のしきい値電圧: Vt ( NMl)が第 2のトランジスタ (MNM2) のしきい値電圧: Vt ( M2)よりも高い状態を、 情報の 「0」 記憶状態、 その逆の 状態を 「1」 記憶状態とする,ものである。 すなわち、 製造直後の初期状態で、 NM1,M M2い づれのしきい値電圧も VtOであった場合、 最初に 「0」 を書き込む場合は、 図 4中の①で示 したように、 画 1のしきい値電圧を若干高い方へシフトさせる。 これは、 図 5に示すよう に、 まず、 ワード選択信号 WLを電源電圧 (V D D ) の半分程度の 2 . 5 Vとし、 ビット線 (BL) の電圧を電源電圧と同じ 5 V (VD D) 、 ビット線の差動ペアである BLJ則を O V (G N D ) とした状態を一定期間保つことで、 MNM1のみを飽和領域で動作させ、 ホットキヤリ ァを発生させることで、 MNM1のしきい値電圧を高い方 (Vtl)へシフトさせる。 シフトさせる しきい値電圧の電圧量は、 読み出し回路の能力によつて判別可能なレベル以上とすればよ い。 次に、 このメモリセルに 「1」 を書き込みたい場合は、 図 4の②に示すように、 今度 は、 MNM2のしきい値電圧を MNM1のそれよりも上昇させ、 Vt2とすることにより行う。 情報の 反転が起こる毎に、 MNM1もしくは、 MNM2のいずれかのしきい値電圧が上昇することになり、 その情報書き換えの限界は、 たとえば、 MNM 1あるいは、 MNM 2のしきい値電圧が電 源電圧程度まで上昇するまでとなる。 しかし、 電源電圧以上の電圧を発生することが可能 な電圧昇圧回路を内蔵することで、 この回数制限を改善することは可能である。 このよう な構造にすることで、 E E P R OMのような情報の消去はできなくても、 情報の 「0」 と 「1」 を、 限られた回数ではあるが、 書き換えることが可能となる。 図 6に、 図 4の回路 における読み出し動作の説明図を示す。 読み出しは、 ワード選択線の電圧を電源電圧程度 にし、 B Lと BL_の電圧を同じにしておいて、 MNM1と匪 2のしきい値電圧の差による、 2つ のトランジスタの電流能力差を電流差にして読み出す。 図 6の回路においては、 BLと BL—を 電源電位程度にプリチャージ (充電) した後、 高インピーダンス状態にして、 M M1,MNM2に 接続することで、 電流差を再度、 BLと BL—の電位差に変換して、 読み出す例を示している。
図 7に、 図 4の回路を配列状に並べて、 実際にメモリとして使用する場合の構成図を 示す。 図 7では、 4ビット分の情報を格納できる。 ワード選択線 (WLO, WL1) と、 ビット線 対 (BL0、 BL0_、 BL1、 BLl—) は、 それぞれ、 横方向、 縦方向のメモリセルと共用化されて いる。 共通線 (C0MM0, C0MM1) については、 2次元配列されたすベてのセル間で共用するこ とも可能である。
図 8に、 本発明の第 2の発明に相当する実施例を示す。 第 1の発明において、 2つのト ランジスタの対で構成されるメモリの記憶単位において、 その第 2のトランジスタ側を共 用化した例である。 図 8は 1 2ビット分の情報を格納できるメモリセルアレイになってい るが、 基本的には、 トランジスタ 1個で、 1ビットの情報を記憶することができる。 差動 対をなすべきトランジスタは、 ビット線で 1つだけに共用化されており、 たとえば図 8に おいて、 MN00、 N01、 N02、 MN03の 4つのトランジスタは、 MN0Rと比較されることになる。 すなわち、 ビット^ BL0に接続されるトランジスタのうち、 M 0Rのしきい値電圧よりも高レヽ トランジスタは 「 0」 を記憶、 MN0Rよりもしきレ、値電圧が低レ、トランジスタは 「 1」 記憶 となる。 情報を書き換える場合は、 まず、 M 0Rのしきい値を、 BL0に接続されるトランジス タのうち、 「0」 から 「1」 に書き換わるべきトランジスタよりも、 高く設定する。 この 場合、 たとえば、 BL0に接続されるトランジスタの情報がすべて 「 1」 記憶であつた場合や、 「1」 から 「0」 に変わるトランジスタがあるのみの場合には、 M 0Rのしきい値電圧を特 に、 変動させる必要はないことになる。 また、 図 8では、 ビット線毎に、 トランジスタを 共用化しているが、 ある記憶容量単位で共用化してもよレ、。
図 9に、 本発明の第 3の発明に相当する実施例を示す。 図 9において、 画 1,MNM2は、 図 4の回路と同様なもので、 しきい値電圧の一方向へのシフトによって、 情報の書き込み を行うものである。 しかし、 図 4の回路では、 書き込み回数に制限があるために、 図 9の 回路では、 情報の記憶単位に、 たとえば S R AMメモリセルのような、 揮発メモリ部と、 図 4のような本第 3の発明の回路を同時に設け、 さらに、 揮発メモリ部を介して、 必要に 応じて、 不揮発メモリ部への情報の読み書きを行うように構成した回路になっている。 こ のような構造にすることで、 通常の読み書き動作は、 揮発メモリ部において行い、 たとえ ば電源遮断前等のタイミングで、 不揮発部でデータを書き込むことで、 限られた不揮発メ モリ部の書き込み回数の制限の影響を低減することが可能となる。 また、 電源印可時にお いては、 揮発メモリ回路部が、 読み書き要求に応答することになるために、 読み出しや書 き込み速度に優れる揮発メモリと組み合わせることで、 通常動作時の性能を高く見せるこ とができる。
図 1 0に、 本発明の第 4の発明に相当する実施例を示す。 図 1 0の回路は、 第 3の発明 の揮発メモリ部として SRAMのメモリセルを適用した例になる。 図 1 0の回路では、 従来の SRAMセルに対して、 さらに、 3つの nチャンネル型 MISFET (MNRS, MNM1、 MNM2) と、 1つの Pチャンネル型 MISFET (MPEQ) が追加されている。 これらのうち、 MNM1、 MNM2が、 それぞ れの MISFETのしきい値変動状況により、 情報を不揮発記憶する 2つのトランジスタになる。 RESTORE信号をハイレベル (電源電位) 、 WLW信号をローレベル (グランド電位) 、 EQ_信号 をハイレベルに設定すれば、 それぞれ MNM1、 MNM2、 MPEQは非導通状態、 MNRSは導通状態で、 図 1 4 ( 3 ) の従来の SRAMと同様な回路構成になる。 この状態では、 ワード線 (WL)とビッ ト線対 (BL,BL_) の操作により、 それぞれ図 1 0、 図 1 1に示すように、 従来の S R AM と同様な方法で、 メモリセル内に情報を書き込みノ読み出しできる。 情報の不揮発記憶を 行わせるためには、 図 1 2に示すように、 不揮発書き込み用ワード線 (WLW) を、 一定期間、 電源電位とグランド電位の間の電位とする。 この時、 S R AMメモリセル内に格納された 情報に応じて、 C , C—のノード電位のいずれかは、 電源電位となり、 他方はグランド電 位となっている。 これにより、 たとえば、 Cのノード電位が高い場合は、 薩 1の、 ドレイ ン電圧は高い状態となり、 MNM1にはドレイン電流が流れる。 このとき、 MNM1のゲート電圧 は、 電源電位とグランド電位の間の電位であることから、 ドレイン電流に伴って、 チヤネ ル内にホットキャリアが誘起され、 その一部は MIS構造の絶縁体膜中へトラップされる。 結 果として、 トランジスタの性能の変動、 すなわち、 微少なしきい値電圧のシフトがおこる。 この状態をある一定期間維持することにより、 NM1のしきい値電圧をある程度 (数 mVから 数十 mV) 、 変動させることができる。 このような方法で、 NM1と MNM2にしきい値電圧差を 意図的に設定する。_ .
次に、 このしきい値電圧変動を情報として読み出すために、 図 1 3のように、 まず、 ワード線 (WL) レベルをローレベルとしておいて、 RESTORE信号をローレベルに下げる。 こ のとき E Q—信号も一定期間低レベルとすることで、 Cと C—のノード間を同電位に設定 する。 このような信号線電位を設定することで、 匪 1,画 2、 MP1, MP2の 4つのトランジス タからなるラッチ回路を形成する。 次に、 WLWを、 ローレベルから徐々にハイレベルへあげ ていくことで、 MNM1と MNM2のドレイン電圧は、 当初、 ハイレベルになっているが、 NM1と MNM2には、 'しきい値電圧に差が設定されているために、 流れる電流にも差があることにな る。 ホットキャリアによるしきい値電圧シフトの場合 は、 一般にしきい値電圧が上昇す るために、 上述の例では、 MNM1のほうが MNM2よりもしきい値電圧が高い。 よって、 MNM2の ほうが電流が多く流れる。 そのために、 ラッチ回路の動作により、 MNM2のドレイン端子
(MNM1のゲート端子) のほう力 S、 匪 1のドレイン端子 (MNM2のゲート端子) よりも若干高 レヽレベルとなる。 最後に、 RESTORE信号をハイレベルにすることで、 MP1, MP2, M 1, M 2の 4 つのトランジスタからなる従来の SRAMセルのラッチ回路部分に情報が転送保持され、 これ により、 MNM1と MNM2に記憶されていた情報は、 通常の SRAMの読み出し動作を経由すること で、 セル外へ読み出し可能となる。 この場合は、 MNM 2と MNM 1のしきい値電圧差に 起因する電流差を用いて、 不揮発情報の転送を行ったが、 しきい値電圧差を利用して、 し きい値電圧の低いトランジスタのほうが先に O Nするという原理を用いても、 同様な読み 出し回路が設計できる。
また、 本発明の本実施例では、 素子特性の変動をホットキャリアによるしきい値変動を 例にして説明したが、 これは、 トランジスタがドレイン電流を流しつづけることによって、 その特性の経年変化を起こすような要因であれば、 いずれの現象でもよい。 また、 図 1 0 では、 メモリセルとビット線を接続するトランジスタ (図 1 0における MN T 1 , MN T 2 ) を、 通常の S R AM動作と、 不揮発記憶用の情報書き込みの両方に兼用しているが、 HI路としての†生能を最適化する等のために、 別個にトランジスタを設けてもよい。 また、 本発明の説明では、 第 1のトランジスタのしきい値電圧が高い状態を 「0」 記憶、 第 2の トランジスタのしきい値電圧が高い状態を 「1」 記憶、 としていたが、 これを逆に定義し てもかまわない。 産業上の利用可能性
本発明の効果は、 請求の範囲に記載した構成によって、 CMOS型プロセスに追加の工程や、 新材料の導入なしに、 不揮発記憶を実現し、 低コスト化や、 開発期間の短縮を図るという 目的が達成されるというものである。

Claims

; 請 求 の 範 囲
1 . 同様な特性をもつ 2つの MISFET型トランジスタを有し、 ある特定の期間、 第 1のトランジスタのゲ一ト電極の電圧を、 電源電位あるいは接地電位以外の電圧 値に制御することにより、 第 1のトランジスタの導通状態を制御して、 その導通抵 抗値の経時劣化を誘起し、 これにより生じた、 第 1と第 2のトランジスタの性能差 を、 2つのトランジスタを同時に導通させて、 その電流差で読み出すことにより、
「0」 の記憶とその読み出しを、 またそれとは逆に、 第 2のトランジスタ側の性能 を、 第 1のトランジスタよりも劣化させることにより 「1」 記憶を行うことを特徴 とする半導体不揮発記憶回路。
2 . 上記請求項 1記載の半導体不揮発記憶回路において、 第 2のトランジス タを、 複数の記憶単位の間で共用化したことを特徴とする半導体不揮発記憶回路。
3 . 上記請求項 1記載の 1ビットの情報を記憶する半導体不揮発記憶回路に おいて、 1ビットの情報を記憶する揮発型記憶回路と組み合わせて、 1ビット分の 情報記憶単位とし、 不揮発記憶回路の情報は、 その揮発記憶部を介して、 読み出し と書き込みが行われることを特徴とした半導体不揮発記憶回路。
4 . 6つの M I Sトランジスタから構成されるスタティック型半導体メモリ セルの 2つの記憶ノードに、 それぞれ、 請求項 1記載の半導体不揮発記憶回路の 2 つのトランジスタの電流出力端子を接続し、 そのスタティック型半導体メモリセル の電源端子と、 実際の電源線の間に接続する第 3のトランジスタをもち、 その第 3 のトランジスタの導通状態を制御することで、 前記スタティック型半導体メモリセ ルの動作活性化ノ非活性化の制御を行い、 請求項 1記載の半導体不揮発記憶回路部 分の情報をスタティック型メモリセルへ転送することを特徴とした半導体不揮発記 憶回路。
PCT/JP2003/016143 2002-12-19 2003-12-17 Cmis型半導体不揮発記憶回路 WO2004057621A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AU2003292559A AU2003292559A1 (en) 2002-12-19 2003-12-17 Cmis semiconductor nonvolatile storage circuit
DE60331244T DE60331244D1 (de) 2002-12-19 2003-12-17 Nichtflüchtige cmis-halbleiterspeicherschaltung
EP03782793A EP1575055B1 (en) 2002-12-19 2003-12-17 Cmis semiconductor nonvolatile storage circuit
CN2003801065484A CN1726562B (zh) 2002-12-19 2003-12-17 Cmis型半导体非易失存储电路
AT03782793T ATE457517T1 (de) 2002-12-19 2003-12-17 Nichtflüchtige cmis-halbleiterspeicherschaltung
US11/153,113 US7151706B2 (en) 2002-12-19 2005-06-15 CMIS semiconductor nonvolatile storage circuit
US11/637,481 US7248507B2 (en) 2002-12-19 2006-12-12 CMIS semiconductor nonvolatile storage circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-367648 2002-12-19
JP2002367648A JP4169592B2 (ja) 2002-12-19 2002-12-19 Cmis型半導体不揮発記憶回路

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/153,113 Continuation US7151706B2 (en) 2002-12-19 2005-06-15 CMIS semiconductor nonvolatile storage circuit

Publications (1)

Publication Number Publication Date
WO2004057621A1 true WO2004057621A1 (ja) 2004-07-08

Family

ID=32677087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/016143 WO2004057621A1 (ja) 2002-12-19 2003-12-17 Cmis型半導体不揮発記憶回路

Country Status (8)

Country Link
US (2) US7151706B2 (ja)
EP (1) EP1575055B1 (ja)
JP (1) JP4169592B2 (ja)
CN (1) CN1726562B (ja)
AT (1) ATE457517T1 (ja)
AU (1) AU2003292559A1 (ja)
DE (1) DE60331244D1 (ja)
WO (1) WO2004057621A1 (ja)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7149104B1 (en) 2005-07-13 2006-12-12 Nscore Inc. Storage and recovery of data based on change in MIS transistor characteristics
US7193888B2 (en) 2005-07-13 2007-03-20 Nscore Inc. Nonvolatile memory circuit based on change in MIS transistor characteristics
US7313021B2 (en) 2004-09-30 2007-12-25 Nscore Inc. Nonvolatile memory circuit
US7321505B2 (en) 2006-03-03 2008-01-22 Nscore, Inc. Nonvolatile memory utilizing asymmetric characteristics of hot-carrier effect
US7359238B2 (en) 2004-03-31 2008-04-15 Kitakyushu Foundation For The Advancement Of Industry, Science And Technology Semiconductor nonvolatile storage circuit
US7460400B1 (en) 2007-08-22 2008-12-02 Nscore Inc. Nonvolatile memory utilizing MIS memory transistors with bit mask function
US7463519B1 (en) 2007-08-22 2008-12-09 Nscore Inc. MIS-transistor-based nonvolatile memory device for authentication
US7483290B2 (en) 2007-02-02 2009-01-27 Nscore Inc. Nonvolatile memory utilizing hot-carrier effect with data reversal function
US7511999B1 (en) 2007-11-06 2009-03-31 Nscore Inc. MIS-transistor-based nonvolatile memory with reliable data retention capability
US7518917B2 (en) 2007-07-11 2009-04-14 Nscore Inc. Nonvolatile memory utilizing MIS memory transistors capable of multiple store operations
US7542341B2 (en) 2007-08-20 2009-06-02 Nscore, Inc. MIS-transistor-based nonvolatile memory device with verify function
US7630247B2 (en) 2008-02-25 2009-12-08 Nscore Inc. MIS-transistor-based nonvolatile memory
US7639546B2 (en) 2008-02-26 2009-12-29 Nscore Inc. Nonvolatile memory utilizing MIS memory transistors with function to correct data reversal
US7733714B2 (en) 2008-06-16 2010-06-08 Nscore Inc. MIS-transistor-based nonvolatile memory for multilevel data storage
US7791927B1 (en) 2009-02-18 2010-09-07 Nscore Inc. Mis-transistor-based nonvolatile memory circuit with stable and enhanced performance
US7821806B2 (en) 2008-06-18 2010-10-26 Nscore Inc. Nonvolatile semiconductor memory circuit utilizing a MIS transistor as a memory cell
US7835196B2 (en) 2005-10-03 2010-11-16 Nscore Inc. Nonvolatile memory device storing data based on change in transistor characteristics
US8213247B2 (en) 2009-11-16 2012-07-03 Nscore Inc. Memory device with test mechanism
US8259505B2 (en) 2010-05-28 2012-09-04 Nscore Inc. Nonvolatile memory device with reduced current consumption
US8451657B2 (en) 2011-02-14 2013-05-28 Nscore, Inc. Nonvolatile semiconductor memory device using MIS transistor
US9159404B2 (en) 2014-02-26 2015-10-13 Nscore, Inc. Nonvolatile memory device
US9484072B1 (en) 2015-10-06 2016-11-01 Nscore, Inc. MIS transistors configured to be placed in programmed state and erased state
US9893208B2 (en) 2016-02-19 2018-02-13 Nscore, Inc. Nonvolatile memory device

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8114719B2 (en) * 2004-06-03 2012-02-14 Semiconductor Energy Laboratory Co., Ltd. Memory device and manufacturing method of the same
JP2007273065A (ja) * 2006-03-31 2007-10-18 Nscore:Kk Cmis型半導体不揮発記憶回路
US7414903B2 (en) * 2006-04-28 2008-08-19 Nscore Inc. Nonvolatile memory device with test mechanism
US20080019162A1 (en) 2006-07-21 2008-01-24 Taku Ogura Non-volatile semiconductor storage device
JP4955340B2 (ja) 2006-08-22 2012-06-20 ルネサスエレクトロニクス株式会社 半導体記憶装置
JP2008103011A (ja) * 2006-10-18 2008-05-01 National Institute Of Advanced Industrial & Technology 半導体不揮発性メモリ回路および装置
US7561471B2 (en) * 2006-12-26 2009-07-14 Spansion Llc Cycling improvement using higher erase bias
US7929349B2 (en) * 2007-02-28 2011-04-19 Samsung Electronics Co., Ltd. Method of operating nonvolatile memory device
JP2008217971A (ja) * 2007-02-28 2008-09-18 Samsung Electronics Co Ltd 不揮発性メモリ素子の作動方法
JP2009076566A (ja) * 2007-09-19 2009-04-09 Nec Electronics Corp 不揮発性半導体記憶装置
US8492826B2 (en) * 2007-10-09 2013-07-23 Genusion, Inc. Non-volatile semiconductor memory device and manufacturing method thereof
US8106443B2 (en) * 2007-10-09 2012-01-31 Genusion, Inc. Non-volatile semiconductor memory device
JP4908472B2 (ja) * 2008-08-26 2012-04-04 株式会社東芝 半導体集積記憶回路及びラッチ回路のトリミング方法
JP5442235B2 (ja) 2008-11-06 2014-03-12 ルネサスエレクトロニクス株式会社 半導体装置の製造方法および半導体装置
JP5503433B2 (ja) * 2010-07-01 2014-05-28 ローム株式会社 半導体不揮発記憶回路及びその試験方法
JP5888917B2 (ja) * 2011-09-27 2016-03-22 ラピスセミコンダクタ株式会社 半導体メモリ
JP5522296B2 (ja) * 2013-06-03 2014-06-18 凸版印刷株式会社 不揮発性半導体記憶装置
JP5760106B2 (ja) * 2014-03-14 2015-08-05 ローム株式会社 半導体不揮発記憶回路及びその試験方法
CN104299648B (zh) * 2014-09-25 2017-12-26 苏州宽温电子科技有限公司 一种差分架构只读存储单元
JP6063003B2 (ja) * 2015-06-08 2017-01-18 ローム株式会社 半導体不揮発記憶回路及びその試験方法
CN106571162B (zh) * 2016-11-02 2023-06-16 上扬无线射频科技扬州有限公司 Cmos非易失存储器单元电路
US9653152B1 (en) 2016-11-15 2017-05-16 Qualcomm Incorporated Low voltage high sigma multi-port memory control
JP6220041B2 (ja) * 2016-12-15 2017-10-25 ローム株式会社 半導体不揮発記憶回路及びその試験方法
US20230307049A1 (en) * 2020-09-18 2023-09-28 Rohm Co., Ltd. Non-volatile memory

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06231587A (ja) * 1993-02-02 1994-08-19 Toshiba Corp プログラマブルイニシャル設定回路
JPH07226088A (ja) * 1994-02-15 1995-08-22 Nippon Steel Corp 半導体記憶装置
JPH10269789A (ja) * 1997-03-19 1998-10-09 Sharp Corp 半導体記憶装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3660827A (en) 1969-09-10 1972-05-02 Litton Systems Inc Bistable electrical circuit with non-volatile storage capability
GB2091510B (en) 1981-01-09 1984-06-20 Plessey Co Ltd Non-volatile static ram element
JPS5837896A (ja) * 1981-08-31 1983-03-05 Fujitsu Ltd Mosダイナミック回路
JPH0676582A (ja) * 1992-08-27 1994-03-18 Hitachi Ltd 半導体装置
US5687114A (en) * 1995-10-06 1997-11-11 Agate Semiconductor, Inc. Integrated circuit for storage and retrieval of multiple digital bits per nonvolatile memory cell
US5956269A (en) 1997-11-05 1999-09-21 Industrial Technology Research Institute Non-volatile SRAM
US6038168A (en) * 1998-06-26 2000-03-14 International Business Machines Corporation Hot-electron programmable latch for integrated circuit fuse applications and method of programming therefor
US6521958B1 (en) 1999-08-26 2003-02-18 Micron Technology, Inc. MOSFET technology for programmable address decode and correction
JP4530464B2 (ja) * 2000-03-09 2010-08-25 ルネサスエレクトロニクス株式会社 半導体集積回路
JP2001358313A (ja) * 2000-06-14 2001-12-26 Hitachi Ltd 半導体装置
JP3954302B2 (ja) * 2000-12-06 2007-08-08 株式会社東芝 半導体集積回路
US6853587B2 (en) 2002-06-21 2005-02-08 Micron Technology, Inc. Vertical NROM having a storage density of 1 bit per 1F2
US6906962B2 (en) 2002-09-30 2005-06-14 Agere Systems Inc. Method for defining the initial state of static random access memory

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06231587A (ja) * 1993-02-02 1994-08-19 Toshiba Corp プログラマブルイニシャル設定回路
JPH07226088A (ja) * 1994-02-15 1995-08-22 Nippon Steel Corp 半導体記憶装置
JPH10269789A (ja) * 1997-03-19 1998-10-09 Sharp Corp 半導体記憶装置

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7359238B2 (en) 2004-03-31 2008-04-15 Kitakyushu Foundation For The Advancement Of Industry, Science And Technology Semiconductor nonvolatile storage circuit
US7313021B2 (en) 2004-09-30 2007-12-25 Nscore Inc. Nonvolatile memory circuit
US7193888B2 (en) 2005-07-13 2007-03-20 Nscore Inc. Nonvolatile memory circuit based on change in MIS transistor characteristics
US7149104B1 (en) 2005-07-13 2006-12-12 Nscore Inc. Storage and recovery of data based on change in MIS transistor characteristics
US7835196B2 (en) 2005-10-03 2010-11-16 Nscore Inc. Nonvolatile memory device storing data based on change in transistor characteristics
US7321505B2 (en) 2006-03-03 2008-01-22 Nscore, Inc. Nonvolatile memory utilizing asymmetric characteristics of hot-carrier effect
US7483290B2 (en) 2007-02-02 2009-01-27 Nscore Inc. Nonvolatile memory utilizing hot-carrier effect with data reversal function
US7518917B2 (en) 2007-07-11 2009-04-14 Nscore Inc. Nonvolatile memory utilizing MIS memory transistors capable of multiple store operations
US7542341B2 (en) 2007-08-20 2009-06-02 Nscore, Inc. MIS-transistor-based nonvolatile memory device with verify function
US7463519B1 (en) 2007-08-22 2008-12-09 Nscore Inc. MIS-transistor-based nonvolatile memory device for authentication
US7460400B1 (en) 2007-08-22 2008-12-02 Nscore Inc. Nonvolatile memory utilizing MIS memory transistors with bit mask function
US7511999B1 (en) 2007-11-06 2009-03-31 Nscore Inc. MIS-transistor-based nonvolatile memory with reliable data retention capability
US7630247B2 (en) 2008-02-25 2009-12-08 Nscore Inc. MIS-transistor-based nonvolatile memory
US7639546B2 (en) 2008-02-26 2009-12-29 Nscore Inc. Nonvolatile memory utilizing MIS memory transistors with function to correct data reversal
US7733714B2 (en) 2008-06-16 2010-06-08 Nscore Inc. MIS-transistor-based nonvolatile memory for multilevel data storage
US7821806B2 (en) 2008-06-18 2010-10-26 Nscore Inc. Nonvolatile semiconductor memory circuit utilizing a MIS transistor as a memory cell
US7791927B1 (en) 2009-02-18 2010-09-07 Nscore Inc. Mis-transistor-based nonvolatile memory circuit with stable and enhanced performance
US8213247B2 (en) 2009-11-16 2012-07-03 Nscore Inc. Memory device with test mechanism
US8259505B2 (en) 2010-05-28 2012-09-04 Nscore Inc. Nonvolatile memory device with reduced current consumption
US8451657B2 (en) 2011-02-14 2013-05-28 Nscore, Inc. Nonvolatile semiconductor memory device using MIS transistor
US9159404B2 (en) 2014-02-26 2015-10-13 Nscore, Inc. Nonvolatile memory device
US9484072B1 (en) 2015-10-06 2016-11-01 Nscore, Inc. MIS transistors configured to be placed in programmed state and erased state
US9893208B2 (en) 2016-02-19 2018-02-13 Nscore, Inc. Nonvolatile memory device
US9966141B2 (en) 2016-02-19 2018-05-08 Nscore, Inc. Nonvolatile memory cell employing hot carrier effect for data storage

Also Published As

Publication number Publication date
EP1575055A4 (en) 2007-06-27
CN1726562B (zh) 2011-01-12
EP1575055B1 (en) 2010-02-10
JP4169592B2 (ja) 2008-10-22
DE60331244D1 (de) 2010-03-25
JP2005353106A (ja) 2005-12-22
EP1575055A1 (en) 2005-09-14
CN1726562A (zh) 2006-01-25
US7151706B2 (en) 2006-12-19
US20050232009A1 (en) 2005-10-20
ATE457517T1 (de) 2010-02-15
AU2003292559A1 (en) 2004-07-14
US7248507B2 (en) 2007-07-24
US20070091663A1 (en) 2007-04-26

Similar Documents

Publication Publication Date Title
WO2004057621A1 (ja) Cmis型半導体不揮発記憶回路
JP4935183B2 (ja) 半導体装置
JP3450896B2 (ja) 不揮発性メモリ装置
JP3781270B2 (ja) 半導体集積回路装置
US7590003B2 (en) Self-reference sense amplifier circuit and sensing method
US20060268615A1 (en) Nonvolatile semiconductor static random access memory device
US20070170480A1 (en) Nonvolatile ferroelectric memory device
JP2006018946A (ja) 半導体記憶装置
KR101095730B1 (ko) 앤티퓨즈를 기반으로 하는 반도체 메모리 장치
JP4392404B2 (ja) 仮想接地型不揮発性半導体記憶装置
JP2022511134A (ja) フラッシュメモリセルにアクセスするためのアレイの列及び行を構成する方法及び装置
CN100541659C (zh) 具有2t存储器单元的存储器阵列
JP2015185180A (ja) コンフィギュレーションメモリ
US5253210A (en) Paritioned bit line structure of EEPROM and method of reading data therefrom
US20230054577A1 (en) Memory device
JP3342878B2 (ja) 不揮発性半導体記憶装置
JP5313487B2 (ja) 不揮発性半導体記憶素子および不揮発性半導体記憶装置
US7518917B2 (en) Nonvolatile memory utilizing MIS memory transistors capable of multiple store operations
US6853586B2 (en) Non-volatile memory architecture and method thereof
JP3568605B2 (ja) 半導体集積回路装置
US7193888B2 (en) Nonvolatile memory circuit based on change in MIS transistor characteristics
US5875127A (en) Non-volatile semiconductor memory device having a floating gate storage capacitor and method of operating thereof
WO2005096314A1 (ja) 半導体不揮発記憶回路
JPH11195300A (ja) 不揮発性半導体記憶装置
US6744672B2 (en) Non-volatile semiconductor memory device capable of high-speed data reading

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003782793

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11153113

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20038A65484

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2003782793

Country of ref document: EP