WO2004041493A1 - スクライブライン形成装置及びスクライブライン形成方法 - Google Patents

スクライブライン形成装置及びスクライブライン形成方法 Download PDF

Info

Publication number
WO2004041493A1
WO2004041493A1 PCT/JP2003/014080 JP0314080W WO2004041493A1 WO 2004041493 A1 WO2004041493 A1 WO 2004041493A1 JP 0314080 W JP0314080 W JP 0314080W WO 2004041493 A1 WO2004041493 A1 WO 2004041493A1
Authority
WO
WIPO (PCT)
Prior art keywords
scribe line
substrate
vertical crack
brittle substrate
forming apparatus
Prior art date
Application number
PCT/JP2003/014080
Other languages
English (en)
French (fr)
Inventor
Haruo Wakayama
Original Assignee
Mitsuboshi Diamond Industrial Co.,Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuboshi Diamond Industrial Co.,Ltd. filed Critical Mitsuboshi Diamond Industrial Co.,Ltd.
Priority to EP03770142A priority Critical patent/EP1579970A4/en
Priority to US10/533,650 priority patent/US8348115B2/en
Priority to KR1020057008097A priority patent/KR100657196B1/ko
Priority to CNB2003801083232A priority patent/CN100528507C/zh
Priority to AU2003280723A priority patent/AU2003280723A1/en
Priority to JP2004549606A priority patent/JP4373922B2/ja
Publication of WO2004041493A1 publication Critical patent/WO2004041493A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/023Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor the sheet or ribbon being in a horizontal position
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/09Severing cooled glass by thermal shock
    • C03B33/091Severing cooled glass by thermal shock using at least one focussed radiation beam, e.g. laser beam
    • C03B33/093Severing cooled glass by thermal shock using at least one focussed radiation beam, e.g. laser beam using two or more focussed radiation beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/023Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor the sheet or ribbon being in a horizontal position
    • C03B33/027Scoring tool holders; Driving mechanisms therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/023Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor the sheet or ribbon being in a horizontal position
    • C03B33/03Glass cutting tables; Apparatus for transporting or handling sheet glass during the cutting or breaking operations
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/09Severing cooled glass by thermal shock
    • C03B33/091Severing cooled glass by thermal shock using at least one focussed radiation beam, e.g. laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T225/00Severing by tearing or breaking
    • Y10T225/10Methods
    • Y10T225/12With preliminary weakening
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T225/00Severing by tearing or breaking
    • Y10T225/30Breaking or tearing apparatus
    • Y10T225/307Combined with preliminary weakener or with nonbreaking cutter
    • Y10T225/321Preliminary weakener
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/02Other than completely through work thickness
    • Y10T83/0333Scoring
    • Y10T83/0341Processes

Definitions

  • the present invention relates to a scribe line forming apparatus and a scribe line forming method for forming a line-shaped scribe line for cutting a brittle substrate such as a glass substrate used for a liquid crystal display or the like.
  • Liquid crystal displays applicable to small information terminals and projections are expected to have a wide range of needs with the expansion of PC factories accompanying rapid progress in information processing technology. Has been.
  • liquid crystal displays for personal computers and TVs are increasingly required to increase the size, definition, and weight of display screens.
  • glass substrates are becoming larger and thinner. It has been. As glass substrates become larger and thinner, there is a demand for advanced substrate cutting technology for cutting such glass substrates into desired dimensions with high precision.
  • a brittle substrate such as a glass substrate includes a scribe process for forming a line-shaped scribe line along the desired dividing direction on the surface of the glass substrate, and a bending moment along the scribe line formed on the surface of the glass substrate.
  • the glass substrate is divided by executing a break process for dividing the glass substrate along the scribe line.
  • the scribing process for forming a scribe line on a glass substrate if the scribe line, which is a vertical crack line, can be formed by deeply penetrating vertically below the surface of the glass substrate, the scribing process can be performed in a subsequent break process. Vertical cracks can be improved because the cutting accuracy can be improved when cutting along the line. It is important to form deeply.
  • a hand cutter as shown in Japanese Utility Model Publication No. 5 9-8 8 4 2 9, a wheel chip attached to the tip of the cutter is pressed against the surface of the glass substrate and rolled.
  • a scribe line may be formed on the surface of the brittle material substrate.
  • an apparatus for automatically and continuously forming a large number of scribe lines on the surface of a plurality of brittle material substrates for example, an apparatus disclosed in Japanese Patent Application Laid-Open No. Sho 5 5-1 1 6 6 35 It is possible to use.
  • An object of the present invention is to provide a scribe line forming apparatus and a scribing line forming method that can be generated. Disclosure of the invention
  • a cutting edge is provided at the tip, and a pressing force is applied to press the cutting edge against the surface of the brittle substrate, thereby forming a vertical crack serving as a starting point of a scribe line.
  • a vertical crack forming member
  • impact force applying means for applying a sudden impact force to the vertical crack forming member, and softening of the brittle substrate Heating means for forming a region of temperature lower than the point;
  • the heating means, the vertical crack forming member, the impact force imparting means, and the cooling means are placed on the brittle substrate in a state where they are spaced apart along a predetermined scribe line on the surface of the brittle substrate.
  • a scribing line forming apparatus comprising: a disposition moving means arranged so as to be relatively movable; and a controller for controlling driving of the impact force applying means.
  • the control unit controls the drive of the vertical crack forming member and the arrangement moving means so that the blade edge is moved while contacting with a load that does not damage the surface of the brittle substrate, and the blade edge is near the edge of the brittle substrate and in advance. It is preferable to control the driving of the impact force applying means so as to generate a vertical crack of a predetermined depth on the brittle substrate when it is located in the vicinity of the passing point passing through the formed scribe line.
  • the heating means detects the height change of the surface of the brittle substrate from the vertical movement of the vertical crack forming member moving on the brittle substrate, and based on the detection result, focuses the laser light emitted from the laser light oscillator.
  • Configuration comprising a servo mechanism for adjustment Is preferred.
  • the cooling means is arranged in the arrangement moving means so as to move up and down in conjunction with the vertical movement of the vertical crack forming member moving on the brittle substrate.
  • the arrangement moving means is configured by arranging the three members in the order of any one of a vertical crack forming member, a heating means and a cooling means, or a heating means, a vertical crack forming member and a cooling means from the front side of the scribe line. Is preferred.
  • a configuration in which the arrangement moving means arranges the vertical crack forming member, the heating means, and the cooling means so that the relative positions of each other can be changed is preferable.
  • An example of the cooling means is a cooling nozzle that discharges a cooling medium.
  • An example of the cooling means is one having a servo mechanism for adjusting the height position of the cooling means.
  • Examples of the vertical crack forming member include a glass cutter in which a wheel chip is used as a cutting edge and is supported so as to roll.
  • An example of the heating unit is a laser beam oscillator that irradiates a predetermined laser beam.
  • the impact force imparting means there is one that generates a moving inertia that presses the blade edge onto the brittle substrate surface by turning on or off the energization of the solenoid coil.
  • Examples thereof include a laser displacement meter or a contact displacement meter for detecting a change in the height of the surface of the brittle substrate.
  • the brittle substrate examples include a glass substrate for a liquid crystal display device, a glass substrate for a plasma display panel, and a glass substrate for an organic EL display panel.
  • a vertical crack forming member having a cutting edge at the tip is moved on the brittle substrate, and an impact force applying means for applying a sudden impact force to the cutting edge is used to bring the vertical crack forming member to a desired position on the brittle substrate.
  • a scribe forming method is provided.
  • the impact force is applied to the desired position on the brittle substrate.
  • a configuration that generates vertical cracks of a predetermined depth is preferable.
  • FIG. 1 is a side view schematically showing the scribe line forming apparatus according to the first embodiment.
  • FIG. 2 is a front view schematically showing the scribe line forming apparatus according to the first embodiment.
  • FIGS. 3A to 3E are perspective views for sequentially explaining a method of forming a scribe line by the scribe line forming apparatus of the first embodiment.
  • FIG. 4 is a side view schematically showing the scribe line forming apparatus according to the second embodiment.
  • FIG. 5 is a front view schematically showing the scribe line forming apparatus according to the second embodiment.
  • FIGS. 6A to 6E are perspective views for sequentially explaining a method of forming a scribe line by the scribe line forming apparatus of the second embodiment.
  • FIG. 7 is a front view schematically showing the scribe line forming apparatus according to the third embodiment.
  • FIG. 1 is a side view showing an outline of the scribe line forming apparatus 1 according to the first embodiment
  • FIG. 2 shows a front view of the scribe line forming apparatus 1 from a cross section taken along the line II of FIG.
  • the scribe line forming apparatus 1 has a table 101 for fixing a brittle material substrate S forming a scribe line in a horizontal state.
  • the brittle material substrate S described in the present specification specifically means a substrate having a large size called a mother board.
  • substrates such as glass, ceramic, and semiconductor wafers, which are sequentially divided into predetermined small sizes and used for various applications.
  • a guide rail 10 3 is provided along the horizontal direction (direction perpendicular to the paper surface).
  • One end side of a drive device 11 having a drive motor inside is connected to the guide rail 103.
  • the drive device 11 is slidable in a fixed direction along the direction in which the guide rails 10 3 extend by driving in the drive mode.
  • a servo motor 2 is provided on the other end of the drive device 11.
  • the support motor 2 has a rotating shaft 3 that protrudes to a predetermined length in the horizontal direction on the side opposite to the side where the driving device 11 is provided.
  • the rotary shaft 3 is driven to rotate by a servo motor 2, and a support frame 4 that rotates integrally with the rotary shaft 3 is attached to the tip of the rotary shaft 3.
  • the support frame 4 attached to the rotary shaft 3 of the servo motor 2 has a frame main body portion 4a formed in a flat plate shape, and upwards from one end side of the frame main body portion 4a. And a projecting portion 4 b projecting to a predetermined height, and formed so as to be substantially L-shaped in a side view.
  • the support frame 4 is arranged such that one end side where the projecting portion 4 b is provided is disposed on the front side in the traveling direction along the guide rail 103 (left side in FIG. 1), and the upper end of the projecting portion 4 b. Is attached to the rotating shaft 3 of the servo motor 2.
  • the glass cutter 5 includes a wheel chip 5 a formed of a superhard material such as cemented carbide or sintered diamond, And a holder 5 b that rotatably supports the wheel chip 5 a.
  • the glass cutter 5 is configured to move integrally with the movement of the support frame 4 by attaching the upper end of the holder 5 b to the lower surface of the frame body 4 a of the support frame 4.
  • the wheel tip 5 a is circular and protrudes so that the central portion in the width direction has the maximum diameter.
  • the wheel tip 5 a has a shaft center portion rotatably supported by a holder 5 b having an open lower surface.
  • the wheel chip 5 a is always in contact with the surface of the brittle material substrate S on the brittle material substrate S other than the position where the vertical cracks are generated, and the wheel chip 5 a exceeds the surface of the brittle material substrate S. When pressed so as to apply an impact force, a vertical crack is generated on the brittle material substrate S.
  • an amateur 6 is provided as an impact force applying means.
  • a spring (not shown) that biases downward is mounted around the armature 6, and the amateur 1 6 is always in a state of being biased downward.
  • the amateur 6 is also provided with a solenoid coil 6a that generates an electromagnetic force that lifts upward when a predetermined voltage is applied. When the voltage is applied, the solenoid coil 6a is electromagnetically moved upward. The force and the downward biasing force of the spring are balanced and are in a stationary state.
  • a cooling nozzle 7 for discharging a cooling medium is attached to the rear end of the frame main body 4 a of the support frame 4 integrally with the frame main body 4 a.
  • the frame main body of the support frame 4 Even if 4 a moves up and down due to unevenness on the brittle material substrate S, it can move following the vertical movement of the frame body 4 a of the support frame 4.
  • the cooling nozzle 7 is connected to a cooling medium source (not shown) in which a predetermined cooling medium is stored in a cooled state.
  • the cooling medium discharged from the cooling nozzle 7 is a low-temperature liquid such as cooling water or cooling alcohol, or a low-temperature gas such as nitrogen or carbon dioxide obtained by vaporizing liquid nitrogen or dry ice. Helium An inert gas such as argon or mere air is also used.
  • the rear side of the servo motor 2 is irradiated with a predetermined laser beam on the surface of the brittle material substrate S through a hole 4 c formed at a predetermined position of the main body frame 4 a in the support frame 4.
  • a laser light oscillator 8 for heating a portion irradiated with the laser light is provided.
  • a heating spot is formed on the surface of the brittle material substrate S by the laser light oscillated by the laser light oscillator 8, but the brittle material substrate S can be heated as a spot.
  • a heating source that generates infrared rays, ultraviolet rays, or the like may be used.
  • the laser oscillator 8, the glass cutter 5, and the cooling nozzle 7 described above are arranged in this order along the traveling direction along the guide rail 10 3, and the irradiation area of the laser beam irradiated from the laser oscillator 8
  • the contact area where the wheel tip 5a of the glass cutter 5 contacts the brittle material substrate S, and the cooling area cooled by the cooling medium discharged from the cooling nozzle 7 are adjacent to each other on the brittle material substrate S. Formed in this order It is supposed to be.
  • a control device 9 for controlling the driving of each of the above-described components such as the driving device 11, the laser oscillator 8, the cooling nozzle 7, etc. is provided on the upper side of the support 2.
  • the control device 9 includes a displacement amount of movement of the drive device 1 1, laser oscillator 8 and cooling nozzle 7 along the guide rail 10 3 direction of the drive device 1 1 (that is, movement of the main body frame 4).
  • the amount of vertical movement of the wheel tip 5a of the glass cutter 5 that is in contact with the surface of the brittle material substrate S is detected by detecting the displacement of the rotating shaft 3 of the thermopmo 2
  • An encoder for detection is provided.
  • the wheel tip 5a of the glass cutter 5 installed to form the vertical crack that is the starting point of the scribe is always on the surface of the brittle material substrate S, even in the portion where the vertical crack is not formed on the brittle material substrate S.
  • the wheel chip 5 a moves up and down.
  • the vertical movement of the frame main body 4 b of the support frame 4 that fixes the holder 5 b also occurs, and the vertical movement of the frame main body 4 b of the support frame 4 rotates the rotation shaft 3 of the servo motor 2. Is generated.
  • the vertical movement of the wheel chip 5a is detected.
  • the control device 9 can detect irregularities on the surface of the brittle material substrate S from the displacement amount of the wheel chip 5 a by means of an encoder, and based on this detection result, the laser light emitted from the laser oscillator 8 can be detected.
  • the focus formation position is adjusted, and the laser beam follows the irregularities on the surface of the brittle material substrate S, depending on its beam shape, wavelength and pulse width, the surface of the irradiation object, a predetermined constant depth near or inside the surface It is automatically controlled so that its position is in focus and is relatively moved on the substrate.
  • the cooling nozzle 7 is the frame body portion of the support frame 4.
  • the cooling medium is always discharged from the same height with respect to the surface of the brittle material substrate S.
  • the height position of the cooling nozzle 7 may be adjusted based on the detection result by the encoder.
  • the brittle material substrate S, on which the scribe line is to be formed is fixed at a predetermined position on the table 100 1 with the wheel chip 5 a positioned on the rear side of the table.
  • the drive unit 1 1 and the control unit 9 are driven, and the support frame 4 to which the wheel chip 5 a, the laser oscillator 8 and the cooling nozzle 7 are attached is moved forward on the surface of the brittle material substrate S (FIG. 1). To the left).
  • the wheel chip 5 a of the glass cutter 5 is installed such that its height position is slightly lower than the brittle material substrate S placed on the table 101.
  • the torque applied to the support frame 4 to which the glass cutter 5 is attached is controlled by the servo motor 2 so that excessive pressing force is not applied downward to the surface of the brittle material substrate S.
  • the wheel tip 5 a of the glass cutter 5 advanced by the driving of the driving device 1 1 reaches the position of the end portion of the brittle material substrate S.
  • the glass cutter 5 is controlled so as not to apply a pressing force that generates vertical cracks on the surface of the brittle material substrate S, a wheel installed below the surface of the brittle material substrate S.
  • the chip 5 a rides on the surface of the brittle material substrate S as it is without causing chipping or the like at the end portion of the brittle material substrate S.
  • the glass cutter 5 By climbing onto the brittle material substrate S surface, the glass cutter 5 is moved up and down, and this vertical movement is transmitted to the rotation of the rotating shaft 3 of the servo motor 2, and the wheel chip 5a of the glass cutter 5 is made of brittle material.
  • the control device is on the surface of the substrate S Detected by the encoder provided in 9.
  • the controller 9 turns off the voltage applied to the solenoid coil 6a of the amateur 6 To.
  • the armature 6 is moved downward by the biasing force of the spring, and an impact force is applied to the upper surface of the frame main body 4a.
  • the wheel chip 5a of the glass cutter 5 that is in contact with the surface of the brittle material substrate S gives a sudden impact force to the end on the surface of the brittle material substrate S, and the brittle material substrate On the surface of S, a vertical crack T having a predetermined depth is formed as shown in FIG. 3 (b).
  • a voltage is applied to the solenoid coil 6a again, and an electromagnetic force that pushes up the amateur 6 is generated, resulting in a balance between the downward biasing force of the spring and the electromagnetic force pushing it upward.
  • the amateur 6 is stationary at a predetermined height position.
  • the controller 9 creates a scribe on the surface of the brittle material substrate S.
  • the servo motor 2 is controlled so that a minute load that maintains the contact state with the surface of the brittle material substrate S is applied so that the pressing force is not applied.
  • the glass cutter 5 having a wheel chip 5 a that rolls while contacting the surface of the brittle material substrate S is a wheel chip that contacts the brittle material substrate S if there is irregularity, warpage, etc. on the surface of the brittle material substrate S.
  • 5a is moved up and down, and as the wheel tip 5a is moved up and down, the support frame 4 holding the holder 5b is also moved up and down. Rotational movement occurs on the rotation axis 3 of the.
  • the encoder provided in the control device 9 detects unevenness, warpage, and the like on the brittle material substrate S by detecting the rotational movement of the rotary shaft 3 of the thermopo 2.
  • the control device 9 adjusts the focal position of the laser light oscillator 8 based on the unevenness and warpage on the brittle material substrate S detected by the encoder as described above. This As a result, even if irregularities or the like are generated on the brittle material substrate S, the laser beam is irradiated in a state of being focused on a certain depth position on the surface of the brittle material substrate S or inside. Further, the cooling nozzle 7 for supplying the cooling medium is integrally attached to the rear end portion of the frame body portion 4 b of the support frame 4, so that the wheel moves up and down due to the unevenness of the surface of the brittle material substrate S.
  • the cooling nozzle 7 moves up and down in conjunction with the movement of the tip 5 a, and the distance between the tip of the cooling nozzle 7 and the brittle material substrate S is constant with respect to the brittle material substrate S. Therefore, even if the brittle material substrate S has irregularities, the cooling medium can always be supplied properly.
  • each of the laser light oscillator 8, the wheel chip 5 a and the cooling nozzle 7 is driven on the surface of the brittle material substrate S by driving the drive device 1 1 and the control device 9. Move in a certain direction.
  • the laser beam irradiated by the laser beam oscillator 8 is heated to a temperature at which the surface of the brittle material substrate S is not melted, that is, a temperature lower than the glass softening point, on the front side in the strike direction.
  • the cooling medium is discharged from the cooling nozzle 7 to form a cooling region C.
  • the surface of the brittle material substrate S in the laser light irradiation region L that is heated by being irradiated with the laser light is subjected to compressive stress due to the heating by the laser light, and the cooling region C in which the cooling medium is discharged is due to the cooling medium.
  • Tensile stress is generated by cooling the glass surface.
  • the brittle material substrate S has a brittle material.
  • the vertical crack extends along the planned scribe line at the depth of the vertical crack T.
  • the laser light oscillator 8 and the cooling nozzle 7 are sequentially moved in a fixed direction, thereby forming a scribe line along the direction of the movement.
  • the scribe line SLC that uses the stress gradient with the region C is already formed between the laser light irradiation region L and the cooling region C. In such a case, there is a case where the scribe line cannot be formed beyond the intersecting scribe line SLC because the stress gradient is interrupted at the intersecting scribe line SLC portion.
  • the moving distance of the main body frame 4 along the guide rails 10 3 by the drive device 1 1 is detected by the encoder provided in the control device 9.
  • the device 9 immediately before reaching the position beyond the scribe line SLC where the wheel tip 5a of the glass cutter 5 intersects.
  • the voltage application (current supply) to solenoid coil 6a is stopped. This voltage is not turned off at the same time when the intersecting scribe line SLC is reached, but the time due to the electrical transient delay due to the inductance component of the solenoid coil 6a and the wheel tip 5a are directly above the intersection Z.
  • the voltage is turned off earlier by the sum of the movement time delays corresponding to the mechanical inertia that only rises to the predetermined height position.
  • the time can be obtained from the electrical characteristic value of the coil, the current value (required torque value), and the relative movement speed of the wheel tip 5a with respect to the substrate.
  • the time delay value thus obtained is stored in the control device 9 in advance, and the corresponding delay time value is read from the storage area each time a scribe condition is newly set or changed. use.
  • the scribe line forming apparatus 1 is perpendicular to the surface of the brittle material substrate S by the impact force from the armature 6 disposed on the upper side of the glass cutter 5.
  • a sudden impact force is generated only at a desired position on the surface of the brittle material substrate S, and a vertical crack T having a depth sufficient for high-resolution division can be generated. it can.
  • the impact force from amateur 6 is extremely small compared to the pressure applied by the conventional lifting device, so the device can be simplified and miniaturized.
  • the glass cutter 5 When no impact force is applied from the amateur 6, the glass cutter 5 contacts the surface of the brittle material substrate S with the minimum scribe pressure and executes the scribe operation, so the wheel tip of the glass cutter 5 a It is possible to prevent the end of the brittle material substrate S from being chipped when it gets on the brittle material substrate S. Further, the wheel chip 5 a of the glass cutter 5 that is in contact with the surface of the brittle material substrate S causes vertical movement corresponding to the irregularities on the surface of the brittle material substrate S, and this vertical movement is The encoder detects from the rotation of the rotary shaft 3 and the focal position of the laser oscillator 8 can be adjusted based on the detection result.
  • the brittle material substrate S Laser light is appropriately irradiated on the surface or at a predetermined position at a predetermined depth, and a high-definition scribe line can be formed on the surface or inside.
  • a vertical crack T that is the starting point of the scribe line is formed by the wheel tip 5 a of the glass cutter 5, and this vertical crack T is formed on the planned scribe line.
  • a temperature gradient is formed on the brittle material substrate S by heating with laser light and cooling by a cooling medium, and the thermal strain of the brittle material substrate S based on the formed temperature gradient is used. For this reason, the force let is generated only slightly near the starting point, and the amount of force let generated is drastically reduced compared to the conventional method using the cutting edge.
  • the control device 9 controls the driving of the driving device 11 so that the wheel chip 5a is moved while contacting with a load that does not damage the surface of the brittle substrate, and the wheel chip 5a is moved to the end of the brittle substrate S. Because the drive of the armature 6 is controlled so as to generate a vertical crack of a predetermined depth on the brittle substrate when it is located near the intersection and near the intersection position Z of the scribe line SLC formed in advance. A scribe line SL can be formed.
  • FIG. 4 is a side view showing an outline of the scribe line forming apparatus 1 ′ of the second embodiment
  • FIG. 5 is a front view of the scribe line forming apparatus 1 ′ from the IV—IV cross section of FIG. Show.
  • the scribe line forming apparatus 1 ′ is configured such that the laser oscillator 8 is located behind the portion where the wheel tip 5 a of the glass cutter 5 contacts the surface of the brittle material substrate S. It is provided at a position extending from the control device 9 to the rear side (right side in the figure) so as to emit laser light.
  • a wheel chip 5 a, a laser oscillator 8, and a cooling nozzle 7 are arranged in this order along the direction of travel along the guide rail 10 3, and the wheel chip 5 a of the glass cutter 5
  • the brittle material substrate S is a contact region where the material contacts the brittle material substrate S, an irradiation region of the laser light emitted from the laser oscillator 8, and a cooling region cooled by the cooling medium emitted from the cooling nozzle 7. They are formed close to each other.
  • the vertical movement of the wheel tip 5 a of the glass cutter 5 that moves in contact with the surface of the brittle material substrate S is performed by rotating the rotating shaft 3 of the servo motor 2. Based on the above, detection is performed by an encoder provided in the control device 9. Based on the detection result, the laser irradiation position of the laser oscillator 8 arranged on the rear side of the glass cutter 5 is adjusted.
  • the operation of the scribe line forming apparatus 1 ′ of the second embodiment is also substantially the same as the operation of the scribe line forming apparatus 1 of the first embodiment, and the scribe line forming apparatus of the second embodiment.
  • the vertical crack T is generated on the surface of the brittle material substrate S by the impact force from the armature 6 disposed on the upper side of the glass cutter 5.
  • a sudden crack force can be generated only at the desired position on the surface of the material substrate S, and a vertical crack T deep enough to divide with high definition can be generated.
  • the wheel tip 5a of the glass cutter 5 is in contact with the surface of the brittle material substrate S and only a slight load is applied to generate a predetermined scribe.
  • the wheel tip 5 a rides on the brittle material substrate S, it is possible to prevent the end of the brittle material substrate S from being chipped.
  • the unevenness on the surface of the brittle material substrate S is in contact with the surface of the brittle material substrate S.
  • the wheel chip 5 of the glass cut 5 The vertical movement of the 5 a is moved from the rotation of the rotary shaft 3 of the servo motor 2 to the encoder. Based on the detection result, the focal position of the laser oscillator 8 can be adjusted following the irregularities present on the brittle material substrate S.
  • a laser beam is appropriately irradiated on the surface of the material substrate S or at a predetermined depth, and a high-definition scribe line can be formed. (Embodiment 3)
  • FIG. 7 is a side view showing an outline of the scribe line forming apparatus 1 ′′ according to the third embodiment.
  • fluctuations such as irregularities and warpage of the brittle material substrate S are detected by laser light irradiation at a position in front of the glass cutter 5 on the lower surface of the main body frame 4a of the support frame 4.
  • a laser displacement meter 10 is provided.
  • Other configurations are the same as those of the scribe line forming apparatus 1 of the first embodiment described above, and detailed description thereof is omitted.
  • the operation of the scribe line forming apparatus 1 ′′ of the third embodiment is the same as that of the first embodiment described above except that the irregularities on the surface of the brittle material substrate S are detected using the laser displacement meter 10.
  • the operation is almost the same as the operation of the scribe line forming apparatus, and detailed description is omitted.
  • the scribing line forming apparatus 1 "of the third embodiment generates a vertical crack on the surface of the brittle material substrate S by the impact force from the armature 6 disposed on the upper side of the glass cutter 5.
  • a sudden impact force only at the desired position on the surface of the material substrate S, it is possible to generate a vertical crack T deep enough to divide it with high precision.
  • the wheel tip 5a of the glass cutter 5 is applied with only a slight load that contacts the surface of the brittle material substrate S and generates a predetermined scribe.
  • the wheel chip 5 a of this type is mounted on the brittle material substrate S, it is possible to prevent the end of the brittle material substrate S from being chipped.
  • irregularities on the surface of the brittle material substrate S are detected by a laser displacement meter 10 provided on the front side of the glass cutout 5 in contact with the surface of the brittle material substrate S. Based on this detection result Since the focal position of the laser oscillator 8 can be adjusted following the irregularities present on the brittle material substrate S, even if the brittle material substrate S has irregularities, the surface of the brittle material substrate S or on the inside Always in focus at a certain depth position Irradiated, high-definition scribe can be formed.
  • the unevenness on the surface of the brittle material substrate S can also be detected by providing a contact displacement meter in addition to the laser displacement meter 10 described above.
  • the glass cutter 5, the cooling nozzle 7 and the laser light oscillator 8 are fixedly arranged. It is good also as a structure arrange
  • the scribing line forming apparatus described in each of Embodiments 1 to 3 described above includes the wheel chip 5 a of the glass cutter 5 that generates the vertical crack T that is the starting point of the scribing line on the brittle material substrate S, and the brittle material substrate. Since the unevenness and warpage on the surface of S are detected, the device configuration can be made inexpensive and compact.
  • the end portion or the crossing position Z of the substrate S is heated in advance by a laser beam, the vertical crack T that becomes the starting point of the scribe line can be formed. The generation of uncontrollable cracks at the intersection position Z can be suppressed.
  • Vertical crack T is formed at a position in the substrate slightly beyond the edge in the direction of travel (start of internal cutting), or scribe line formation is completed just before the end of the forward direction (internal cutting).
  • the present invention provides a wheel tip of a glass cutter with a brittle group.
  • Impulsive force is applied to the glass cutter moving on the surface of the plate with a load that does not cause damage to the glass cutter moving on the brittle substrate.
  • a vertical crack is generated at a desired position on the brittle substrate.
  • a laser beam oscillator that irradiates laser light that forms an irradiation region at a temperature lower than the softening point of the brittle substrate along the planned scribe line with respect to the formed vertical crack, and cooling the brittle substrate
  • a cooling nozzle that emits a cooling medium for the purpose, and a compressive stress generated in an irradiation region irradiated with laser light from a laser light oscillator on a brittle substrate and a cooling region emitted from the cooling nozzle. Due to the stress gradient generated by the tensile stress, the vertical crack formed by the glass cutter extends along the planned scribe line to form a scribe line.
  • loads other than the desired positions where vertical cracks are generated on the surface of the brittle substrate are loaded so as to contact the brittle substrate, and excessive pressing force is not applied to the brittle substrate. It is possible to prevent the brittle substrate from being damaged such as chipping when the glass cutter wheel tip runs on the brittle substrate.
  • the scribe condition can be taken according to the height of the brittle substrate surface, so that a stable scribe line can be formed constantly. it can.
  • the vertical crack is extended along the planned scribe line using the thermal strain generated in the brittle substrate, so that the cullet is formed. It occurs only slightly near the starting point, and it is drastically reduced compared to the conventional method using the cutting edge.

Abstract

ガラスカッター5のホィールチップ5aを、脆性材料基板Sの表面上に損傷を与えない程度の荷重で接触しながら移動させ、この脆性基板S上を移動するガラスカッター5に対して所定深さの垂直クラックを発生させる急俊な衝撃力を与えるアマチュアー6によって、脆性材料基板S上の所望の位置に垂直クラックを発生させる。この垂直クラックに対して、脆性材料基板S上におけるレーザ光発振器8からレーザ光が照射される照射領域に生じる圧縮応力と冷却ノズル7から放出される冷却媒体によって発生する冷却領域に生じる引張応力とにより発生する応力勾配によって、ガラスカッター5のホィールチップ5aによって形成された垂直クラックが、スクライブ予定ラインに沿って伸展させることによってスクライブラインを形成する。

Description

明 細 書
スクライブライン形成装置及びスクライブライン形成方法 技術分野
本発明は、 液晶ディスプレイ等に使用されるガラス基板等の脆性基板を分断す るためのライン状のスクライブラインを形成するスクライブライン形成装置及び スクライブライン形成方法に関する。 背景技術
小型の情報端末、 プロジェクシヨンに適用可能な液晶ディスプレイは、 情報処 理技術の急速な進歩に伴うパソコン巿場の拡大に伴って、 そのニーズが幅広いも のとなつており、 今後の展開が期待されている。
特に、 パソコン用、 T V用の液晶ディスプレイにおいては、 その表示画面を大 型化、 高精細化及び軽量化する要求が高まっており、 この要求にあわせてガラス 基板の大寸法化及び薄板化が進められている。 そして、 ガラス基板の大寸法化及 び薄板化に伴って、 このようなガラス基板を所望の寸法に高精細に分断する高度 な基板分断技術が要求されるようになつている。
ガラス基板等の脆性基板は、 ガラス基板の表面に所望の分断方向に沿ったライ ン状のスクライブラインを形成するスクライブ工程と、 ガラス基板の表面上に形 成されたスクライブラインに沿った曲げモーメントをかけることによりガラス基 板をスクライブラインに沿って分断するブレーク工程とを実行することにより分 断される。
ガラス基板にスクライブラインを形成するスクライブ工程では、 垂直クラック のラインであるスクライブラインを、 ガラス基板の表面に対して垂直下に深く浸 透させて形成することができれば、 後のブレーク工程において、 スクライブライ ンに沿って分断する際の分断精度を向上させることができるので、 垂直クラック を深く形成させることは重要である。
例えば、 実開昭 5 9 - 8 8 4 2 9号公報に示される様な手切りカッターを用い てカッターの先端に取り付けられたホイールチップをガラス基板の表面に加圧し て転動させることによって、 脆性材料基板の表面にスクライブラインを形成する 場合がある。 また、 複数の脆性材料基板の表面に、 数多くのスクライブラインを 連続して自動的に形成させる装置として、 例えば、 特開昭 5 5 — 1 1 6 6 3 5号 公報において開示されている装置を用いることが可能である。
ボイント式のダイャモンドを用いてガラス基板の表面を切削することによりス クライブラインを形成する方法は、 ガラス基板をボイント式のダイヤモンドで切 削する過程でガラスの欠片 (カレット) が必ず発生するので、 液晶ディスプレイ に使用されるガラス基板にスクライブラインを形成する場合には適していない。 また、 回転可能に支持されたホイールチップをガラス基板の表面に加圧して転 動させる方法では、 エアシリンダ等の昇降機構を備えて、 この昇降機構を用いて 基板表面に対してホイールチップを加圧させて、 垂直クラックを発生させている。 しかし、 このような昇降機構を用いた加圧方式では、 昇降機構による押圧力を 大きくしなければ、 ガラス基板の表面に十分な深さの垂直クラックを容易には形 成することが出来ない。 また、 押圧力を大きくすると、 ガラス基板の端部にホイ ールチップを乗り上げさせる際に、 ガラス基板の端部に欠け等の損傷が発生する おそれがあり、 また、 ガラス基板の平面部においても、 ガラス基板を分断した際 に、 分断面及び分断面を含むガラス基板の端面部に欠けを生じさせる原因となる 所望の方向でない方向にクラック (水平クラック) が発生する等の支障が生じる おそれがある。 そして、 この方法においても、 スクライブ時にガラスカレットが 発生する。
さらに、 ガラス基板に 「反り」 がある場合には、 ホイールチップがこの 「反 り」 に起因する基板表面の凹凸に追従出来ず、 ガラス基板の表面に適正な垂直ク ラックが得られないという問題がある。 本発明は、 上記問題点を解決するためになされたものであり、 ガラス基板の端 部に欠けが発生する等の支障をきたすことなく、 ガラス基板に十分な深さを有す る垂直クラックを発生させることができるスクライブライン形成装置及びスクラ ィブライン形成方法を提供することを目的とする。 発明の開示
上記課題を解決するため、 本発明によれば、 先端に刃先を有し、 押圧力を付与 して刃先を脆性基板の表面に押圧し、 スクライブラインの起点となる垂直クラッ クを形成するための垂直クラック形成部材と、
該脆性基板上の所望の位置で、 所定の深さの垂直クラックを発生させるために、 該垂直クラック形成部材に対して急俊な衝撃力を付与する衝撃力付与手段と、 該脆性基板の軟化点よりも低い温度の領域を形成する加熱手段と、
該脆性基板を冷却する冷却手段と、
該加熱手段、 該垂直クラック形成部材、 衝撃力付与手段及び該冷却手段を、 脆 性基板の表面上に予め設定されたスクライブ予定ラインに沿って一定の間隔をあ けた状態で、 脆性基板に対して相対移動可能に配置された配置移動手段と、 衝撃力付与手段の駆動を制御する制御部とを備えていることを特徴とするスク ライブライン形成装置が提供される。
制御部は、 刃先が脆性基板表面に損傷を与えない程度の荷重で接触しながら移 動されるよう垂直クラック形成部材および配置移動手段の駆動を制御し、 刃先が 脆性基板の端部近傍および予め形成されたスクライブラインを通過する通過点の 近傍に位置するとき、 脆性基板上に所定の深さの垂直クラックを発生させるよう 衝撃力付与手段の駆動を制御する構成が好ましい。
加熱手段は、 脆性基板上を移動する前記垂直クラック形成部材の上下動から該 脆性基板表面の高さ変化を検出し、 この検出結果に基づいて前記レーザ光発振器 から照射されるレーザ光の焦点を調整するためのサーボ機構を具備してなる構成 が好ましい。
冷却手段は、 脆性基板上を移動する前記垂直クラック形成部材の上下動に連動 して上下動するよう配置移動手段に配置されている構成が好ましい。
配置移動手段が、 スクライブ予定ラインの前方側から、 垂直クラック形成部材、 加熱手段及び冷却手段または、 加熱手段、 垂直クラック形成部材及び冷却手段の いずれかの順に前記 3つの部材を配置してなる構成が好ましい。
配置移動手段が、 垂直クラック形成部材、 加熱手段及び冷却手段を、 互いの相 対位置を変更できるように配置してなる構成が好ましい。
冷却手段は、 冷却媒体を放出する冷却ノズルであるものが挙げられる。
冷却手段は、 冷却手段の高さ位置を調整するサーボ機構を有するものが挙げら れる。
垂直クラック形成部材は、 ホイールチップを刃先としてこれを転動可能に支持 したガラスカッターであるものが挙げられる。
加熱手段は、 所定のレーザ光を照射するレーザ光発振器であるものが挙げられ る。
衝撃力付与手段は、 ソレノィドコイルへの通電をオンまたはオフすることによ つて、 刃先を脆性基板表面上に押圧する移動慣性を発生させるアマチュア一であ るものが挙げられる。
脆性基板の表面の高さ変化を検出するためのレーザ変位計または接触式変位計 をさらに具備してなるものが挙げられる。
脆性基板は、 液晶表示装置用ガラス基板、 プラズマディスプレイパネル用ガラ ス基板および有機 E Lディスプレイパネル用ガラス基板が挙げられる。
本発明の別の観点によれば、 先端に刃先を有する垂直クラック形成部材を脆性 基板上を移動させながら刃先に急俊な衝撃力を与える衝撃力付与手段によって、 脆性基板上の所望の位置に所定深さの垂直クラックを発生させる工程と、
該垂直クラックに対して、 基板上に設定されたスクライブ予定ラインに沿って、 該脆性基板の軟化点よりも低い温度の照射領域を形成すると共に、 該照射領域の 後方に冷却領域を形成してスクライブラインを形成する工程と、
を包含することを特徴とするスクライブ形成方法が提供される。
本発明のスクライブライン形成方法は、 刃先が脆性基板の端部近傍および予め 形成されたスクライブラインと交差する点の近傍に位置したとき、 衝撃力付与手 段によって、 脆性基板上の所望の位置に所定深さの垂直クラックを発生させる構 成が好ましい。 図面の簡単な説明
図 1は、 実施の形態 1のスクライブライン形成装置の概略を示す側面図である。 図 2は、 実施の形態 1のスクライブライン形成装置の概略を示す正面図である。 図 3 ( a ) 〜 (e ) は、 それぞれ、 実施の形態 1のスクライブライン形成装置 によってスクライブラインを形成する方法を順番に説明する斜視図である。
図 4は、 実施の形態 2のスクライブライン形成装置の概略を示す側面図である。 図 5は、 実施の形態 2のスクライブライン形成装置の概略を示す正面図である。 図 6 ( a ) 〜 (e ) は、 それぞれ、 実施の形態 2のスクライブライン形成装置 によってスクライブラインを形成する方法を順番に説明する斜視図である。
図 7は、 実施の形態 3のスクライブライン形成装置の概略を示す正面図である。 発明を実施するための最良の形態
以下、 本発明のスクライブライン形成装置及びスクライブライン形成方法につ いて、 図面に基づいて詳細に説明する。
(実施の形態 1 )
図 1は、 本実施の形態 1のスクライブライン形成装置 1の概略を示す側面図で あり、 図 2は、 図 1の I— I線断面からのスクライブライン形成装置 1の正面図 を示している。 このスクライブライン形成装置 1は、 図 1及び図 2に示すように、 スクライブ ラインを形成する脆性材料基板 Sを水平状態に固定するテーブル 1 0 1を有して いる。 ここで、 本明細書で記載される脆性材料基板 Sは、 具体的には、 マザ一基 板と呼ばれる大きな寸法の基板を意味している。 ガラス製、 セラミック製、 半導 体ウェハーなどの基板があって、 それらが順次所定の小さな大きさに分断されて 種々の用途に用いられる。 脆性材料基板 Sが固定されるテーブル 1 0 1の側方の 側壁 1 0 2には、 水平方向 (紙面と鉛直な方向) に沿ったガイドレール 1 0 3が 設けられている。 このガイドレール 1 0 3には、 内部に駆動モータを備えた駆動 装置 1 1の一端側が接続されている。 駆動装置 1 1には、 駆動モ一夕の駆動によ りガイドレール 1 0 3が延びる方向に沿って一定方向にスライド可能になってい る。
この駆動装置 1 1の他端側には、 サ一ボモー夕 2が設けられている。 このサ一 ポモータ 2は、 駆動装置 1 1が設けられた側とは反対側に、 水平方向に所定長さ に突出した回転軸 3を有している。 この回転軸 3は、 サーボモー夕 2により回転 駆動されるようになっており、 この回転軸 3の先端部には、 回転軸 3と一体的に 回転する支持フレーム 4が取り付けられている。
サーボモータ 2の回転軸 3に取り付けられた支持フレーム 4は、 図 1に示すよ うに、 平坦な板状に形成されたフレーム本体部 4 aと、 このフレーム本体部 4 a の一端側から上方に所定高さに突出する突出部 4 bとを有しており、 側面視で略 L字状になるように形成されている。 この支持フレーム 4は、 突出部 4 bが設け られた一端側を、 ガイドレール 1 0 3に沿った進行方向の前方側 (図 1中の左 方) に配置して、 突出部 4 bの上端が、 サーボモータ 2の回転軸 3に取り付けら れている。
支持フレーム 4におけるフレーム本体部 4 aの後方寄りの下面には、 ガラス力 ッター 5が取り付けられている。 ガラスカッター 5は、 超硬合金または焼結ダイ ャモンド等の超硬度を有する材質により形成されたホイールチップ 5 aと、 この ホイールチップ 5 aを回転可能に支持するホルダ 5 bとを有している。
ガラスカッター 5は、 ホルダ 5 bの上端が、 支持フレーム 4のフレーム本体部 4 aの下面に取り付けられることによって、 支持フレーム 4の移動に伴って一体 的に移動するようになっている。 ホイールチップ 5 aは、 円形状であって幅方向 の中央部が最大径になるように突出している。 このホイ一ルチップ 5 aは、 下面 を開放したホルダ 5 bによって、 軸心部が回転可能に支持されている。 ホイール チップ 5 aは、 脆性材料基板 S上において、 垂直クラックを発生させる位置以外 でも、 常時、 脆性材料基板 Sの表面上に接触しており、 脆性材料基板 Sの表面上 に対して所定以上の衝撃力が加わるように押圧されると、 脆性材料基板 S上に垂 直クラックを発生させる。
支持フレーム 4のフレーム本体部 4 aの上面のガラス力ッ夕ー 5の近傍には、 衝撃力付与手段であるアマチュア一 6が設けられている。 このアマチュア一 6の 周囲には、 下方に付勢するスプリング (図示せず) が装着されて、 アマチュア一 6は、 常時、 下方に付勢力が加わった状態になっている。 また、 アマチュア一 6 の内部には、 所定電圧の印加により上方に持ち上げる電磁力を発生するソレノィ ドコイル 6 aが備えられており、 電圧が印加された状態では、 ソレノイドコイル 6 aによる上方への電磁力と、 スプリングによる下方への付勢力とが平衡して、 静止した状態になっている。 そして、 ソレノイドコイル 6 aへの電圧の印加、 す なわちソレノィドコイル 6 aへの電流の供給が停止した場合に、 ソレノィドコィ ル 6 aによる上方への電磁力が消失して、 スプリングによる下方への付勢力によ つて、 フレーム本体部 4 aの上面に、 ガラスカッター 5のホイールチップ 5 aを 脆性材料基板 Sの表面に対して垂直クラックが発生する程度の衝撃力が付与され る。 そして、 再び所定の電圧が印加されると、 上方への電磁力が作用して、 静止 状態に戻るようになつている。
なお、 本実施の形態 1では、 電圧の印加が停止した場合に、 スプリングの下方 への付勢力によつて支持フレーム 4のフレーム本体部 4 aに衝撃力が加えられる 機器構成とした場合について説明したが、 逆に、 通常の状態では、 アマチュア一
6がスプリングによる上方への付勢力によって静止状態に支持されていて、 電圧 が印加 (電流が供給) された場合に、 下方への電磁力が加わって、 フレーム本体 部 4 aに衝撃力が加わる機器構成としてもよい。 後者の場合のほうが、 電流の印 加時間が短いので電力消費が少なくて済む。
支持フレーム 4のフレーム本体部 4 aの後端部には、 冷却媒体を放出するため の冷却ノズル 7が、 フレーム本体部 4 aと一体的に取り付けられており、 支持フ レーム 4のフレーム本体部 4 aが脆性材料基板 S上の凹凸等により上下に移動し ても、 支持フレーム 4のフレーム本体部 4 aの上下動に追従して移動できるよう になっている。 また、 この冷却ノズル 7は、 所定の冷却媒体が冷却状態に貯蔵さ れた図示しない冷却媒体源に接続されている。 冷却ノズル 7から放出される冷却 媒体としては、 冷却水、 冷却アルコール等の低温液体、 または、 液状窒素、 ドラ ィアイス等を気化させて得られる窒素、 二酸化炭素等の低温気体が用いられ、 へ リウムゃアルゴンなどの不活性ガス、 単なるエアなども用いられる。
サ一ボモータ 2の後部側には、 支持フレーム 4における本体フレーム 4 aの所 定位置に形成された穴部 4 cを介して脆性材料基板 Sの表面上に所定のレーザ光 を照射して、 レーザ光が照射された部分を加熱するレーザ光発振器 8が設けられ ている。 なお、 本実施の形態 1では、 レーザ光発振器 8が発振するレーザ光によ り脆性材料基板 Sの表面に加熱スポットを形成しているが、 脆性材料基板 Sをス ポットとして加熱できるものであれば、 レーザ光の他、 赤外線、 紫外線等を発生 させる加熱源を用いてもよい。
上述のレーザ光発振器 8、 ガラスカッター 5、 冷却ノズル 7は、 ガイドレール 1 0 3に沿った進行方向に沿って、 この順に配置されており、 レーザ発振器 8か ら照射されるレーザ光の照射領域、 ガラスカッター 5のホイールチップ 5 aが脆 性材料基板 S上に接触する接触領域、 冷却ノズル 7から放出される冷却媒体によ つて冷却される冷却領域が、 脆性材料基板 S上に互いに近接してこの順に形成さ れるようになっている。
サ一ポモー夕 2の上部側には、 駆動装置 1 1、 レーザ発振器 8、 冷却ノズル 7 等の上記各構成の駆動をそれぞれ制御する制御装置 9が設けられている。 この制 御装置 9には、 駆動装置 1 1によるガイドレール 1 0 3方向に沿った、 駆動装置 1 1、 レーザ発振器 8および冷却ノズル 7の移動の変位量 (すなわち、 本体フレ ーム 4の移動の変位量) を検出すると共に、 サーポモ一夕 2の回転軸 3の変位を 検出することによって脆性材料基板 Sの表面に接触しているガラスカッター 5の ホイールチップ 5 aの上下動の変位量を検出するエンコーダが設けられている。 すなわち、 スクライブの起点となる垂直クラックを形成するために設置される ガラスカッター 5のホイールチップ 5 aは、 脆性材料基板 S上の垂直クラックを 形成しない部分においても、 常時、 脆性材料基板 Sの表面に接触しており、 脆性 材料基板 S上に存在する凹凸等によって、 脆性材料基板 Sの表面に接触するホイ ールチップ 5 aに上下動が生じると、 このホイールチップ 5 aの上下動に伴って、 ホルダ 5 bを固定している支持フレーム 4のフレーム本体部 4 bにも上下動が生 じ、 この支持フレーム 4のフレーム本体部 4 bの上下動が、 サーポモータ 2の回 転軸 3の回転移動を発生させる。 制御装置 9に備えられたエンコーダにより、 こ のサーボモ一夕 2の回転軸 3の回転を検出することによって、 ホイールチップ 5 aの上下動が検出される。
制御装置 9は、 エンコーダによって、 ホイールチップ 5 aの変位量から脆性材 料基板 S表面の凹凸を検出することができ、 この検出結果に基づいて、 レーザ発 振器 8から照射されるレーザ光の焦点形成位置が調整されて、 脆性材料基板 Sの 表面上の凹凸に追従してレーザ光は、 そのビーム形状、 波長やパルス幅に応じて 照射対象物の表面、 表面付近又は内部の所定一定深さ位置に焦点が合うように自 動制御されて基板上を相対移動させられる。
なお、 本実施の形態 1では、 冷却ノズル 7が支持フレーム 4のフレーム本体部
4 aの後端に一体的に取り付けられて、 脆性材料基板 Sの表面に接触するガラス カッター 5の上下動に追従して移動することにより、 脆性材料基板 Sの表面に対 して常に同一の高さから冷却媒体が放出されるようになっているが、 上記のレー ザ光発振器 8と同様に、 冷却ノズル 7の高さ位置を、 エンコーダによる検出結果 に基づいて調整するようにしてもよい。
次に、 本実施の形態 1のスクライブライン形成装置の動作について、 図 3
( a ) 〜 (e ) を参照して説明する。
まず、 図 3 ( a ) に示すように、 ホイールチップ 5 aをテーブル後方側に位置 する状態として、 スクライブラインの形成対象となる脆性材料基板 Sをテーブル 1 0 1上の所定位置に固定する。
次に、 駆動装置 1 1および制御装置 9を駆動させて、 ホイールチップ 5 a、 レ 一ザ発振器 8、 冷却ノズル 7を取り付けた支持フレーム 4を、 脆性材料基板 Sの 表面上を前方(図 1の左方)に向けて移動させる。 この状態では、 ガラスカッター 5のホイールチップ 5 aは、 その高さ位置がテーブル 1 0 1に載置された脆性材 料基板 Sに対して、 若干下方位置になるように設置されている。 また、 制御装置 9は、 脆性材料基板 Sの表面に過度の押圧力が下方に加わらないように、 サーボ モー夕 2によりガラスカッター 5を取り付けた支持フレーム 4にかかるトルクが 制御されている。
駆動装置 1 1の駆動により前進したガラスカッター 5のホイールチップ 5 aが 脆性材料基板 Sの端部の位置に到達する。 このとき、 ガラスカッター 5には、 脆 性材料基板 Sの表面に垂直クラックを発生させる押圧力が加わらないように制御 されているため、 脆性材料基板 Sの表面より若千下方に設置されたホイールチッ プ 5 aは、 脆性材料基板 Sの端部に接触した後、 脆性材料基板 Sの端部に欠け等 を発生させることなく、 そのまま脆性材料基板 Sの表面上に乗り上がる。 この脆 性材料基板 S表面上への乗り上げによって、 ガラスカッター 5に上下動が生じ、 この上下動がサーボモー夕 2の回転軸 3の回転に伝達され、 ガラスカッター 5の ホイールチップ 5 aが脆性材料基板 Sの表面に乗り上げられたことが、 制御装置 9に備えられたエンコーダによって検出される。
エンコーダによってガラスカッター 5のホイールチップ 5 aが脆性材料基板 S の表面上に乗り上がったことが検出されると、 制御装置 9は、 アマチュア一 6の ソレノイドコイル 6 aに印加されている電圧をオフにする。 これにより、 ァマチ ユア一 6は、 スプリングの付勢力によって下方に移動し、 フレーム本体部 4 aの 上面に衝撃力を付与する。 この衝撃力の付与によって、 脆性材料基板 Sの表面に 接触しているガラスカッター 5のホイールチップ 5 aは、 脆性材料基板 Sの表面 上の端部に急俊な衝撃力を与え、 脆性材料基板 Sの表面上には、 図 3 ( b ) に示 すように、 所定深さの垂直クラック Tが形成される。 次いで、 再びソレノイドコ ィル 6 aに電圧が印加され、 アマチュア一 6を上方に押し上げる電磁力が発生し て、 スプリングの下方への付勢力と上方に押し上げる電磁力とがつりあった状態 となって、 アマチュア一 6は所定高さ位置において静止状態となる。
ガラスカッター 5のホイールチップ 5 aによつて脆性材料基板 Sの端部にスク ライブの起点となる垂直クラック Tが形成された後は、 制御装置 9は、 脆性材料 基板 Sの表面にスクライブが形成されるほどの押圧力が加わらないように、 脆性 材料基板 Sの表面への接触状態を維持する程度の微小な荷重が加えられるように、 サーボモータ 2を制御する。
脆性材料基板 Sの表面に接触しながら転動するホイールチップ 5 aを有するガ ラスカッター 5は、 脆性材料基板 Sの表面上に凹凸、 反り等があると、 脆性材料 基板 Sに接触するホイールチップ 5 aに上下動が生じ、 このホイールチップ 5 a の上下動に伴って、 ホルダ 5 bを固定している支持フレーム 4にも上下動が生じ、 この支持フレーム 4の上下動によって、 サーポモー夕 2の回転軸 3に回転移動が 生じる。 制御装置 9に備えられるエンコーダでは、 このサ一ポモー夕 2の回転軸 3の回転移動を検出することによって、 脆性材料基板 S上の凹凸、 反り等を検出 する。 制御装置 9は、 このようにエンコーダによって検出された脆性材料基板 S 上の凹凸、 反り等に基づいて、 レーザ光発振器 8の焦点位置の調整を行う。 これ により、 脆性材料基板 S上に凹凸等が生じていても、 脆性材料基板 Sの表面上又 は内部の一定深さ位置に焦点が合った状態でレーザ光が照射される。 また、 冷却 媒体を供給する冷却ノズル 7は、 支持フレーム 4のフレーム本体部 4 bの後端部 に一体的に取り付けられているので、 脆性材料基板 Sの表面の凹凸によつて上下 動するホイールチップ 5 aの動きに連動して、 上下動するようになっており、 冷 却ノズル 7は、 脆性材料基板 Sに対して、 冷却ノズル 7の先端と脆性材料基板 S との間の距離が一定に保たれるようになっており、 脆性材料基板 Sに凹凸等があ つても、 常に適正に冷却媒体を供給できる位置とされる。
引き続いて、 駆動装置 1 1および制御装置 9の駆動によって、 図 3 ( c ) に示 すように、 レーザ光発振器 8、 ホイールチップ 5 a、 冷却ノズル 7のそれぞれが 脆性材料基板 Sの表面上を一定方向に移動する。 このとき、 走查方向の前方側で は、 レーザ光発振器 8によって照射されたレーザ光により、 脆性材料基板 Sの表 面が溶融されない温度、 すなわち、 ガラス軟化点よりも低い温度に加熱される。 これにより、 レーザ光が照射される照射領域 Lでは、 脆性材料基板 Sの表面が溶 融されることなく加熱される。
また、 脆性材料基板 Sの表面におけるレーザ光の照射領域 Lの近傍となる後方 側には、 冷却ノズル 7から冷却媒体が放出されて、 冷却領域 Cが形成されている。 レーザ光が照射されて加熱されるレーザ光照射領域 Lの脆性材料基板 Sの表面に は、 レーザ光による加熱によって圧縮応力が生じ、 冷却媒体が放出される冷却領 域 Cには、 冷却媒体によるガラス表面の冷却により引張り応力が生じる。 このよ うに、 圧縮応力が生じたレーザ光照射領域 Lに近接して引張り応力が生じるため に、 両領域間に、 それぞれの応力に基づく応力勾配が発生し、 脆性材料基板 Sに は、 脆性材料基板 Sの端部に形成された垂直クラック Tを起点として、 スクライ ブ予定ラインに沿って、 ほぼ垂直クラック Tの深さで、 この垂直クラックが伸展 していく。 このように、 順次、 レーザ光発振器 8、 冷却ノズル 7が一定方向に走 查されることによって、 走查方向に沿ったスクライブラインが形成される。 脆性材料基板 Sの端部においてガラスカツ夕一 5のホイールチップ 5 aによつ て形成された垂直クラック Tを起点として、 レーザ光が照射されるレーザ光照射 領域 Lと冷却媒体が放出される冷却領域 Cとの応力勾配を利用したスクライブラ インの形成は、 図 3 ( d ) に示すように、 レーザ光照射領域 Lと冷却領域 Cとの 間に、 走査方向に交差するスクライブライン S L Cが既に形成されている場合に は、 応力勾配が交差するスクライブライン S L Cの部分で途切れた状態となって、 交差するスクライブライン S L Cを超えて、 スクライブラインを形成することが できない場合がある。 そこで、 本実施の形態 1のスクライブライン形成装置では、 制御装置 9に備えられたエンコーダによって、 駆動装置 1 1によるガイドレール 1 0 3に沿った本体フレーム 4の移動距離が検出されており、 制御装置 9が、 交 差するスクライブライン S L Cが形成された位置を記憶することによって、 ガラ スカッター 5のホイールチップ 5 aが交差するスクライブライン S L Cを超えた 位置に到達する直前に、 アマチュア一 6のソレノィドコイル 6 aへの電圧印加 (電流の供給) が停止される。 この電圧のオフは、 交差するスクライブライン S L Cに到達するのと同時ではなく、 ソレノイドコイル 6 aのインダク夕ンス成分 による電気的過渡遅れによる時間分とホイールチップ 5 aが該交差位置 Zの真上 で所定の高さ位置迄上昇するだけの機械的慣性分の移動時間遅れ分を合計した時 間分だけ早めに電圧がオフにされる。 その時間分は、 コイルの電気的特性値と流 す電流値 (必要なトルク値) とホイールチップ 5 aの基板に対する相対移動速度 から求めることができる。 そうして求めた時間遅れ分の値を予め制御装置 9に記 憶させておき、 スクライブ条件が新たに設定されたり変更されたりする度に、 対 応する遅れ時間の値を記憶領域から読み出して使用する。 そうした遅れ時間に相 当する時間分だけ早めにソレノィドコイル 6 aへの通電を停止させることにより、 アマチュア一 6は、 スプリングの付勢力によって下方に移動し、 支持フレーム 4 の上面に衝撃力を付与する。 この衝撃力の付与によって、 脆性材料基板 Sの表面 上の端部および図 3 ( e ) に示した、 該交差位置 Zの近傍には急俊な衝撃力が与 えられ、 脆性材料基板 Sの表面上の交差するスクライブライン S L Cを超えた位 置に、 スクライブライン形成の起点となる所定深さの垂直クラック Tが形成され る。
これにより、 スクライブライン S Lを形成する途上に、 走査方向に交差するス クライブライン S L Cが形成されていても、 垂直クラック Tに連続したスクライ ブライン S Lを確実に形成することができる。
以上説明したように、 本実施の形態 1のスクライブライン形成装置 1は、 ガラ スカッター 5の上方側に配置されたアマチュア一 6からの衝撃力によつて脆性材 料基板 Sの表面上に垂直クラック Tを発生させるため、 脆性材料基板 Sの表面上 の所望の位置にのみ急俊な衝撃力を発生させて、 高精細に分断するために充分な 深さの垂直クラック Tを発生させることができる。
アマチュア一 6からの衝撃力は、 前記従来の昇降装置による加圧力に比べると 極端に小さい力ですむので、 装置の簡略化、 小型化を図れる。
アマチュア一 6から衝撃力が与えられない場合に、 ガラスカッター 5は、 脆性 材料基板 Sの表面に必要最小限のスクライブ圧で接触してスクライブ動作を実行 するので、 ガラスカッター 5のホイールチップ 5 aが脆性材料基板 Sに乗り上が る際に脆性材料基板 Sの端部に欠け等が発生することを防止することができる。 また、 脆性材料基板 Sの表面に接触しているガラスカッター 5のホイールチッ プ 5 aは脆性材料基板 Sの表面上の凹凸等に対応して上下動を生じ、 この上下動 をサーポモー夕 2の回転軸 3の回転からエンコーダが検出し、 この検出結果に基 づいて、 レーザ発振器 8の焦点位置を調整することができるので、 脆性材料基板 Sに凹凸等があっても、 脆性材料基板 Sの表面上又は所定深さの一定位置にレー ザ光が適切に照射され、 高精細なスクライブラインを表面又は内部に形成するこ とができる。
さらに、 ガラスカッター 5のホイ一ルチップ 5 aによりスクライブラインの起 点となる垂直クラック Tを形成し、 この垂直クラック Tをスクライブ予定ライン に沿って伸展させる手段として、 脆性材料基板 Sにレーザ光による加熱と冷却媒 体による冷却による温度勾配を形成し、 形成された温度勾配に基づく脆性材料基 板 Sの熱歪みを利用しているため、 力レツトは起点付近にごくわずかに発生する のみとなり、 従来の刃先を用いた方法と比較すると発生する力レツ卜の量は激減 する。
制御装置 9は、 ホイールチップ 5 aが脆性基板表面に損傷を与えない程度の荷 重で接触しながら移動されるよう駆動装置 1 1の駆動を制御し、 ホイールチップ 5 aが脆性基板 Sの端部近傍および予め形成されたスクライブライン S L Cの交 差位置 Zの近傍に位置するとき、 脆性基板上に所定の深さの垂直クラックを発生 させるようアマチュア一 6の駆動を制御するので、 高精緻なスクライブライン S Lを形成することができる。
(実施の形態 2 )
図 4は、 本実施の形態 2のスクライブライン形成装置 1 ' の概略を示す側面図 であり、 図 5は、 図 4の IV— IV線断面からのスクライブライン形成装置 1 ' の正 面図を示している。
本実施の形態 2のスクライブライン形成装置 1 ' は、 図 4に示すように、 レー ザ発振器 8が、 ガラスカッター 5のホイールチップ 5 aが脆性材料基板 Sの表面 に接触する部分より後方側にレーザ光を照射するように、 制御装置 9から後方側 (図中右方) に延びた位置に設けられている。
他の構成は、 前述の実施の形態 1のスクライブ形成装置 1と同様となっている ので、 詳しい説明は省略する。
このスクライブライン形成装置 では、 ホイールチップ 5 a、 レーザ発振器 8、 冷却ノズル 7が、 ガイドレール 1 0 3に沿った進行方向に沿って、 この順に 配置されており、 ガラスカッター 5のホイールチップ 5 aが脆性材料基板 S上に 接触する接触領域、 レーザ発振器 8から照射されるレーザ光の照射領域、 冷却ノ ズル 7から放出される冷却媒体によって冷却される冷却領域が、 脆性材料基板 S 上に互いに近接して形成されるようになっている。
本実施の形態 2のスクライブライン形成装置 1 ' では、 脆性材料基板 Sの表面 に接触した状態で移動するガラスカッター 5のホイールチップ 5 aの上下動を、 サーボモ一夕 2の回転軸 3の回転に基づいて、 制御装置 9に設けたエンコーダに よって検出する。 そして、 この検出結果に基づいて、 ガラスカッター 5の後方側 に配置されたレーザ発振器 8のレーザ照射位置を調整する。
なお、 本実施の形態 2のスクライブライン形成装置 1 ' の動作についても、 前 述の実施の形態 1のスクライブライン形成装置 1の動作と概略同一であり、 この 実施の形態 2のスクライブライン形成装置 1 ' の動作について説明する図 6
( a ) 〜 (e ) を参照するとして、 詳しい説明は省略する。
本実施の形態 2のスクライブライン形成装置 1 ' では、 ガラスカッター 5の上 方側に配置されたアマチュア一 6からの衝撃力によって脆性材料基板 Sの表面上 に垂直クラック Tを発生させるため、 脆性材料基板 Sの表面上の所望の位置にの み急俊な衝撃力を発生させて、 高精細に分断するために充分な深さの垂直クラッ ク Tを発生させることができ、 アマチュア一 6から衝撃力が与えられない場合に は、 ガラスカッター 5のホイールチップ 5 aは、 脆性材料基板 Sの表面に接触し て所定のスクライブを発生させる軽度の荷重しか加えられていないので、 ガラス カッター 5のホイ一ルチップ 5 aが脆性材料基板 Sに乗り上がる際に脆性材料基 板 Sの端部に欠け等が発生することを防止することができる。
また、 脆性材料基板 Sの表面上の凹凸等が、 脆性材料基板 Sの表面に接触して いるガラスカツ夕一 5のホイールチップ 5 aの上下動をサーボモ一夕 2の回転軸 3の回転からエンコーダが検出し、 この検出結果に基づいて、 レーザ発振器 8の 焦点位置を脆性材料基板 Sに存在する凹凸に追従して調整することができるので、 脆性材料基板 Sの凹凸等があっても、 脆性材料基板 Sの表面上又は所定の深さの 位置にレーザ光が適切に照射され、 高精細なスクライブラインを形成することが できる。 (実施の形態 3 )
図 7は、 本実施の形態 3のスクライブライン形成装置 1 " の概略を示す側面図 である。
本実施の形態 3は、 支持フレーム 4の本体フレーム 4 aの下面において、 ガラ スカッター 5の前方になる位置に、 脆性材料基板 Sの凹凸、 反り等の変動をレー ザ光の照射によって検出するレーザ変位計 1 0が設けられている。 他の構成は、 前述の実施形態 1のスクライブライン形成装置 1と同様であり、 詳しい説明は省 略する。
また、 本実施の形態 3のスクライブライン形成装置 1 " の動作についても、 脆 性材料基板 Sの表面の凹凸をレーザ変位計 1 0を用いて検出する点以外は、 前述 の実施の形態 1のスクライブライン形成装置の動作と概略同一であり、 詳しい説 明は省略する。
本実施の形態 3のスクライブライン形成装置 1 " は、 ガラスカッター 5の上方 側に配置されたアマチュア一 6からの衝撃力によつて脆性材料基板 Sの表面上に 垂直クラックを発生させるため、 脆性材料基板 Sの表面上の所望の位置にのみ急 俊な衝撃力を発生させて、 高精細に分断するために充分な深さの垂直クラック T を発生させることができ、 アマチュア一 6.から衝撃力が与えられない場合には、 ガラスカッター 5のホイールチップ 5 aは、 脆性材料基板 Sの表面に接触して所 定のスクライブを発生させる軽度の荷重しか加えられていないので、 ガラスカツ 夕一 5のホイールチップ 5 aが脆性材料基板 Sに乗り上がる際に脆性材料基板 S の端部に欠け等が発生することを防止することができる。
また、 脆性材料基板 Sの表面上の凹凸等が、 脆性材料基板 Sの表面に接触して いるガラスカツ夕一 5の前方側に設けられたレーザ変位計 1 0によって検出され、 この検出結果に基づいて、 レーザ発振器 8の焦点位置を脆性材料基板 Sに存在す る凹凸に追従して調整することができるので、 脆性材料基板 Sに凹凸等があって も、 脆性材料基板 Sの表面上又は内部の一定深さ位置に常に焦点が合った状態で 照射され、 高精細なスクライブを形成することができる。
なお、 脆性材料基板 Sの表面上の凹凸等は、 上記のレーザ変位計 1 0のほかに, 接触式変位計を設けることによつても検出することができる。
上記の実施の形態 1〜 3でそれぞれ説明したスクライブライン形成装置は、 ガ ラスカッター 5、 冷却ノズル 7およびレーザ光発振器 8を固定して配置したが、 スクライブライン形成条件に応じ、 これらを互いの相対位置を変更できるように 公知の技術を用いて支持フレーム 4上に配置する構成としてもよい。 これにより, スクライブライン形成条件に応じた適正なスクライブラインを形成することがで きる。 なお、 スクライブライン形成における諸条件とこれらの互いの相対位置と の関係は日本国特許第 3 0 2 7 7 6 8号の公報を参照されたい。
上記の実施の形態 1〜 3でそれぞれ説明したスクライブライン形成装置は、 脆 性材料基板 Sにスクライブラインの起点となる垂直クラック Tを発生させるガラ スカッター 5のホイールチップ 5 aを、 脆性材料基板 Sの表面上の凹凸、 反りを 検出するようにしたので、 装置構成を安価でコンパク卜なものとすることができ る。
本発明の特徴の一つとして、 基板 Sの端部または交差位置 Zを予めレーザ光に よって加熱後、 スクライブラインの起点となる垂直クラック Tを形成させる事が 可能なので、 基板 Sの端部または交差位置 Zにおける制御不能なクラックの発生 を抑えることができる。
垂直クラック Tの形成を進行方向において、 端部をわずかに越えた基板内の位 置で行い (内切りの開始) あるいはスクライブラインの形成を進行方向末端のわ ずか手前で終了する (内切りの終了) 様に制御装置 9を駆動することにより、 上 記の制御不能なクラックの発生を抑えることができる。 産業上の利用可能性
以上説明したように、 本発明は、 ガラスカッターのホイールチップを、 脆性基 板の表面上に損傷を与えない程度の荷重で接触しながら移動させ、 この脆性基板 上を移動するガラスカッターに対して所定深さの垂直クラックを発生させる急俊 な衝撃力を与える衝撃力付与手段によって、 脆性基板上の所望の位置に垂直クラ ックを発生させる。 そして、 形成された垂直クラックに対して、 スクライブ予定 ラインに沿って、 脆性基板の軟化点よりも低い温度の照射領域が形成されるレー ザ光を照射するレーザ光発振器と、 脆性基板を冷却するための冷却媒体を放出す る冷却ノズルとを配置し、 脆性基板上におけるレーザ光発振器からレーザ光が照 射される照射領域に生じる圧縮応力と該冷却ノズルから放出される冷却領域に生 じる引張応力とにより発生する応力勾配によって、 ガラスカッターによって形成 された垂直クラックが、 スクライブ予定ラインに沿って伸展させることによって スクライブラインを形成する。
したがって、 本発明では、 脆性基板の表面上に垂直クラックを発生させる所望 の位置以外では、 脆性基板に接触する程度の荷重がかかっており、 過度の押圧力 が脆性基板に付加することがないので、 ガラスカッターのホイ一ルチップが脆性 基板上に乗り上がる場合等に脆性基板に欠け等の損傷を生じることを防止するこ とができる。
また、 脆性基板の表面に凹凸があったり、 脆性基板に反りがある場合でも、 脆 性基板表面の高さに応じた適正なスクライブ条件を採り得るので、 常に安定した スクライブラインを形成することができる。
さらに、 スクライブラインの起点となる垂直クラックを刃先で形成する以外は、 その垂直クラックを脆性基板に生じる熱歪みを利用してスクライブ予定ラインに 沿って伸展させてスクライブラインを形成するため、 カレットは起点付近にごく わずかに発生するのみとなり、 従来の刃先を用いた方法と比較すると激減する。

Claims

請求の範囲
1 . 先端に刃先を有し、 押圧力を付与して刃先を脆性基板の表面に押圧し、 スク ライブラインの起点となる垂直クラックを形成するための垂直クラック形成部材 と、
該脆性基板上の所望の位置で、 所定の深さの垂直クラックを発生させるために、 該垂直クラック形成部材に対して急俊な衝撃力を付与する衝撃力付与手段と、 該脆性基板の軟化点よりも低い温度の領域を形成する加熱手段と、
該脆性基板を冷却する冷却手段と、
該加熱手段、 該垂直クラック形成部材、 衝撃力付与手段及び該冷却手段を、 脆 性基板の表面上に予め設定されたスクライブ予定ラインに沿って一定の間隔をあ けた状態で、 脆性基板に対して相対移動可能に配置された配置移動手段と、 衝撃力付与手段の駆動を制御する制御部とを備えたスクライブライン形成装置。
2 . 制御部は、 刃先が脆性基板表面に損傷を与えない程度の荷重で接触しながら 移動されるよう垂直クラック形成部材および配置移動手段の駆動を制御し、 刃先 が脆性基板の端部近傍および予め形成されたスクライブラインを通過する通過点 の近傍に位置するとき、 脆性基板上に所定の深さの垂直クラックを発生させるよ う衝撃力付与手段の駆動を制御する請求の範囲第 1項に記載のスクライブライン 形成装置。
3 . 加熱手段は、 脆性基板上を移動する前記垂直クラック形成部材の上下動から 該脆性基板表面の高さ変化を検出し、 この検出結果に基づいて前記レーザ光発振 器から照射されるレーザ光の焦点を調整するためのサーボ機構を具備してなる請 求の範囲第 1項に記載のスクライブライン形成装置。
4 . 冷却手段は、 脆性基板上を移動する前記垂直クラック形成部材の上下動に連 動して上下動するよう配置移動手段に配置された請求の範囲第 1項に記載のスク ライブライン形成装置。
5 . 配置移動手段が、 スクライブ予定ラインの前方側から、 垂直クラック形成部 材、 加熱手段及び冷却手段または、 加熱手段、 垂直クラック形成部材及び冷却手 段のいずれかの順に前記 3つの部材を配置してなる請求の範囲第 1項に記載のス クライブライン形成装置。
6 . 配置移動手段が、 垂直クラック形成部材、 加熱手段及び冷却手段を、 互いの 相対位置を変更できるように配置してなる請求の範囲第 1項に記載のスクライブ ライン形成装置。
7 . 冷却手段は、 冷却手段の高さ位置を調整するサーボ機構を有する請求の範囲 第 1項に記載のスクライブライン形成装置。
8 . 垂直クラック形成部材は、 ホイールチップを刃先としてこれを転動可能に支 持したガラスカッターである請求の範囲第 1項に記載のスクライブライン形成装
9 . 加熱手段が、 所定のレーザ光を照射するレーザ光発振器である、 請求の範囲 第 1項に記載のスクライブライン形成装置。
1 0 . 冷却手段が、 冷却媒体を放出する冷却ノズルである、 請求の範囲第 1項に 記載のスクライブライン形成装置。
1 1 . 衝撃力付与手段は、 ソレノイドコイルへの通電をオンまたはオフすること によって、 刃先を脆性基板表面上に押圧する移動慣性を発生させるアマチュア一 である、 請求の範囲第 1項に記載のスクライブライン形成装置。
1 2 . 脆性基板の表面の高さ変化を検出するためのレーザ変位計および接触式変 位計のいずれか 1つをさらに具備してなる請求の範囲第 1項〜第 1 1項のいずれ か 1つに記載のスクライブライン形成装置。
1 3 . 脆性基板が、 液晶表示装置用ガラス基板、 プラズマディスプレイパネル用 ガラス基板および有機 E Lディスプレイパネル用ガラス基板の中から選択された 1つである請求の範囲第 1項〜第 1 2項のいずれか 1つに記載のスクライブライ ン形成装置。
1 4 . 先端に刃先を有する垂直クラック形成部材を脆性基板上を移動させながら 刃先に急俊な衝撃力を与える衝撃力付与手段によって、 脆性基板上の所望の位置 に所定深さの垂直クラックを発生させる工程と、
該垂直クラックに対して、 基板上に設定されたスクライブ予定ラインに沿って、 該脆性基板の軟化点よりも低い温度の照射領域を形成すると共に、 該照射領域の 後方に冷却領域を形成してスクライブラインを形成する工程と、
を包含することを特徴とするスクライブ形成方法。
1 5 . 刃先が脆性基板の端部近傍および予め形成されたスクライブラインと交差 する交差位置の近傍に位置するとき、 衝撃力付与手段によって、 脆性基板上の所 望の位置に所定深さの垂直クラックを発生させる請求の範囲第 1 4項に記載のス クライブライン形成方法。
PCT/JP2003/014080 2002-11-06 2003-11-04 スクライブライン形成装置及びスクライブライン形成方法 WO2004041493A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP03770142A EP1579970A4 (en) 2002-11-06 2003-11-04 DEVICE FOR PREPARING A CROP LINE AND METHOD FOR PRODUCING A CROP LINE
US10/533,650 US8348115B2 (en) 2002-11-06 2003-11-04 Scribe line forming device and scribe line forming method
KR1020057008097A KR100657196B1 (ko) 2002-11-06 2003-11-04 스크라이브 라인 형성장치 및 스크라이브 라인 형성방법
CNB2003801083232A CN100528507C (zh) 2002-11-06 2003-11-04 划线形成设备和划线形成方法
AU2003280723A AU2003280723A1 (en) 2002-11-06 2003-11-04 Scribe line forming device and scribe line forming method
JP2004549606A JP4373922B2 (ja) 2002-11-06 2003-11-04 スクライブライン形成装置及びスクライブライン形成方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002323112 2002-11-06
JP2002-323112 2002-11-06

Publications (1)

Publication Number Publication Date
WO2004041493A1 true WO2004041493A1 (ja) 2004-05-21

Family

ID=32310410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/014080 WO2004041493A1 (ja) 2002-11-06 2003-11-04 スクライブライン形成装置及びスクライブライン形成方法

Country Status (8)

Country Link
US (1) US8348115B2 (ja)
EP (1) EP1579970A4 (ja)
JP (2) JP4373922B2 (ja)
KR (1) KR100657196B1 (ja)
CN (2) CN101602230B (ja)
AU (1) AU2003280723A1 (ja)
TW (2) TWI290543B (ja)
WO (1) WO2004041493A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070153219A1 (en) * 2005-12-29 2007-07-05 Lg.Philips Lcd Co., Ltd. Apparatus and method for cutting liquid crystal display device and method for fabricating liquid crystal display device using the same
JP2007268953A (ja) * 2006-03-31 2007-10-18 Toray Eng Co Ltd 初期亀裂形成機構
WO2008126502A1 (ja) * 2007-03-30 2008-10-23 Thk Co., Ltd. スクライブ装置及びスクライブ方法
JP2009098565A (ja) * 2007-10-19 2009-05-07 Toshiba Matsushita Display Technology Co Ltd 液晶表示装置の製造方法、及びガラス基板切断装置
JP2010526014A (ja) * 2007-04-30 2010-07-29 コーニング インコーポレイテッド 移動中の帯状ガラスに切断線を設ける装置、システム及び方法
JP2011194644A (ja) * 2010-03-18 2011-10-06 Mitsuboshi Diamond Industrial Co Ltd 脆性材料基板の加工方法およびこれに用いるレーザ加工装置
CN104445900A (zh) * 2013-09-24 2015-03-25 三星钻石工业股份有限公司 划线头、划线装置及划线方法
CN106938884A (zh) * 2017-04-19 2017-07-11 重庆坤秀门窗有限公司 一种用于玻璃门切割的玻璃切割机
JP2018507152A (ja) * 2014-12-18 2018-03-15 サン−ゴバン グラス フランスSaint−Gobain Glass France 防食処理された機能性コーティングを備えた複層板材の製造方法

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101043674B1 (ko) * 2004-05-11 2011-06-23 엘지디스플레이 주식회사 스크라이빙 장치 및 방법
WO2006040988A1 (ja) * 2004-10-13 2006-04-20 Mitsuboshi Diamond Industrial Co., Ltd. 脆性材料基板のスクライブ方法ならびにスクライブ装置および脆性材料基板の分断システム
WO2007049668A1 (ja) * 2005-10-28 2007-05-03 Mitsuboshi Diamond Industrial Co., Ltd. 脆性材料基板のスクライブライン形成方法およびスクライブライン形成装置
TWI457306B (zh) * 2005-12-01 2014-10-21 Mitsuboshi Diamond Ind Co Ltd And a cutter retainer mounting structure for the scribing device
TW200911442A (en) * 2007-09-11 2009-03-16 Nat Applied Res Laboratories Machining method and apparatus for brittle material
KR100848854B1 (ko) * 2008-04-21 2008-07-30 주식회사 탑 엔지니어링 취성기판의 스크라이빙 장치 및 그 방법
JP2010188427A (ja) * 2009-02-13 2010-09-02 Mimaki Engineering Co Ltd カッティングプロッタおよびそのカット方法
JP5173885B2 (ja) * 2009-02-24 2013-04-03 三星ダイヤモンド工業株式会社 スクライブ装置及びスクライブ方法
JP2010229005A (ja) * 2009-03-30 2010-10-14 Mitsuboshi Diamond Industrial Co Ltd 脆性材料基板の分断方法
JP5627201B2 (ja) * 2009-06-17 2014-11-19 三星ダイヤモンド工業株式会社 脆性材料基板の割断方法
JP5478957B2 (ja) * 2009-06-30 2014-04-23 三星ダイヤモンド工業株式会社 脆性材料基板の割断方法
EP2450169A4 (en) * 2009-07-03 2012-11-21 Asahi Glass Co Ltd CUTTING METHOD AND CUTTING DEVICE FOR A SUBSTRATE OF SPRING MATERIAL AND VEHICLE GLASS OBTAINED IN THIS CUTTING METHOD
US8932510B2 (en) 2009-08-28 2015-01-13 Corning Incorporated Methods for laser cutting glass substrates
US8946590B2 (en) * 2009-11-30 2015-02-03 Corning Incorporated Methods for laser scribing and separating glass substrates
WO2011066337A2 (en) * 2009-11-30 2011-06-03 Corning Incorporated Methods for laser scribing and separating glass substrates
KR101089174B1 (ko) * 2010-01-04 2011-12-02 주식회사 탑 엔지니어링 칩 전처리기를 포함하는 스크라이빙 장치 및 스크라이빙 방법
TWI494284B (zh) 2010-03-19 2015-08-01 Corning Inc 強化玻璃之機械劃割及分離
US8864005B2 (en) 2010-07-16 2014-10-21 Corning Incorporated Methods for scribing and separating strengthened glass substrates
TWI513670B (zh) * 2010-08-31 2015-12-21 Corning Inc 分離強化玻璃基板之方法
US20130276610A1 (en) * 2011-01-07 2013-10-24 Bando Kiko Co., Ltd. Method and apparatus for scribing silicon carbide plate
JP5686291B2 (ja) * 2011-03-04 2015-03-18 旭硝子株式会社 矩形板状物の切断装置及び製造方法
JP5878623B2 (ja) * 2011-04-14 2016-03-08 コーニング インコーポレイテッド 薄型ガラス基板にクラック開始傷を機械的に形成する方法
US20130140291A1 (en) * 2011-12-05 2013-06-06 Shenzhen China Star Optoelectronics Technology Co., Ltd. Glass Substrate Slicing Apparatus and Method
CN102515494B (zh) * 2011-12-05 2014-04-09 深圳市华星光电技术有限公司 一种玻璃基板切割装置
US10351460B2 (en) 2012-05-22 2019-07-16 Corning Incorporated Methods of separating strengthened glass sheets by mechanical scribing
US9938180B2 (en) 2012-06-05 2018-04-10 Corning Incorporated Methods of cutting glass using a laser
KR102048921B1 (ko) 2012-06-20 2019-11-27 삼성디스플레이 주식회사 셀 절단 장치 및 셀 절단 방법
DE102012210527A1 (de) * 2012-06-21 2013-12-24 Robert Bosch Gmbh Verfahren zur Herstellung einer Diode und Diode
JP2014004776A (ja) * 2012-06-26 2014-01-16 Mitsuboshi Diamond Industrial Co Ltd 基板の加工装置
DE112013003503B4 (de) 2012-07-10 2020-02-13 AGC Inc. Verfahren zur Bearbeitung einer Glasplatte
US9610653B2 (en) 2012-09-21 2017-04-04 Electro Scientific Industries, Inc. Method and apparatus for separation of workpieces and articles produced thereby
US9212081B2 (en) * 2012-11-21 2015-12-15 Corning Incorporated Methods of cutting a laminate strengthened glass substrate
TWI651182B (zh) * 2014-06-26 2019-02-21 日商三星鑽石工業股份有限公司 脆性基板之切斷方法及劃線裝置
CN104148811A (zh) * 2014-07-30 2014-11-19 苏州市华宁机械制造有限公司 使用寿命长的激光切割机
CN104148812A (zh) * 2014-07-30 2014-11-19 苏州市华宁机械制造有限公司 一种激光切割机
CN104708726B (zh) * 2015-04-02 2016-08-24 沈阳华夏光微电子装备有限责任公司 一种实时监测刀具温度及磨损度的划片机及控制方法
TW202039193A (zh) * 2016-02-26 2020-11-01 日商三星鑽石工業股份有限公司 脆性基板之分斷方法
CN109219505B (zh) * 2016-05-25 2021-05-07 三星钻石工业股份有限公司 脆性基板的分断方法
JP2018183838A (ja) * 2017-04-26 2018-11-22 川崎重工業株式会社 脆性材料分断装置及び脆性材料分断方法
US11131611B2 (en) 2017-09-07 2021-09-28 Corning Incorporated Impact testing apparatus and methods
JP2019147225A (ja) * 2018-02-27 2019-09-05 三星ダイヤモンド工業株式会社 カッターホイールおよび切断方法
CN108818983A (zh) * 2018-06-12 2018-11-16 华中科技大学 光学硬脆性材料的微激光辅助加工系统及其使用方法
CN109204985B (zh) * 2018-08-27 2021-09-17 奕瑞影像科技(太仓)有限公司 一种封装膜拆除装置及方法
TWI734931B (zh) * 2018-09-17 2021-08-01 鴻超光電科技股份有限公司 軸調光斑方法及其系統
CN109227972B (zh) * 2018-10-12 2020-09-29 台州来智科技有限公司 一种石材自然面加工工具
CN110405959B (zh) * 2019-08-10 2021-07-23 连云港奥林匹亚石材有限公司 一种石材裁边机构
CN113594308A (zh) * 2021-08-02 2021-11-02 錼创显示科技股份有限公司 巨量转移设备
TWI787933B (zh) * 2021-08-02 2022-12-21 錼創顯示科技股份有限公司 巨量轉移設備
CN114454240B (zh) * 2022-04-11 2022-06-17 中国空气动力研究与发展中心高速空气动力研究所 一种激波管膜片的划刻装置及划刻方法
CN115521056A (zh) * 2022-10-25 2022-12-27 深圳市益铂晶科技有限公司 一种玻璃激光切割的劈裂方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000061676A (ja) * 1998-08-19 2000-02-29 Asahi Glass Co Ltd ガラス板の割断方法及び装置
JP2000063137A (ja) * 1998-08-10 2000-02-29 Toyota Motor Corp ガラス板切断方法及びその装置
JP2001058317A (ja) * 1999-08-20 2001-03-06 Berudekkusu:Kk スクライブ方法および装置
JP2001151525A (ja) * 1999-11-25 2001-06-05 Mitsuboshi Diamond Industrial Co Ltd ガラス板分割方法及び装置
JP2002308637A (ja) * 2001-04-04 2002-10-23 Sony Corp ガラス基板の製造方法およびガラス基板の製造装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3276302A (en) * 1963-04-15 1966-10-04 Saint Gobain Corp Glass cutter
JPS6048102B2 (ja) 1980-12-25 1985-10-25 富士通株式会社 スクライビング装置
JPH08175837A (ja) * 1994-12-26 1996-07-09 Asahi Glass Co Ltd ガラス板の割断方法およびそのための装置
JPH08231239A (ja) * 1994-12-27 1996-09-10 Asahi Glass Co Ltd ガラスリボンの割断方法およびそのための装置
JPH10189496A (ja) 1996-12-24 1998-07-21 Toshiba Corp ウェーハ切断方法およびその装置
US6407360B1 (en) 1998-08-26 2002-06-18 Samsung Electronics, Co., Ltd. Laser cutting apparatus and method
US6252197B1 (en) 1998-12-01 2001-06-26 Accudyne Display And Semiconductor Systems, Inc. Method and apparatus for separating non-metallic substrates utilizing a supplemental mechanical force applicator
JP4203177B2 (ja) 1999-03-18 2008-12-24 株式会社ベルデックス スクライブ方法および装置
US6536121B1 (en) * 1999-08-06 2003-03-25 Thk Co., Ltd. Scribing apparatus
DE19952331C1 (de) 1999-10-29 2001-08-30 Schott Spezialglas Gmbh Verfahren und Vorrichtung zum schnellen Schneiden eines Werkstücks aus sprödbrüchigem Werkstoff mittels Laserstrahlen
KR100721391B1 (ko) * 1999-11-24 2007-05-23 어플라이드 포토닉스 아이엔씨. 비금속성 재료 분리 방법 및 장치
JP2001176820A (ja) 1999-12-15 2001-06-29 Hitachi Cable Ltd 基板の加工方法及びその加工装置
JP4916060B2 (ja) 2000-08-11 2012-04-11 三星ダイヤモンド工業株式会社 脆性材料切断用カッター、それを用いたスクライバー及びスクライブ方法
KR100673073B1 (ko) * 2000-10-21 2007-01-22 삼성전자주식회사 레이저 빔을 이용한 비금속 기판의 절단 방법 및 장치
JP2003025323A (ja) * 2001-07-18 2003-01-29 Seiko Epson Corp レーザ割断装置及び方法、並びに電気光学パネルの割断方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000063137A (ja) * 1998-08-10 2000-02-29 Toyota Motor Corp ガラス板切断方法及びその装置
JP2000061676A (ja) * 1998-08-19 2000-02-29 Asahi Glass Co Ltd ガラス板の割断方法及び装置
JP2001058317A (ja) * 1999-08-20 2001-03-06 Berudekkusu:Kk スクライブ方法および装置
JP2001151525A (ja) * 1999-11-25 2001-06-05 Mitsuboshi Diamond Industrial Co Ltd ガラス板分割方法及び装置
JP2002308637A (ja) * 2001-04-04 2002-10-23 Sony Corp ガラス基板の製造方法およびガラス基板の製造装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1579970A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070153219A1 (en) * 2005-12-29 2007-07-05 Lg.Philips Lcd Co., Ltd. Apparatus and method for cutting liquid crystal display device and method for fabricating liquid crystal display device using the same
JP2007268953A (ja) * 2006-03-31 2007-10-18 Toray Eng Co Ltd 初期亀裂形成機構
WO2008126502A1 (ja) * 2007-03-30 2008-10-23 Thk Co., Ltd. スクライブ装置及びスクライブ方法
JP2010526014A (ja) * 2007-04-30 2010-07-29 コーニング インコーポレイテッド 移動中の帯状ガラスに切断線を設ける装置、システム及び方法
JP2009098565A (ja) * 2007-10-19 2009-05-07 Toshiba Matsushita Display Technology Co Ltd 液晶表示装置の製造方法、及びガラス基板切断装置
JP2011194644A (ja) * 2010-03-18 2011-10-06 Mitsuboshi Diamond Industrial Co Ltd 脆性材料基板の加工方法およびこれに用いるレーザ加工装置
CN104445900A (zh) * 2013-09-24 2015-03-25 三星钻石工业股份有限公司 划线头、划线装置及划线方法
JP2018507152A (ja) * 2014-12-18 2018-03-15 サン−ゴバン グラス フランスSaint−Gobain Glass France 防食処理された機能性コーティングを備えた複層板材の製造方法
US10479725B2 (en) 2014-12-18 2019-11-19 Saint-Gobain Glass France Method for producing a composite pane having a corrosion-protected functional coating
CN106938884A (zh) * 2017-04-19 2017-07-11 重庆坤秀门窗有限公司 一种用于玻璃门切割的玻璃切割机

Also Published As

Publication number Publication date
TWI290543B (en) 2007-12-01
TW200415128A (ja) 2004-08-16
CN101602230A (zh) 2009-12-16
AU2003280723A1 (en) 2004-06-07
CN1735490A (zh) 2006-02-15
EP1579970A1 (en) 2005-09-28
CN100528507C (zh) 2009-08-19
JP2009274951A (ja) 2009-11-26
EP1579970A4 (en) 2006-09-20
US20060137505A1 (en) 2006-06-29
KR100657196B1 (ko) 2006-12-14
JP4373922B2 (ja) 2009-11-25
KR20050084974A (ko) 2005-08-29
CN101602230B (zh) 2015-06-10
US8348115B2 (en) 2013-01-08
JPWO2004041493A1 (ja) 2006-03-02

Similar Documents

Publication Publication Date Title
JP4373922B2 (ja) スクライブライン形成装置及びスクライブライン形成方法
JP5328049B2 (ja) 基板分断装置および基板分断方法
JP4890462B2 (ja) 脆性材料基板のスクライブライン形成方法およびスクライブライン形成装置
US6130401A (en) Device and method for machining transparent medium by laser
US20080286943A1 (en) Motherboard Cutting Method, Motherboard Scribing Apparatus, Program and Recording Medium
WO2005107999A1 (en) Device and method for cutting nonmetalic substrate
JP5216017B2 (ja) 脆性材料基板の分断方法
US20110095062A1 (en) Breaking apparatus and breaking method
JP5050099B2 (ja) 脆性材料基板の加工方法
JP2008503355A (ja) 基板材料の切断、分断または分割装置、システムおよび方法
KR20070041599A (ko) 취성 물질의 스코링 공정 및 장치
TW592868B (en) Device and method for scribing fragile material substrate
WO2009128315A1 (ja) 脆性材料基板の加工方法
KR100551527B1 (ko) 취성재료기판의 스크라이브 방법 및 스크라이브 장치
JP2004042423A (ja) スクライブ装置
JP5590642B2 (ja) スクライブ加工装置及びスクライブ加工方法
WO2004009311A1 (ja) 脆性材料のスクライブ方法及びスクライブヘッド並びにこのスクライブヘッドを備えたスクライブ装置
JP5678816B2 (ja) ガラス基板の割断方法および割断装置
JP5220465B2 (ja) 脆性材料基板の加工装置および加工方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004549606

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2003770142

Country of ref document: EP

Ref document number: 1020057008097

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20038A83232

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057008097

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003770142

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006137505

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10533650

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10533650

Country of ref document: US