WO2004035688A1 - 熱可塑性飽和ノルボルネン系樹脂フィルム、及び、熱可塑性飽和ノルボルネン系樹脂フィルムの製造方法 - Google Patents

熱可塑性飽和ノルボルネン系樹脂フィルム、及び、熱可塑性飽和ノルボルネン系樹脂フィルムの製造方法 Download PDF

Info

Publication number
WO2004035688A1
WO2004035688A1 PCT/JP2003/012698 JP0312698W WO2004035688A1 WO 2004035688 A1 WO2004035688 A1 WO 2004035688A1 JP 0312698 W JP0312698 W JP 0312698W WO 2004035688 A1 WO2004035688 A1 WO 2004035688A1
Authority
WO
WIPO (PCT)
Prior art keywords
based resin
thermoplastic saturated
resin film
saturated norbornene
film
Prior art date
Application number
PCT/JP2003/012698
Other languages
English (en)
French (fr)
Inventor
Katsunori Toyoshima
Takeharu Morita
Hiroshi Hiraike
Masakatsu Tagami
Kentaro Ogino
Katsumi Nishimura
Original Assignee
Sekisui Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co., Ltd. filed Critical Sekisui Chemical Co., Ltd.
Priority to JP2005501343A priority Critical patent/JPWO2004035688A1/ja
Priority to EP03748698A priority patent/EP1548063A4/en
Priority to AU2003268753A priority patent/AU2003268753A1/en
Priority to US10/530,172 priority patent/US20060036033A1/en
Publication of WO2004035688A1 publication Critical patent/WO2004035688A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L45/00Compositions of homopolymers or copolymers of compounds having no unsaturated aliphatic radicals in side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic or in a heterocyclic ring system; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2365/00Characterised by the use of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L19/00Compositions of rubbers not provided for in groups C08L7/00 - C08L17/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/10Copolymers of styrene with conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers

Definitions

  • the present invention relates to a method for producing a thermoplastic saturated norbornene resin film and a thermoplastic saturated norpolene resin film.
  • the present invention relates to a thermoplastic saturated norbornene-based resin film, an optical film, a polarizer protective film, a retardation plate, a polarizing plate, and a method for producing a thermoplastic saturated norbornene-based resin film, which has both high physical properties and optical properties.
  • Thermoplastic saturated norbornene resins have excellent heat resistance, optical properties, transparency, electrical properties, etc., and their application as films for automotive parts, electrical / electronic parts, optical parts, building materials, etc. is being studied. ing. In particular, it is expected to be applied as a polarizer protective film or a retardation plate used for a polarizing plate of a liquid crystal display device such as a desktop computer, an electronic watch, a word processor, an automobile, and a gauge of a machine.
  • the polarizing plate usually comprises a polarizer in which iodine or a dichroic dye is adsorbed to a stretch-oriented polybutyl alcohol resin, and a polarizer protective film adhered to both surfaces of the polarizer.
  • the optical film used as the polarizer protective film must have excellent optical properties such as light transmittance, have sufficient mechanical strength to prevent the shrinkage of the highly shrinkable polarizer, and withstand the high temperatures used in the manufacturing process. It is required to have good heat resistance.
  • an optical film made of triacetyl cellulose has been used as a polarizer protective film.
  • optical films made of triacetyl cellulose have high optical properties, their heat resistance and moisture resistance are insufficient, and when used for a long time in a high-temperature or high-humidity atmosphere, the degree of polarization significantly decreases.
  • peeling of the polarizer from the protective film and a decrease in transparency due to hydrolysis of triacetyl cellulose occur, thereby deteriorating the performance of the polarizing plate.
  • a retardation plate is used as a polarizing plate for the purpose of compensating for distortion of light when passing through a liquid crystal material.
  • a retardation plate polycarbonate A resin made of a resin having excellent transparency and heat resistance, such as resin and polysulfone resin, has been used.
  • Japanese Patent Application Laid-Open No. 5-247332 / 24 discloses an optical film made of a thermoplastic saturated norbornene resin.
  • Optical films made of thermoplastic saturated norpolene-based resins exhibit excellent heat resistance, in addition to features such as low birefringence under stress and excellent optical properties such as high transparency. Therefore, when an optical film made of a thermoplastic saturated norbornene resin is used, a polarizing plate having high optical characteristics can be expected.
  • the optical film made of thermoplastic saturated norbornene resin has a problem that it is very brittle and it is difficult to make it thinner.
  • the film is broken when the take-up speed is high.
  • Japanese Patent Application Laid-Open No. H3-166963 discloses a resin composition containing a hydrogenated norportene ring-opening polymer and rubber. This is because, by adding rubber to the hydrogenated norbornene ring-opening polymer, a molded article in which cracks are suppressed during molding when used for insert molding of metal parts can be obtained. It has excellent adhesiveness with thermoplastic saturated norbornene-based polymers. It is considered that this resin composition has improved physical properties such as brittleness of the norporene-based resin. However, the addition of rubber significantly reduces the optical characteristics such as the parallel light transmittance and cannot be used as an optical film. I got it.
  • Japanese Patent Application Laid-Open No. 5-247324 also discloses that a thermoplastic saturated norbornene-based resin and a compounding agent which is incompatible with the same are formed, and the compounding agent disperses by forming microdomains. It describes a plastic saturated norbornene-based resin composition and an optical material comprising the same, and discloses that when a rubbery polymer is used as a compounding agent, the adhesion to various paints and films can be improved. . However, in order to obtain sufficient optical performance, the amount of the rubbery polymer to be added is about 0.001 to 0.8 part by weight based on 100 parts by weight of the thermoplastic saturated norbornene resin. Addition of such a compounding agent could not sufficiently improve physical properties.
  • Japanese Patent No. 2,940,014 discloses a thermoplastic resin composition comprising a thermoplastic saturated norbornene resin and a rubbery polymer. A molded article obtained by injection molding is described. However, Patent No. 2,940,014 discloses the impact resistance and total light transmittance of the obtained molded article, but does not describe anything about the production of the optical film. In addition, there was no description of parallel light transmittance and haze, which are essential for the performance of the optical film.
  • JP-A-5-148413 discloses a film formed by dissolving or dispersing a thermoplastic saturated norpolene resin and a rubber component in a solvent and casting the film.
  • a rubber component is blended with a thermoplastic saturated norbornene resin to improve elongation.
  • the obtained film was inferior in optical properties such as parallel light transmittance and could not be used as an optical film.
  • the present invention provides a thermoplastic saturated norbornene resin film, an optical film, a polarizer protective film, a retardation plate, a polarizing plate, and a thermoplastic saturated norbornene having both high physical properties and optical properties.
  • An object of the present invention is to provide a method for producing a resin film.
  • a first aspect of the present invention is to provide a thermoplastic saturated norpolene-based resin having 100 parts by weight and a rubbery polymer.
  • Saturated norbornene-based resin film comprising a thermoplastic saturated norbornene-based resin composition containing 5 to 40 parts by weight of a thermoplastic saturated norbornene-based resin having a parallel light transmittance of 87% or more. It is a resin film.
  • the difference between the refractive indices of the thermoplastic saturated norportene resin and the rubbery polymer is 0.2 or less.
  • the thermoplastic saturated norpolene resin film of the first aspect of the present invention preferably has a bow I tension elastic modulus of 9 OOMPa or more, a tensile elongation at break of 4 to 40%, and a residual retardation of 3 nm or less.
  • the optical axis shift is preferably ⁇ 10 ° or less with respect to the major axis direction, and more preferably the residual phase difference is 1 nm or less.
  • the difference between the maximum value and the minimum value when measuring the thickness by a method according to JISK 7130 is preferably 5 / m or less, and the film is broken at a tension of 500 1 O 65 mm. It is preferable to be able to wind up without winding.
  • the rubbery polymer is preferably a styrene-based elastomer and foremost, the scan styrene elastomers scratch, 5-5 styrene component 2 0 weight 0/0, ethylene component 2 5 to 5 0 wt 0/0 Is preferably a styrene-ethylenebutylene copolymer.
  • thermoplastic saturated norbornene resin composition further contains a thermoplastic resin having a number average molecular weight of 300 to 10,000.
  • the light ⁇ coefficient 2 is 0 X 1 0- 1 1 P a- 1 below.
  • the optical film, the polarizer protective film, and the retardation film comprising the thermoplastic saturated norbornene-based resin film of the first present invention are also one of the present invention.
  • the second present invention is a polarizing plate comprising a polarizer protective film comprising a norpolpolene-based resin composition and a polarizer, having a parallel light transmittance of 40% or more, and conforming to JISZ1528.
  • the dimensional change before and after heating at 90 ° C. for 24 hours is preferably 2% or less.
  • a polarizing plate obtained by directly laminating the retardation plate of the present invention on at least one surface of a polarizer is also provided. This is one of the present invention.
  • thermoplastic saturated norbornene-based resin film according to the first aspect of the present invention by a melt extrusion method, wherein the thermoplastic saturated norbornene-based resin composition is melted until the thermoplastic saturated norbornene-based resin composition is fed into a die.
  • the melting temperature of the product is not higher than the glass transition temperature of the thermoplastic saturated norbornene-based resin + 135 ° C or less, and the melting temperature of the thermoplastic saturated norbornene-based resin yarn before it is sent to the die.
  • a method for producing a thermoplastic saturated norbornene-based resin film having an average residence time of 40 minutes or less is also one aspect of the present invention.
  • thermoplastic saturated norbornene-based resin film of the present invention the temperature of the thermoplastic saturated norbornene-based resin composition extruded from the die force immediately before contact with a cooling roll is the same as that of the thermoplastic saturated norbornene-based resin. Glass-transition temperature
  • thermoplastic saturated norbornene resin + 50 ° C or more, and more preferably + 80 ° C or more, the glass transition temperature of the thermoplastic saturated norbornene resin.
  • FIG. 1 is a schematic diagram showing one example of a transmission electron micrograph image of a cross section of the thermoplastic saturated norportene resin film of the first present invention.
  • FIG. 2 is a schematic diagram showing an example of a transmission electron micrograph image of a cross section of a conventional thermoplastic saturated norbornene resin film.
  • FIG. 3 is a transmission electron micrograph image of a cross section of the thermoplastic saturated norbornene-based resin film produced in Example 1.
  • 1 represents a thermoplastic saturated norbornene-based resin
  • 2 represents a rubbery polymer
  • the thermoplastic saturated norbornene-based resin film (hereinafter, also referred to as TPSNB-based resin film) of the first present invention is a thermoplastic saturated norbornene-based resin (hereinafter, also referred to as TPSNB-based resin) and a thermoplastic polymer containing a rubbery polymer. It is obtained by using a saturated norportene resin composition (hereinafter, also referred to as a TPSNB resin composition).
  • the TP SNB-based resin is a polymer of a norbornene-based monomer or a copolymer of a norbornene-based monomer and a monomer copolymerizable with the norbornene-based monomer. It means those having no unsaturated bond, or hydrogenated hydrogen when it has an unsaturated bond in the molecule.
  • the norbornene-based polymer is not particularly limited.
  • a polymer obtained by polymerizing at least one type of norbornene-based monomer represented by the following general formula (1), or a polymer represented by the following general formula (1) Those obtained by copolymerizing at least one kind of norbornene-based monomer to be used and a copolymerizable monomer copolymerizable therewith are preferably used.
  • a and B independently represent a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms
  • X and Y independently represent a hydrogen atom, a halogen atom or an organic group
  • m represents 0 or 1.
  • the norbornene-based monomer represented by the general formula (1) is not particularly limited. For example, bicyclo [2.2.1] 1-2-heptene, tricyclo [5.2. 1.
  • the copolymerizable monomer copolymerizable with the norbornene-based monomer represented by the general formula (1) is not particularly limited, and may be, for example, a norpolene-based monomer that is not included in the general formula (1). And a cyclic olefin monomer having no norbornene skeleton.
  • the above Examples of the general formula (1) is not included in the norbornene-based monomer, for example, Bae Ntashikuro [6. 5. 1. I 3 '6. 0 2' 7 ⁇ 0 9 '13] one 4- pentadecene, pen Tashikuro [6. 6. 1. I. 3 '6. 0 2' 7.
  • the cyclic olefin monomer having no norbornene skeleton is not particularly limited, and examples thereof include cyclopentene, cyclootaten, 1,5-cyclooctagene,
  • the method of copolymerizing the norbornene-based monomer and a copolymerizable monomer copolymerizable therewith is not particularly limited, and for example, a conventionally known method such as ring-opening metathesis polymerization or addition polymerization is used. be able to.
  • the method for hydrogenating the norbornene-based polymer or the norbornene-based copolymer is not particularly limited, and examples thereof include a Wilkinson complex, cobalt acetate / triethylenol aluminum, nickel acetyl acetate toner z triisobutylaluminum, and palladium. Examples thereof include a method using a conventionally known catalyst such as monocarbon, ruthenium complex, ruthenium monocarbon, and nickel-diatomaceous earth.
  • the hydrogenation is carried out in a homogeneous or heterogeneous system depending on the type of the catalyst, usually under a hydrogen pressure of 1 to 200 atm and at a temperature of 0 to 250 ° C.
  • the TPSNB-based resin refers to a resin having a hydrogenation rate of at least 5 when the norportene-based polymer or the norportene-based copolymer has an unsaturated bond in a molecule. It means hydrogenated so as to be 0% or more, and the hydrogenation rate is preferably 90% or more, more preferably 99% or more. When the hydrogenation ratio is less than 50%, the light resistance and heat deterioration resistance of the obtained TPSNB resin film of the first present invention are inferior.
  • the number average molecular weight of the TP SNB resin in terms of polystyrene is preferably 10,000 to 100,000. If it is less than 10,000, the mechanical strength of the obtained TPSNB-based resin film of the first invention of the present invention may be insufficient, and if it exceeds 1,000,000, the melt formability may be significantly reduced. More preferably, it is 15,000 to 700,000.
  • the desired effect can be easily obtained even if the amount of the rubbery polymer is reduced, so that a higher molecular weight TP SNB-based resin should be used as long as it meets other requirements such as melt moldability. preferable.
  • the glass transition temperature of the TP SNB resin is preferably 70 to 180 ° C. If it is less than 70 ° C, there is the heat resistance of the TP SNB resin film of the first invention obtained is inferior, molding exceeds 1 80 D C may become difficult.
  • the TP SNB-based resin composition contains a rubbery polymer.
  • the rubbery polymer is a polymer composed of a hard segment and a soft segment, and has a glass transition temperature of the soft segment of 25 ° C. or lower.
  • the rubbery polymer is not particularly limited, and examples thereof include styrene-butadiene block copolymer, hydrogenated styrene-butadiene block copolymer, styrene-isoprene block copolymer, and hydrogenated styrene-isoprene block copolymer.
  • Styrene-based elastomer such as styrene-isobutylene block copolymer, low-crystalline polybutadiene resin, ethylene-propylene elastomer, styrene-grafted ethylene-propylene elastomer, thermoplastic raw polyester / lelastomer, And thermoplastic elastomers such as len-based ionomer resins.
  • These rubbery polymers may be modified with specific functional groups such as epoxy groups, carboxyl groups, hydroxy groups, amino groups, acid anhydride groups, oxazoline groups, etc. . Among them, styrene-based elastomers are preferred.
  • the styrene-based elastomer is not particularly limited as long as it can improve the physical properties such as tensile modulus and tensile elongation without deteriorating the optical properties of the obtained TP SNB-based resin film of the first invention.
  • examples include, but are not limited to, a copolymer comprising a styrene segment and a segment having a glass transition temperature of 25 ° C. or lower.
  • SEBS styrene-ethylene-butylene copolymer
  • styrene-ethylene— A propylene copolymer is preferred.
  • the styrene component is from 25 to 50 weight 0/0
  • styrene one ethylene one heptylene copolymer ethylene component is 25 to 50 wt%
  • the optical film having both the extremely high optical characteristics and physical characteristics can be obtained This is preferred. This is considered to be because the refractive index of the TP SNB-based resin is very close to that of the TP SNB-based resin, and rubber-like properties can be efficiently imparted.
  • the styrene-based elastomer When a styrene-based elastomer is used as the rubbery polymer, the styrene-based elastomer preferably has a number average molecular weight of 50,000 to 1,000,000. If the molecular weight is less than 50,000, the dispersibility in the norpolene-based resin becomes insufficient, and the effect of modifying the physical properties by addition of the rubbery polymer may not be obtained. The melt viscosity at the time of compounding with the resin may be too high, resulting in poor moldability and the inability to obtain a uniform film. It is more preferably from 80,000 to 500,000, and still more preferably from 100,000 to 400,000.
  • the difference in the refractive index between the TP SNB-based luster and the rubbery polymer is 0.2 or less. If it exceeds 0.2, the resulting TPSNB-based resin film of the first invention of the present invention may be deteriorated in transparency, residual retardation or the like, or may be liable to cause optical distortion or the like. It is more preferably at most 0.1, further preferably at most 0.05, particularly preferably at most 0.03.
  • the ratio (77 rubber) of the viscosity (norbornene) of the TP SNB resin at the molding temperature to the viscosity (77 rubber) of the rubbery polymer is used. / 7? Norebornene) is preferably close to 1.
  • the rubbery polymer can be finely dispersed in the TPSNB resin. It is preferably from 0.2 to 3.0, and more preferably from 0.4 to 2.0.
  • the ratio of ⁇ rubber / 77 norbornene is 0.5 to 1.8.
  • the viscosity here means the viscosity when the shear rate is measured at an actual molding temperature at 24.3.
  • the content of the rubbery polymer is 5 to 40 parts by weight based on 100 parts by weight of the TPS based resin composition in the TPS based resin composition. If the amount is less than 5 parts by weight, the effect of improving the physical properties of the TP SNB-based resin film of the first invention cannot be sufficiently obtained, and if it exceeds 40 parts by weight, the obtained TPSNB-based resin film of the invention cannot be obtained. Poor optical properties. Preferably it is 10 to 30 parts by weight. It is preferable that the TPS NB resin composition further contains a thermoplastic resin. By containing the thermoplastic resin, the compatibility between the TPSNB resin and the rubbery polymer is improved, and the optical characteristics of the obtained TPSNB resin film of the first present invention may be improved. .
  • thermoplastic resin is not particularly limited, but an olefin resin is preferable because of its excellent compatibility with the TPSNB resin.
  • the thermoplastic resin preferably has a number average molecular weight of 300 to 10,000. If it is less than 300, problems such as bleed-out may occur, and if it exceeds 10,000, the effect of improving compatibility may not be obtained. It is more preferably from 500 to 5,000, and still more preferably from 600 to 2,000.
  • the thermoplastic resin preferably has a refractive index difference of 0.2 or less from the TPSNB-based resin. If it exceeds 0.2, the resulting TP SNB-based resin film of the first present invention may have poor transparency. More preferably, it is 0.1 or less.
  • the thermoplastic resin When the thermoplastic resin is blended into the TP SNB resin composition by a melt-kneading method, the thermoplastic resin has a double weight% decomposition temperature in an air atmosphere of 230 in thermogravimetric analysis. It is preferably at least ° C. It is more preferably at least 250 ° C, and even more preferably at least 270 ° C.
  • thermoplastic resins having such properties include, for example, “Escolets” manufactured by Tonex, “Clearon J” manufactured by Yashara Chemical Co., and “Alcon” manufactured by Arakawa Chemical Co., Ltd.
  • the TPSNB resin composition if necessary, as long as the object of the present invention is not impaired, 2,6-di-tert-butyl-4-methinolephenol, 2- (1-methylcyclohexynole) -1,4,6, dimethylphenol, 2,2-methylene-bis- (4-ethynole-6-t-petit)
  • Antioxidants such as Norephenol and Tris (di-zolephenyl phosphite); ) UV absorption of 1-t-butylphenol salicylate, 2,2'-dihydroxy- 4-methoxy-1-benzophenone, 2- (2'-dihydroxy-1,4-m-octoxyphenyl) benzotriazole, etc.
  • Agents lubricants such as paraffin phenos and hardening oil; and antistatic agents such as stir-mouth azidopropyldimethyl- ⁇ -hydroxyxylammonium trate.
  • the TPSNB resin film of the first invention has a parallel light transmittance of 87% or more. If it is less than 87%, it is difficult to use it for applications such as a polarizer protective film. Preferably it is 89% or more.
  • the TPSNB-based resin film of the first present invention preferably has a haze value of 5% or less. If it exceeds 5%, it may cause light leakage or the like when used for applications such as a polarizer protective film. It is more preferably at most 3%, further preferably at most 1%, particularly preferably at most 0.5%.
  • the TPS-based resin film of the first invention preferably has a residual retardation of 3 nm or less and an optical axis deviation of ⁇ 10 ° or less with respect to the major axis (MD) direction. If the residual retardation exceeds 3 nm or the optical axis deviation exceeds ⁇ 10 ° with respect to the long axis direction, the case where the TPSNB resin film of the first present invention is used as a polarizer protective film or the like. This may cause light leakage and the like. It is preferable that the residual phase difference and the optical axis deviation are small, but if the residual phase difference is 1 nm or less, the magnitude of the optical axis deviation can be ignored, and the step of inspecting the optical axis deviation becomes unnecessary.
  • the manufacturing process for manufacturing the polarizer protective film and the like can be greatly simplified, which is more preferable.
  • the optical axis refers to an axis in which the refractive index of the incident light becomes the largest, generally an axis called a slow axis, and the optical axis shift refers to the major axis direction of the optical axis. It means the deviation of the angle from the angle.
  • the long axis direction is, for example, the flow direction of extrusion when a film is produced by extrusion.
  • the TPS NB-based resin film of the first present invention preferably has a tensile modulus of at least 90 OMPa measured according to JISK 7113. 90 OMP a not yet If it is full, the shrinkage of the polarizer may not be able to be suppressed when the TPSNB-based resin film of the first present invention is used as a polarizer protective film. More preferably, it is at least 100 OMPa.
  • the tensile modulus is preferably higher, and there is no particular upper limit.
  • the TP SNB-based resin film according to the first aspect of the present invention preferably has a tensile elongation at break of 4 to 40% measured according to JIS K7113. If it is less than 4%, the film tends to be broken, so that when the TPS-based resin film of the first invention is used as a protective film for a polarizer, the reworkability of the polarizing plate may be inferior. If the value exceeds the above, a dimensional change of the polarizing plate becomes large when a durability test, particularly a heat resistance deterioration test is performed, so that a change in optical characteristics and peeling from the liquid crystal cell may easily occur. More preferably, it is 6 to 35%, and still more preferably 8% or more.
  • the TP SNB-based resin film of the first invention can be wound without breaking at room temperature with a tension of 50 ON / 65 Omm. This will enable mass production and significantly reduce costs.
  • the TPS NB-based resin film of the first present invention preferably has a photoelastic coefficient of 2.0 ⁇ 10-1 11 Pa- 1 or less.
  • various external forces such as a shrinkage stress of the polarizer, a stress due to distortion at the time of bonding, and a stress due to distortion at the time of assembling into a display. It takes. In particular, in a high-temperature, high-humidity environment, the contraction stress of the polarizer is large.
  • the photoelastic coefficient is calculated by the following equation, and is a value representing a change in birefringence with respect to an external force.
  • Photoelastic coefficient (c) birefringence ( ⁇ ) / stress ( ⁇ )
  • the photoelastic coefficient the smaller the amount of change in the birefringence due to external force. If the photoelastic coefficient exceeds 2, OX10-a- 1 , the optical properties change greatly due to deformation due to external force, and it is difficult to use it for optical film applications. More preferably 1. is 0 X 1 0- 11 P a- 1 below.
  • the thickness of the TPSNB-based resin film of the first invention is not particularly limited, but preferably satisfies the above-mentioned optical characteristics and physical characteristics when the average film thickness is 100 m or less.
  • the uniform film thickness is 100 / zm or less, the film becomes very brittle and difficult to manufacture, and when this film is used as a polarizer protective film, the polarizing plate has poor reworkability.
  • the average film thickness is 70 ⁇ m or less, and more preferably, when the average film thickness is 50 ⁇ m or less, the above-mentioned optical properties and physical properties are satisfied.
  • the optical properties and physical properties described above are satisfied at an average film thickness of 5 O wm or less, the cost can be significantly reduced, and the value is extremely high.
  • the lower limit of the average film thickness is not particularly limited, it is preferable that the average film thickness is 25 m or more, more preferably the average film thickness is 20 ⁇ m or more in consideration of use as an optical film or a polarizer protective film. It is preferable that the optical properties and the physical properties described above be satisfied.
  • the difference between the maximum value and the minimum value when the thickness is measured by a method according to JISK 7130 is preferably 5 ⁇ m or less.
  • measurement shall not be made at the end, that is, at the 10% portion on both sides of the entire width of the film extruded from the die.
  • the present inventors have conducted intensive studies and found that if the thickness of the film varies, especially if the thickness in the flow direction and the vertical direction (TD) during extrusion of the film varies, the tensile It has been found that the elongation at break varies greatly. If the difference in film thickness exceeds 5 ⁇ , even if the average tensile elongation at break can satisfy the above values, the reworkability may be poor industrially. .
  • FIG. 1 is a schematic diagram showing one example of a transmission electron microscope image of the TP SN.B-based resin film of the first present invention in such a state.
  • rubbery polymers 2 are arranged in a matrix made of TPSNB-based resin 1 in a thread-like or belt-like shape and oriented in a certain direction.
  • the size of the thread-like or band-like rubbery polymer is not particularly limited, but is preferably about 10 nm in width, about several tens to several hundreds of nm in thickness, and about 0.4 to 5 in in length.
  • the arrow in FIG. 1 indicates the thickness direction of the TP SNB-based resin film, and optical characteristics such as parallel light transmittance in this direction are problematic.
  • the TP SNB-based resin film of the first aspect of the present invention can achieve both high optical properties and high physical properties. This is because, when the TPS NB-based resin film of the present invention is viewed from the thickness direction, the rubbery polymer in the TP SNB-based resin has a thickness of about several tens to several hundreds of nm, that is, the wavelength of visible light or less. It is considered that the transparent film can be obtained even when a large amount of a rubbery polymer that sufficiently improves the physical properties is compounded because the particles are dispersed in a rod shape or a band shape. .
  • a rubbery polymer which is arranged in a matrix composed of the TP SNB-based resin and is oriented in a certain direction like a thread or a band was observed in detail.
  • FIG. 1b One example of such a structure is shown in FIG. 1b.
  • the TPSNB-based resin 1 is observed further inside the thread-like or band-shaped rubbery polymer 2 in the matrix composed of the TPSNB-based resin 1.
  • Such a structure is generally called a salami structure.
  • the optical performance is further improved, such as the physical performance and the residual phase difference are reduced.
  • FIG. 2 is a schematic diagram showing one example of such a state.
  • agglomerates of rubbery polymers 2 of various sizes are irregularly arranged in a matrix composed of TP SNB-based resin 1.
  • the state of the TP SNB-based resin and the rubbery polymer in the TP SNB-based resin film is controlled to obtain the first TP SNB-based resin film of the present invention having excellent optical properties and physical properties.
  • melt extrusion is performed under special temperature control. It is also important to perform special temperature control on the temperature conditions of the extruded film.
  • the melting temperature of the TPSNB-based resin composition until the TP SNB-based resin composition is melted and sent to a die is set to the glass of the TP SNB-based resin.
  • the transition temperature + 135 ° C or less, and the average residence time from melting to feeding to the die of 40 minutes or less, allows the TP SNB resin and rubbery polymer shown in Fig.
  • the first TP SNB-based resin film of the present invention which achieves both the optical characteristics and the physical characteristics, can be produced.
  • a TP SNB-based resin yarn composition containing a rubbery polymer is also described, for example, in Japanese Patent No. 294014.
  • using TP SNB resin compositions containing rubbery polymers taking into account measures to reduce fisheye and other defects on the film that are indispensable for performance as optical films. has not been reported at all.
  • it is essential to perform filtration using a resin filter or the like in the extrusion process.
  • a filtration accuracy of 1 ⁇ or less is required. High filtration accuracy using a resin filter is required.
  • the melting temperature is equal to or lower than the glass transition temperature of the TP SNB-based resin + 130 ° C.
  • the preferred average residence time is 35 minutes or less, and the more preferred average residence time is 30 minutes or less.
  • a method for producing such a TP SNB-based resin film is also one of the present invention.
  • the TPSNB-based resin composition containing a rubbery polymer tends to have a lower melt viscosity than the TPSNB-based resin alone. Therefore, when a TP SNB-based resin film is produced using the method for producing a TP SNB-based resin film of the present invention, molding at a low temperature becomes possible, gelation of the TP SNB-based resin is suppressed, Continuous production at This is also one of the effects of using the rubbery polymer.
  • the present inventors maintained the temperature of the TPSNB-based resin constant under a nitrogen atmosphere, and used a differential scanning calorimeter (DSC) every one hour.
  • DSC differential scanning calorimeter
  • the gelation of the TPSNB resin is particularly suppressed and obtained. It has been found that the fisheye of the film can be reduced. Forming under such temperature conditions enables long-term continuous production.
  • the method of melt extrusion is not particularly limited, and a conventionally known method can be used.For example, after kneading with a single-screw or twin-screw, the mixture is melt-extruded into a film by a T-die, and the mixture is cooled by a cooling roll. Methods of taking over, cooling and solidifying are mentioned.
  • the method for preparing the TP SNB-based resin composition is not particularly limited.For example, using a single-screw kneader, a mixer, a twin-screw kneader, or the like, the glass transition temperature of the TP SNB-based resin is set to 50 to 150 °.
  • the preparation of the TPSNB-based resin composition and the film forming may be performed in a series of steps, or after the TPSNB-based resin composition is once prepared into pellets, the film is formed using this pellet. May be.
  • the contact distance from the die exit to the cooling roll that is, the air gap is 100 mm or less. If the air gap is less than 100 mm, the film is less susceptible to external influences during the process, and a film having a uniform thickness and optical performance can be obtained.
  • the temperature of the TP SNB-based resin composition extruded from the die immediately before contact with the cooling port is the glass transition temperature of the TP SNB-based resin + 50 It is preferably at least ° C.
  • the glass transition temperature is set to + 50 ° C or higher, the stress generated when forming the TP SNB-based resin film from the TP SNB-based resin composition is significantly reduced, and the occurrence of residual phase difference can be suppressed. . This is because, in the case of an amorphous thermoplastic resin such as a TPSNB resin, the higher the temperature of the resin, the less stress is generated when the resin is deformed.
  • the glass transition temperature is + 80 ° C or higher.
  • the temperature variation of the TPSNB resin composition immediately before contact with the cooling roll be less than 10 ° C.
  • the temperature of the TP SNB-based resin composition immediately after being extruded from the die is equal to or higher than the glass transition temperature of the TP SNB-based resin + 100 ° C. . If the temperature is lower than 100 ° C, the stress generated during molding may be significantly increased, and a residual phase difference is easily generated.
  • the method of controlling the temperature of the TPSNB-based resin composition extruded from the die in this way is not particularly limited.For example, by using a temperature control device having a PID control function, the temperature of the die can be controlled. A method of controlling the temperature of the polymer pipe (adapter) is exemplified.
  • the temperature of the die and the temperature of the polymer pipe (adapter) should be such that the resin does not deteriorate thermally.
  • a method of keeping the film warm by heating it with a heater or using a heat insulating cover is also conceivable.
  • temperature control can be performed with high accuracy and the temperature variation can be reduced as compared with the method of changing the die temperature. This is effective especially when high-precision temperature control is required.
  • there is no need to excessively increase the die temperature there is an advantage of suppressing resin deterioration.
  • the melt-extruded TP SNB-based resin composition when brought into contact with the cooling roll, it is preferable to press the TP SNB-based resin composition against the cooling roll downstream from the contact point. As a result, the temperature change of the TPSNB-based resin composition becomes uniform, so that occurrence of optical axis deviation can be prevented, and a film having a stable thickness profile and a uniform thickness can be obtained.
  • the method of pressing the TP SNB-based resin composition against the cooling roll is not particularly limited, and examples thereof include a method using an air knife, an air chamber, an electrostatic picking device, a touch roll, and the like. At this time, it is more preferable that the temperature and pressure in the width direction are uniform.
  • the cooling roll preferably has a surface roughness Ry of 0.5 / im or less. If it exceeds 0.5 / im, the smoothness of the TP SNB-based resin composition cannot be maintained, and the resulting TPS NB-based resin film may have poor transparency. More preferably, it is 0 or less.
  • the surface roughness Ry is determined by a method according to JISB0601. Can be measured.
  • the material of the cooling roll is not particularly limited, and examples thereof include carbon steel and stainless steel.
  • the clearance at the die outlet attached to the extruder to be used is preferably set in advance in accordance with the die flow path design. An error of about the same rate as the above-mentioned variation in film thickness is allowed. If the die has a plurality of clearance adjusting bolts, the clearance may be adjusted according to the thickness of the extruded film.
  • the TPS NB-based resin film of the first present invention has both high optical properties and physical properties as described above, it can be suitably used as an optical film.
  • optical film comprising the TPSNB-based resin film of the first present invention is also one of the present inventions.
  • the TPS NB-based resin film of the first present invention can also be suitably used as a polarizer protective film.
  • the polarizer protective film comprising the TPSNB-based resin film of the first present invention is also one of the present invention.
  • the polarizer protective film of the present invention may be subjected to various surface treatments according to the use of the liquid crystal display to be used.
  • the surface treatment is not particularly limited, and examples thereof include a clear hard coat treatment, an AG (reflection prevention) treatment, and an AR (anti-reflection) treatment.
  • the polarizer protective film of the present invention has a corona discharge so that the contact angle with water on the surface becomes about 40 to 50 degrees for the purpose of improving the bonding property with the polarizer as long as the optical properties are not impaired. Processing or the like may be performed.
  • the TP SNB-based resin film of the first aspect of the present invention is suitably used as a retardation plate for compensating for light distortion when passing through a liquid crystal material by uniaxially or biaxially stretching to impart orientation. Can be used.
  • a retardation plate comprising the TPSNB-based resin film of the first invention is also one of the first inventions.
  • a polarizing plate obtained by directly laminating the retardation plate of the present invention on at least one side of a polarizer is also one of the present invention.
  • the temperature at which the above stretching is performed is not particularly limited, but the glass transition temperature of the TP SNB-based resin to the glass transition temperature of the TP SNB-based resin + 20 ° C. Is preferred.
  • the film may be broken on the low temperature side, or a desired retardation value may not be obtained on the high temperature side. More preferably, the glass transition temperature of the TP SNB resin + 1 ° C to the glass transition temperature of the TP SNB resin + 10 ° C.
  • the stretching ratio in the above stretching is not particularly limited, but is preferably 1.05 to 5.0 when stretched in the direction of melt extrusion of the film. If it is less than 1.5 times, the amount of deformation may be too small to obtain sufficient retardation, and if it exceeds 5.0 times, the film may be broken. More preferably, it is 1.1 to 2.5 times. When the film is stretched in a direction perpendicular to the direction of melt extrusion, the ratio is preferably 1.2 to 3.0 times, and more preferably 1.5 to 2.5 times.
  • the second invention is a polarizing plate comprising a polarizer protective film comprising a norbornene-based resin composition and a polarizer, having a parallel light transmittance of 40% or more, and a 180 ° peeling test in accordance with JISZ 1528. It is a polarizing plate that does not break when peeled at a tensile speed of 30 Omm / min and a tension of 2.5 to 3 N / 25 mm under the following conditions.
  • the polarizer is not particularly limited, and a conventionally known polarizer can be used.
  • a polarizer obtained by adsorbing iodine or a dichroic dye on a stretch-oriented polybutyl alcohol resin can be used.
  • the polarizing plate of the second present invention does not break when peeled at a tensile speed of 30 OmmZmin and a tension of 2.5 to 3 NZ25 mm under the conditions of a 180 ° peel test in accordance with JIS Z1528.
  • the polarizing plate and the liquid crystal cell are bonded together with sufficient strength that the dimensional change of the entire polarizing plate can be suppressed without the polarizer made of polybutyl alcohol or the like being separated due to the stress generated by heat shrinkage.
  • the necessary adhesive force for this purpose is considered to be at least about 2.5 to 3 N / 25 mm as the peel strength measured at a tensile speed of 300 m / in in a 180 ° peel test at least in accordance with JISZ 1528. .
  • the polarized light of the second present invention which does not break when peeled at a tensile speed of 30 Omm / min and a tension of 2.5 to 3 N / 25 mm.
  • the board is excellent in reworkability.
  • the parallel light transmittance of the polarizing plate of the second invention is 40. /. That is all. If it is less than 40%, when used as a polarizing plate for liquid crystal, the brightness of an image displayed becomes insufficient, and problems such as difficulty in viewing the image occur.
  • the polarizing plate of the second aspect of the present invention preferably has a dimensional change ratio before and after heating at 90 ° C. for 24 hours of 2% or less. If it exceeds 2%, it is necessary to adhere with a high strength exceeding 3 N / 25 mm to prevent the polarizing plate and the liquid crystal cell from peeling off due to the stress generated during the dimensional change, resulting in poor reworkability. is there.
  • the method for producing the polarizing plate of the second present invention is not particularly limited.
  • the polarizer and the polarizer protective film of the present invention composed of the TP SNB-based resin film of the first present invention may be polyurethane-based, Adhesives such as polyester-based and polyacrylic-based adhesives; and a method of bonding using a conventionally known (viscosity) adhesive such as an acrylic-based, silicone-based, or rubber-based adhesive may be used.
  • a conventionally known (viscosity) adhesive such as an acrylic-based, silicone-based, or rubber-based adhesive
  • the polarizing plate of the second aspect of the present invention exhibits extremely high optical properties and also has extremely high leakiness.
  • TP SNB resin JSR, ARTON G 6810: glass transition temperature 1 64 ° C, refractive index 1.52
  • styrene elastomer Asahi Kasei Corporation, Tuftec HI 041: refractive index 1.51, styrene content 32%, ethylene content 43%)
  • TP SNB A resin composition was prepared. Using the obtained TP SNB-based resin composition, extrusion molding was carried out using the following extruder, T-die and resin filter under the temperature conditions shown in Table 1, and the average thickness was 40 ⁇ m. m optical finolems were obtained.
  • T die 150 Omm width coat hanger type, resin flow path surface has H-Cr plating
  • Resin filter Leaf disk type filter (Nippon Seisen Co., Ltd., filtration accuracy 10 ⁇ m
  • An elastic touch roll with a metal sleeve on the surface was used as a contact stabilizer. At that time, the temperature of the elastic touch roll and the cooling roll was set to 70 ° C. Furthermore, the surface roughness of the elastic touch roll and the cooling roll was 0.2 m in Ry. The temperature immediately before contact with the cooling roll was measured using a non-contact thermometer with the elastic touch roll separated from the cooling roll.
  • the TP SNB resin used was kept at 286 ° C under a 99.9% nitrogen purge, and then nitrogen was flowed at a rate of 6 OmLZ by DSC (manufactured by Seiko Instruments, Inc., DSC 6200R). When the glass transition temperature was measured, the time required for the glass transition temperature to rise by 1 ° C was determined to be 120 hours.
  • Poly Bulle alcohol (polymerization degree 3800, ⁇ index: 99.5 mole 0/0) of the unstretched off Ilm (thickness: 75 // m) was washed with room temperature water, longitudinal uniaxial direction to 6 times stretched After immersion in an aqueous solution containing 0.5% by weight of iodine and 5% by weight of potassium iodide while maintaining this stretched state, 10% by weight of boric acid and 10% by weight of lithium iodide
  • a polarizer was prepared by performing a cross-linking treatment in a 50 ° C aqueous solution containing weight ° / 0 for 5 minutes.
  • the obtained TP SNB-based resin film was used as a polarizing plate protective film.
  • a corona discharge treatment was applied to the surface of the film on the side to be laminated with the polarizer.
  • the contact angle of the polarizing plate protective film surface with water after the corona discharge treatment was 42 to 44 degrees.
  • the obtained laminate was kept in a thermostat at 45 ° C. for 72 hours, dried and cured to produce a polarizing plate.
  • TP SNB resin (ARTQN G6810, manufactured by JSR) and styrene elastomer (Clayton Polymer, G1652) used in Example 1: refractive index 1.52, styrene content 28%, ethylene content (45%) and a weight ratio of 85:15 to a twin-screw melt extruder, melt-mixed at 286 ° C, and fed to a T-die controlled at 286 with a residence time of 30 minutes.
  • a TPSNB resin film having a thickness of 30 / im was obtained in the same manner as in Example 1 except that the conditions shown in Table 1 were used. Using the obtained TPSNB-based resin film as a polarizing plate protective film, a polarizing plate was produced in the same manner as in Example 1.
  • the TP SNB-based resin (ARTON G68 10 manufactured by JSR) and the styrene-based elastomer (Tuftec 1041 manufactured by Asahi Kasei Corporation) used in Example 1 were supplied to a twin-screw extruder at a weight ratio of 90:10. The mixture was melt-mixed at 293 ° C and fed to a T-die adjusted to 293 ° C with a residence time of 30 minutes. A TP SNB-based resin film having a thickness of 30 ⁇ was obtained in the same manner as in Example 1 except that the conditions shown in Table 1 were used. A polarizing plate was produced in the same manner as in Example 1, using the obtained TPSNB-based luster film as a polarizing plate protective film.
  • the TP SNB resin used was maintained at 293 ° C under a 99.9% nitrogen purge, and then 60 mL / N of nitrogen was passed through DSC (manufactured by Seiko Instruments Inc., DSC 6200R). When the glass transition temperature was measured while flowing at a rate of / min, the time required for the glass transition temperature to rise by 1 ° C was determined to be 40 hours.
  • Example 4 TP SNB resin (ARTON G6810, manufactured by JSR Corporation), styrene elastomer (Clayton RP 6936, manufactured by Clayton Polymer Co., Ltd .: refractive index 51, styrene content 40%) used in Example 1, and heat A plastic resin (Tonex Corporation, Escolets 235E) was fed to a twin screw extruder at a weight ratio of 80.5: 15: 4.5, melt-mixed at 286 ° C, and pelletized to 110 °. C for 3 hours to obtain a TPSNB-based resin composition.
  • a TP SNB-based resin film having a thickness of 40 / m was obtained in the same manner as in Example 1 except that the conditions shown in Table 1 were used.
  • a polarizing plate protective film Using the obtained TPSNB-based resin film as a polarizing plate protective film, a polarizing plate was produced in the same manner as in Example 1.
  • TPS NB resin ARTON G 6810, manufactured by JSR
  • styrene-based elastomer Clayton RP 6936, manufactured by Clayton Polymers
  • TPSNB-based resin composition Using the obtained TPSNB-based resin composition, a TPSNB-based resin film having a thickness of 40 ⁇ was obtained in the same manner as in Example 1 except that the conditions shown in Table 1 were used. Using the obtained TPSNB-based resin film as a polarizing plate protective film, a polarizing plate was produced in the same manner as in Example 1.
  • TP SNB resin (ARTON G6810, manufactured by JSR Corporation), styrene elastomer (Clayton Polymer, Clayton RP 6936: refractive index 1.51, styrene content 40%) used in Example 1,
  • a thermoplastic resin (Escolets 235E, manufactured by Tonex Corporation) was supplied to a twin-screw extruder at a weight ratio of 89: 10: 1, melt-mixed at 286 ° C, and pelletized to 110 ° C. Preliminary drying was performed at C for 3 hours to obtain a TP SNB-based resin composition.
  • a TP SNB-based resin film having a thickness of 40 ⁇ was obtained in the same manner as in Example 1 except that the conditions shown in Table 1 were used.
  • a polarizing plate protective film Using the obtained TPSNB-based resin film as a polarizing plate protective film, a polarizing plate was produced in the same manner as in Example 1.
  • Example 1 Only the TP SNB resin (ARTON G6810, manufactured by JSR Corporation) used in Example 1 was supplied to a single-screw extruder, and the procedure was the same as in Example 1 except that the conditions shown in Table 1 were used. A TP SNB-based resin film having a thickness of 30 ⁇ was obtained. Using the obtained TP SNB-based resin film as a polarizing plate protective film, a polarizing plate was produced in the same manner as in Example 1.
  • TP SNB resin ARTON G6810, manufactured by JSR Corporation
  • a TP SNB-based resin film and a polarizing plate were produced in the same manner as in Example 5, except that the average residence time in the extruder was set to 50 minutes.
  • a TP SNB-based resin film and a polarizing plate were produced in the same manner as in Example 5, except that the extrusion temperature was set to 310 ° C.
  • the TP SNB resin used was kept at 310 ° C under a 99.9% nitrogen purge, and then nitrogen was flowed at a rate of 6 OmLZ using DSC (manufactured by Seiko Instruments, Inc., DSC 6200R). When the glass transition temperature was measured, the time required for the glass transition temperature to rise by 1 ° C was determined to be 12 hours. (Comparative Example 4)
  • a TP SNB-based resin film having a thickness of 40 ⁇ was obtained by a coating method.
  • the TP SNB-based resin and the styrene-based elastomer caused a phase separation, resulting in a non-uniform and opaque film.
  • a polarizing plate was produced in the same manner as in Example 1.
  • the tensile modulus, tensile elongation at break, total light transmittance, parallel light transmittance, haze value, residual retardation, Optical axis deviation, photoelastic coefficient, variation in film thickness, occurrence of fishery and winding property were measured.
  • the TPSNB-based resin film produced in Example 1 was observed using a transmission electron microscope by the following method, and the presence or absence of a salami structure was evaluated.
  • the measurement was performed under the following conditions using TENS I LON (manufactured by ORI ENTEC) according to JIS K 7113.
  • the measurement was carried out using a haze meter (TC-HDIDKIP, manufactured by Tokyo Denshoku Co., Ltd.) according to JIS K7105.
  • the photoelastic coefficient was determined from the slope of the approximate straight line when the phase difference was plotted against the load.
  • the thickness of the film was measured by a method according to JIS K 7130, and the difference between the maximum value and the minimum value at that time was determined.
  • Mi11i'tron1240 manufactured by Seiko EM was used for the measurement.
  • the number of fish eyes of 100 / xm square or more in the obtained film was visually observed, and the time from the start of production until the number of fish eyes generated exceeded 1 ° Zm 2 was measured.
  • the film was subjected to a winding test under the conditions of a line speed of 5, 10 and 3 OmZ and a winding tension of 500 N / 65 Omm N core: 6 inch made of FRP, and the presence or absence of breakage of the film was evaluated.
  • the measurement was performed using a haze meter (TC-HIHDKP, manufactured by Tokyo Denshoku Co., Ltd.) according to JIS K 7105.
  • Mw weight average molecular weight
  • Toluene was added to and diluted with the obtained acryl-based polymer in ethyl acetate solution, and the weight of the acryl-based polymer was 13%. / 0 toluene solution, 2 parts by weight of an isocyanate cross-linking agent (Coronate L, manufactured by Nippon Polyurethane Co., Ltd.) was added, and the mixture was stirred to prepare an adhesive.
  • an isocyanate cross-linking agent (Coronate L, manufactured by Nippon Polyurethane Co., Ltd.) was added, and the mixture was stirred to prepare an adhesive.
  • the resulting adhesive is applied on a release film and dried in two stages of 60 ° C, 5 minutes, 120 ° C, and 5 minutes to prevent foaming, and then a light release type release film is adhered.
  • a non-support tape with a thickness (average value) of 25 Aim after drying was prepared by laminating on the surface of the agent and temporarily fixing.
  • the release film on the lightly peeling side of the non-support tape was peeled off and laminated on one side of the polarizing plate to produce a polarizing plate adhesive sheet.
  • the obtained polarizing plate pressure-sensitive adhesive sheet was cut into a strip of 25 mm 150 mm so that the angle of the absorption axis of the polarizer was 0 ° and 90 ° with respect to the long side.
  • the release film of the non-support tape was peeled off, and the non-support tape was attached to a 1.1 mm thick non-alkali glass using a 2 kg pressure roller. Further, autoclave treatment was performed at 50 ° C and 5 atm for 20 minutes to obtain a test piece.
  • a pressure-sensitive adhesive and a non-support tape were prepared in the same manner as in the case of the evaluation of the breaking property when the polarizing plate was peeled off.
  • the release film on the light release side of the non-support tape was peeled off, and the polarizing plate was laminated on one side of the obtained polarizing plate to produce a polarizing plate adhesive sheet.
  • the obtained polarizing plate adhesive sheet was cut into a size of 20 Omm ⁇ 30 Omm at an angle of the polarizer absorption axis of 0 ° with respect to the long side.
  • the release film of the non-support tape was peeled off, and the non-support tape was attached to a 1.1 mm-thick non-alert glass using a pressure roller at a pressure of 19.6 N / 25 mm.
  • the polarizing plate attached to the glass is stored in an oven at 100 ° C for 3 days, and
  • Example 6 2060 12 91 0.2 ⁇ 8 0.43 N / A N / A N / A 4 110 A y Comparative example "! 2100 2 92 0.1> ⁇ 5 0.40 Y N / A j Yes 5 11 N / A Comparative example 2 1660 10 80 2.9 3.80 ⁇ 8 0.47 N / A N / A N / A S 95 None Comparative example 3 1650 10 81 3.5 0.80 ⁇ 20 0.47 None None None None 8 12 None Comparative example 4 1500 8 70 15.2 5 None
  • a retardation plate was produced using the TPSNB resin film produced in Example 1.
  • nip rolls are installed at both ends outside the furnace of the heating furnace divided into three sections of a preheating zone, a stretching zone, and a cooling zone in the longitudinal direction, and are unwound continuously at a constant speed of 5.Om/min from the inlet side ep roll. Then, the film was stretched at a speed of 7.5 m / min with an Eproll on the outlet side so as to obtain a stretching ratio of 150%.
  • the temperature was set at a preheating zone of 153 ° C, a stretching zone of 166 ° C, and a cooling zone of 120 ° C to obtain a uniaxial retardation plate.
  • thermoplastic saturated norbornene-based resin film an optical film, a polarizer protective film, a retardation plate, a polarizing plate, and a thermoplastic saturated norbornene-based resin film having both high physical properties and optical propertiescan be provided. '

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Polarising Elements (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

明細書
熱可塑性飽和ノルボルネン系榭脂フィルム、 及び、 熱可塑性飽和ノルポルネン系 樹脂フィルムの製造方法 技術分野
本発明は、 高い物理特性と光学特性とを両立した熱可塑性飽和ノルボルネン系 樹脂フィルム、 光学フィルム、 偏光子保護フィルム、 位相差板、 偏光板、 及び、 熱可塑性飽和ノルボルネン系樹脂フィルムの製造方法に関する。 背景技術
熱可塑性飽和ノルボルネン系樹脂は、 耐熱性、 光学特性、 透明性、 電気特性等 において優れた性能を有し、 自動車部品、 電気■電子部品、 光学部品及び建材等 に用いるフィルムとしての応用が検討されている。 とりわけ、 卓上電子計算機、 電子時計、 ワープロ、 自動車、 機械類の計器類等の液晶表示装置の偏光板に用い る偏光子保護フィルムや位相差板としての応用が期待されている。
偏光板は、 通常、 延伸配向したポリビュルアルコール樹脂にヨウ素又は二色性 染料を吸着させた偏光子と、 偏光子の両面に接着された偏光子保護フィルムから なる。 偏光子保護フィルムとして用いる光学フィルムには、 光透過性等の光学特 性に優れること、 収縮性の大きい偏光子の収縮を防止できるだけの力学的強度を 有すること、 製造工程においてかけられる高温に耐えうる耐熱性を有すること等 が求められている。
従来、 偏光子保護フィルムとしては、 トリァセチルセルロースからなる光学フ イルムが用いられていた。 しかし、 トリァセチルセルロースからなる光学フィル ムは、 高い光学特†生を有するものの、 耐熱性、 耐湿性が不充分であり、 高温又は 高湿雰囲気下で長時間使用すると偏光度の著しい低下、 偏光子と保護フィルムと の剥離、 トリァセチルセルロースの加水分解による透明性の低下等が起こり、 偏 光板の性能を低下させるという問題があった。
また、 偏光板には、 液晶物質を通過する際の光の歪みを補償することを目的と して位相差板が用いられている。 このような位相差板としては、 ポリカーボネー ト樹脂やポリスルホン樹脂のように透明性、 '耐熱性に優れる樹脂からなるものが 用いられていた。
特開平 5— 2 4 7 3 2 4号公報には、 熱可塑性飽和ノルボルネン系樹脂からな る光学フィルムが開示されている。 熱可塑性飽和ノルポルネン系樹脂からなる光 学フィルムは、 応力に対する複屈折の発現が小さいといった特徴や高透明性等の 優れた光学特性に加え、 優れた耐熱性を示す。 従って、 熱可塑性飽和ノルボルネ ン系樹脂からなる光学フィルムを用いれば、 高い光学特性を有する偏光板を得る ことが期待できる。
し力 しながら、 熱可塑性飽和ノルボルネン系榭脂からなる光学フィルムは、 非 常に脆く、 薄膜化が困難であるという問題があった。 また、 押出成形法により製 造しよ'うとしても、 引き取り速度が速くなるとフィルムが破断してしまうため、 生産性にも問題があった。
また、 液晶表示装置の製造においては液晶セルに偏光板を貼り合わせる工程が 行われるが、 貼り合わせの際に気泡や異物を巻き込んだり、 偏光板自体に欠陥が あったり'することは不可避である。 そこで、 液晶セルに偏光板を貼り合わせるェ 程後に検査を行い、 欠陥がある場合には偏光板を剥がして高価な液晶セルを再利 用する、 リワークと呼ばれる工程が行われている。 このような再利用を可能にす るためには、 剥離時に偏光板を容易に剥離できることが必要であるが、 脆い熱可 塑性飽和ノルボルネン系樹脂からなる偏光子保護ブイルムゃ位相差板を用いた偏 光板では、 剥離時に破断してしまったりしてリワーク性に劣るという問題もあつ た。
これに対して、 特開平 3— 1 0 6 9 6 3号公報には、 ノルポルネン開環重合体 水素添加物とゴムとを含有してなる樹脂組成物が開示されている。 これは、 ノル ボルネン開環重合体水素添加物にゴムを添加することにより、 金属部品のィンサ -ト成形に用いたときにクラックゃ成形時のひけが抑えられた成形品が得られ、 また、 熱可塑性飽和ノルボルネン系ポリマーとの接着性に優れるというものであ る。 この樹脂組成物は、 ノルポルネン系樹脂の有する脆さ等の物理特性は改善さ れていると考えられる。 しかしながら、 ゴムの添加により、 平行光線透過率等の 光学特性は著しく低下し、 光学フィルムとしては用いることができないものであ つた。
また、 特開平 5— 2 4 7 3 2 4号公報にも、 熱可塑性飽和ノルボルネン系樹脂 及びそれと非相溶である配合剤からなり、 配合剤がミクロドメインを形成して分 散している熱可塑性飽和ノルボルネン系樹脂組成物及びこれからなる光学材料が 記載されており、 配合剤としてゴム質重合体を用いた場合には、 各種の塗料や膜 との接着性が改良できる旨が開示されている。 しかしながら、 充分な光学性能を 得るためには、 添加するゴム質重合体の量は熱可塑性飽和ノルボルネン系樹脂 1 0 0重量部に対して 0 . 0 0 1 ~ 0 . 8重量部程度とされ、 この程度の配合剤の 添加では、 充分な物理特性の改善は実現できなかった。
また、 特許第 2 9 4 0 0 1 4号公報には、 熱可塑性飽和ノルボルネン榭脂とゴ ム質重合体とからなる熱可塑性樹脂 成物が開示されており、 該熱可塑性樹脂組 成物を射出成形してなる成形体が記載されている。 しかしながら、 特許第.2 9 4 0 0 1 4号公報においては得られた成形体の耐衝撃性や全光線透過率等について の記載はされているものの、 光学フィルムの製造については何ら記載されておら ず、 光学フィルムの性能として不可欠な平行光線透過率やヘイズについても何ら 記載されていなかった。
更に、 特開平 5— 1 4 8 4 1 3号公報には、 熱可塑性飽和ノルポルネン樹脂と ゴム成分を溶媒に溶解又は分散し、 キャスト法により形成したフィルムが開示さ れている。 これは、 熱可塑性飽和ノルボルネン樹脂に対してゴム成分を配合し、 伸度を改善するというものである。 しかしながら、 得られたフィルムは平行光線 透過率等の光学特性に劣り、 光学フィルムとしては用いることができないもので めった。 発明の要約
本発明は、 上記現状に鑑み、 高い物理特性と光学特性とを両立した熱可塑性飽 和ノルボルネン系樹脂フィルム、 光学フィルム、 偏光子保護フィルム、 位相差板、 偏光板、 及ぴ、 熱可塑性飽和ノルボルネン系樹脂フィルムの製造方法を提供する ことを目的とする。
第 1の本発明は、 熱可塑性飽和ノルポルネン系樹膪 1 0 0重量部とゴム質重合 体 5 ~ 4 0重量部とを含有する熱可塑性飽和ノルボルネン系樹脂組成物を用いて なる熱可塑性飽和ノルポルネン系樹脂フィルムであって、 平行光線透過率が 8 7 %以上である熱可塑性飽和ノルポルネン系樹脂フィルムである。
上記熱可塑性飽和ノルポルネン系樹脂と上記ゴム質重合体とは、 屈折率の差が 0 . 2以下であることが好ましい。
第 1の本発明の熱可塑性飽和ノルポルネン系樹脂フィルムは、 弓 I張弾性率が 9 O O M P a以上、 かつ、 引張破壊伸びが 4〜4 0 %であることが好ましく、 残留 位相差が 3 n m以下、 かつ、 光軸ずれが長軸方向に対して ± 1 0 ° 以下であるこ とが好ましく、 残留位相差が 1 n m以下であることがより好ましい。 また、 J I S K 7 1 3 0に準じる方法により厚さを測定したときの最大値と最小値との 差が 5 / m以下であることが好ましく、 張力 5 0 0 1^ノ6 5 O mmで破断するこ となく卷き取り可能であることが好ましい。
上記ゴム質重合体は、 スチレン系エラストマ一であることが好ましく、 上記ス チレン系エラストマ一は、 スチレン成分が 2 5〜5 0重量0 /0、 エチレン成分が 2 5〜5 0重量0 /0であるスチレン一エチレンーブチレン共重合体であることが好ま しい。
上記熱可塑性飽和ノルボルネン樹脂組成物は、 更に、 数平均分子量が 3 0 0〜 1万の熱可塑性樹脂を含有することが好ましい。
第 1の本発明の熱可塑性飽和ノルボルネン系榭脂フィルムは、 光弹性係数が 2 , 0 X 1 0— 1 1 P a—1以下であることが好ましい。
第 1の本発明の熱可塑性飽和ノルボルネン系樹脂フィルムからなる光学フィル ム、 偏光子保護フィルム及び位相差板もまた、 本発明の 1つである。
第 2の本発明は、 ノルポルネン系樹脂組成物からなる偏光子保護フィルムと偏 光子とからなる偏光板であって、 平行光線透過率が 4 0 %以上であり、 J I S Z 1 5 2 8に準拠した 1 8 0 ° 剥離試験の条件下で、 引張速度 3 0 0 mm/m i n、 張力 2 . 5〜3 N/ 2 5 mmで剥離した場合に破断しない偏光板である。 第 2の本発明の偏光板は、 9 0 °C、 2 4時間加熱を行った前後の寸法変化率が 2 %以下であることが好ましい。
本発明の位相差板を偏光子の少なくとも片面に直接積層してなる偏光板もまた、 本発明の 1つである。
溶融押出法により第 1の本発明の熱可塑性飽和ノルボルネン系樹脂フィルムを 製造する方法であって、 熱可塑性飽和ノルボルネン系樹脂組成物を溶融してダイ スに送り込むまでの熱可塑性飽和ノルポルネン系樹脂組成物の溶融温度が、 熱可 塑性飽和ノルボルネン系榭脂のガラス転移温度 + 1 3 5 °C以下であり、 かつ、 熱 可塑性飽和ノルボルネン系樹脂糸且成物を溶融してからダイスに送り込むまでの平 均滞留時間が 4 0分間以下である熱可塑性飽和ノルボルネン系樹脂フィルムの製 造方法もまた、 本発明の 1つである。
本発明の熱可塑性飽和ノルボルネン系樹脂フィルムの製造方法においては、 ダ イス力 ら押し出された熱可塑性飽和ノルポルネン系樹脂組成物の冷却ロールと接 触する直前における温度が、 熱可塑性飽和ノルポルネン系樹脂のガラス転移温度
、 + 5 0 °C以上であることが好ましく、 熱可塑性飽和ノルボルネン系榭脂のガラス 転移温度 + 8 0 °C以上であることがより好ましい。 図面の簡単な説明
図 1は、 第 1の本発明の熱可塑性飽和ノルポルネン系樹脂フィルムの断面の透 過型電子顕微鏡写真像の 1例を示す模式図である。 図 2は、 従来の熱可塑性飽和 ノルボルネン系樹脂フィルムの断面の透過型電子顕微鏡写真像の 1例を示す模式 図である。 図 3は、 実施例 1で作製した熱可塑性飽和ノルボルネン系樹脂フィル ムの断面の透過型電子顕微鏡写真像である。
図中、 1は、 熱可塑性飽和ノルボルネン系樹脂を表し、 2は、 ゴム質重合体を 表す。 発明の詳細な開示
以下に本発明を詳述する。
第 1の本発明の熱可塑性飽和ノルボルネン系樹脂フィルム (以下、 T P S N B 系樹脂フィルムともいう) は、 熱可塑性飽和ノルポルネン系樹脂 (以下、 T P S N B系樹脂ともいう) とゴム質重合体を含有する熱可塑性飽和ノルポルネン系樹 脂組成物 (以下、 T P S N B系樹脂組成物ともいう) を用いてなるものである。 本明細書において TP SNB系樹脂とは、 ノルポルネン系単量体の重合体、 又 は、 ノルボルネン系単量体とこれと共重合可能な単量体との共重合体であって、 分子内に不飽和結合を有しないもの、 又は、 分子内に不飽和結合を有する場合に おいてはこれを水素添加したものを意味する。
上記ノルボルネン系重合体としては特に限定されないが、 例えば、 下記一般式 (1) で表される少なくとも 1種のノルボルネン系単量体を重合してなるもの、 又は、 下記一般式 (1) で表される少なくとも 1種のノルボルネン系単量体とこ れと共重合可能な共重合性単量体とを共重合してなるものが好適に用いられる。
Figure imgf000008_0001
式中、 A、 Bは独立して水素原子又は炭素数 1〜10の炭化水素基を表し、 X、 Yは独立して水素原子、 ハロゲン原子又は有機基を表し、 mは 0又は 1を表す。 上記一般式 (1) で表されるノルボルネン系単量体としては特に限定されない 力 例えば、 ビシクロ 〔2. 2. 1〕 一2—ヘプテン、 トリシクロ 〔5. 2. 1. 0 2. 6〕 一 8—デセン、 トリシクロ 〔5. 2. 1. 02' 6〕 一3—デセン、 トリ シクロ 〔6. 2. 1. 011 9] 一 9一ゥンデセン、 トリシクロ 〔6· 2. 1. 0 1, 9〕 —4—ゥンデセン、 テトラシクロ 〔4. 4. 0. 12' 5. 17' 10] 一 3— ドデセン等の官能基を有しないもの; 8—メ トキシカルボ二ルテトラシクロ 〔4. 4. 0. I 2' 5. 17' 10〕 一 3—ドデセン、 8—メチルー 8—メ トキシカルボ ニルテトラシクロ 〔4. 4. 0. 12' 5. 17' 10) 一 3—ドデセン、 5—メ ト キシカルボ-ルービシクロ 〔2. 2. 1〕 _ 2—ヘプテン等の官能基を有するも のが好適である。 なかでも、 上記一般式 (1) において mが 1であるテトラシク 口ドデセン誘導体が、 ガラス転移温度の高い重合体が得られる点で好適である。 これらのノルポルネン系単量体は単独で用いてもよいし、 2種以上を併用しても よい。 - 上記一般式 (1) で表されるノルボルネン系単量体と共重合可能な共重合性単量 体としては特に限定されず、 例えば、 上記一般式 (1) に含まれないノルポルネ ン系単量体やノルボルネン骨格を有しない環状ォレフィン系単量体が挙げられる。 上記上記一般式 (1) に含まれないノルボルネン系単量体としては、 例えば、 ぺ ンタシクロ 〔6. 5. 1. I3' 6. 02' 7 · 09' 13] 一 4—ペンタデセン、 ペン タシクロ 〔6. 6. 1. I.3' 6. 02' 7. 09' 14〕 ー4一へキサデセン、 ペンタ シクロ 〔6. 5. 1. I 3' 6. 02' 7. 09' 13) — 11—ペンタデセン、 ジシク 口ペンタジェン、 ペンタシクロ 〔6. 5. 1. I 3' 6. 02' 7. 09' 13〕 一ペン タデ力一 4, 1 1一ジェン等のポリシクロアルケン等が挙げられる。
上記ノルボルネン骨格を有しない環状ォレフィン系単量体としては特に限定さ れず、 例えば、 シクロペンテン、 シクロオタテン、 1, 5—シクロォクタジェン、
1, 5, 9—シクロドデカトリェン等のシクロォレフィン類等が挙げられる 上記一般式 (1) で表されるノルボルネン系単量体を重合する方法、 又は、 上 記一般式 (1) で表されるノルボルネン系単量体とこれと共重合可能な共重合性 単量体とを共重合する方法としては特に限定されず、 例えば、 開環メタセシス重 合、 付加重合等の従来公知の方法を用いることができる。
上記ノルボルネン系重合体又はノルボルネン系共重合体に水素添加する方法と しては特に限定されず、 例えば、 ウィルキンソン錯体、 酢酸コバルト/トリェチ ノレアルミニウム、 ニッケルァセチルァセトナート zトリイソプチルアルミニウム、 パラジウム一カーボン、 ルテニウム錯体、 ルテニウム一カーボン、 ニッケルー珪 藻土等の従来公知の触媒を用いる方法等が挙げられる。 また、 重合の際にルテニ ゥムアルキリデン錯体、 ルテユウムビニリデン錯体、 ルテニウムフィッシャー力 ルベン錯体等のメダセシス重合性を示す錯体を用いる場合には、 水素添加触媒を 加えることなく水素加圧によって水素化が行え、 重合と水素化のステップを連続 で行うことができる。
上記水素添加は、 触媒の種類により均一系または不均一系で、 通常 1〜 200 気圧の水素圧下、 0〜250°Cの条件で行われる。
上記 T P S N B系樹脂とは、 上記ノルポルネン系重合体又は上記ノルポルネン 系共重合体が分子内に不飽和結合を有する場合には、 水素添加率が少なくとも 5 0 %以上となるように水素添加したものを意味するが、 水素添加率は 90 %以上 であることが好ましく、 より好ましくは 99 %以上である。 水素添加率が 50 % 未満であると、 得られる第 1の本発明の TP SNB系樹脂フィルムの耐光性、 耐 熱劣化性が劣る。
上記 TP SNB系樹脂のポリスチレン換算による数平均分子量は、 1万〜 10 0万であることが好ましレ、.。 1万未満であると、 得られる第 1の本発明の TP S NB系樹脂フィルムの力学強度が不足することがあり、 100万を超えると、 溶 融成形性が著しく低下することがある。 より好ましくは 1万 5000〜70万で ある。
なお、 ゴム質重合体の配合量を少なくしても所期の効果を得やすいことから、 溶融成形性等の他の要件を満たす範囲で、 より高分子量の T P SNB系樹脂を用 いることが好ましい。
上記 TP SNB系樹脂のガラス転移温度は 70〜180°Cであることが好まし い。 70°C未満であると、 得られる第 1の本発明の TP SNB系樹脂フィルムの 耐熱性が劣ることがあり、 1 80DCを超えると成形が困難になることがある。 上記 TP SNB系樹脂組成物は、 ゴム質重合体を含有する。
本明細書においてゴム質重合体とは、 ハードセグメントとソフトセグメントと からなる重合体であって、 ソフトセグメントのガラス転移温度が 25°C以下であ るものを意味する。
上記ゴム質重合体としては特に限定されず、 例えば、 スチレン一ブタジエンプ ロック共重合体、 水素化スチレン一ブタジエンブロック共重合体、 スチレンーィ ソプレンブロック共重合体、 水素化スチレン一イソプレンブロック共重合体、 ス チレン一イソプチレンブロック共重合体等のスチレン系エラストマ一や、 低結晶 性ポリブタジエン樹脂、 エチレン一プロピレンエラストマ一、 スチレングラフト エチレン一プロピレンエラストマ一、 熱可塑†生ポリエステ/レエラストマー、 ェチ レン系アイオノマー樹脂等の熱可塑性エラストマ一等が挙げられる。 これらのゴ ム質重合体は、 エポキシ基、 カルボキシル基、 ヒ ドロキシル基、 アミノ基、 酸無 水物基、 ォキサゾリン基等の特定の官能基によつて変性されたものであってもよ レ、。 なかでも、 スチレン系エラストマ一が好適である。 上記スチレン系エラストマ一としては、 得られる第 1の本発明の TP SNB系 樹脂フィルムの光学特性を損なうことなく引張弾性率、 引張破壌伸び等の物理特 性を改善できるものであれば特に限定されず、 例えば、 スチレンセグメントとガ ラス転移温度が 25 °C以下のセグメントとからなる共重合体が挙げられ、 なかで も、 スチレン一エチレンーブチレン共重合体 (SEB S) やスチレン一エチレン —プロピレン共重合体等が.好ましい。 特に、 スチレン成分が 25〜50重量0 /0、 エチレン成分が 25〜50重量%であるスチレン一エチレン一プチレン共重合体 は、 極めて高い光学特性と物理特性とを両立した光学フィルムが得られることか ら好適である。 これは、 TP SNB系樹脂との屈折率が極めて近く、 ゴム的な性 質を効率よく付与できかつ弾性率の低下も小さいため、 T P SNB系樹脂の特性 を損なわないためと考えられる。
上記ゴム質重合体としてスチレン系エラス トマ一を用いる場合、 上記スチレン 系エラストマ一の数平均分子量は 5万〜 100万であることが好ましい。 5万未 満であると、 ノルポルネン系樹脂中への分散性が不充分となり、 ゴム質重合体の 添加による物理特性の改質効果が得られないことがあり、 100万を超えると、 ノルポルネン系樹脂への配合時の溶融粘度が高すぎて、 成形性が劣り均一なフィ ルムが得られないことがある。 より好ましくは 8万〜 50万、 更に好ましくは 1 0万〜 40万である。
上記 TP SNB系榭月旨とゴム質重合体とは、 屈折率の差が 0. 2以下であるこ とが好ましい。 0. 2を超えると、 得られる第 1の本発明の TP SNB系樹脂フ イルムの透明性、 残留位相差等が悪化したり、 光学的な歪み等を生じやすくなつ たりすることがある。 より好ましくは 0. 1以下、 更に好ましくは 0. 05以下、 特に好ましくは 0. 03以下である。
また、 上記 TP S NB系樹脂組成物を溶融混合により調製する場合には、 成形 温度における上記 T P SNB系樹脂の粘度 ( ノルボルネン) とゴム質重合体の 粘度 (77ゴム) との比 (77ゴム / 7?ノノレボルネン) が 1に近いことが好ましい。 粘度比が 1に近いと、 上記 TP SNB系樹脂中に上記ゴム質重合体を微分散させ ることができる。 好ましくは 0. 2〜3. 0であり、 より好ましくは 0. 4〜2. 0である。 得られる TP SNB系樹脂フィルムのヘイズ値を 0. 5%以下とする 場合には、 特に ηゴム / 77ノルボルネンが 0. 5〜1. 8であることが好ましい。 なお、 ここでいう粘度とは、 実際の成形温度においてせん断速度を 24. 3で測 定したときの粘度を意味する。
上記 T P S Ν Β系樹脂組成物における上記 T P S Ν Β系榭脂組成物 100重量 部に対する上記ゴム質重合体の含有量は 5〜 40重量部であることが好ましい。 5重量部未満であると、 第 1の本発明の TP SNB系樹脂フィルムの充分な物理 特性の改善効果が得られず、 40重量部を超えると、 得られる本発明の TPSN B系樹脂フィルムの光学特性が劣る。 好ましくは 10〜30重量部である。 上記 TP S NB樹脂組成物は、 更に、 熱可塑性樹脂を含有することが好ましい。 上記熱可塑性樹脂を含有することにより、 上記 T P S N B系榭脂とゴム質重合体 との相溶性が向上し、 得られる第 1の本発明の TP SNB系樹脂フィルムの光学 特性が向上することがある。
上記熱可塑性樹脂としては特に限定されないが、 TP SNB系樹脂との相溶性 に優れることからォレフィン系樹脂が好適である。
上記熱可塑性樹脂の数平均分子量は、 300〜1万であることが好ましい。 3 00未満であると、 ブリードアウト等の問題が生ずることがあり、 1万を超える と、 相溶性向上効果が得られないことがある。 より好ましくは 500〜5000 であり、 更に好ましくは 600〜 2000である。
上記熱可塑性樹脂は、 上記 TP SNB系樹脂との屈折率差が 0. 2以下である ことが好ましい。 0. 2を超えると、 得られる第 1の本発明の TP SNB系樹脂 フィルムの透明性が劣ることがある。 より好ましくは 0. 1以下である。
また、 上記熱可塑性樹脂を溶融混練法にて TP SNB榭脂組成物に配合する場 合には、 上記熱可塑性樹脂としては、 熱重量分析において空気雰囲気下での 2重 量%分解温度が 230 °C以上であることが好ましい。 より好ましくは 250 °C以 上、 更に好ましくは 270°C以上である。
このような性質を有する熱可塑性樹脂のうち市販されているものとしては、 例 えば、 トーネックス社製 「エスコレッツ」 、 ヤスハラケミカル社製 「クリアロン J 、 荒川化学社製 「アルコン」 等が挙げられる。
上記 T P S N B樹脂組成物は、 本発明の目的を阻害しない範囲で必要に応じて、 2, 6—ジ一 tーブチルー 4ーメチノレフエノール、 2— (1—メチルシクロへキ シノレ) 一4, 6, ジメチルフエノール、 2, 2—メチレン一ビス一 (4—ェチノレ 一 6— t—プチノレフエノーノレ) 、 トリス (ジ一ノ-ゾレフェニルホスファイ ト) 等 の酸化防止剤; !)一 t—ブチルフエ-ルサリシレート、 2, 2'—ジヒ ドロキシ — 4ーメ トキシ一ベンゾフエノン、 2— (2'—ジヒ ドロキシ一 4,一 m—ォク ト キシフエニル) ベンゾトリアゾ一ル等の紫外線吸収剤;パラフィンフエノス、 硬 化油等の滑剤;ステア口アジトプロピルジメチルー β—ヒ ドロキシェチルアンモ ユウムトレート等の帯電防止剤等を含有してもよい。
第 1の本発明の T P SNB系樹脂フィルムは、 平行光線透過率が 87 %以上で ある。 87%未満であると、 偏光子保護フィルム等の用途には用いることが困難 となる。 好ましくは 89%以上である。
第 1の本発明の T PSNB系樹脂フィルムは、 ヘイズ値が 5 %以下であること が好ましい。 5%を超えると、 偏光子保護フィルム等の用途に用いた場合に、 光 洩れ等の原因となることがある。 より好ましくは 3%以下、 更に好ましくは 1% 以下、 特に好ましくは 0. 5%以下である。
第 1の本発明の TPS ΝΒ系樹脂フィルムは、 残留位相差が 3 nm以下、 かつ、 光軸ずれが長軸 (MD) 方向に対して ±10° 以下であることが好ましい。 残留 位相差が 3 nmを超えたり、 光軸ずれが長軸方向に対して ±10° を超えたりす ると、 第 1の本発明の TPSNB系樹脂フィルムを偏光子保護フィルム等として 用いた場合に光洩れ等の原因となることがある。 残留位相差と光軸ずれとは小さ い方が好ましいが、 残留位相差が 1 nm以下であると、 光軸ずれの大きさを無視 することができ、 光軸ずれを検査する工程が不要となることから偏光子保護フィ ルム等を製造する際の製造工程を大幅に簡略化することができより好ましい。 なお、 上記光軸とは、 入射光線の屈折率が最も大きくなる方向、 一般的には遅 相軸と呼ばれる軸のことを意味し、 上記光軸ずれとは、 上記光軸の長軸方向に対 する角度のズレのことを意味する。 また、 長軸方向とは、 例えばフィルムを押出 成形により作製する場合の押出成形の流れ方向である。
第 1の本発明の TPS NB系樹脂フィルムは、 J I S K 7113に準じて 測定した引張弾性率が 90 OMP a以上であることが好ましい。 90 OMP a未 満であると、 第 1の本発明の T PSNB系樹脂フィルムを偏光子保護フィルムと して用いた場合に、 偏光子の収縮を抑えることができないことがある。 より好ま しくは 100 OMP a以上である。 なお、 引張弾性率は高い方が好ましく、 特に 上限はない。
第.1の本発明の TP SNB系樹脂フィルムは、 J I S K 71 1 3に準じて 測定した引張破壊伸びが 4〜40%であることが好ましい。 4%未満であると、 破断しやすくなることから第 1の本発明の T P S Ν Β系樹脂フィルムを偏光子保 護フィルムとして用いた場合に、 偏光板のリワーク性が劣ることがあり、 40% を超えると、 耐久試験、 特に耐熱劣化試験を行うと偏光板の寸法変化が大きくな り、 光学特性の変化や液晶セルからの剥離が発生しやすくなることがある。 より 好ましくは 6〜 35%であり、 更に好ましくは 8%以上である。
第 1の本発明の TP SNB系樹脂フィルムは、 室温において張力 50 ON/ 6 5 Ommで破断することなく卷き取り可能であることが好ましい。 これにより大 量生産が可能になり、 コストを大幅に削減することができる。
第 1の本発明の TPS NB系樹脂フィルムは、 光弾性係数が 2. 0 X 10一11 P a—1以下であることが好ましい。 第 1の本発明の TP SNB系樹脂フィルム を偏光子保護フィルムとして用いた場合、 偏光子の収縮応力、 貼り合わせ時の歪 みによる応力、 ディスプレイへの組み込み時の歪みによる応力等、 種々の外力が かかる。 とりわけ、 高温高湿環境下においては、 偏光子の収縮応力は大きい。 光 弾性係数とは、 下記式により算出されるものであり、 外力に対する複屈折の変化 を表す値である。
光弾性係数 (c) = 複屈折 (Δ η) /応力 (σ)
即ち、 光弾性係数が小さいほど、 外力による複屈折率の変化量が小さいものに なる。 光弾性係数が 2, OX 10— a— 1を超えると、 外力による変形により 光学特性が大きく変化するため、 光学フィルムの用途には用いることが困難とな る。 より好ましくは 1. 0 X 1 0— 11 P a— 1以下である。
第 1の本発明の TP SNB系樹脂フィルムの厚さは特に限定されないが、 平均 膜厚が 1 00 m以下であるときに、 上述の光学特性及び物理特性を満たすもの であることが好ましい。 従来の TP SNB系樹脂からなる光学フィルムでは、 平 均膜厚を 1 0 0 /z m以下にすると非常に脆くなり、 製造が困難なことに加え、 こ れを偏光子保護フィルムとして用いると偏光板はリワーク性に劣るものとなった。 より好ましくは平均膜厚が 7 0 μ m以下、 更に好ましくは平均膜厚が 5 0 μ m以 下であるときに、 上述の光学特性及び物理特性を満たすものであることである。 平均膜厚 5 O wm以下で上述の光学特性及び物理特性を満たすものであると、 コ ストも大幅に削減することができ、 極めて価値が高い。 平均膜厚の下限について も特に限定されないが、 光学フィルムや偏光子保護フィルム等として用いること を考えれば、 好ましくは平均膜厚が 2 5 m以上、 より好ましくは平均膜厚が 2 0 μ m以上であるときに、 上述の光学特性及び物理特性を満たすものであること が好ましい。
また、 第 1の本発明の T P SNB系樹脂フィルムは、 J I S K 7 1 3 0に 準じる方法により厚さを測定したときの最大値と最小値との差が 5 μ m以下であ ることが好ましい。 ただし、 測定においては、 端部、 即ちダイから押し出された フィルムの全幅長さのうち両側のそれぞれ 1 0%の部分では測定しないこととす る。
本発明者らは、 鋭意検討の結果、 フィルムの厚さにばらつきがある場合、 とり わけフィルムの押出成形時の流れ方向と垂直方向 (TD) の厚さにばらつきがあ る場合には、 引張破壊伸びも大きくばらつくことを見出した。 フィルムの厚さの 差が 5 μ ηιを超えると、 平均値としての引張破壌伸びが上述の値を満たすことが できたとしても、 工業的にはリワーク性が劣ったものとなることがある。
従来は、 このような光学特性及び物理特性を両立した T P S Ν Β系樹脂フィル ムはなかったが、 本発明者らは、 鋭意検討の結果、 T P SNB系樹脂フィルム中 における上記 T P S N B系樹脂とゴム質重合体との状態を制御することにより、 光学特性及び物理特性を両立できることを見出し、 本発明を完成するに至った。 即ち、 第 1の本発明の T P SNB系樹脂フィルムを四酸化ルテニウム等により 染色した後、 約 0. 0 5 ^umの厚さにスライスし、 その断面を透過型電子顕微鏡 を用いて観察したときに、 上記 TP S NB系樹脂のマトリ ックス中に、 上記ゴム 質重合体が糸状又は帯状に一定方向に配向して配列しているような状態になった ときに、 TP SNB系樹脂フィルムは上述の光学特性と物理特性とを両立するこ とができる。 このような状態にある第 1の本発明の TP SN.B系樹脂フィルムの 透過型電子顕微鏡像の 1例を示す模式図を図 1に示した。
図 1においては、 TP SNB系樹脂 1からなるマトリックス中に、 ゴム質重合 体 2が糸状又は帯状に一定方向に配向して配列している。 糸状又は帯状のゴム質 重合体の大きさは特に限定されないが、 幅 10nm程度、 厚さ数十〜数百 nm程 度、 長さ 0. 4〜5 in程度であることが好ましい。
なお、 図 1中の矢印は、 T P SNB系樹脂フィルムの厚さ方向を示すものであ り、 この方向での平行光線透過率等の光学特性が問題となる。
このような特定の構造をとるときには、 第 1の本発明の T P SNB系樹脂フィ ルムは高い光学特性及び物理特性を両立できる。 これは、 本発明の TPS NB系 樹脂フィルムを厚さ方向から見たとき、 TP SNB系樹脂中に、 ゴム質重合体が、 厚さが数十〜数百 n m程度、 即ち可視光の波長以下の棒状又は帯状で分散してい ることから、 充分に物理特性を向上させる程の大量のゴム質重合体を配合した場 合でも、 透明なフィルムが得られるためと考えられる。 .
更に、 第 1の本発明の TP SNB系樹脂フィルムにおいては、 TP SNB系樹 脂からなるマトリックス中に、 糸状又は帯状に一定方向に配向して配列している ゴム質重合体を詳細に観察したときに、 少なくとも一部の糸状又は帯状のゴム質 重合体の内側に T P S N B系樹脂の層が取り込まれているような構造をとること がより好ましい。 このような構造の 1例を図 1 bに示した。
図 l bにおいては、 TP SNB系樹脂 1からなるマトリ ックス中の、 糸状又は 帯状のゴム質重合体 2の更に内側に T P S N B系樹脂 1が認められる。 このよう な構造は一般にサラミ構造と呼ばれる。 第 1の本発明の T P S N B系榭脂フィル ムがサラミ構造を有する場合には、 更に、 物理性能や残留位相差が低減する等光 学性能が向上する。
これは、 第 1の本発明の TP SNB系樹脂フィルムを引っ張る等して力をかけ た場合に、 まず、 このサラミ構造をとる TP SNB系樹脂とゴム質重合体との界 面に応力が集中し、 フィルムを破断等するための力や残留位相差の要因である成 形時の歪みが緩和されるためではないかと考えられる。
一方、 例えば、 特開平 5— 14841 3号公報等に記載の従来の TP SNB系 樹脂フィルムを透過型電子顕微鏡を用いて観察すると、 T P S N B系樹脂からな るマトリックス中に、 不規則に凝集したゴム質重合体が浮かんだ構造が観察され る。 このような状態の 1例を示す模式図を図 2に示した。
図 2においては、 TP SNB系樹脂 1からなるマトリックス中に、 種々の大き さのゴム質重合体 2の凝集塊が不規則に配置されている。
このような状態にある TP SNB系樹脂フィルムでは、 フィルム内部で光が散 乱してしまうことから、 大量のゴム質重合体を配合した場合には充分な光学特性 が得られなくなると考えられる。
このように T P SNB系樹脂フィルム中における T P SNB系樹脂とゴム質重 合体との状態を制御し、 優れた光学特性と物理特性とを有する第 1の本発明の T P SNB系樹脂フィルムを得るためには、 上記 TP SNB系樹脂とゴム質重合体 及び必要に応じて各種添加剤を充分に混合して T P S N B系樹脂組成物を調製し た後、 特別な温度管理のもとに溶融押出を行い、 更に押出後のフィルムの温度条 件についても特別な温度管理を行うことが重要である。
即ち、 溶融押出法により TP SNB系樹脂フィルムを製造する場合において、 TP SNB系樹脂組成物を溶融してダイスに送り込むまでの T P S N B系榭脂組 成物の溶融温度を、 TP SNB系樹脂のガラス転移温度 + 1 35°C以下とし、 か つ、 溶融してからダイスに送り込むまでの平均滞留時間を 40分間以下とするこ とにより、 図 1に示した TP SNB系樹脂とゴム質重合体との状態を実現し、 光 学特性と物理特性とを両立した第 1の本発明 TP SNB系樹脂フィルムを製造す ることができる。
ゴム質重合体を含有する TP SNB系樹脂糸且成物は、 例えば、 特許 29400 14号公報にも記載されている。 しかしながら、 これまでゴム質重合体を含有す る TP SNB系樹脂組成物を用いて、 光学フィルムとしての性能に不可欠なブイ ルム上のフィッシュアイ等の欠陥を低減させる措置にまで配慮して光学フィルム を作製した例は全く報告されていない。 フィルム上のフィッシュアィを低減する ためには、 押出工程において樹脂フィ ター等を用いて濾過することが不可欠で あり、 特に光学フィルムに要求される性能を満たすためには 1 Ομπι以下の濾過 精度の樹脂フィルターを用いた高濾過精度が必要となる。 1 O /im以下の濾過精 度の樹脂フィルターを用いた場合、 圧力損失が高いために榭脂フィルターを大き くせざるを得ず、 樹脂の平均滞留時間が長くなる傾向にある。 また、 連続使用に よる目詰まりによる圧力損失の上昇を考慮して、 樹脂の劣化等によるフィルム物 性が低下を引き起こさないように、 樹脂を低粘度化させてフィルターでの圧力損 失を小さくするために高温での成形が常識となっていた。 しかしながら、 本発明 者らは、 このような従来の方法によりゴム質重合体を含有する TP SNB系樹脂 組成物をフィルム状に成形すると、 含有されたゴム質重合体が凝集を起こし、 平 行光線透過率が高くヘイズの小さい光学フィルムを得ることができないことを見 出した。
溶融温度が T P SNB系樹脂のガラス転移温度 + 135 °Cの温度を超えたり、 平均滞留時間が 40分間を超えたりすると、 ゴム質重合体の凝集が生じて図 1に 示した TP SNB系樹脂とゴム質重合体との状態を実現することができず、 得ら れる TP SNB系樹脂フィルムの平行光線透過率及びヘイズが悪化してしまう。 好ましい溶融温度は TP SNB系樹脂のガラス転移温度 + 130°C以下である。 好ましい平均滞留時間は 35分間以下、 より好ましい平均滞留時間は 30分間以 下である。 このような TP SNB系樹脂フィルムの製造方法もまた、 本発明の 1 つである。
また、 ゴム質重合体を含有する TP SNB系樹脂組成物は、 TPSNB系樹脂 単体に比較して溶融粘度が減少する傾向にある。 従って、 本発明の TP SNB系 樹脂フィル Λの製造方法を用いて TP SNB系樹脂フィルムを製造する場合、 低 温での成形が可能となり、 TP SNB系榭脂のゲル化を抑制し、 長時間での連続 生産が可能となる。 これもゴム質重合体を用いる効果の 1つといえる。 なお、 T P SNB系樹脂のゲルィ匕に関しては、 本発明者らは、 TPSNB系樹脂を窒素雰 囲気下にて温度を一定に保持し、 1時間おきに示差走査熱量計 (DSC) を用い てガラス転移温度を測定したときに、 ガラス転移温度が 1 °C上昇するまでの時間 が 40時間以上となるような温度を溶融温度としたときに特に T P S N B系樹脂 のゲル化を抑制 'し、 得られるフィルムのフィッシュアイを低減できることを見出 している。 このような温度条件で成形することによって、 長時間の連続生産が可 能となる。 溶融押出する方法としては特に限定されず、 従来公知の方法を用いることがで き、 例えば、 一軸や二軸のスクリューで混練した後、 Tダイスによりフィルム状 に溶融押出しし、 これを冷却ロールに引き取り、 冷却固化する方法等が挙げられ る。
上記 TP SNB系樹脂組成物を調製する方法としては特に限定されず、 例えば、 一軸混練機、 ミキサー、 二軸混練機等を用いて TP SNB系樹脂のガラス転移温 度よりも 50〜 1 50°C高い温度で溶融混練する方法;超臨界条件下で混練する 方法;適当な溶剤に溶解した後、 凝固!^ キャスト法又は直接乾燥法により溶剤 を除去する方法等が挙げられる。
なお、 T P S N B系樹脂組成物の調製とフィルム成形とは、 一連の工程で行つ てもよいし、 TP SNB系樹脂組成物をいつたんペレット状に調製した後に、 こ のペレツトを用いてフィルム成形してもよい。
本発明の TP SNB系樹脂フィルムの製造方法においては、 ダイス出口から冷 却ロールまでの接点の距離、 即ち、 エアーギャップが 100mm以下であること が好ましい。 エアーギャップが 100mm以下であると、 工程中に外部の影響を 受けにくく、 厚さや光学性能が均一なフィルムを得ることができる。
また、 本発明の TP SNB系樹脂フィルムの製造方法においては、 ダイスから 押し出された TP SNB系樹脂組成物の冷却口ールと接触する直前における温度 は、 TP SNB系樹脂のガラス転移温度 + 50°C以上であることが好ましい。 ガ ラス転移温度 +50°C以上とすることにより、 TP SNB系樹脂組成物から TP S N B系樹脂フィルムを成形する際に発生する応力が著しく小さくなり、 残留位 相差の発生を抑制することができる。 これは、 TP SNB系樹脂のような非晶性 熱可塑性樹脂の場合、 榭脂の温度が高温になればなるほど、 変形したときに応力 を発生しないためである。 より好ましくはガラス転移温度 + 80°C以上である。 また、 冷却ロールと接触する直前の TP SNB系榭脂組成物の温度のばらつき を 10°C未満とすることが好ましい。 上述のように TP SNB系樹脂組成物の温 度をガラス転移温度 + 50°C以上に調整した場合であっても、 温度にばらつきが あると樹脂の変形に対する応力にバラツキが生じるために樹脂によっては残留位 相差がばらつくおそれがあり、 一部分への応力の集中による光軸のずれが生じる おそれもある。
更に、 本発明の TP SNB系樹脂フィルムの製造方法においては、 ダイスから 押し出された直後の TP SNB系樹脂組成物の温度が TP SNB系樹脂のガラス 転移温度 + 100 °C以上であることが好ましい。 100 °C未満であると、 成形す る際に発生する応力が著しく大きくなる可能性があり、 残留位相差が発生しやす くなる。 このようにダイスから押し出された T P S N B系樹脂組成物の温度をコント口 ールする方法としては特に限定されず、 例えば、 P I D制御機能を備えた温調装 置を用いることにより、 ダイスの温度やポリマー配管 (アダプタ) の温度を制御 する方法等が挙げられる。 この場合、 ダイスの温度やポリマー配管 (アダプタ) の温度は樹脂が熱劣化しない程度の温度とする。 また、 エアーギャップにおいて、 ヒーターで加熱したり、 保温カバーを用いたりする等して、 フィルムを保温する 方法も考えられる。 この場合、 ダイス温度を変更する方法に比べ、 高精度に温度 制御を行うことができ温度パラツキも少なくなり、 特に温度制御を高精度に行う ことが求められる場合に効果的である。 また、 ダイス温度を過度に上昇させる必 要がないため、 樹脂の劣化を抑制するメリットもある。
更に、 溶融押出された TP SNB系樹脂組成物を冷却ロールに接触させる際に、 接点から下流側で、 T P S NB系樹脂組成物を冷却ロールに対して押圧すること が好ましい。 これにより TP SNB系樹脂組成物の温度変化が均一となるため、 光軸ずれが生じるこ,とを防止でき、 厚さのプロファイルが安定して均一な厚さの フィルムが得られる。
TP SNB系樹脂組成物を冷却ロールに押圧する方法としては特に限定されず、 例えば、 エアーナイフ、 エアーチャンバ一、静電ピユング、 .タツチロール等の方 法が挙げられる。 このとき、 幅方向の温度、 圧力が均一であることがより好まし レ、。
上記冷却ロールは、 表面粗さ Ryが 0. 5 /im以下であることが好ましい。 0. 5 /imを超えると、 TP SNB系樹脂組成物の平滑性を保てず、 得られる TPS NB系樹脂フィルムの透明性が劣ることがある。 より好ましくは 0. 以下 である。 なお、 上記表面粗さ Ryは、 J I S B 0601に準じた方法により 測定することができる。 また、 上記冷却ロールの材質としては特に限定されず、 例えば、 炭素鋼、 ステンレス鋼等が挙げられる。
本発明の TP SNB系樹脂フィルムの製造方法においては、 用いる押出機に取 り付けられたダイス出口のクリアランスはダイスの流路設計に応じて、 予め設定 されていることが好ましい。 上述のフィルム厚さのばらつきと同率程度の誤差は 許容される。 また、 ダイスに複数のクリアランス調整ボルトがある場合には、 実 際にフィルムを押し出した時の厚みに応じて、 調整してもよい。
第 1の本発明の TPS NB系樹脂フィルムは、 上述のように高い光学特性と物 理特性とを両立していることから、 光学フィルムとして好適に用いることができ る。
第 1の本発明の TP SNB系樹脂フィルムからなる光学フィルムもまた、 本発 明の 1つである。
第 1の本発明の TPS NB系樹脂フィルムは、 また、 偏光子保護フィルムとし て好適に用いることができる。 第 1の本発明の TP SNB系樹脂フィルムからな る偏光子保護フィルムもまた、 本発明の 1つである。
本発明の偏光子保護フィルムは、 用いる液晶デイスプレイの用途にあわせて、 各種の表面処理を行ってもよい。 上記表面処理としては特に限定されず、 例えば、 クリアハードコート処理、 AG (映り込み防止) 処理、 AR (反射防止) 処理等 が挙げられる。
本発明の偏光子保護フィルムは、 光学特性を損なわない範囲で、 偏光子との貼 り合わせ性を向上させる目的で、 表面の水による接触角が 40〜50度程度にな るようにコロナ放電処理等を施してもよい。
第 1の本宪明の T P SNB系樹脂フィルムは、 一軸又は二軸延伸して配向性を 付与することにより、 液晶物質を通過する際の光の歪みを補償する位相差板とし ても好適に用いることができる。 第 1の本発明の TP SNB系樹脂フィルムから なる位相差板もまた、 第 1の本発明の 1つである。 更に、 本発明の位相差板を偏 光子の少なくとも片面に直接積層してなる偏光板もまた、 本発明の 1つである。 上記延伸を行う場合の温度としては特に限定されないが、 上記 TP SNB系樹 脂のガラス転移温度〜上記 TP SNB系樹脂のガラス転移温度 + 20°Cであるこ とが好ましい。 この範囲外であると、 低温側ではフィルムが破断してしまったり、 高温側では所望の位相差値が得られなかったりすることがある。 より好ましくは 上記 TP SNB系樹脂のガラス転移温度 + 1°C〜上記 TP SNB系樹脂のガラス 転移温度 + 10°Cである。
上記延伸を行う場合の延伸倍率としては特に限定されないが、 フィルムの溶融 押出の方向に延伸する場合には、 好ましくは 1. 05〜5. 0倍である。 1. 0 5倍未満であると、 変形量が少なすぎて充分なレタデーションが得られないこと があり、 5. 0倍を超えると、 フィルムが破断してしまうことがある。 より好ま しくは 1. 1〜2. 5倍である。 また、 フィルムの溶融押出の方向とは垂直の方 向に延伸する場合には、 好ましくは 1. 2〜3. 0倍であり、 より好ましくは 1. 5〜2. 5倍である。
第 2の本発明は、 ノルボルネン系樹脂組成物からなる偏光子保護フイルムと偏 光子とからなる偏光板であって、 平行光線透過率が 40%以上であり、 J I S Z 1528に準拠した 180° 剥離試験の条件下で、 引張速度 30 Omm/m i n、 張力 2. 5〜 3 N/ 25mmで剥離した場合に破断しない偏光板である。 上記偏光子としては特に限定されず、 従来公知のものを用いることができ、 例 えば、 延伸配向したポリビュルアルコール樹脂にヨウ素又は二色性染料を吸着さ せたもの等を用いることができる。
第 2の本発明の偏光板は、 J I S Z 1 528に準拠した 180° 剥離試験 の条件下で、 引張速度 30 OmmZm i n、 張力 2. 5〜3NZ25mmで剥離 した場合に破断しないものである。
通常、 偏光板と液晶セルとは、 ポリビュルアルコール等からなる偏光子が熱収 縮しょうとして生じる応力によっても剥離することなく、 偏光板全体の寸法変化 を抑えられる程度の強度で接着していることが求められる。 このために必要な接 着力は、 少なくとも J I S Z 1528に準拠した 180° 剥離試験で引張速 度 300 m / i nで測定したときの剥離強度で 2. 5〜 3 N/ 25 mm程度 であると考えられる。 従って、 J I S Z 1 528の 180° 剥離試験の条件 下で、 引張速度 30 Omm/m i n、 張力 2. 5〜 3 N/ 25 mmで剥離した場 合に破断しない性質を有する第 2の本発明の偏光板は、 リワーク性に優れる。 第 2の本発明の偏光板は、 平行光線透過率が 40。/。以上である。 40 %未満で あると、 液晶用の偏光板として用いた場合に表示される画像の明るさが不充分と なり、 画像が見にくくなる等の不具合が生じる。
第 2の本発明の偏光板は、 90°C、 24時間加熱を行った前後の寸法変化率が 2%以下であることが好ましい。 2%を超えると、 寸法変化の際に生じる応力に よって偏光板と液晶セルとが剥離しないためには、 3N/25 mmを超える高い 強度で接着させることが必要となり、 リワーク性が劣ることがある。
第 2の本発明の偏光板を作製する方法としては特に限定されず、 例えば、 上記 偏光子と第 1の本発明の TP SNB系樹脂フィルムからなる本発明の偏光子保護 フィルムとをポリウレタン系、 ポリエステル系、 ポリアクリル系等の接着剤;ァ クリル系、 シリコン系、 ゴム系の粘着剤等の従来公知の (粘) 接着剤を用いて接 着する方法等が挙げられる。 なお、 接着の際には、 偏光子の偏光機能が低下しな い程度の穏やかな条件で加熱圧着してもよい。
第 2の本発明の偏光板は、 極めて高い光学特性を示し、 更に極めて高いリヮー ク性をも有する。 発明を実施するための最良の形態
以下に実施例を掲げて本発明を更に詳しく説明するが、 本発明はこれら実施例 のみに限定されるものではない。
(実施例 1 )
(1) TP SNB系樹脂フィルムの作製
TP SNB系樹脂 (J SR社製、 ARTON G 6810 : ガラス転移温度 1 64°C, 屈折率 1. 52) とスチレン系エラストマ一 (旭化成社製、 タフテック HI 041 :屈折率 1. 51、 スチレン含量 32 %、 エチレン含量 43%) とを 90 : 10の重量比で 2軸溶融押出機に供給して 286 °Cで溶融混合しペレタイ ズし、 1 10°Cで 3時間予備乾燥して TP SNB系樹脂組成物を調製した。 得られた TP SNB系樹脂組成物を用い、 下記の押出機、 Tダイ及ぴ樹脂フィ ルターにより、 表 1に記載した温度条件下にて押出成形を行い、 平均厚さ 40 μ mの光学フイノレムを得た。
押出機:直径 90mn!、 L/D-28の Tダイ付単軸押出機
Tダイ :幅 150 Ommのコートハンガータイプ、 樹脂流路表面は H— C rメ ツキが施されたもの
樹脂フィルター : リーフディスクタイプフィルター (日本精線社製、 濾過精度 10 μ m
また、 接点安定装置として表面に金属のスリープを装着した弾性タツチロール を用いた。 そのときの弾性タツチロール及び冷却ロールの温度を 70°Cに設定し た。 更に、 弾性タツチロール及び冷却ロールの表面粗さは R yで 0. 2 mであ つた。 なお、 冷却ロールと接触する直前の温度は、 弾性タツチロールを冷却ロー ルから離した状態で非接触温度計を用いて測定した。
なお、 用いた TP SNB系樹脂について、 99. 9%の窒素パージ下で 286 °Cに保持後、 DSC (セイコーインスツルメンッ社製、 DSC 6200R) にて 窒素を 6 OmLZ分の割合で流しながらガラス転移温度を測定したときに、 ガラ ス転移温度が 1°C上昇するまでの時間を求めたところ 120時間であった。
(2) 偏光板の作製
ポリビュルアルコール (重合度 3800、 鹼化度: 99. 5モル0 /0) の未延伸フ イルム (厚さ : 75//m) を室温の水で洗浄した後、 縦一軸方向に 6倍延伸を行 い、 この延伸状態を保持したままでヨウ素 0. 5重量%及びヨウ化カリウム 5重 量%を含有する水溶液中に浸潰した後、 更にホウ酸 10重量%及びヨウ化力リウ ム 10重量 °/0を含有する 50 °Cの水溶液中で 5分間架橋処理を行うことにより、 偏光子を作製した。
得られた TP SNB系樹脂フィルムを偏光板保護フィルムとして用いた。 まず、 フィルム表面の偏光子と積層する側の面にコロナ放電処理を施した。 コ ロナ放電処理後の偏光板保護フィルム表面の水による接触角は 42〜 44度であ つた。 次いで、 2液混合型水性ウレタン系接着剤 (東洋モートン社製、 EL— 4 36 A/B) の A剤 ZB剤 =10Z3 (重量比) の混合物を固形分が 10重量。 /0 となるように水で希釈して接着剤溶液を調製し、 メイヤーパー # 8を用いて偏光 板保護フィルムのコロナ放電処理面に塗工し、 これを偏光子の両面に貼り付けて 積層体を得た。
得られた積層体を 45°Cの恒温槽中で 72時間保持し、 乾燥、 養生を行って、 偏光板を作製した。
(実施例 2)
実施例 1で用いた TP SNB系樹脂 (J SR社製、 ARTQN G68 10) とスチレン系エラス トマ一 (クレイ トンポリマー社製、 G 1 652 :屈折率 1. 52、 スチレン含量 28 %、 エチレン含量 45%) とを 85 : 15の重量比で 2 軸溶融押出機に供給して 286 °Cで溶融混合し、 30分の滞留時間で 286でに 温調された Tダイスに送り込んだ。 表 1に示した条件によつた以外は実施例 1と 同様にして厚さ 30 /imの T P SNB系樹脂フィルムを得た。 得られた T P SN B系樹脂フィルムを偏光板保護フィルムとして用い、 実施例 1と同様の方法によ り、 偏光板を作製した。
(実施例 3 )
実施例 1で用いた TP SNB系樹脂 (J SR社製、 ARTON G68 10) とスチレン系エラストマ一 (旭化成社製、 タフテック 1041) とを 90 : 10 の重量比で 2軸溶融押出機に供給して 293 °Cで溶融混合し、 30分の滞留時間 で 293 °Cに温調された Tダイスに送り込んだ。 表 1に示した条件によつた以外 は実施例 1と同様にして厚さ 30 ιηの TP SNB系樹脂フィルムを得た。 得ら れた TP SNB系樹月旨フィルムを偏光板保護フィルムとして用い、 実施例 1と同 様の方法により、 偏光板を作製した。
なお、 用いた T P SNB系樹脂について、 99. 9 %の窒素パージ下で 293 °Cに保持後、 D S C (セィコーィンスツルメンッ社製、 D S C 6200 R) にて 窒素を 60 m L//分の割合で流しながらガラス転移温度を測定したときに、 ガラ ス転移温度が 1°C上昇するまでの時間を求めたところ 40時間であった。
(実施例 4) 実施例 1で用いた TP SNB系樹脂 (J SR社製、 ARTON G6810) 、 スチレン系エラス トマ一 (クレイ トンポリマー社製、 クレイ トン RP 6936 : 屈折率 51、 スチレン含量 40%) 、 及び、 熱可塑性樹脂 (トーネックス社 製、 エスコレッツ 235 E) を 80. 5 : 15 : 4. 5の重量比で 2軸溶融押出 機に供給して 286°Cで溶融混合し、 ペレタイズしたものを、 1 10°Cで 3時間 予備乾燥して T P S N B系樹脂組成物を得た。
得られた TP SNB系樹脂組成物を用い、 表 1に示した条件によった以外は実 施例 1と同様にして厚さ 40 / mの TP SNB系樹脂フィルムを得た。 得られた TP SNB系樹脂フィルムを偏光板保護フィルムとして用い、 実施例 1と同様の 方法により、 偏光板を作製した。
(実施例 5)
実施例 1で用いた TPS NB系樹脂 (J SR社製、 ARTON G 6810) とスチレン系ェヲストマ一 (クレイトンポリマー社製、 クレイ トン RP 6936 ) を 85 : 1 5の重量比で 2軸溶融押出機に供給して 286 °Cで溶融混合し、 ぺ レタイズしたものを、 1 10°Cで 3時間予備乾燥して TP SNB系樹脂組成物を 得た。
得られた T P S N B系樹脂組成物を用い、 表 1に示した条件によつた以外は実 施例 1と同様にして厚さ 40 μπιの TP SNB系樹脂フィルムを得た。 得られた TP SNB系樹脂フィルムを偏光板保護フィルムとして用い、 実施例 1と同様の 方法により、 偏光板を作製した。
(実施例 6 )
実施例 1で用いた TP SNB系樹脂 (J SR社製、 ARTON G6810) 、 スチレン系エラス トマ一 (クレイ トンポリマー社製、 クレイ トン RP 6936 : 屈折率 1. 5 1、 スチレン含量 40%) 、 及び、 熱可塑性樹脂 (トーネックス社 製、 エスコレッツ 235 E) を 89 : 1 0 : 1の重量比で 2軸溶融押出機に供給 して 286 °Cで溶融混合し、 ペレタイズしたものを、 1 10 °Cで 3時間予備乾燥 して TP SNB系樹脂組成物を得た。 得られた TP SNB系樹脂組成物を用い、 表 1に示した条件によった以外は実 施例 1と同様にして厚さ 40 μπιの TP SNB系樹脂フィルムを得た。 得られた TP SNB系樹脂フィルムを偏光板保護フィルムとして用い、 実施例 1と同様の 方法により、 偏光板を作製した。
(比較例 1 )
実施例 1で用いた TP SNB系榭脂 (J SR社製、 ARTON G68 10) のみを 1軸溶融押出機に供給し、 表 1に示した条件によった他は実施例 1と同様 にして厚さ 30 μπιの TP SNB系樹脂フィルムを得た。 得られた TP SNB系 樹脂フィルムを偏光板保護フィルムとして用い、 実施例 1と同様の方法により、 偏光板を作製した。
(比較例 2)
押出機中の平均滞留時間を 50分としたこと以外は実施例 5と同様にして、 T P SNB系樹脂フィルム及び偏光板を作製した。
(比較例 3 )
押出温度を 310°Cにしたこと以外は実施例 5と同様にして、 TP SNB系樹 脂フィルム及び偏光板を作製した。
なお、 用いた TP SNB系樹脂について、 99. 9 %の窒素パージ下で 310 °Cに保持後、 DSC (セイコーインスツルメンッ社製、 DSC 6200R) にて 窒素を 6 OmLZ分の割合で流しながらガラス転移温度を測定したときに、 ガラ ス転移温度が 1°C上昇するまでの時間を求めたところ 1 2時間であった。 (比較例 4 )
実施例 1で用いた TP SNB系樹脂 (J SR社製、 ART ON G6810) とスチレン系エラストマ一 (クレイ トンポリマー社製、 G 1652) とを 90 : 10の重量比でトルエンに溶解した溶液を調製し、 この溶液を用い
ング法にて厚さ 40 μπιの TP SNB系樹脂フィルムを得た。 得られた TP SNB系樹脂フィルムは、 TP SNB系樹脂とスチレン系エラス トマ一とが相分離を起こして、 不均一、 不透明なフィルムとなった。
得られた TP SNB系樹脂フィルムを偏光板保護フィルムとして用い、 実施例 1と同様の方法により、 偏光板を作製した。 実施例 1〜 6及び比較例 1 ~ 4で作製した T P S N B系榭脂フィルムについて、 以下の方法により引張弾性率、 引張破壊伸び、 全光線透過率、 平行光線透過率、 ヘイズ値、 残留位相差、 光軸ずれ、 光弾性係数、 フィルム厚のばらつき、 フイツ シュアィの発生及ぴ卷き取り性を測定した。 また、 実施例 1で作製した TP SN B系榭脂フィルムについて、 以下の方法により透過電子顕微鏡を用いて観察し、 サラミ構造の有無を評価した。
更に、 実施例 1〜 6及び比較例 1〜4で作製した偏光板について、 以下の方法 により平行光線透過率を測定し、 また、 剥離時の破断性及び耐久性を評価した。 結果を表 2、 表 3及び図 3に示した。
(1) TP SNB系樹脂フィルムの引張弾性率及び引張破壌伸びの測定
J I S K 71 13に準じて、 TENS I LON (OR I ENTEC社製) を用いて、 下記の条件にて測定を行った。
チヤック間距離 1 5 Omm
フイノレム幅 20 mm
引張速度 2 Omm/分
(2) TP SNB系樹脂ブイルムの全光線透過率、 平行光線透過率及びヘイズ値 の測定
ヘイズメーター (東京電色社製、 TC一 HDIDKIP) を用い、 J I S K 7 1 05に準じて測定を行った。
(3) TP SNB系樹脂フィルムの残留位相差、 光軸ずれの測定
自動複屈折計 (王子計測機器社製、 KOBRA— 21ADH) を用い、 測定波 長 590 n mで測定を行った。
(4) TP SNB系樹脂フィルムの光弾性係数の測定
フィルムを幅 1 OmmX長さ 10 Ommに切り出し、 長辺方向に 0、 500、 1000及び 1 500 gの荷重をかけた状態で、 王子計測機器社製、 KOBRA 一 21 ADHを用いて測定波長 550 n mで位相差を測定した。 荷重に対して、 位相差をプロットしたときの近似直線の傾きから、 光弾性係数を求めた。
(5) TP SNB系樹脂フィルムの厚さのばらつきの測定
J I S K 7130の準じた方法によりフィルムの厚さを測定し、 そのとき の最大値と最小値との差を求めた。 測定には、 セイコー EM社製、 Mi 1 1 i' t r o n 1 240を用いた。
(6) フィッシュアイの発生の評価
得られたフィルム中の 100 /xm角以上のフィッシュアイの個数を目視により 観察し、 製造開始からフィッシュアイの発生数が 1◦個 Zm 2を超えるまでの時 間を測定した。
(7) TP SNB系樹脂フィルムの卷き取り性の評価
フィルムをライン速度 5、 10及ぴ 3 OmZ分、 卷き取り張力 500N/65 OmmN 巻芯: FRP製 6インチの条件で卷き取りテストを行い、 フィルムの破 断の有無を評価した。
(8) TP SNB系樹脂フィルムの透過型電子顕微鏡による観察
TP SNB系樹脂フィルムを四酸化ルテニウム等により染色した後、 ミクロト ームを用いて押出成形時の流れ方向 (MD) と幅方向 (TD) に約 0. 05 / m の厚さにスライスし、 それぞれの断面を透過型電子顕微鏡 (日本電子社製、 J E M— 1 200 EX Π) を用いて観察し、 写真撮影を行った。 また、 この写真を もとに、 サラミ構造の有無を評価した。 (9) 偏光板の平行光線透過率の測定
ヘイズメーター (東京電色社製、 TC一 HIHDKP) を用い、 J I S K 7 105に準じて測定を行った。
(10) 偏光板の剥離時の破断性の評価
<粘着剤及びノンサポートテープの調整 >
アタリル酸プチル 94. 8重量部、 アタリル酸 5重量部及び 2—ヒドロキシェ チルメタクリレート 0. 2重量部を、 過酸化ベンゾィル 0. 3重量部の存在下、 酢酸ェチルを溶媒として共重合を行い、 重量平均分子量 (Mw) 120万、 分子 量分布 3. 9のァクリル系ポリマーの酢酸ェチル溶液を得た。
得られたァクリル系ポリマーの酢酸ェチル溶液にトルエンを加えて希釈し、 ァ クリル系ポリマーの 13重量。 /0のトルエン溶液とし、 イソシァネート架橋剤 (日 本ポリウレタン社製、 コロネート L) 2重量部を添加して攪拌して粘着剤を調製 した。
得られた粘着剤を離型フィルム上に塗布し、 発泡しないように 60°C、 5分間、 120°C、 5分間の 2段階で乾燥した後、 更に軽剥離タイプの離型フィルムを粘 着剤面にラミネートして仮止めし、 乾燥後の厚さ (平均値) が 25 Ai mのノンサ ポートテープを作製した。
<試験片の作製 >
ノンサポートテープの軽剥離側の離型フィルムを剥がし、 偏光板の片面にラミ ネートして偏光板粘着シートを作製した。 得られた偏光板粘着シートを偏光子吸 収軸の角度が長辺に対して 0度及び 90度の角度をなすように 25mm 150 mmの短冊状に切り出した。 次いで、 ノンサポートテープの離型フィルムを剥が して、 厚さ 1. 1mmの無アルカリガラスに重さ 2 k gの圧着ローラーを用いて 貼り付けた。 更に、 50 °C、 5気圧の条件で 20分間ォートクレーブ処理を行い、 試験片とした。
く剥離試験〉
得られた偏光子吸収軸の角度が長辺に対して 0度である試験片と偏光子吸収軸 の角度が長辺に対して 90度の角度である試験片のそれぞれについて、 TENS
1 LON (OR I ENTEC社製) を用いて J I S Z 1 528に準拠した 1 80° 剥離試験の条件下で、 引張速度 30 Omm/m i nで剥離した場合の偏光 板の状態を目視により観察して、 以下の基準により評価した。 なお、 このときの 剥離力は約 3 NZ 25 mmであった。
〇:破断することなく完全にガラス板から剥離した
X :剥離の途中で破断してしまい、 一部がガラス板上に残った
(1 1) 偏光板の耐久性の評価
<粘着剤及びノンサポートテープの調製 >
偏光板の剥離時の破断性の評価の場合と同様にして粘着剤及びノンサポートテー プを調製した。
<試験片の作製 >
ノンサポートテープの軽剥離側の離型フィルムを剥がし、 得られた偏光板の片面 にラミネ一トして偏光板粘着シートを作製した。 得られた偏光板粘着シートを偏 光子吸収軸の角度が長辺に対して 0度の角度で 20 OmmX 30 Ommの大きさ に切り出した。 次いで、 ノンサポートテープの離型フィルムを剥がして、 厚さ 1. 1 mmの無アル力リガラスに 1 9. 6 N/ 25 mmの圧力で圧着ローラーを用い て貼り付けた。
ガラスに貼合した偏光板を、 100°Cのオーブンに、 3日間保存し、 更に、 温度
25°C、 湿度 50°/。RHの恒温恒湿室にて一週間放置した後、 偏光板の表面を目 視にて観察して以下の基準により評価した。
〇:クラックは混合物全く認められず、 透明性に優れる
△ :クラックが認められ、 僅かに白濁している
X :透明性には優れるが、 クラックが認められる
X X :著しくクラックが認められ、 白濁している 押出条件
押出直後の 冷却ロールと 押出温度 滞留時間 エアギャップ
¾tfl旨温庠 接触する 前の (°G) (分) (.mm)
(°C) 樹脂温度 (°ο · 実施例 1 286 30 286 90 21 5 実施例 2 286 30 286 90 21 5 実施例 3 293 30 293 90 21 5 実施例 4 286 30 286 70 230 実施例 5 286 30 286 70 230 実施例 6 286 30 286 50 260 比較例 1 310 50 310 90 235 比較例 2 286 50 286 フ 0 230 比較例 3 310 30 31 0 70 240 比較例 4
熱可塑性飽和ノルポルネン系樹脂フィルムの評価
引 引張破读平行先線 残留 光弾性係数 巻き取 y性 (破断の有無) " 1'リ'ンュアイ π サラミ ヘイズ値 光軸ずれ
弾性率 伸び 透過率 位相差 の発生 構造
(MPa (%) )
(%ソ (X10—
(nm) 11Pa-,) 10mZ分 (時間) の有無 fi 17i'Jh 1 Λ o9U I 1 u. 3.80 ±8 0. / ノ し し 5 I 10 お 11
I リ ク S & I I » w 3.フ0 / n AQ なし なし なし 8 1 I め V 実施例 3 1710 12 92 0.フ 3.20 ±8 0.48 なし なし なし 7 43 あし J 実施例 4 2030 14 91 0.3 2.53 ±8 0.45 なし なし なし 4 110 あ y 実施例 5 o
2040 14 92 0.3 2.60 ±8 0.45 なし なし なし 5 110 あり o
実施例 6 2060 12 91 0.2 ±8 0.43 なし なし なし 4 110 あ y 比較例"! 2100 2 92 0.1> ±5 0.40 あり あし j あり 5 11 なし 比較例 2 1660 10 80 2.9 3.80 ±8 0.47 なし なし なし S 95 なし 比較例 3 1650 10 81 3.5 0.80 ±20 0.47 なし なし なし 8 12 なし 比較例 4 1500 8 70 15.2 5 なし
¾一
0 3V fr 表 3
Figure imgf000034_0001
(実施例 9 )
実施例 1で作製した T P S N B系樹脂フィルムを用い、 位相差板を作製した。 即ち、 長手方向に予熱ゾーン、 延伸ゾーン、 冷却ゾーンに 3分割された加熱炉の 炉外の両端にニップロールを設置し、 入口側エップロールから連続的に 5. Om /m i nの一定速度で巻き出すとともに、 出口側のェプロールで 150%の延伸 倍率となるように 7. 5 m/m i nの速度で延伸した。 温度設定は予熱ゾーン 1 53°C、 延伸ゾ^"ン 166°C、 冷却ゾーン 120°Cとして、 一軸性位相差板を得 た。
得られた位相差板について自動複屈折計 (王子計測社製、 KOBRA— 21A DH) を用いて 589 nm波長入光時の位相差を測定したところ 160 nmであ つた。 産業上の利用可能性 本発明によれば、 高レ、物理特性と光学特性とを両立した熱可塑性飽和ノルポル ネン系樹脂フィルム、 光学フィルム、 偏光子保護フィルム、 位相差板、 偏光板及 び熱可塑性飽和ノルボルネン系樹脂フィルムの製造方法を提供できる。 '

Claims

請求の範囲
1. 熱可塑性飽和ノルボルネン系樹脂 100重量部とゴム質重合体 5〜 40重量 部とを含有する熱可塑性飽和ノルポルネン系樹脂組成物を用いてなる熱可塑性飽 和ノルボルネン系樹脂フィルムであって、 平行光線透過率が 8 7%以上であるこ とを特徴 する熱可塑性飽和ノルボルネン系樹脂フィルム。
2. 熱可塑性飽和ノルポルネン系樹脂とゴム質重合体とは、 屈折率の差が 0. 2 以下であることを特徴とする請求の範囲第 1項記載の熱可塑性飽和ノルポルネン 系樹脂フィルム。
3. 引張弾性率が 90 OMP a以上、 かつ、 引張破壌伸びが :〜 40 %であるこ とを特徴とする請求の範囲第 1又は 2項記載の熱可塑性飽和ノルボルネン系樹月旨
4. 残留位相差が 3 nm以下、 かつ、 光軸ずれが長軸方向に対して ± 10° 以下 であることを特徴とする請求の範囲第 1、 2又は 3項記載の熱可塑性飽和ノルボ ルネン系樹脂フィルム。
5. 残留位相差が 1 nm以下であることを特徼とする請求の範囲第 1、 2又は 3 項記載の熱可塑性飽和ノルボルネン系樹脂フィルム。 '
6. J I S K 71 30に準じる方法により厚さを測定したときの最大値と最 小値との差が 5 /zm以下であることを特徴とする請求の範囲第 1、 2、 3、 4又 は 5項記載の熱可塑性飽和ノルポルネン系榭脂 '
7. 張力 50 ON/ 65 Ommで破断することなく卷き取り可能であることを特 徴とする請求の範囲第 1、 2、 3、 4、 5又は 6項記載の熱可塑性飽和ノルボル ネン系樹脂フィルム。
8. ゴム質重合体は、 スチレン系エラストマ一であることを特徴とする請求の範 囲第 1、 2、 3、 4、 5、 6又は 7項記載の熱可塑性飽和ノルボルネン系樹脂フ イノレム。
9. スチレン系エラストマ一は、 スチレン成分が 2 5〜50重量0 /0、 エチレン成 分が 2 5〜5 0重量%であるスチレン一エチレン一プチレン共重合体であること を特徴とする請求の範囲第 8項記載の熱可塑性飽和ノルポルネン系樹脂:
1 0. 熱可塑性飽和ノルボルネン樹脂組成物は、 更に、 数平均分子量が 300へ 1万の熱可塑性樹脂を含有することを特徴とする請求の範固第 1、 2、 3、 4、 5、 6、 7、 8又は 9項記載の熱可塑性飽和ノルボルネン系樹脂:
1 1. 光弾性係数が 2. 0 X 1 O-n p a一1以下であることを特徴とする請求の 範囲第 1、 2、 3、 4、 5、 6、 7、 8、 9又は 1 0項記載の熱可塑性飽和ノル ボルネン系樹脂:
1 2. 請求の範囲第 1、 2、 3、 4、 5、 6、 7、 8、 9、 1 0又は 1 1項記載 の熱可塑性飽和ノルポルネン系樹脂フィルムからなることを特徴とする光学フィ ノレム。
1 3. 請求の範囲第 1、 2、 3、 4、 5、 6、 7、 8、 9、 9又は 1 1項記載の 熱可塑性飽和ノルポルネン系榭脂フィルムからなることを特徴とする偏光子保護
14. 請求の範囲第 1、 2、 3、 4、 5、 6、 7、 8、 9、 1 0又は 1 1項記載 の熱可塑性飽和 'ルポルネン系樹脂フイルムからなることを特徴とする位相差板。
1 5. ノルボルネン系樹脂組成物からなる偏光子保護フィルムと偏光子とからな る偏光板であって、 平行光線透過率が 40%以上であり、 J I S Z 1528 に準拠した 180° 剥離試験の条件下で、 引張速度 30 Omm/m i n、 張力 2. 5〜 3 N/ 25 mmで剥離した場合に破断しないことを特徴とする偏光板。
16. 90 °C、 24時間加熱を行つた前後の寸法変化率が 2 %以下であることを 特徴とする請求の範囲第 15項記載の偏光板。
17. 請求の範囲第 14項記載の位相差板を偏光子の少なくとも片面に直接積層 してなることを特徴とする偏光板。
18. 溶融押出法により請求の範囲第 1、 2、 3.、 4、 5、 6、 7、 8、 9、 1 0又は 11項記載の熱可塑性飽和ノルボルネン系樹脂フィルムを製造する方法で あって、
熱可塑性飽和ノルボルネン系樹脂組成物を溶融してダイスに送り込むまでの熱可 塑性飽和ノルボルネン系樹脂組成物の溶融温度が、 熱可塑性飽和ノルボルネン系 樹脂のガラス転移温度 + 135°C以下であり、 かつ、 熱可塑性飽和ノルボルネン 系樹脂組成物を溶融してからダイスに送り込むまでの平均滞留時間が 40分間以 下である
ことを特徴とする熱可塑性飽和ノルポルネン系榭脂フィルムの製造方法。
19. ダイスから押し出された熱可塑性飽和ノルボルネン系樹脂組成物の冷却口 ールと接触する直前における温度が、 熱可塑性飽和ノルポルネン系榭脂のガラス 転移温度 +50°C以上であることを特徴とする請求の範囲第 18項記載の熱可塑 性飽和ノルボルネン系樹脂フィルムの製造方法。
20. ダイスから押し出された熱可塑性飽和ノルポルネン系樹脂組成物の冷却口 ールと接触する直前における温度が、 熱可塑性飽和ノルボルネン系樹脂のガラス 転移温度 +80°C以上であることを特徴とする請求の範囲第 18項記載の熱可塑 性飽和ノルポルネン系榭脂フィルムの製造方法。
PCT/JP2003/012698 2002-10-03 2003-10-03 熱可塑性飽和ノルボルネン系樹脂フィルム、及び、熱可塑性飽和ノルボルネン系樹脂フィルムの製造方法 WO2004035688A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005501343A JPWO2004035688A1 (ja) 2002-10-03 2003-10-03 熱可塑性飽和ノルボルネン系樹脂フィルム、及び、熱可塑性飽和ノルボルネン系樹脂フィルムの製造方法
EP03748698A EP1548063A4 (en) 2002-10-03 2003-10-03 THERMOPLASTIC SATURATED RESIN NORBORN BASE FILM AND METHOD FOR PRODUCING THE THERMOPLASTIC SATURATED RESIN OF NORBORN BASE-BASED FILM
AU2003268753A AU2003268753A1 (en) 2002-10-03 2003-10-03 Thermoplastic saturated norbornene based resin film, ans method for producing thermoplastic saturated norbornene based resin film
US10/530,172 US20060036033A1 (en) 2002-10-03 2003-10-03 Thermoplastic saturated norbornene based resin film, and method for producing thermoplastic saturated norbornene based resin film

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2002-290614 2002-10-03
JP2002290614 2002-10-03
JP2002-379933 2002-12-27
JP2002379933 2002-12-27
JP2003-49844 2003-02-26
JP2003049844 2003-02-26
JP2003-130654 2003-05-08
JP2003130654 2003-05-08

Publications (1)

Publication Number Publication Date
WO2004035688A1 true WO2004035688A1 (ja) 2004-04-29

Family

ID=32110947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/012698 WO2004035688A1 (ja) 2002-10-03 2003-10-03 熱可塑性飽和ノルボルネン系樹脂フィルム、及び、熱可塑性飽和ノルボルネン系樹脂フィルムの製造方法

Country Status (7)

Country Link
US (1) US20060036033A1 (ja)
EP (1) EP1548063A4 (ja)
JP (1) JPWO2004035688A1 (ja)
KR (1) KR20050073464A (ja)
AU (1) AU2003268753A1 (ja)
TW (1) TW200416253A (ja)
WO (1) WO2004035688A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005321593A (ja) * 2004-05-10 2005-11-17 Nitto Denko Corp 液晶表示装置および断熱シート
JP2006334839A (ja) * 2005-05-31 2006-12-14 Fujifilm Holdings Corp 熱可塑性フィルムの製造方法及び熱可塑性フィルム
JP2007025471A (ja) * 2005-07-20 2007-02-01 Toshiba Matsushita Display Technology Co Ltd 液晶表示装置
EP1773572A1 (en) * 2004-07-14 2007-04-18 Fujifilm Corporation Thermoplastic film and method of manufacturing the same
US7800721B2 (en) 2005-06-22 2010-09-21 Nitto Denko Corporation Liquid crystal panel and liquid crystal display apparatus using the same
WO2012114608A1 (ja) * 2011-02-25 2012-08-30 ポリプラスチックス株式会社 成形品の製造方法及び成形品
WO2014034200A1 (ja) * 2012-08-31 2014-03-06 ポリプラスチックス株式会社 透明フィルム
JP2015108050A (ja) * 2013-12-04 2015-06-11 デクセリアルズ株式会社 環状オレフィン系樹脂組成物フィルム
KR20150104886A (ko) 2014-03-06 2015-09-16 주식회사 효성 노르보넨계 광학 보상 필름, 및 이를 이용한 편광판 및 표시장치
WO2015178279A1 (ja) * 2014-05-22 2015-11-26 デクセリアルズ株式会社 環状オレフィン系樹脂組成物フィルム
WO2015178331A1 (ja) * 2014-05-19 2015-11-26 デクセリアルズ株式会社 環状オレフィン系樹脂組成物フィルム
WO2015186810A1 (ja) * 2014-06-04 2015-12-10 恵和株式会社 画像表示装置用シート、画像表示装置用積層体及び画像表示装置
WO2015198686A1 (ja) * 2014-06-25 2015-12-30 デクセリアルズ株式会社 環状オレフィン系樹脂組成物フィルム
WO2016006683A1 (ja) * 2014-07-11 2016-01-14 デクセリアルズ株式会社 環状オレフィン系樹脂組成物フィルム
WO2016010019A1 (ja) * 2014-07-15 2016-01-21 デクセリアルズ株式会社 環状オレフィン系樹脂組成物フィルム
WO2016153038A1 (ja) * 2015-03-26 2016-09-29 デクセリアルズ株式会社 環状オレフィン系樹脂組成物フィルム
WO2019163637A1 (ja) * 2018-02-21 2019-08-29 富士フイルム株式会社 環状オレフィン樹脂フィルムの製造方法、環状オレフィン樹脂フィルム、複合フィルム

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101473252B (zh) * 2006-06-21 2010-09-22 柯尼卡美能达精密光学株式会社 偏光板保护薄膜的制造方法,偏光板保护薄膜,偏光板及液晶显示装置
JP2009078359A (ja) * 2007-09-25 2009-04-16 Fujifilm Corp 熱可塑性樹脂フィルムの製造方法
KR100994976B1 (ko) * 2007-10-02 2010-11-18 주식회사 엘지화학 광학필름 및 이의 제조방법
JP5324316B2 (ja) * 2008-05-27 2013-10-23 日東電工株式会社 粘着型偏光板、画像表示装置およびそれらの製造方法
JP2012003003A (ja) * 2010-06-16 2012-01-05 Sony Corp 立体映像観察用光学素子、立体映像観察用眼鏡、立体映像表示システム
EP2610072B1 (en) * 2010-08-25 2017-11-01 Bridgestone Corporation Tire, and tire manufacturing method
JP5775320B2 (ja) * 2011-02-15 2015-09-09 株式会社ブリヂストン タイヤ
BR112013029031A2 (pt) * 2011-05-13 2017-01-10 Sumitomo Rubber Ind pneumático
EP2562534A3 (en) * 2011-08-23 2014-05-21 Sumitomo Rubber Industries, Ltd. Method for analyzing rubber compound with filler particles
IN2014CN03562A (ja) * 2011-11-09 2015-10-09 Sumitomo Rubber Ind
US10596853B2 (en) * 2012-02-14 2020-03-24 Bridgestone Corporation Tire
WO2014087935A1 (ja) * 2012-12-05 2014-06-12 日本ゼオン株式会社 樹脂組成物及びそれを用いた医療用薬剤容器
CN105008433B (zh) * 2013-03-11 2016-10-12 宝理塑料株式会社 降冰片烯系聚合物溶液
JP2015055796A (ja) * 2013-09-12 2015-03-23 富士フイルム株式会社 光学フィルム及び表示装置
JP6586545B2 (ja) * 2017-08-23 2019-10-02 リンテック株式会社 フィルム状積層体、および、高分子薄膜の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999038918A1 (fr) * 1998-02-01 1999-08-05 Nippon Zeon Co., Ltd. Composition de resine cycloolefinique thermoplastique et objet moule
JP2001072837A (ja) * 1999-09-03 2001-03-21 Jsr Corp 熱可塑性樹脂組成物および熱可塑性樹脂製成形体
JP2002097376A (ja) * 2000-09-25 2002-04-02 Nippon Zeon Co Ltd 樹脂組成物および樹脂成形体

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2010320C (en) * 1989-02-20 2001-04-17 Yohzoh Yamamoto Sheet or film of cyclo-olefin polymer
US5468803A (en) * 1992-03-03 1995-11-21 Nippon Zeon Co. Ltd. Medical implement, polymer composition, and optical material
JP3189364B2 (ja) * 1992-03-03 2001-07-16 日本ゼオン株式会社 樹脂組成物及びそれからなる光学材料
JP3175293B2 (ja) * 1992-04-06 2001-06-11 ジェイエスアール株式会社 延伸フィルム
KR100743421B1 (ko) * 1999-12-28 2007-07-30 군제 가부시키가이샤 편광판
JP2002249645A (ja) * 2001-02-23 2002-09-06 Nippon Zeon Co Ltd 重合体組成物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999038918A1 (fr) * 1998-02-01 1999-08-05 Nippon Zeon Co., Ltd. Composition de resine cycloolefinique thermoplastique et objet moule
JP2001072837A (ja) * 1999-09-03 2001-03-21 Jsr Corp 熱可塑性樹脂組成物および熱可塑性樹脂製成形体
JP2002097376A (ja) * 2000-09-25 2002-04-02 Nippon Zeon Co Ltd 樹脂組成物および樹脂成形体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1548063A4 *

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005321593A (ja) * 2004-05-10 2005-11-17 Nitto Denko Corp 液晶表示装置および断熱シート
EP1773572A4 (en) * 2004-07-14 2011-08-24 Fujifilm Corp Thermoplastic film and method for its production
EP1773572A1 (en) * 2004-07-14 2007-04-18 Fujifilm Corporation Thermoplastic film and method of manufacturing the same
JP4586980B2 (ja) * 2005-05-31 2010-11-24 富士フイルム株式会社 熱可塑性フィルムの製造方法
JP2006334839A (ja) * 2005-05-31 2006-12-14 Fujifilm Holdings Corp 熱可塑性フィルムの製造方法及び熱可塑性フィルム
US7800721B2 (en) 2005-06-22 2010-09-21 Nitto Denko Corporation Liquid crystal panel and liquid crystal display apparatus using the same
JP2007025471A (ja) * 2005-07-20 2007-02-01 Toshiba Matsushita Display Technology Co Ltd 液晶表示装置
WO2012114608A1 (ja) * 2011-02-25 2012-08-30 ポリプラスチックス株式会社 成形品の製造方法及び成形品
WO2014034200A1 (ja) * 2012-08-31 2014-03-06 ポリプラスチックス株式会社 透明フィルム
US9340652B2 (en) 2012-08-31 2016-05-17 Polyplastics Co., Ltd. Transparent film
JP2015108050A (ja) * 2013-12-04 2015-06-11 デクセリアルズ株式会社 環状オレフィン系樹脂組成物フィルム
WO2015083808A1 (ja) * 2013-12-04 2015-06-11 デクセリアルズ株式会社 環状オレフィン系樹脂組成物フィルム
US9670329B2 (en) 2013-12-04 2017-06-06 Dexerials Corporation Cyclic olefin resin composition film
KR20150104886A (ko) 2014-03-06 2015-09-16 주식회사 효성 노르보넨계 광학 보상 필름, 및 이를 이용한 편광판 및 표시장치
WO2015178331A1 (ja) * 2014-05-19 2015-11-26 デクセリアルズ株式会社 環状オレフィン系樹脂組成物フィルム
JP2016000805A (ja) * 2014-05-22 2016-01-07 デクセリアルズ株式会社 環状オレフィン系樹脂組成物フィルム
WO2015178279A1 (ja) * 2014-05-22 2015-11-26 デクセリアルズ株式会社 環状オレフィン系樹脂組成物フィルム
JP2016012132A (ja) * 2014-06-04 2016-01-21 恵和株式会社 画像表示装置用シート、画像表示装置用積層体及び画像表示装置
WO2015186810A1 (ja) * 2014-06-04 2015-12-10 恵和株式会社 画像表示装置用シート、画像表示装置用積層体及び画像表示装置
US10315396B2 (en) 2014-06-04 2019-06-11 Keiwa Inc. Sheet for image display unit, laminate for image display unit, and image display unit
JP2016008272A (ja) * 2014-06-25 2016-01-18 デクセリアルズ株式会社 環状オレフィン系樹脂組成物フィルム
WO2015198686A1 (ja) * 2014-06-25 2015-12-30 デクセリアルズ株式会社 環状オレフィン系樹脂組成物フィルム
WO2016006683A1 (ja) * 2014-07-11 2016-01-14 デクセリアルズ株式会社 環状オレフィン系樹脂組成物フィルム
JP2016020412A (ja) * 2014-07-11 2016-02-04 デクセリアルズ株式会社 環状オレフィン系樹脂組成物フィルム
KR102263799B1 (ko) 2014-07-15 2021-06-10 데쿠세리아루즈 가부시키가이샤 고리형 올레핀계 수지 조성물 필름
WO2016010019A1 (ja) * 2014-07-15 2016-01-21 デクセリアルズ株式会社 環状オレフィン系樹脂組成物フィルム
JP2016020458A (ja) * 2014-07-15 2016-02-04 デクセリアルズ株式会社 環状オレフィン系樹脂組成物フィルム
KR20170033269A (ko) * 2014-07-15 2017-03-24 데쿠세리아루즈 가부시키가이샤 고리형 올레핀계 수지 조성물 필름
WO2016153038A1 (ja) * 2015-03-26 2016-09-29 デクセリアルズ株式会社 環状オレフィン系樹脂組成物フィルム
KR20200108463A (ko) * 2018-02-21 2020-09-18 후지필름 가부시키가이샤 환상 올레핀 수지 필름의 제조 방법, 환상 올레핀 수지 필름, 복합 필름
JPWO2019163637A1 (ja) * 2018-02-21 2020-12-03 富士フイルム株式会社 環状オレフィン樹脂フィルムの製造方法、環状オレフィン樹脂フィルム、複合フィルム
WO2019163637A1 (ja) * 2018-02-21 2019-08-29 富士フイルム株式会社 環状オレフィン樹脂フィルムの製造方法、環状オレフィン樹脂フィルム、複合フィルム
KR102361868B1 (ko) * 2018-02-21 2022-02-14 후지필름 가부시키가이샤 환상 올레핀 수지 필름의 제조 방법, 환상 올레핀 수지 필름, 복합 필름

Also Published As

Publication number Publication date
JPWO2004035688A1 (ja) 2006-02-16
EP1548063A4 (en) 2008-10-08
TW200416253A (en) 2004-09-01
US20060036033A1 (en) 2006-02-16
EP1548063A1 (en) 2005-06-29
AU2003268753A1 (en) 2004-05-04
KR20050073464A (ko) 2005-07-13

Similar Documents

Publication Publication Date Title
WO2004035688A1 (ja) 熱可塑性飽和ノルボルネン系樹脂フィルム、及び、熱可塑性飽和ノルボルネン系樹脂フィルムの製造方法
EP1930748A1 (en) Polarizer protective film, polarizing plate and image display
EP1930750A1 (en) Polarizing plate with optical compensation layer, liquid crystal panel using polarizing plate with optical compensation layer, and image display unit
KR101409685B1 (ko) 위상차 필름, 편광판, 액정 표시 장치 및 위상차 필름의 제조 방법
WO2007139138A1 (ja) 偏光板およびその製造方法
JP5383079B2 (ja) 熱可塑性フイルム、熱可塑性フイルムの製造方法、熱可塑性フイルムの製造装置、並びに、偏光板、液晶表示板用光学補償フイルム、反射防止フイルム及び液晶表示装置
JP5704173B2 (ja) 光学表示装置の製造システム及び製造方法
JP5169842B2 (ja) 偏光板、及び液晶表示装置
US20120076955A1 (en) Optical film and its production method, polarizer and liquid crystal display device
JP2014102492A (ja) 光学フィルム及びその製造方法、偏光板ならびに液晶表示装置
JP2005242171A (ja) 偏光子保護フィルム及び偏光板
JP2005272711A (ja) 熱可塑性飽和ノルボルネン系樹脂フィルム、光学フィルム及び偏光子保護フィルム
JP7040515B2 (ja) 熱可塑性樹脂積層延伸フィルム
JP6834992B2 (ja) 熱可塑性樹脂積層延伸フィルム
JP6834991B2 (ja) 熱可塑性樹脂積層延伸フィルム
JP4940851B2 (ja) 位相差フィルムの製造方法
JP2007001238A (ja) セルロースエステルフィルム積層体、偏光板、光学補償フィルム、反射防止フィルムおよび液晶表示装置
JP2008273138A (ja) 熱可塑性フイルム及びその製造方法、並びに、偏光板、液晶表示板用光学補償フイルム、反射防止フイルム及び液晶表示装置
JP2014132042A (ja) 樹脂組成物の製造方法、光学フィルム、偏光板、及び液晶表示装置
JP5821850B2 (ja) 偏光板長尺ロール及び光学表示装置の製造システム
JP2007328327A (ja) 偏光板および液晶表示装置
JP2008238526A (ja) 多積層アクリル樹脂フィルム、該フイルムを用いた偏光板保護フイルムおよび偏光板
KR20230154938A (ko) 연신 필름, 연신 필름의 제조 방법, 편광판 및 액정 표시 장치
WO2019026512A1 (ja) 合成樹脂積層延伸フィルム
JP2013200578A (ja) 偏光板および液晶表示装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005501343

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020057005464

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20038A09554

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2003748698

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003748698

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057005464

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2006036033

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10530172

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10530172

Country of ref document: US