JP2014102492A - 光学フィルム及びその製造方法、偏光板ならびに液晶表示装置 - Google Patents

光学フィルム及びその製造方法、偏光板ならびに液晶表示装置 Download PDF

Info

Publication number
JP2014102492A
JP2014102492A JP2013184468A JP2013184468A JP2014102492A JP 2014102492 A JP2014102492 A JP 2014102492A JP 2013184468 A JP2013184468 A JP 2013184468A JP 2013184468 A JP2013184468 A JP 2013184468A JP 2014102492 A JP2014102492 A JP 2014102492A
Authority
JP
Japan
Prior art keywords
film
group
optical film
resin
base film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013184468A
Other languages
English (en)
Inventor
Kenichi Fukuda
謙一 福田
Akio Tamura
顕夫 田村
Shigeaki Nimura
恵朗 二村
Hajime Nakayama
元 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2013184468A priority Critical patent/JP2014102492A/ja
Publication of JP2014102492A publication Critical patent/JP2014102492A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Laminated Bodies (AREA)
  • Polarising Elements (AREA)

Abstract

【課題】耐久性に優れ、透湿度を低減することのできる光学フィルムの提供。
【解決手段】熱可塑性樹脂を含む基材フィルムと、該基材フィルム上に積層された低透湿層とを有する光学フィルムであって、前記光学フィルムの透湿度が200g/m2/day以下であり、式(1)を満たす光学フィルム(Aは前記熱可塑性樹脂を含む基材フィルムに前記低透湿層を積層した光学フィルムの透湿度を表し、Bは前記熱可塑性樹脂を含む基材フィルムの透湿度を表す。透湿度は、JIS 0208の手法で、40℃、相対湿度90%で24時間経過後の値。)。
式(1) A/B≦0.9
【選択図】図1

Description

本発明は、光学フィルム及びその製造方法、偏光板ならびに液晶表示装置に関する。
近年、液晶表示装置は、液晶テレビや、パソコン、携帯電話、デジタルカメラなどの液晶パネル等の用途で広く用いられている。通常、液晶表示装置は、液晶セルの両側に偏光板を設けた液晶パネル部材を有し、バックライト部材からの光を液晶パネル部材で制御することにより表示が行われている。ここで、偏光板は偏光子とその両側の保護フィルムとからなり、一般的な偏光子は延伸されたポリビニルアルコール(PVA)系フィルムをヨウ素又は二色性色素で染色することにより得られ、保護フィルムとしてはセルロールエステルフィルムなどが用いられている。
また、液晶表示装置において、視野角の拡大、画像着色の改良、及びコントラストの向上のため、ポリマーフィルムを光学補償フィルム(位相差フィルム)として使用することが知られている。光学補償フィルムとして用いられるポリマーフィルムに対しては、VAモードやIPSモード等の液晶表示装置の液晶セルのモードに応じて、フィルムの光学特性(例えば、フィルム面内のレターデーション値Reやフィルム厚さ方向のレターデーション値Rthなどの複屈折性)を制御して所望の光学異方性を持たせることが求められる。
最近の液晶表示装置は、高品質化とともに、用途も多様化し、耐久性への要求が厳しくなってきている。例えば、屋外用途での使用においては環境変化に対する安定性が求められ、液晶表示装置に用いられる上記の偏光板用保護フィルムや光学補償フィルムなどの光学フィルムについても温度や湿度変化に対する寸法や光学特性の変化を抑えることが求められる。高温高湿の環境下に晒される液晶表示装置の問題としては、液晶表示装置の液晶セルの反りや表示ムラの発生があるが、これは偏光板およびそれを構成する光学フィルムに水分が浸透および脱着することにより、液晶表示装置の液晶セルの前面および背面の偏光板の収縮のバランスに差が生じて液晶セルが反り、液晶セルの四隅や四辺が筐体や背面側の部材と接触して表示ムラが生じることが原因と考えられている。このため、偏光板の保護フィルムや光学補償フィルムなどに対しては、湿度依存性や湿熱耐久性の改善が求められてきたが、抜本的な改良のためには、環境変化で水分の浸漬および脱着を抑制する必要があり、特に偏光板の最表面の光学フィルムには、水分を通しにくい性能、すなわち透湿度の低減が求められる。
特許文献1には、透明性が高く、低吸湿性、高耐熱性、力学的強度の高い光学フィルムの提供を目的として、セルロースエステルにポリメチルメタクリレート(PMMA)などのアクリル樹脂を多量添加した光学フィルムが開示されている。
一方、基材フィルム上に、低透湿層を設けたフィルムも知られている。例えば、特許文献2には、膜厚80μmのセルロースアシレートである基材フィルム上に、分子内に環状脂肪族炭化水素基と2個以上のエチレン性不飽和二重結合基を有する化合物を有する組成物から形成されてなる低透湿層を設けたフィルムが記載されており、JIS Z 0208に従って、60℃、95%相対湿度の雰囲気下で測定された透湿度が610〜1000g/m2/day程度であるフィルムが開示されている。
また、特許文献3には、膜厚80μmのセルロースアシレートである基材フィルム上に、塩素含有ビニル単量体から誘導される繰り返し単位を含む樹脂を有する低透湿層を設けたフィルムが記載されており、JIS Z 0208に従って、60℃、95%相対湿度の雰囲気下で測定された透湿度が500g/m2/day以下となることや、200g/m2/day以下であることが特に好ましいとの記載はある。しかしながら、特許文献3のフィルムの透湿度は具体的には測定されておらず、同文献の記載の特に好ましい範囲にまで透湿度を調整したフィルムは開示されていなかった。
国際公開第2009/047924号 特開2006−83225号公報 特開2008−230036号公報
液晶表示装置は従来の室内用途だけでなく、屋外などより過酷な環境で使用されるようになっており、液晶表示装置の最表面の光学フィルムは、水分を透過させない性能が重要になっている。この問題は近年大型化が進むTV用途では、液晶セルのガラスが薄手化する傾向の影響もあり、反りが大きくなりやすく、高温高湿環境経時後の黒表示ムラへの影響が懸念されている。また近年急速に広まっているタブレットPCやモバイル用途など中小型では薄型化・液晶表示装置内の省スペース要求が高いため、高温高湿環境経時後の黒表示ムラの問題の解決が強く望まれている。
上記のような状況に鑑みて、本発明の目的、すなわち本発明が解決しようとする課題は、耐久性に優れ、透湿度を低減することのできる光学フィルム及びその製造方法を提供することである。
本発明の別の目的は、上記光学フィルムを用いた偏光板を提供することである。本発明の更に別の目的は、高温高湿環境経時後の黒表示ムラが改善された液晶表示装置を提供することである。
本発明者らが鋭意検討した結果、特許文献2や3に記載のフィルムよりも透湿度を低減させることで、耐久性に優れ、透湿度を低減することのできる光学フィルムを提供でき、さらにそのような光学フィルムを偏光板の保護フィルムとして用いることで高温高湿環境経時後の黒表示ムラが改善された液晶表示装置を提供できることを見出し、本発明に至った。
本発明が解決しようとする課題は、下記の手段である本発明により解決することができる。
[1] 熱可塑性樹脂を含む基材フィルムと、
該基材フィルム上に積層された低透湿層とを有する光学フィルムであって、
前記光学フィルムの透湿度が200g/m2/day以下であり、
下記式(1)を満たすことを特徴とする光学フィルム。
式(1) A/B≦0.9
(式(1)中、Aは前記熱可塑性樹脂を含む基材フィルムに前記低透湿層を積層した光学フィルムの透湿度を表し、Bは前記熱可塑性樹脂を含む基材フィルムの透湿度を表す。ただし、透湿度は、JIS 0208の手法で、40℃、相対湿度90%で24時間経過後の値である。)
[2] [1]に記載の光学フィルムは、前記光学フィルムの透湿度が100g/m2
day以下であることが好ましい。
[3] [1]または[2]に記載の光学フィルムは、前記光学フィルムが更に下記式(2)を満たすことが好ましい。
式(2) 0.01≦A/B≦0.8
(式(2)中、Aは前記熱可塑性樹脂を含む基材フィルムに前記低透湿層を積層した光学フィルムの透湿度を表し、Bは前記熱可塑性樹脂を含む基材フィルムの透湿度を表す。ただし、透湿度は、JIS 0208の手法で、40℃、相対湿度90%で24時間経過後の値である。)
[4] [1]〜[3]のいずれか一項に記載の光学フィルムは、前記基材フィルムの透湿度が800g/m2/day以下であることが好ましい。
[5] [1]〜[4]のいずれか一項に記載の光学フィルムは、前記基材フィルムに含まれる前記熱可塑性樹脂が、(メタ)アクリル系樹脂、ポリカーボネート系樹脂、ポリスチレン系樹脂、環状ポリオレフィン系樹脂、グルタル酸無水物系樹脂、グルタルイミド系樹脂、二種類以上のアシル基を有するセルロースアシレートおよびこれら複数種の樹脂の混合樹脂であることが好ましい(ただし、前記(メタ)アクリル系樹脂は、ラクトン環含有重合体を含む。)。
[6] [1]〜[5]のいずれか一項に記載の光学フィルムは、前記基材フィルムの膜厚が15〜70μmであることが好ましい。
[7] [1]〜[6]のいずれか一項に記載の光学フィルムは、前記低透湿層の膜厚が1〜20μmであることが好ましい。
[8] [1]〜[7]のいずれか一項に記載の光学フィルムは、前記低透湿層が、分子内に環状脂肪族炭化水素基と2個以上のエチレン性不飽和二重結合基を有する化合物を有する組成物から形成されてなる層、または、塩素含有ビニル単量体から誘導される繰り返し単位を含む樹脂を有する層であることが好ましい。
[9] [1]〜[8]のいずれか一項に記載の光学フィルムは、前記低透湿層が、かご型シルセスキオキサン化合物を含有する層であることが好ましい。
[10] [1]〜[9]のいずれか一項に記載の光学フィルムは、前記光学フィルムの膜厚が5〜100μmであることが好ましい。
[11] [1]〜[10]のいずれか一項に記載の光学フィルムは、前記光学フィルムが、下記式(I)及び下記式(II)で定義されるRe及びRthが、波長590nmにおいて下記式(III)及び下記式(IV)を満たすことが好ましい。
式(I) Re=(nx−ny)×d
式(II) Rth={(nx+ny)/2−nz}×d
式(III)|Re|≦50nm
式(IV) |Rth|≦300nm
(式(I)〜(IV)中、nxは前記光学フィルムのフィルム面内の遅相軸方向の屈折率であり、nyは前記光学フィルムのフィルム面内の進相軸方向の屈折率であり、nzは前記光学フィルムの膜厚方向の屈折率であり、dは前記光学フィルムの膜厚(nm)である。)
[12] [1]〜[11]のいずれか一項に記載の光学フィルムは、前記基材フィルムが、前記熱可塑性樹脂および溶媒を含む高分子溶液を支持体上に流延して製膜されてなることが好ましい。
[13] 熱可塑性樹脂および溶媒を含む高分子溶液を支持体上に流延して基材フィルムを形成する工程と、
前記基材フィルム上に低透湿層を塗布で積層する工程とを含む、基材フィルム上に積層された低透湿層を有する光学フィルムの製造方法であって、
前記光学フィルムの透湿度が200g/m2/day以下であり、
下記式(1)を満たすことを特徴とする光学フィルムの製造方法。
式(1) A/B≦0.9
(式(1)中、Aは前記熱可塑性樹脂を含む基材フィルムに前記低透湿層を積層した光学フィルムの透湿度を表し、Bは前記基材フィルムの透湿度を表す。ただし、透湿度は、JIS 0208の手法で、40℃、相対湿度90%で24時間経過後の値である。)
[14] 熱可塑性樹脂を溶融製膜して基材フィルムを形成する工程と、
前記基材フィルム上に低透湿層を塗布で積層する工程とを含む、基材フィルム上に積層された低透湿層を有する光学フィルムの製造方法であって、
前記光学フィルムの透湿度が200g/m2/day以下であり、
下記式(1)を満たすことを特徴とする光学フィルムの製造方法。
式(1) A/B≦0.9
(式(1)中、Aは前記熱可塑性樹脂を含む基材フィルムに前記低透湿層を積層した光学フィルムの透湿度を表し、Bは前記基材フィルムの透湿度を表す。ただし、透湿度は、JIS 0208の手法で、40℃、相対湿度90%で24時間経過後の値である。)
[15] 偏光子と、
該偏光子の保護フィルムとして[1]〜[12]のいずれか一項に記載の光学フィルムとを少なくとも1枚含むことを特徴とする偏光板。
[16] 液晶セルと、
該液晶セルの少なくとも一方に配置された[15]に記載の偏光板とを含み、
前記光学フィルムが最表層となるように配置されたことを特徴とする液晶表示装置。
本発明により、耐久性に優れ、透湿度を低減することのできる光学フィルムおよびその製造方法を提供することができる。本発明の光学フィルムを用いることで、高温高湿環境経時後の黒表示ムラ発生が抑えられた液晶表示装置を提供することができる。
溶液製膜方法を実施するためのフィルム製造ラインの概略図である。
以下において、本発明の偏光板やその製造方法、それに用いる添加剤などについて詳細に説明する。
以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。なお、本明細書において「〜」を用いて表される数値範囲は、「〜」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
「アクリル樹脂」とはメタクリル酸又はアクリル酸の誘導体を重合して得られる樹脂、及びその誘導体を含有する樹脂を意味するものとする。また、特に限定しない場合には、「(メタ)アクリレート」はアクリレート及びメタクリレートを表し、「(メタ)アクリル」はアクリル及びメタクリルを表す。
更に、フィルムの「遅相軸方向」とはフィルム面内で屈折率が最大となる方向で、「進相軸方向」とはフィルム面内で遅相軸と直交する方向を意味するものとする。
[光学フィルムおよび光学フィルムの製造方法]
本発明の光学フィルムは、熱可塑性樹脂を含む基材フィルムと、該基材フィルム上に積層された低透湿層とを有する光学フィルムであって、前記光学フィルムの透湿度が200g/m2/day以下であり、式(1)を満たすことを特徴とする。
式(1) A/B≦0.9
(式(1)中、Aは前記熱可塑性樹脂を含む基材フィルムに前記低透湿層を積層した光学フィルムの透湿度を表し、Bは前記熱可塑性樹脂を含む基材フィルムの透湿度を表す。ただし、透湿度は、JIS 0208の手法で、40℃、相対湿度90%で24時間経過後の値である。)
上記構成により、耐久性に優れ、透湿度を低減することが出来る。
本発明の光学フィルムは下記式(2)を満たすことがより好ましく、下記式(3)を満たすことがさらに好ましく、下記式(4)を満たすことが特に好ましい。
式(2) 0.01≦A/B≦0.8
式(3) 0.02≦A/B≦0.6
式(4) 0.04≦A/B≦0.5
前記式(2)〜(4)におけるAおよびBの定義は、前記式(1)におけるAおよびBの定義と同様である。
また、本発明の光学フィルムの製造方法の第一の態様は、熱可塑性樹脂および溶媒を含む高分子溶液を支持体上に流延して基材フィルムを形成する工程と、前記基材フィルム上に低透湿層を塗布で積層する工程とを含む、基材フィルム上に積層された低透湿層を有する光学フィルムの製造方法であって、前記光学フィルムの透湿度が200g/m2/day以下であり、下記式(1)を満たすことを特徴とする。
式(1) A/B≦0.9
(式(1)中、Aは前記熱可塑性樹脂を含む基材フィルムに前記低透湿層を積層した光学フィルムの透湿度を表し、Bは前記基材フィルムの透湿度を表す。ただし、透湿度は、JIS 0208の手法で、40℃、相対湿度90%で24時間経過後の値である。)
また、本発明の光学フィルムの製造方法の第二の態様は、熱可塑性樹脂を溶融製膜して基材フィルムを形成する工程と、前記基材フィルム上に低透湿層を塗布で積層する工程とを含む、基材フィルム上に積層された低透湿層を有する光学フィルムの製造方法であって、前記光学フィルムの透湿度が200g/m2/day以下であり、下記式(1)を満たすことを特徴とする。
式(1) A/B≦0.9
(式(1)中、Aは前記熱可塑性樹脂を含む基材フィルムに前記低透湿層を積層した光学フィルムの透湿度を表し、Bは前記基材フィルムの透湿度を表す。ただし、透湿度は、JIS 0208の手法で、40℃、相対湿度90%で24時間経過後の値である。)
上記構成により、本発明の光学フィルムを容易に製造することができる。
以下、本発明の光学フィルムおよびその製造方法の好ましい態様について説明する。
{光学フィルムの特性}
(光学フィルムの膜厚)
本発明の光学フィルムの膜厚(基材フィルムに低透湿層を積層した後の総膜厚)は、5〜100μmが好ましく、10〜80μmがより好ましく、15〜75μmが特に好ましい。
(光学フィルムの透湿度)
本発明の光学フィルムの透湿度は、JIS Z−0208をもとに、40℃、相対湿度90%の条件において測定される。
本発明の光学フィルムの透湿度は、200g/m2/day以下であり、100g/m2/day以下であることが好ましく、90g/m2/day以下であることがより好ましく、70g/m2/day以下であることが更に好ましく、50g/m2/day以下であることが特に好ましい。透湿度が200g/m2/day以下であれば、液晶表示装置の常温、高湿及び高温高湿環境経時後の、液晶セルの反りや、黒表示時の表示ムラを抑制できる。
(レターデーション)
本発明の光学フィルムは、波長590nmで測定したRe及びRth(下記式(I)及び(II)にて定義される)が、式(III)及び(IV)を満たすことが好ましい。
式(I) Re=(nx−ny)×d
式(II) Rth={(nx+ny)/2−nz}×d
式(III)|Re|≦50nm
式(IV) |Rth|≦300nm
(式(I)〜(IV)中、nxは前記光学フィルムのフィルム面内の遅相軸方向の屈折率であり、nyは前記光学フィルムのフィルム面内の進相軸方向の屈折率であり、nzは前記光学フィルムの膜厚方向の屈折率であり、dは前記光学フィルムの膜厚(nm)である。)
なお、本発明の光学フィルムでは、上記式(III)及び(IV)がフィルム面内の少なくとも1点において満足されればよいが、フィルム面内の任意の点で上記式(III)及び(IV)が満足されることが好ましい。
本発明の光学フィルムのRe、Rthは、後述する前記基材フィルムのReとRthの調整方法、前記低透湿層の組成や膜厚、本発明の光学フィルムの総膜厚等により調整することができる。
{低透湿層}
(低透湿層の組成)
本発明の光学フィルムに用いることができる低透湿層は、本発明の光学フィルムが前記式(1)を満たすものである。本発明の光学フィルムに用いることができる低透湿層は、分子内に環状脂肪族炭化水素基とエチレン性不飽和二重結合を有する化合物を含む組成物から形成されてなる層、または、塩素含有ビニル単量体から誘導される繰り返し単位を含む樹脂を有する層であることが好ましく、分子内に環状脂肪族炭化水素基とエチレン性不飽和二重結合を有する化合物を含む組成物から形成されてなる層であることがより好ましい。
前記分子内に環状脂肪族炭化水素基とエチレン性不飽和二重結合基を有する化合物を主成分とする組成物から形成されてなる層について説明する。
《分子内に環状脂肪族炭化水素基とエチレン性不飽和二重結合基を有する化合物を主成分とする組成物から形成されてなる層》
本発明において、分子内に環状脂肪族炭化水素基とエチレン性不飽和二重結合基を有する化合物を主成分とする組成物から形成されてなる層は、低透湿性を付与するために、環状脂肪族炭化水素基を有し、かつ分子内にエチレン性不飽和二重結合基を有する化合物を含有し、必要に応じて更に、重合開始剤、透光性粒子、含フッ素又はシリコーン系化合物、シリコーン樹脂(好ましくは、かご型シルセスキオキサン化合物)、溶剤を含有する組成物を、支持体上に直接又は他の層を介して塗布・乾燥・硬化することにより形成することができる。以下各成分について説明する。なお、組成物または層の主成分とは、その組成物の固形分またはその層の50質量%以上を占める成分のことを言う。
〔分子内に環状脂肪族炭化水素基とエチレン性不飽和二重結合基を有する化合物〕
分子内に環状脂肪族炭化水素基とエチレン性不飽和二重結合基を有する化合物はバインダーとして機能する。また、環状脂肪族炭化水素基を有し、エチレン性不飽和二重結合基を有する化合物は、硬化剤として機能することができ、塗膜の強度や耐擦傷性を向上させることが可能となると同時に低透湿性を付与することができる。
この詳細は明らかではないが、分子内に環状脂肪族炭化水素基を有する化合物を用いることで、低透湿層に疎水的な環状脂肪族炭化水素基を導入し、疎水化することで、外部から水分子の取り込みを防止し、透湿度を低下させると推定している。また、分子内にエチレン性不飽和二重結合基を有することで、架橋点密度を上げ、低透湿層中の水分子の拡散経路を制限する。架橋点密度を上げることは、環状脂肪族炭化水素基の密度を相対的に上昇させる効果も有り、低透湿層内をより疎水的にし、水分子の吸着を防止し、透湿度を低下させると考えられる。
架橋点密度を上げるために分子内に有するエチレン性不飽和二重結合基の数は2以上であることがより好ましい。
環状脂肪族炭化水素基としては、好ましくは炭素数7以上の脂環式化合物から誘導される基であり、より好ましくは炭素数10以上の脂環式化合物から誘導される基であり、さらに好ましくは炭素数12以上の脂環式化合物から誘導される基である。
環状脂肪族炭化水素基としては、特に好ましくは、二環式、三環式等の、多環式化合物から誘導される基である。
より好ましくは、特開2006−215096号公報の特許請求の範囲記載の化合物の中心骨格、特開昭2001−10999号公報記載の化合物の中心骨格、あるいは、アダマンタン誘導体の骨格等が挙げられる。
環状脂肪族炭化水素基(連結基含む)としては、下記一般式(I)〜(V)のいずれかで表される基が好ましく、下記一般式(I)、(II)、又は(IV)で表される基がより好ましく、下記一般式(I)で表される基が更に好ましい。
Figure 2014102492
一般式(I)中、L、及びL’は各々独立に二価以上の連結基を表す。nは1〜3の整数を表す。
Figure 2014102492
一般式(II)中、L、及びL’は各々独立に二価以上の連結基を表す。nは1〜2の整数を表す。
Figure 2014102492
一般式(III)中、L、及びL’は各々独立に二価以上の連結基を表す。nは1〜2の整数を表す。
Figure 2014102492
一般式(IV)中、L、及びL’は各々独立に二価以上の連結基を表し、L’’は水素原子または二価以上の連結基を表す。
Figure 2014102492
一般式(V)中、L、及びL’は各々独立に二価以上の連結基を表す。
環状脂肪族炭化水素基としては具体的には、ノルボルニル、トリシクロデカニル、テトラシクロドデカニル、ペンタシクロペンタデカニル、アダマンチル、ジアマンタニル等が挙げられる。
エチレン性不飽和二重結合基としては、(メタ)アクリロイル基、ビニル基、スチリル基、アリル基等の重合性官能基が挙げられ、中でも、(メタ)アクリロイル基及び−C(O)OCH=CH2が好ましい。特に好ましくは下記の1分子内に2つ以上の(メタ)アクリロイル基を含有する化合物を用いることができる。
環状脂肪族炭化水素基を有し、かつ分子内に2つ以上のエチレン性不飽和二重結合基を有する化合物は、上記の環状脂肪族炭化水素基とエチレン性不飽和二重結合を有する基が連結基を介して結合することにより構成される。
連結基としては、単結合、炭素数1〜6の置換されていてもよいアルキレン基、N位が地置換されていてもよいアミド基、N位が置換されていてもよいカルバモイル基、エステル基、オキシカルボニル基、エーテル基等、及びこれらを組み合わせて得られる基が挙げられる。
これらの化合物は、例えば、上記環状脂肪族炭化水素基を有するジオール、トリオール等のポリオールと、(メタ)アクリロイル基、ビニル基、スチリル基、アリル基等を有する化合物のカルボン酸、カルボン酸誘導体、エポキシ誘導体、イソシアナート誘導体等との一段あるいは二段階の反応により容易に合成することができる。
好ましくは、(メタ)アクリル酸、(メタ)アクリロイルクロリド、(メタ)アクリル酸無水物、(メタ)アクリル酸グリシジルなどの化合物や、WO2012/00316A号記載の化合物(例、1、1―ビス(アクリロキシメチル)エチルイソシアナート)を用いて、上記環状脂肪族炭化水素基を有するポリオールとの反応させることにより合成することができる。
以下、環状脂肪族炭化水素基を有し、エチレン性不飽和二重結合基を有する化合物の好ましい具体例を示すが、本発明はこれらに限定されるものではない。
Figure 2014102492
Figure 2014102492
〔重合開始剤〕
分子内に環状脂肪族炭化水素基とエチレン性不飽和二重結合基を有する化合物を主成分とする組成物には、重合開始剤を含むことが好ましい。重合開始剤としては光重合開始剤が好ましい。
光重合開始剤としては、アセトフェノン類、ベンゾイン類、ベンゾフェノン類、ホスフィンオキシド類、ケタール類、アントラキノン類、チオキサントン類、アゾ化合物、過酸化物類、2,3−ジアルキルジオン化合物類、ジスルフィド化合物類、フルオロアミン化合物類、芳香族スルホニウム類、ロフィンダイマー類、オニウム塩類、ボレート塩類、活性エステル類、活性ハロゲン類、無機錯体、クマリン類などが挙げられる。光重合開始剤の具体例、及び好ましい態様、市販品などは、特開2009−098658号公報の段落[0133]〜[0151]に記載されており、本発明においても同様に好適に用いることができる。
「最新UV硬化技術」{(株)技術情報協会}(1991年)、p.159、及び、「紫外線硬化システム」加藤清視著(平成元年、総合技術センター発行)、p.65〜148にも種々の例が記載されており本発明に有用である。
市販の光開裂型の光ラジカル重合開始剤としては、チバ・スペシャルティ・ケミカルズ(株)製の「イルガキュア651」、「イルガキュア184」、「イルガキュア819」、「イルガキュア907」、「イルガキュア1870」(CGI−403/イルガキュア184=7/3混合開始剤)、「イルガキュア500」、「イルガキュア369」、「イルガキュア1173」、「イルガキュア2959」、「イルガキュア4265」、「イルガキュア4263」、「イルガキュア127」、“OXE01”等;日本化薬(株)製の「カヤキュアーDETX−S」、「カヤキュアーBP−100」、「カヤキュアーBDMK」、「カヤキュアーCTX」、「カヤキュアーBMS」、「カヤキュアー2−EAQ」、「カヤキュアーABQ」、「カヤキュアーCPTX」、「カヤキュアーEPD」、「カヤキュアーITX」、「カヤキュアーQTX」、「カヤキュアーBTC」、「カヤキュアーMCA」など;サートマー社製の“Esacure(KIP100F,KB1,EB3,BP,X33,KTO46,KT37,KIP150,TZT)”等、及びそれらの組み合わせが好ましい例として挙げられる。
本発明に用いられる低透湿層形成用組成物、好ましくは分子内に環状脂肪族炭化水素基とエチレン性不飽和二重結合基を有する化合物を主成分とする組成物、中の光重合開始剤の含有量は、前記組成物に含まれる重合可能な化合物を重合させ、かつ開始点が増えすぎないように設定するという理由から、低透湿層形成用組成物中の全固形分に対して、0.5〜8質量%が好ましく、1〜5質量%がより好ましい。
〔シリコーン樹脂〕
分子内に環状脂肪族炭化水素基とエチレン性不飽和二重結合基を有する化合物を主成分とする組成物には、シリコーン樹脂(ただし、本明細書中におけるシリコーン樹脂は、R2SiOの構造単位式で現れる狭義にシリコーンに限定されるものではなく、RSiO1.5の構造単位式で表されるシルセスキオキサン化合物も含む)を含むことが好ましい。シリコーン樹脂としては、かご型シルセスキオキサン化合物が好ましい。すなわち、本発明における低透湿層は、かご型シルセスキオキサン化合物を含有する層であることが、より透湿度を低減する観点から好ましい。
前記シリコーン樹脂は、下記一般式(1)
[RSiO3/2n(1)
(但し、Rはそれぞれ独立に(メタ)アクリロイル基を有する有機官能基であり、nは8、10又は12である)で表され、構造単位中に篭型構造を有するポリオルガノシルセスキオキサンを主たる成分とするシリコーン樹脂であることがより好ましい。
シリコーン樹脂は、前記一般式(1)で表され、構造単位中に篭型構造を有するポリオルガノシルセスキオキサン(かご型(篭型)シルセスキオキサンともいう)を主成分とし、通常篭型シルセスキオキサンを60〜95重量%含有し、残部は非篭型のシリコーン樹脂成分であることが特に好ましい。
一般式(1)中、Rは(メタ)アクリロイル基を有する有機官能基であり、好ましいRとしては下記一般式(4)で表される(メタ)アクリロイルオキシC1−3アルキル基を挙げることができる。
Figure 2014102492
一般式(4)中、mは1〜3の整数であり、R1は水素原子又はメチル基である。なお、一般式(4)はCH2=CR1−COO−(CH2)m−としても表すことができる。好ましいRの具体例としては、3−メタクリロキシプロピル基、メタクリロキシメチル基、及び3−アクリロキシプロピル基が挙げられる。
前記一般式(1)中のnが8、10又は12である篭型ポリオルガノシルセスキオキサンの具体的な構造としては、下記構造式(5)、(6)及び(7)に示す篭型構造体が挙げられる。なお、下記式中のRは、一般式(1)におけるRと同じである。
Figure 2014102492
前記シリコーン樹脂としては、特許第4142385号、特許第4409397号、特許第5078269号、特許第4920513号、特許第4964748号、特許第5036060号、特開2010−96848号、特開2011−194647号、特開2012−183818号、特開2012−184371号、特開2012−218322号の各公報に記載のものを用いることができ、これらの公報に記載の内容は本発明に組み込まれる。
本発明で使用されるシリコーン樹脂は、WO2004/085501A1等に記載の方法で製造可能である。
即ち、シリコーン樹脂は、RSiX3で表されるケイ素化合物を極性溶媒及び塩基性触媒存在下で加水分解反応させると共に一部縮合させ、得られた加水分解縮合生成物を更に非極性溶媒及び塩基性触媒存在下で再縮合させて得ることができる。
ここで、Rは(メタ)アクリロイル基を有する有機官能基であり、Xは加水分解性基を示すが、好ましくは、Rは前記一般式(4)で表される基である。好ましいRの具体例を示せば、3−メタクリロキシプロピル基、メタクリロキシメチル基、及び3−アクリロキシプロピル基が例示される。
加水分解性基Xは、加水分解性を有する基であれば特に限定されず、アルコキシ基、アセトキシ基、及び塩素原子等が挙げられるが、アルコキシル基であることが好ましい。アルコキシル基としてはメトキシ基、エトキシ基、n−及びi−プロポキシ基、並びに、n−、i−及びt−ブトキシ基等が挙げられる。これらの中で、メトキシ基は反応性が高いため好ましい。
RSiX3で表されるケイ素化合物の中で好ましい化合物を示せば、メタクリロキシメチルトリエトキシシラン、メタクリロキシメチルトリメトキシラン、3−メタクリロキシプロピルトリクロロシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−アクリロキシプロピルトリメトキシシラン、及び、3−アクリロキシプロピルトリクロロシランが挙げられる。中でも、原料の入手が容易である3−メタクリロキシプロピルトリメトキシシランを用いることが好ましい。
加水分解反応に用いられる塩基性触媒としては、水酸化カリウム、水酸化ナトリウム、水酸化セシウムなどのアルカリ金属水酸化物、あるいはテトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、ベンジルトリメチルアンモニウムヒドロキシド、ベンジルトリエチルアンモニウムヒドロキシドなどの水酸化アンモニウム塩が例示される。これらの中でも、触媒活性が高い点からテトラメチルアンモニウムヒドロキシドが好ましく用いられる。塩基性触媒は、通常水溶液として使用される。
加水分解反応条件については、反応温度は0〜60℃が好ましく、20〜40℃がより好ましい。反応温度が0℃より低いと、反応速度が遅くなり加水分解性基が未反応の状態で残存してしまい反応時間を多く費やす結果となる。一方、60℃より高いと反応速度が速すぎるために複雑な縮合反応が進行し結果として加水分解縮合生成物の高分子量化が促進される。また、反応時間は2時間以上が好ましい。反応時間が2時間に満たないと、加水分解反応が十分に進行せず加水分解性基が未反応の状態で残存してしまう状態となる。
加水分解反応は水の存在が必須であるが、これは塩基性触媒の水溶液から供給することもできるし、別途水として加えてもよい。水の量は加水分解性基を加水分解するに足る量以上、好ましくは理論量の1.0〜1.5倍量である。また、加水分解時には有機極性溶媒を用いることが必要で、有機極性溶媒としてはメタノール、エタノール、2−プロパノールなどのアルコール類、或いは他の有機極性溶媒を用いることができる。好ましくは、水と溶解性のある炭素数1〜6の低級アルコール類であり、2−プロパノールを用いることがより好ましい。非極性溶媒を用いると反応系が均一にならず加水分解反応が十分に進行せず未反応のアルコキシル基が残存してしまい好ましくない。
加水分解反応終了後は、水又は水含有反応溶媒を分離する。水又は水含有反応溶媒の分離は、減圧蒸発等の手段が採用できる。水分やその他の不純物を十分に除去するためには、非極性溶媒を添加して加水分解反応生成物を溶解させ、この溶液を食塩水等で洗浄し、その後無水硫酸マグネシウム等の乾燥剤で乾燥させる等の手段が採用できる。非極性溶媒を、蒸発等の手段で分離すれば、加水分解反応生成物を回収することができるが、非極性溶媒が次の反応で使用する非極性溶媒として使用可能であれば、これを分離する必要はない。
加水分解反応では加水分解と共に、加水分解物の縮合反応が生じる。縮合反応が伴う加水分解での反応生成物は、通常、数平均分子量が1400〜5000の無色の粘性液体となる。この加水分解縮合生成物は、反応条件により異なるが数平均分子量が1400〜3000のオリゴマーとなり、加水分解性基Xの大部分、好ましくはほぼ全部がOH基に置換され、更にそのOH基の大部分、好ましくは95%以上が縮合されている。加水分解縮合生成物の構造については、複数種のかご型、はしご型、ランダム型のシルセスキオキサンであり、かご型構造をとっている化合物についても完全なかご型構造の割合は少なく、かごの一部が開いている不完全なかご型の構造が主となっている。したがって、この加水分解で得られた加水分解縮合生成物を、更に、塩基性触媒存在下、有機溶媒中で加熱することによりシロキサン結合を縮合(再縮合という)させることによりかご型構造のシルセスキオキサンを選択的に製造する。
水又は水含有反応溶媒を分離したのち、非極性溶媒及び塩基性触媒の存在下に再縮合反応を行う。再縮合反応の反応条件については、反応温度は100〜200℃の範囲が好ましく、さらには110〜140℃がより好ましい。また、反応温度が低すぎると再縮合反応をさせるために十分なドライビングフォースが得られず反応が進行しない。反応温度が高すぎると(メタ)アクリロイル基が自己重合反応を起こす可能性があるので、反応温度を抑制するか、重合禁止剤などを添加する必要がある。反応時間は2〜12時間が好ましい。非極性溶媒の使用量は加水分解反応生成物を溶解するに足る量であることがよく、塩基性触媒の使用量は加水分解反応生成物に対し、0.1〜10重量%の範囲である。
非極性溶媒としては、水と溶解性の無い又は殆どないものであればよいが、炭化水素系溶媒が好ましい。かかる、炭化水素系溶媒としてはトルエン、ベンゼン、キシレンなどの沸点の低い非極性溶媒がある。中でもトルエンを用いることが好ましい。塩基性触媒としては、加水分解反応に使用される塩基性触媒が使用でき、水酸化カリウム、水酸化ナトリウム、水酸化セシウムなどのアルカリ金属水酸化物、あるいはテトラメルアンモニウムヒヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、ベンジルトリメチルアンモニウムヒドロキシド、ベンジルトリエチルアンモニウムヒドロキシドなどの水酸化アンモニウム塩が挙げられるが、テトラアルキルアンモニウム等の非極性溶媒に可溶性の触媒が好ましい。
また、再縮合に使用する加水分解縮合生成物は水洗、脱水し濃縮したものを用いるのが好ましいが、水洗、脱水を行わなくても使用できる。この反応の際、水は存在してもよいが、積極的に加える必要はなく、塩基性触媒溶液から持ち込まれる水分程度にとどめることがよい。なお、加水分解縮合生成物の加水分解が十分に行われていない場合は、残存する加水分解性基を加水分解するに必要な理論量以上の水分が必要であるが、通常は加水分解反応が十分に行われる。再縮合反応後は、触媒を水洗し取り除き濃縮し、シルセスキオキサン混合物が得られる。
このようにして得られるシルセスキオキサンは、反応条件や加水分解縮合生成物の状態により異なるが、構成成分は、複数種かご型シルセスキオキサンが全体の70%以上であり、残部は非篭型の縮合物である。複数種のかご型シルセスキオキサンの構成成分は一般式(5)で表されるT8が20〜40%、一般式(6)で表されるT10が40〜50%で、残部はその他の成分で、通常一般式(7)で表されるT12である。T8はシロキサン混合物を20℃以下で放置することで針状の結晶として析出させ分離することができる。
本発明で使用するシリコーン樹脂における篭型シルセスキオキサンは、T8、T10及びT12の混合物であってもよく、これらから1種又は2種を分離又は濃縮したものであってもよい。また、本発明で使用するシリコーン樹脂は、上記製法で得られたシリコーン樹脂に限定されるものではない。
本発明に用いられる低透湿層形成用組成物、好ましくは分子内に環状脂肪族炭化水素基とエチレン性不飽和二重結合基を有する化合物を主成分とする組成物、中のシリコーン樹脂の含有量は、低透湿層形成用組成物中の全固形分に対して、シリコーン樹脂1〜50質量%が好ましく、5〜40質量%がより好ましい。
〔分子内に環状脂肪族炭化水素基とエチレン性不飽和二重結合基を有する化合物を主成分とする組成物に含まれる溶媒〕
本発明に用いられる分子内に環状脂肪族炭化水素基とエチレン性不飽和二重結合基を有する化合物を主成分とする組成物は、溶媒を含有することができる。溶媒としては、モノマーの溶解性、塗工時の乾燥性、透光性粒子の分散性等を考慮し、各種溶剤を用いることができる。係る有機溶剤としては、例えばジブチルエーテル、ジメトキシエタン、ジエトキシエタン、プロピレンオキシド、1,4−ジオキサン、1,3−ジオキソラン、1,3,5−トリオキサン、テトラヒドロフラン、アニソール、フェネトール、炭酸ジメチル、炭酸メチルエチル、炭酸ジエチル、アセトン、メチルエチルケトン(MEK)、ジエチルケトン、ジプロピルケトン、ジイソブチルケトン、シクロペンタノン、シクロヘキサノン、メチルシクロヘキサノン、蟻酸エチル、蟻酸プロピル、蟻酸ペンチル、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル、プロピオン酸エチル、γ−プチロラクトン、2−メトキシ酢酸メチル、2−エトキシ酢酸メチル、2−エトキシ酢酸エチル、2−エトキシプロピオン酸エチル、2−メトキシエタノール、2−プロポキシエタノール、2−ブトキシエタノール、1,2−ジアセトキシアセトン、アセチルアセトン、ジアセトンアルコール、アセト酢酸メチル、アセト酢酸エチル等メチルアルコール、エチルアルコール、イソプロピルアルコール、n−ブチルアルコール、シクロヘキシルアルコール、酢酸イソブチル、メチルイソブチルケトン(MIBK)、2−オクタノン、2−ペンタノン、2−ヘキサノン、エチレングリコールエチルエーテル、エチレングリコールイソプロピルエーテル、エチレングリコールブチルエーテル、プロピレングリコールメチルエーテル、エチルカルビトール、ブチルカルビトール、ヘキサン、ヘプタン、オクタン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、ベンゼン、トルエン、キシレン等が挙げられ、1種単独であるいは2種以上を組み合わせて用いることができる。
前記基材フィルムがセルロースアシレートフィルムの場合、炭酸ジメチル、酢酸メチル、酢酸エチル、メチルエチルケトン、アセチルアセトン、アセトンのうち少なくとも1種類を用いることが好ましく、炭酸ジメチル、酢酸メチルの何れかがより好ましく、酢酸メチルが特に好ましい。
本発明に用いられる分子内に環状脂肪族炭化水素基とエチレン性不飽和二重結合基を有する化合物を主成分とする組成物の固形分の濃度は20〜80質量%の範囲となるように溶媒を用いるのが好ましく、より好ましくは30〜75質量%であり、更に好ましくは40〜70質量%である。
(低透湿層の構成、製造方法)
前記低透湿層は、1層であってもよいし、複数層設けてもよい。前記低透湿層の積層方法は、前記低透湿層を基材フィルムとの共流延として作成すること、または、前記低透湿層を前記基材フィルム上に塗布で積層して設けることが好ましく、前記低透湿層を前記基材フィルム上に塗布で積層して設けることがより好ましい。そのなかでも、前記低透湿層が、前記基材フィルム上に塗布により積層されてなることがより好ましい。
(低透湿層の膜厚)
前記低透湿層の膜厚は、1〜20μmであることが好ましく、2〜18μmであることがより好ましく、3〜17μmであることが特に好ましい。
本発明の光学フィルムの低透湿層は反射防止機能、防汚機能などを併せて持たせることも好ましい。
{基材フィルム}
前記基材フィルムは、熱可塑性樹脂を含む。以降、前記基材フィルムは熱可塑性樹脂を含む基材フィルムまたは単に基材フィルムとも称する。
<熱可塑性樹脂>
下記に前記基材フィルムで主成分として好ましく使用することのできる熱可塑性樹脂に関し説明する。なお、前記基材フィルムの主成分とは、該基材フィルムの50質量%以上を占める成分のことを言い、70質量%以上を占める成分であることが好ましく、80質量%以上を占める成分であることがより好ましい。
前記基材フィルムにおいて、最適な熱可塑性樹脂としては、(メタ)アクリル系樹脂、ポリカーボネート系樹脂、ポリスチレン系樹脂、オレフィン系樹脂、セルロース系樹脂等が挙げられ、これらの樹脂及びこれら複数種の樹脂の混合樹脂から選ぶことができる(ただし、前記(メタ)アクリル系樹脂は、主鎖に環構造を有する(メタ)アクリル系重合体(例えば、ラクトン環含有重合体、無水グルタル酸環構造を有する重合体、グルタルイミド環含有重合体など)を含む。)。
その中でも、(メタ)アクリル系樹脂、ポリカーボネート系樹脂、ポリスチレン系樹脂、環状ポリオレフィン系樹脂、二種類以上のアシル基を有するセルロースアシレートおよびこれら複数種の樹脂の混合樹脂であることが好ましく、(メタ)アクリル系樹脂、二種類以上のアシル基を有するセルロースアシレートおよびこれら複数種の樹脂の混合樹脂であることがより好ましく、ラクトン環含有重合体またはセルロースアセテートプロピオネートであることが特に好ましい。
なお、(メタ)アクリル系樹脂は、メタクリル系樹脂とアクリル系樹脂の両方を含む概念である。また、(メタ)アクリル系樹脂には、アクリレート/メタクリレートの誘導体、特にアクリレートエステル/メタクリレートエステルの(共)重合体も含まれる。
((メタ)アクリル系重合体)
前記(メタ)アクリル系重合体の繰り返し構造単位は、特に限定されない。前記(メタ)アクリル系重合体は、繰り返し構造単位として(メタ)アクリル酸エステル単量体由来の繰り返し構造単位を有することが好ましい。
前記(メタ)アクリル系重合体は、繰り返し構造単位として、更に、水酸基含有単量体、不飽和カルボン酸及び下記一般式(201)で表される単量体から選ばれる少なくとも1種を重合して構築される繰り返し構造単位を含んでいてもよい。
一般式(201)
CH2=C(X)R201
(式中、R201は水素原子又はメチル基を表し、Xは水素原子、炭素数1〜20のアルキ
ル基、アリール基、−CN基、−CO−R202基、又は−O−CO−R203基を表し、R202及びR203は水素原子又は炭素数1〜20の有機残基を表す。)
前記(メタ)アクリル酸エステルとしては、特に限定されないが、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸n−ブチル、アクリル酸イソブチル、アクリル酸t−ブチル、アクリル酸シクロヘキシル、アクリル酸ベンジルなどのアクリル酸エステル;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸n−ブチル、メタクリル酸イソブチル、メタクリル酸t−ブチル、メタクリル酸シクロヘキシル、メタクリル酸ベンジルなどのメタクリル酸エステル;などが挙げられ、これらは1種のみ用いてもよいし、2種以上を併用してもよい。これらの中でも特に、耐熱性、透明性が優れる点から、メタクリル酸メチルが好ましい。
前記(メタ)アクリル酸エステルを用いる場合、重合工程に供する単量体成分中のその含有割合は、本発明の効果を十分に発揮させる上で、好ましくは10〜100質量%、より好ましくは10〜100質量%、更に好ましくは40〜100質量%、特に好ましくは50〜100質量%である。
前記水酸基含有単量体としては、特に限定されないが、例えば、α−ヒドロキシメチルスチレン、α−ヒドロキシエチルスチレン、2−(ヒドロキシエチル)アクリル酸メチルなどの2−(ヒドロキシアルキル)アクリル酸エステル;2−(ヒドロキシエチル)アクリル酸などの2−(ヒドロキシアルキル)アクリル酸;などが挙げられ、これらは1種のみ用いてもよいし、2種以上を併用してもよい。
前記水酸基含有単量体を用いる場合、重合工程に供する単量体成分中のその含有割合は、本発明の効果を十分に発揮させる上で、好ましくは0〜30質量%、より好ましくは0〜20質量%、更に好ましくは0〜15質量%、特に好ましくは0〜10質量%である。
前記不飽和カルボン酸としては、例えば、アクリル酸、メタクリル酸、クロトン酸、α−置換アクリル酸、α−置換メタクリル酸などが挙げられ、これらは1種のみ用いてもよいし、2種以上を併用してもよい。これらの中でも特に、本発明の効果を十分に発揮させる点で、アクリル酸、メタクリル酸が好ましい。
前記不飽和カルボン酸を用いる場合、重合工程に供する単量体成分中のその含有割合は、本発明の効果を十分に発揮させる上で、好ましくは0〜30質量%、より好ましくは0〜20質量%、更に好ましくは0〜15質量%、特に好ましくは0〜10質量%である。
前記一般式(201)で表される単量体としては、例えば、スチレン、ビニルトルエン、α−メチルスチレン、アクリロニトリル、メチルビニルケトン、エチレン、プロピレン、酢酸ビニルなどが挙げられ、これらは1種のみ用いてもよいし、2種以上を併用してもよい。これらの中でも特に、本発明の効果を十分に発揮させる点で、スチレン、α−メチルスチレンが好ましい。
前記一般式(201)で表される単量体を用いる場合、重合工程に供する単量体成分中のその含有割合は、本発明の効果を十分に発揮させる上で、好ましくは0〜30質量%、より好ましくは0〜20質量%、更に好ましくは0〜15質量%、特に好ましくは0〜10質量%である。
−主鎖に環構造を有する(メタ)アクリル系重合体−
(メタ)アクリル系重合体の中でも主鎖に環構造を有するものが好ましい。主鎖に環構造を導入することで、主鎖の剛直性を高め、耐熱性を向上することができる。
本発明では主鎖に環構造を有する(メタ)アクリル系重合体の中でも主鎖にラクトン環構造を含有する重合体、主鎖に無水グルタル酸環構造を有する重合体、主鎖にグルタルイミド環構造を有する重合体のいずれかであることが好ましい。中でも主鎖にラクトン環構造を含有する重合体であることがより好ましい。
以下のこれらの主鎖に環構造を有する重合体について順に説明する。
(1)主鎖にラクトン環構造を有する(メタ)アクリル系重合体
主鎖にラクトン環構造を有する(メタ)アクリル系重合体(以降ラクトン環含有重合体とも称す)は、主鎖にラクトン環を有する(メタ)アクリル系重合体であれば特に限定されないが、好ましくは下記一般式(401)で示されるラクトン環構造を有する。
一般式(401):
Figure 2014102492
一般式(401)中、R401、R402及びR403は、それぞれ独立に、水素原子又は炭素
原子数1〜20の有機残基を表し、有機残基は酸素原子を含有していてもよい。ここで、炭素原子数1〜20の有機残基としては、メチル基、エチル基、イソプロピル基、n−ブチル基、t−ブチル基などが好ましい。
ラクトン環含有重合体の構造中における上記一般式(401)で示されるラクトン環構造の含有割合は、好ましくは5〜90質量%、より好ましくは10〜70質量%、さらに好ましくは10〜60質量%、特に好ましくは10〜50質量%である。ラクトン環構造の含有割合を5質量%以上とすることにより、得られた重合体の耐熱性、及び表面硬度が向上する傾向にあり、ラクトン環構造の含有割合を90質量%以下とすることにより、得られた重合体の成形加工性が向上する傾向にある。
なお、ラクトン環構造の含有割合は下記式より算出することができる。
ラクトン環の含有割合(質量%)=B×A×MR/Mm
(式中、Bは、ラクトン環化に関与する構造(水酸基)を有する原料単量体の当該共重合に用いられた単量体組成における質量含有割合であり、MRは生成するラクトン環構造単位の式量であり、Mmはラクトン環化に関与する構造(水酸基)を有する原料単量体の分子量であり、Aはラクトン環化率である)
また、ラクトン環化率は、例えば環化反応が脱アルコール反応を伴う場合、理論重量減少量と重量減少が始まる前の150℃から、重合体の分解が始まる前の300℃までの間の脱アルコール反応による重量減加熱重量減少率から算出することができる。
ラクトン環含有重合体の製造方法については、特に限定はされないが、好ましくは、重合工程によって分子鎖中に水酸基とエステル基とを有する重合体(p)を得た後に、得られた重合体(p)を加熱処理することによりラクトン環構造を重合体に導入するラクトン環化縮合工程を行うことによって得られる。
ラクトン環含有重合体の質量平均分子量は、好ましくは1,000〜2,000,000、より好ましくは5,000〜1,000,000、さらに好ましくは10,000〜500,000、特に好ましくは50,000〜500,000である。
ラクトン環含有重合体は、ダイナミックTG測定における150〜300℃の範囲内での質量減少率が、好ましくは1%以下、より好ましくは0.5%以下、さらに好ましくは0.3%以下であるのがよい。ダイナミックTGの測定方法については、特開2002−138106号公報に記載の方法を用いることができる。
ラクトン環含有重合体は、環化縮合反応率が高いので、成型品の製造過程で脱アルコール反応が少なく、該アルコールを原因とした成形後の成形品中に泡や銀条(シルバーストリーク)が入るという欠点が回避できる。さらに、高い環化縮合反応率によって、ラクトン環構造が重合体に充分に導入されるので、得られたラクトン環含有重合体は高い耐熱性を有する。
ラクトン環含有重合体は、濃度15質量%のクロロホルム溶液にした場合、その着色度(YI)が、好ましくは6以下、より好ましくは3以下、さらに好ましくは2以下、特に好ましくは1以下である。着色度(YI)が6以下であれば、着色により透明性が損なわれるなどの不具合が生じにくいので、本発明において好ましく使用することができる。
ラクトン環含有重合体は、熱質量分析(TG)における5%質量減少温度が、好ましくは330℃以上、より好ましくは350℃以上、さらに好ましくは360℃以上である。熱質量分析(TG)における5%質量減少温度は、熱安定性の指標であり、これを330℃以上とすることにより、充分な熱安定性が発揮されやすい傾向にある。熱質量分析は、上記ダイナミックTGの測定の装置を使用することができる。
ラクトン環含有重合体は、ガラス転移温度(Tg)が、好ましくは115℃以上、より好ましくは125℃以上、さらに好ましくは130℃以上、特に好ましくは135℃以上、最も好ましくは140℃以上である。
ラクトン環含有重合体は、それに含まれる残存揮発分の総量が、好ましくは5,000ppm以下、より好ましくは2,000ppm以下、さらに好ましくは1,500ppm、特に好ましくは1,000ppmである。残存揮発分の総量が5,000ppm以下であれば、成形時の変質などによって着色したり、発泡したり、シルバーストリークなどの成形不良が起こりにくくなるので好ましい。
ラクトン環含有重合体は、射出成形により得られる成形品に対するASTM−D−1003に準拠した方法で測定された全光線透過率が、好ましくは85%以上、より好ましくは88%以上、さらに好ましくは90%以上である。全光線透過率は、透明性の指標であり、これを85%以上とすると、透明性が向上する傾向にある。
溶剤を用いた重合形態の場合、重合溶剤は特に限定されず、例えば、トルエン、キシレン、エチルベンゼンなどの芳香族炭化水素系溶剤;メチルエチルケトン、メチルイソブチルケトンなどのケトン系溶剤;テトラヒドロフランなどのエーテル系溶剤;などが挙げられ、これらの1種のみを用いてもよいし、2種以上を併用してもよい。
また、本発明の製造方法の第一の態様では、(メタ)アクリル系樹脂を有機溶媒に溶解させて溶液流延を行って形成するため、(メタ)アクリル系樹脂の合成時における有機溶媒は、溶融製膜を行う場合よりも限定されず、沸点が高い有機溶媒を用いて合成してもよい。
重合反応時には、必要に応じて、重合開始剤を添加してもよい。重合開始剤としては特に限定されないが、例えば、クメンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、ジ−t−ブチルパーオキサイド、ラウロイルパーオキサイド、ベンゾイルパーオキサイド、t−ブチルパーオキシイソプロピルカーボネート、t−アミルパーオキシ−2−エチルヘキサノエートなどの有機過酸化物;2,2´−アゾビス(イソブチロニトリル)、1,1´−アゾビス(シクロヘキサンカルボニトリル)、2,2´−アゾビス(2,4−ジメチルバレロニトリル)などのアゾ化合物;などが挙げられ、これらは1種のみ用いてもよいし、2種以上を併用してもよい。重合開始剤の使用量は、用いる単量体の組み合わせや反応条件などに応じて適宜設定すればよく、特に限定されない。
重合開始剤の量の調整により、重合体の重量平均分子量を調整することができる。
重合を行う際には、反応液のゲル化を抑止するために、重合反応混合物中の生成した重合体の濃度が50質量%以下となるように制御することが好ましい。具体的には、重合反応混合物中の生成した重合体の濃度が50質量%を超える場合には、重合溶剤を重合反応混合物に適宜添加して50質量%以下となるように制御することが好ましい。重合反応混合物中の生成した重合体の濃度は、より好ましくは45質量%以下、更に好ましくは40質量%以下である。
重合溶剤を重合反応混合物に適宜添加する形態としては、特に限定されず、連続的に重合溶剤を添加してもよいし、間欠的に重合溶剤を添加してもよい。このように重合反応混合物中の生成した重合体の濃度を制御することによって、反応液のゲル化をより十分に抑止することができる。添加する重合溶剤としては、重合反応の初期仕込み時に用いた溶剤と同じ種類の溶剤であってもよいし、異なる種類の溶剤であってもよいが、重合反応の初期仕込み時に用いた溶剤と同じ種類の溶剤を用いることが好ましい。また、添加する重合溶剤は、1種のみの溶剤であってもよいし、2種以上の混合溶剤であってもよい。
(2)主鎖に無水グルタル酸環構造を有する重合体
主鎖に無水グルタル酸環構造を有する重合体とは、グルタル酸無水物単位を有する重合体である。
グルタル酸無水物単位を有する重合体は、下記一般式(101)で表されるグルタル酸無水物単位(以下、グルタル酸無水物単位と呼ぶ)を有することが好ましい。
一般式(101):
Figure 2014102492
一般式(101)中、R31、R32は、それぞれ独立に、水素原子又は炭素数1〜20の有機残基を表す。なお、有機残基は酸素原子を含んでいてもよい。R31、R32は、特に好ましくは、同一又は相異なる、水素原子又は炭素数1〜5のアルキル基を表す。
グルタル酸無水物単位を有する重合体は、グルタル酸無水物単位を含有する(メタ)アクリル系重合体であることが好ましい。(メタ)アクリル系重合体としては、耐熱性の点から120℃以上のガラス転移温度(Tg)を有することが好ましい。
(メタ)アクリル系重合体に対するグルタル酸無水物単位の含有量としては、5〜50質量%が好ましく、より好ましくは10〜45質量%である。5質量%以上、より好ましくは10質量%以上とすることにより、耐熱性向上の効果を得ることができ、さらには耐候性向上の効果を得ることもできる。
また、上記の(メタ)アクリル系共重合体は、さらに不飽和カルボン酸アルキルエステルに基づく繰り返し単位を含むことが好ましい。不飽和カルボン酸アルキルエステルに基づく繰り返し単位として、例えば、下記一般式(102)で表されるものが好ましい。
一般式(102):−[CH2−C(R41)(COOR42)]−
一般式(102)中、R41は水素又は炭素数1〜5のアルキル基を表し、R42)は炭素数1〜6の脂肪族もしくは脂環式炭化水素基、又は1個以上炭素数以下の数の水酸基もしくはハロゲンで置換された炭素数1〜6の脂肪族もしくは脂環式炭化水素基を表す。
一般式(102)で表される繰り返し単位に対応する単量体は下記一般式(103)で表される。
一般式(103):CH2=C(R41)(COOR42
このような単量体の好ましい具体例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−プロピル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸t−ブチル、(メタ)アクリル酸n−へキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸クロロメチル、(メタ)アクリル酸2−クロロエチル、(メタ)アクリル酸2−ヒドロキシエチル、(メタ)アクリル酸3−ヒドロキシプロピル、(メタ)アクリル酸2,3,4,5,6−ペンタヒドロキシヘキシル及び(メタ)アクリル酸2,3,4,5−テトラヒドロキシペンチルなどが挙げられ、中でもメタクリル酸メチルが最も好ましく用いられる。これらはその1種を単独で用いてもよいし、又は2種以上を併用してもよい。
上記の(メタ)アクリル系重合体に対する不飽和カルボン酸アルキルエステル単位の含有量は、50〜95質量%が好ましく、より好ましくは55〜90質量%である。グルタル酸無水物単位と不飽和カルボン酸アルキルエステル系単位とを有する(メタ)アクリル系重合体は、例えば、不飽和カルボン酸アルキルエステル系単位と不飽和カルボン酸単位とを有する共重合体を重合環化させることにより得ることができる。
不飽和カルボン酸単位としては、例えば、下記一般式(104)で表されるものが好ましい。
一般式(104):−[CH2−C(R51)(COOH)]−
ここでR51は水素又は炭素数1〜5のアルキル基を表す。
不飽和カルボン酸単位を誘導する単量体の好ましい具体例としては、一般式(104)で表される繰り返し単位に対応する単量体である下記一般式(105)で表される化合物、ならびにマレイン酸、及び更には無水マレイン酸の加水分解物などが挙げられるが、熱安定性が優れる点でアクリル酸、メタクリル酸が好ましく、より好ましくはメタクリル酸である。
一般式(105):CH2=C(R51)(COOH)
これらはその1種を単独で用いてもよいし、又は2種以上を併用してもよい。上記のように、グルタル酸無水物単位と不飽和カルボン酸アルキルエステル系単位とを有するアクリル系熱可塑性共重合体は、例えば不飽和カルボン酸アルキルエステル系単位と不飽和カルボン酸単位とを有する共重合体を重合環化させることにより得ることができるものであるから、その構成単位中に不飽和カルボン酸単位を残して有していてもよい。
上記の(メタ)アクリル系重合体に対する不飽和カルボン酸単位の含有量としては10質量%以下が好ましく、より好ましくは5質量%以下である。10質量%以下とすることで、無色透明性、滞留安定性の低下を防ぐことができる。
また、前記(メタ)アクリル系重合体には、本発明の効果を損なわない範囲で、芳香環を含まないその他のビニル系単量体単位を有していてもよい。芳香環を含まないその他のビニル系単量体単位の具体例としては、対応する単量体でいうと、アクリロニトリル、メタクリロニトリル、エタクリロニトリルなどのシアン化ビニル系単量体;アリルグリシジルエーテル;無水マレイン酸、無水イタコン酸;N−メチルマレイミド、N−エチルマレイミド、N−シクロヘキシルマレイミド、アクリルアミド、メタクリルアミド、N−メチルアクリルアミド、ブトキシメチルアクリルアミド、N−プロピルメタクリルアミド;アクリル酸アミノエチル、アクリル酸プロピルアミノエチル、メタクリル酸ジメチルアミノエチル、メタクリル酸エチルアミノプロピル、メタクリル酸シクロヘキシルアミノエチル;N−ビニルジエチルアミン、N−アセチルビニルアミン、アリルアミン、メタアリルアミン、N−メチルアリルアミン;2−イソプロペニル−オキサゾリン、2−ビニル−オキサゾリン、2−アクロイル−オキサゾリンなどを挙げることができる。これらはその1種を単独で用いてもよいし、2種以上を併用してもよい。
上記の(メタ)アクリル系重合体に対する、芳香環を含まないその他のビニル系単量体単位の含有量としては、35質量%以下が好ましい。
なお、芳香環を含むビニル系単量体単位(N−フェニルマレイミド、メタクリル酸フェニルアミノエチル、p−グリシジルスチレン、p−アミノスチレン、2−スチリル−オキサゾリンなど)ついては、耐擦傷性、耐候性を低下させる傾向にあるため、前記の(メタ)アクリル系重合体に対する含有量としては1質量%以下にとどめるのが好ましい。
(3)主鎖にグルタルイミド環構造を有する(メタ)アクリル系重合体
主鎖にグルタルイミド環構造を有する(メタ)アクリル系重合体(以降グルタルイミド系樹脂とも称す)は、主鎖にグルタルイミド環構造を有することによって光学特性や耐熱性などの点で好ましい特性バランスを発現できる。前記主鎖にグルタルイミド環構造を有する(メタ)アクリル系重合体は、少なくとも下記一般式(301):
一般式(301)
Figure 2014102492
で表されるグルタルイミド単位(但し、式中、R301、R302、R303は独立に水素または炭素数1〜12個の非置換のまたは置換のアルキル基、シクロアルキル基、アリール基である。)を20質量%以上有するグルタルイミド樹脂を含有することが好ましい。
本発明に用いられるグルタルイミド系樹脂を構成する好ましいグルタルイミド単位としては、R301、R302が水素またはメチル基であり、R303がメチル基またはシクロヘキシル基である。該グルタルイミド単位は、単一の種類でもよく、R301、R302、R303が異なる複数の種類を含んでいてもよい。
本発明に用いられる、グルタルイミド系樹脂を構成する好ましい第二の構成単位としては、アクリル酸エステル又はメタクリル酸エステルからなる単位である。好ましいアクリル酸エステル又はメタクリル酸エステル構成単位としてはアクリル酸メチル、アクリル酸エチル、メタクリル酸メチル、メタクリル酸メチル等が挙げられる。また、別の好ましいイミド化可能な単位として、N−メチルメタクリルアミドや、N−エチルメタクリルアミドのような、N−アルキルメタクリルアミドが挙げられる。これら第二の構成単位は単独の種類でもよく、複数の種類を含んでいてもよい。
グルタルイミド系樹脂の、一般式(301)で表されるグルタルイミド単位の含有量は、グルタルイミド系樹脂の総繰り返し単位を基準として、20質量%以上である。グルタルイミド単位の、好ましい含有量は、20質量%から95質量%であり、より好ましくは50〜90質量%、さらに好ましくは、60〜80質量%である。グルタルイミド単位がこの範囲より小さい場合、得られるフィルムの耐熱性が不足したり透明性が損なわれることがある。また、この範囲を超えると不必要に耐熱性が上がりフィルム化しにくくなる他、得られるフィルムの機械的強度は極端に脆くなり、また、透明性が損なわれることがある。
グルタルイミド系樹脂は、必要に応じ、更に、第三の構成単位が共重合されていてもかまわない。好ましい第三の構成単位の例としては、スチレン、置換スチレン、α−メチルスチレンなどのスチレン系単量体、ブチルアクリレートなどのアクリル系単量体、アクリロニトリルやメタクリロニトリル等のニトリル系単量体、マレイミド、N−メチルマレイミド、N−フェニルマレイミド、N−シクロヘキシルマレイミドなどのマレイミド系単量体を共重合してなる構成単位を用いることができる。これらはグルタルイミド系樹脂中に、該グルタルイミド単位とイミド化可能な単位と直接共重合してあっても良く、また、該グルタルイミド単位とイミド化可能な単位を有する樹脂に対してグラフト共重合してあってもかまわない。第3成分は、これを添加する場合は、グルタルイミド系樹脂中の含有率は、グルタルイミド系樹脂中の総繰り返し単位を基準として5モル%以上、30モル%以下であることが好ましい。
グルタルイミド系樹脂は、米国特許3284425号、米国特許4246374号、特開平2−153904号公報等に記載されており、イミド化可能な単位を有する樹脂としてメタクリル酸メチルエステルなどを主原料として得られる樹脂を用い、該イミド化可能な単位を有する樹脂をアンモニアまたは置換アミンを用いてイミド化することにより得ることができる。グルタルイミド系樹脂を得る際に、反応副生成物としてアクリル酸やメタクリル酸、あるいはその無水物から構成される単位がグルタルイミド系樹脂中に導入される場合がある。このような構成単位、特に酸無水物の存在は、得られる本発明フィルムの全光線透過率やヘイズを低下させるため、好ましくない。アクリル酸やメタクリル酸含量として、樹脂1g当たり0.5ミリ当量以下、好ましくは0.3ミリ当量以下、より好ましくは0.1ミリ当量以下とすることが望ましい。また、特開平02−153904号公報にみられるように、主としてN−メチルアクリルアミドとメタクリル酸メチルエステルから成る樹脂を用いてイミド化することにより、グルタルイミド系樹脂を得ることも可能である。
また、グルタルイミド系樹脂は、1×104ないし5×105の重量平均分子量を有することが好ましい。
−(メタ)アクリル系重合体を主成分とする基材フィルムの製造方法−
以下、(メタ)アクリル系重合体を主成分とする熱可塑性樹脂を製膜する製造方法について詳しく説明する。
(メタ)アクリル系重合体を主成分として用いて基材フィルムを製膜するには、例えば、オムニミキサーなど、従来公知の混合機でフィルム原料をプレブレンドした後、得られた混合物を押出混練する。この場合、押出混練に用いる混合機は、特に限定されるものではなく、例えば、単軸押出機、二軸押出機などの押出機や加圧ニーダーなど、従来公知の混合機を用いることができる。
フィルム成形の方法としては、例えば、溶液キャスト法(溶液流延法)、溶融押出法、カレンダー法、圧縮成形法など、従来公知のフィルム成形法が挙げられる。これらのフィルム成形法のうち、溶融押出法が特に好適である。
溶融押出法としては、例えば、Tダイ法、インフレーション法などが挙げられ、その際の成形温度は、フィルム原料のガラス転移温度に応じて適宜調節すればよく、特に限定されるものではないが、例えば、好ましくは150℃〜350℃、より好ましくは200℃〜300℃である。
Tダイ法でフィルム成形する場合は、公知の単軸押出機や二軸押出機の先端部にTダイを取り付け、フィルム状に押出されたフィルムを巻き取って、ロール状のフィルムを得ることができる。この際、巻き取りロールの温度を適宜調整して、押出方向に延伸を加えることで、1軸延伸することも可能である。また、押出方向と垂直な方向にフィルムを延伸することにより、同時2軸延伸、逐次2軸延伸などを行うこともできる。
(メタ)アクリル系重合体を主成分とする基材フィルムは、未延伸フィルムまたは延伸フィルムのいずれでもよい。延伸フィルムである場合は、1軸延伸フィルムまたは2軸延伸フィルムのいずれでもよい。2軸延伸フィルムである場合は、同時2軸延伸フィルムまたは逐次2軸延伸フィルムのいずれでもよい。2軸延伸した場合は、機械的強度が向上し、フィルム性能が向上する。(メタ)アクリル系重合体が、前記の主鎖に環状構造を有する(メタ)アクリル系重合体である場合は、その他の熱可塑性樹脂を混合することにより、延伸しても位相差の増大を抑制することができ、光学的等方性を保持したフィルムを得ることができる。
延伸温度は、フィルム原料である(メタ)アクリル系重合体のガラス転移温度近傍であることが好ましく、具体的には、好ましくは(ガラス転移温度−30℃)〜(ガラス転移温度+100℃)、より好ましくは(ガラス転移温度−20℃)〜(ガラス転移温度+80℃)の範囲内である。延伸温度が(ガラス転移温度−30℃)未満であると、充分な延伸倍率が得られないことがある。逆に、延伸温度が(ガラス転移温度+100℃)超えると、(メタ)アクリル系重合体の流動(フロー)が起こり、安定な延伸が行えなくなることがある。
延伸倍率は、面積比で好ましくは1.1〜25倍、より好ましくは5.0〜20倍の範囲内であり、8〜15倍が特に好ましい。延伸倍率が1.1倍未満であると、延伸に伴う靭性の向上につながらないことがある。逆に、延伸倍率が25倍を超えると、延伸倍率を上げるだけの効果が認められないことがある。また、延伸倍率が5倍以上であると、靭性の向上に加えて透湿度が低下することがあり、本発明ではより好ましい。
延伸速度は、一方向で、好ましくは10〜20,000%/min、より好ましく100〜10,000%/minの範囲内である。延伸速度が10%/min未満であると、充分な延伸倍率を得るために時間がかかり、製造コストが高くなることがある。逆に、延伸速度が20,000%/minを超えると、延伸フィルムの破断などが起こることがある。
なお、(メタ)アクリル系重合体を主成分として得られる基材フィルムは、その光学的等方性や機械的特性を安定化させるために、延伸処理後に熱処理(アニーリング)などを行うことができる。熱処理の条件は、従来公知の延伸フィルムに対して行われる熱処理の条件と同様に適宜選択すればよく、特に限定されるものではない。
(メタ)アクリル系重合体を主成分として得られる基材フィルムは、その厚さが好ましくは5μm〜200μm、より好ましくは10μm〜100μmである。厚さが5μm未満であると、フィルムの強度が低下するだけでなく、他の部品に貼着して耐久性試験を行うと捲縮が大きくなることがある。逆に、厚さが200μmを超えると、フィルムの透明性が低下するだけでなく、透湿性が小さくなり、他の部品に貼着する際に水系接着剤を使用した場合、その溶剤である水の乾燥速度が遅くなることがある。
(セルロース系樹脂)
本発明では熱可塑性樹脂としてセルロース系樹脂を用いることができる。セルロース系樹脂とは、セルロースエステルとアクリル樹脂とを含む樹脂を表す。
本発明に用いられるセルロースエステルの原料のセルロースとしては、綿花リンタや木材パルプ(広葉樹パルプ、針葉樹パルプ)などがあり、何れの原料セルロースから得られるセルロースエステルでも使用でき、場合により混合して使用してもよい。これらの原料セルロースについては、例えばプラスチック材料講座(17)繊維素系樹脂(丸澤、宇田著、日刊工業新聞社、1970年発行)や発明協会公開技報2001−1745(7頁〜8頁)に記載のセルロースを用いることができるが、本発明で用いられるセルロースエステルは特にその記載のものに限定されるものではない。
本発明で用いられるセルロースエステルは、セルロースと脂肪酸(芳香族脂肪酸を含む)とのエステルが好ましく、セルロースを構成するβ−1,4結合しているグルコース単位の2位、3位及び6位にある水酸基に該脂肪酸のアシル基が置換してアシル化されたセルロースアシレートが好ましい。
例えばセルロースのアルキルカルボニルエステル、アルケニルカルボニルエステルあるいは芳香族カルボニルエステル、芳香族アルキルカルボニルエステルなどであり、また、2種類以上の脂肪酸のアシル基が置換したセルロースエステルも好ましい。これらのセルロースエステルは、更に置換された基を有していてもよい。
前記水酸基に置換するアシル基としては、炭素数2のアセチル基及び炭素数3〜22のアシル基を好ましく用いることができる。アクリル樹脂との相溶性向上の観点から、炭素数2のアセチル基及び炭素数3〜7のアシル基が好ましい。
本発明で用いられるセルロースエステルにおけるアシル基の総置換度(セルロースのβ−グルコース単位において水酸基にアシル基が置換している割合で、2位、3位及び6位の3つの水酸基の全てにアシル基が置換している場合には3となる)は、特に限定されないが、アシル基の総置換度が高い方がアクリル樹脂との相溶性が良好で、湿度依存性が小さくなるため好ましい。このため、アシル基の総置換度は2.00〜3.00が好ましく、2.50〜3.00がより好ましく、2.50〜2.90が更に好ましい。
更に、アクリル樹脂との相溶性の観点から、炭素数3〜7のアシル基についてその置換度は、1.20〜3.00が好ましく、1.50〜3.00がより好ましく、2.00〜3.00が更に好ましく、2.00〜2.90が特に好ましい。
本発明で用いられるセルロースエステルにおいて、セルロースの水酸基に置換するアシル基の置換度の測定方法としては、ASTMのD−817−91に準じた方法や、NMR法を挙げることができる。
セルロースのβ−グルコース単位の水酸基に置換するアシル基としては、脂肪族基でも芳香族基もよく、特に限定されない。また、該水酸基に置換するアシル基は、単一のアシル基でも二種類以上であってもよいが、前記セルロース系樹脂が二種類以上のアシル基を有するセルロースアシレートであることが前記基材フィルムの透湿度を低減する観点から好ましい。
前記アシル基としては、アセチル基、プロピオニル基、ブタノイル基、へプタノイル基、ヘキサノイル基、オクタノイル基、デカノイル基、ドデカノイル基、トリデカノイル基、テトラデカノイル基、ヘキサデカノイル基、オクタデカノイル基、iso−ブタノイル基、t−ブタノイル基、シクロヘキサンカルボニル基、オレオイル基、ベンゾイル基、ナフチルカルボニル基、シンナモイル基などを挙げることができる。これらの中でも、アセチル基、プロピオニル基、ブタノイル基、ドデカノイル基、オクタデカノイル基、t−ブタノイル基、オレオイル基、ベンゾイル基、ナフチルカルボニル基、シンナモイル基などが好ましく、アセチル基、プロピオニル基、ブタノイル基がより好ましく、プロピオニル基又はブタノイル基が更に好ましく、プロピオニル基が特に好ましい。
合成の容易さ、コスト、置換基分布の制御のし易さなどの観点から、アセチル基とプロピオニル基、アセチル基とブタノイル基、プロピオニル基とブタノイル基、アセチル基とプロピオニル基とブタノイル基が併用されることが好ましく、より好ましくはアセチル基とプロピオニル基、アセチル基とブタノイル基、アセチル基とプロピオニル基とブタノイル基が併用されることであり、更に好ましくはアセチル基とプロピオニル基、アセチル基とプロピオニル基とブタノイル基が併用されることであり、特に好ましくはアセチル基とプロピオニル基が併用されることである。
上記のアシル基が置換したセルロースエステルとしては、セルロースアセテート、セルロースプロピオネート、セルロースブチレート、セルロースアセテートプロピオネート、セルロースアセテートプチレート、セルロースアセテートプロピオネートブチレート、セルロースベンゾエートなどが挙げられ、なかでもセルロースプロピオネート、セルロースブチレート、セルロースアセテートプロピオネート、セルロースアセテートブチレート、セルロースアセテートプロピオネートブチレートが好ましく、セルロースアセテートプロピオネートがより好ましい。
セルロース系樹脂で用いられるセルロースエステルの重合度は、粘度平均重合度で180〜700であることが好ましく、特に、アセチル基とプロピオニル基が置換したセルロースアセテートプロピオネートにおいては、180〜550がより好ましく、180〜400が更に好ましく、180〜350が特に好ましい。重合度がこの範囲であれば、セルロースエステルを含むドープ溶液の粘度が流延によりフィルム作製に適したものとすることができ、またアクリル樹脂との相溶性が高く、透明性及び機械的強度の高いフィルムを得ることができるので好ましい。粘度平均重合度は、宇田らの極限粘度法(宇田和夫、斉藤秀夫、繊維学会誌、第18巻第1号、105〜120頁、1962年)により測定できる。特開平9−95538に詳細に記載されている。
セルロースアシレート系樹脂と前記アクリル樹脂とを併用して用いることも好ましい。その場合におけるアクリル樹脂の含有量は、光学フィルム中、20.0〜94.9質量%であることが好ましく、20.0〜84.9質量%であることがより好ましく、20.0〜69.9%であることが更に好ましく、34.0〜69.9質量%であることが更に好ましい。
セルロース系樹脂と前記アクリル樹脂とを併用して用いる場合において、セルローエステルとアクリル樹脂との比率(質量比)は70:30〜5:95である。セルロースエステルの比率を70質量%以下とすることで、湿度依存性が低く、高温高湿耐久性が改善され、好ましい光学特性を得ることができ、液晶表示装置の表示ムラを防止することができる。また、アクリル樹脂の比率を95質量%以下とすることで、耐熱性が向上し、所望の光学異方性を発現させ易い。また、機械的強度、機械的強度、面状、ハントリング適性、フィルム表面処理適性を改善できる。セルロールエステルとアクリル樹脂との質量比は70:30〜5:95であり、好ましくは70:30〜15:85であり、より好ましくは70:30〜30:70であり、更に好ましくは49:51〜30:70である。
アクリル樹脂は、(メタ)アクリル酸の誘導体を重合して得られる樹脂、及びその誘導体を含有する樹脂であり、本発明の効果を損なわない限り特に制限されるものではない。
前記(メタ)アクリル酸の誘導体としては、(メタ)アクリレートを挙げることができる。例えばメチルアクリレート、エチルアクリレート、N−プロピルアクリレート、N−ブチルアクリレート、tert−ブチルアクリレート、イソプロピルアクリレート、N−ヘキシルアクリレート、シクロヘキシルアクリレート、t−ブチルシクロヘキシルアクリレート、メチルメタクリレート、エチルメタクリレート、N−プロピルメタクリレート、N−ブチルメタクリレート、tert−ブチルメタクリレート、イソプロピルメタクリレート、N−ヘキシルメタクリレート、シクロヘキシルメタクリレート、t−ブチルシクロヘキシルメタクリレートなどのアルキル(メタ)アクリレートの単独重合体;2−クロロエチルアクリレート、2−ヒドロキシエチルアクリレート、2,3,4,5−テトラヒドロキシペンチルアクリレート、2−クロロエチルメタクリレート、2−ヒドロキシエチルメタクリレート、2,3,4,5−テトラヒドロキシペンチルメタクリレートなどのアルキル(メタ)アクリレートの任意の水素原子をハロゲン基、水酸基及び他の有機残基で置換したものでもよい。ここで、他の有機残基は炭素数1〜20の直鎖状、分岐鎖状、又は環状のアルキル基であることが好ましい。
アクリル樹脂の主成分としては、アルキル(メタ)アクリレートが好ましい。アルキル(メタ)アクリレートとしては、炭素数1〜18のアルキル基と(メタ)アクリル酸とからなるアルキル(メタ)アクリレートが好ましく、炭素数1〜12のアルキル基とメタ)アクリル酸とからなるアルキル(メタ)アクリレートがより好ましく、メチルアクリレート及びメチルメタクリレートが更に好ましく、メチルメタクリレートが特に好ましい。
アクリル樹脂は、(メタ)アクリル酸の誘導体1種の単重合体であっても、(メタ)アクリル酸の誘導体2種以上の共重合体であっても、これらと共重合可能な他の単量体との共重合体であってもよい。
(メタ)アクリル酸の誘導体と共重合可能な共重合成分としては、アクリル酸、メタクリル酸等のα,β−不飽和酸類及びマレイン酸、フマル酸、イタコン酸等の不飽和基含有二価カルボン酸類等の不飽和酸類、スチレン、o−メチルスチレン、m−メチルスチレン、p−メチルスチレン、2,4−ジメチルスチレン、p−エチルスチレン、p−tert−ブチルスチレン、α−メチルスチレン、α−メチル−p−メチルスチレン等の芳香族ビニル化合物類、アクリロニトリル、メタクリロニトリル等のα,β−不飽和ニトリル類、ラクトン環単位、グルタル酸無水物単位、無水マレイン酸等の不飽和カルボン酸無水物類、マレイミド、N−置換マレイミド等のマレイミド類、グルタルイミド単位が挙げられる。
光学特性の観点から芳香族ビニル化合物が好ましく、特にスチレンが好ましい。
セルロースエステルとの相溶性向上の観点から、アクリル樹脂としてはメチルメタクリレートの単独又は共重合体であることが好ましく、メチルメタクリレート由来の繰り返し単位を50質量%以上含むことがより好ましく、70質量%以上含むことが更に好ましく、90質量%以上含むことが特に好ましい。更には、メチルメタクリレートと他の単量体との共重合体が好ましく、該共重合体のアクリル樹脂にはメチルメタクリレートと共重合する単量体由来の繰り返し単位が1〜50質量%含まれることが好ましく、1〜30質量%含まれることがより好ましく、1〜10質量%含まれることが更に好ましい。
メチルメタクリレートと共重合可能な単量体としては、上記アルキル(メタ)アクリレートと共重合可能な単量体として例示したものに加えて、炭素数が2〜18のアルキル基とメタクリル酸とからなるアルキルメタアクリレート、炭素数が1〜18のアルキル基とアクリル酸とからなるアルキルアクリレートが挙げられ、これらは単独で、又は2種以上の単量体を併用して用いることができる。中でも、共重合体の耐熱分解性や流動性の観点から、メチルアクリレート、エチルアクリレート、n−プロピルアクリレート、n−ブチルアクリレート、s−ブチルアクリレート、2−エチルヘキシルアクリレート等が好ましく、メチルアクリレートやn−ブチルアクリレートが特に好ましく用いられる。
本発明に用いることができるアクリル樹脂及び(メタ)アクリル酸の誘導体、他の共重合可能な単量体としては特開2009−122664号、特開2009−139661号、特開2009−139754号、特開2009−294262号、国際公開2009/054376号等の各公報に記載のものも使用することができる。なお、これらは本発明を限定するものではなく、これらは単独で又は2種類以上組み合わせて使用できる。
2種類以上のアクリル樹脂を用いる場合は、少なくとも1種類は上記の構造を有するものを用いることが好ましい。
本発明で用いるアクリル樹脂の質量平均分子量Mwは80000以上であることが好ましい。アクリル樹脂の質量平均分子量Mwが80000以上であれば、機械的強度が高く、フィルム製造時のハンドリング適性に優れる。この観点から、アクリル樹脂の質量平均分子量Mwは100000以上であること好ましい。また、セルロースエステルとの相溶性向上の観点からは、アクリル樹脂の質量平均分子量Mwは3000000以下であることが好ましく、2000000以下であることがより好ましい。
本発明に用いられるアクリル樹脂としては、市販のものも使用することができる。例えば、デルペット60N、80N(旭化成ケミカルズ(株)製)、ダイヤナールBR80、BR85、BR88、BR102(三菱レイヨン(株)製)、KT75(電気化学工業(株)製)等が挙げられる。
アクリル樹脂は2種以上を併用することもできる。
(ポリカーボネート系樹脂)
本発明に用いることができる熱可塑性樹脂は、ポリカーボネート系樹脂に、適宜剥離力や、靭性を制御するべく添加剤を入れて、用いることができる。
(ポリスチレン系樹脂)
本発明に用いることができる熱可塑性樹脂は、ポリスチレン系樹脂に、適宜剥離力や、靭性を制御するべく添加剤を入れて、用いることができる。
(環状ポリオレフィン系樹脂)
本発明に用いることができる熱可塑性樹脂は、環状ポリオレフィン系樹脂を用いることができる。ここで、環状ポリオレフィン系樹脂とは、環状オレフィン構造を有する重合体樹脂を表す。
本発明に用いる環状オレフィン構造を有する重合体樹脂の例には、(1)ノルボルネン系重合体、(2)単環の環状オレフィンの重合体、(3)環状共役ジエンの重合体、(4)ビニル脂環式炭化水素重合体、及び(1)〜(4)の水素化物などがある。
本発明に好ましい重合体は下記一般式(II)で表される繰り返し単位を少なくとも1種以上含む付加(共)重合体環状ポリオレフィン系樹脂及び必要に応じ、一般式(I)で表される繰り返し単位の少なくとも1種以上を更に含んでなる付加(共)重合体環状ポリオレフィン系樹脂である。また、一般式(III)で表される環状繰り返し単位を少なくとも1種含む開環(共)重合体も好適に使用することができる。
Figure 2014102492
Figure 2014102492
Figure 2014102492
式(I)〜(III)中、mは0〜4の整数を表す。R1〜R6は水素原子又は炭素数1〜10の炭化水素基、X1〜X3、Y1〜Y3は水素原子、炭素数1〜10の炭化水素基、ハロゲン原子、ハロゲン原子で置換された炭素数1〜10の炭化水素基、−(CH2nCOOR11、−(CH2nOCOR12、−(CH2nNCO、−(CH2nNO2、−(CH2nCN、−(CH2nCONR1314、−(CH2nNR1314、−(CH2nOZ、−(CH2nW、又はX1とY1あるいはX2とY2あるいはX3とY3から構成された(−CO)2O、(−CO)2NR15を示す。なお、R11,R12,R13,R14,R15は水素原子、炭素数1〜20の炭化水素基、Zは炭化水素基又はハロゲンで置換された炭化水素基、WはSiR16 p3-p(R16は炭素数1〜10の炭化水素基、Dはハロゲン原子、−OCOR16又は−OR16、pは0〜3の整数を示す)、nは0〜10の整数を示す。
ノルボルネン系重合体水素化物は、特開平1−240517号、特開平7−196736号、特開昭60−26024号、特開昭62−19801号、特開2003−1159767号あるいは特開2004−309979号等に開示されているように、多環状不飽和化合物を付加重合あるいはメタセシス開環重合したのち水素添加することにより作られる。本発明に用いるノルボルネン系重合体において、R5〜R6は水素原子又は−CH3が好ましく、X3、及びY3は水素原子、Cl、−COOCH3が好ましく、その他の基は適宜選択される。このノルボルネン系樹脂は、JSR(株)からアートン(Arton)GあるいはアートンFという商品名で発売されており、また日本ゼオン(株)からゼオノア(Zeonor)ZF14、ZF16、ゼオネックス(Zeonex)250あるいはゼオネックス280という商品名で市販されており、これらを使用することができる。
ノルボルネン系付加(共)重合体は、特開平10−7732号、特表2002−504184号、米国公開特許2004229157A1号あるいはWO2004/070463A1号等に開示されている。ノルボルネン系多環状不飽和化合物同士を付加重合する事によって得られる。また、必要に応じ、ノルボルネン系多環状不飽和化合物と、エチレン、プロピレン、ブテン;ブタジエン、イソプレンのような共役ジエン;エチリデンノルボルネンのような非共役ジエン;アクリロニトリル、アクリル酸、メタアクリル酸、無水マレイン酸、アクリル酸エステル、メタクリル酸エステル、マレイミド、酢酸ビニル、塩化ビニルなどの線状ジエン化合物とを付加重合することもできる。このノルボルネン系付加(共)重合体は、三井化学(株)よりアペルの商品名で発売されており、ガラス転移温度(Tg)の異なる例えばAPL8008T(Tg70℃)、APL6013T(Tg125℃)あるいはAPL6015T(Tg145℃)などのグレードがある。ポリプラスチック(株)よりTOPAS8007、同6013、同6015などのペレットが発売されている。更に、Ferrania社よりAppear3000が発売されている。
本発明においては、環状ポリオレフィン系樹脂のガラス転移温度(Tg)に制限はないが、例えば200〜400℃というような高いTgの環状ポリオレフィン系樹脂も用いることができる。
(その他の熱可塑性樹脂)
本発明に用いることができる熱可塑性樹脂は、上記の前記基材フィルムの主成分として好ましく使用することのできる熱可塑性樹脂以外のその他の熱可塑性樹脂を含んでいてもよい。その他の熱可塑性樹脂は、本発明の趣旨に反しない限りにおいて特に種類は問わないが、前記基材フィルムの主成分として好ましく使用することのできる熱可塑性樹脂と熱力学的に相溶する熱可塑性樹脂の方が、機械強度や所望の物性を向上させる点において好ましい。
前記その他の樹脂は、前記基材フィルム中に0〜30質量%含まれることが好ましく、0〜20質量%含まれることがより好ましく、0〜15質量%含まれることが特に好ましい。
また、前記基材フィルムの主成分として(メタ)アクリル系樹脂を用いる場合は、前記その他の樹脂は、前記基材フィルム中に0〜30質量%含まれることが好ましく、1〜20質量%含まれることがより好ましく、5〜15質量%含まれることが特に好ましい。
上記その他の熱可塑性樹脂としては、例えば、ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合体、ポリ(4−メチル−1−ペンテン)等のオレフィン系熱可塑性;塩化ビニル、塩素化ビニル樹脂等の含ハロゲン系熱可塑性;ポリメタクリル酸メチル等のアクリル系熱可塑性;ポリスチレン、スチレン−メタクリル酸メチル共重合体、アクリロニトリル−スチレン共重合体、アクリロニトリル−ブタジエン−スチレンブロック共重合体等のスチレン系熱可塑性;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル;ナイロン6、ナイロン66、ナイロン610等のポリアミド;ポリアセタール;ポリカーボネート;ポリフェニレンオキシド;ポリフェニレンスルフィド;ポリエーテルエーテルケトン;ポリサルホン;ポリエーテルサルホン;ポリオキシベンジレン;ポリアミドイミド;ポリブタジエン系ゴム、アクリル系ゴムを配合したABS樹脂やASA樹脂等のゴム質重合体;などが挙げられる。ゴム質重合体は、表面に本発明に用いることができるラクトン環重合体と相溶し得る組成のグラフ卜部を有するのが好ましく、また、ゴム質重合体の平均粒子径は、フィルム状とした際の透明性向上の観点から、100nm以下である事が好ましく、70nm以下である事が更に好ましい。
シアン化ビニル系単量体単位と芳香族ビニル系単量体単位とを含む共重合体、具体的にはアクリロニトリル−スチレン系共重合体やポリ塩化ビニル樹脂、メタクリル酸エステル類を50質量%以上含有する重合体を用いるとよい。それらの中でもアクリロニトリル−スチレン系共重合体を用いると、ガラス転移温度が120℃以上、面方向の100μmあたりの位相差が20nm以下で、全光線透過率が85%以上であるフィルムを容易に得ることが可能となる。
前記基材フィルムの主成分として(メタ)アクリル系樹脂を用いる場合は、前記その他の樹脂として、前記シアン化ビニル系単量体単位と芳香族ビニル系単量体単位とを含む共重合体を含むことが好ましい。
<透湿度低減化合物>
前記基材フィルムは、透湿度低減化合物を含むことも好ましい。ポリマー単独で低透湿なポリマーは溶剤への溶解性が低く製造プロセスでの問題が多い。ポリマーと透湿度低減化合物の複合による透湿度を下げる事により、低透湿と溶解性(製造適性)の両立が可能となり、透湿度低減化合物を含むことが好ましい。
上記の透湿度低減化合物は、芳香族環を1つ以上含む構造であってもよい。芳香族環によって、疎水的な性質をフィルムに付与でき、水分の透過、脱着を抑制できる。
前記基材フィルムが含む透湿度低減化合物として、下記一般式(A)で表される化合物を好ましく用いることができる。
Figure 2014102492
[式中、R113,R114,R115,R123,R124およびR125はそれぞれ独立に水素原子または置換基を表す。]
113,R114,R115,R123,R124およびR125がそれぞれ独立に表す置換基としては、好ましくはハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子)、炭素原子数1〜20のアルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、t−ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、2−エチルヘキシル基、t-オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、オクタデシル基)、炭素原子数6〜20のアリール基(例えば、フェニル基、トリル基、ナフチル基、アントラニル基)、シアノ基、ヒドロキシル基、カルボキシル基、炭素原子数1〜20のアルコキシ基(例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、オクチルオキシ基、2−エチルヘキシルオキシ基、t−ブトキシ基)、炭素原子数6〜20のアリールオキシ基(例えば、フェノキシ基、トリルオキシ基、ナフトキシ基)、炭素原子数2〜20のアルキルカルボニルオキシ基、炭素原子数7〜20のアリールカルボニルオキシ基、カルバモイルオキシ基、アミノ基、アルキルアミノ基、アシルアミノ基、アルキルカルボニルアミノ基、アリールカルボニルアミノ基などが挙げられる。
113,R114,R115,R123,R124およびR125がそれぞれ独立に表す置換基としては、特に好ましくは、ヒドロキシル基、アルコキシ基であり、より特に好ましくはヒドロキシル基または炭素数1〜5のアルコキシ基であり、さらにより特に好ましくはヒドロキシル基またはメトキシ基である。
113,R114,R115,R123,R124およびR125中、R113,R114,R123およびR124のうち少なくとも1つが置換基であることが好ましく、1つまたは2つが置換基であることがより好ましく、2つが置換基であることが特に好ましい。
113,R114,R115,R123,R124およびR125中、ヒドロキシル基をR124に有する
ことが透湿度を低減しやすく、フィルムに添加したときにフィルムのRth上昇を抑制しやすい観点から好ましい。さらに同様の観点から、R113,R114,R115,R123,R124
およびR125中、ヒドロキシル基をR124に有し、かつ、R114またはR123に置換基を有することがより好ましく、ヒドロキシル基をR124に有し、かつ、R123に置換基を有することが特に好ましい。
以下に前記一般式(A)で表される化合物の好ましい例を下記に示すが、本発明はこれらの具体例に限定されるものではない。
Figure 2014102492
前記基材フィルムが含む透湿度低減化合物として、下記一般式(B)で表される化合物を好ましく用いることができる。
一般式(B)
Figure 2014102492
一般式(B)中、R12、R13、R14、R15、R16、R21、R23、R24、R25、R32、R33、R34、R35、R36は、それぞれ、水素原子または置換基を表し、置換基としては後述の置換基Tが適用できる。さらに、一般式(B)中、のR12、R13、R14、R15、R16、R21、R23、R24、R25、R32、R33、R34、R35およびR36のうち少なくとも1つはアミノ基、アシルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルホニルアミノ基、ヒドロキシ基、メルカプト基、カルボキシル基である。
置換基Tとしては例えばアルキル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、特に好ましくは炭素数1〜8であり、例えばメチル基、エチル基、イソプロピル基、tert−ブチル基、n−オクチル基、n−デシル基、n−ヘキサデシル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基などが挙げられる。)、アルケニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8であり、例えばビニル基、アリル基、2−ブテニル基、3−ペンテニル基などが挙げられる。)、アルキニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8であり、例えばプロパルギル基、3−ペンチニル基などが挙げられる。)、アリール基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニル基、p−メチルフェニル基、ナフチル基などが挙げられる。)、アミノ基(好ましくは炭素数0〜20、より好ましくは炭素数0〜10、特に好ましくは炭素数0〜6であり、例えばアミノ基、メチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、ジベンジルアミノ基などが挙げられる。)、アルコキシ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、特に好ましくは炭素数1〜8であり、例えばメトキシ基、エトキシ基、ブトキシ基などが挙げられる。)、アリールオキシ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、特に好ましくは炭素数6〜12であり、例えばフェニルオキシ基、2−ナフチルオキシ基などが挙げられる。)、アシル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばアセチル基、ベンゾイル基、ホルミル基、ピバロイル基などが挙げられる。)、アルコキシカルボニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニル基、エトキシカルボニル基などが挙げられる。)、アリールオキシカルボニル基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、特に好ましくは炭素数7〜10であり、例えばフェニルオキシカルボニル基などが挙げられる。)、アシルオキシ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜10であり、例えばアセトキシ基、ベンゾイルオキシ基などが挙げられる。)、アシルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜10であり、例えばアセチルアミノ基、ベンゾイルアミノ基などが挙げられる。)、アルコキシカルボニルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニルアミノ基などが挙げられる。)、アリールオキシカルボニルアミノ基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、特に好ましくは炭素数7〜12であり、例えばフェニルオキシカルボニルアミノ基などが挙げられる。)、スルホニルアミノ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメタンスルホニルアミノ基、ベンゼンスルホニルアミノ基などが挙げられる。)、スルファモイル基(好ましくは炭素数0〜20、より好ましくは炭素数0〜16、特に好ましくは炭素数0〜12であり、例えばスルファモイル基、メチルスルファモイル基、ジメチルスルファモイル基、フェニルスルファモイル基などが挙げられる。)、カルバモイル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばカルバモイル基、メチルカルバモイル基、ジエチルカルバモイル基、フェニルカルバモイル基などが挙げられる。)、アルキルチオ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメチルチオ基、エチルチオ基などが挙げられる。)、アリールチオ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、特に好ましくは炭素数6〜12であり、例えばフェニルチオ基などが挙げられる。)、スルホニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメシル基、トシル基などが挙げられる。)、スルフィニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメタンスルフィニル基、ベンゼンスルフィニル基などが挙げられる。)、ウレイド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばウレイド基、メチルウレイド基、フェニルウレイド基などが挙げられる。)、リン酸アミド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばジエチルリン酸アミド基、フェニルリン酸アミド基などが挙げられる。)、ヒドロキシ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(好ましくは炭素数1〜30、より好ましくは1〜12であり、ヘテロ原子としては、例えば窒素原子、酸素原子、硫黄原子、具体的には例えばイミダゾリル基、ピリジル基、キノリル基、フリル基、ピペリジル基、モルホリノ基、ベンゾオキサゾリル基、ベンズイミダゾリル基、ベンズチアゾリル基などが挙げられる。)、シリル基(好ましくは、炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは、炭素数3〜24であり、例えば、トリメチルシリル基、トリフェニルシリル基などが挙げられる)などが挙げられる。中でも、より好ましくはアルキル基、アリール基、置換または無置換のアミノ基、アルコキシ基、アリールオキシ基であり、更に好ましくはアルキル基、アリール基、アルコキシ基である。
これらの置換基は更に置換基Tで置換されてもよい。また、置換基が二つ以上ある場合は、同じでも異なってもよい。また、可能な場合には互いに連結して環を形成してもよい。
また、一般式(B)中、R12、R13、R14、R15、R16、R21、R23、R24、R25、R32、R33、R34、R35、R36のうち少なくとも1つはアミノ基、アシルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルホニルアミノ基、ヒドロキシ基、メルカプト基、カルボキシル基であり、より好ましくはアミノ基、ヒドロキシ基であり、特に好ましくはヒドロキシ基である。また、これらの基は置換基によって置換されていてもよい。この場合の置換基として、上述の置換基Tが適用でき、好ましい範囲も同様である。
以下に前記一般式(B)で表される化合物の好ましい例を下記に示すが、本発明はこれらの具体例に限定されるものではない。
Figure 2014102492
Figure 2014102492
前記基材フィルムが含む透湿度低減化合物として、ノボラック系化合物も好ましく用いることができる。
本発明に用いられるノボラック型フェノール樹脂としては特に限定しないが、一般に酸性物質を触媒として、フェノール類とアルデヒド類を反応させたものが好ましく用いられる。ノボラック型フェノール樹脂の原料となるフェノール類としては特に限定しないが、例えば、フェノール、o−クレゾール、m−クレゾール、p−クレゾール等のクレゾール、2,3−キシレノール、2,4−キシレノール、2,5−キシレノール、2,6−キシレノール、3,4−キシレノール、3,5−キシレノール等のキシレノール、o−エチルフェノール、m−エチルフェノール、p−エチルフェノール等のエチルフェノール、イソプロピルフェノール、ブチルフェノール、p−tert−ブチルフェノール等のブチルフェノール、p−tert−アミルフェノール、p−オクチルフェノール、p−ノニルフェノール、p−クミルフェノール等のアルキルフェノール、フルオロフェノール、クロロフェノール、ブロモフェノール、ヨードフェノール等のハロゲン化フェノール、p−フェニルフェノール、アミノフェノール、ニトロフェノール、ジニトロフェノール、トリニトロフェノール等の1価フェノール置換体、および1−ナフトール、2−ナフトール等の1価のフェノール類、レゾルシン、アルキルレゾルシン、ピロガロール、カテコール、アルキルカテコール、ハイドロキノン、アルキルハイドロキノン、フロログルシン、ビスフェノールA、ビスフェノールF、ビスフェノールS、ジヒドロキシナフタリン等の多価フェノール類などが挙げられる。これらを単独または2種類以上組み合わせて使用することができるが、通常、フェノール、クレゾールが多く用いられる。
上記の透湿度低減化合物は、前記基材フィルムにおいて、前記熱可塑性樹脂の質量に対し、10質量%以上100質量%以下の量で含むことが好ましい。より好ましくは15質量%以上90質量%以下であり、20質量%以上80質量%以下が更に好ましい。水分量(g)を試料質量(g)で除して算出できる。
<紫外線吸収剤>
前記基材フィルムに好ましく使用される紫外線吸収剤について説明する。前記基材フィルムを含む本発明の光学フィルムは、偏光板または液晶表示用部材等に使用されるが、偏光板または液晶等の劣化防止の観点から、紫外線吸収剤が好ましく用いられる。紫外線吸収剤としては、波長370nm以下の紫外線の吸収能に優れ、かつ良好な液晶表示性の観点から、波長400nm以上の可視光の吸収が少ないものが好ましく用いられる。紫外線吸収剤は1種のみ用いてもよいし、2種以上を併用してもよい。例えば、特開2001−72782号公報や特表2002−543265号公報に記載の紫外線吸収剤が挙げられる。紫外線吸収剤の具体例としては、例えばオキシベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サリチル酸エステル系化合物、ベンゾフェノン系化合物、シアノアクリレート系化合物、ニッケル錯塩系化合物などが挙げられる。
その中でも、2−(2′−ヒドロキシ−5′−メチルフェニル)ベンゾトリアゾール、2−(2′−ヒドロキシ−3′,5′−ジ−tert−ブチルフェニル)ベンゾトリアゾール、2−(2′−ヒドロキシ−3′−tert−ブチル−5′−メチルフェニル)ベンゾトリアゾール、2−(2′−ヒドロキシ−3′,5′−ジ−tert−ブチルフェニル)−5−クロロベンゾトリアゾール、2−(2′−ヒドロキシ−3′−(3″,4″,5″,6″−テトラヒドロフタルイミドメチル)−5′−メチルフェニル)ベンゾトリアゾール、2,2−メチレンビス(4−(1,1,3,3−テトラメチルブチル)−6−(2H−ベンゾトリアゾール−2−イル)フェノール)、2−(2′−ヒドロキシ−3′−tert−ブチル−5′−メチルフェニル)−5−クロロベンゾトリアゾール、2,4−ジヒドロキシベンゾフェノン、2,2′−ジヒドロキシ−4−メトキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−5−スルホベンゾフェノン、ビス(2−メトキシ−4−ヒドロキシ−5−ベンゾイルフェニルメタン)、(2,4−ビス−(n−オクチルチオ)−6−(4−ヒドロキシ−3,5−ジ−tert−ブチルアニリノ)−1,3,5−トリアジン、2(2’−ヒドロキシ−3’,5’−ジ−tert−ブチルフェニル)−5−クロルベンゾトリアゾール、(2(2’−ヒドロキシ−3’,5’−ジ−tert−アミルフェニル)−5−クロルベンゾトリアゾール、2,6−ジ−tert−ブチル−p−クレゾール、ペンタエリスリチル−テトラキス〔3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート〕、トリエチレングリコール−ビス〔3−(3−tert−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート〕、1,6−ヘキサンジオール−ビス〔3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート〕、2,4−ビス−(n−オクチルチオ)−6−(4−ヒドロキシ−3,5−ジ−tert−ブチルアニリノ)−1,3,5−トリアジン、2,2−チオ−ジエチレンビス〔3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート〕、オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、N,N’−ヘキサメチレンビス(3,5−ジ−tert−ブチル−4−ヒドロキシ−ヒドロシンナミド)、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)ベンゼン、トリス−(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)−イソシアヌレイトなどが挙げられる。特に(2,4−ビス−(n−オクチルチオ)−6−(4−ヒドロキシ−3,5−ジ−tert−ブチルアニリノ)−1,3,5−トリアジン、2(2’−ヒドロキシ−3’,5’−ジ−tert−ブチルフェニル)−5−クロルベンゾトリアゾール、(2(2’−ヒドロキシ−3’,5’−ジ−tert−アミルフェニル)−5−クロルベンゾトリアゾール、2,6−ジ−tert−ブチル−p−クレゾール、ペンタエリスリチル−テトラキス〔3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート〕、トリエチレングリコール−ビス〔3−(3−tert−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート〕が好ましい。また例えば、N,N′−ビス〔3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオニル〕ヒドラジンなどのヒドラジン系の金属不活性剤やトリス(2,4−ジ−tert−ブチルフェニル)フォスファイトなどの燐系加工安定剤を併用してもよい。
<その他の添加剤>
(マット剤微粒子)
前記基材フィルムには、マット剤として微粒子を加えることができる。マット剤として使用される微粒子としては、二酸化珪素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成珪酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム及びリン酸カルシウムを挙げることができる。微粒子はケイ素を含むものがフィルムのヘイズが低くなる点で好ましく、特に二酸化珪素が好ましい。二酸化珪素の微粒子は、1次平均粒子径が20nm以下であり、かつ見かけ比重が70g/リットル以上であるものが好ましい。1次粒子の平均径が5〜16nmと小さいものがフィルムのヘイズを下げることができより好ましい。見かけ比重は90〜200g/リットル以上が好ましく、100〜200g/リットル以上が更に好ましい。見かけ比重が大きい程、高濃度の分散液を作ることが可能になり、ヘイズ、凝集物が良化するため好ましい。
これらの微粒子は、通常平均粒子径が0.1〜3.0μmの2次粒子を形成し、これらの微粒子はフィルム中では、1次粒子の凝集体として存在し、フィルム表面に0.1〜3.0μmの凹凸を形成させる。2次粒子の平均粒子径は0.2μm以上1.5μm以下が好ましく、0.4μm以上1.2μm以下が更に好ましく、0.6μm以上1.1μm以下が最も好ましい。1次粒子、2次粒子の粒子径はフィルム中の粒子を走査型電子顕微鏡で観察し、粒子に外接する円の直径をもって粒径とした。また、場所を変えて粒子200個を観察し、その平均値をもって平均粒子径とした。
二酸化珪素の微粒子は、例えば、アエロジルR972、R972V、R974、R812、200、200V、300、R202、OX50、TT600(以上日本アエロジル(株)製)などの市販品を使用することができる。酸化ジルコニウムの微粒子は、例えば、アエロジルR976及びR811(以上日本アエロジル(株)製)の商品名で市販されており、使用することができる。
これらの中でアエロジル200V、アエロジルR972Vが1次粒子の平均粒子径が20nm以下であり、かつ見かけ比重が70g/リットル以上である二酸化珪素の微粒子であり、光学フィルムの濁度を低く保ちながら、摩擦係数をさげる効果が大きいため特に好ましい。
本発明において2次粒子での平均粒子径が小さな粒子を有する光学フィルムを得るために、微粒子の分散液を調製する際にいくつかの手法が考えられる。例えば、溶剤と微粒子を撹拌混合した微粒子分散液をあらかじめ作製し、この微粒子分散液を別途用意した少量のセルロースエステル又はアクリル樹脂溶液に加えて撹拌溶解し、更にメインのフィルム作製用の高分子溶液(ドープ液)と混合する方法がある。この方法は二酸化珪素微粒子の分散性がよく、二酸化珪素微粒子が更に再凝集しにくい点で好ましい調製方法である。ほかにも、溶剤に少量の熱可塑性樹脂を加え、撹拌溶解した後、これに微粒子を加えて分散機で分散を行い、これを微粒子添加液とし、この微粒子添加液をインラインミキサーでドープ液と十分混合する方法もある。本発明はこれらの方法に限定されないが、二酸化珪素微粒子を溶剤などと混合して分散するときの二酸化珪素の濃度は5〜30質量%が好ましく、10〜25質量%が更に好ましく、15〜20質量%が最も好ましい。分散濃度が高い方が添加量に対する液濁度は低くなり、ヘイズ、凝集物が良化するため好ましい。
最終的なドープ溶液中でのマット剤の添加量は1m2あたり0.01〜1.0gが好ましく、0.03〜0.3gが更に好ましく、0.08〜0.16gが最も好ましい。マット剤の添加量としては、セルロースエステル樹脂とアクリル樹脂等のドープ溶液に使用する熱可塑性樹脂の全量に対して、0.001質量%以上0.4質量%以下が好ましく、0.001質量%以上0.2質量%以下がより好ましく、0.01質量%以上0.1質量%以下が更に好ましい。また、光学フィルムが多層から形成される場合、内層への添加はせず、表層側のみに添加することが好ましく、この場合は、セルロースエステル樹脂とアクリル樹脂等のドープ溶液に使用する熱可塑性樹脂の全量に対して、表層のマット剤の添加量としては0.001質量%以上0.4質量%以下が好ましく、0.001質量%以上0.2質量%以下がより好ましく、0.01質量%以上0.1質量%以下が更に好ましい。
分散に使用される溶剤としては低級アルコール類が好ましく、メチルアルコール、エチルアルコール、プロピルアルコール、イソプロピルアルコール、ブチルアルコール等が挙げられる。低級アルコール以外の溶媒としては特に限定されないが、光学フィルムの製膜時に用いられる溶剤を用いることが好ましい。
(その他の添加剤)
上記マット粒子の他に、前記基材フィルムには、その他の種々の添加剤(例えば、レターデーション発現剤、可塑剤、紫外線吸収剤、劣化防止剤、剥離剤、赤外線吸収剤、波長分散調整剤など)を加えることができ、それらは固体でもよく油状物でもよい。すなわち、その融点や沸点において特に限定されるものではない。例えば20℃以下と20℃以上の紫外線吸収材料の混合や、同様に可塑剤の混合などであり、例えば特開2001−151901号などに記載されている。更にまた、赤外吸収染料としては例えば特開2001−194522号に記載されている。またその添加する時期はドープ作製工程において何れで添加してもよいが、ドープ調製工程の最後の調製工程に添加剤を添加し調製する工程を加えて行ってもよい。更にまた、各素材の添加量は機能が発現する限りにおいて特に限定されない。また、光学フィルムが多層から形成される場合、各層の添加物の種類や添加量が異なってもよい。例えば特開2001−151902号などに記載されているが、これらは従来から知られている技術である。これらの詳細は、発明協会公開技報(公技番号2001−1745、2001年3月15日発行、発明協会)にて16頁〜22頁に詳細に記載されている素材が好ましく用いられる。
熱可塑性樹脂(特にセルロースエステル及びアクリル樹脂)との相溶性がよい可塑剤は、ブリードアウトが生じ難く、低ヘイズであり、光モレ、正面コントラスト、輝度に優れた液晶表示装置を実現するフィルムの作製に有効である。
前記基材フィルムに可塑剤を用いてもよい。可塑剤としては特に限定しないが、リン酸エステル系可塑剤、フタル酸エステル系可塑剤、多価アルコールエステル系可塑剤、多価カルボン酸エステル系可塑剤、グリコレート系可塑剤、クエン酸エステル系可塑剤、脂肪酸エステル系可塑剤、カルボン酸エステル系可塑剤、ポリエステルオリゴマー系可塑剤、糖エステル系可塑剤、エチレン性不飽和モノマー共重合体系可塑剤などが挙げられる。
好ましくはリン酸エステル系可塑剤、グリコレート系可塑剤、多価アルコールエステル系可塑剤、ポリエステルオリゴマー系可塑剤、糖エステル系可塑剤、エチレン性不飽和モノマー共重合体系可塑剤であり、より好ましくはポリエステルオリゴマー系可塑剤、糖エステル系可塑剤、エチレン性不飽和モノマー共重合体系可塑剤であり、更に好ましくはエチレン性不飽和モノマー共重合体系可塑剤、糖エステル系可塑剤であり、特に好ましくはエチレン性不飽和モノマー共重合体系可塑剤である。
特にポリエステルオリゴマー系可塑剤、エチレン性不飽和モノマー共重合体系可塑剤、糖エステル系可塑剤は前記基材フィルムとの相溶性が高く、ブリードアウト低減、低ヘイズ及び透湿度低減の効果が高く、また温湿度変化や経時による可塑剤の分解及びフィルムの変質や変形が生じ難いため、本発明に好んで用いることができる。
本発明においては、可塑剤は1種のみで用いてもよいし、2種以上を混合して使用することもできる。
また前記基材フィルムには、ゴム状粒子を含有してもよい。たとえば、軟質アクリル系樹脂、アクリルゴム、および、ゴム−アクリル系グラフト型コアシェルポリマーなどアクリル粒子、またはスチレン−エラストマー共重合体があげられる。さらに、特公昭60−17406、特公平3−39095号公報等に記載の、耐衝撃性、耐応力白化性が改善する添加剤も好ましく用いられる。
前記基材フィルムにおいては、これらの添加剤を添加する場合、添加剤の総量は、基材フィルムに対して50質量%以下であることが好ましく、30質量%以下であることが好ましい。
これらの添加剤により、フィルムの脆性が改良され、フィルムの耐折試験(180度折り曲げ時の割れ評価など)が大幅に改善する。
また、低ヘイズを達成するためには、上記添加物の屈折率は基材ポリマーと略同一の屈折率を持つ事が好ましく、屈折率差は0.5以下が好ましく、0.3以下がより好ましい。
<基材フィルムの特性>
(レターデーション)
前記基材フィルムは、波長590nmで測定したRe及びRth(下記式(I’)及び(II’)にて定義される)が、式(III’)及び(IV’)を満たすことが好ましい。
式(I’) Re=(nx−ny)×d
式(II’) Rth={(nx+ny)/2−nz}×d
式(III’)|Re|≦50nm
式(IV’) |Rth|≦300nm
(式(I’)〜(IV’)中、nxは前記基材フィルムのフィルム面内の遅相軸方向の屈折率であり、nyは前記基材フィルムのフィルム面内の進相軸方向の屈折率であり、nzは前記基材フィルムの膜厚方向の屈折率であり、dは前記基材フィルムの厚さ(nm)である。)
なお、前記基材フィルムでは、上記式(III’)及び(IV’)がフィルム面内の少なくとも1点において満足されればよいが、フィルム面内の任意の点で上記式(III’)及び(IV’)が満足されることが好ましい。
本明細書中において、波長λnmでのRe、Rth及びNzは次のようにして測定できる。
ReはKOBRA 21ADH(王子計測機器(株)製)において波長λnmの光をフィルム法線方向に入射させて測定される。
Rthは前記Re、面内の遅相軸(KOBRA 21ADHにより判断される)を傾斜軸(回転軸)としてフィルム法線方向に対して+40°傾斜した方向から波長λnmの光を入射させて測定したレターデーション値、及び面内の遅相軸を傾斜軸(回転軸)としてフィルム法線方向に対して−40°傾斜した方向から波長λnmの光を入射させて測定したレターデーション値の計3つの方向で測定したレターデーション値を基にKOBRA 21ADHにより算出する。ここで平均屈折率の仮定値は熱可塑性ハンドブック(JOHN WILEY&SONS,INC)、各種光学フィルムのカタログの値を使用することができる。平均屈折率の値が既知でないものについてはアッベ屈折計で測定することができる。主な光学フィルムの平均屈折率の値を以下に例示する:セルロースアシレート(1.48)、シクロオレフィン熱可塑性(1.52)、ポリカーボネート(1.59)、ポリメチルメタクリレート(1.49)、ポリスチレン(1.59)である。
前記基材フィルムの測定では、前記基材フィルムに用いられる前記熱可塑性樹脂がセルロースエステルの場合は、前記基材フィルムの平均屈折率を1.48としてレターデーションの測定を行う。
上記のRe、Rthは、前記基材フィルムに用いられる前記熱可塑性樹脂の種類(前記基材フィルムに用いられる前記熱可塑性樹脂がセルロースエステルの場合は、セルロースエステルの置換度)、前記熱可塑性樹脂と添加剤の量、レターデーション発現剤の添加、フィルムの膜厚、フィルムの延伸方向と延伸率等により調整することができる。
(基材フィルムの厚さ)
前記基材フィルムの膜厚は、5〜100μmが好ましく、10〜80μmがより好ましく、15〜70μmが特に好ましく、20〜60μmがより特に好ましい。膜厚を前記の範囲に制御することで低透湿層を積層した後に液晶表示装置の置かれる環境、すなわち温湿度変化に伴うパネルのムラ小さくすることができる。
(基材フィルムの透湿度)
前記基材フィルムの透湿度は、JIS Z−0208をもとに、40℃、相対湿度90%の条件において測定される。
前記基材フィルムの透湿度は、800g/m2/day以下であることが好ましく、400g/m2/day以下であることがより好ましく、200g/m2/day以下であることが特に好ましく、150g/m2/day以下であることが更に特に好ましい。基材
フィルムの透湿度を前記範囲に制御することで、低透湿層を積層した光学フィルム(本発明の光学フィルム)を搭載した液晶表示装置の常温、高湿及び高温高湿環境経時後の、液晶セルの反りや、黒表示時の表示ムラを抑制できる。
(基材フィルムの酸素透過係数)
透湿度を低減するためには、フィルム中の水の拡散を抑える事が好ましく、すなわちフィルムの自由体積を下げる事が好ましい。一般的にフィルムの自由体積はフィルムの酸素透過係数と相関する。
前記基材フィルムの酸素透過係数は、100cc・mm/(m2・day・atm)以下が好ましく、30cc・mm/(m2・day・atm)以下がより好ましい。
尚、基材フィルムの酸素透過係数は以下の方法によって測定することができる。
−酸素透過係数の測定方法−
フィルムの酸素透過量測定は、酸素電極(オービスフェア・ラボラトリーズ社製MODEL3600、PFA)に薄く塗布したシリコングリスを介して直径1.5cmに裁断した試験片を貼り付け、定常状態での酸素還元電流出力値より、酸素透過量を求めることができる。
出力電流値の酸素透過量への換算は、透過量既知のサンプルを用いて検量線を作成することにより求めることができる。測定は、25℃、相対湿度50%環境下で行う。
(基材フィルムのヘイズ)
前記基材フィルムは、全ヘイズ値が2.00%以下であることが好ましい。全ヘイズ値が2.00%以下であると、フィルムの透明性が高く、液晶表示装置のコントラスト比や輝度向上に効果がある。全ヘイズ値は、1.00%以下がより好ましく、0.50%以下であることが更に好ましく、0.30%以下が特に好ましく、0.20%以下が最も好ましい。全ヘイズ値は低いほど光学的性能が優れるが原料選択や製造管理やロールフィルムのハンドリング性も考慮すると0.01%以上であることが好ましい。
前記基材フィルムの内部ヘイズ値は、1.00%以下であることが好ましい。内部ヘイズ値を1.00%以下とすることで、液晶表示装置のコントラスト比を向上させ、優れた表示特性を実現することができる。内部ヘイズ値は、0.50%以下がより好ましく、0.20%以下が更に好ましく、0.10%以下が特に好ましく、0.05%以下が最も好ましい。原料選択や製造管理等の観点からは0.01%以上であることが好ましい。
前記基材フィルムとしては、特に、全ヘイズ値が0.30%以下であり、内部ヘイズ値が0.10%以下であることが好ましい。
全ヘイズ値及び内部ヘイズ値は、フィルム材料の種類や添加量、添加剤の選択(特に、マット剤粒子の粒径、屈折率、添加量)や、更にはフィルム製造条件(延伸時の温度や延伸倍率など)により調整することができる。
なおヘイズの測定は、フィルム試料40mm×80mmを、25℃、相対湿度60%で、ヘイズメーター(HGM−2DP、スガ試験機)で、JIS K−6714に従って測定することができる。
(基材フィルムの弾性率)
前記基材フィルムの弾性率は、幅方向(TD方向)で1800〜7000MPaであることが好ましい。
本発明において、TD方向の弾性率が上記範囲とすることにより、高湿及び高温高湿環境経時後の黒表示時の表示ムラやフィルム作製時の搬送性、端部スリット性や破断のし難さ等の製造適性の観点で好ましい。TD弾性率が小さすぎると高湿及び高温高湿環境経時後の黒表示時の表示ムラが発生し易くなり、また製造適性に問題が生じ、大きすぎるとフィルム加工性に劣る為、TD方向の弾性率は、1800〜5000MPaがより好ましく、1800〜4000MPaであることが更に好ましい。
また、前記基材フィルムの、搬送方向の(MD方向)の弾性率は、1800〜4000MPaが好ましく、1800〜3000MPaであることがより好ましい。
ここで、フィルムの搬送方向(長手方向)とは、フィルム作製時の搬送方向(MD方向)であり、幅方向とはフィルム作製時の搬送方向に対して垂直な方向(TD方向)である。
フィルムの弾性率は、前記基材フィルム材料の熱可塑性樹脂の種類や添加量、添加剤の選択(特に、マット剤粒子の粒径、屈折率、添加量)や、更にはフィルム製造条件(延伸倍率など)により調整することができる。
弾性率は、例えば、東洋ボールドウィン(株)製万能引っ張り試験機“STM T50BP”を用い、23℃、相対湿度70%雰囲気中、引張速度10%/分で0.5%伸びにおける応力を測定して求めることができる。
(基材フィルムのガラス転移温度Tg)
前記基材フィルムのガラス転移温度Tgは製造適性と耐熱性の観点より、100℃以上200℃以下が好ましく、更に100℃以上150℃以下が好ましい。
ガラス転移温度は、示差走査型熱量計(DSC)を用いて昇温速度10℃/分で測定したときにフィルムのガラス転移に由来するベースラインが変化しはじめる温度と再びベースラインに戻る温度との平均値として求めることができる。
また、ガラス転移温度の測定は、以下の動的粘弾性測定装置を用いて求めることもできる。フィルム試料(未延伸)5mm×30mmを、25℃、相対湿度60%で2時間以上調湿した後に動的粘弾性測定装置(バイブロン:DVA−225(アイティー計測制御(株)製))で、つかみ間距離20mm、昇温速度2℃/分、測定温度範囲30℃〜250℃、周波数1Hzで測定し、縦軸に対数軸で貯蔵弾性率、横軸に線形軸で温度(℃)をとった時に、貯蔵弾性率が固体領域からガラス転移領域へ移行する際に見受けられる貯蔵弾性率の急激な減少を固体領域で直線1を引き、ガラス転移領域で直線2を引いたときの直線1と直線2の交点を、昇温時に貯蔵弾性率が急激に減少しフィルムが軟化し始める温度であり、ガラス転移領域に移行し始める温度であるため、ガラス転移温度Tg(動的粘弾性)とする。
(基材フィルムのヌープ硬度)
最表面に用いる偏光板保護膜では、表面硬度が高いことが好ましく、その場合、基材フィルムの特性としては、ヌープ硬度が高い事が好ましい。ヌープ硬度は、100N/mm2以上が好ましく、150N/mm2以上が更に好ましく用いられる。
尚、基材フィルムのヌープ硬度は以下の方法によって測定することができる。
−表面硬度(ヌープ硬度)測定−
フィッシャーインスツルメンツ(株)社製“フッシャースコープH100Vp型硬度計”を用い、圧子の短軸の向きをセルロースアシレートフィルム製膜時の搬送方向(長手方向;鉛筆硬度試験での試験方向)に対して平行に配置したヌープ圧子により、ガラス基板に固定したサンプル表面を負荷時間10sec、クリープ時間5sec、除荷時間10sec、最大荷重100mNの条件で測定することができる。押し込み深さから求められる圧子とサンプルとの接触面積と最大荷重の関係より硬度を算出し、この5点の平均値を表面硬度とする。
(基材フィルムの平衡含水率)
前記基材フィルムの含水率(平衡含水率)は、偏光板の保護フィルムとして用いる際、ポリビニルアルコールなどの水溶性熱可塑性との接着性を損なわないために、膜厚のいかんに関わらず、25℃、相対湿度80%における含水率が、0〜4質量%であることが好ましい。0〜2.5質量%であることがより好ましく、0〜1.5質量%であることが更に好ましい。平衡含水率が4質量%以下であれば、レターデーションの湿度変化による依存性が大きくなり過ぎず、液晶表示装置の常温、高湿及び高温高湿環境経時後の黒表示時の表示ムラを抑止の点からも好ましい。
含水率の測定法は、フィルム試料7mm×35mmを水分測定器、試料乾燥装置“CA−03”及び“VA−05”{共に三菱化学(株)製}にてカールフィッシャー法で測定した。水分量(g)を試料質量(g)で除して算出できる。
(基材フィルムの寸度変化)
前記基材フィルムの寸度安定性は、60℃、相対湿度90%の条件下に24時間静置した場合(高湿)の寸度変化率、及び80℃、DRY環境(相対湿度5%以下)の条件下に24時間静置した場合(高温)の寸度変化率が、いずれも0.5%以下であることが好ましい。より好ましくは0.3%以下であり、更に好ましくは0.15%以下である。
(基材フィルムの光弾性係数)
本発明の光学フィルムを偏光板用保護フィルムとして使用した場合には、偏光子の収縮による応力などにより複屈折(Re、Rth)が変化する場合がある。このような応力に伴う複屈折の変化は光弾性係数として測定できるが、基材フィルムの弾性率は、30Br以下であることが好ましく、−3〜12Brであることがより好ましく、0〜11Brであることが更に好ましい。
<基材フィルムの製造方法>
前記基材フィルムの製造方法は、熱可塑性樹脂および溶媒を含む高分子溶液を支持体上に流延して高分子膜(前記基材フィルム)を形成する工程、あるいは、熱可塑性樹脂を溶融製膜して基材フィルムを形成する工程を含むことが好ましい。すなわち、前記基材フィルムは、前記熱可塑性樹脂および溶媒を含む高分子溶液を支持体上に流延して製膜されてなること、あるいは、熱可塑性樹脂を溶融製膜されてなることが好ましい。
また、前記高分子溶液は、前記透湿度低減化合物を含むことがより好ましい。
尚、基材フィルムが(メタ)アクリル重合体を主成分とする基材フィルムの場合の好ましい製造方法は前記の通りである。
さらに、前記基材フィルムの製造方法は、前記基材フィルム(または高分子膜)を少なくともフィルムの搬送方向および幅方向のいずれかに延伸する工程を含むことが好ましく、前記基材フィルム(または高分子膜)の搬送方向と直交する幅方向に前記基材フィルム(または高分子膜)を延伸する工程とを含むことがより好ましい。
前記高分子膜の製膜方法としては、インフレーション法、T−ダイ法、カレンダー法、切削法、流延法、エマルジョン法、ホットプレス法等の製造法が使用できるが、着色抑制、異物欠点の抑制、ダイラインなどの光学欠点の抑制などの観点から流延法による溶液製膜が好ましい。
前記基材フィルムの作製方法は溶液流延法を使用してもよいし、溶融流延法を使用してもよい。
溶液流延法の場合、前記熱可塑性樹脂及び溶媒を含む高分子溶液(ドープ)を支持体上に流延することで前記高分子膜が形成される。
(ドープ形成に用いる溶媒)
ドープを形成するのに用いる溶媒は、前記熱可塑性樹脂を溶解するものであれば、制限なく用いることができる。
本発明においては、有機溶媒として、塩素系有機溶媒を主溶媒とする塩素系溶媒と塩素系有機溶媒を含まない非塩素系溶媒とのいずれをも用いることができる。2種類以上の有機溶媒を混合して用いてもよい。
ドープを作製するに際しては、主溶媒として塩素系有機溶媒が好ましく用いられる。本発明においては、前記熱可塑性樹脂が溶解し流延、製膜できる範囲において、その目的が達成できる限りはその塩素系有機溶媒の種類は特に限定されない。これらの塩素系有機溶媒は、好ましくはジクロロメタン、クロロホルムである。特にジクロロメタンが好ましい。また、塩素系有機溶媒以外の有機溶媒を混合することも特に問題ない。その場合は、ジクロロメタンは有機溶媒全体量中少なくとも50質量%使用することが必要である。本発明で塩素系有機溶剤と併用される他の有機溶媒について以下に記す。即ち、好ましい他の有機溶媒としては、炭素原子数が3〜12のエステル、ケトン、エーテル、アルコール、炭化水素などから選ばれる溶媒が好ましい。エステル、ケトン、エーテル及びアルコールは、環状構造を有していてもよい。エステル、ケトン及びエーテルの官能基(すなわち、−O−、−CO−及び−COO−)のいずれかを二つ以上有する化合物も溶媒として用いることができ、たとえばアルコール性水酸基のような他の官能基を同時に有していてもよい。二種類以上の官能基を有する溶媒の場合、その炭素原子数はいずれかの官能基を有する化合物の規定範囲内であればよい。
炭素原子数が3〜12のエステル類の例には、エチルホルメート、プロピルホルメート、ペンチルホルメート、メチルアセテート、エチルアセテート及びペンチルアセテート等が挙げられる。炭素原子数が3〜12のケトン類の例には、アセトン、メチルエチルケトン、ジエチルケトン、ジイソブチルケトン、シクロペンタノン、シクロヘキサノン及びメチルシクロヘキサノン等が挙げられる。炭素原子数が3〜12のエーテル類の例には、ジイソプロピルエーテル、ジメトキシメタン、ジメトキシエタン、1,4−ジオキサン、1,3−ジオキソラン、テトラヒドロフラン、アニソール及びフェネトール等が挙げられる。二種類以上の官能基を有する有機溶媒の例には、2−エトキシエチルアセテート、2−メトキシエタノール及び2−ブトキシエタノール等が挙げられる。
また塩素系有機溶媒と併用されるアルコールとしては、好ましくは直鎖であっても分岐を有していても環状であってもよく、その中でも飽和脂肪族炭化水素であることが好ましい。アルコールの水酸基は、第一級〜第三級のいずれであってもよい。アルコールの例には、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、t−ブタノール、1−ペンタノール、2−メチル−2−ブタノール及びシクロヘキサノールが含まれる。なおアルコールとしては、フッ素系アルコールも用いられる。例えば、2−フルオロエタノール、2,2,2−トリフルオロエタノール、2,2,3,3−テトラフルオロ−1−プロパノールなども挙げられる。更に炭化水素は、直鎖であっても分岐を有していても環状であってもよい。芳香族炭化水素と脂肪族炭化水素のいずれも用いることができる。脂肪族炭化水素は、飽和であっても不飽和であってもよい。炭化水素の例には、シクロヘキサン、ヘキサン、ベンゼン、トルエン及びキシレンが含まれる。
その他の溶媒としては、例えば特開2007−140497号公報に記載の溶媒を用いることができる。
(ドープの調製)
ドープは、0℃以上の温度(常温又は高温)で処理することからなる一般的な方法で調製することができる。本発明に用いることができるドープの調製は、通常のソルベントキャスト法におけるドープの調製方法及び装置を用いて実施することができる。なお、一般的な方法の場合は、有機溶媒としてハロゲン化炭化水素(特にジクロロメタン)とアルコール(特にメタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、t−ブタノール、1−ペンタノール、2−メチル−2−ブタノール及びシクロヘキサノール)を用いることが好ましい。
前記熱可塑性樹脂の合計量は、得られる高分子溶液中に10〜40質量%含まれるように調整することが好ましい。
前記熱可塑性樹脂の量は、10〜30質量%であることが更に好ましい。有機溶媒(主溶媒)中には、後述する任意の添加剤を添加しておいてもよい。
溶液は、常温(0〜40℃)で前記熱可塑性樹脂と有機溶媒とを攪拌することにより調製することができる。高濃度の溶液は、加圧及び加熱条件下で攪拌してもよい。具体的には、前記熱可塑性樹脂と有機溶媒とを加圧容器に入れて密閉し、加圧下で溶媒の常温における沸点以上、かつ溶媒が沸騰しない範囲の温度に加熱しながら攪拌する。
加熱温度は、通常は40℃以上であり、好ましくは60〜200℃であり、更に好ましくは80〜110℃である。
各成分は予め粗混合してから容器に入れてもよい。また、順次容器に投入してもよい。容器は攪拌できるように構成されている必要がある。窒素ガス等の不活性気体を注入して容器を加圧することができる。また、加熱による溶媒の蒸気圧の上昇を利用してもよい。あるいは、容器を密閉後、各成分を圧力下で添加してもよい。
加熱する場合、容器の外部より加熱することが好ましい。例えば、ジャケットタイプの加熱装置を用いることができる。また、容器の外部にプレートヒーターを設け、配管して液体を循環させることにより容器全体を加熱することもできる。
容器内部に攪拌翼を設けて、これを用いて攪拌することが好ましい。攪拌翼は、容器の壁付近に達する長さのものが好ましい。攪拌翼の末端には、容器の壁の液膜を更新するため、掻取翼を設けることが好ましい。
容器には、圧力計、温度計等の計器類を設置してもよい。容器内で各成分を溶剤中に溶解する。調製したドープは冷却後容器から取り出すか、あるいは、取り出した後、熱交換器等を用いて冷却する。
(基材フィルムの製造−溶液製膜方法−)
次に、上記で得られたドープを用いて前記基材フィルムを製造する方法を説明する。
図1はフィルム製造ライン20を示す概略図である。ただし、本発明は、図1に示すようなフィルム製造ラインに限定されるものではない。フィルム製造ライン20には、ストックタンク21、濾過装置30、流延ダイ31、回転ローラ32、33に掛け渡された流延バンド34及びテンタ(以下、テンターとも言う)式乾燥機35などが備えられている。更に耳切装置40、乾燥室41、冷却室42及び巻取室43などが配されている。
ストックタンク21には、モータ60で回転する攪拌機61が取り付けられている。そして、ストックタンク21は、ポンプ62及び濾過装置30を介して流延ダイ31と接続している。
流延ダイ31の幅は、特に限定されるものではないが、最終製品となるフィルムの幅の1.1倍〜2.0倍であることが好ましい。
流延ダイ31の下方には、回転ローラ32、33に掛け渡された流延バンド34が設けられている。回転ローラ32、33は図示しない駆動装置により回転し、この回転に伴い流延バンド34は無端で走行する。
また、流延バンド34の表面温度を所定の値にするために、回転ローラ32、33に伝熱媒体循環装置63が取り付けられていることが好ましい。流延バンド34は、その表面温度が−20℃〜40℃に調整可能なものであることが好ましい。
流延バンド34の幅は特に限定されるものではないが、ドープ22の流延幅の1.1倍〜2.0倍の範囲のものを用いることが好ましい。また、長さは20m〜200m、膜厚は0.5mm〜2.5mmであり、表面粗さは0.05μm以下となるように研磨されていることが好ましい。流延バンド34は、ステンレス製であることが好ましく、十分な耐腐食性と強度とを有するようにSUS316製であることがより好ましい。また、流延バンド34の全体の膜厚ムラは0.5%以下のものを用いることが好ましい。
なお、回転ローラ32、33を直接支持体として用いることも可能である。
流延ダイ31、流延バンド34などは流延室64に収められている。流延室64には、その内部温度を所定の値に保つための温調設備65と、揮発している有機溶媒を凝縮回収するための凝縮器(コンデンサ)66とが設けられている。そして、凝縮液化した有機溶媒を回収するための回収装置67が流延室64の外部に設けられている。また、流延ダイ31から流延バンド34にかけて形成される流延ビードの背面部を圧力制御するための減圧チャンバ68が配されていることが好ましく、本実施形態においてもこれを使用している。
流延膜69中の溶媒を蒸発させるため送風口70、71、72が流延バンド34の周面近くに設けられている。
渡り部80には、送風機81が備えられ、テンタ式乾燥機35の下流の耳切装置40には、切り取られたフィルム82の側端部(耳と称される)の屑を細かく切断処理するためのクラッシャ90が接続されている。
乾燥室41には、多数のローラ91が備えられており、蒸発して発生した溶媒ガスを吸着回収するための吸着回収装置92が取り付けられている。冷却室42の下流には、フィルム82の帯電圧を所定の範囲(例えば、−3kV〜+3kV)となるように調整するための強制除電装置(除電バー)93が設けられている。更に、本実施形態においては、フィルム82の両縁にエンボス加工でナーリングを付与するためのナーリング付与ローラ94が強制除電装置93の下流に適宜設けられる。また、巻取室43の内部には、フィルム82を巻き取るための巻取ローラ95と、その巻き取り時のテンションを制御するためのプレスローラ96とが備えられている。
次に、以上のようなフィルム製造ライン20を使用してフィルム82を製造する方法の一例を以下に説明する。
ドープ22は、攪拌機61の回転により常に均一化されている。ドープ22には、この攪拌の際にもレターデーション発現剤、可塑剤、紫外線吸収剤などの添加剤を混合させることもできる。
ドープ22は、ポンプ62により濾過装置30に送られてここで濾過された後に、流延ダイ31から流延バンド34上に流延される。
流延ダイ31から流延バンド34にかけては流延ビードが形成され、流延バンド34上には流延膜69が形成される。流延時のドープ22の温度は、−10℃〜57℃であることが好ましい。
流延ダイ31からドープ22は流延ビードを形成して、流延バンド34上に流延される。
流延膜69は流延バンド34の移動に伴い移動する。
次に、流延膜69は送風口73が上部に配置されている箇所まで連続的に搬送される。送風口73のノズルから乾燥風が流延膜69に向けて送風される。
流延膜69は、乾燥により溶媒が蒸発した結果、自己支持性を有するものとなった後に、湿潤フィルム74として剥取ローラ75で支持されながら流延バンド34から剥ぎ取られる。剥ぎ取り時の残留溶媒量は、固形分基準で20質量%〜250質量%であることが好ましい。
その後に多数のローラが設けられている渡り部80を搬送させて、テンタ式乾燥機35に湿潤フィルム74を送り込む。渡り部80では、送風機81から所望の温度の乾燥風を送風することで湿潤フィルム74の乾燥を進行させる。このとき乾燥風の温度が、20℃〜250℃であることが好ましい。
湿潤フィルム74は、搬送方向(MD方向)および直交する幅方向(TD方向)のいずれかに延伸することが好ましい。搬送方向や幅方向への延伸により、透湿度を低減することができる。また、支持体での乾燥時及び剥ぎ取り時に発生したムラを軽減しフィルム面内で良好な面状を得ることが出来る。長手方向および幅方向への延伸倍率は、10%以上が好ましく、20%以上がより好ましく、30%以上が更に好ましい。さらに、高倍率延伸(50%以上)により透湿度を下げることが出来る。
テンタ式乾燥機35に送られている湿潤フィルム74は、その両端部がクリップで把持されて搬送されながら乾燥される。幅方向への延伸は、この際、テンタ式乾燥機35を用いて行うことができる。
なお、テンタ式乾燥機35の内部を温度ゾーンに区画分割して、その区画毎に乾燥条件を適宜調整することが好ましい。
このように、渡り部80及び/又はテンタ式乾燥機35で湿潤フィルム74を幅方向に延伸することができる。
また、搬送方向への延伸を行ってもよく、渡り部80で下流側のローラの回転速度を上流側のローラの回転速度より速くすることにより湿潤フィルム74に搬送方向にドローテンションを付与させて行うことができる。
ここで、渡り部80及び/又はテンタ式乾燥機35において、湿潤フィルム74を未延伸のまま乾燥し、フィルム中の残留溶剤量が3.0%質量以下、好ましくは1.0質量%以下、より好ましくは0.5質量%以下、更に好ましくは0.3質量%以下、特に好ましくは0.2質量%以下である乾燥フィルムとした後に、延伸を行ってもよい。
なお、乾燥フィルムを延伸する場合、未延伸のまま乾燥フィルムを作製して一度巻き取った後、更に延伸を行ってもよい。
延伸に用いる高分子膜は乾燥フィルムでも湿潤フィルムでもよいが、湿潤フィルムであることがより好ましい。
幅方向の延伸倍率は1.1〜5.0倍であることが好ましく、1.3〜5.0倍であることが好ましく、1.3〜5.0倍であることが特に好ましい。搬送方向の延伸倍率は1.0〜5.0倍であることが好ましい。なお、搬送方向には意図的にドローテンションをかけて延伸しない場合でも搬送によるテンションがかかるため、結果的に1.01〜1.1倍程度の倍率で延伸されたフィルムが得られることもある。
延伸時の温度は、乾燥後の未延伸の高分子膜のガラス転移温度Tgに対してTg±30℃の温度範囲とすることが好ましい。ここで、乾燥後の未延伸の高分子膜のガラス転移温度とは、前記熱可塑性樹脂のガラス転移温度である。この温度範囲で延伸は、フィルムのハンドリング適性がよく、高分子膜を破断させることなく所望の光学フィルムを作製することができる。(Tg−30℃)以上で延伸することにより、フィルムの破断を防ぎ、フィルム内でのRthのばらつきを抑えることができる。また(Tg+30℃)以下で延伸することで、フィルムの自重により延伸を防ぎ、フィルム内でのRthのばらつきを抑えることができる。また、フィルム内の相分離による全ヘイズ、内部ヘイズの増加を抑えることができる。
このように延伸処理は湿潤フィルム74を製膜後、渡り部80及びテンタ式乾燥機35を経る乾燥工程で行ってもよいし、湿潤フィルム74を乾燥後巻き取った後に行ってもよい。
流延条件は、未延伸でフィルムを作製した場合に、フィルムの膜厚が10〜200μmとなるような条件で行うことが好ましく、20〜150μmがより好ましく、30〜120μmが更に好ましく、40〜100μmとなるような条件とすることが最も好ましい。
この範囲にあると、延伸後のフィルムの膜厚を小さくでき、湿度変化時、高温時及び高温高湿環境経時後のレターデーション変化が小さくなり、更に使用する樹脂が少なく安価なフィルムが製造できるので好ましい。
湿潤フィルム74は、テンタ式乾燥機35で所定の残留溶媒量まで乾燥された後、フィルム82として下流側に送り出される。フィルム82の両側端部は、耳切装置40によりその両縁が切断される。切断された側端部は、図示しないカッターブロワによりクラッシャ90に送られる。クラッシャ90により、フィルム側端部は粉砕されてチップとなる。このチップはドープ調製用に再利用されるので、この方法はコストの点において有効である。なお、このフィルム両側端部の切断工程については省略することもできるが、前記流延工程から前記フィルムを巻き取る工程までのいずれかで行うことが好ましい。
両側端部を切断除去されたフィルム82は、乾燥室41に送られ、更に乾燥される。乾燥室41内の温度は、特に限定されるものではないが、50℃〜160℃の範囲であることが好ましい。乾燥室41においては、フィルム82は、ローラ91に巻き掛けられながら搬送されており、ここで蒸発して発生した溶媒ガスは、吸着回収装置92により吸着回収される。溶媒成分が除去された空気は、乾燥室41の内部に乾燥風として再度送風される。なお、乾燥室41は、乾燥温度を変えるために複数の区画に分割されていることがより好ましい。
フィルム82は、冷却室42で略室温まで冷却される。なお、乾燥室41と冷却室42との間に調湿室(図示しない)を設けてもよく、この調湿室でフィルム82に対して、所望の湿度及び温度に調整された空気を吹き付けられることが好ましい。これにより、フィルム82のカールの発生や巻き取る際の巻き取り不良の発生を抑制することができる。
また、強制除電装置(除電バー)93により、フィルム82が搬送されている間の帯電圧が所定の範囲(例えば、−3kV〜+3kV)とされる。更に、ナーリング付与ローラ94を設けて、フィルム82の両縁にエンボス加工でナーリングを付与することが好ましい。
最後に、フィルム82を巻取室43内の巻取ローラ95で巻き取る。この際には、プレスローラ96で所望のテンションを付与しつつ巻き取ることが好ましい。なお、テンションは巻取開始時から終了時まで徐々に変化させることがより好ましい。巻き取られるフィルム82は、長手方向(流延方向)に少なくとも100m以上とすることが好ましい。また、フィルム82の幅が600mm以上であることが好ましく、1100mm以上2900mm以下であることがより好ましく、1800mm以上2500mm以下が更に好ましい。
本発明で用いることができる溶液製膜方法において、ドープを流延する際に、2種類以上のドープを同時積層共流延又は逐次積層共流延させることもできる。更に両共流延を組み合わせてもよい。同時積層共流延を行う際には、フィードブロックを取り付けた流延ダイを用いてもよいし、マルチマニホールド型流延ダイを用いてもよい。共流延により多層からなるフィルムは、空気面側の層の厚さと支持体側の層の厚さとの少なくともいずれか一方が、フィルム全体の膜厚の0.5%〜30%であることが好ましい。更に、同時積層共流延を行う場合には、ダイスリットから支持体にドープを流延する際に、高粘度ドープが低粘度ドープにより包み込まれることが好ましい。また、同時積層共流延を行なう場合には、ダイスリットから支持体にかけて形成される流延ビードのうち、外界と接するドープが内部のドープよりもアルコールの組成比が大きいことが好ましい。
流延ダイ、減圧チャンバ、支持体などの構造、共流延、剥離法、延伸、各工程の乾燥条件、ハンドリング方法、カール、平面性矯正後の巻取方法から、溶媒回収方法、フィルム回収方法まで、特開2005−104148号の[0617]段落から[0889]段落に詳しく記述されている。
また、上記では、本発明の光学フィルムの製造方法の一例を、ドープをバンド上に流延させた例で説明したが、ドープをドラム上に流延させてもよい。
(表面処理)
基材フィルムは、場合により表面処理を行うことによって、基材フィルムと低透湿層やそれ以外の層(例えば、偏光子、下塗層及びバック層)との接着の向上を達成することができる。例えばグロー放電処理、紫外線照射処理、コロナ処理、火炎処理、酸又はアルカリ処理を用いることができる。ここでいうグロー放電処理とは、10-3〜20Torrの低圧ガス下でおこる低温プラズマでもよく、更にまた大気圧下でのプラズマ処理も好ましい。プラズマ励起性気体とは上記のような条件においてプラズマ励起される気体をいい、アルゴン、ヘリウム、ネオン、クリプトン、キセノン、窒素、二酸化炭素、テトラフルオロメタンの様なフロン類及びそれらの混合物などがあげられる。これらについては、詳細が発明協会公開技報(公技番号 2001−1745、2001年3月15日発行、発明協会)にて30頁〜32頁に詳細に記載されており、本発明において好ましく用いることができる。
{機能層}
また本発明の光学フィルムは前記低透湿層を有するが、さらに、少なくとも一方の表面に、機能層を積層してもよい。この機能層の種類は特に限定されないが、ハードコート層、反射防止層(低屈折率層、中屈折率層、高屈折率層など屈折率を調整した層)、防眩層、帯電防止層、紫外線吸収層などが挙げられる。
前記機能層は、1層であってもよいし、複数層設けてもよい。前記機能層の積層方法は特に限定されないが、低透湿層を積層後の本発明の光学フィルム上に、さらに他の機能層を塗設して設けることが好ましい。
機能層は低透湿層に積層してもよいし、低透湿層を積層していない面に積層してもよい。複数の機能層を積層する場合一つの機能層を低透湿層上に積層し、もう一つの機能層を低透湿層が積層していない面に積層することもできる。
前記機能層の厚みは、0.01〜100μmであることがより好ましく、0.02〜50μmであることが特に好ましい。
<光学フィルムの層構成>
基材フィルムの一方の面上に低透湿層を有する本発明の光学フィルムは、偏光板保護フィルムであり且つ、液晶表示装置の表面フィルムであることが好ましい。
(ハードコート層)
本発明の光学フィルムが液晶表示装置の表面フィルムの場合、さらに本発明の光学フィルムにはハードコート層が積層されていることが好ましく、本発明の光学フィルムがハードコート層を有する場合はさらに反射防止層や防汚層が積層されていてもよい。この場合の好ましい層構成を以下に示す。
ハードコート層や反射防止層は公知のものを用いることができ、電離放射線硬化型のものであることが好ましい。
基材フィルム/低透湿層/ハードコート層
基材フィルム/ハードコート層/低透湿層
低透湿層/基材フィルム/ハードコート層
基材フィルム/低透湿層/ハードコート層/反射防止層
基材フィルム/ハードコート層/低透湿層/反射防止層
低透湿層/基材フィルム/ハードコート層/反射防止層
基材フィルム/低透湿層/ハードコート層/反射防止層/防汚層
(光学異方性層)
基材フィルムの一方の面上に低透湿層を有する本発明の光学フィルムに光学異方性層を設けることもできる。光学異方性層としては、一定の位相差を有する膜が面内均一に形成された光学異方性層であってもよいし、遅相軸の方向や位相差の大きさが互いに異なる、位相差領域が規則的に面内に配置されたパターンを形成した光学異方性層であってもよい。
前記のように本発明の光学フィルムは液晶表示装置用のハードコート層が積層された表面フィルムであることが好ましい。本発明の光学フィルムがハードコート層と光学異方性層の両方を有する場合、光学異方性層は基材フィルムを介してハードコート層が積層されていない面に形成されていることが好ましい。
本発明の光学フィルムがこのような態様を有する場合、低透湿層は、基材フィルムに対してはハードコート層と同じ側に積層されていてもよいし、ハードコート層と反対側に設けられてもよいし、基材フィルムの両面に積層されていてもよい。
低透湿層が基材フィルムに対してハードコート層と同じ側に積層されている場合の好ましい層構成は、前記のハードコート層を積層する場合の好ましい層構成を用いることができる。
一方、低透湿層が基材フィルムに対して光学異方性層と同じ側に積層されている場合、低透湿層は基材フィルムと光学異方性層の間に積層されていてもよいし、基材フィルム、光学異方性層、低透湿層の順に積層されていてもよい。
光学異方性層は各種用途に合わせ材料及び製造条件を選択することができるが、本発明では重合性液晶性化合物を用いた光学異方性層が好ましい。その場合、光学異方性層と基材フィルムの間に光学異方性層と接して配向膜が形成されていることも好ましい態様である。
面内均一に形成された光学異方性層を有する好ましい例として、光学異方性層がλ/4膜である態様が挙げられ、特にアクティブ方式の3D液晶表示装置の部材として有用である。λ/4膜の学異方性層とハードコート層が、基材フィルムを介して反対の面に積層した態様として特開2012−098721号公報、特開2012−127982号公報に記載されており、本発明の光学フィルムで、このような態様を好ましく用いることができる。
一方、パターンを形成した光学異方性層の好ましい例としては、パターン型のλ/4膜が挙げられ、特許4825934号公報、特許4887463号公報に記載された態様を、本発明の光学フィルムで好ましく用いることができる。
本発明の光学フィルムは、液晶表示装置の光学補償フィルムとしても用いることもできる。この場合、液晶表示装置が、二枚の電極基板の間に液晶を担持してなる液晶セル、その両側に配置された二枚の偏光素子、及び該液晶セルと該偏光素子との間に少なくとも一枚の本発明の光学フィルムを光学補償フィルムとして配置した構成であることが更に好ましい。これらの液晶表示装置としては、TN、IPS、FLC、AFLC、OCB、STN、ECB、VA及びHANモードの液晶表示装置が好ましく、TN、OCB、IPS及びVAモードの液晶表示装置がより好ましい。
[偏光板]
本発明の偏光板は、偏光子と、該偏光子の保護フィルムとして本発明の光学フィルムを少なくとも1枚含むことを特徴とする。
本発明の光学フィルムは、偏光板用保護フィルムとして用いることができる。偏光板用保護フィルムとして用いる場合、偏光板の作製方法は特に限定されず、一般的な方法で作製することができる。得られた光学フィルムをアルカリ処理し、ポリビニルアルコールフィルムを沃素溶液中に浸漬延伸して作製した偏光子の両面に完全ケン化ポリビニルアルコール水溶液を用いて貼り合わせる方法がある。アルカリ処理の代わりに特開平6−94915号、特開平6−118232号に記載されているような易接着加工を施してもよい。また前記のような表面処理を行ってもよい。光学フィルムの偏光子との貼合面は低透湿層積層した面でもよいし、低透湿層を積層していない面であっても構わない。
保護フィルム処理面と偏光子を貼り合わせるのに使用される接着剤としては、例えば、ポリビニルアルコール、ポリビニルブチラール等のポリビニルアルコール系接着剤や、ブチルアクリレート等のビニル系ラテックス等が挙げられる。
偏光板は偏光子及びその両面を保護する保護フィルムで構成されており、更に該偏光板の一方の面にプロテクトフィルムを、反対面にセパレートフィルムを貼合して構成される。プロテクトフィルム及びセパレートフィルムは偏光板出荷時、製品検査時等において偏光板を保護する目的で用いられる。この場合、プロテクトフィルムは、偏光板の表面を保護する目的で貼合され、偏光板を液晶板へ貼合する面の反対面側に用いられる。又、セパレートフィルムは液晶板へ貼合する接着層をカバーする目的で用いられ、偏光板を液晶板へ貼合する面側に用いられる。
[液晶表示装置]
本発明の液晶表示装置は、液晶セルと、該液晶セルの少なくとも一方に配置された本発明の偏光板とを含み、前記偏光板中に含まれる本発明の光学フィルムが最表層となるように配置されたことを特徴とする。
(一般的な液晶表示装置の構成)
液晶表示装置は、二枚の電極基板の間に液晶を担持してなる液晶セル、その両側に配置された二枚の偏光板、及び必要に応じて該液晶セルと該偏光板との間に少なくとも一枚の光学補償フィルムを配置した構成を有している。
液晶セルの液晶層は、通常は、二枚の基板の間にスペーサーを挟み込んで形成した空間に液晶を封入して形成する。透明電極層は、導電性物質を含む透明な膜として基板上に形成する。液晶セルには、更にガスバリアー層、ハードコート層あるいは(透明電極層の接着に用いる)アンダーコート層(下塗り層)を設けてもよい。これらの層は、通常、基板上に設けられる。液晶セルの基板は、一般に50μm〜2mmの厚さを有する。
液晶表示装置には通常2枚の偏光板の間に液晶セルを含む基板が配置されているが、本発明の光学フィルムを適用した偏光板用保護フィルムは、2枚の偏光板のいずれの保護フィルムとして用いることができるが、各偏光板の2枚の保護フィルムのうち、偏光子に対して液晶セルの外側に配置される保護フィルムとして用いられることが好ましい。
2枚の偏光板のうち、視認側偏光板の、視認側の保護フィルムとして本発明の光学フィルムを配置することが特に好ましい。
また、2枚の偏光板のうち、視認側偏光板の、視認側の保護フィルムとして本発明の光学フィルムを配置した上で、更にバックライト側偏光板のバックライト側保護フィルムにも本発明の光学フィルムを配置し、2枚の偏光板に含まれる偏光子の伸縮を抑止し、パネルの反りを防止することも好ましい態様である。
(液晶表示装置の種類)
本発明のフィルムは、様々な表示モードの液晶セルに用いることができる。TN(Twisted Nematic)、IPS(In−Plane Switching)、FLC(Ferroelectric Liquid Crystal)、AFLC(Anti−ferroelectric Liquid Crystal)、OCB(Optically Compensatory Bend)、STN(Super Twisted Nematic)、VA(Vertically Aligned)、ECB(Electrically Controlled Birefringence)、及びHAN(Hybrid Aligned Nematic)のような様々な表示モードが提案されている。また、上記表示モードを配向分割した表示モードも提案されている。本発明の光学フィルムは、いずれの表示モードの液晶表示装置においても有効である。また、透過型、反射型、半透過型のいずれの液晶表示装置においても有効である。
以下、実施例に基づいて本発明を具体的に説明する。以下の実施例に示す材料、試薬、物質量とその割合、操作等は本発明の趣旨から逸脱しない限り適宜変更することができる。従って、本発明は以下の実施例に限定され制限されるものではない。
[製造例1]
<基材フィルム1の作製>
下記の組成物をミキシングタンクに投入し、加熱しながら攪拌して、各成分を溶解し、固形分濃度22質量%のセルロースアセテート溶液(ドープA)を調製した。
[セルロースアセテート溶液(ドープA)の組成]
アセチル置換度2.86のセルロースアセテート 100質量部
トリフェニルホスフェート(可塑剤) 7.8質量部
ビフェニルジフェニルホスフェート(可塑剤) 3.9質量部
紫外線吸収剤(チヌビン328 チバ・ジャパン製) 0.9質量部
紫外線吸収剤(チヌビン326 チバ・ジャパン製) 0.2質量部
メチレンクロライド(第1溶媒) 336質量部
メタノール(第2溶媒) 29質量部
1−ブタノール(第3溶媒) 11質量部
図1に示したようなバンド流延装置を用い、前記調製したドープを2000mm幅でステンレス製のエンドレスバンド(流延支持体)に流延ダイから均一に流延した。ドープ中の残留溶媒量が40質量%になった時点で流延支持体から高分子膜として剥離し、テンターにて積極的に延伸をせずに搬送し、乾燥ゾーンで130℃で乾燥を行った。
得られた基材フィルム1の厚さは40μmで、透湿度は下記表1に記載の通りであった。また、得られた基材フィルム1のReおよびRthの値を後述の方法で測定したところ、Re=1.4nmであり、Rth=25nmであった。
[製造例2]
<基材フィルム2の作製>
図1に示したようなバンド流延装置を用い、前記製造例1で調製したドープを2000mm幅でステンレス製のエンドレスバンド(流延支持体)に流延ダイから均一に流延した。ドープ中の残留溶媒量が40質量%になった時点で流延支持体から高分子膜として剥離し、渡り部で下流側のローラの回転速度を上流側のローラの回転速度より速くすることにより搬送方向の延伸を行い、温度170℃で搬送方向(MD)に20%およびテンターで搬送方向の直交方向(TD方向)に50%延伸し、乾燥ゾーンで130℃で乾燥を行った。
得られた基材フィルム2の厚さは40μmで、透湿度は下記表1に記載の通りであった。また、得られた基材フィルム2のReおよびRthの値を後述の方法で測定したところ、Re=2.1nmであり、Rth=35nmであった。
[製造例3]
<基材フィルム3の作製>
まず、基材フィルム3で使用したセルロースエステル、アクリル樹脂および紫外線吸収剤について説明する。
(セルロースエステル)
アシル基総置換度2.75、アセチル置換度0.19、プロピオニル置換度2.56、分子量200000のセルロースエステルを使用した。
このセルロースエステルは、以下のように合成した。
セルロースに触媒として硫酸(セルロース100質量部に対し7.8質量部)を添加し、アシル置換基の原料となるカルボン酸を添加して40℃でアシル化反応を行った。この時、カルボン酸の量を調整することでアセチル基及びプロピオニル基の置換度を調整した。またアシル化後に40℃で熟成を行った。更にこのセルロースエステルの低分子量成分をアセトンで洗浄し除去した(以降セルロースエステルCE−1とする)。
(アクリル樹脂)
下記に記載のアクリル樹脂を使用した。このアクリル樹脂は市販品で入手可能である。・ダイヤナールBR88(商品名)、三菱レイヨン(株)製、質量平均分子量1500000(以降アクリル樹脂AC−1とする)。
(紫外線吸収剤)
下記に記載の紫外線吸収剤を使用した。
・UV剤1:チヌビン328(チバ・スペシャルティ・ケミカルズ(株)製)
(ドープ調製)
下記に記載の組成物をミキシングタンクに投入し、加熱しながら攪拌して、各成分を溶解し、ドープを調製した。
(ドープ組成)
セルロースエステルCE−1 30質量部
アクリル樹脂AC−1 70質量部
(セルロースエステルとアクリル樹脂は合計100質量部)
紫外線吸収剤 UV剤1 2質量部
ジクロロメタン 319質量部
エタノール 43質量部
ドープの固形分濃度(セルロースエステル、アクリル樹脂、紫外線吸収剤の合計濃度)は22質量%であった。
図1に示したようなバンド流延装置を用い、前記調製したドープを2000mm幅でステンレス製のエンドレスバンド(流延支持体)に流延ダイから均一に流延した。ドープ中の残留溶媒量が40質量%になった時点で流延支持体から高分子膜として剥離し、テンターにて積極的に延伸をせずに搬送し、乾燥ゾーンで130℃で乾燥を行った。
得られた基材フィルム3の厚さは40μmで、透湿度は下記表1に記載の通りであった。また、得られた基材フィルム3のReおよびRthの値を後述の方法で測定したところ、Re=1.5nmであり、Rth=10nmであった。
[製造例4]
<基材フィルム4の作製>
図1に示したようなバンド流延装置を用い、前記製造例3で調製したドープを2000mm幅でステンレス製のエンドレスバンド(流延支持体)に流延ダイから均一に流延した。ドープ中の残留溶媒量が40質量%になった時点で流延支持体から高分子膜として剥離し、渡り部で下流側のローラの回転速度を上流側のローラの回転速度より速くすることにより搬送方向の延伸を行い、温度170℃で搬送方向(MD)に20%およびテンターで搬送方向の直交方向(TD方向)に50%延伸し、乾燥ゾーンで130℃で乾燥を行った。
得られた基材フィルム4の厚さは40μmで、透湿度は下記表1に記載の通りであった。また、得られた基材フィルム4のReおよびRthの値を後述の方法で測定したところ、Re=1.1nmであり、Rth=18nmであった。
[製造例5]
<基材フィルム5の作製>
攪拌装置、温度センサー、冷却管および窒素導入管を備えた内容積30Lの反応釜に、メタクリル酸メチル(MMA)8000g、2−(ヒドロキシメチル)アクリル酸メチル(MHMA)2000gおよび重合溶媒としてトルエン10000gを仕込み、これに窒素を通じつつ、105℃まで昇温させた。昇温に伴う環流が始まったところで、重合開始剤としてt−アミルパーオキシイソノナノエート10.0gを添加するとともに、t−アミルパーオキシイソノナノエート20.0gとトルエン100gとからなる溶液を2時間かけて滴下しながら、約105〜110℃の環流下で溶液重合を進行させ、さらに4時間の熟成を行った。重合反応率は96.6%、得られた重合体におけるMHMAの含有率(質量比)は20.0%であった。
次に、得られた重合溶液に、環化触媒として10gのリン酸ステアリル/リン酸ジステアリル混合物(堺化学工業製、Phoslex A−18)を加え、約80〜100℃の環流下において5時間、環化縮合反応を進行させた。
次に、得られた重合溶液を、バレル温度260℃、回転速度100rpm、減圧度13.3〜400hPa(10〜300mmHg)、リアベント数1個およびフォアベント数4個のベントタイプスクリュー二軸押出機(φ=29.75mm、L/D=30)に、樹脂量換算で2.0kg/時の処理速度で導入し、押出機内で環化縮合反応および脱揮を行った。次に、脱揮完了後、押出機内に残された熱溶融状態にある樹脂を押出機の先端から排出し、ペレタイザーによりペレット化して、主鎖にラクトン環構造を有するアクリル樹脂からなる透明なペレットAを得た。このペレットAを構成する樹脂のラクトン環化率は96.9%、ラクトン環構造の含有割合は28.2質量%、重量平均分子量は148000、メルトフローレート(JIS K7120に準拠し、試験温度を240℃、荷重を10kgとして求めた。以降の製造例においても同じ)は11.0g/10分、ガラス転移温度は130℃であった。
次に、得られた主鎖にラクトン環構造を有するアクリル樹脂からなる透明なペレットAとAS樹脂(東洋スチレン製、アクリロニトリル−スチレン共重合体、商品名:トーヨーAS AS20)を、ペレットA/AS樹脂=90/10の質量比で単軸押出機(φ=30mm)を用いて混錬することにより、ガラス転移温度が127℃の透明なペレットBを得た。
上記で作製した樹脂組成物のペレットBを、二軸押出機を用いて、コートハンガー型Tダイから溶融押出し、厚さ約160μmの樹脂フィルムを作製した。
次に、得られた未延伸の樹脂フィルムを、縦方向に2.0倍、横方向に2.0倍に二軸延伸することにより(延伸倍率は面積比で4倍)、透明プラスチックフィルム基材を作製した。このようにして得た二軸延伸性フィルムである基材フィルム5の厚さは40μm、透湿度は下記表1に記載の通り、全光線透過率は92%、ヘイズは0.3%、ガラス転移温度は127℃であった。また、得られた基材フィルム5のReおよびRthの値を後述の方法で測定したところ、Re=0.8nmであり、Rth=1.2nmであった。
[製造例6]
<基材フィルム6の作製>
上記製造例5で作製した樹脂組成物のペレットBを、二軸押出機を用いて、コートハンガー型Tダイから溶融押出し、厚さ約500μmの樹脂フィルムを作製した。
次に、得られた未延伸の樹脂フィルムを、縦方向に3.4倍、横方向に3.6倍に二軸延伸することにより(延伸倍率は面積比で12.2倍)、透明プラスチックフィルム基材を作製した。このようにして得た二軸延伸性フィルムである基材フィルム6の厚さは40μm、透湿度は下記表1に記載の通り、全光線透過率は92%、ヘイズは0.3%、ガラス転移温度は127℃であった。また、得られた基材フィルム6のReおよびRthの値を後述の方法で測定したところ、Re=0.8nmであり、Rth=2.0nmであった。
[製造例7]
〔低透湿層形成用組成物の調製〕
下記に示すように調製した。
(低透湿層形成用組成物B−1の組成)
A−DCP(100%) 97.0g
イルガキュア907(100%) 3.0g
SP−13 0.04g
MEK 81.8g
[製造例8]
(低透湿層形成用組成物B−2の組成)
PET30(100%) 97.0g
イルガキュア907(100%) 3.0g
SP−13 0.04g
MEK 81.8g
使用した材料を以下に示す。
・A−DCP:トリシクロデカンジメタノールジアクリレート[新中村化学工業(株)製]
・PET30:ペンタエリスリトールテトラアクリレートとペンタエリスリトールトリアクリレートの混合物[日本化薬(株)製]
・イルガキュア907:重合開始剤[チバ・スペシャルティ・ケミカルズ(株)製]
・レベリング剤
・SP−13:
Figure 2014102492
[製造例9]
(低透湿層形成用組成物B−3の組成)
・塩素含有重合体:R204
{旭化成ライフ&リビング(株)製「サランレジンR204」} 12.0g
・テトラヒドロフラン 62.0g
・トルエン 13.0g
・メチルエチルケトン 13.0g
[製造例10]
(低透湿層形成用組成物B−4の組成)
A−DCP(100%) 97.0g
かご型シルセスキオキサンS−1(下記) 40.0g
イルガキュア907(100%) 3.0g
上述のSP−13 0.04g
MEK 81.8g
かご型シルセスキオキサンS−1としては、特開2010−96848号公報の実施例1記載の混合物を使用した。
より具体的には、まず、撹拌機、滴下ロート、温度計を備えた反応容器に、溶媒として2−プロパノール(IPA)40mlと塩基性触媒として5%テトラメチルアンモニウムヒドロキシド水溶液(TMAH水溶液)を装入した。滴下ロートにIPA15mlと3−メタクリロキシプロピルトリメトキシシラン(MTMS:東レ・ダウコーニング・シリコーン株式会社製SZ−6300)12.69gを入れ、反応容器を撹拌しながら、室温でMTMSのIPA溶液を30分かけて滴下した。MTMS滴下終了後、加熱することなく2時間撹拌した。2時間撹拌後溶媒を減圧下で溶媒を除去し、トルエン50mlで溶解した。反応溶液を飽和食塩水で中性になるまで水洗した後、無水硫酸マグネシウムで脱水した。無水硫酸マグネシウムをろ別し、濃縮することで加水分解縮合生成物(シルセスキオキサン)を8.6g得た。このシルセスキオキサンは種々の有機溶媒に可溶な無色の粘性液体であった。
次に、撹拌機、ディンスターク、冷却管を備えた反応容器に上記で得られたシルセスキオキサン20.65gとトルエン82mlと10%TMAH水溶液3.0gを入れ、徐々に加熱し水を留去した。さらに130℃まで加熱しトルエンを還流温度で再縮合反応を行った。このときの反応溶液の温度は108℃であった。トルエン還流後2時間撹拌した後、反応を終了とした。反応溶液を飽和食塩水で中性になるまで水洗した後、無水硫酸マグネシウムで脱水した。無水硫酸マグネシウムをろ別し、濃縮することで目的物であるかご型シルセスキオキサン(混合物)を18.77g得た。得られたかご型シルセスキオキサンは種々の有機溶媒に可溶な無色の粘性液体であった。
再縮合反応後の反応物の液体クロマトグラフィー分離後の質量分析を行ったところ上記構造式(5)、(6)および(7)の分子構造にアンモニウムイオンが付いた分子イオンが確認され、構成比率はT8:T10:T12およびその他が約2:4:1:3であり、かご型構造を主たる成分とする混合物であることが確認できた。
[製造例11〜13]
(低透湿層形成用組成物B−5〜B−7の組成)
低透湿層形成用組成物の調製において、かご型シルセスキオキサンを下記記載に変更した以外は製造例10と同様にして、低透湿層形成用組成物B−5〜B−7を調製した。
製造例11:かご型シルセスキオキサンS−2(特開2012−218322号公報実施例1記載の(6))
Figure 2014102492
製造例12:かご型シルセスキオキサンS−3(特開2012−183818号公報の実施例1構造式(4)に記載の以下の構造の化合物)
Figure 2014102492
製造例13:かご型シルセスキオキサンS−4(特許第4142385号公報の合成例1に記載のメタクリロイル基を有した篭型シリル化ポリフェニルシルセスキオキサン)
[比較例1]
<光学フィルム101の作製>
基材フィルムとしてフジタックTD40(富士フイルム(株)製、幅1,340mm、厚さ40μm)をロール形態から巻き出して、上記低透湿層形成用組成物B−1を使用し、特開2006−122889号公報実施例1記載のスロットダイを用いたダイコート法で、搬送速度30m/分の条件で塗布し、60℃で150秒乾燥させた。その後、更に窒素パージ下酸素濃度約0.1%で160W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照度400mW/cm2、照射量60mJ/cm2の紫外線を照射して塗布層を硬化させ、巻き取った。低透湿層の膜厚は5μmになるよう塗布量を調整した。
得られた光学フィルム101を比較例1の光学フィルムとした。
[比較例2および実施例1〜11]
<光学フィルム102〜113の作製>
光学フィルム101の作製において、基材フィルムと低透湿層形成用組成物、低透湿層の膜厚を表に記載のようにした以外は光学フィルム101と同様にして、光学フィルム102〜113を作製した。
[実施例12]
<光学フィルム114の作製>
市販のセルロースアシレートフィルム(フジタックTD40、富士フィルム(株)製、幅1,340mm、厚さ40μm)を、透明保護フィルムとしてロール形態で引き出し、搬送速度30m/分の条件下で、上記低透湿層形成用組成物B−3を、バーコーターを用いて塗布し、100℃で1分乾燥し、搬送しながら、25℃65%の雰囲気のゾーンを1分間通過させた後、3,000mを巻き取った。この時の低透湿層の膜厚は2.0μmであった。
得られた光学フィルム114を実施例12の光学フィルムとした。
[光学フィルムの評価]
作製した各実施例および比較例の光学フィルムについて膜厚を測定し、下記の物性測定と評価を行った。結果は下記表1に示す。
なお低透湿層の膜厚は低透湿層の積層前後の膜厚を測定し、その差から求めた。
(1)透湿度(40℃90%相対湿度での透湿度)
透湿度の測定法は、各実施例および比較例の光学フィルム試料70mmφを40℃、相対湿度90%でそれぞれ24時間調湿した後、JIS Z−0208に従った透湿カップを用いて、透湿度=調湿後質量−調湿前質量で単位面積あたりの水分量(g/m2)を算出した。
(2)Re、Rth
サンプルフィルムを25℃、相対湿度60%にて24時間調湿後、自動複屈折計(KOBRA−21ADH:王子計測機器(株)製)を用いて、25℃、相対湿度60%において、フィルム表面に対し垂直方向及び遅相軸を回転軸としてフィルム面法線から+50°から−50°まで10°刻みで傾斜させた方向から波長590nmにおける位相差を測定して、面内レターデーション値(Re)と膜厚方向のレターデーション値(Rth)とを算出した。
[パネルの評価]
<偏光板の作製>
1)フィルムの鹸化
市販のセルロースアシレートフィルム(フジタック ZRD40、富士フイルム(株)製)と光学フィルム101、103および114を、55℃に保った1.5mol/LのNaOH水溶液(鹸化液)に2分間浸漬した後、フィルムを水洗し、その後、25℃の0.05mol/Lの硫酸水溶液に30秒浸漬した後、更に水洗浴を30秒流水下に通して、フィルムを中性の状態にした。そして、エアナイフによる水切りを3回繰り返し、水を落とした後に70℃の乾燥ゾーンに15秒間滞留させて乾燥し、鹸化処理したフィルムを作製した。
2)偏光子の作製
特開2001−141926号公報の実施例1に従い、延伸したポリビニルアルコールフィルムにヨウ素を吸着させて膜厚20μmの偏光子を作製した。
3)貼り合わせ
(偏光板101、103、114の作製)
上記の鹸化後の光学フィルム101、103および114(各光学フィルムの低透湿層を積層していない面を偏光子と接するように配置する)、前記で作製した偏光子、鹸化後のセルロールアシレートフィルムZRD40をこの順番で、PVA系接着剤で貼合し、熱乾燥して、偏光板101、103、114を作製した。
この際、作製した偏光子のロールの長手方向と光学フィルム101、103および114の長手方向とが平行になるように配置した。また、偏光子のロールの長手方向と上記セルロールアシレートフィルムZRD40のロールの長手方向とが、平行になるように配置した。
得られた偏光板101、103および114をそれぞれ比較例1、実施例1および実施例12の偏光板とした。
(偏光板102、104〜113の作製)
前記で作製した偏光子の片面に対して、アクリル接着剤を用いて、作製した光学フィルム102、104〜113の低透湿層を積層していない面を、光学フィルム102、104〜113低透湿層を積層していない面にコロナ処理を施したのち、貼合した。前記で作製した偏光子のもう片側にポリビニルアルコール系接着剤を用いて、上記鹸化した市販のセルロースアシレートフィルムZRD40を貼り付け、70℃で10分以上乾燥して、偏光板102、104〜113を作製した。
この際、作製した偏光子のロールの長手方向と光学フィルム102、104〜113の長手方向とが平行になるように配置した。また、偏光子のロールの長手方向と上記セルロールアシレートフィルムZRD40のロールの長手方向とが、平行になるように配置した。
得られた偏光板102、104〜113をそれぞれ比較例2および実施例2〜11の偏光板とした。
<IPSパネルへの実装>
IPSモード液晶セル(LGD製 42LS5600)の上下の偏光板を剥し、上記各実施例および比較例の偏光板をZRD40が液晶セル側になるようにして貼りつけた。上側偏光板の透過軸が上下方向に、そして下側偏光板の透過軸が左右方向になるように、クロスニコル配置とした。
得られた液晶表示装置を、各実施例および比較例の液晶表示装置とした。
なお、IPSパネルへの実装時における、各実施例および比較例の偏光板の構成を下記表2に記載した。
以上のようにして作製した液晶表示装置の高温高湿環境経時後の黒表示ムラを評価した。結果は下記表1に示す。
(高温高湿環境経時後の黒表示ムラ)
液晶表示装置を60℃、相対湿度90%で24時間経過させた後、25℃、相対湿度60%の環境下で24時間調湿した後で点灯をさせ、黒表示時の色ムラの程度を目視で観測し、以下の基準により6段階で評価した。
6段階評価のうちA〜Eが許容範囲内で、Fは許容範囲外であった。
A:色ムラは観測されなかった。
B:表示面の1/8以下の面積で弱い色ムラが観測された。
C:表示面の1/8を超えて1/4以下の面積で弱い色ムラが観測された。
D:表示面の1/4を超えて1/2以下の面積で弱い色ムラが観測された。
E:表示面の1/2を超える面積で弱い色ムラ又は1/4を超えて1/2以下の面積で強い色ムラが観測された。
F:表示面の1/2を超える面積で強い色ムラが観測された。
Figure 2014102492
Figure 2014102492
上記表1より、作製した実施例1〜12の光学フィルムおよび偏光板を42インチパネルに実装した結果、本発明の光学フィルムを用いた場合、パネルの高温高湿環境経時後の黒表示ムラが低減することが確認できた。
なお、実施例9〜12の偏光板については、視認側にフィルム111〜114を使用し、セル側にZRD40を用いた。
20 フィルム製造ライン
21 ストックタンク
22 ドープ
30 濾過装置
31 流延ダイ
32 回転ローラ
33 回転ローラ
34 流延バンド
35 テンタ式乾燥機
40 耳切装置
41 乾燥室
42 冷却室
43 巻取室
60 モータ
61 攪拌機
62 ポンプ
63 伝熱媒体循環装置
64 流延室
65 温調設備
66 凝縮器(コンデンサ)
67 回収装置
68 減圧チャンバ
69 流延膜
70 送風口
71 送風口
72 送風口
73 送風口
74 湿潤フィルム
75 剥取ローラ
80 渡り部
81 送風機
82 フィルム
90 クラッシャ
91 ローラ
92 吸着回収装置
93 強制除電装置(除電バー)
94 ナーリング付与ローラ
95 巻取ローラ
96 プレスローラ

Claims (16)

  1. 熱可塑性樹脂を含む基材フィルムと、
    該基材フィルム上に積層された低透湿層とを有する光学フィルムであって、
    前記光学フィルムの透湿度が200g/m2/day以下であり、
    下記式(1)を満たすことを特徴とする光学フィルム。
    式(1) A/B≦0.9
    (式(1)中、Aは前記熱可塑性樹脂を含む基材フィルムに前記低透湿層を積層した光学フィルムの透湿度を表し、Bは前記熱可塑性樹脂を含む基材フィルムの透湿度を表す。ただし、透湿度は、JIS 0208の手法で、40℃、相対湿度90%で24時間経過後の値である。)
  2. 前記光学フィルムの透湿度が100g/m2/day以下であることを特徴とする請求項1に記載の光学フィルム。
  3. 前記光学フィルムが更に下記式(2)を満たすことを特徴とする請求項1または2に記載の光学フィルム。
    式(2) 0.01≦A/B≦0.8
    (式(2)中、Aは前記熱可塑性樹脂を含む基材フィルムに前記低透湿層を積層した光学フィルムの透湿度を表し、Bは前記熱可塑性樹脂を含む基材フィルムの透湿度を表す。ただし、透湿度は、JIS 0208の手法で、40℃、相対湿度90%で24時間経過後の値である。)
  4. 前記基材フィルムの透湿度が800g/m2/day以下であることを特徴とする請求項1〜3のいずれか一項に記載の光学フィルム。
  5. 前記基材フィルムに含まれる前記熱可塑性樹脂が、(メタ)アクリル系樹脂、ポリカーボネート系樹脂、ポリスチレン系樹脂、環状ポリオレフィン系樹脂、グルタル酸無水物系樹脂、グルタルイミド系樹脂、セルロース系樹脂およびこれら複数種の樹脂の混合樹脂であることを特徴とする請求項1〜4のいずれか一項に記載の光学フィルム。(但しセルロース系樹脂とは、セルロースエステルとアクリル樹脂とを含む樹脂を表す。)
  6. 前記基材フィルムの膜厚が5〜100μmであることを特徴とする請求項1〜5のいずれか一項に記載の光学フィルム。
  7. 前記低透湿層の膜厚が1〜20μmであることを特徴とする請求項1〜6のいずれか一項に記載の光学フィルム。
  8. 前記低透湿層が、分子内に環状脂肪族炭化水素基と2個以上のエチレン性不飽和二重結合基を有する化合物を有する組成物から形成されてなる層、または、塩素含有ビニル単量体から誘導される繰り返し単位を含む樹脂を有する層であることを特徴とする請求項1〜7のいずれか一項に記載の光学フィルム。
  9. 前記低透湿層が、かご型シルセスキオキサン化合物を含有する層であることを特徴とする請求項1〜8のいずれか一項に記載の光学フィルム。
  10. 前記光学フィルムの膜厚が5〜100μmであることを特徴とする請求項1〜9のいずれか一項に記載の光学フィルム。
  11. 前記光学フィルムが、下記式(I)及び下記式(II)で定義されるRe及びRthが、波長590nmにおいて下記式(III)及び下記式(IV)を満たすことを特徴とする請求項1〜10のいずれか一項に記載の光学フィルム。
    式(I) Re=(nx−ny)×d
    式(II) Rth={(nx+ny)/2−nz}×d
    式(III)|Re|≦50nm
    式(IV) |Rth|≦300nm
    (式(I)〜(IV)中、nxは前記光学フィルムのフィルム面内の遅相軸方向の屈折率であり、nyは前記光学フィルムのフィルム面内の進相軸方向の屈折率であり、nzは前記光学フィルムの膜厚方向の屈折率であり、dは前記光学フィルムの膜厚(nm)である。)
  12. 前記基材フィルムが、前記熱可塑性樹脂および溶媒を含む高分子溶液を支持体上に流延して製膜されてなることを特徴とする請求項1〜11のいずれか一項に記載の光学フィルム。
  13. 熱可塑性樹脂および溶媒を含む高分子溶液を支持体上に流延して基材フィルムを形成する工程と、
    前記基材フィルム上に低透湿層を塗布で積層する工程とを含む、基材フィルム上に積層された低透湿層を有する光学フィルムの製造方法であって、
    前記光学フィルムの透湿度が200g/m2/day以下であり、
    下記式(1)を満たすことを特徴とする光学フィルムの製造方法。
    式(1) A/B≦0.9
    (式(1)中、Aは前記熱可塑性樹脂を含む基材フィルムに前記低透湿層を積層した光学フィルムの透湿度を表し、Bは前記基材フィルムの透湿度を表す。ただし、透湿度は、JIS 0208の手法で、40℃、相対湿度90%で24時間経過後の値である。)
  14. 熱可塑性樹脂を溶融製膜して基材フィルムを形成する工程と、
    前記基材フィルム上に低透湿層を塗布で積層する工程とを含む、基材フィルム上に積層された低透湿層を有する光学フィルムの製造方法であって、
    前記光学フィルムの透湿度が200g/m2/day以下であり、
    下記式(1)を満たすことを特徴とする光学フィルムの製造方法。
    式(1) A/B≦0.9
    (式(1)中、Aは前記熱可塑性樹脂を含む基材フィルムに前記低透湿層を積層した光学フィルムの透湿度を表し、Bは前記基材フィルムの透湿度を表す。ただし、透湿度は、JIS 0208の手法で、40℃、相対湿度90%で24時間経過後の値である。)
  15. 偏光子と、
    該偏光子の保護フィルムとして請求項1〜12のいずれか一項に記載の光学フィルムとを少なくとも1枚含むことを特徴とする偏光板。
  16. 液晶セルと、
    該液晶セルの少なくとも一方に配置された請求項15に記載の偏光板とを含み、
    前記光学フィルムが最表層となるように配置されたことを特徴とする液晶表示装置。
JP2013184468A 2012-10-04 2013-09-05 光学フィルム及びその製造方法、偏光板ならびに液晶表示装置 Pending JP2014102492A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013184468A JP2014102492A (ja) 2012-10-04 2013-09-05 光学フィルム及びその製造方法、偏光板ならびに液晶表示装置

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2012222404 2012-10-04
JP2012222404 2012-10-04
JP2012233295 2012-10-22
JP2012233295 2012-10-22
JP2013184468A JP2014102492A (ja) 2012-10-04 2013-09-05 光学フィルム及びその製造方法、偏光板ならびに液晶表示装置

Publications (1)

Publication Number Publication Date
JP2014102492A true JP2014102492A (ja) 2014-06-05

Family

ID=51025013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013184468A Pending JP2014102492A (ja) 2012-10-04 2013-09-05 光学フィルム及びその製造方法、偏光板ならびに液晶表示装置

Country Status (1)

Country Link
JP (1) JP2014102492A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016068357A (ja) * 2014-09-29 2016-05-09 富士フイルム株式会社 フィルム製造方法
JP2017068223A (ja) * 2015-10-02 2017-04-06 住友化学株式会社 偏光板用保護フィルム
WO2018124769A1 (ko) * 2016-12-30 2018-07-05 주식회사 동진쎄미켐 코팅 조성물 및 이로부터 제조되는 필름
JP2018205464A (ja) * 2017-06-01 2018-12-27 株式会社サンリッツ 偏光板および画像表示装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016068357A (ja) * 2014-09-29 2016-05-09 富士フイルム株式会社 フィルム製造方法
JP2017068223A (ja) * 2015-10-02 2017-04-06 住友化学株式会社 偏光板用保護フィルム
WO2018124769A1 (ko) * 2016-12-30 2018-07-05 주식회사 동진쎄미켐 코팅 조성물 및 이로부터 제조되는 필름
CN110139905A (zh) * 2016-12-30 2019-08-16 株式会社东进世美肯 涂层组合物及由此制备的薄膜
JP2020514465A (ja) * 2016-12-30 2020-05-21 ドンジン セミケム カンパニー リミテッドDongjin Semichem Co., Ltd. コーティング組成物およびこれから製造されるフィルム
CN110139905B (zh) * 2016-12-30 2021-09-28 株式会社东进世美肯 涂层组合物及由此制备的薄膜
JP2018205464A (ja) * 2017-06-01 2018-12-27 株式会社サンリッツ 偏光板および画像表示装置

Similar Documents

Publication Publication Date Title
US9946110B2 (en) Liquid crystal display
JP6086629B2 (ja) 光学フィルム、光学フィルムの製造方法、偏光板、及び画像表示装置
EP1932879B1 (en) Resin composition for optical material
JP6043799B2 (ja) 光学フィルム及びその製造方法、偏光板並びに液晶表示装置
JP2011154360A (ja) 光学フィルム及びその製造方法
JPWO2014119487A1 (ja) 光学フィルム及びその製造方法、偏光板並びに液晶表示装置
JP2014170202A (ja) 液晶表示装置
JP2014095731A (ja) 光学フィルム、偏光板ならびに液晶表示装置
JP6267886B2 (ja) 液晶表示装置
JP2014170130A (ja) 光学フィルム及びその製造方法、偏光板ならびに液晶表示装置
JP2014119539A (ja) 偏光板保護フィルム、偏光板および液晶表示装置
JP2014102492A (ja) 光学フィルム及びその製造方法、偏光板ならびに液晶表示装置
US8999464B2 (en) Optical film and its production method, polarizer and liquid crystal display device
JPWO2014057950A1 (ja) 光学フィルムの製造方法
JP2014081598A (ja) 光学フィルム及びその製造方法ならびに偏光板
JP2014199320A (ja) 光学フィルムとその製造方法、偏光板および液晶表示装置
JP2014157284A (ja) 偏光板保護フィルム、偏光板および液晶表示装置
JP2014119538A (ja) 偏光板保護フィルム、偏光板および液晶表示装置
JP6013870B2 (ja) 光学フィルム及びその製造方法、偏光板並びに液晶表示装置
JP2014098883A (ja) 光学フィルム及びその製造方法、偏光板並びに液晶表示装置
JP2014098893A (ja) 光学フィルム及びその製造方法、偏光板ならびに液晶表示装置
JP2014095730A (ja) 光学フィルム及びその製造方法、偏光板ならびに液晶表示装置
WO2016009743A1 (ja) 光学フィルム、偏光板および画像表示装置
JP6329880B2 (ja) 光学フィルム、光学フィルムの製造方法、偏光板、及び画像表示装置
JP2014081410A (ja) セルロースアシレートフィルム、偏光板および液晶表示装置