WO2004015756A1 - サブマウントおよび半導体装置 - Google Patents

サブマウントおよび半導体装置 Download PDF

Info

Publication number
WO2004015756A1
WO2004015756A1 PCT/JP2003/009706 JP0309706W WO2004015756A1 WO 2004015756 A1 WO2004015756 A1 WO 2004015756A1 JP 0309706 W JP0309706 W JP 0309706W WO 2004015756 A1 WO2004015756 A1 WO 2004015756A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
solder
submount
film
solder layer
Prior art date
Application number
PCT/JP2003/009706
Other languages
English (en)
French (fr)
Inventor
Takashi Ishii
Kenjiro Higaki
Yasushi Tsuzuki
Original Assignee
Sumitomo Electric Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries, Ltd. filed Critical Sumitomo Electric Industries, Ltd.
Priority to AU2003252741A priority Critical patent/AU2003252741A1/en
Priority to EP03784491A priority patent/EP1542271B1/en
Priority to US10/520,385 priority patent/US7196356B2/en
Priority to DE60335556T priority patent/DE60335556D1/de
Publication of WO2004015756A1 publication Critical patent/WO2004015756A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0233Sheets, foils
    • B23K35/0238Sheets, foils layered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • B23K1/0016Brazing of electronic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/19Soldering, e.g. brazing, or unsoldering taking account of the properties of the materials to be soldered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • B23K35/262Sn as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • B23K35/268Pb as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3006Ag as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3013Au as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/018Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of a noble metal or a noble metal alloy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/13111Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/29109Indium [In] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/29111Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01023Vanadium [V]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01024Chromium [Cr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01032Germanium [Ge]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0104Zirconium [Zr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01041Niobium [Nb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01042Molybdenum [Mo]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01049Indium [In]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01073Tantalum [Ta]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01088Radium [Ra]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/10329Gallium arsenide [GaAs]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12042LASER
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0235Method for mounting laser chips
    • H01S5/02355Fixing laser chips on mounts
    • H01S5/0237Fixing laser chips on mounts by soldering

Definitions

  • the present invention relates to a submount and a semiconductor device using the same, and more particularly, to a submount on which a semiconductor light emitting element is mounted and a semiconductor device using the submount.
  • the “semiconductor light emitting device” of the present invention refers to, for example, a laser diode or a light emitting diode. Background technology
  • FIG. 4 is a schematic cross-sectional view for explaining a conventional method for manufacturing a semiconductor device.
  • a conventional method for manufacturing a semiconductor device will be described with reference to FIG.
  • a submount 3 for mounting a laser diode 2 as a semiconductor light emitting element is prepared.
  • the sub-mount is composed of a ceramic substrate 4 and a laminated film (Ti / Pt laminated film 5) formed of a film containing titanium (Ti) and a film containing platinum (Pt) formed on the substrate.
  • the methods for forming the TiZPt laminated film, Au film, solder barrier layer and solder layer include conventional deposition methods such as vapor deposition, sputtering and plating, and patterning methods such as photolithography and metal mask. A method can be used.
  • the solder of the submount is heated and melted, and a laser diode as a semiconductor light emitting element is mounted at a predetermined position on the solder (a die bonding process is performed) '. Thereafter, by connecting and fixing the back surface of the submount to a heat sink (not shown) with solder or the like, a semiconductor device having a semiconductor light emitting element can be obtained.
  • a heat sink not shown
  • lead having a lower melting temperature than the gold-tin-based solder is used.
  • solder layer (Pb) Tin (Sn) -based solder or silver (Ag) tin (Sn) -based solder may be used as the solder layer.
  • silver-tin solder When silver-tin solder is used, lead-free can be achieved at the same time.
  • the output speed of semiconductor light emitting elements has been increased due to the increase in the writing speed of CD devices and DVD devices and the increase in output power of laser processing machines, and the semiconductor devices used in such devices have higher practicalities. Reliability is needed.
  • One requirement for achieving this is the height and bonding strength between the semiconductor light emitting device and the submount. Disclosure of the invention
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a submount capable of bonding a semiconductor light emitting element with high strength and a semiconductor using the submount. It is to provide a device.
  • a submount according to the present invention includes a submount substrate and a solder layer formed on a main surface of the submount substrate.
  • the density of the solder layer before melting is 50% or more and 99.9% or less of the theoretical density of the material composing the solder layer.
  • the density of the solder layer before melting is 50% or more and 99.9% or less of the theoretical density of the material forming the solder layer, so that the density of the solder layer is high. Therefore, the bonding strength between the semiconductor light emitting device mounted on the solder layer and the submount can be improved. If the density of the solder layer is less than 50% of the theoretical density, the density of the solder layer will be low, and the bonding strength cannot be sufficiently improved. It is technically difficult to increase the density of the solder layer above 99.9% of the theoretical density.
  • the solder layer contains at least one selected from the group consisting of a gold tin (Au Sn) alloy, a silver tin (Ag Sn) alloy and a lead tin (PbSn) alloy. More preferably, the solder layer is mainly composed of silver-tin solder. In this case, lead-free can be realized, and the junction temperature of the semiconductor light emitting device can be set low, so that damage to the semiconductor light emitting device caused by heating can be reduced.
  • the solder layer before melting is formed on the submount substrate, a first layer containing silver (Ag) as a main component, and a tin (Sn) layer formed on the first layer. And a second layer having as a main component. For example, an Ag film is used as the first layer, and an Sn film is used as the second layer, for example.
  • the submount further includes an electrode layer formed between the submount substrate and the solder layer.
  • the electrode layer contains gold.
  • the submount further includes a solder adhesion layer formed between the solder layer and the electrode layer.
  • the solder adhesion layer is provided on the solder layer side, and is a noble metal layer mainly composed of at least one selected from the group consisting of gold (Au), platinum (Pt), palladium (Pd), and an alloy thereof. And at least one selected from the group consisting of titanium (T i), vanadium (V), chromium (Cr), dinoreconium (Zr), niobium (Nb), and an alloy thereof, provided on the electrode layer side. And a transition element layer whose main component is a seed. In this case, the bonding strength of the solder can be further increased.
  • the transition element layer may be a layer containing at least one selected from the group consisting of a group 4A element, a group 5A element, a group 6A element and an alloy thereof, and a plurality of layers having different compositions.
  • the layers may be stacked.
  • the thickness of the transition element layer and the noble metal layer be more than 0 and 1 Aim or less. More preferably, the thickness of the transition element layer is from 0.011 to 0.2 ⁇ , and the thickness of the noble metal layer is from 0.01 m to 0.1 / zm.
  • the submount further includes an adhesion layer and a diffusion prevention layer formed between the submount substrate and the solder layer.
  • An adhesion layer is formed so as to contact the main surface of the submount substrate, and a diffusion prevention layer is formed on the adhesion layer.
  • the adhesion layer includes titanium, and the diffusion preventing layer includes platinum.
  • the submount substrate is an aluminum nitride Includes miniature sintered body.
  • the submount substrate may include a silicon carbide (SiC) sintered body, a copper tungsten (CuW) alloy, or a composite.
  • a semiconductor device includes any one of the above-described submounts and a semiconductor light emitting element mounted on the solder layer of the submount.
  • the semiconductor light emitting element can be mounted on the submount with high strength, and the practical reliability of the semiconductor device can be improved.
  • FIG. 1 is a schematic sectional view showing a semiconductor device according to the first embodiment of the present invention.
  • FIG. 2 is a schematic sectional view showing a semiconductor device according to the second embodiment of the present invention.
  • FIG. 3 is a schematic sectional view for explaining a method of manufacturing the semiconductor device shown in FIG.
  • FIG. 4 is a schematic cross-sectional view for explaining a conventional method for manufacturing a semiconductor device.
  • FIG. 1 is a schematic sectional view showing a semiconductor device according to the first embodiment of the present invention.
  • the semiconductor device 1 includes a submount 3 and a laser diode 2 as a semiconductor light emitting element mounted on the submount 3 by a solder layer 8.
  • the solder layer 8 has a density of 50% or more and 99.9% or less of the theoretical density of the silver-tin-based solder constituting the solder layer 8.
  • the submount 3 is composed of a Ti / Pt laminated film 5, a gold (Au) film 6, and a solder The barrier layer 107 and the solder layer 8 are laminated.
  • a submount 3 for mounting the laser diode 2 is prepared.
  • the submount is composed of a ceramic substrate 4 and a laminated film (T i) formed of a film (adhesion layer) containing titanium (T i) and a film (diffusion prevention layer) containing platinum (Pt) formed on the substrate.
  • T i / Pt laminated film, Au film, solder barrier layer and solder layer can be formed by conventional deposition methods such as vapor deposition, sputtering or plating, and photolithography or metal mask. A patterning method can be used.
  • solder layer 8 As a material forming the solder layer 8, not only silver-tin solder but also gold-tin solder or lead-tin solder can be used.
  • an X-ray reflectometer (GIXR) apparatus described in Toray Research Center, TH E TRC NEWS No. 59 (Apr. 1997), pp. 11-16 Can be used.
  • the solder of the submount is heated and melted, and a laser diode as a semiconductor light emitting element is mounted at a predetermined position on the solder (a die bonding process is performed). Thereafter, by connecting and fixing the back surface of the submount to a heat sink (not shown) by soldering or the like, a semiconductor device having a semiconductor light emitting element can be obtained.
  • FIG. 2 is a schematic cross-sectional view showing a semiconductor device according to Embodiment 2 of the present invention.
  • FIG. 3 is a schematic cross-sectional view for explaining a method of manufacturing the semiconductor device shown in FIG. 2, and shows a state before the solder is melted.
  • the semiconductor device 1 has a structure in which a laser diode 2 as a semiconductor light emitting element is mounted on a submount 3.
  • the submount consists of a submount substrate 4 made of, for example, an aluminum nitride (A1N) sintered body, a titanium (Ti) film 5b as an adhesion layer, and a platinum (Pt) film as a diffusion prevention layer.
  • A1N aluminum nitride
  • Ti titanium
  • Pt platinum
  • TiZPt laminated film 5 gold (Au) film 6 as an electrode layer formed on the TiZPt laminated film 5, and a transition element formed on the Au film
  • Au film 5b gold (Au) film 6 as an electrode layer formed on the TiZPt laminated film 5
  • Au gold
  • Au film 6 as an electrode layer formed on the TiZPt laminated film 5
  • Au film 7b solder (Ti) film 7b as a layer and a platinum (Pt) film 7a as a noble metal layer, a solder adhesion layer 7 composed of a laminate, and a silver tin (8) as a solder layer 8 formed on the solder adhesion layer.
  • Ag Sn) based solder Ag Sn) based solder.
  • the laser diode and the submount are connected by a solder layer.
  • the width of the laser diode, the width of the solder layer, and the width of the solder adhesion layer are almost equal.
  • the width and length of the solder layer may be larger or smaller than the width of the laser diode, and the width and length of the solder adhesion layer. May be larger or smaller than the width and length of the solder layer.
  • a ceramic, a semiconductor, or a metal may be used as a material of a substrate constituting the submount.
  • the ceramic for example, the above-mentioned aluminum nitride (A 1 N), aluminum oxide (A 1 2 0 3), carbide Kei element (S i C), and the like as a main component nitride Kei element (S i 3 N 4)
  • semiconductors mainly consist of silicon (Si), while metals such as copper (Cu), tungsten (W), molybdenum (Mo), iron (Fe) and Alloys and composite materials such as copper tungsten (CuW), respectively.
  • the substrate is preferably made of a material having high thermal conductivity. Its thermal conductivity is preferably at least 10 OWZniK, more preferably at least 17 OW / mK. Further, the thermal expansion coefficient is preferably similar to the thermal expansion coefficient of the material constituting the laser diode. For example, when a laser diode is used, for example gallium arsenide (G a A s or indium phosphide (I n P), the thermal expansion coefficient of the substrate. Is preferably not more than 10 X 10- 6 ZK, more preferably 5 X 10 / ⁇ or less It is.
  • a through hole may be formed so as to connect between the upper surface and the lower surface opposite thereto, or a via hole filled with a conductor (via fill) may be formed therein.
  • a high melting point metal particularly, tungsten (W) or molybdenum (Mo) can be preferably used.
  • W tungsten
  • Mo molybdenum
  • These may further contain a transition metal such as titanium (T i), or a glass component or a substrate material (for example, aluminum nitride (A 1 N)).
  • the surface roughness of the substrate is preferably 1 m or less at Ra, and more preferably 0.1 ⁇ or less at Ra. Further, the flatness is preferably 5 m or less, more preferably 1 m or less. If Ra exceeds 1 ⁇ or the flatness exceeds 5 ⁇ , a gap is likely to be formed between the laser diode and the submount at the time of joining the laser diode, thereby reducing the effect of cooling the laser diode. There is.
  • the surface roughness Ra and the flatness are specified in the JIS standards (JISB 0601 and JIS B 0621, respectively).
  • the Ti film (film containing titanium (Ti)) constituting the TiZPt laminated film is an adhesion layer for improving the adhesion to the substrate, and is formed so as to contact the upper surface of the substrate. Is done.
  • examples of such materials include (T i), vanadium (V), chromium (Cr), Eckel chromium alloy (NiCr), zirconium (Zr), niobium (Nb), tantalum (Ta), and these. Can be used.
  • the substrate is a metal, an alloy, or a composite material containing a metal, the adhesion layer may not be formed.
  • the platinum (Pt) film constituting the Ti / Pt laminated film is a diffusion preventing layer and is formed on the upper surface of the Ti film.
  • the material for example, platinum (Pt)-, palladium (Pd), nickel-chromium alloy (NiCr), nickele (Ni), molybdenum (Mo) and the like can be used.
  • the main component of the electrode layer is usually Au.
  • solder barrier layer may be formed between the solder adhesion layer and the negative electrode layer.
  • the material for example, platinum (Pt), nickel chrome alloy (NiC r) and nickel (Ni) can be used.
  • the width and length of the solder barrier layer can be larger or smaller than those of the solder adhesion layer.
  • solder layer in addition to the above-mentioned silver-tin (AgSn) -based solder, for example, low-melting-point metal solder such as tin (Sn) and indium (In), or gold tin (Au An alloy solder such as Sn-based solder, gold-germanium (AuGe) -based solder, lead-tin (PbSn) -based solder, indium-tin (InSn) -based solder, or a combination of these can be used. . Further, as a form of the solder layer before melting, for example, as shown in 8a and 8b of FIG. 3, metal types of the above-described alloy solders of IJ may be laminated.
  • the silver (Ag) content when using silver-tin (AgSn) -based solder for the solder layer is 0 mass% or more and 72 mass% or less, and when using gold-tin (Au Sn) -based solder Au)
  • the amount is 65 to 85% by mass or 5 to 20% by mass. / 0 or less is preferable.
  • the above-described TiZPt laminated film, Au film, solder adhesion layer, solder barrier layer, and solder layer are collectively referred to as a metallized layer.
  • a film forming method conventionally used can be applied.
  • a thin film forming method such as an evaporation method and a sputtering method, and a plating method.
  • the patterning method of the Ti / Pt laminated film, the Au film, the solder adhesion layer and the solder layer described above includes, for example, a lift-off method using photolithography, a chemical etching method, a dry etching method, or a metal mask method. There is.
  • the thickness of the titanium (T i) film in the above-mentioned Ti ZPt laminated film is 0.011 111 or more and 1. ⁇ or less, and the thickness of the platinum (Pt) film is 0.011 111 or more and 1.5 m.
  • the thickness of the Au film as an electrode layer is 0.1 ⁇ m or more and 10 / zm or less.
  • the thickness of the solder layer is preferably 0.1 ⁇ m or more and 10 ⁇ m or less. When a solder barrier layer is formed, its thickness is preferably not less than 0.1 ⁇ and not more than 1.5 ⁇ .
  • Examples of the material of the semiconductor light emitting device of the present invention include compound semiconductors such as GaAs, InP, and GaN.
  • the light emitting section may be on either the upper surface or the lower surface.
  • a bottom emission laser diode the laser diode is located on the side of the laser diode facing the junction between the laser diode and the solder layer.
  • the surface of the laser diode metallization layer such as a silicon oxide film (S io 2) insulating layer and the electrode layer, such as is formed.
  • the thickness of the gold (Au) layer as the electrode layer is preferably from 0.1 ⁇ to 10 m in order to ensure good wettability with the solder layer.
  • the semiconductor device shown in FIG. 2 may be connected to the heat sink using a solder or the like.
  • a solder solder foil
  • solder foil solder foil
  • the solder foil may be formed on the metallized layer on the back surface of the substrate in advance. In that case, the laser diode and heat sink can be bonded to the substrate at the same time.
  • the material of the heat sink for example, metal or ceramics can be used.
  • the metal for example, copper (Cu), aluminum (A 1), tungsten (W), molybdenum (Mo), iron (Fe), alloys and composite materials containing these metals can be used. It is preferable to form a film containing nickel (Ni), gold (Au), or a metal containing these metals on the surface of the heat sink to facilitate solder bonding. These films can be formed by an evaporation method or a plating method.
  • the heat conductivity of the heat sink is preferably 10 OWZmK or more.
  • a substrate is manufactured as a first step. Since this type of submount is as small as several mm in length and width, usually a substrate base material with a length and width of about 50 mm is made, and after forming a metallization layer, It is manufactured by a method of finely cutting and dividing into predetermined sizes. Hereinafter, description will be made along this procedure. Therefore, the size of the substrate base material in this step is, for example, 50 mm in width, 50 mm in length, and 0.4 mm in thickness.
  • the manufacturing method of aluminum nitride (A 1 N) sintered body The usual method can be applied.
  • the surface of the substrate is polished in a second step.
  • the surface roughness of the polished substrate is preferably not more than 1. ⁇ , more preferably not more than 0.1 ⁇ , in Ra.
  • a usual method such as polishing with a grinder, sandplast, sandpaper or abrasive grains can be applied.
  • a Ti film 5b as an adhesion layer, a Pt film 5a as a diffusion prevention layer, and an Au film 6 as an electrode layer are formed in a predetermined pattern.
  • a resist pattern is formed.
  • a resist film is formed on a substrate portion outside a region where each film is to be formed, for example, by a photolithography method.
  • the fourth step is a step of depositing a Ti film as an adhesion layer.
  • the thickness of the film is, for example, 0.1 ⁇ .
  • a Pt film serving as a diffusion preventing layer is formed on the adhesion layer.
  • the thickness of the film is, for example, 0.2 m.
  • an Au film as an electrode layer is deposited.
  • the thickness of the film is, for example, 0.6 ⁇ m.
  • the seventh step is a lift-off step.
  • the resist film formed in the third step of the patterning step is removed by a resist stripping solution together with the adhesive layer, the diffusion preventing layer and the electrode layer on the resist film.
  • a solder adhesion layer is deposited.
  • a Ti film 7b as a transition element layer and then a Pt film 7a as a noble metal layer are deposited on the electrode layer by using a metal mask method.
  • the thicknesses of the Ti film and the Pt film formed at this time are, for example, 0.08 im and 0.05 / m, respectively.
  • a solder layer 8 is formed on the solder adhesion layer by a vacuum evaporation method.
  • a metal mask method as shown in Fig. 3, an Ag film 8b as an Ag / Sn laminated solder layer is deposited on the solder adhesion layer, and then an Sn film 8a is deposited.
  • the thicknesses of the Ag film and the Sn film formed at this time are, for example, 1.5 jum and 3. O zm, respectively.
  • the pressure in the chamber before film formation is, 5.
  • the surface temperature of the substrate at the time of forming the solder layer is 20 ° C or more, which is 10 ° C lower than the temperature at which the liquid phase of the solder is generated.
  • the temperature is lower than the low temperature.
  • the density of the solder layer 8 needs to be 50% or more and 99.9% or less of the theoretical density.
  • the deposition rate of the solder layer 8 may be set to 1.3 nmZ seconds or more. It is not always clear how the density increases as the deposition rate increases. Generally, when the deposition rate is low, the atoms constituting the solder layer move to a stable position, so that the atoms cannot be filled in the solder layer in the closest density. Therefore, it is considered that the density of the solder layer is reduced.
  • the atoms that make up the solder layer cannot move because they are surrounded by other atoms before moving to a stable position.
  • the atoms can be filled in the solder layer in a state close to the closest density, and the density of the solder layer is considered to increase.
  • the above-described photolithography method may be used instead of the above-described metal mask method.
  • the base material substrate is cut and divided into a desired submount length and width to obtain a submount 3 shown in FIG. ,
  • a laser diode 2 as a semiconductor light emitting element is joined. Specifically, as shown in FIG. 3, the same element is arranged as shown by an arrow 9 on the solder layer 8 melted by heating, and joined to the submount by the solder layer. Thus, the semiconductor device 1 of FIG. 2 is completed.
  • the solder layer 8 according to the above-described second embodiment has a theoretical density of 50 of the silver-tin-based solder similarly to the solder layer 8 of the first embodiment. /. It has a density of not less than 99.9%.
  • the density of the solder layer before melting is 50% or more and 99.9% or less with respect to the theoretical density.
  • the joint strength between the child and the submount can be further increased. As a result, the practical reliability of the semiconductor device can be further improved.
  • Samples 2 to 11 correspond to the examples, and sample 1 corresponds to the comparative example.
  • Substrate Solder composition ratio Solder film thickness
  • substrates of the materials shown in Table 1 were prepared. All dimensions were 5 OmmX 5 OmmX 0.4 mm in vertical X horizontal X thickness. The surface of this substrate was polished, and the roughness Ra of the main surface 4f was set to 0.05 / m.
  • the Ti film 5 b 'having a thickness of 0.1 / m and the Pt film 5 a having a thickness of 0.2 ⁇ m have a thickness of 0.2 ⁇ m.
  • a metallized layer made of a 6 m Au film 6 was formed.
  • a metallized layer composed of a Ni plating film having a thickness of 1. ⁇ / ⁇ and an Au plating film having a thickness of 1.0 in was formed instead of the metallizing layer.
  • transition element layer (Ti, thickness 0.06 / m) and the noble metal layer (Pt, thickness 0.05 ⁇ ) which become the solder adhesion layer 7 are metallized by a metal mask method and vacuum evaporation. Formed on top.
  • solder layer 8 was formed on all the samples by a metal mask method and vacuum evaporation.
  • the composition of the solder layer, film thickness and film forming rate are as shown in Table 1.
  • “Solder composition ratio” in Table 1 indicates the mass ratio of the elements constituting the solder layer.
  • “Relative density of solder” refers to the density of the solder layer relative to the theoretical density of the material composing the solder layer. '
  • the bonding strength of the semiconductor device 1 (see FIG. 1) obtained in this manner to the submount of the laser diode was determined by a DIE SHEAR test based on the MIL-STD-883C METHOD 2 0 19.4. S TRENGTH TEST), and the average value of the bonding strength of 10 samples of each sample number was determined. Table 1 also shows the results. -From the results in Table 1, it can be seen that in the submount and the semiconductor device according to the present invention, the bonding strength between the semiconductor light emitting element and the submount is improved as compared with those of the comparative example. (Relationship between deposition rate and solder layer density)
  • the relationship between the deposition rate and the density of the solder layer was investigated by changing the deposition rate of the solder layer in various ways. As a result, if the deposition rate of the solder layer is 1.3 nm / sec or more, the density of the solder layer with respect to the theoretical density of the material constituting the solder layer becomes 50% or more and 99.9% or less. If the film deposition rate is 1.8 nm / sec or more and l O nmZ seconds or less, the density of the solder layer will be 80% or more and 99.9% or less based on the theoretical density of the material constituting the solder layer. Particularly favorable bonding strength was obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Die Bonding (AREA)
  • Semiconductor Lasers (AREA)
  • Led Device Packages (AREA)

Abstract

 高い接合強度で半導体発光素子を取りつけることができるサブマウントを提供する。 サブマウント3は、基板4と、基板4の主表面4f上に形成されたはんだ層8とを備える。はんだ層8の密度がはんだ層8を構成する材質の理論密度の50%以上99.9%以下である。はんだ層8は、金錫合金、銀錫合金および鉛錫合金からなる群より選ばれた少なくとも1種を含む。溶融前のはんだ層8は、基板4の上に形成され、Ag膜8bと、Ag膜8bの上に形成されたSn膜8aとを有する。サブマウント3は、基板4とはんだ層8との間に形成されたAu膜6をさらに備える。

Description

明細書
サブマウントおよぴ半導体装置 技術分野
この発明は、 サブマウントおよびそれを用いた半導体装置に関し、 より特定的 には、 半導体発光素子を搭載するサブマウントおよびこのサブマウントを用いた 半導体装置に関する。 なお、.本発明の 「半導体発光素子」 とは、 例えばレーザー ダイオードや発光ダイオードのようなものを指す。 . 背景技術
従来、 半導体発光素子を備える半導体装置が知られている。 このような半導体 装置の一種は、 図 4に示すようにサプマウント 3に半導体発光素子を搭載するこ とにより製造される。 図 4は、 従来の半導体装置の製造方法を説明するための断 面模式図である。 図 4を参照して、 従来の半導体装置の製造方法を説明する。 図 4に示すように、 従来の半導体装置 1の製造方法では、 まず半導体発光素子 としてのレーザダイォード 2を搭載するためのサブマウント 3を準備する。 サブ マウントは、 セラミックの基板 4と、 同基板上に形成されたチタン (T i) を含 む膜および白金 (P t) を含む膜からなる積層膜 (T i/P t積層膜 5) と、 こ の積層膜上に形成された電極層としての金 (Au) 膜 6と、 この膜上に形成され た白金 (P t) を含むはんだバリア層 107と、 同バリア層上に形成された金 (Au) 錫 (S n) 系はんだを含むはんだ層 108とからなる。 T iZP t積層 膜、 Au膜、 はんだバリア層およびはんだ層を形成する方法は、 従来の蒸着法、 スパッタリング法あるいはめっき法などの成膜方法およぴフォトリソグラフィ法 あるいはメタルマスク法などのパターユング方法を用いることができる。
図 4に示したようなサブマウントを準備した後、 サブマウントのはんだを加熱 溶融し、 半導体発光素子としてのレーザ—ダイォードをはんだ上の所定の位置に 搭載する (ダイボンド工程を実施する)' 。 この後、 図示しないヒートシンクにサ ブマウントの裏面側をはんだなどで接続'固定することにより、 半導体楽光素'子 を備える半導体装置を得ることができる。 .また、 半導体発光素子のダイボンド工程において、 加熱によって発生する半導 体発光素子の損傷を低減するために、 上記金錫系はんだより溶融温度の低い鉛
(P b) 錫 (S n) 系はんだや銀 (Ag) 錫 (S n) 系はんだが、 はんだ層とし て用いられることもある。 銀錫系はんだを用いた場合、 同時に鉛フリー化も達成 することができる。
—方、 例えば CD装置や DVD装置の書き込み速度の高速化やレーザ加工機の 高出力化などに伴う半導体発光素子の高出力化が進められており、 それらに用い られる半導体装置にはより高い実用信頼性が必要とされている。 その実現のため の 1つ要望事項として、 半導体発光素子とサブマウントの高 、接合強度がある。 発明の開示
この発明は、 上記のような課題を解決するためになされたものであり、 この発 明の目的は、 半導体発光素子を高い強度で接合することが可能なサブマゥントお よびそのサブマウントを用いた半導体装置を提供することである。
この発明に従ったサブマウントは、 サブマウント基板と、 サブマウント基板の 主表面上に形成されたはんだ層とを備える。 溶融前のはんだ層の密度がはんだ層 を構成する材質の理論密度の 50 %以上 99. 9 %以下である。
このように構成されたサブマウントでは、 溶融前のはんだ層の密度が、 はんだ 層を構成する材質の理論密度の 50%以上 99. 9%以下であるため、 はんだ層 の密度が高い。 そのため、 はんだ層上に搭載される半導体発光素子とサブマウン トとの接合強度を向上させることができる。 はんだ層の密度が理論密度の 50% 未満であれば、 はんだ層の密度が小さくなるため、 接合強度を十分に向上させる ことができない。 はんだ層の密度を理論密度の 99. 9%より大きくすること は、 技術的に困難である。
好ましくは、 はんだ層は、 金錫 (Au S n) 合金、 銀錫 (Ag S n) 合金およ ぴ鉛錫 (P b S n) 合金からなる群より選ばれた少なくとも 1種を含む。 より好 ましくは、 はんだ層は銀錫系はんだを主成分とする。 この場合、 鉛フリー化を実 現で'きるとともに、 半導体発光素子の接合温度を低く設定できるため、 加熱によ つて発生する半導体発光素子の損傷を低減することができる。 好ましくは、 溶融前のはんだ層は、 サブマウント基板の上に形成され、 銀 (A g) を主成分としてする第 1の層と、 第 1の層の上に形成され、 錫 (S n) を主 成分とする第 2の層とを有する。 第 1の層として、 例えば Ag膜が用いられ、 第 2の層として、 例えば S n膜が用いられる。
好ましくは、 サブマウントは、 サブマウント基板とはんだ層との間に形成され た電極層をさらに備える。
好ましくは、 電極層は金を含む。
好ましくは、 サブマウントは、 はんだ層と電極層との間に形成されたはんだ密 着層をさらに備える。 はんだ密着層は、 はんだ層側に設けられて、 金 (Au) 、 白金 (P t) 、 パラジウム (P d) およびそれらの合金からなる群から選ばれた 少なくとも 1種を主成分とする貴金属層と、 電極層側に設けられてチタン (T i ) 、 バナジウム (V) 、 クロム (C r) 、 ジノレコニゥム (Z r) 、 ニオブ (N b) およびそれらの合金からなる群から選ばれた少なくとも 1種を主成分とする 遷移元素層とを含む。 この場合、 はんだの接合強度をより一層高めることができ る。
遷移元素層は、 4 A族元素、 5 A族元素または 6 A族元素およびその合金から なる群から選ばれた少なくとも 1種を主成分とする層であってもよく、 また組成 の異なる複数の層が積層されていてもよい。
接合強度を高めるためおよび価格面から、 遷移元素層およぴ貴金属層の膜厚は 0を超え 1 Ai m以下であるのが望ましい。 より好ましくは、 遷移元素層の膜厚 は、 0. 01 111以上0. 2 μπι以下であり、 貴金属層の膜厚は、 0. 01 m 以上 0. l /zm以下である。
また好ましくは、 サブマウントは、 サブマゥント基板とはんだ層との間に形成 された密着層と拡散防止層とをさらに備える。 サブマウント基板の主表面に接触 するように密着層が形成されており、 密着層の上に拡散防止層が形成されてい る。
好ましくは、 密着層はチタンを含み、 拡散防止層は白金 含む。
好ましくは、 サブマウント'基板は窒化アルミニウム (A 1 N) 焼結体またはァ ルミナ (A 1203) 焼結体を含む。 より好ましくは、 サブマウント基板は窒化アル ミニゥム焼結体を含む。 この場合、 窒化アルミニウムは熱伝導率が高いため、 放 熱特性の優れたサブマウントを得ることができる。 また、 サブマウント基板は、 炭化ケィ素 (S i C ) 焼結体または銅タングステン (C u W) 合金または複合体 を含んでいてもよい。
この発明に従った半導体装置は、 上述のいずれかのサブマウントと、 サブマウ ントのはんだ層上に搭載された半導体発光素子とを備える。
このように構成された半導体装置では、 半導体発光素子を高い強度でサブマウ ントに琮合することが可能であり、 半導体装置の実用信頼性を向上させることが できる。 図面の簡単な説明
図 1は、 この発明の実施の形態 1に従った半導体装置を示す断面模式図であ る。
図 2は、 この発明の実施の形態 2に従った半導体装置を示す断面模式図であ る。
図 3は、 図 2に示した半導体装置の製造方法を説明するための断面模式図であ る。
図 4は、 従来の半導体装置の製造方法を説明するための断面模式図である。 発明を実施するための最良の形態
(実施の形態 1 )
以下、 図面に基づいて本発明の実施の形態を説明する。 なお、 以下の図面にお いて同一または相当する部分には同一の参照番号を付しその説明は繰返さない。 図 1は、 この発明の実施の形態 1に従った半導体装置を示す断面模式図である。 図 1で示すように、 半導体装置 1は、 サブマウント 3と、 はんだ層 8によりサブ マウント 3に搭載された半導体発光素子としてのレーザダイォード 2とを備え る。 はんだ層 8は、 はんだ層 8を構成する銀錫系はんだの理論密度の 5 0 %以上 9 9 . 9 %以下の密度を有する。
サブマウント 3は、 基板 4上に T i / P t積層膜 5、 金 (A u ) 膜 6と、 はん だバリア層 1 0 7と、 はんだ層 8が積層されて構成されている。 図 1で示す半導 体装置 1の製造方法では、 まずレーザダイォード 2を搭載するためのサブマウン ト 3を準備する。 サブマウントは、 セラミックの基板 4と、 同基板上に形成され たチタン (T i ) を含む膜 (密着層) および白金 (P t) を含む膜 (拡散防止 層) からなる積層膜 (T i ZP t積層膜 5) と、 この積層膜上に形成された電極 層としての金 (Au) 膜 6と、 この膜上に形成された白金 (P t) を含むはんだ ノ リア層 1 07と、 同パリ.ァ層上に形成された銀 (Ag) 錫 (S n) 系はんだを 含むはんだ層 8とからなる。 T i /P t積層膜、 Au膜、 はんだバリア層おょぴ はんだ層を形成する方法は、 従来の蒸着法、 スパッタリング法あるいはめっき法 などの成膜方法およびフォトリソグラフィ法あるいはメタルマスク法などのパタ ーェング方法を用いることができる。
はんだ層 8を構成する材質としては、 銀錫はんだだけでなく、 金錫はんだまた は鉛錫はんだなどを用いることができる。
はんだ層 8の密度を測定する方法としては、 例えば、 東レリサーチセンター TH E TRC NEWS No.59 (Apr.1997), pp.11- 16に記載されている X線反射率測定 (G I X R) 装置を用いることができる。
図 1に示したようなサブマウントを準備した後、 サブマウントのはんだを加熱 溶融し、 半導体発光素子としてのレーザーダイオードをはんだ上の所定の位置に 搭載する (ダイボンド工程を実施する) 。 この後、 図示しないヒートシンクにサ ブマウントの裏面側をはんだなどで接続'固定することにより、 半導体発光素子 を備える半導体装置を得ることができる。
このような本発明のサブマウントおよび半導体装置では、 溶融前のはんだ層の 密度が理論密度に対して 50%以上 9 9. 9%以下であるため、 半導体発光素子 とサブマウントの接合強度をより一層高めることができる。 その結果、 半導体装 置の実用信頼性をより一層向上させることができる。
(実施の形態 2) - 図 2は.、 この発明の実施の形態 2に従った半導体装置を示す断面模式図であ る。 また、 図 3は、 図 2に示した半導体装置の製造方法を説明するための断 ®模 式図であり、 はんだ溶融前の状態を示したものである。 図 2に示すように、 半導体装置 1は、 サブマウント 3に半導体発光素子として のレーザーダイオード 2が搭載された構造を有している。 サブマウントは、 例え ば窒化アルミニウム (A 1 N) 焼結体からなるサブマウント用の基板 4と、 密着 層としてのチタン (T i) 膜 5 bおよび拡散防止層としての白金 (P t) 膜 5 a の積層膜 5 (T iZP t積層膜 5) と、 この T iZP t積層膜 5上に形成された 電極層としての金 (Au) 膜 6と、 この Au膜上に形成され、 遷移元素層として のチタン (T i ) 膜 7 bおよび貴金属層としての白金 (P t) 膜 7 aの積層から なるはんだ密着層 7と、 はんだ密着層上に形成されたはんだ層 8としての銀錫 (Ag Sn) 系はんだとからなる。
図 2および図 3に示すように、 レーザーダイオードと、 サブマゥントとは、 は んだ層によって接続されている。 レーザーダイオードの幅と、 はんだ層の幅と、 はんだ密着層の幅は、 ほぼ等しい。 なお、 はんだ溶融前または溶融後の状態にお いて、 はんだ層の幅および長さは、 レーザーダイォードの幅おょぴ長さより大き くても小さくても良く、 はんだ密着層の幅および長さは、 はんだ層の幅および長 さよりも大きくても小さくてもかまわない。
図 2に示した半導体装置においては、 サブマウントを構成する基板の材料とし て、 セラミックス、 半導体、 あるいは金属を用いてもよい。 セラミックスとして は、 例えば上述した窒化アルミニウム (A 1 N) 、 酸化アルミニウム (A 120 3) 、 炭化ケィ素 (S i C) 、 窒化ケィ素 (S i3N4) などを主成分としたもの 力 半導体としては、 例えばシリコン (S i) を主成分としたものが、 金属とし ては、 例えば銅 (C u) 、 タングステン (W) 、 モリブデン (Mo) 、 鉄 (F e) およびこれらを含む合金ならびに銅タングステン (CuW) のような複合材 料が、 それぞれ挙げられる。
基板は、 熱伝導率の高い材料を用いることが好ましい。 その熱伝導率は、 好ま しくは 10 OWZniK以上であり、 より好ましくは 17 OW/mK以上である。 また、 その熱膨張係数は、 レーザーダイオードを構成する材料の熱膨張係数に近 似していることが好ましい。 例えばレーザーダイオードがガリウム砒素 (G a A s あるいはインジウムリン ( I n P) などを用いる場合、 基板の熱膨張係数. は、 好ましくは 10 X 10— 6ZK以下であり、 より好ましくは 5 X 10 /Κ以下 である。
基板 4にセラミックを用いた場合、 その上面とそれに対向する下面との間を接 続するようなスルーホールあるいはその内部に導体 (ビアフィル) が充填された ビアホールが形成されていてもよい。 ビアホールに充填される導体 (ビアフィ ル) の主成分としては、 望ましくは高融点金属、 特にタングステン (W) やモリ ブデン (Mo) を用いることができる。 なお、 これらにさらにチタン (T i) な どの遷移金属、 あるいはガラス成分や基板材料 (例えば窒化アルミニウム (A 1 N) ) が含まれていてもよい。
基板の表面粗さは、 好ましくは R aで 1 m以下、 より好ましくは R aで 0. Ι πι以下である。 また、 その平面度は、 好ましくは 5 m以下、 より好ましく は 1 m以下である。 R aが 1 μηιを超えるか平面度が 5 μηιを超える場合、 レ 一ザ一ダイォードの接合時にサブマウントとの間に隙間が発生し易くなり、 それ によってレーザーダイオードを冷却する効果が低下することがある。 なお、 表面 粗さ R aおよび平面度は J I S規格 (それぞれ J I SB 0601および J I SB 0621) に規定されている。
また、 T iZP t積層膜を構成する T i膜 (チタン (T i) を含む膜) は、 基 板との密着性を高めるための密着層であり、 基板の上部表面に接触するように形 成される。 その材料としては、 例えば (T i) 、 バナジウム (V) 、 クロム (C r ) 、 エッケルクロム合金 (N i C r) 、 ジルコニウム (Z r) 、 ニオブ (N b) 、 タンタル (Ta) 、 およびこれらの化合物を用いることができる。 また、 基板が金属、 合金あるいは金属を含む複合材料である場合には、 密着層は形成し なくてもよい。
また、 T i/P t積層膜を構成する白金 (P t) 膜は拡散防止層であり、 T i 膜の上部表面上に形成される。 その材料としては、 例えば白金 (P t) -、 パラジ ゥム (P d) 、 ニッケルクロム合金 (N i C r ) 、 ニッケノレ (N i ) 、 モリブデ ン (Mo) などを用いることができる。 なお、 電極層の主成分は、 通常 A uが用 いられる。
また、 はんだ密着層と鼋極層との間にはんだバリァ層が形成されていても良 い。 その材料としては、 例えば白金 (P t) 、 ニッケルクロム合金 (N i C r) 、 ニッケル (N i) などを用いることができる。 はんだバリア層の幅および 長さは、 はんだ密着層のそれらより大きくても小さくてもかまわない。
また、 はんだ層の材料としては、 上述の銀錫 (Ag S n) 系はんだの他に、 例 えば錫 (S n) 、 インジウム (I n) などの低融点金属はんだ、 または、 金錫 (Au S n) 系はんだ、 金ゲルマニウム (AuG e) 系はんだ、 鉛錫 (P b S n) 系はんだ、 インジウム錫 (I nSn) 系はんだなどの合金はんだ、 あるいは これらを組み合わせたはんだを用いることができる。 また、 溶融前のはんだ層の 形態としては、 例えば図 3の 8 a、 8 bに示したように、 上記した合金はんだの 另 IJ々の金属種が積層されていてもよい。 なお、 はんだ層に銀錫 (Ag S n) 系は んだを用いる場合の銀 (Ag) 量は、 0質量%以上72質量%以下、 金錫 (Au Sn) 系はんだを用いる場合の金 (Au) 量は、 65質量%以上 85質量%以下 あるいは 5質量%以上 20質量。 /0以下であることが好ましい。
なお、 上述の T iZP t積層膜、 Au膜、 はんだ密着層、 はんだバリア層およ びはんだ層を、 総称して以下メタライズ層とも言う。 メタライズ層の形成方法と しては、 従来から用いられている成膜方法を適用できる。 例えば、 蒸着法、 スパ ッタリング法などの薄膜形成方法、 あるいはめっき法などがある。 また、 上述の T i/P t積層膜、 Au膜、 はんだ密着層およびはんだ層のパターユング方法に は、 例えばフォトリソグラフィを用いたリフトオフ法、 化学エッチング法、 ドラ イエツチング法、 またはメタルマスク法などがある。
上述の T i ZP t積層膜のチタン (T i ) 膜の厚さは、 0. 01 111以上1. Ομΐη以下、 白金 (P t) 膜の厚さは、 0. 01 111以上1. 5 m以下が、 そ れぞれ好ましい。 電極層としての A u膜の厚さは、 0. l m以上 10 /zm以下 力 はんだ層の厚さは好ましくは 0. 1 μ m以上 10 μ m以下が、 それぞれ好ま しい。 はんだバリア層を形成する場合、 その厚さは好ましくは 0. Ο ΐ μπι以上 1. 5 μπι以下である。
本発明の半導体発光素子の材料としては、 例えば G a A s系、 I n P系、 G a N系のような、 化合物半導体が挙げられる。 発光部は、 上面もしくは下面のいず れでもよい。 なお、 下面発光型レーザーダイオード (レーザーダイオードとはん だ層との接合部に対向するレーザーダイォードの側面側においてレーザーダイォ ードの発光部が形成されている方式) の場合、 発熱部である発光部が基板により 近い位置に配置されることから、 半導体装置の放熱性をより向上させることがで さる。
レーザーダイオードの表面にはシリコン酸化膜 (S i o2) などの絶縁層および 電極層などのメタライズ層が形成される。 電極層としての金 (Au) 層の厚さ は、 はんだ層との良好な濡れ性を確保するために、 0. 1 μιη以上 10 m以下 であることが好ましい。
なお、 図 2に示した半導体装置は、 図示されていないが、 ヒートシンクにはん 'だなどを用いて接続されていてもよい。 具体的には、 基板の T iZP t積層膜が 形成された面とは反対側の面上に密着層、 拡散防止層などを形成した後、 例えば 基板の裏面とヒートシンクとの間にシート状のはんだ (はんだ箔) を配置し、 こ れを介してサブマウントにヒートシンクが接合される。 なお、 はんだ箔は、 あら かじめ基板裏面のメタライズ層上に形成してもよい。 その場合は、 レーザーダイ オードとヒートシンクを同時に基板に接合することができる。
ヒートシンクの材料としては、 例えば金属あるいはセラミックスなどを用いる ことができる。 金属としては、 例えば銅 (Cu) 、 アルミニウム (A 1 ) 、 タン グステン (W) 、 モリプデン (Mo) 、 鉄 (F e) 、 これらの金属を含む合金お よび複合材料を用いることができる。 なお、 はんだ接合を容易にするために、 ヒ ートシンクの表面にはニッケル (N i) 、 金 (Au) またはこれらの金属を含む 膜を形成するのが好ましい。 これらの膜は、 蒸着法やめつき法で形成することが できる。 ヒートシンクの熱伝導率は、 好ましくは 10 OWZmK以上である。 次に、 図 3を用いて、 図 2に示した半導体装置の製造方法を、 窒化アルミユウ ム焼結体を基板とした場合を想定して説明する。
まず第 1工程として基板を製造する。 この種のサブマウントは長さ、 幅がせい ぜレ、数 m m程度と小さいため、 通常は例えば長さ、 幅が 50 mm程度の基板母材 を作製し、 これにメタライズ層を形成した後、 所定サイズに細かく切断分割する 方法で製造される。 以下、 この手順に沿って説明する。 従って、 この工程での基 板母材のサイズは、 例えば幅を 50mm、 長さを 50mm、 厚さを 0. 4 mmと する。 なお、 基板材料である窒化アルミニウム (A 1 N) 焼結体の製造方法に は、 通常の方法が適用できる。
次に、 第 2工程で基板の表面を研磨する。 研磨後の基板の表面粗さは、 好まし くは R aで 1. Ο μιη以下、 より好ましくは 0. Ι μιη以下とする。 研磨方法と しては、 例えば研削盤、 サンドプラスト、 サンドペーパーまたは砥粒による研磨 などの通常の方法を適用することができる。
次に、 図 3で示すように、 密着層としての T i膜 5 b、 拡散防止層としての P t膜 5 aおよび電極層としての A u膜 6を所定のパターンで形成するため、 第 3 工程としてレジストパターンを形成する。 このレジストのパターユングにおいて は、 例えばフォトリソグラフィ法を用いて、 それぞれの膜が形成されるべき領域 外の基板部分にレジスト膜を形成する。
第 4工程は、 密着層である T i膜を蒸着する工程である。 膜の厚さは、 例えば 0. 1 μπιとする。
第 5工程は、 密着層上に拡散防止層である P t膜を形成する。 膜の厚さとして は、 例えば 0. 2 mとする。
第 6工程では、 電極層である Au膜を蒸着する。 膜の厚さは、 例えば 0. 6 μ mとする。
第 7工程はリフトオフ工程である。 この工程では第 3工程のパターユング工程 において形成したレジスト膜を、 レジスト剥離液によって、 そのレジスト膜上に 載った密着層、 拡散防止層および電極層それぞれの膜の部分とともに除去する。 この結果、 基板上に所定のパターンを有する 3つの膜を形成することができる。 第 8工程では、 はんだ密着層を蒸着する。 ここでは、 メタルマスク法を用いて 電極層上に遷移元素層としての T i膜 7 b、 次いで貴金属層としての P t膜 7 a をそれぞれ蒸着する。 このとき形成される T i膜と P t膜の厚さは、 それぞれ例 えば 0. 08 imおよぴ 0. 05 / mとする。
次に、 第 9工程として真空蒸着法により、 はんだ密着層上にはんだ層 8を形成 する。 ここでは、 メタルマスク法を用いて、 図 3に示したように、 はんだ密着層 上に Ag/S n積層はんだ層としての Ag膜 8 bを蒸着し、 続いて S n膜 8 aを 蒸着する。 このとき形成される A g膜と S n膜の厚さは、 それぞれ例えば 1. 5 jumおよび 3. O zmとする。 はんだ層を形成する工程において、'成膜雰囲気から水分や酸素などの不純物ガ スを低減するために、 成膜前のチャンバ内の圧力 (到達真空度) は、 5 . 0 X 1 0一4 P a以下とするのが好ましく、 より好ましくは 1 . 0 X 1 0— 4 P a以下であ る。 また、 はんだ層のはんだ密着層に対する密着性を向上させるために、 はんだ 層の成膜時の基板の表面温度は、 2 0 °C以上であり、 はんだの液相生成温度より も 1 0 °C低い温度以下とするのが好ましい。
はんだ層 8を形成する工程では、 はんだ層 8の密度を理論密度の 5 0 %以上 9 9 . 9 %以下にする必要がある。 そのためには、 例えば、 1つの方法としてはん だ層 8の成膜速度を 1 . 3 n mZ秒以上にするとよい。 成膜速度を上げると密度 が向上する原理については必ずしも明らかではない。 一般的に成膜速度が小さい 場合には、 はんだ層を構成する原子が安定な位置に移動するため、 はんだ層内に 原子を最密に充填することができない。 そのため、 はんだ層の密度が小さくなる と考えられる。 これに対して、 成膜速度が大きい場合には、 はんだ層を構成する 原子は、 安定な位置に移動する前に、 他の原子に取り囲まれて移動することがで きなくなる。 その結果、 はんだ層内に原子を最密に近い状態で充填することがで き、 はんだ層の密度が大きくなると考えられる。
なお、 所定のパターンを有するはんだ密着層おょぴはんだ層の形成方法として は、 上述のメタルマスク法に代えて前述のフォトリソグラフィ法を用いてもよ い。
次に、 第 1 0工程で、 その母材基板を所望のサブマウントの長さ、 幅に切断分 割し、 図 2に示すサブマウント 3を得る。 、
次の第 1 1工程では、 半導体発光素子としてのレーザーダイオード 2を接合す る。 具体的には、 図 3に示すように、 加熱により溶融したはんだ層 8の上に、 矢 印 9に示すように同素子を配置し、 はんだ層によってサブマウントに接合する。 このようにして、 図 2の半導体装置 1が完成する。
以上の実施の形態 2に従ったはんだ層 8は、 実施の形態 1のはんだ層 8と同様 に銀錫系はんだの理論密度の 5 0。/。以上 9 9 . 9 %以下の密度を有する。 、 以上のような本発明の^ブマウントおよび半導体装置では、 溶融前のはんだ層 の密度が理論密度に対して 5 0 %以上 9 9 . 9 %以下であるため、 半導体発光素 子とサブマウントの接合強度をより一層高めることができる。 その結果、 半導体 装置の実用信頼性をより一層向上させることができる。 実施例
(サンプノレの作製と評価)
以下の手法により、 表 1に示される試料 1から 1 1のサブマウントを製造し た。 試料 2から 1 1が実施例に対応し、 試料 1が比較例に対応する。
はんだ層 レーザダイオード 試料
基板 はんだ組成比 はんだ膜厚 はんだ はんだ成準 口 '皿 ダイシァ 香
(質量比) 相対密度 (¾) 速度 (ntn/s) C°C) 強度 (MPa)
1 AIN焼結体 Ag:Sn=32:68 1.5/4.0(Ag/Sn積層) 42 . 1 250 37
2 AIM焼結体 Ag:Sn=32:68 1.5/4,0(Ag/Sri積層) 62 1.5 250 47
'3 . A!賺結俅 Ag:Sn=32:68 1.5/4.0(Ag/Sn積層) 99 2 250 52
4 AIN焼結体 Ag:Sn=32:68 1,5/4.0(Ag/Sri積層) 92 5 250 51
5 AIN焼結体 Ag:Sn=32:68 1.5/4.0(Ag/Sn積層) 88 9 250 50
6 Si G焼結体 Ag:Sn=32:68 1.5/4.0(Ag/Sn積層) 94 2 250 49
7 Αίク 03焼結体 Ag:Sn=32:68 1.5/4.0(Ag/Sn積層) 95 2 250 47
8 CuW Ag:Sn=32:68 1.5/4.0(Ag/Sn積層) 97 2 250 48
9 AIN焼結体 Ag:Sn=10:90 3.5 (合金) 96 2 250 49
10 焼結体 Au:Sn=80:20 3.5 (合金〉 93 2 285 47
11 AIN焼結体 Au:Sn=10:90 3.5 (合金) 94 2 230 45
まず、 表 1に示した材質の基板を準備した。 寸法はいずれも、 縦 X横 X厚みが 5 OmmX 5 OmmX 0. 4 mmとした。 この基板の表面を研磨して、 主表面 4 f の粗さ R aを 0. 0 5 / mとした。 次に、 フォトリソグラフィーを用いたリフ トオフ法と真空蒸着法により、 厚みが 0. 1 / mの T i膜 5 b'と厚みが 0. 2 μ mの P t膜 5 aと厚みが 0. 6 mの A u膜 6からなるメタライズ層を形成し た。 なお、 試料 8については、 上記メタライズ層の代わりに厚みが 1. θ /ίπιの N iメツキ膜と厚みが 1 , 0 inの Auメツキ膜からなるメタライズ層を形成し た。
次に、 はんだ密着層 7となる遷移元素層 (T i、 厚み 0. 0 6 / m) および貴 金属層 (P t、 厚み 0. 0 5 μ πι) をメタルマスク法と真空蒸着でメタライズ層 上に形成した。
その後、 すべての試料に対し、 はんだ層 8をメタルマスク法と真空蒸着で形成 した。 はんだ層の糸且成、 膜厚および成膜速度は表 1に示した通りである。 表 1中 の 「はんだ組成比」.は、 はんだ層を構成する元素の質量比を示す。 「はんだ相対 密度」 とは、 はんだ層を構成する材質の理論密度に対するはんだ層の密度を示 す。 '
さらに、 基板 4を切断することにより、 縦 X横 X厚みが 1. 2mmX l . 5m mX 0. 3mmのサブマウントを、 それぞれの試料 1から 1 1について、 1 0個 ずつ作製した。 そして、 それぞれの試料について、 はんだ層を窒素雰囲気中で加 熱により溶融させてレーザーダイオード 2を接合した。 その接合温度は表 1に示 した通りである。
このようにして得られた半導体装置 1 (図 1参照) の、 レーザーダイオードの サブマウントに対する接合強度を M I L— S TD— 8 8 3 C METHOD 2 0 1 9. 4に基づいたダイシァー試験 (D I E SHEAR S TRENGTH T E S T) により測定し、 各試料番号の 1 0個の試料の接合強度の平均値を求 めた。 その結果も表 1に示す。 - 表 1の結果より、 本発明によるサブマウントおよび半導体装置においては、 比 '較例のそれらに比べ、 半導体発光素子とサブマゥントの接合強度が向上している ことが分かる。 (成膜速度とはんだ層の密度との関係)
はんだ層の成膜速度をさまざまに変化させて、 成膜速度とはんだ層の密度との 関係を調べた。 その結果、 はんだ層の成膜速度が 1. 3 nm/秒以上であれば、 はんだ層を構成する材質の理論密度に対するはんだ層の密度が 50%以上 99. 9%以下となり、 さらに、 はんだ層の成膜速度が 1. 8 nm/秒以上 l O nmZ 秒以下であれば、 はんだ層を構成する材質の理論密度に対するはんだ層の密度が 80%以上 99. 9%以下となり、 これらの範囲で特に好ましい接合強度が得ら れた。
今回開示された実施の形態および実施例はすべての点で例示であって制限的な ものではないと考えられるべきである。 本発明の範囲は上記した実施の形態およ び実施例ではなくて特許請求の範囲によって示され、 特許請求の範囲と均等の意 味および範囲内でのすべての変更が含まれることが意図される。

Claims

請求の範囲
1 . サブマウント基板と、 前記サブマウント基板の主表面上に形成されたは んだ層とを備えたサブマウントであって、
溶融前の前記はんだ層の密度が前記はんだ層を構成する材質の理論密度の 5 0 %以上9 9 . 9 %以下である、 サブマウント。
2 . 前記はんだ層は、 金錫合金、 銀錫合金およぴ鉛錫合金からなる群より選 ばれた少なくとも 1種を含む、 請求項 1に記載のサブマゥント。
3 . 溶融前の前記はんだ層は、 前記サブマウント基板の上に形成され、 銀を 主成分とする第 1の層と、 前記第 1の層の上に形成され、 錫を主成分とする第 2 の層とを有する、 請求項 1に記載のサブマウント。
4 . 前記サブマゥント基板と前記はんだ層との間に形成された電極層をさら に備えた、 請求項 1から 3のいずれか 1項に記載のサブマウント。
5 . 前記電極層は金を含む、 請求項 4に記載のサブマウント。
6 . 前記はんだ層と前記電極層との間に形成されたはんだ密着層をさらに備 え、 前記はんだ密着層は、 前記はんだ層側に設けられて金、 白金、 パラジウムお ょぴそれらの合金からなる群から選ばれた少なくとも 1種を主成分とする貴金属 層と、 前記電極層側に設けられてチタン、 バナジウム、 クロム、 ジルコニウム、 ニオブおよびそれらの合金からなる群から選ばれた少なくとも 1種を主成分とす る遷移元素層とを含む、 請求項 4または 5に記載のサブマウント。
7 . 前記サブマゥント基板と前記はんだ層との間に形成された密着層と拡散 防止層とをさらに備え、 前記サブマゥント基板の主表面に接触するように前記密 着層が形成されており、 前記密着層の上に前記拡散防止層が形成されている、 請 求項 1から 6のいずれか 1項に記載のサブマウント。
8 . 前記密着層はチタンを含み、 前記拡散防止層は白金を含む、 請求項 7に 記載のサブマウント。
9 . -前記サブマウント基板は窒化アルミニウム焼結体またはアルミナ焼^体 を含む、 請求項 1〜 8のいずれか 1項に記載の プマウント。
1 0 . 請求項 1〜 9のいずれか 1項に記載のサブマゥントと、 前記サブマゥ ントの前記はんだ層上に搭載された半導体発光素子とを備えた、 半導体装置。
PCT/JP2003/009706 2002-08-09 2003-07-30 サブマウントおよび半導体装置 WO2004015756A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2003252741A AU2003252741A1 (en) 2002-08-09 2003-07-30 Submount and semiconductor device
EP03784491A EP1542271B1 (en) 2002-08-09 2003-07-30 Method of preparing a submount for a semiconductor element
US10/520,385 US7196356B2 (en) 2002-08-09 2003-07-30 Submount and semiconductor device
DE60335556T DE60335556D1 (de) 2002-08-09 2003-07-30 Methode der vorbereitung eines montageträgers für ein halbleiterbauelement

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-233155 2002-08-09
JP2002233155A JP3882712B2 (ja) 2002-08-09 2002-08-09 サブマウントおよび半導体装置

Publications (1)

Publication Number Publication Date
WO2004015756A1 true WO2004015756A1 (ja) 2004-02-19

Family

ID=31711855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/009706 WO2004015756A1 (ja) 2002-08-09 2003-07-30 サブマウントおよび半導体装置

Country Status (8)

Country Link
US (1) US7196356B2 (ja)
EP (1) EP1542271B1 (ja)
JP (1) JP3882712B2 (ja)
KR (1) KR20050061452A (ja)
CN (1) CN100342510C (ja)
AU (1) AU2003252741A1 (ja)
DE (1) DE60335556D1 (ja)
WO (1) WO2004015756A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1569263A2 (de) * 2004-02-27 2005-08-31 Osram Opto Semiconductors GmbH Verfahren zum Verbinden zweier Wafer und Waferanordnung

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100958054B1 (ko) * 2003-03-08 2010-05-13 삼성전자주식회사 반도체 레이저 다이오드의 서브 마운트, 그 제조방법 및이를 채용한 반도체 레이저 다이오드 조립체
EP1672685B1 (en) * 2003-08-26 2010-11-03 Tokuyama Corporation Substrate for device bonding, device bonded substrate, and method for producing same
CN100428432C (zh) * 2004-03-24 2008-10-22 德山株式会社 元件接合用基板及其制造方法
JP4644007B2 (ja) * 2004-03-24 2011-03-02 株式会社トクヤマ 素子接合用基板およびその製造方法
JP4537877B2 (ja) * 2005-03-31 2010-09-08 株式会社東芝 セラミックス配線基板とそれを用いた半導体装置
KR101065076B1 (ko) * 2005-05-07 2011-09-15 삼성전자주식회사 발광소자 패키지용 서브마운트
JP4822155B2 (ja) 2005-09-26 2011-11-24 Dowaエレクトロニクス株式会社 サブマウント及びその製造方法
TWI303473B (en) * 2005-12-12 2008-11-21 High Power Optoelectronics Inc Semiconductor device integrated with heat sink and method of fabricating the same
JP2007251142A (ja) * 2006-02-14 2007-09-27 Dowa Electronics Materials Co Ltd 半田層及びそれを用いた電子デバイス接合用基板並びにその製造方法
US7696523B2 (en) * 2006-03-14 2010-04-13 Lg Electronics Inc. Light emitting device having vertical structure and method for manufacturing the same
JP2007294899A (ja) 2006-03-31 2007-11-08 Dowa Electronics Materials Co Ltd 半田層及びそれを用いた電子デバイス接合用基板並びに電子デバイス接合用サブマウント
JP2008098194A (ja) * 2006-10-05 2008-04-24 Sharp Corp サブマウント、半導体レーザ装置およびその製造方法、ホログラムレーザ装置、並びに光ピックアップ装置
US8164176B2 (en) * 2006-10-20 2012-04-24 Infineon Technologies Ag Semiconductor module arrangement
CN101641785B (zh) 2006-11-09 2011-07-13 怡得乐Qlp公司 具有延展层的微电路封装体
US7816155B2 (en) * 2007-07-06 2010-10-19 Jds Uniphase Corporation Mounted semiconductor device and a method for making the same
US8580593B2 (en) * 2009-09-10 2013-11-12 Micron Technology, Inc. Epitaxial formation structures and associated methods of manufacturing solid state lighting devices
WO2011037876A1 (en) * 2009-09-25 2011-03-31 Cree, Inc. Lighting device having heat dissipation element
FR2952314B1 (fr) * 2009-11-12 2012-02-10 Sagem Defense Securite Procede de brasage, gyroscope et piece brasee
JP5644160B2 (ja) * 2010-04-06 2014-12-24 三菱電機株式会社 半導体レーザ装置
US9166364B2 (en) * 2011-02-14 2015-10-20 Spectrasensors, Inc. Semiconductor laser mounting with intact diffusion barrier layer
JP6165411B2 (ja) 2011-12-26 2017-07-19 富士通株式会社 電子部品及び電子機器
JP5708512B2 (ja) 2012-01-30 2015-04-30 豊田合成株式会社 半導体装置の製造方法及び半導体装置
KR102066300B1 (ko) * 2012-02-14 2020-03-02 미쓰비시 마테리알 가부시키가이샤 땜납 접합 구조, 파워 모듈, 히트 싱크가 형성된 파워 모듈용 기판 및 그것들의 제조 방법, 그리고 땜납 하지층 형성용 페이스트
US9475151B1 (en) 2012-10-30 2016-10-25 Western Digital (Fremont), Llc Method and apparatus for attaching a laser diode and a slider in an energy assisted magnetic recording head
JP2014093425A (ja) * 2012-11-02 2014-05-19 Sumitomo Metal Mining Co Ltd Znを主成分とするはんだ合金との接合部を有する電子部品
US8897102B1 (en) 2013-04-02 2014-11-25 Western Digital (Fremont), Llc Method and system for measuring light delivery offsets in a heat assisted magnetic recording head
CN103290251A (zh) * 2013-05-17 2013-09-11 江西理工大学 一种金锡箔带材钎料的制备方法
US9070387B1 (en) 2013-08-23 2015-06-30 Western Digital Technologies, Inc. Integrated heat-assisted magnetic recording head/laser assembly
US9001628B1 (en) 2013-12-16 2015-04-07 Western Digital (Fremont), Llc Assistant waveguides for evaluating main waveguide coupling efficiency and diode laser alignment tolerances for hard disk
US9042048B1 (en) 2014-09-30 2015-05-26 Western Digital (Fremont), Llc Laser-ignited reactive HAMR bonding
US9257138B1 (en) 2014-10-28 2016-02-09 Western Digital (Fremont), Llc Slider assembly and method of manufacturing same
US9902023B1 (en) 2014-10-28 2018-02-27 Western Digital (Fremont), Llc Systems and devices for achieving high throughput attachment and sub-micron alignment of components
WO2016190205A1 (ja) * 2015-05-26 2016-12-01 三菱電機株式会社 半導体装置、半導体装置の製造方法、及び接合材料
FR3051131B1 (fr) * 2016-05-11 2018-05-25 Pnl Holding Procede de brasage d’un element metallique sur une piece de zircone et dispositif implantable brase
DE102017112866A1 (de) * 2017-06-12 2018-12-13 Osram Opto Semiconductors Gmbh Verfahren zum Befestigen eines Halbleiterchips auf einem Substrat und elektronisches Bauelement
US11183615B2 (en) * 2018-02-01 2021-11-23 Nuvoton Technology Corporation Japan Semiconductor device
JP7168280B2 (ja) * 2018-06-26 2022-11-09 住友電工デバイス・イノベーション株式会社 半導体装置、および、半導体チップの搭載方法
CN109390843A (zh) * 2018-12-10 2019-02-26 业成科技(成都)有限公司 发射模组及其制作方法
CN112420638A (zh) * 2019-08-22 2021-02-26 中国科学院苏州纳米技术与纳米仿生研究所 金刚石薄膜复铜基热沉及其制备方法
CN113079626A (zh) * 2021-03-18 2021-07-06 扬州国宇电子有限公司 一种陶瓷基板薄膜电路结构及其制备方法
CN115636695B (zh) * 2022-12-21 2023-04-18 四川科尔威光电科技有限公司 一种半导体氮化铝陶瓷预置金锡焊料热沉的制备方法
CN118099927A (zh) * 2024-04-17 2024-05-28 化合积电(泉州)半导体科技有限公司 一种金刚石芯片及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05190973A (ja) * 1992-01-14 1993-07-30 Toshiba Corp 半導体レーザ用サブマウント
JP2002368020A (ja) * 2002-04-30 2002-12-20 Sumitomo Electric Ind Ltd サブマウントおよび半導体装置
JP2003258360A (ja) * 2002-03-06 2003-09-12 Sumitomo Electric Ind Ltd サブマウントおよび半導体装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4137076A (en) * 1977-02-24 1979-01-30 Westinghouse Electric Corp. Electrical contact material of TiC, WC and silver
JPS57181356A (en) * 1981-04-30 1982-11-08 Hitachi Ltd Sintered aluminum nitride body with high heat conductivity
JPH01109790A (ja) * 1987-10-22 1989-04-26 Mitsubishi Electric Corp 光半導体素子用サブマウント
JP3023883B2 (ja) * 1991-10-26 2000-03-21 ローム株式会社 サブマウント型レーザ
US5234153A (en) * 1992-08-28 1993-08-10 At&T Bell Laboratories Permanent metallic bonding method
US6696103B1 (en) * 1993-03-19 2004-02-24 Sumitomo Electric Industries, Ltd. Aluminium nitride ceramics and method for preparing the same
JPH09326463A (ja) * 1996-05-09 1997-12-16 Oki Electric Ind Co Ltd 樹脂封止型半導体装置
US5990560A (en) * 1997-10-22 1999-11-23 Lucent Technologies Inc. Method and compositions for achieving a kinetically controlled solder bond
CN2357414Y (zh) * 1998-11-27 2000-01-05 周万顺 改进的半导体元件引线框架
US6521477B1 (en) * 2000-02-02 2003-02-18 Raytheon Company Vacuum package fabrication of integrated circuit components
JP2001298199A (ja) * 2000-04-17 2001-10-26 Hitachi Ltd 光半導体装置の接続構造
JP2002043319A (ja) * 2000-07-19 2002-02-08 Mitsubishi Electric Corp 半導体装置
US6740906B2 (en) * 2001-07-23 2004-05-25 Cree, Inc. Light emitting diodes including modifications for submount bonding
JP4072093B2 (ja) * 2003-05-20 2008-04-02 株式会社日立製作所 半導体レーザモジュール
US6876008B2 (en) * 2003-07-31 2005-04-05 Lumileds Lighting U.S., Llc Mount for semiconductor light emitting device
TWI288486B (en) * 2004-03-17 2007-10-11 Epistar Corp Light-emitting diode and method for manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05190973A (ja) * 1992-01-14 1993-07-30 Toshiba Corp 半導体レーザ用サブマウント
JP2003258360A (ja) * 2002-03-06 2003-09-12 Sumitomo Electric Ind Ltd サブマウントおよび半導体装置
JP2002368020A (ja) * 2002-04-30 2002-12-20 Sumitomo Electric Ind Ltd サブマウントおよび半導体装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"The TRC News", TORAY RESEARCH CENTER'S, no. 59, April 1997 (1997-04-01), pages 11 - 16
See also references of EP1542271A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1569263A2 (de) * 2004-02-27 2005-08-31 Osram Opto Semiconductors GmbH Verfahren zum Verbinden zweier Wafer und Waferanordnung
EP1569263A3 (de) * 2004-02-27 2009-05-06 OSRAM Opto Semiconductors GmbH Verfahren zum Verbinden zweier Wafer und Waferanordnung
US7872210B2 (en) 2004-02-27 2011-01-18 Osram Opto Semiconductors Gmbh Method for the connection of two wafers, and a wafer arrangement
US8471385B2 (en) 2004-02-27 2013-06-25 Osram Opto Semiconductors Gmbh Method for the connection of two wafers, and a wafer arrangement

Also Published As

Publication number Publication date
KR20050061452A (ko) 2005-06-22
US20050194690A1 (en) 2005-09-08
AU2003252741A1 (en) 2004-02-25
JP2004072048A (ja) 2004-03-04
CN1672251A (zh) 2005-09-21
JP3882712B2 (ja) 2007-02-21
EP1542271B1 (en) 2010-12-29
EP1542271A4 (en) 2008-10-01
DE60335556D1 (de) 2011-02-10
CN100342510C (zh) 2007-10-10
US7196356B2 (en) 2007-03-27
EP1542271A1 (en) 2005-06-15

Similar Documents

Publication Publication Date Title
WO2004015756A1 (ja) サブマウントおよび半導体装置
JP3509809B2 (ja) サブマウントおよび半導体装置
JP5688412B2 (ja) 半導体コンポーネント配列体の対向する電気的接続部を熱的に接触させる方法
JP3918858B2 (ja) 発光素子搭載用部材およびそれを用いた半導体装置
JP3982284B2 (ja) サブマウントおよび半導体装置
US5622305A (en) Bonding scheme using group VB metallic layer
JP2013016838A (ja) セラミックス配線基板、およびそれを用いた半導体装置
WO2005020315A1 (ja) 素子接合用基板、素子接合基板及びその製造方法
JP3912130B2 (ja) サブマウント
JP3779218B2 (ja) サブマウントおよび半導体装置
JP4537877B2 (ja) セラミックス配線基板とそれを用いた半導体装置
JP2004356429A (ja) サブマウントおよびそれを用いた半導体装置
EP1039596A3 (en) Semiconductor light emitting device and method for manufacturing the same
JP2007134744A (ja) サブマウントおよび半導体装置
US20050089700A1 (en) Solder film manufacturing method, heat sink furnished with solder film, and semiconductor-device-and-heat-sink junction
JP2006216766A (ja) セラミックス配線基板とそれを用いた半導体装置
JPH0786444A (ja) 半導体用複合放熱基板の製造方法
JP2567442B2 (ja) 半導体装置及びその製造方法
JPH065683B2 (ja) 半導体素子搭載用基板

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10520385

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20038184877

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2003784491

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020057002228

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003784491

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057002228

Country of ref document: KR