WO2016190205A1 - 半導体装置、半導体装置の製造方法、及び接合材料 - Google Patents

半導体装置、半導体装置の製造方法、及び接合材料 Download PDF

Info

Publication number
WO2016190205A1
WO2016190205A1 PCT/JP2016/064845 JP2016064845W WO2016190205A1 WO 2016190205 A1 WO2016190205 A1 WO 2016190205A1 JP 2016064845 W JP2016064845 W JP 2016064845W WO 2016190205 A1 WO2016190205 A1 WO 2016190205A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
solder layer
tin
solder
gold
Prior art date
Application number
PCT/JP2016/064845
Other languages
English (en)
French (fr)
Inventor
典也 南
出田 吾朗
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2017520658A priority Critical patent/JP6345347B2/ja
Publication of WO2016190205A1 publication Critical patent/WO2016190205A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0239Combinations of electrical or optical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/75Apparatus for connecting with bump connectors or layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector

Definitions

  • the present invention relates to a semiconductor device, a method for manufacturing a semiconductor device, and a bonding material.
  • a semiconductor device including an optical semiconductor element such as a semiconductor laser element or a semiconductor element such as a power semiconductor element is known (see Patent Document 1).
  • Patent Document 1 describes joining a semiconductor element to a submount using gold tin (Au—Sn) solder.
  • Gold tin (Au—Sn) solder has a high melting point of 300 ° C. or higher.
  • the thermal expansion coefficient of the semiconductor element made of gallium arsenide (GaAs) is different from the thermal expansion coefficient of the submount made of aluminum nitride (AlN) or silicon carbide (SiC).
  • Au—Sn gold tin solder is provided between the semiconductor element and the submount, and the gold tin (Au—Sn) solder is melted and then cooled to room temperature, whereby gold tin (Au—Sn) is obtained.
  • the difference between the thermal expansion coefficient between the semiconductor element and the submount and the temperature difference between the melting point of the gold-tin (Au—Sn) solder and room temperature are Stress is applied.
  • the contained gold (Au) reacts with tin (Sn) contained in the stress relaxation layer to form an intermetallic compound composed of AuSn 4 .
  • An intermetallic compound made of AuSn 4 is hard and brittle.
  • the diffusion rate of tin (Sn) into gold (Au) is high, and gold (Au) is easy to form an intermetallic compound with tin (Sn). Therefore, at the junction between the semiconductor element and the submount.
  • the formed intermetallic compound composed of AuSn 4 has a large film thickness. As a result, the reliability of the junction between the semiconductor element and the submount is low.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a semiconductor device having a highly reliable joint portion while reducing stress generated in a semiconductor element.
  • Another object of the present invention is to provide a method of manufacturing a semiconductor device that can reduce a stress generated in a semiconductor element and can manufacture a semiconductor device having a highly reliable joint.
  • Still another object of the present invention is to provide a bonding material capable of reducing stress generated in a semiconductor element and obtaining a highly reliable bonding portion.
  • a semiconductor device of the present invention includes a semiconductor element having a first electrode and a support member that supports the semiconductor element.
  • the support member includes a second electrode.
  • the semiconductor device of the present invention further includes a joining portion that joins the first electrode of the semiconductor element and the second electrode of the support member.
  • the joining portion includes a first solder layer, a diffusion prevention layer, and a second solder layer in order from the semiconductor element side.
  • the second solder layer has a second melting point that is lower than the first melting point of the first solder layer.
  • the diffusion preventing layer prevents interdiffusion between the first solder layer and the second solder layer.
  • the second solder layer includes tin (Sn).
  • the second electrode, the diffusion preventing layer, and the second solder layer do not contain gold (Au).
  • not including gold (Au) is not limited to not including gold (Au) at all, but also includes gold (Au) as an inevitable impurity.
  • the concentration of gold contained as an inevitable impurity is 5 ⁇ 10 ⁇ 3 wt% or less.
  • the method for manufacturing a semiconductor device of the present invention includes providing a bonding material between a first electrode of a semiconductor element and a second electrode of a support member that supports the semiconductor element.
  • the bonding material includes a first solder layer, a diffusion prevention layer, and a second solder layer in order from the semiconductor element side.
  • the second solder layer has a second melting point that is lower than the first melting point of the first solder layer.
  • the diffusion preventing layer prevents interdiffusion between the first solder layer and the second solder layer.
  • the second solder layer includes tin (Sn).
  • the second electrode, the diffusion preventing layer, and the second solder layer do not contain gold (Au).
  • the bonding material is heated at a first temperature not lower than the first melting point of the first solder layer, and the bonding material is heated at the first temperature, and then the bonding material. Forming a joint that joins the first electrode of the semiconductor element and the second electrode of the support member to a second temperature lower than the second melting point of the second solder layer. And further.
  • the bonding material of the present invention includes a first solder layer, a second solder layer having a second melting point lower than the first melting point of the first solder layer, the first solder layer, and the second solder.
  • a diffusion prevention layer provided between the layers. The diffusion preventing layer prevents interdiffusion between the first solder layer and the second solder layer.
  • the second solder layer includes tin (Sn). The diffusion prevention layer and the second solder layer do not contain gold (Au).
  • the joint portion includes, in order from the semiconductor element side, a first solder layer, a diffusion prevention layer, and a second solder layer.
  • the second solder layer has a second melting point that is lower than the first melting point of the first solder layer.
  • the diffusion preventing layer prevents interdiffusion between the first solder layer and the second solder layer. Therefore, when the first solder layer diffuses into the second solder layer, the second melting point of the second solder layer rises, and the second melting point of the second solder layer at the joint and the room temperature.
  • the diffusion preventing layer can suppress an increase in the temperature difference.
  • the temperature difference between the temperature at which all the joints solidify and room temperature that is, the temperature difference between the second melting point of the second solder layer and room temperature can be reduced.
  • the stress generated in the semiconductor element 2 due to the difference in thermal expansion coefficient between the semiconductor element 2 and the support member 4 and the temperature difference between the melting point of the joint and the room temperature is reduced. be able to.
  • a diffusion preventing layer for preventing mutual diffusion between the first solder layer and the second solder layer is provided between the first solder layer and the second solder layer. It has been.
  • the second solder layer includes tin (Sn).
  • the second electrode, the diffusion preventing layer, and the second solder layer do not contain gold (Au). Therefore, the diffusion preventing layer prevents the first solder layer and the second solder layer from diffusing each other to form a hard and brittle intermetallic compound such as AuSn 4 with a large film thickness. can do.
  • a hard and brittle intermetallic compound such as AuSn 4 is present at the interface between the second solder layer and the diffusion preventing layer and at the interface between the second solder layer and the second electrode of the support member. It is not formed with a large film thickness. As a result, according to the semiconductor device of the present invention, it is possible to provide a semiconductor device including a highly reliable joint portion while reducing stress generated in the semiconductor element.
  • a bonding material having a first solder layer and a second solder layer having a second melting point lower than the first melting point of the first solder layer is used as the first bonding material.
  • the joint is formed by cooling to a second temperature below the second melting point of the second solder layer.
  • the diffusion preventing layer prevents interdiffusion between the first solder layer and the second solder layer. When the first solder layer diffuses into the second solder layer, the second melting point of the second solder layer increases, and the temperature between the second melting point of the second solder layer of the bonding material and room temperature.
  • the diffusion prevention layer can suppress the difference from increasing.
  • the temperature difference between the temperature at which all of the bonding material solidifies and room temperature that is, the temperature difference between the second melting point of the second solder layer and room temperature
  • the stress generated in the semiconductor element due to the difference in thermal expansion coefficient between the semiconductor element and the support member and the temperature difference between the melting point of the bonding material and room temperature is reduced. be able to.
  • the diffusion prevention for preventing mutual diffusion between the first solder layer and the second solder layer between the first solder layer and the second solder layer A layer is provided.
  • the second electrode, the diffusion preventing layer, and the second solder layer do not contain gold (Au). Therefore, the diffusion preventing layer indicates that the first solder layer and the second solder layer diffuse to each other and a hard and brittle intermetallic compound such as AuSn 4 is formed with a large film thickness. Can be prevented.
  • a hard and brittle intermetallic compound such as AuSn 4 is formed with a large film thickness.
  • the compound is not formed with a large film thickness.
  • the bonding material of the present invention includes a first solder layer, a second solder layer having a second melting point lower than the first melting point of the first solder layer, the first solder layer, and the second solder.
  • a diffusion prevention layer provided between the layers. The diffusion preventing layer prevents interdiffusion between the first solder layer and the second solder layer. When the first solder layer diffuses into the second solder layer, the second melting point of the second solder layer increases, and the temperature between the second melting point of the second solder layer of the bonding material and room temperature.
  • the diffusion prevention layer can suppress the difference from increasing. Therefore, the stress generated in the semiconductor element due to the difference in thermal expansion coefficient between the semiconductor element and the support member and the temperature difference between the melting point of the bonding material and room temperature can be reduced.
  • the diffusion preventing layer prevents mutual diffusion between the first solder layer and the second solder layer.
  • the second solder layer includes tin (Sn).
  • the diffusion prevention layer and the second solder layer do not contain gold (Au). Therefore, the diffusion preventing layer prevents the first solder layer and the second solder layer from diffusing each other to form a hard and brittle intermetallic compound such as AuSn 4 with a large film thickness. can do. Furthermore, a hard and brittle intermetallic compound such as AuSn 4 is not formed with a large film thickness at the interface between the second solder layer and the diffusion preventing layer. As a result, according to the bonding material of the present invention, a stress generated in the semiconductor element can be reduced and a highly reliable bonding portion can be obtained.
  • FIG. 6 is a schematic perspective view of a semiconductor device according to the first to fifth embodiments of the present invention.
  • FIG. 7 is a schematic enlarged cross-sectional view of the semiconductor device according to the first to fifth embodiments of the present invention taken along a sectional line II-II shown in FIG. It is a figure which shows the joining material which concerns on Embodiment 1 to Embodiment 4 of this invention.
  • FIG. 10 is a schematic partial cross-sectional view showing one step of a method for manufacturing a semiconductor device according to the first to fifth embodiments of the present invention.
  • FIG. 10 is a schematic partial cross-sectional view showing a step of the method of manufacturing a semiconductor device according to the first embodiment, the second embodiment, and the fifth embodiment of the present invention.
  • FIG. 10 is a schematic partial cross-sectional view showing one step of a method for manufacturing a semiconductor device according to the first to fifth embodiments of the present invention. It is a figure which shows the temperature profile in the manufacturing method of the semiconductor device which concerns on Embodiment 2 of this invention. It is a general
  • the semiconductor device 1 of the present embodiment mainly includes a semiconductor element 2, a joint 3, and a support member 4.
  • Examples of the semiconductor element 2 include an optical semiconductor element such as a semiconductor laser element or a power semiconductor element.
  • the semiconductor element 2 includes a semiconductor substrate 21, a semiconductor layer 22, a first electrode 23, and the other electrode 24.
  • Examples of the material of the semiconductor substrate 21 include gallium arsenide (GaAs), gallium nitride (GaN), indium phosphide (InP), silicon carbide (SiC), and silicon (Si).
  • the semiconductor layer 22 includes a layer that performs the function of the semiconductor element 2.
  • the semiconductor element 2 is a semiconductor laser element
  • the semiconductor layer 22 includes an active layer that emits laser light.
  • the semiconductor layer 22 may include a semiconductor layer constituting a metal oxide semiconductor field effect transistor (MOSFET) or an insulated gate bipolar transistor (IGBT).
  • MOSFET metal oxide semiconductor field effect transistor
  • IGBT insulated gate bipolar transistor
  • the first electrode 23 is an electrode located on the support member 4 side among the electrodes of the semiconductor element 2.
  • the first electrode 23 may contain gold (Au).
  • the material of the first electrode 23 is gold (Au).
  • an adhesion layer (not shown) may be provided between the first electrode 23 and the semiconductor layer 22. Examples of the adhesion layer include nickel (Ni) / palladium (Pd) / gold (Au).
  • the other electrode 24 is an electrode located on the opposite side to the support member 4 among the electrodes of the semiconductor element 2.
  • the other electrode 24 may contain gold (Au). Examples of the material of the other electrode 24 include gold (Au) and nickel (Ni) / palladium (Pd) / gold (Au).
  • the support member 4 is a member that supports the semiconductor element 2.
  • Examples of the support member 4 include a submount and an insulating substrate.
  • the support member 4 may have a thermal expansion coefficient different from that of at least one of the semiconductor substrate 21 and the semiconductor layer 22.
  • the support member 4 preferably has a high thermal conductivity.
  • Examples of the material of the support member 4 include aluminum nitride (AlN), silicon carbide (SiC), copper (Cu), and copper (Cu) alloy.
  • the support member 4 includes a second electrode 5.
  • the second electrode 5 does not contain gold (Au).
  • the surface of the second electrode 5 in contact with the joint 3 is made of a material having a lower diffusion rate to tin (Sn) than gold (Au), or tin (Sn) and metal compared to gold (Au). It may be a material that hardly forms an intercalation compound. Examples of such materials include nickel (Ni), platinum (Pt), and copper (Cu).
  • the surface of the second electrode 5 in contact with the joint 3 may be formed of any of nickel (Ni), platinum (Pt), and copper (Cu).
  • the second electrode 5 may be formed of, for example, aluminum (Al), titanium (Ti) / platinum (Pt), or copper (Cu) provided with a nickel (Ni) coating layer.
  • the nickel (Ni) coating layer is provided in order to improve the adhesion between the second solder layer 33 and the second electrode 5.
  • Titanium (Ti) is provided to improve the adhesion between the support member 4 and the second electrode 5.
  • An intermetallic compound may be formed at the interface between the second electrode 5 and the second solder layer 33 made of a solder alloy containing tin (Sn).
  • the surface of the second electrode 5 in contact with the joint 3 is a material whose diffusion rate to tin (Sn) is smaller than that of gold (Au), or tin (Sn) and metal compared to gold (Au). Since the intermetallic compound is formed of a material that hardly forms an intermetallic compound, the film thickness of the intermetallic compound is smaller than the film thickness of the intermetallic compound of AuSn 4 . Further, since the amount of intermetallic compound produced is small, it is possible to prevent a large amount of Kirkendall void from being generated at the interface between the second solder layer 33 and the second electrode 5. Therefore, it can further suppress that the reliability of the junction part 3 falls.
  • a joint 3 is provided between the semiconductor element 2 and the support member 4.
  • the joint 3 joins the first electrode 23 of the semiconductor element 2 and the second electrode 5 of the support member 4.
  • the joint portion 3 includes a first solder layer 31, a diffusion prevention layer 32, and a second solder layer 33 in order from the semiconductor element 2 side.
  • the bonding portion 3 is formed by heating, melting, and cooling the bonding material 3p.
  • the first solder layer 31 may be formed from a solder alloy containing gold (Au).
  • the first solder layer 31 may be made of a gold-tin (Au—Sn) solder alloy.
  • the gold-tin (Au—Sn) based solder alloy includes gold-tin (Au—Sn) solder alloy or gold (Au), tin (Sn), and other metal elements, and the other metal elements are gold (Au).
  • the first solder layer 31 is a gold-tin (Au—Sn) solder alloy composed of Au 5 Sn and AuSn.
  • the gold tin (Au—Sn) solder alloy may have a composition between 70 Au—Sn and 82 Au—Sn.
  • the number before the element symbol is a number representing the ratio of the element in the solder alloy in weight percent.
  • 70Au—Sn means a gold tin (Au—Sn) solder alloy containing 70% by weight of gold (Au).
  • the composition of the gold-tin (Au—Sn) solder alloy constituting the first solder layer 31 may be 80Au—Sn.
  • the melting point of the 80Au—Sn solder alloy is 280 ° C.
  • the composition of the gold tin (Au—Sn) solder alloy constituting the first solder layer 31 may be between 70 Au—Sn and 80 Au—Sn.
  • the first solder layer 31 having a high gold (Au) content can be obtained. Therefore, when the bonding material 3p is heated, an intermetallic compound is formed at the interface between the first solder layer 31 and the diffusion prevention layer 32, and the amount of tin (Sn) contained in the first solder layer 31 Even if it decreases, the rise in the first melting point T m1 of the first solder layer 31 can be suppressed. For this reason, the first melting point T m1 of the first solder layer 31 rises, and the bonding failure between the semiconductor element 2 and the support member 4 at the joint portion 3 due to insufficient melting of the first solder layer 31 is caused. Can be prevented.
  • the second solder layer 33 has a second melting point T m2 that is lower than the first melting point T m1 of the first solder layer 31.
  • the second melting point T m2 of the second solder layer 33 may be 10 ° C. or more, preferably 30 ° C. or more, more preferably 50 ° C. or more lower than the first melting point T m1 of the first solder layer 31. Good.
  • the second solder layer 33 may have a second melting point T m2 that is 100 ° C. or more higher than room temperature (25 ° C.).
  • the second solder layer 33 includes tin (Sn).
  • the second solder layer 33 does not contain gold (Au).
  • the second solder layer 33 Since the second solder layer 33 has a lower gold (Au) content and a higher tin (Sn) content than the first solder layer 31, the second solder layer 33 includes the first solder layer 33.
  • the solder layer 31 may have a second melting point T m2 lower than the first melting point T m1 .
  • the second solder layer 33 may have the same thickness as the first solder layer 31.
  • the second solder layer 33 may have the same volume as the first solder layer 31.
  • the second solder layer 33 includes a tin bismuth (Sn—Bi) solder alloy, a tin silver (Sn—Ag) solder alloy, a tin copper (Sn—Cu) solder alloy, and a tin zinc (Sn—Zn) solder. It may be made of any alloy.
  • the tin bismuth (Sn—Bi) based solder alloy includes a tin bismuth (Sn—Bi) alloy or tin (Sn), bismuth (Bi), and other metal elements, and the other metal elements include tin (Sn) and An alloy having a lower content than bismuth (Bi) is meant. Examples of other elements include silver (Ag), copper (Cu), and indium (In).
  • Sn-57Bi and Sn-1Ag-57Bi can be exemplified as tin-bismuth (Sn—Bi) based solder alloys.
  • the tin-silver (Sn—Ag) -based solder alloy includes a tin-silver (Sn—Ag) alloy, or tin (Sn), silver (Ag), and other metal elements. It means an alloy having a lower content than silver (Ag).
  • Examples of other elements include copper (Cu), bismuth (Bi), and indium (In).
  • the tin-copper (Sn—Cu) -based solder alloy includes a tin-copper (Sn—Cu) alloy or tin (Sn), copper (Cu), and other metal elements, and the other metal elements include tin (Sn) and An alloy having a lower content than copper (Cu) is meant.
  • Examples of other elements include silver (Ag) and nickel (Ni).
  • the tin-zinc (Sn—Zn) -based solder alloy includes a tin-zinc (Sn—Zn) alloy or tin (Sn), zinc (Zn), and other metal elements, and the other metal elements include tin (Sn) and It means an alloy having a lower content than zinc (Zn).
  • Bismuth (Bi) can be illustrated as another element.
  • the second solder layer 33 is formed of a Sn-57Bi solder alloy having a second melting point T m2 of 138 ° C.
  • the diffusion preventing layer 32 does not contain gold (Au). Therefore, even if the second solder layer contains tin, a hard and brittle intermetallic compound such as AuSn 4 has a large film thickness at the interface between the diffusion preventing layer 32 and the second solder layer 33. It is not formed by.
  • the diffusion preventing layer 32 is located between the first solder layer 31 and the second solder layer 33.
  • the diffusion preventing layer 32 prevents mutual diffusion between the first solder layer 31 and the second solder layer 33.
  • the diffusion prevention layer 32 indicates that a hard and brittle intermetallic compound such as AuSn 4 is formed with a large film thickness by mutual diffusion between the first solder layer 31 and the second solder layer 33. Can be suppressed.
  • the first solder layer 31 having the first melting point T m1 higher than the second melting point T m2 of the second solder layer 33 diffuses into the second solder layer 33, and the second solder layer 33.
  • the diffusion prevention layer 32 can prevent the second melting point T m2 from rising.
  • the diffusion preventing layer 32 diffuses the gold (Au) contained in the first solder layer 31 into the second solder layer 33, It is possible to prevent the second melting point T m2 of the second solder layer 33 from increasing. Therefore, it is possible to suppress an increase in the temperature difference between the second melting point T m2 of the second solder layer 33 of the bonding material 3p and the second temperature T 2 such as room temperature.
  • the material constituting the diffusion preventing layer 32 may be a material having a lower diffusion rate into tin (Sn) than gold (Au).
  • the material constituting the diffusion prevention layer 32 may be a material that is less likely to form an intermetallic compound with tin (Sn) than gold (Au).
  • Nickel (Ni) is a material that has a lower diffusion rate into tin (Sn) than gold (Au) or a material that hardly forms an intermetallic compound with tin (Sn) compared to gold (Au).
  • An intermetallic compound may be formed at the interface between the diffusion preventing layer 32 and the second solder layer 33 made of a solder alloy containing tin (Sn).
  • a solder alloy containing tin (Sn) For example, when the diffusion preventing layer 32 is made of nickel (Ni), Ni 3 Sn 4 is formed at the interface between the diffusion preventing layer 32 and the second solder layer 33 made of a solder alloy containing tin (Sn).
  • An intermetallic compound composed of may be formed. However, the thickness of the intermetallic compound composed of Ni 3 Sn 4 is only less than a quarter of the thickness of the intermetallic compound composed of AuSn.
  • the diffusion preventing layer 32 is made of iron (Fe), it is made of FeSn 2 at the interface between the diffusion preventing layer 32 and the second solder layer 33 made of a solder alloy containing tin (Sn). Intermetallic compounds may be formed.
  • the diffusion rate of iron (Fe) to tin (Sn) is slower than the diffusion rate of nickel (Ni) to tin (Sn), and is about 1 / 10,000 of the diffusion rate of gold (Au) to tin (Sn). Only.
  • the diffusion preventing layer 32 is made of iron (Fe)
  • the diffusion preventing layer 32 can be made thinner than when the diffusion preventing layer 32 is made of nickel (Ni).
  • the diffusion preventing layer 32 is a material whose diffusion rate into tin (Sn) is lower than that of gold (Au), or tin (Sn) and an intermetallic compound as compared with gold (Au). Therefore, the film thickness of the intermetallic compound can be made smaller than the film thickness of the AuSn 4 intermetallic compound.
  • the amount of intermetallic compound produced is small, a large amount of Kirkendall voids are present at the interface between the second solder layer 33 and the diffusion prevention layer 32 and at the interface between the first solder layer 31 and the diffusion prevention layer 32. Occurrence can be prevented. Therefore, it can suppress that the reliability of the junction part 3 falls.
  • the diffusion preventing layer 32 may have a thickness of 1 ⁇ m to 100 ⁇ m, preferably 1 ⁇ m to 50 ⁇ m, and more preferably 5 ⁇ m to 10 ⁇ m.
  • the diffusion prevention layer 32 may be thinner than each of the first solder layer 31 and the second solder layer.
  • the diffusion preventing layer 32 may have a smaller volume than each of the first solder layer 31 and the second solder layer.
  • the semiconductor device 1 may further include a heat sink 6 on the support member 4 on the side opposite to the semiconductor element 2.
  • An example of the heat sink 6 is a copper plate.
  • the other electrode 24 of the semiconductor element 2 and the second electrode 5 of the support member 4 are electrically connected to the power source 8 through the wiring 7.
  • An example of the wiring 7 is a gold (Au) wire.
  • the semiconductor element 2 is operated by applying at least one of a voltage and a current from the power source 8 between the first electrode 23 and the other electrode 24 of the semiconductor element 2.
  • the bonding material 3p is provided between the first electrode 23 of the semiconductor element 2 and the second electrode 5 of the support member 4 that supports the semiconductor element 2.
  • the bonding material 3p may be provided between the second first electrode 23 and the second electrode 5 of the support member 4 that supports the semiconductor element 2.
  • Forming the bonding material 3p on the second electrode 5 of the support member 4 is performed by applying a second material on the second electrode 5 of the support member 4 by a method such as plating or vapor deposition.
  • the diffusion prevention layer 32 is formed on the second solder layer 33 by a method such as forming the solder layer 33, plating or vapor deposition, and the method such as plating or vapor deposition. Forming a first solder layer 31 on 32.
  • the first solder layer 31 is formed of a gold tin (Au—Sn) alloy.
  • the first solder layer 31 is the uppermost layer of the joint portion 3.
  • the uppermost surface of the joint 3 exposed to the surrounding atmosphere, that is, the surface closest to the semiconductor element 2 is formed of a first solder layer 31 made of a gold-tin (Au—Sn) solder alloy. Therefore, in the method for manufacturing the semiconductor device 1 of the present embodiment, it is not necessary to prepare a flux, and it is not necessary to make the surrounding atmosphere a reducing atmosphere such as hydrogen gas.
  • the mounting of the semiconductor element 2 on the bonding material 3p may be performed as follows, for example.
  • the support member 4 on which the bonding material 3p is formed is placed on the stage 80.
  • the position of the semiconductor element 2 and the bonding material 3p is recognized by an observation device 90 such as a camera.
  • the holding unit 81 such as a suction device
  • the semiconductor device 2 is positioned and placed on the bonding material 3p by the transfer device 82 having the holding unit 81.
  • the bonding material 3p includes a first solder layer 31, a second solder layer 33 having a second melting point T m2 lower than the first melting point T m1 of the first solder layer 31, and a first solder layer. 31 and a diffusion preventing layer 32 provided between the second solder layer 33 and the second solder layer 33.
  • the diffusion preventing layer 32 prevents mutual diffusion between the first solder layer 31 and the second solder layer 33.
  • the second solder layer 33 includes tin (Sn).
  • the diffusion preventing layer 32 and the second solder layer 33 do not contain gold (Au).
  • the first solder layer 31 may be formed from a solder alloy containing gold (Au).
  • the first solder layer 31 may be made of a gold-tin (Au—Sn) alloy.
  • the first solder layer 31 is a gold tin (Au—Sn) alloy, and the gold tin (Au—Sn) alloy may have a composition between 70 Au—Sn and 82 Au—Sn.
  • the second solder layer 33 includes a tin bismuth (Sn—Bi) solder alloy, a tin silver (Sn—Ag) solder alloy, a tin copper (Sn—Cu) solder alloy, and a tin zinc (Sn—Zn) solder. It may be made of any alloy.
  • the material constituting the diffusion preventing layer 32 may be a material having a lower diffusion rate into tin (Sn) than gold (Au).
  • the material constituting the diffusion prevention layer 32 may be a material that is less likely to form an intermetallic compound with tin (Sn) than gold (Au).
  • the diffusion prevention layer 32 may be formed of any of nickel (Ni), iron (Fe), platinum (Pt), palladium (Pd), and copper (Cu).
  • bonding material 3 p is applied at first temperature T 1 that is equal to or higher than first melting point T m1 of first solder layer 31.
  • Heat As shown in FIG. 5, the bonding material 3 p is heated by heating the stage 80 and the support member 4 by a heating device 84 connected to the stage 80, and by using the heated stage 80 and the support member 4. 3p may be heated.
  • the bonding material 3p may be heated by heating the periphery of the semiconductor element 2 and the support member 4 with an infrared heater or a hot air heater.
  • the holding unit 81 or the stage 80 may have a temperature measurement unit (not shown).
  • the heating device 84 may be controlled based on the temperature of the semiconductor element 2 or the support member 4 measured by the temperature measuring unit. By controlling the heating device 84 based on the temperature of the semiconductor element 2 or the support member 4 measured by the temperature measuring unit, the temperature of the semiconductor element 2 and the support member 4 is surely changed. 1 melting point T m1 or higher. Therefore, it is possible to prevent a bonding failure between the semiconductor element 2 and the support member 4 at the bonding portion 3 due to insufficient melting of the first solder layer 31.
  • the first solder layer 31 or the second solder layer 33 is melted. It is preferable to keep the semiconductor element 2 held by the holding portion 81 while it is being held.
  • the temperature of the bonding material 3p may be maintained at the first temperature T 1 for the time t 1 .
  • Bonding material time t 1 to maintain the temperature to a first temperature T 1 of the 3p is 5 minutes or 5 seconds or less, preferably 30 seconds or more 3 minutes or less, more preferably, even less than 2 minutes or 30 seconds Good.
  • the bonding material 3 p is cooled to a second temperature T 2 less than the second melting point T m2 of the second solder layer 33. Then, the joint portion 3 that joins the semiconductor element 2 and the support member 4 is formed.
  • the heating of the stage 80 by the heating device 84 is stopped, and as shown in FIG. 7, by blowing cold air having a temperature of 20 ° C. to 30 ° C. from the cooling device 85 to the semiconductor element 2 and the support member 4. 3p may be cooled.
  • the second temperature T 2 may be a room temperature such as a temperature of 20 ° C. to 30 ° C.
  • the bonding material 3p may be cooled by cooling the stage 80.
  • this cooling step when the temperature of the bonding material 3p is lower than the first melting point T m1 of the first solder layer 31 but higher than the second melting point T m2 of the second solder layer 33, the first solder is formed.
  • the layer 31 is solidified, and the joining of the first electrode 23 of the semiconductor element 2 and the first solder layer 31 is completed, but the second lower than the first melting point T m1 of the first solder layer 31.
  • the second solder layer 33 having the melting point T m2 remains molten.
  • the second solder layer 33 when the bonding material 3p is further cooled and the temperature of the bonding material 3p becomes lower than the second melting point T m2 of the second solder layer 33, the second solder layer 33 is also solidified.
  • the joining of the second electrode 5 of the support member 4 and the second solder layer 33 is also completed.
  • the joining part 3 which joins the 1st electrode 23 of the semiconductor element 2 and the 2nd electrode 5 of the supporting member 4 is formed.
  • the first solder layer 31 or the second solder layer 33 is melted. During this time, it is preferable to keep the semiconductor element 2 held by the holding portion 81.
  • the semiconductor device 1 of the present embodiment includes a semiconductor element 2 having a first electrode 23 and a support member 4 that supports the semiconductor element 2.
  • the support member 4 includes a second electrode 5.
  • the semiconductor device 1 further includes a joint portion 3 that joins the first electrode 23 of the semiconductor element 2 and the second electrode 5 of the support member 4.
  • the joint portion 3 includes a first solder layer 31, a diffusion prevention layer 32, and a second solder layer 33 in order from the semiconductor element 2 side.
  • the second solder layer 33 has a second melting point T m2 that is lower than the first melting point T m1 of the first solder layer 31.
  • the diffusion preventing layer 32 prevents mutual diffusion between the first solder layer 31 and the second solder layer 33.
  • the second solder layer 33 includes tin (Sn).
  • the second electrode 5, the diffusion preventing layer 32, and the second solder layer 33 do not contain gold (Au).
  • the second solder layer 33 has a second melting point T m2 that is lower than the first melting point T m1 of the first solder layer 31.
  • the diffusion preventing layer 32 prevents mutual diffusion between the first solder layer 31 and the second solder layer 33. As the first solder layer 31 diffuses into the second solder layer 33, the second melting point T m2 of the second solder layer 33 rises, and the second solder layer 33 of the joint 3 is second.
  • the diffusion preventing layer 32 can suppress an increase in the temperature difference between the melting point T m2 of the second layer and the second temperature T 2 such as room temperature.
  • the temperature difference from T 2 can be reduced.
  • the semiconductor device 1 of the present embodiment the difference between the thermal expansion coefficients of the semiconductor element 2 and the support member 4 and the second temperature T 2 such as the melting point and room temperature of the bonding material 3p.
  • the stress generated in the semiconductor element 2 due to the temperature difference can be reduced.
  • the temperature difference between the second melting point T m2 of the second solder layer 33 and the second temperature T 2 of 25 ° C. is 255 ° C.
  • the second solder layer 33 is made of the second solder layer 33. temperature difference between the temperature T 2 a second melting point T m2 and 25 ° C., can be reduced to 113 ° C..
  • the stress applied to the semiconductor element 2 is 20 MPa, whereas the present embodiment In one example, the stress applied to the semiconductor element 2 can be reduced to 9 MPa. As a result, according to the present embodiment, the stress applied to the semiconductor element 2 can be reduced by 50% or more compared to the comparative example.
  • interdiffusion between the first solder layer 31 and the second solder layer 33 is prevented between the first solder layer 31 and the second solder layer 33.
  • a diffusion prevention layer 32 is provided.
  • the second electrode 5, the diffusion preventing layer 32, and the second solder layer 33 do not contain gold (Au). Therefore, the first solder layer 31 and the second solder layer 33 diffuse to each other, so that a hard and brittle intermetallic compound such as AuSn 4 is formed with a large film thickness. This can be prevented by the prevention layer 32.
  • the semiconductor device 1 of the present embodiment it is possible to provide the semiconductor device 1 provided with the highly reliable bonding portion 3 while reducing the stress generated in the semiconductor element 2.
  • the first solder layer 31 is formed of gold-tin (Au—Sn) solder alloy
  • the second solder layer 33 is tin bismuth (Sn—Bi) solder alloy. Further, it may be formed of any one of a tin silver (Sn—Ag) solder alloy, a tin copper (Sn—Cu) solder alloy, and a tin zinc (Sn—Zn) solder alloy. Therefore, the second solder layer 33 has a second melting point T m2 that is lower than the first melting point T m1 of the first solder layer 31.
  • the semiconductor device 1 of the present embodiment the difference between the thermal expansion coefficients of the semiconductor element 2 and the support member 4 and the second temperature T 2 such as the melting point and room temperature of the bonding material 3p. While reducing the stress which generate
  • the diffusion prevention layer 32 is made of a material having a lower diffusion rate to tin (Sn) than gold (Au), or tin (Sn) compared to gold (Au). And a material that hardly forms an intermetallic compound. Therefore, even if the second solder layer 33 contains tin (Sn), a hard and brittle intermetallic compound such as AuSn 4 is present between the diffusion prevention layer 32 and the second solder layer 33. It is not formed with a large film thickness. As a result, according to the semiconductor device 1 of the present embodiment, it is possible to provide the semiconductor device 1 provided with the highly reliable bonding portion 3 while reducing the stress generated in the semiconductor element 2.
  • the diffusion prevention layer 32 may be formed of any of nickel (Ni), iron (Fe), platinum (Pt), palladium (Pd), and copper (Cu).
  • Nickel (Ni), iron (Fe), platinum (Pt), palladium (Pd), and copper (Cu) are all materials having a lower diffusion rate into tin (Sn) than gold (Au). Or, it is a material that is less likely to form an intermetallic compound with tin (Sn) than gold (Au). Therefore, even if an intermetallic compound is formed between the diffusion preventing layer 32 and the second solder layer 33, the film thickness of the intermetallic compound is sufficiently smaller than the film thickness of the intermetallic compound of AuSn 4. .
  • the semiconductor device 1 of the present embodiment it is possible to provide the semiconductor device 1 provided with the highly reliable bonding portion 3 while reducing the stress generated in the semiconductor element 2.
  • the surface of the second electrode 5 in contact with the bonding portion 3 is made of a material having a lower diffusion rate into tin (Sn) or gold (Au) than gold (Au). Compared to the above, it may be formed of a material that is less likely to form an intermetallic compound with tin (Sn). Therefore, even if the second solder layer 33 contains tin (Sn), a hard and brittle intermetallic compound, such as AuSn 4 , between the second electrode 5 and the second solder layer 33. However, it is not formed with a large film thickness. As a result, according to the semiconductor device 1 of the present embodiment, it is possible to provide the semiconductor device 1 provided with the highly reliable bonding portion 3 while reducing the stress generated in the semiconductor element 2.
  • the surface of the second electrode 5 in contact with the joint 3 may be formed of any of nickel (Ni), platinum (Pt), and copper (Cu).
  • Nickel (Ni), platinum (Pt), and copper (Cu) are all materials having a low diffusion rate to tin (Sn) compared to gold (Au), or compared to gold (Au), It is a material that hardly forms an intermetallic compound with tin (Sn). Therefore, even if an intermetallic compound is formed between the second electrode 5 and the second solder layer 33, the film thickness of the intermetallic compound is sufficiently larger than the film thickness of the intermetallic compound of AuSn 4. small.
  • the semiconductor device 1 of the present embodiment it is possible to provide the semiconductor device 1 provided with the highly reliable bonding portion 3 while reducing the stress generated in the semiconductor element 2.
  • the bonding material 3p of the present embodiment includes a first solder layer 31, a second solder layer 33 having a second melting point T m2 lower than the first melting point T m1 of the first solder layer 31, A diffusion preventing layer 32 provided between the first solder layer 31 and the second solder layer 33 is provided.
  • the diffusion preventing layer 32 prevents mutual diffusion between the first solder layer 31 and the second solder layer 33.
  • the second solder layer 33 includes tin (Sn).
  • the diffusion preventing layer 32 and the second solder layer 33 do not contain gold (Au).
  • the bonding material 3p of the present embodiment includes a first solder layer 31, a second solder layer 33 having a second melting point T m2 lower than the first melting point T m1 of the first solder layer 31, A diffusion preventing layer 32 provided between the first solder layer 31 and the second solder layer 33 is provided.
  • the diffusion preventing layer 32 prevents mutual diffusion between the first solder layer 31 and the second solder layer 33.
  • the diffusion preventing layer 32 can suppress an increase in the temperature difference between the melting point T m2 of the second layer and the second temperature T 2 such as room temperature. Therefore, the stress generated in the semiconductor element 2 due to the difference in thermal expansion coefficient between the semiconductor element 2 and the support member 4 and the temperature difference between the melting point of the bonding material 3p and the second temperature T 2 such as room temperature is reduced. be able to.
  • the temperature difference between the second melting point T m2 of the second solder layer 33 and the second temperature T 2 of 25 ° C. is 255 ° C.
  • the second solder layer 33 is made of the second solder layer 33. temperature difference between the temperature T 2 a second melting point T m2 and 25 ° C., can be reduced to 113 ° C..
  • the stress applied to the semiconductor element 2 is 20 MPa, whereas the present embodiment In one example, the stress applied to the semiconductor element 2 can be reduced to 9 MPa. As a result, according to the present embodiment, the stress applied to the semiconductor element 2 can be reduced by 50% or more compared to the comparative example.
  • the diffusion prevention layer 32 prevents mutual diffusion between the first solder layer 31 and the second solder layer 33.
  • the second solder layer 33 includes tin (Sn).
  • the diffusion preventing layer 32 and the second solder layer 33 do not contain gold (Au). Therefore, the diffusion preventing layer is formed by the fact that the first solder layer 31 and the second solder layer 33 diffuse to each other to form a hard and brittle intermetallic compound such as AuSn 4 with a large film thickness. 32 can prevent this.
  • the interface between the second solder layer 33 and the diffusion preventing layer 32 and the interface between the second solder layer 33 and the second electrode 5 of the support member 4 are hard, such as AuSn 4 , and A brittle intermetallic compound is not formed with a large film thickness.
  • the bonding material 3p of the present embodiment it is possible to reduce the stress generated in the semiconductor element 2 and obtain the bonding portion 3 with high reliability.
  • the first solder layer 31 is formed of gold tin (Au—Sn) solder alloy
  • the second solder layer 33 is tin bismuth (Sn—Bi) solder alloy. Further, it may be formed of any one of a tin silver (Sn—Ag) solder alloy, a tin copper (Sn—Cu) solder alloy, and a tin zinc (Sn—Zn) solder alloy. Therefore, the second solder layer 33 has a second melting point T m2 that is lower than the first melting point T m1 of the first solder layer 31.
  • the bonding material 3p of the present embodiment the difference between the thermal expansion coefficients of the semiconductor element 2 and the support member 4, and the second temperature T 2 such as the melting point and room temperature of the bonding material 3p.
  • the stress generated in the semiconductor element 2 due to the temperature difference can be reduced, and a highly reliable joint 3 can be obtained.
  • the diffusion preventing layer 32 is made of a material whose diffusion rate into tin (Sn) is lower than that of gold (Au), or tin (Sn) as compared with gold (Au). And a material that hardly forms an intermetallic compound. Therefore, even if the second solder layer 33 contains tin (Sn), a hard and brittle intermetallic compound such as AuSn 4 is present between the diffusion prevention layer 32 and the second solder layer 33. It is not formed with a large film thickness. As a result, according to the bonding material 3p of the present embodiment, it is possible to reduce the stress generated in the semiconductor element 2 and obtain the bonding portion 3 with high reliability.
  • the diffusion preventing layer 32 may be formed of any of nickel (Ni), iron (Fe), platinum (Pt), palladium (Pd), and copper (Cu).
  • Nickel (Ni), iron (Fe), platinum (Pt), palladium (Pd), and copper (Cu) are all materials having a lower diffusion rate into tin (Sn) than gold (Au). Or, it is a material that is less likely to form an intermetallic compound with tin (Sn) than gold (Au). Therefore, even if an intermetallic compound is formed between the diffusion preventing layer 32 and the second solder layer 33, the film thickness of the intermetallic compound is sufficiently smaller than the film thickness of the intermetallic compound of AuSn 4. .
  • the bonding material 3p of the present embodiment it is possible to reduce the stress generated in the semiconductor element 2 and obtain the bonding portion 3 with high reliability.
  • the bonding material 3p is provided between the first electrode 23 of the semiconductor element 2 and the second electrode 5 of the support member 4 that supports the semiconductor element 2. Is provided.
  • the bonding material 3p includes a first solder layer 31, a diffusion prevention layer 32, and a second solder layer 33 in this order from the semiconductor element 2 side.
  • the second solder layer 33 has a second melting point T m2 that is lower than the first melting point T m1 of the first solder layer 31.
  • the diffusion preventing layer 32 prevents mutual diffusion between the first solder layer 31 and the second solder layer 33.
  • the second solder layer 33 includes tin (Sn).
  • the second electrode 5, the diffusion preventing layer 32, and the second solder layer 33 do not contain gold (Au).
  • the bonding material 3p is heated at the first temperature T 1 that is equal to or higher than the first melting point T m1 of the first solder layer 31, and the bonding material 3p is heated to the first temperature. After heating at the temperature T 1 of 1 , the bonding material 3p is cooled to a second temperature T 2 that is lower than the second melting point T m2 of the second solder layer 33, and the first electrode 23 of the semiconductor element 2 is cooled. And forming the joint portion 3 that joins the second electrode 5 of the support member 4 to each other.
  • the first solder layer 31 and the second solder layer having the second melting point T m2 lower than the first melting point T m1 of the first solder layer 31. 33 is heated to the first temperature T 1 and then cooled to a second temperature T 2 lower than the second melting point T m2 of the second solder layer 33 to form the joint 3. is doing.
  • the diffusion preventing layer 32 prevents mutual diffusion between the first solder layer 31 and the second solder layer 33. As the first solder layer 31 diffuses into the second solder layer 33, the second melting point T m2 of the second solder layer 33 rises, and the second solder layer 33 of the bonding material 3p is second.
  • the diffusion preventing layer 32 can suppress an increase in the temperature difference between the melting point T m2 of the second layer and the second temperature T 2 such as room temperature. Therefore, the temperature difference between the temperature at which all of the bonding material 3p solidifies and the second temperature T 2 such as room temperature, that is, the second melting point T m2 of the second solder layer 33 and the second temperature such as room temperature. The temperature difference from T 2 can be reduced. As a result, according to the manufacturing method of the semiconductor device 1 of the present embodiment, the difference between the thermal expansion coefficients of the semiconductor element 2 and the support member 4 and the second temperature T such as the melting point and room temperature of the bonding material 3p. The stress generated in the semiconductor element 2 due to the temperature difference from 2 can be reduced.
  • the temperature difference between the second melting point T m2 of the second solder layer 33 and the second temperature T 2 of 25 ° C. is 255 ° C.
  • the second solder layer 33 is made of the second solder layer 33. temperature difference between the temperature T 2 a second melting point T m2 and 25 ° C., can be reduced to 113 ° C..
  • the stress applied to the semiconductor element 2 is 20 MPa, whereas the present embodiment In one example, the stress applied to the semiconductor element 2 can be reduced to 9 MPa. As a result, according to the present embodiment, the stress applied to the semiconductor element 2 can be reduced by 50% or more compared to the comparative example.
  • the interdiffusion between the first solder layer 31 and the second solder layer 33 is performed between the first solder layer 31 and the second solder layer 33.
  • a diffusion preventing layer 32 is provided to prevent the above.
  • the second electrode 5, the diffusion preventing layer 32, and the second solder layer 33 do not contain gold (Au). Therefore, the first solder layer 31 and the second solder layer 33 diffuse to each other, so that a hard and brittle intermetallic compound such as AuSn 4 is formed with a large film thickness. This can be prevented by the prevention layer 32.
  • the semiconductor device 1 of the present embodiment it is possible to manufacture the semiconductor device 1 including the highly reliable bonding portion 3 while reducing the stress generated in the semiconductor element 2.
  • the first solder layer 31 is formed of gold-tin (Au—Sn) based solder alloy
  • the second solder layer 33 is tin bismuth (Sn—Bi). It may be formed of any one of a solder alloy, a tin-silver (Sn—Ag) solder alloy, a tin-copper (Sn—Cu) solder alloy, and a tin-zinc (Sn—Zn) solder alloy. Therefore, the second solder layer 33 has a second melting point T m2 that is lower than the first melting point T m1 of the first solder layer 31.
  • the difference between the thermal expansion coefficients of the semiconductor element 2 and the support member 4 and the second temperature T such as the melting point and room temperature of the bonding material 3p.
  • the diffusion prevention layer 32 is made of a material having a lower diffusion rate to tin (Sn) than gold (Au), or tin compared to gold (Au). (Sn) and the material which cannot form an intermetallic compound may be formed. Therefore, even if the second solder layer 33 contains tin (Sn), a hard and brittle intermetallic compound such as AuSn 4 is present between the diffusion prevention layer 32 and the second solder layer 33. It is not formed with a large film thickness. As a result, according to the method for manufacturing the semiconductor device 1 of the present embodiment, it is possible to manufacture the semiconductor device 1 including the highly reliable bonding portion 3 while reducing the stress generated in the semiconductor element 2.
  • the diffusion prevention layer 32 is formed of any one of nickel (Ni), iron (Fe), platinum (Pt), palladium (Pd), and copper (Cu). Also good. Nickel (Ni), iron (Fe), platinum (Pt), palladium (Pd), and copper (Cu) are all materials having a lower diffusion rate into tin (Sn) than gold (Au). Or, it is a material that is less likely to form an intermetallic compound with tin (Sn) than gold (Au). Therefore, even if an intermetallic compound is formed between the diffusion preventing layer 32 and the second solder layer 33, the film thickness of the intermetallic compound is sufficiently smaller than the film thickness of the intermetallic compound of AuSn 4. . As a result, according to the method for manufacturing the semiconductor device 1 of the present embodiment, it is possible to manufacture the semiconductor device 1 including the highly reliable bonding portion 3 while reducing the stress generated in the semiconductor element 2.
  • the surface of the second electrode 5 in contact with the bonding portion 3 is made of a material having a lower diffusion rate into tin (Sn) than gold (Au), or gold Compared to (Au), it may be formed of a material that is less likely to form an intermetallic compound with tin (Sn). Therefore, even if the second solder layer 33 contains tin (Sn), a hard and brittle intermetallic compound, such as AuSn 4 , between the second electrode 5 and the second solder layer 33. However, it is not formed with a large film thickness. As a result, according to the method for manufacturing the semiconductor device 1 of the present embodiment, it is possible to manufacture the semiconductor device 1 including the highly reliable bonding portion 3 while reducing the stress generated in the semiconductor element 2.
  • the surface of the second electrode 5 in contact with the joint 3 may be formed of any one of nickel (Ni), platinum (Pt), and copper (Cu).
  • Nickel (Ni), platinum (Pt), and copper (Cu) are all materials having a low diffusion rate to tin (Sn) compared to gold (Au), or compared to gold (Au), It is a material that hardly forms an intermetallic compound with tin (Sn). Therefore, even if an intermetallic compound is formed between the second electrode 5 and the second solder layer 33, the film thickness of the intermetallic compound is sufficiently larger than the film thickness of the intermetallic compound of AuSn 4. small.
  • the method for manufacturing the semiconductor device 1 of the present embodiment it is possible to manufacture the semiconductor device 1 including the highly reliable bonding portion 3 while reducing the stress generated in the semiconductor element 2.
  • the manufacturing method of the semiconductor device 1 according to the second embodiment basically includes the same steps as the manufacturing method of the semiconductor device 1 according to the first embodiment shown in FIGS. 3 to 7, but mainly in the following points. Different.
  • cooling bonding material 3 p to second temperature T 2 changes the temperature of bonding material 3 p of first solder layer 31.
  • the third temperature T 3 is preferably higher than the second melting point T m2 of the second solder layer 33 by 0 ° C. or more and 20 ° C. or less, and more preferably 0 ° C. or more and 10 ° C. or less. That is, the temperature difference ⁇ T 2 between the third temperature T 3 and the second melting point T m2 of the second solder layer 33 is preferably 0 ° C. or higher and 20 ° C. or lower, and is 0 ° C. or higher and 10 ° C. or lower. More preferably.
  • the cooling device 85 is stopped and the heating device 84 is operated, thereby the bonding material.
  • the temperature of the 3p can be held at the third temperature T 3.
  • the time t 2 for maintaining the temperature of the bonding material 3p at the third temperature T 3 is preferably 10 seconds to 5 minutes, and more preferably 30 seconds to 2 minutes.
  • the heating device 84 is stopped and the cooling device 85 is operated, so that the bonding material 3p is moved to the second temperature such as room temperature. It is cooled to a temperature T 2.
  • the effect of the manufacturing method of the semiconductor device 1 of the present embodiment will be described.
  • the effects of the manufacturing method of the semiconductor device 1 of the present embodiment have the following effects in addition to the effects of the manufacturing method of the semiconductor device 1 of the first embodiment.
  • the semiconductor element 2, the support member 4, and the second solder layer 33 are formed by using different materials for the semiconductor element 2, the support member 4, and the second solder layer 33. May have different heat capacities. Since the semiconductor element 2, the support member 4, and the second solder layer 33 have different heat capacities, the temperature is lowered between the semiconductor element 2, the support member 4, and the second solder layer 33. Different from each other.
  • cooling the bonding material 3p to the second temperature T 2 is that the temperature of the bonding material 3p is less than the first melting point T m1 of the first solder layer 31. And holding the third solder layer 33 at a third temperature T 3 equal to or higher than the second melting point T m2 of the second solder layer 33. Therefore, in the present embodiment, even if the semiconductor element 2, the support member 4, and the second solder layer 33 have different heat capacities, the semiconductor element 2 is in the middle of cooling the bonding material 3p. The difference between the temperature, the temperature of the support member 4, and the temperature of the second solder layer 33 can be reduced.
  • the difference between the temperature of the semiconductor element 2 and the temperature of the support member 4 at the time when the second solder layer 33 has been solidified can be reduced.
  • the stress generated in the semiconductor element 2 due to the difference in thermal expansion coefficient between the semiconductor element 2 and the support member 4 and the temperature difference between the melting point of the bonding material 3p and the second temperature T 2 such as room temperature is further increased. Can be reduced.
  • the third temperature T 3 may be higher than the second melting point T m2 of the second solder layer 33 by 0 ° C. or more and 20 ° C. or less.
  • the second melting point T m2 third higher 20 ° C. below 0 °C or more than the temperature T 3 of the second solder layer 33, for keeping the temperature of the bonding material 3p, finished second solder layer 33 is solidified
  • the difference between the temperature of the semiconductor element 2 and the temperature of the support member 4 can be further reduced.
  • the difference in thermal expansion coefficient between the semiconductor element 2 and the support member 4 and the second temperature such as the melting point of the bonding material 3p and room temperature room temperature.
  • the stress generated in the semiconductor element 2 due to the temperature difference from T 2 can be further reduced.
  • the manufacturing method of the semiconductor device 1 according to the third embodiment basically includes the same steps as the manufacturing method of the semiconductor device 1 according to the first embodiment shown in FIG. 4 to FIG. Yes, but it differs mainly in the following points.
  • heating bonding material 3 p at first temperature T 1 moves semiconductor element 2 in the direction of support member 4 (z direction). Including pressing. Since the semiconductor element 2 is pressed in the direction of the support member 4 (z direction), the contact between the first electrode 23 of the semiconductor element 2 and the first solder layer 31 of the bonding material 3p becomes strong. Therefore, the bonding force between the semiconductor element 2 and the bonding portion 3 can be increased. As a result, according to the method for manufacturing the semiconductor device 1 of the present embodiment, it is possible to manufacture the semiconductor device 1 including the highly reliable bonding portion 3 while reducing the stress generated in the semiconductor element 2.
  • the manufacturing method of the semiconductor device 1 according to the fourth embodiment basically includes the same steps as the manufacturing method of the semiconductor device 1 according to the first embodiment shown in FIGS. 4 to 7, but mainly in the following points. Different.
  • heating the bonding material 3p at the first temperature T 1 means that the semiconductor element 2 is pressed while pressing the semiconductor element 2 in the direction of the support member 4 (z direction). Oscillating the semiconductor element 2 with respect to the support member 4 in a direction (for example, a direction parallel to the xy plane) intersecting the direction (z direction) in which the bonding material 3p and the support member 4 are stacked. In the present embodiment, it is preferable to press the semiconductor element 2 in the direction of the support member 4 with a pressure of 0.5 MPa or more.
  • the effect of the manufacturing method of the semiconductor device 1 of the present embodiment will be described.
  • the effects of the manufacturing method of the semiconductor device 1 of the present embodiment have the following effects in addition to the effects of the manufacturing method of the semiconductor device 1 of the first embodiment.
  • heating the bonding material 3p at the first temperature T 1 means that the semiconductor element 2 is pressed while pressing the semiconductor element 2 in the direction of the support member 4 (z direction). Oscillating the semiconductor element 2 with respect to the support member 4 in a direction (for example, a direction parallel to the xy plane) intersecting the direction (z direction) in which the bonding material 3p and the support member 4 are stacked.
  • the semiconductor element 2, the bonding material 3p, and the support member 4 are stacked in the direction (z direction) while pressing the semiconductor element 2 in the direction of the support member 4 (z direction).
  • Impurities attached to the surface of the first electrode 23 of the semiconductor element 2 and the surface of the bonding material 3p can be removed by rubbing.
  • the semiconductor element 2, the bonding material 3p, and the support member 4 are stacked while pressing the semiconductor element 2 in the direction of the support member 4 (z direction) (
  • the first solder layer 31 of the bonding material 3p flows by vibrating the semiconductor element 2 with respect to the support member 4 in a direction crossing the z direction) (for example, a direction parallel to the xy plane). Interdiffusion between the first electrode 23 of the semiconductor element 2 and the first solder layer 31 of the bonding material 3p is promoted. Therefore, the bonding force between the semiconductor element 2 and the bonding portion 3 can be improved.
  • the method for manufacturing the semiconductor device 1 of the present embodiment it is possible to manufacture the semiconductor device 1 including the highly reliable bonding portion 3 while reducing the stress generated in the semiconductor element 2.
  • the bonding material 3p of the present embodiment basically has the same configuration as the bonding material 3p of the first embodiment shown in FIGS. 3 to 7, but the first solder layer 31 and the second solder layer. At least one of 33 is mainly different in that it is composed of a plurality of layers.
  • first solder layer 31 of bonding material 3p may be composed of a plurality of layers (tin layer 34, gold layer 35).
  • Each of the plurality of layers (tin layer 34 and gold layer 35) in the first solder layer 31 has only one element among the plurality of elements (excluding inevitable impurities) constituting the first solder layer 31. It is.
  • the plurality of layers (tin layer 34, gold layer 35) in the first solder layer 31 have different elements.
  • each of the plurality of layers in the first solder layer 31 has only one element among the plurality of elements constituting the first solder layer 31.
  • Each of the plurality of layers means that an inevitable impurity may be included in addition to the one element.
  • the first solder layer 31 of the joint portion 3 is a gold-tin (Au—Sn) solder alloy
  • the first solder layer 31 of the joint material 3 p includes a tin layer 34 and a gold layer 35. Composed.
  • the tin layer 34 is located closer to the diffusion preventing layer 32 than the gold layer 35 is.
  • the gold layer 35 may be located closer to the diffusion preventing layer 32 than the tin layer 34.
  • the thickness of the gold layer 35 may be 1.3 times or more and 1.7 times or less than the thickness of the tin layer 34.
  • the bonding material 3p is heated, melted, and cooled, so that the thickness of the bonding portion 3 obtained can be increased.
  • the composition of one solder layer 31 can be determined between 80Au—Sn and 82Au—Sn.
  • the thickness of the gold layer 35 may be 0.8 times to 1.3 times the thickness of the tin layer 34.
  • the bonding material 3p is heated, melted, and cooled, so that the first portion of the bonding portion 3 is obtained.
  • the composition of one solder layer 31 can be determined between 70Au—Sn and 80Au—Sn.
  • second solder layer 33 of bonding material 3p may be composed of a plurality of layers (tin layer 36, bismuth layer 37).
  • Each of the plurality of layers (tin layer 36 and bismuth layer 37) in the second solder layer 33 has only one element among a plurality of elements (excluding inevitable impurities) constituting the second solder layer 33. It is.
  • the plurality of layers (tin layer 36, bismuth layer 37) in the second solder layer 33 have different elements.
  • each of the plurality of layers in the second solder layer 33 has only one element among the plurality of elements constituting the second solder layer 33.
  • Each of the plurality of layers means that an inevitable impurity may be included in addition to the one element.
  • the second solder layer 33 of the joint portion 3 is a tin bismuth (Sn—Bi) solder alloy
  • the second solder layer 33 of the joint material 3p is composed of a tin layer 36 and a bismuth layer 37. Is done.
  • the tin layer 36 is located closer to the diffusion preventing layer 32 than the bismuth layer 37.
  • the bismuth layer 37 may be located closer to the diffusion preventing layer 32 than the tin layer 36.
  • the thickness of the tin layer 36 may be equal to the thickness of the bismuth layer 37.
  • the composition of the second solder layer 33 of the joint 3 obtained by heating, melting, and cooling the joining material 3p is Sn-57Bi. Can be determined.
  • the manufacturing method of the semiconductor device 1 according to the fifth embodiment basically includes the same steps as the manufacturing method of the semiconductor device 1 according to the first embodiment shown in FIGS. 3 to 7, but mainly in the following points. Different.
  • the bonding material 3p is provided between the first electrode 23 of the semiconductor element 2 and the second electrode 5 of the support member 4 that supports the semiconductor element 2.
  • This includes forming the first solder layer 31 and forming the second solder layer 33.
  • the formation of the first solder layer 31 includes a plurality of layers (tin layer 34, each having only one element among a plurality of elements (excluding unavoidable impurities) constituting the first solder layer 31). Forming a gold layer 35) may be included.
  • the plurality of layers (tin layer 34, gold layer 35) in the first solder layer 31 have different elements.
  • the formation of the second solder layer 33 means that a plurality of layers (tin layer 36, each having only one element among the plurality of elements (excluding inevitable impurities) constituting the second solder layer 33). Forming a bismuth layer 37) may be included. The plurality of layers (tin layer 36, bismuth layer 37) in the second solder layer 33 have different elements.
  • the tin layer 34 and the gold layer 35 are formed on the second electrode 5 of the support member 4 by a method such as plating or vapor deposition, and the first solder layer 31 is formed.
  • a diffusion preventing layer 32 is formed on the first solder layer 31 by a method such as plating or vapor deposition.
  • the tin layer 36 and the bismuth layer 37 are formed on the diffusion prevention layer 32 by a method such as plating or vapor deposition, and the second solder layer 33 is formed.
  • the semiconductor element 2 is placed on the bonding material 3p. In this way, the bonding material 3p may be provided between the first electrode 23 of the semiconductor element 2 and the second electrode 5 of the support member 4 that supports the semiconductor element 2.
  • the effect of the bonding material 3p of the present embodiment and the method for manufacturing the semiconductor device 1 will be described.
  • the effects of the bonding material 3p of the present embodiment and the method of manufacturing the semiconductor device 1 have the following effects in addition to the effects of the bonding material 3p of the first embodiment and the method of manufacturing the semiconductor device 1.
  • the first solder layer 31 (gold tin (Au—Sn) solder alloy) in the bonding material 3p of the present embodiment is composed of a plurality of layers (tin layer 34, gold layer 35).
  • Each of the plurality of layers (the tin layer 34 and the gold layer 35) is a layer having only one element among the plurality of elements constituting the first solder layer 31.
  • the plurality of layers (tin layer 34, gold layer 35) in the first solder layer 31 (gold tin (Au—Sn) solder alloy) have elements different from each other.
  • the composition of the first solder layer 31 of the joint portion 3 formed by heating, melting, and cooling the joining material 3p is a plurality of layers constituting the first solder layer 31 of the joining material 3p. It is determined by the ratio of the thicknesses of the (tin layer 34 and gold layer 35).
  • the bonding material 3p of the present embodiment the first solder layer 31 of the bonding portion 3 having the composition as designed can be easily formed. As a result, according to the bonding material 3p of the present embodiment, the stress generated in the semiconductor element 2 can be reduced and the highly reliable bonding portion 3 can be easily obtained.
  • the first solder layer 31 is formed by vapor deposition using an alloy having a plurality of elements as a vapor deposition source, it is difficult to form the first solder layer 31 having the composition as designed. is there.
  • the alloy used for the evaporation source includes a plurality of elements, and the plurality of elements have different vapor pressures. That is, the alloy used for the vapor deposition source contains an element that easily evaporates and an element that hardly evaporates when the alloy used for the vapor deposition source is heated. According to the bonding material 3p of the present embodiment, such difficulty can be overcome.
  • the second solder layer 33 (tin bismuth (Sn—Bi) solder alloy) in the bonding material 3p of the present embodiment is composed of a plurality of layers (tin layer 36, bismuth layer 37).
  • Each of the plurality of layers (the tin layer 36 and the bismuth layer 37) is a layer having only one element among the plurality of elements constituting the second solder layer 33.
  • the plurality of layers (tin layer 36, bismuth layer 37) in the second solder layer 33 (tin bismuth (Sn—Bi) solder alloy) have different elements.
  • the composition of the second solder layer 33 of the bonding portion 3 formed by heating, melting, and cooling the bonding material 3p is a plurality of layers constituting the second solder layer 33 of the bonding material 3p. It is determined by the ratio of the thicknesses of the (tin layer 36 and bismuth layer 37).
  • the bonding material 3p of the present embodiment the second solder layer 33 of the bonding portion 3 having the composition as designed can be easily formed. As a result, according to the bonding material 3p of the present embodiment, the stress generated in the semiconductor element 2 can be reduced and the highly reliable bonding portion 3 can be easily obtained.
  • the second solder layer 33 is formed by vapor deposition using an alloy having a plurality of elements as a vapor deposition source, it is difficult to form the second solder layer 33 having a composition as designed. is there.
  • the alloy used for the evaporation source includes a plurality of elements, and the plurality of elements have different vapor pressures. That is, the alloy used for the vapor deposition source contains an element that easily evaporates and an element that hardly evaporates when the alloy used for the vapor deposition source is heated. According to the bonding material 3p of the present embodiment, such difficulty can be overcome.
  • the first solder layer 31 includes a tin layer 34 and a gold layer 35, and the thickness of the gold layer 35 is 1.3 times or more the thickness of the tin layer 34. It may be 1.7 times or less.
  • the bonding material 3p is heated, melted, and cooled, so that the thickness of the bonding portion 3 obtained can be increased.
  • the composition of one solder layer 31 can be determined between 80Au—Sn and 82Au—Sn. As a result, according to the bonding material 3p of the present embodiment, it is possible to reduce the stress generated in the semiconductor element 2 and obtain the bonding portion 3 with high reliability.
  • the first solder layer 31 includes a tin layer 34 and a gold layer 35, and the thickness of the gold layer 35 is 0.8 times or more the thickness of the tin layer 34. It may be 1.3 times or less.
  • the bonding material 3p is heated, melted, and cooled, so that the first portion of the bonding portion 3 is obtained.
  • the composition of one solder layer 31 can be determined between 70Au—Sn and 80Au—Sn.
  • tin (Sn) contained in the first solder layer 31 reacts with the diffusion preventing layer 32, and an intermetallic material is formed at the interface between the first solder layer 31 and the diffusion preventing layer 32.
  • a compound may be formed.
  • the amount of tin (Sn) contained in the first solder layer 31 decreases and the first melting point T m1 of the first solder layer 31 increases.
  • the first melting point T m1 of the first solder layer 31 is increased, the bonding between the semiconductor element 2 and the first solder layer 31 tends to be poor, and the reliability of the bonding portion 3 is reduced.
  • the composition of the first solder layer 31 of the bonding portion 3 obtained by heating, melting, and cooling the bonding material 3p is 70Au—Sn and 80Au.
  • the first solder layer 31 having a high gold (Au) content can be obtained. Therefore, when the bonding material 3p is heated, an intermetallic compound is formed at the interface between the first solder layer 31 and the diffusion prevention layer 32, and the amount of tin (Sn) contained in the first solder layer 31 Even if it decreases, the rise in the first melting point T m1 of the first solder layer 31 can be suppressed.
  • the bonding material 3p of the present embodiment it is possible to reduce the stress generated in the semiconductor element 2 and obtain the bonding portion 3 with high reliability.
  • the bonding material 3p is provided between the first electrode 23 of the semiconductor element 2 and the second electrode 5 of the support member 4 that supports the semiconductor element 2.
  • a first solder layer 31 gold-tin (Au—Sn) solder alloy.
  • Forming the first solder layer 31 forms a plurality of layers (tin layer 34, gold layer 35) each having only one element out of the plurality of elements constituting the first solder layer 31. Including that.
  • the plurality of layers (tin layer 34, gold layer 35) in the first solder layer 31 have different elements.
  • the composition of the first solder layer 31 of the joint portion 3 formed by heating, melting, and cooling the joining material 3p is a plurality of layers constituting the first solder layer 31 of the joining material 3p. It is determined by the ratio of the thicknesses of the (tin layer 34 and gold layer 35).
  • the first solder layer 31 is formed by forming a plurality of layers (tin layer 34, gold layer 35) having different elements from each other. It is easy to accurately determine the thickness of each of the plurality of layers (tin layer 34, gold layer 35) constituting the solder layer 31. According to the manufacturing method of the semiconductor device 1 of the present embodiment, the first solder layer 31 of the joint portion 3 having the composition as designed can be easily formed. As a result, according to the method for manufacturing the semiconductor device 1 of the present embodiment, it is possible to easily manufacture the semiconductor device 1 including the highly reliable bonding portion 3 while reducing the stress generated in the semiconductor element 2.
  • the first solder layer 31 is formed by vapor deposition using an alloy having a plurality of elements as a vapor deposition source, it is difficult to form the first solder layer 31 having the composition as designed. is there.
  • the alloy used for the evaporation source includes a plurality of elements, and the plurality of elements have different vapor pressures. That is, the alloy used for the vapor deposition source contains an element that easily evaporates and an element that hardly evaporates when the alloy used for the vapor deposition source is heated. According to the manufacturing method of the semiconductor device 1 of the present embodiment, such difficulties can be overcome.
  • the bonding material 3p is provided between the first electrode 23 of the semiconductor element 2 and the second electrode 5 of the support member 4 that supports the semiconductor element 2.
  • a second solder layer 33 titanium-bismuth (Sn—Bi) solder alloy.
  • Forming the second solder layer 33 forms a plurality of layers (tin layer 36, bismuth layer 37) each having only one element among the plurality of elements constituting the second solder layer 33. Including that.
  • the plurality of layers (tin layer 36, bismuth layer 37) in the second solder layer 33 have different elements.
  • the composition of the second solder layer 33 of the bonding portion 3 formed by heating, melting, and cooling the bonding material 3p is a plurality of layers constituting the second solder layer 33 of the bonding material 3p. It is determined by the ratio of the thicknesses of the (tin layer 36 and bismuth layer 37).
  • the second solder layer 33 is formed by forming a plurality of layers (tin layer 36, bismuth layer 37) having different elements from each other. It is easy to accurately determine the thickness of each of the plurality of layers (tin layer 36, bismuth layer 37) constituting the solder layer 33. According to the manufacturing method of the semiconductor device 1 of the present embodiment, the second solder layer 33 of the joint portion 3 having the composition as designed can be easily formed. As a result, according to the method for manufacturing the semiconductor device 1 of the present embodiment, it is possible to easily manufacture the semiconductor device 1 including the highly reliable bonding portion 3 while reducing the stress generated in the semiconductor element 2.
  • the second solder layer 33 is formed by vapor deposition using an alloy having a plurality of elements as a vapor deposition source, it is difficult to form the second solder layer 33 having a composition as designed. is there.
  • the alloy used for the evaporation source includes a plurality of elements, and the plurality of elements have different vapor pressures. That is, the alloy used for the vapor deposition source contains an element that easily evaporates and an element that hardly evaporates when the alloy used for the vapor deposition source is heated. According to the manufacturing method of the semiconductor device 1 of the present embodiment, such difficulties can be overcome.
  • the first solder layer 31 includes a tin layer 34 and a gold layer 35, and the thickness of the gold layer 35 is 1. It may be 3 times or more and 1.7 times or less.
  • the bonding material 3p is heated, melted, and cooled, so that the thickness of the bonding portion 3 obtained can be increased.
  • the composition of one solder layer 31 can be determined between 80Au—Sn and 82Au—Sn.
  • the first solder layer 31 is composed of a tin layer 34 and a gold layer 35, and the gold layer 35 has a thickness of 0. It may be 8 times or more and 1.3 times or less.
  • the thickness of the gold layer 35 is 0.8 times to 1.3 times the thickness of the tin layer 34, the bonding material 3p is heated, melted, and cooled, so that the first portion of the bonding portion 3 is obtained.
  • the composition of one solder layer 31 can be determined between 70Au—Sn and 80Au—Sn.
  • tin (Sn) contained in the first solder layer 31 reacts with the diffusion preventing layer 32, and an intermetallic material is formed at the interface between the first solder layer 31 and the diffusion preventing layer 32.
  • a compound may be formed.
  • the amount of tin (Sn) contained in the first solder layer 31 decreases and the first melting point T m1 of the first solder layer 31 increases.
  • the first melting point T m1 of the first solder layer 31 is increased, the bonding between the semiconductor element 2 and the first solder layer 31 tends to be poor, and the reliability of the bonding portion 3 is reduced.
  • the composition of the first solder layer 31 of the joint 3 obtained by heating, melting, and cooling the joining material 3p is 70Au—
  • the first solder layer 31 having a high gold (Au) content can be obtained, which can be determined between Sn and 80Au—Sn. Therefore, when the bonding material 3p is heated, an intermetallic compound is formed at the interface between the first solder layer 31 and the diffusion prevention layer 32, and the amount of tin (Sn) contained in the first solder layer 31 Even if it decreases, the rise in the first melting point T m1 of the first solder layer 31 can be suppressed.
  • the method for manufacturing the semiconductor device 1 of the present embodiment it is possible to manufacture the semiconductor device 1 including the highly reliable bonding portion 3 while reducing the stress generated in the semiconductor element 2.
  • SYMBOLS 1 Semiconductor device, 2 semiconductor element, 3 junction part, 3p joining material, 4 support member, 5 2nd electrode, 6 heat sink, 7 wiring, 8 power supply, 21 semiconductor substrate, 22 semiconductor layer, 23 1st electrode, 24 Electrode, 31 first solder layer, 32 diffusion preventing layer, 33 second solder layer, 34, 36 tin layer, 35 gold layer, 37 bismuth layer, 80 stage, 81 holding unit, 82 transport device, 84 heating device, 85 cooling device, 90 observation device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Die Bonding (AREA)
  • Semiconductor Lasers (AREA)

Abstract

半導体装置(1)は、半導体素子(2)の第1の電極(23)と支持部材(4)の第2の電極(5)とを接合する接合部(3)を備える。接合部(3)は、半導体素子(2)側から順に、第1のはんだ層(31)と、拡散防止層(32)と、第2のはんだ層(33)とを含む。第2のはんだ層(33)は、第1のはんだ層(31)の第1の融点よりも低い第2の融点を有する。拡散防止層(32)は、第1のはんだ層(31)と第2のはんだ層(33)との間の相互拡散を防止する。第2のはんだ層(33)は錫(Sn)を含む。第2の電極(5)と、拡散防止層(32)と、第2のはんだ層(33)とは、金(Au)を含まない。そのため、半導体装置(1)は、半導体素子(2)に発生する応力が低減されるとともに信頼性の高い接合部を備える。

Description

半導体装置、半導体装置の製造方法、及び接合材料
 本発明は、半導体装置、半導体装置の製造方法、及び接合材料に関する。
 半導体レーザ素子のような光半導体素子、またはパワー半導体素子のような半導体素子を備えた半導体装置が知られている(特許文献1を参照)。
 特許文献1には、金錫(Au-Sn)はんだを用いて、半導体素子をサブマウントに接合することが記載されている。金錫(Au-Sn)はんだは、300℃以上の高い融点を有する。ガリウムヒ素(GaAs)からなる半導体素子の熱膨張率は、窒化アルミニウム(AlN)または炭化珪素(SiC)などからなるサブマウントの熱膨張係数と異なる。そのため、半導体素子とサブマウントとの間に金錫(Au-Sn)はんだを設け、この金錫(Au-Sn)はんだを溶融させた後、室温に冷却することによって、金錫(Au-Sn)はんだを用いて半導体素子をサブマウントに接合すると、半導体素子とサブマウントとの熱膨張係数の差、及び、金錫(Au-Sn)はんだの融点と室温との温度差によって、半導体素子に応力が加わる。
 この応力によって、半導体素子の特性が変動してしまう。半導体素子のこの特性変動を抑制するため、特許文献1に記載の半導体装置では、半導体素子と金錫(Au-Sn)はんだとの間、並びに、サブマウントと金錫(Au-Sn)はんだとの間に、金(Au)めっき層または錫ビスマス(Sn-Bi)層からなる応力緩和層が形成されている。応力緩和層を構成する金及び錫ビスマス(Sn-Bi)合金は、半導体素子よりも低いヤング率を有する。半導体素子に加わる応力をこの応力緩和層によって低減し、半導体素子の特性が変動することを抑制している。
特開2009-111065号公報
 しかし、特許文献1に記載の半導体装置では、半導体素子とサブマウントとの接合に、融点の高い金錫(Au-Sn)はんだを用いている。そのため、半導体素子とサブマウントとの熱膨張係数の差、及び、金錫(Au-Sn)はんだの融点と室温との温度差によって半導体素子に発生する応力が大きい。その結果、応力緩和層を用いても、半導体素子に発生する応力を十分に低減することは難しい。
 また、応力緩和層に錫ビスマス(Sn-Bi)層を用いた場合には、半導体素子の電極、サブマウントの電極などに含まれる金(Au)、及び、金錫(Au-Sn)はんだに含まれる金(Au)が、応力緩和層に含まれる錫(Sn)と反応して、AuSn4からなる金属間化合物が形成される。AuSn4からなる金属間化合物は、硬く、かつ、脆い。その上、金(Au)への錫(Sn)の拡散速度は大きく、金(Au)は錫(Sn)と金属間化合物を形成しやすいため、半導体素子とサブマウントとの間の接合部に形成されるAuSn4からなる金属間化合物は、大きな膜厚を有する。その結果、半導体素子とサブマウントとの間の接合部の信頼性が低い。
 本発明は、上記の課題を鑑みてなされたものであり、その目的は、半導体素子に発生する応力を低減するとともに信頼性の高い接合部を備える半導体装置を提供することである。
 本発明の別の目的は、半導体素子に発生する応力を低減するとともに信頼性の高い接合部を備える半導体装置を製造することができる半導体装置の製造方法を提供することである。
 本発明のさらに別の目的は、半導体素子に発生する応力を低減するとともに信頼性の高い接合部を得ることができる接合材料を提供することである。
 本発明の半導体装置は、第1の電極を有する半導体素子と、半導体素子を支持する支持部材とを備える。支持部材は、第2の電極を含む。本発明の半導体装置は、半導体素子の第1の電極と支持部材の第2の電極とを接合する接合部を、さらに備える。接合部は、半導体素子側から順に、第1のはんだ層と、拡散防止層と、第2のはんだ層とを含む。第2のはんだ層は、第1のはんだ層の第1の融点よりも低い第2の融点を有する。拡散防止層は、第1のはんだ層と第2のはんだ層との間の相互拡散を防止する。第2のはんだ層は錫(Sn)を含む。第2の電極と、拡散防止層と、第2のはんだ層とは、金(Au)を含まない。なお、本明細書において、金(Au)を含まないことは、金(Au)を全く含まないことに限られず、不可避不純物として金(Au)が含まれることも意味する。不可避不純物として含まれる金の濃度は、5×10-3重量%以下である。
 本発明の半導体装置の製造方法は、半導体素子の第1の電極と、半導体素子を支持する支持部材の第2の電極との間に、接合材料を設けることを備える。接合材料は、半導体素子側から順に、第1のはんだ層と、拡散防止層と、第2のはんだ層とを含む。第2のはんだ層は、第1のはんだ層の第1の融点よりも低い第2の融点を有する。拡散防止層は、第1のはんだ層と第2のはんだ層との間の相互拡散を防止する。第2のはんだ層は錫(Sn)を含む。第2の電極と、拡散防止層と、第2のはんだ層とは、金(Au)を含まない。本発明の半導体装置の製造方法は、接合材料を、第1のはんだ層の第1の融点以上の第1の温度で加熱することと、接合材料を第1の温度で加熱した後、接合材料を、第2のはんだ層の第2の融点未満の第2の温度まで冷却して、半導体素子の第1の電極と支持部材の第2の電極とを接合する接合部を形成することとを、さらに備える。
 本発明の接合材料は、第1のはんだ層と、第1のはんだ層の第1の融点よりも低い第2の融点を有する第2のはんだ層と、第1のはんだ層と第2のはんだ層との間に設けられた拡散防止層とを備える。拡散防止層は、第1のはんだ層と第2のはんだ層との間の相互拡散を防止する。第2のはんだ層は錫(Sn)を含む。拡散防止層と第2のはんだ層とは、金(Au)を含まない。
 本発明の半導体装置では、接合部は、半導体素子側から順に、第1のはんだ層と、拡散防止層と、第2のはんだ層とを含む。第2のはんだ層は、第1のはんだ層の第1の融点よりも低い第2の融点を有する。拡散防止層は、第1のはんだ層と第2のはんだ層との間の相互拡散を防止する。そのため、第1のはんだ層が第2のはんだ層に拡散することにより、第2のはんだ層の第2の融点が上昇して、接合部の第2のはんだ層の第2の融点と室温との温度差が増大することを、拡散防止層は抑制することができる。接合部がすべて凝固する温度と室温との温度差、すなわち、第2のはんだ層の第2の融点と室温との温度差を小さくすることができる。その結果、本発明の半導体装置によれば、半導体素子2と支持部材4との熱膨張係数の差、及び、接合部の融点と室温との温度差によって半導体素子2に発生する応力を低減することができる。
 また、本発明の半導体装置では、第1のはんだ層と第2のはんだ層との間に、第1のはんだ層と第2のはんだ層との間の相互拡散を防止する拡散防止層が設けられている。第2のはんだ層は錫(Sn)を含む。第2の電極と、拡散防止層と、第2のはんだ層とは、金(Au)を含まない。そのため、第1のはんだ層と第2のはんだ層とが相互に拡散してAuSn4のような、硬く、かつ、脆い金属間化合物が大きな膜厚で形成されることを、拡散防止層によって防止することができる。さらに、第2のはんだ層と拡散防止層との界面、及び、第2のはんだ層と支持部材の第2の電極との界面に、AuSn4のような、硬く、かつ、脆い金属間化合物が、大きな膜厚で形成されることがない。その結果、本発明の半導体装置によれば、半導体素子に発生する応力を低減するとともに信頼性の高い接合部を備える半導体装置を提供することができる。
 本発明の半導体装置の製造方法では、第1のはんだ層と、第1のはんだ層の第1の融点よりも低い第2の融点を有する第2のはんだ層とを有する接合材料を第1の温度で加熱した後、第2のはんだ層の第2の融点未満の第2の温度まで冷却して、接合部を形成している。拡散防止層は、第1のはんだ層と第2のはんだ層との間の相互拡散を防止する。第1のはんだ層が第2のはんだ層に拡散することにより、第2のはんだ層の第2の融点が上昇して、接合材料の第2のはんだ層の第2の融点と室温との温度差が増大することを、拡散防止層は抑制することができる。そのため、接合材料がすべて凝固する温度と室温との温度差、すなわち、第2のはんだ層の第2の融点と室温との温度差を小さくすることができる。その結果、本発明の半導体装置の製造方法によれば、半導体素子と支持部材との熱膨張係数の差、及び、接合材料の融点と室温との温度差によって半導体素子に発生する応力を低減することができる。
 また、本発明の半導体装置の製造方法では、第1のはんだ層と第2のはんだ層との間に、第1のはんだ層と第2のはんだ層との間の相互拡散を防止する拡散防止層が設けられている。第2の電極と、拡散防止層と、第2のはんだ層とは、金(Au)を含まない。そのため、第1のはんだ層と第2のはんだ層とが相互に拡散して、AuSn4のような、硬く、かつ、脆い金属間化合物が、大きな膜厚で形成されることを、拡散防止層によって防止することができる。さらに、第2のはんだ層と拡散防止層との界面、及び、第2のはんだ層と支持部材の第2の電極の界面との間に、AuSn4のような、硬く、かつ、脆い金属間化合物が、大きな膜厚で形成されることがない。その結果、本実施の形態の半導体装置の製造方法によれば、半導体素子に発生する応力を低減するとともに信頼性の高い接合部を備える半導体装置を製造することができる。
 本発明の接合材料は、第1のはんだ層と、第1のはんだ層の第1の融点よりも低い第2の融点を有する第2のはんだ層と、第1のはんだ層と第2のはんだ層との間に設けられた拡散防止層とを備える。拡散防止層は、第1のはんだ層と第2のはんだ層との間の相互拡散を防止する。第1のはんだ層が第2のはんだ層に拡散することにより、第2のはんだ層の第2の融点が上昇して、接合材料の第2のはんだ層の第2の融点と室温との温度差が増大することを、拡散防止層は抑制することができる。そのため、半導体素子と支持部材との熱膨張係数の差、及び、接合材料の融点と室温との温度差によって半導体素子に発生する応力を低減することができる。
 また、本発明の接合材料では、拡散防止層は、第1のはんだ層と第2のはんだ層との間の相互拡散を防止する。第2のはんだ層は錫(Sn)を含む。拡散防止層と第2のはんだ層とは、金(Au)を含まない。そのため、第1のはんだ層と第2のはんだ層とが相互に拡散してAuSn4のような、硬く、かつ、脆い金属間化合物が大きな膜厚で形成されることを、拡散防止層によって防止することができる。さらに、第2のはんだ層と拡散防止層との界面に、AuSn4のような、硬く、かつ、脆い金属間化合物が、大きな膜厚で形成されることがない。その結果、本発明の接合材料によれば、半導体素子に発生する応力を低減するとともに信頼性の高い接合部を得ることができる。
本発明の実施の形態1から実施の形態5に係る半導体装置の概略斜視図である。 本発明の実施の形態1から実施の形態5に係る半導体装置の、図1に示す断面線II-IIにおける概略断面拡大図である。 本発明の実施の形態1から実施の形態4に係る接合材料を示す図である。 本発明の実施の形態1から実施の形態5に係る半導体装置の製造方法の一工程を示す、概略部分断面図である。 本発明の実施の形態1、実施の形態2、及び実施の形態5に係る半導体装置の製造方法の一工程を示す、概略部分断面図である。 本発明の実施の形態1、並びに実施の形態3から実施の形態5に係る半導体装置の製造方法における温度プロファイルを示す図である。 本発明の実施の形態1から実施の形態5に係る半導体装置の製造方法の一工程を示す、概略部分断面図である。 本発明の実施の形態2に係る半導体装置の製造方法における温度プロファイルを示す図である。 本発明の実施の形態3に係る半導体装置の製造方法の一工程を示す、概略部分断面図である。 本発明の実施の形態4に係る半導体装置の製造方法の一工程を示す、概略部分断面図である。 本発明の実施の形態5に係る接合材料の概略部分断面図である。
 以下、本発明の実施の形態について図に基づいて説明する。
 (実施の形態1)
 図1及び図2を参照して、本実施の形態の半導体装置1は、主に、半導体素子2、接合部3、及び支持部材4を備える。
 半導体素子2として、半導体レーザ素子のような光半導体素子、またはパワー半導体素子を例示することができる。半導体素子2は、半導体基板21と、半導体層22と、第1の電極23と、他方の電極24とを有する。半導体基板21の材料として、ガリウムヒ素(GaAs)、窒化ガリウム(GaN)、インジウムリン(InP)、炭化シリコン(SiC)、シリコン(Si)を例示することができる。半導体層22は、半導体素子2の機能を奏する層を含む。例えば、半導体素子2が半導体レーザ素子である場合には、半導体層22は、レーザ光を放射する活性層を含む。半導体素子2がパワー半導体素子である場合には、半導体層22は、金属酸化膜半導体電界効果トランジスタ(MOSFET)、または絶縁ゲートバイポーラトランジスタ(IGBT)を構成する半導体層を含んでもよい。
 第1の電極23は、半導体素子2の電極のうち、支持部材4側に位置する電極である。第1の電極23は、金(Au)を含んでいてもよい。本実施の形態では、第1の電極23の材料は、金(Au)である。第1の電極23と半導体層22との密着力を高めるために、第1の電極23と半導体層22との間に、図示しない密着層が設けられてもよい。密着層として、ニッケル(Ni)/パラジウム(Pd)/金(Au)を例示することができる。他方の電極24は、半導体素子2の電極のうち、支持部材4と反対側に位置する電極である。他方の電極24は、金(Au)を含んでいてもよい。他方の電極24の材料として、金(Au)、ニッケル(Ni)/パラジウム(Pd)/金(Au)を例示することができる。
 支持部材4は、半導体素子2を支持する部材である。支持部材4として、サブマウント、絶縁基板を例示することができる。支持部材4は、半導体基板21及び半導体層22の少なくとも1つと異なる熱膨張係数を有してもよい。半導体素子2で発生する熱を効率的に放散するために、支持部材4は、高い熱伝導率を有することが好ましい。支持部材4の材料として、窒化アルミニウム(AlN)、炭化珪素(SiC)、銅(Cu)、銅(Cu)合金を例示することができる。
 支持部材4は、第2の電極5を含む。第2の電極5は、金(Au)を含んでいない。接合部3と接する第2の電極5の表面は、金(Au)に比べて、錫(Sn)への拡散速度が小さい材料、または、金(Au)に比べて、錫(Sn)と金属間化合物を形成しにくい材料であってもよい。このような材料として、ニッケル(Ni)、白金(Pt)、銅(Cu)を例示することができる。接合部3と接する第2の電極5の表面は、ニッケル(Ni)、白金(Pt)、銅(Cu)のいずれかで形成されていてもよい。第2の電極5は、例えば、ニッケル(Ni)コーティング層が施されたアルミニウム(Al)、チタン(Ti)/白金(Pt)、銅(Cu)のいずれかで形成されてもよい。ニッケル(Ni)コーティング層は、第2のはんだ層33と第2の電極5との密着性を高めるために設けられている。チタン(Ti)は、支持部材4と第2の電極5との密着性を高めるために設けられている。
 第2の電極5と、錫(Sn)を含むはんだ合金から構成される第2のはんだ層33との界面に、金属間化合物が形成されることがある。接合部3と接する第2の電極5の表面が、金(Au)に比べて、錫(Sn)への拡散速度が小さい材料、または、金(Au)に比べて、錫(Sn)と金属間化合物を形成しにくい材料で形成されるため、この金属間化合物の膜厚は、AuSn4の金属間化合物の膜厚よりも小さい。また、金属間化合物の生成量が少ないため、第2のはんだ層33と第2の電極5との界面にカーケンダルボイドが多量に発生することを防止することができる。そのため、接合部3の信頼性が低下することをさらに抑制することができる。
 半導体素子2と支持部材4との間に接合部3が設けられる。接合部3は、半導体素子2の第1の電極23と支持部材4の第2の電極5とを接合する。接合部3は、半導体素子2側から順に、第1のはんだ層31と、拡散防止層32と、第2のはんだ層33とを含む。接合材料3pを加熱し、溶融し、冷却することによって、接合部3が形成される。
 第1のはんだ層31は、金(Au)を含むはんだ合金から形成されてもよい。第1のはんだ層31は、金錫(Au-Sn)系はんだ合金で構成されてもよい。金錫(Au-Sn)系はんだ合金は、金錫(Au-Sn)はんだ合金、または、金(Au)と錫(Sn)と他の金属元素を含み、他の金属元素は金(Au)及び錫(Sn)よりも含有量が少ないはんだ合金を意味する。本実施の形態では、第1のはんだ層31は、Au5SnとAuSnとで構成される金錫(Au-Sn)はんだ合金である。金錫(Au-Sn)はんだ合金は、70Au-Snと82Au-Snとの間の組成を有してもよい。本明細書において、元素記号の前の数字は、はんだ合金中の当該元素の割合を重量パーセントで表した数字である。例えば、70Au-Snは、金(Au)を70重量%含む金錫(Au-Sn)はんだ合金を意味する。より特定的には、第1のはんだ層31を構成する金錫(Au-Sn)はんだ合金の組成は、80Au-Snであってもよい。80Au-Snはんだ合金の融点は280℃である。
 第1のはんだ層31を構成する金錫(Au-Sn)はんだ合金の組成は、70Au-Snと80Au-Snとの間であってもよい。接合部3の第1のはんだ層31の組成を70Au-Snと80Au-Snとの間に定めることにより、金(Au)の含有量が多い第1のはんだ層31を得ることができる。そのため、接合材料3pを加熱する際に、第1のはんだ層31と拡散防止層32との界面に金属間化合物が形成されて、第1のはんだ層31中に含まれる錫(Sn)の量が減少しても、第1のはんだ層31の第1の融点Tm1の上昇を抑制することができる。そのため、第1のはんだ層31の第1の融点Tm1が上昇して、第1のはんだ層31の溶融が十分でないことによる、接合部3における半導体素子2と支持部材4との接合不良を防止することができる。
 第2のはんだ層33は、第1のはんだ層31の第1の融点Tm1よりも低い第2の融点Tm2を有する。第2のはんだ層33の第2の融点Tm2は、第1のはんだ層31の第1の融点Tm1よりも、10℃以上、好ましくは30℃以上、さらに好ましくは50℃以上低くてもよい。第2のはんだ層33は、室温(25℃)よりも、100℃以上高い第2の融点Tm2を有してもよい。第2のはんだ層33は錫(Sn)を含む。第2のはんだ層33は、金(Au)を含まない。第2のはんだ層33は、第1のはんだ層31よりも、金(Au)の含有量が少なく、かつ、錫(Sn)の含有量が多いため、第2のはんだ層33は、第1のはんだ層31の第1の融点Tm1よりも低い第2の融点Tm2を有してもよい。第2のはんだ層33は、第1のはんだ層31と同程度の厚さを有してもよい。第2のはんだ層33は、第1のはんだ層31と同程度の体積を有してもよい。
 第2のはんだ層33は、錫ビスマス(Sn-Bi)系はんだ合金、錫銀(Sn-Ag)系はんだ合金、錫銅(Sn-Cu)系はんだ合金、錫亜鉛(Sn-Zn)系はんだ合金のいずれかで形成されてもよい。錫ビスマス(Sn-Bi)系はんだ合金は、錫ビスマス(Sn-Bi)合金、または、錫(Sn)とビスマス(Bi)と他の金属元素を含み、他の金属元素は錫(Sn)及びビスマス(Bi)よりも含有量が少ない合金を意味する。他の元素として、銀(Ag)、銅(Cu)、インジウム(In)を例示することができる。
 特定的には、錫ビスマス(Sn-Bi)系はんだ合金として、Sn-57Bi、Sn-1Ag-57Biを例示することができる。錫銀(Sn-Ag)系はんだ合金は、錫銀(Sn-Ag)合金、または、錫(Sn)と銀(Ag)と他の金属元素を含み、他の金属元素は錫(Sn)及び銀(Ag)よりも含有量が少ない合金を意味する。
 他の元素として、銅(Cu)、ビスマス(Bi)、インジウム(In)を例示することができる。錫銅(Sn-Cu)系はんだ合金は、錫銅(Sn-Cu)合金、または、錫(Sn)と銅(Cu)と他の金属元素を含み、他の金属元素は錫(Sn)及び銅(Cu)よりも含有量が少ない合金を意味する。他の元素として、銀(Ag)、ニッケル(Ni)を例示することができる。錫亜鉛(Sn-Zn)系はんだ合金は、錫亜鉛(Sn-Zn)合金、または、錫(Sn)と亜鉛(Zn)と他の金属元素を含み、他の金属元素は錫(Sn)及び亜鉛(Zn)よりも含有量が少ない合金を意味する。他の元素として、ビスマス(Bi)を例示することができる。本実施の形態では、第2のはんだ層33は、138℃の第2の融点Tm2を有するSn-57Biはんだ合金で形成されている。
 拡散防止層32は、金(Au)を含まない。そのため、第2のはんだ層が錫を含んでいても、拡散防止層32と第2のはんだ層33との界面に、AuSn4のような、硬く、かつ、脆い金属間化合物が、大きな膜厚で形成されることがない。
 拡散防止層32は、第1のはんだ層31と第2のはんだ層33との間に位置する。拡散防止層32は、第1のはんだ層31と第2のはんだ層33との間の相互拡散を防止する。第1のはんだ層31と第2のはんだ層33との間の相互拡散によってAuSn4のような、硬く、かつ、脆い金属間化合物が大きな膜厚で形成されることを、拡散防止層32は抑制することができる。
 また、第2のはんだ層33の第2の融点Tm2よりも高い第1の融点Tm1を有する第1のはんだ層31が第2のはんだ層33に拡散して、第2のはんだ層33の第2の融点Tm2が上昇することを、拡散防止層32によって防止することができる。例えば、第1のはんだ層31が金(Au)を含む場合、拡散防止層32によって、第1のはんだ層31に含まれる金(Au)が、第2のはんだ層33に拡散して、第2のはんだ層33の第2の融点Tm2が上昇することを防止することができる。そのため、接合材料3pの第2のはんだ層33の第2の融点Tm2と室温のような第2の温度T2との温度差が増大することを抑制することができる。
 拡散防止層32を構成する材料は、金(Au)に比べて、錫(Sn)への拡散速度が小さい材料であってもよい。拡散防止層32を構成する材料は、金(Au)に比べて、錫(Sn)と金属間化合物を形成しにくい材料であってもよい。金(Au)に比べて、錫(Sn)への拡散速度が小さい材料である、または、金(Au)に比べて、錫(Sn)と金属間化合物を形成しにくい材料として、ニッケル(Ni)、鉄(Fe)、白金(Pt)、パラジウム(Pd)、銅(Cu)を例示することができる。
 拡散防止層32と、錫(Sn)を含むはんだ合金から構成される第2のはんだ層33との界面に、金属間化合物が形成されることがある。例えば、拡散防止層32がニッケル(Ni)で構成される場合、拡散防止層32と、錫(Sn)を含むはんだ合金から構成される第2のはんだ層33との界面に、Ni3Sn4で構成される金属間化合物が形成されることがある。しかし、Ni3Sn4からなる金属間化合物の厚さは、AuSnからなる金属間化合物の厚さの4分の1未満にすぎない。
 拡散防止層32が鉄(Fe)で構成される場合、拡散防止層32と、錫(Sn)を含むはんだ合金から構成される第2のはんだ層33との界面に、FeSn2で構成される金属間化合物が形成されることがある。しかし、鉄(Fe)の錫(Sn)に対する拡散速度は、ニッケル(Ni)の錫(Sn)に対する拡散速度よりも遅く、金(Au)の錫(Sn)に対する拡散速度の約1万分の1にすぎない。拡散防止層32が鉄(Fe)からなる場合には、拡散防止層32がニッケル(Ni)からなる場合よりも、拡散防止層32を薄くすることができる。
 本実施の形態では、拡散防止層32が、金(Au)に比べて、錫(Sn)への拡散速度が小さい材料、または、金(Au)に比べて、錫(Sn)と金属間化合物を形成しにくい材料で形成されるため、この金属間化合物の膜厚を、AuSn4の金属間化合物の膜厚よりも小さくすることができる。また、金属間化合物の生成量が少ないため、第2のはんだ層33と拡散防止層32との界面、及び第1のはんだ層31と拡散防止層32との界面に、カーケンダルボイドが多量に発生することを防止することができる。そのため、接合部3の信頼性が低下することを抑制することができる。
 拡散防止層32は、1μm以上100μm以下、好ましくは1μm以上50μm以下、さらに好ましくは5μm以上10μm以下を有してもよい。拡散防止層32は、第1のはんだ層31及び第2のはんだ層のそれぞれよりも薄くてもよい。拡散防止層32は、第1のはんだ層31及び第2のはんだ層のそれぞれよりも小さな体積を有してもよい。
 半導体素子2で発生する熱を効率的に放散するために、半導体装置1は、半導体素子2と反対側の支持部材4上に、ヒートシンク6をさらに備えてもよい。ヒートシンク6として、銅板を例示することができる。
 半導体素子2の他方の電極24と支持部材4の第2の電極5とは、配線7を通じて、電源8と電気的に接続されている。配線7として、金(Au)ワイヤを例示することができる。電源8から、電圧及び電流の少なくとも1つを半導体素子2の第1の電極23と他方の電極24との間に印加して、半導体素子2を動作させる。
 図3から図7を参照して、本実施の形態の半導体装置1の製造方法及び接合材料3pについて説明する。
 本実施の形態の半導体装置1の製造方法では、半導体素子2の第1の電極23と、半導体素子2を支持する支持部材4の第2の電極5との間に、接合材料3pを設ける。支持部材4の第2の電極5上に接合材料3pを形成し(図3を参照)、それから、接合材料3pの上に半導体素子2を載置すること(図4を参照)によって、半導体素子2の第1の電極23と、半導体素子2を支持する支持部材4の第2の電極5との間に、接合材料3pを設けてもよい。
 支持部材4の第2の電極5上に接合材料3pを形成すること(図3を参照)は、めっき、または蒸着のような方法によって、支持部材4の第2の電極5上に第2のはんだ層33を形成することと、めっき、または蒸着のような方法によって、第2のはんだ層33上に拡散防止層32を形成することと、めっき、または蒸着のような方法によって、拡散防止層32上に第1のはんだ層31を形成することとを含んでもよい。
 本実施の形態では、第1のはんだ層31は、金錫(Au-Sn)系合金で形成されている。第1のはんだ層31は、接合部3の最上層である。周囲の雰囲気に露出する接合部3の最上面、すなわち、半導体素子2に最も近い面は、金錫(Au-Sn)系はんだ合金からなる第1のはんだ層31で形成されている。そのため、本実施の形態の半導体装置1の製造方法では、フラックスを準備する必要がなく、かつ、周囲の雰囲気を水素ガスなどの還元雰囲気とする必要が無い。
 接合材料3pの上に半導体素子2を載置すること(図4を参照)は、例えば、以下のように行ってもよい。接合材料3pが形成された支持部材4をステージ80上に載置する。カメラなどの観察装置90で、半導体素子2及び接合材料3pの位置を認識する。吸着装置などの保持部81によって半導体素子2を保持しながら、保持部81を有する搬送装置82によって、半導体素子2を接合材料3p上に位置決めして載置する。
 接合材料3pは、第1のはんだ層31と、第1のはんだ層31の第1の融点Tm1よりも低い第2の融点Tm2を有する第2のはんだ層33と、第1のはんだ層31と第2のはんだ層33との間に設けられた拡散防止層32とを備える。拡散防止層32は、第1のはんだ層31と第2のはんだ層33との間の相互拡散を防止する。第2のはんだ層33は錫(Sn)を含む。拡散防止層32と第2のはんだ層33とは、金(Au)を含まない。第1のはんだ層31は、金(Au)を含むはんだ合金から形成されてもよい。
 第1のはんだ層31は、金錫(Au-Sn)系合金で構成されてもよい。第1のはんだ層31は、金錫(Au-Sn)合金であり、この金錫(Au-Sn)合金は、70Au-Snと82Au-Snとの間の組成を有してもよい。
 第2のはんだ層33は、錫ビスマス(Sn-Bi)系はんだ合金、錫銀(Sn-Ag)系はんだ合金、錫銅(Sn-Cu)系はんだ合金、錫亜鉛(Sn-Zn)系はんだ合金のいずれかで形成されてもよい。
 拡散防止層32を構成する材料は、金(Au)に比べて、錫(Sn)への拡散速度が小さい材料であってもよい。拡散防止層32を構成する材料は、金(Au)に比べて、錫(Sn)と金属間化合物を形成しにくい材料であってもよい。拡散防止層32は、ニッケル(Ni)、鉄(Fe)、白金(Pt)、パラジウム(Pd)、銅(Cu)のいずれかで形成されてもよい。
 図5及び図6を参照して、本実施の形態の半導体装置1の製造方法では、接合材料3pを、第1のはんだ層31の第1の融点Tm1以上の第1の温度T1で加熱する。接合材料3pを加熱することは、図5に示すように、ステージ80に接続された加熱装置84によって、ステージ80及び支持部材4を加熱し、加熱されたステージ80及び支持部材4によって、接合材料3pを加熱してもよい。赤外線ヒータまたは熱風ヒータによって、半導体素子2と支持部材4との周囲を加熱することによって、接合材料3pを加熱してもよい。
 半導体素子2または支持部材4の温度を測定するために、保持部81、またはステージ80は、図示しない温度測定部を有してもよい。この温度測定部により測定された半導体素子2または支持部材4の温度に基いて、加熱装置84を制御してもよい。この温度測定部により測定された半導体素子2または支持部材4の温度に基いて、加熱装置84を制御することによって、半導体素子2及び支持部材4の温度を確実に第1のはんだ層31の第1の融点Tm1以上に加熱することができる。そのため、第1のはんだ層31の溶融不足による、接合部3における半導体素子2と支持部材4との接合不良を防止することができる。
 第1のはんだ層31または第2のはんだ層33が溶融している間に、半導体素子2が移動することを防止するため、第1のはんだ層31または第2のはんだ層33が溶融している間、保持部81で半導体素子2を保持したままにすることが好ましい。
 第2のはんだ層33の第2の融点Tm2は、第1のはんだ層31の第1の融点Tm1よりも低いので、第1の温度T1では、第1のはんだ層31及び第2のはんだ層33は溶融している。本実施の形態の半導体装置1の製造方法では、時間t1の間、接合材料3pの温度を第1の温度T1に保持してもよい。接合材料3pの温度を第1の温度T1に保持する時間t1は、5秒以上5分以下、好ましくは30秒以上3分以下、さらに好ましくは、30秒以上2分以下であってもよい。
 図7を参照して、接合材料3pを第1の温度T1で加熱した後、接合材料3pを、第2のはんだ層33の第2の融点Tm2未満の第2の温度T2まで冷却して、半導体素子2と支持部材4とを接合する接合部3を形成する。加熱装置84によるステージ80の加熱を停止するとともに、図7に示すように、半導体素子2と支持部材4とに冷却装置85から20℃から30℃の温度を有する冷風を吹き付けることによって、接合材料3pを冷却してもよい。第2の温度T2は、20℃から30℃の温度のような室温であってもよい。ステージ80を冷却することによって、接合材料3pを冷却してもよい。
 この冷却工程において、接合材料3pの温度が第1のはんだ層31の第1の融点Tm1よりも低いが第2のはんだ層33の第2の融点Tm2よりも高くなると、第1のはんだ層31は凝固して、半導体素子2の第1の電極23と第1のはんだ層31との接合は完了するが、第1のはんだ層31の第1の融点Tm1よりも低い第2の融点Tm2を有する第2のはんだ層33は溶融したままである。この冷却工程において、さらに接合材料3pを冷却して、接合材料3pの温度が第2のはんだ層33の第2の融点Tm2よりも低くなると、第2のはんだ層33も凝固する。第2のはんだ層33が凝固することによって、支持部材4の第2の電極5と第2のはんだ層33との接合も完了する。こうして、半導体素子2の第1の電極23と支持部材4の第2の電極5との接合する接合部3が形成される。第1のはんだ層31または第2のはんだ層33が溶融している間に、半導体素子2が移動することを防止するために、第1のはんだ層31または第2のはんだ層33が溶融している間、保持部81で半導体素子2を保持したままにすることが好ましい。
 本実施の形態の半導体装置1、接合材料3p及び半導体装置1の製造方法の効果を説明する。
 本実施の形態の半導体装置1は、第1の電極23を有する半導体素子2と、半導体素子2を支持する支持部材4とを備える。支持部材4は、第2の電極5を含む。半導体装置1は、半導体素子2の第1の電極23と支持部材4の第2の電極5とを接合する接合部3を、さらに備える。接合部3は、半導体素子2側から順に、第1のはんだ層31と、拡散防止層32と、第2のはんだ層33とを含む。第2のはんだ層33は、第1のはんだ層31の第1の融点Tm1よりも低い第2の融点Tm2を有する。拡散防止層32は、第1のはんだ層31と第2のはんだ層33との間の相互拡散を防止する。第2のはんだ層33は錫(Sn)を含む。第2の電極5と、拡散防止層32と、第2のはんだ層33とは、金(Au)を含まない。
 本実施の形態の半導体装置1では、第2のはんだ層33は、第1のはんだ層31の第1の融点Tm1よりも低い第2の融点Tm2を有する。拡散防止層32は、第1のはんだ層31と第2のはんだ層33との間の相互拡散を防止する。第1のはんだ層31が第2のはんだ層33に拡散することにより、第2のはんだ層33の第2の融点Tm2が上昇して、接合部3の第2のはんだ層33の第2の融点Tm2と室温のような第2の温度T2との温度差が増大することを、拡散防止層32は抑制することができる。そのため、接合材料3pがすべて凝固する温度と室温のような第2の温度T2との温度差、すなわち、第2のはんだ層33の第2の融点Tm2と室温のような第2の温度T2との温度差を小さくすることができる。その結果、本実施の形態の半導体装置1によれば、半導体素子2と支持部材4との熱膨張係数の差、及び、接合材料3pの融点と室温のような第2の温度T2との温度差によって半導体素子2に発生する応力を低減することができる。
 例えば、第2のはんだ層33の材料として、80Au-20Snはんだを用いる比較例では、第2のはんだ層33の第2の融点Tm2と25℃の第2の温度T2との温度差は、255℃である。これに対し、第2のはんだ層33の材料として、138℃の第2の融点Tm2を有するSn-57Biはんだを用いた本実施の形態の一例では、第2のはんだ層33の第2の融点Tm2と25℃の第2の温度T2との温度差は、113℃にまで小さくすることができる。半導体素子2と支持部材4とをバイメタルとみなして、熱応力計算により半導体素子2に加わる応力を求めると、比較例では、半導体素子2に加わる応力が20MPaであるのに対し、本実施の形態の一例では、半導体素子2に加わる応力を9MPaにまで低減することができる。その結果、本実施の形態によれば、比較例よりも、半導体素子2に加わる応力を50%以上低減することができる。
 本実施の形態の半導体装置1では、第1のはんだ層31と第2のはんだ層33との間に、第1のはんだ層31と第2のはんだ層33との間の相互拡散を防止する拡散防止層32が設けられている。第2の電極5と、拡散防止層32と、第2のはんだ層33とは、金(Au)を含まない。そのため、第1のはんだ層31と第2のはんだ層33とが相互に拡散して、AuSn4のような、硬く、かつ、脆い金属間化合物が、大きな膜厚で形成されることを、拡散防止層32によって防止することができる。さらに、第2のはんだ層33と拡散防止層32との界面、及び、第2のはんだ層33と支持部材4の第2の電極5の界面との間に、AuSn4のような、硬く、かつ、脆い金属間化合物が、大きな膜厚で形成されることがない。その結果、本実施の形態の半導体装置1によれば、半導体素子2に発生する応力を低減するとともに信頼性の高い接合部3を備える半導体装置1を提供することができる。
 本実施の形態の半導体装置1では、第1のはんだ層31は、金錫(Au-Sn)系はんだ合金で形成され、第2のはんだ層33は、錫ビスマス(Sn-Bi)系はんだ合金、錫銀(Sn-Ag)系はんだ合金、錫銅(Sn-Cu)系はんだ合金、錫亜鉛(Sn-Zn)系はんだ合金のいずれかで形成されてもよい。そのため、第2のはんだ層33は、第1のはんだ層31の第1の融点Tm1よりも低い第2の融点Tm2を有する。接合材料3pがすべて凝固する温度と室温のような第2の温度T2との温度差、すなわち、第2のはんだ層33の第2の融点Tm2と室温のような第2の温度T2との温度差を小さくすることができる。その結果、本実施の形態の半導体装置1によれば、半導体素子2と支持部材4との熱膨張係数の差、及び、接合材料3pの融点と室温のような第2の温度T2との温度差によって半導体素子2に発生する応力を低減するとともに、信頼性の高い接合部3を備える半導体装置1を提供することができる。
 本実施の形態の半導体装置1では、拡散防止層32は、金(Au)に比べて、錫(Sn)への拡散速度が小さい材料、または、金(Au)に比べて、錫(Sn)と金属間化合物を形成しにくい材料で形成されてもよい。そのため、第2のはんだ層33が錫(Sn)を含んでいても、拡散防止層32と第2のはんだ層33との間に、AuSn4のような、硬く、かつ、脆い金属間化合物が、大きな膜厚で形成されることがない。その結果、本実施の形態の半導体装置1によれば、半導体素子2に発生する応力を低減するとともに信頼性の高い接合部3を備える半導体装置1を提供することができる。
 本実施の形態の半導体装置1では、拡散防止層32は、ニッケル(Ni)、鉄(Fe)、白金(Pt)、パラジウム(Pd)、銅(Cu)のいずれかで形成されてもよい。ニッケル(Ni)、鉄(Fe)、白金(Pt)、パラジウム(Pd)、銅(Cu)は、いずれも、金(Au)に比べて、錫(Sn)への拡散速度が小さい材料である、または、金(Au)に比べて、錫(Sn)と金属間化合物を形成しにくい材料である。そのため、拡散防止層32と第2のはんだ層33との間に金属間化合物が形成されたとしても、この金属間化合物の膜厚は、AuSn4の金属間化合物の膜厚よりも十分に小さい。その結果、本実施の形態の半導体装置1によれば、半導体素子2に発生する応力を低減するとともに信頼性の高い接合部3を備える半導体装置1を提供することができる。
 本実施の形態の半導体装置1では、接合部3と接する第2の電極5の表面は、金(Au)に比べて、錫(Sn)への拡散速度が小さい材料、または、金(Au)に比べて、錫(Sn)と金属間化合物を形成しにくい材料で形成されてもよい。そのため、第2のはんだ層33が錫(Sn)を含んでいても、第2の電極5と第2のはんだ層33との間に、AuSn4のような、硬く、かつ、脆い金属間化合物が、大きな膜厚で形成されることがない。その結果、本実施の形態の半導体装置1によれば、半導体素子2に発生する応力を低減するとともに信頼性の高い接合部3を備える半導体装置1を提供することができる。
 本実施の形態の半導体装置1では、接合部3と接する第2の電極5の表面は、ニッケル(Ni)、白金(Pt)、銅(Cu)のいずれかで形成されてもよい。ニッケル(Ni)、白金(Pt)、銅(Cu)はいずれも、金(Au)に比べて、錫(Sn)への拡散速度が小さい材料である、または、金(Au)に比べて、錫(Sn)と金属間化合物を形成しにくい材料である。そのため、第2の電極5と第2のはんだ層33との間に金属間化合物が形成されたとしても、この金属間化合物の膜厚は、AuSn4の金属間化合物の膜厚よりも十分に小さい。その結果、本実施の形態の半導体装置1によれば、半導体素子2に発生する応力を低減するとともに信頼性の高い接合部3を備える半導体装置1を提供することができる。
 本実施の形態の接合材料3pは、第1のはんだ層31と、第1のはんだ層31の第1の融点Tm1よりも低い第2の融点Tm2を有する第2のはんだ層33と、第1のはんだ層31と第2のはんだ層33との間に設けられた拡散防止層32とを備える。拡散防止層32は、第1のはんだ層31と第2のはんだ層33との間の相互拡散を防止する。第2のはんだ層33は錫(Sn)を含む。拡散防止層32と第2のはんだ層33とは、金(Au)を含まない。
 本実施の形態の接合材料3pは、第1のはんだ層31と、第1のはんだ層31の第1の融点Tm1よりも低い第2の融点Tm2を有する第2のはんだ層33と、第1のはんだ層31と第2のはんだ層33との間に設けられた拡散防止層32とを備える。拡散防止層32は、第1のはんだ層31と第2のはんだ層33との間の相互拡散を防止する。第1のはんだ層31が第2のはんだ層33に拡散することにより、第2のはんだ層33の第2の融点Tm2が上昇して、接合材料3pの第2のはんだ層33の第2の融点Tm2と室温のような第2の温度T2との温度差が増大することを、拡散防止層32は抑制することができる。そのため、半導体素子2と支持部材4との熱膨張係数の差、及び、接合材料3pの融点と室温のような第2の温度T2との温度差によって半導体素子2に発生する応力を低減することができる。
 例えば、第2のはんだ層33の材料として、80Au-20Snはんだを用いる比較例では、第2のはんだ層33の第2の融点Tm2と25℃の第2の温度T2との温度差は、255℃である。これに対し、第2のはんだ層33の材料として、138℃の第2の融点Tm2を有するSn-57Biはんだを用いた本実施の形態の一例では、第2のはんだ層33の第2の融点Tm2と25℃の第2の温度T2との温度差は、113℃にまで小さくすることができる。半導体素子2と支持部材4とをバイメタルとみなして、熱応力計算により半導体素子2に加わる応力を求めると、比較例では、半導体素子2に加わる応力が20MPaであるのに対し、本実施の形態の一例では、半導体素子2に加わる応力を9MPaにまで低減することができる。その結果、本実施の形態によれば、比較例よりも、半導体素子2に加わる応力を50%以上低減することができる。
 本実施の形態の接合材料3pでは、拡散防止層32は、第1のはんだ層31と第2のはんだ層33との間の相互拡散を防止する。第2のはんだ層33は錫(Sn)を含む。拡散防止層32と第2のはんだ層33とは、金(Au)を含まない。そのため、第1のはんだ層31と第2のはんだ層33とが相互に拡散してAuSn4のような、硬く、かつ、脆い金属間化合物が大きな膜厚で形成されることを、拡散防止層32によって防止することができる。さらに、第2のはんだ層33と拡散防止層32との界面、及び、第2のはんだ層33と支持部材4の第2の電極5との界面に、AuSn4のような、硬く、かつ、脆い金属間化合物が、大きな膜厚で形成されることがない。その結果、本実施の形態の接合材料3pによれば、半導体素子2に発生する応力を低減するとともに信頼性の高い接合部3を得ることができる。
 本実施の形態の接合材料3pでは、第1のはんだ層31は、金錫(Au-Sn)系はんだ合金で形成され、第2のはんだ層33は、錫ビスマス(Sn-Bi)系はんだ合金、錫銀(Sn-Ag)系はんだ合金、錫銅(Sn-Cu)系はんだ合金、錫亜鉛(Sn-Zn)系はんだ合金のいずれかで形成されてもよい。そのため、第2のはんだ層33は、第1のはんだ層31の第1の融点Tm1よりも低い第2の融点Tm2を有する。接合材料3pがすべて凝固する温度と室温のような第2の温度T2との温度差、すなわち、第2のはんだ層33の第2の融点Tm2と室温のような第2の温度T2との温度差を小さくすることができる。その結果、本実施の形態の接合材料3pによれば、半導体素子2と支持部材4との熱膨張係数の差、及び、接合材料3pの融点と室温のような第2の温度T2との温度差によって半導体素子2に発生する応力を低減するとともに信頼性の高い接合部3を得ることができる。
 本実施の形態の接合材料3pでは、拡散防止層32は、金(Au)に比べて、錫(Sn)への拡散速度が小さい材料、または、金(Au)に比べて、錫(Sn)と金属間化合物を形成しにくい材料で形成されてもよい。そのため、第2のはんだ層33が錫(Sn)を含んでいても、拡散防止層32と第2のはんだ層33との間に、AuSn4のような、硬く、かつ、脆い金属間化合物が、大きな膜厚で形成されることがない。その結果、本実施の形態の接合材料3pによれば、半導体素子2に発生する応力を低減するとともに信頼性の高い接合部3を得ることができる。
 本実施の形態の接合材料3pでは、拡散防止層32は、ニッケル(Ni)、鉄(Fe)、白金(Pt)、パラジウム(Pd)、銅(Cu)のいずれかで形成されてもよい。ニッケル(Ni)、鉄(Fe)、白金(Pt)、パラジウム(Pd)、銅(Cu)は、いずれも、金(Au)に比べて、錫(Sn)への拡散速度が小さい材料である、または、金(Au)に比べて、錫(Sn)と金属間化合物を形成しにくい材料である。そのため、拡散防止層32と第2のはんだ層33との間に金属間化合物が形成されたとしても、この金属間化合物の膜厚は、AuSn4の金属間化合物の膜厚よりも十分に小さい。その結果、本実施の形態の接合材料3pによれば、半導体素子2に発生する応力を低減するとともに信頼性の高い接合部3を得ることができる。
 本実施の形態の半導体装置1の製造方法は、半導体素子2の第1の電極23と、半導体素子2を支持する支持部材4の第2の電極5との間に、接合材料3pを設けることを備える。接合材料3pは、半導体素子2側から順に、第1のはんだ層31と、拡散防止層32と、第2のはんだ層33とを含む。第2のはんだ層33は、第1のはんだ層31の第1の融点Tm1よりも低い第2の融点Tm2を有する。拡散防止層32は、第1のはんだ層31と第2のはんだ層33との間の相互拡散を防止する。第2のはんだ層33は錫(Sn)を含む。第2の電極5と、拡散防止層32と、第2のはんだ層33とは、金(Au)を含まない。本実施の形態の半導体装置1の製造方法は、接合材料3pを、第1のはんだ層31の第1の融点Tm1以上の第1の温度T1で加熱することと、接合材料3pを第1の温度T1で加熱した後、接合材料3pを、第2のはんだ層33の第2の融点Tm2未満の第2の温度T2まで冷却して、半導体素子2の第1の電極23と支持部材4の第2の電極5とを接合する接合部3を形成することとを、さらに備える。
 本実施の形態の半導体装置1の製造方法では、第1のはんだ層31と、第1のはんだ層31の第1の融点Tm1よりも低い第2の融点Tm2を有する第2のはんだ層33とを有する接合材料3pを第1の温度T1で加熱した後、第2のはんだ層33の第2の融点Tm2未満の第2の温度T2まで冷却して、接合部3を形成している。拡散防止層32は、第1のはんだ層31と第2のはんだ層33との間の相互拡散を防止する。第1のはんだ層31が第2のはんだ層33に拡散することにより、第2のはんだ層33の第2の融点Tm2が上昇して、接合材料3pの第2のはんだ層33の第2の融点Tm2と室温のような第2の温度T2との温度差が増大することを、拡散防止層32は抑制することができる。そのため、接合材料3pがすべて凝固する温度と室温のような第2の温度T2との温度差、すなわち、第2のはんだ層33の第2の融点Tm2と室温のような第2の温度T2との温度差を小さくすることができる。その結果、本実施の形態の半導体装置1の製造方法によれば、半導体素子2と支持部材4との熱膨張係数の差、及び、接合材料3pの融点と室温のような第2の温度T2との温度差によって半導体素子2に発生する応力を低減することができる。
 例えば、第2のはんだ層33の材料として、80Au-20Snはんだを用いる比較例では、第2のはんだ層33の第2の融点Tm2と25℃の第2の温度T2との温度差は、255℃である。これに対し、第2のはんだ層33の材料として、138℃の第2の融点Tm2を有するSn-57Biはんだを用いた本実施の形態の一例では、第2のはんだ層33の第2の融点Tm2と25℃の第2の温度T2との温度差は、113℃にまで小さくすることができる。半導体素子2と支持部材4とをバイメタルとみなして、熱応力計算により半導体素子2に加わる応力を求めると、比較例では、半導体素子2に加わる応力が20MPaであるのに対し、本実施の形態の一例では、半導体素子2に加わる応力を9MPaにまで低減することができる。その結果、本実施の形態によれば、比較例よりも、半導体素子2に加わる応力を50%以上低減することができる。
 本実施の形態の半導体装置1の製造方法では、第1のはんだ層31と第2のはんだ層33との間に、第1のはんだ層31と第2のはんだ層33との間の相互拡散を防止する拡散防止層32が設けられている。第2の電極5と、拡散防止層32と、第2のはんだ層33とは、金(Au)を含まない。そのため、第1のはんだ層31と第2のはんだ層33とが相互に拡散して、AuSn4のような、硬く、かつ、脆い金属間化合物が、大きな膜厚で形成されることを、拡散防止層32によって防止することができる。さらに、第2のはんだ層33と拡散防止層32との界面、及び、第2のはんだ層33と支持部材4の第2の電極5の界面との間に、AuSn4のような、硬く、かつ、脆い金属間化合物が、大きな膜厚で形成されることがない。その結果、本実施の形態の半導体装置1の製造方法によれば、半導体素子2に発生する応力を低減するとともに信頼性の高い接合部3を備える半導体装置1を製造することができる。
 本実施の形態の半導体装置1の製造方法では、第1のはんだ層31は、金錫(Au-Sn)系はんだ合金で形成され、第2のはんだ層33は、錫ビスマス(Sn-Bi)系はんだ合金、錫銀(Sn-Ag)系はんだ合金、錫銅(Sn-Cu)系はんだ合金、錫亜鉛(Sn-Zn)系はんだ合金のいずれかで形成されてもよい。そのため、第2のはんだ層33は、第1のはんだ層31の第1の融点Tm1よりも低い第2の融点Tm2を有する。接合材料3pがすべて凝固する温度と室温のような第2の温度T2との温度差、すなわち、第2のはんだ層33の第2の融点Tm2と室温のような第2の温度T2との温度差を小さくすることができる。その結果、本実施の形態の半導体装置1の製造方法によれば、半導体素子2と支持部材4との熱膨張係数の差、及び、接合材料3pの融点と室温のような第2の温度T2との温度差によって半導体素子2に発生する応力を低減するとともに、信頼性の高い接合部3を備える半導体装置1を製造することができる。
 本実施の形態の半導体装置1の製造方法では、拡散防止層32は、金(Au)に比べて、錫(Sn)への拡散速度が小さい材料、または、金(Au)に比べて、錫(Sn)と金属間化合物を形成しにくい材料で形成されてもよい。そのため、第2のはんだ層33が錫(Sn)を含んでいても、拡散防止層32と第2のはんだ層33との間に、AuSn4のような、硬く、かつ、脆い金属間化合物が、大きな膜厚で形成されることがない。その結果、本実施の形態の半導体装置1の製造方法によれば、半導体素子2に発生する応力を低減するとともに信頼性の高い接合部3を備える半導体装置1を製造することができる。
 本実施の形態の半導体装置1の製造方法では、拡散防止層32は、ニッケル(Ni)、鉄(Fe)、白金(Pt)、パラジウム(Pd)、銅(Cu)のいずれかで形成されてもよい。ニッケル(Ni)、鉄(Fe)、白金(Pt)、パラジウム(Pd)、銅(Cu)は、いずれも、金(Au)に比べて、錫(Sn)への拡散速度が小さい材料である、または、金(Au)に比べて、錫(Sn)と金属間化合物を形成しにくい材料である。そのため、拡散防止層32と第2のはんだ層33との間に金属間化合物が形成されたとしても、この金属間化合物の膜厚は、AuSn4の金属間化合物の膜厚よりも十分に小さい。その結果、本実施の形態の半導体装置1の製造方法によれば、半導体素子2に発生する応力を低減するとともに信頼性の高い接合部3を備える半導体装置1を製造することができる。
 本実施の形態の半導体装置1の製造方法では、接合部3と接する第2の電極5の表面は、金(Au)に比べて、錫(Sn)への拡散速度が小さい材料、または、金(Au)に比べて、錫(Sn)と金属間化合物を形成しにくい材料で形成されてもよい。そのため、第2のはんだ層33が錫(Sn)を含んでいても、第2の電極5と第2のはんだ層33との間に、AuSn4のような、硬く、かつ、脆い金属間化合物が、大きな膜厚で形成されることがない。その結果、本実施の形態の半導体装置1の製造方法によれば、半導体素子2に発生する応力を低減するとともに信頼性の高い接合部3を備える半導体装置1を製造することができる。
 本実施の形態の半導体装置1の製造方法では、接合部3と接する第2の電極5の表面は、ニッケル(Ni)、白金(Pt)、銅(Cu)のいずれかで形成されてもよい。ニッケル(Ni)、白金(Pt)、銅(Cu)はいずれも、金(Au)に比べて、錫(Sn)への拡散速度が小さい材料である、または、金(Au)に比べて、錫(Sn)と金属間化合物を形成しにくい材料である。そのため、第2の電極5と第2のはんだ層33との間に金属間化合物が形成されたとしても、この金属間化合物の膜厚は、AuSn4の金属間化合物の膜厚よりも十分に小さい。その結果、本実施の形態の半導体装置1の製造方法によれば、半導体素子2に発生する応力を低減するとともに信頼性の高い接合部3を備える半導体装置1を製造することができる。
 (実施の形態2)
 図3から図5、図7、並びに図8を参照して、実施の形態2に係る半導体装置1の製造方法を説明する。実施の形態2の半導体装置1の製造方法は、基本的には、図3から図7に示す実施の形態1の半導体装置1の製造方法と同様の工程を備えるが、主に以下の点で異なる。
 図8を参照して、本実施の形態の半導体装置1の製造方法は、接合材料3pを第2の温度T2まで冷却することは、接合材料3pの温度を、第1のはんだ層31の第1の融点Tm1未満かつ第2のはんだ層33の第2の融点Tm2以上の第3の温度T3に保持することを含む。第3の温度T3は、第2のはんだ層33の第2の融点Tm2よりも、0℃以上20℃以下だけ高いことが好ましく、0℃以上10℃以下だけ高いことがさらに好ましい。すなわち、第3の温度T3と第2のはんだ層33の第2の融点Tm2との温度差ΔT2は、0℃以上20℃以下であることが好ましく、0℃以上10℃以下であることがさらに好ましい。
 接合材料3pを第1の温度T1から冷却して、接合材料3pの温度が第3の温度T3に達すると、冷却装置85を停止して、加熱装置84を動作させることによって、接合材料3pの温度を第3の温度T3に保持することができる。接合材料3pの温度を第3の温度T3に保持する時間t2は、10秒以上5分以下であることが好ましく、30秒以上2分以下であることがさらに好ましい。接合材料3pの温度を第3の温度T3に保持する時間t2が経過した後に、加熱装置84を停止して、冷却装置85を動作させることによって、接合材料3pを室温のような第2の温度T2まで冷却する。
 本実施の形態の半導体装置1の製造方法の効果を説明する。本実施の形態の半導体装置1の製造方法の効果は、実施の形態1の半導体装置1の製造方法の効果に加えて、以下の効果を有する。
 半導体素子2と、支持部材4と、第2のはんだ層33とは、互いに異なる材料から形成される等の理由によって、半導体素子2と、支持部材4と、第2のはんだ層33とは、互いに異なる熱容量を有することがある。半導体素子2と、支持部材4と、第2のはんだ層33とが互いに異なる熱容量を有するため、半導体素子2と、支持部材4と、第2のはんだ層33との間で温度の下がり方が互いに異なる。
 本実施の形態の半導体装置1の製造方法では、接合材料3pを第2の温度T2まで冷却することは、接合材料3pの温度を、第1のはんだ層31の第1の融点Tm1未満かつ第2のはんだ層33の第2の融点Tm2以上の第3の温度T3に保持することを含む。そのため、本実施の形態では、半導体素子2と、支持部材4と、第2のはんだ層33とは、互いに異なる熱容量を有していても、接合材料3pを冷却する途中で、半導体素子2の温度と、支持部材4の温度と、第2のはんだ層33の温度との差を小さくすることができる。本実施の形態の半導体装置1の製造方法によれば、第2のはんだ層33が凝固し終えた時点における、半導体素子2の温度と支持部材4の温度との差を小さくすることができる。その結果、半導体素子2と支持部材4との熱膨張係数の差、及び、接合材料3pの融点と室温のような第2の温度T2との温度差によって半導体素子2に発生する応力をさらに低減することができる。
 本実施の形態の半導体装置1の製造方法では、第3の温度T3は、第2のはんだ層33の第2の融点Tm2よりも0℃以上20℃以下高くてもよい。第2のはんだ層33の第2の融点Tm2よりも0℃以上20℃以下高い第3の温度T3で、接合材料3pの温度を保持するため、第2のはんだ層33が凝固し終えた時点における、半導体素子2の温度と支持部材4の温度との差をより一層小さくすることができる。その結果、本実施の形態の半導体装置1の製造方法によれば、半導体素子2と支持部材4との熱膨張係数の差、及び、接合材料3pの融点と室温室温のような第2の温度T2との温度差によって半導体素子2に発生する応力をさらに低減することができる。
 (実施の形態3)
 図3、図4、図6、図7及び図9を参照して、実施の形態3に係る半導体装置1の製造方法を説明する。実施の形態3の半導体装置1の製造方法は、基本的には、図4から図7に示す実施の形態1の半導体装置1の製造方法と同様の工程を備え、同様の効果を得ることができるが、主に以下の点で異なる。
 図9を参照して、本実施の形態の半導体装置1の製造方法において、接合材料3pを第1の温度T1で加熱することは、半導体素子2を支持部材4の方向(z方向)に押圧することを含む。半導体素子2を支持部材4の方向(z方向)に押圧するため、半導体素子2の第1の電極23と接合材料3pの第1のはんだ層31との接触が強くなる。そのため、半導体素子2と接合部3との接合力を高めることができる。その結果、本実施の形態の半導体装置1の製造方法によれば、半導体素子2に発生する応力を低減するとともに信頼性の高い接合部3を備える半導体装置1を製造することができる。
 (実施の形態4)
 図3、図4、図6、図7及び図10を参照して、実施の形態4に係る半導体装置1の製造方法を説明する。実施の形態4の半導体装置1の製造方法は、基本的には、図4から図7に示す実施の形態1の半導体装置1の製造方法と同様の工程を備えるが、主に以下の点で異なる。
 本実施の形態の半導体装置1の製造方法において、接合材料3pを第1の温度T1で加熱することは、半導体素子2を支持部材4の方向(z方向)に押圧しながら、半導体素子2、接合材料3p及び支持部材4がスタックされる方向(z方向)と交差する方向(例えば、xy面に平行な方向)に、支持部材4に対して半導体素子2を振動させることを含む。本実施の形態では、半導体素子2を支持部材4の方向に、0.5MPa以上の圧力で押圧することが好ましい。
 本実施の形態の半導体装置1の製造方法の効果を説明する。本実施の形態の半導体装置1の製造方法の効果は、実施の形態1の半導体装置1の製造方法の効果に加えて、以下の効果を有する。
 半導体素子2の第1の電極23の表面及び接合材料3pの表面に、有機物などの不純物が付着していることがある。本実施の形態の半導体装置1の製造方法において、接合材料3pを第1の温度T1で加熱することは、半導体素子2を支持部材4の方向(z方向)に押圧しながら、半導体素子2、接合材料3p及び支持部材4がスタックされる方向(z方向)と交差する方向(例えば、xy面に平行な方向)に、支持部材4に対して半導体素子2を振動させることを含む。本実施の形態の半導体装置1の製造方法では、半導体素子2を支持部材4の方向(z方向)に押圧しながら、半導体素子2、接合材料3p及び支持部材4がスタックされる方向(z方向)と交差する方向(例えば、xy面に平行な方向)に、支持部材4に対して半導体素子2を振動させることによって、半導体素子2の第1の電極23の表面と接合材料3pの表面が擦り合わされる等して、半導体素子2の第1の電極23の表面及び接合材料3pの表面に付着する不純物を除去することができる。
 また、本実施の形態の半導体装置1の製造方法では、半導体素子2を支持部材4の方向(z方向)に押圧しながら、半導体素子2、接合材料3p及び支持部材4がスタックされる方向(z方向)と交差する方向(例えば、xy面に平行な方向)に、支持部材4に対して半導体素子2を振動させることによって、接合材料3pの第1のはんだ層31が流動する。半導体素子2の第1の電極23と接合材料3pの第1のはんだ層31との間の相互拡散が促進される。そのため、半導体素子2と接合部3との接合力を向上させることができる。その結果、本実施の形態の半導体装置1の製造方法によれば、半導体素子2に発生する応力を低減するとともに信頼性の高い接合部3を備える半導体装置1を製造することができる。
 (実施の形態5)
 図11を参照して、実施の形態5に係る接合材料3pを説明する。本実施の形態の接合材料3pは、基本的には、図3から図7に示す実施の形態1の接合材料3pと同様の構成を備えるが、第1のはんだ層31及び第2のはんだ層33の少なくとも1つは、複数の層で構成されている点で主に異なる。
 図11を参照して、本実施の形態に係る接合材料3pの第1のはんだ層31は、複数の層(錫層34、金層35)で構成されてもよい。第1のはんだ層31における複数の層(錫層34、金層35)は、それぞれ、第1のはんだ層31を構成する複数の元素(不可避不純物を除く)のうち1つの元素のみを有する層である。第1のはんだ層31における複数の層(錫層34、金層35)は、互いに異なる元素を有する。本実施の形態において、第1のはんだ層31における複数の層は、それぞれ、第1のはんだ層31を構成する複数の元素のうち1つの元素のみを有することは、第1のはんだ層31における複数の層は、それぞれ、この1つの元素に加えて、不可避不純物を含んでもよいことを意味する。
 例えば、接合部3の第1のはんだ層31が金錫(Au-Sn)はんだ合金である場合には、接合材料3pの第1のはんだ層31は、錫層34と、金層35とで構成される。本実施の形態の接合材料3pでは、錫層34は、金層35よりも、拡散防止層32側に位置する。金層35は、錫層34よりも、拡散防止層32側に位置してもよい。
 本実施の形態の接合材料3pでは、金層35の厚さは、錫層34の厚さの1.3倍以上1.7倍以下であってもよい。金層35の厚さを、錫層34の厚さの1.3倍以上1.7倍以下とすることによって、接合材料3pを加熱し、溶融し、冷却して得られる接合部3の第1のはんだ層31の組成を、80Au-Snと82Au-Snとの間に定めることができる。
 本実施の形態の接合材料3pでは、金層35の厚さは、錫層34の厚さの0.8倍以上1.3倍以下であってもよい。金層35の厚さを、錫層34の厚さの0.8倍以上1.3倍以下とすることによって、接合材料3pを加熱し、溶融し、冷却して得られる接合部3の第1のはんだ層31の組成を、70Au-Snと80Au-Snとの間に定めることができる。
 図11を参照して、本実施の形態に係る接合材料3pの第2のはんだ層33は、複数の層(錫層36、ビスマス層37)で構成されてもよい。第2のはんだ層33における複数の層(錫層36、ビスマス層37)は、それぞれ、第2のはんだ層33を構成する複数の元素(不可避不純物を除く)のうち1つの元素のみを有する層である。第2のはんだ層33における複数の層(錫層36、ビスマス層37)は、互いに異なる元素を有する。本実施の形態において、第2のはんだ層33における複数の層は、それぞれ、第2のはんだ層33を構成する複数の元素のうち1つの元素のみを有することは、第2のはんだ層33における複数の層は、それぞれ、この1つの元素に加えて、不可避不純物を含んでもよいことを意味する。
 例えば、接合部3の第2のはんだ層33が錫ビスマス(Sn-Bi)はんだ合金である場合には、接合材料3pの第2のはんだ層33は、錫層36とビスマス層37とで構成される。本実施の形態の接合材料3pでは、錫層36は、ビスマス層37よりも、拡散防止層32側に位置する。ビスマス層37は、錫層36よりも、拡散防止層32側に位置してもよい。
 本実施の形態の接合材料3pでは、錫層36の厚さは、ビスマス層37の厚さと等しくてもよい。錫層36の厚さをビスマス層37の厚さと等しくすることによって、接合材料3pを加熱し、溶融し、冷却して得られる接合部3の第2のはんだ層33の組成を、Sn-57Biに定めることができる。
 図4から図7、並びに図11を参照して、本実施の形態に係る半導体装置1の製造方法を説明する。実施の形態5の半導体装置1の製造方法は、基本的には、図3から図7に示す実施の形態1の半導体装置1の製造方法と同様の工程を備えるが、主に以下の点で異なる。
 本実施の形態に係る半導体装置1の製造方法において、半導体素子2の第1の電極23と、半導体素子2を支持する支持部材4の第2の電極5との間に、接合材料3pを設けることは、第1のはんだ層31を形成することと、第2のはんだ層33を形成することとを含む。第1のはんだ層31を形成することは、それぞれが、第1のはんだ層31を構成する複数の元素(不可避不純物を除く。)のうち1つの元素のみを有する複数の層(錫層34、金層35)を形成することを含んでもよい。第1のはんだ層31における複数の層(錫層34、金層35)は、互いに異なる元素を有する。第2のはんだ層33を形成することは、それぞれが、第2のはんだ層33を構成する複数の元素(不可避不純物を除く。)のうち1つの元素のみを有する複数の層(錫層36、ビスマス層37)を形成することを含んでもよい。第2のはんだ層33における複数の層(錫層36、ビスマス層37)は、互いに異なる元素を有する。
 より特定的には、めっきまたは蒸着などの方法により、支持部材4の第2の電極5上に、錫層34及び金層35を形成して、第1のはんだ層31を形成する。めっきまたは蒸着などの方法により、第1のはんだ層31上に、拡散防止層32を形成する。めっきまたは蒸着などの方法により、拡散防止層32上に、錫層36及びビスマス層37を形成して、第2のはんだ層33を形成する。それから、接合材料3pの上に半導体素子2を載置する。このようにして、半導体素子2の第1の電極23と、半導体素子2を支持する支持部材4の第2の電極5との間に、接合材料3pを設けてもよい。
 本実施の形態の接合材料3pと半導体装置1の製造方法との効果を説明する。本実施の形態の接合材料3pと半導体装置1の製造方法との効果は、実施の形態1の接合材料3pと半導体装置1の製造方法との効果に加えて、以下の効果を有する。
 本実施の形態の接合材料3pにおける第1のはんだ層31(金錫(Au-Sn)はんだ合金)は、複数の層(錫層34、金層35)で構成され、第1のはんだ層31における複数の層(錫層34、金層35)は、それぞれ、第1のはんだ層31を構成する複数の元素のうち1つの元素のみを有する層である。第1のはんだ層31(金錫(Au-Sn)はんだ合金)における複数の層(錫層34、金層35)は、互いに異なる元素を有する。接合材料3pを加熱し、溶融すると、第1のはんだ層31(金錫(Au-Sn)はんだ合金)を構成する複数の層(錫層34、金層35)が混ざり合う。そのため、接合材料3pを加熱し、溶融して、冷却することによって形成される接合部3の第1のはんだ層31の組成は、接合材料3pの第1のはんだ層31を構成する複数の層(錫層34、金層35)のそれぞれの厚さの比によって定まる。
 第1のはんだ層31(金錫(Au-Sn)はんだ合金)における複数の層(錫層34、金層35)は、互いに異なる元素を有するため、第1のはんだ層31を構成する複数の層(錫層34、金層35)のそれぞれの厚さを正確に定めることは容易である。本実施の形態の接合材料3pによれば、設計のとおりの組成を有する接合部3の第1のはんだ層31を容易に形成することができる。その結果、本実施の形態の接合材料3pによれば、半導体素子2に発生する応力を低減するとともに信頼性の高い接合部3を容易に得ることができる。
 これに対し、例えば、複数の元素を有する合金を蒸着源に用いて第1のはんだ層31を蒸着によって形成すると、設計のとおりの組成を有する第1のはんだ層31を形成することは困難である。その理由は、蒸着源に用いられる合金は複数の元素を含み、この複数の元素は互いに異なる蒸気圧を有するからである。すなわち、蒸着源に用いられる合金には、蒸着源に用いられる合金が加熱された時に蒸発しやすい元素と蒸発しにくい元素が含まれているからである。本実施の形態の接合材料3pによれば、このような困難を克服することができる。
 本実施の形態の接合材料3pにおける第2のはんだ層33(錫ビスマス(Sn-Bi)はんだ合金)は、複数の層(錫層36、ビスマス層37)で構成され、第2のはんだ層33における複数の層(錫層36、ビスマス層37)は、それぞれ、第2のはんだ層33を構成する複数の元素のうち1つの元素のみを有する層である。第2のはんだ層33(錫ビスマス(Sn-Bi)はんだ合金)における複数の層(錫層36、ビスマス層37)は、互いに異なる元素を有する。接合材料3pを加熱し、溶融すると、第2のはんだ層33(錫ビスマス(Sn-Bi)はんだ合金)を構成する複数の層(錫層36、ビスマス層37)が混ざり合う。そのため、接合材料3pを加熱し、溶融して、冷却することによって形成される接合部3の第2のはんだ層33の組成は、接合材料3pの第2のはんだ層33を構成する複数の層(錫層36、ビスマス層37)のそれぞれの厚さの比によって定まる。
 第2のはんだ層33(錫ビスマス(Sn-Bi)はんだ合金)における複数の層(錫層36、ビスマス層37)は、互いに異なる元素を有するため、第2のはんだ層33を構成する複数の層(錫層36、ビスマス層37)のそれぞれの厚さを正確に定めることは容易である。本実施の形態の接合材料3pによれば、設計のとおりの組成を有する接合部3の第2のはんだ層33を容易に形成することができる。その結果、本実施の形態の接合材料3pによれば、半導体素子2に発生する応力を低減するとともに信頼性の高い接合部3を容易に得ることができる。
 これに対し、例えば、複数の元素を有する合金を蒸着源に用いて第2のはんだ層33を蒸着によって形成すると、設計のとおりの組成を有する第2のはんだ層33を形成することは困難である。その理由は、蒸着源に用いられる合金は複数の元素を含み、この複数の元素は互いに異なる蒸気圧を有するからである。すなわち、蒸着源に用いられる合金には、蒸着源に用いられる合金が加熱された時に蒸発しやすい元素と蒸発しにくい元素が含まれているからである。本実施の形態の接合材料3pによれば、このような困難を克服することができる。
 本実施の形態の接合材料3pでは、第1のはんだ層31は、錫層34と金層35とで構成され、金層35の厚さは、錫層34の厚さの1.3倍以上1.7倍以下であってもよい。金層35の厚さを、錫層34の厚さの1.3倍以上1.7倍以下とすることによって、接合材料3pを加熱し、溶融し、冷却して得られる接合部3の第1のはんだ層31の組成を、80Au-Snと82Au-Snとの間に定めることができる。その結果、本実施の形態の接合材料3pによれば、半導体素子2に発生する応力を低減するとともに信頼性の高い接合部3を得ることができる。
 本実施の形態の接合材料3pでは、第1のはんだ層31は、錫層34と金層35とで構成され、金層35の厚さは、錫層34の厚さの0.8倍以上1.3倍以下であってもよい。金層35の厚さを、錫層34の厚さの0.8倍以上1.3倍以下とすることによって、接合材料3pを加熱し、溶融し、冷却して得られる接合部3の第1のはんだ層31の組成を、70Au-Snと80Au-Snとの間に定めることができる。
 接合材料3pを加熱する際に、第1のはんだ層31に含まれる錫(Sn)と拡散防止層32とが反応して、第1のはんだ層31と拡散防止層32との界面に金属間化合物が形成されることがある。このような金属間化合物が形成されると、第1のはんだ層31中に含まれる錫(Sn)の量が減少して、第1のはんだ層31の第1の融点Tm1が高くなる。第1のはんだ層31の第1の融点Tm1が高くなると、半導体素子2と第1のはんだ層31との接合が不良になりやすく、接合部3の信頼性が低下する。
 これに対し、本実施の形態の接合材料3pによれば、接合材料3pを加熱し、溶融し、冷却して得られる接合部3の第1のはんだ層31の組成を、70Au-Snと80Au-Snとの間に定めることができ、金(Au)の含有量が多い第1のはんだ層31を得ることができる。そのため、接合材料3pを加熱する際に、第1のはんだ層31と拡散防止層32との界面に金属間化合物が形成されて、第1のはんだ層31中に含まれる錫(Sn)の量が減少しても、第1のはんだ層31の第1の融点Tm1の上昇を抑制することができる。その結果、本実施の形態の接合材料3pによれば、半導体素子2に発生する応力を低減するとともに信頼性の高い接合部3を得ることができる。
 本実施の形態の半導体装置1の製造方法において、半導体素子2の第1の電極23と、半導体素子2を支持する支持部材4の第2の電極5との間に、接合材料3pを設けることは、第1のはんだ層31(金錫(Au-Sn)はんだ合金)を形成することを含む。第1のはんだ層31を形成することは、それぞれが、第1のはんだ層31を構成する複数の元素のうち1つの元素のみを有する複数の層(錫層34、金層35)を形成することを含む。第1のはんだ層31における複数の層(錫層34、金層35)は、互いに異なる元素を有する。接合材料3pを加熱し、溶融すると、第1のはんだ層31(金錫(Au-Sn)はんだ合金)を構成する複数の層(錫層34、金層35)が混ざり合う。そのため、接合材料3pを加熱し、溶融して、冷却することによって形成される接合部3の第1のはんだ層31の組成は、接合材料3pの第1のはんだ層31を構成する複数の層(錫層34、金層35)のそれぞれの厚さの比によって定まる。
 本実施の形態の半導体装置1の製造方法では、互いに異なる元素を有する複数の層(錫層34、金層35)を形成することによって、第1のはんだ層31を形成するため、第1のはんだ層31を構成する複数の層(錫層34、金層35)のそれぞれの厚さを正確に定めることは容易である。本実施の形態の半導体装置1の製造方法によれば、設計のとおりの組成を有する接合部3の第1のはんだ層31を容易に形成することができる。その結果、本実施の形態の半導体装置1の製造方法によれば、半導体素子2に発生する応力を低減するとともに信頼性の高い接合部3を備える半導体装置1を容易に製造することができる。
 これに対し、例えば、複数の元素を有する合金を蒸着源に用いて第1のはんだ層31を蒸着によって形成すると、設計のとおりの組成を有する第1のはんだ層31を形成することは困難である。その理由は、蒸着源に用いられる合金は複数の元素を含み、この複数の元素は互いに異なる蒸気圧を有するからである。すなわち、蒸着源に用いられる合金には、蒸着源に用いられる合金が加熱された時に蒸発しやすい元素と蒸発しにくい元素が含まれているからである。本実施の形態の半導体装置1の製造方法によれば、このような困難を克服することができる。
 本実施の形態の半導体装置1の製造方法において、半導体素子2の第1の電極23と、半導体素子2を支持する支持部材4の第2の電極5との間に、接合材料3pを設けることは、第2のはんだ層33(錫ビスマス(Sn-Bi)はんだ合金)を形成することを含む。第2のはんだ層33を形成することは、それぞれが、第2のはんだ層33を構成する複数の元素のうち1つの元素のみを有する複数の層(錫層36、ビスマス層37)を形成することを含む。第2のはんだ層33における複数の層(錫層36、ビスマス層37)は、互いに異なる元素を有する。接合材料3pを加熱し、溶融すると、第2のはんだ層33(錫ビスマス(Sn-Bi)はんだ合金)を構成する複数の層(錫層36、ビスマス層37)が混ざり合う。そのため、接合材料3pを加熱し、溶融して、冷却することによって形成される接合部3の第2のはんだ層33の組成は、接合材料3pの第2のはんだ層33を構成する複数の層(錫層36、ビスマス層37)のそれぞれの厚さの比によって定まる。
 本実施の形態の半導体装置1の製造方法では、互いに異なる元素を有する複数の層(錫層36、ビスマス層37)を形成することによって、第2のはんだ層33を形成するため、第2のはんだ層33を構成する複数の層(錫層36、ビスマス層37)のそれぞれの厚さを正確に定めることは容易である。本実施の形態の半導体装置1の製造方法によれば、設計のとおりの組成を有する接合部3の第2のはんだ層33を容易に形成することができる。その結果、本実施の形態の半導体装置1の製造方法によれば、半導体素子2に発生する応力を低減するとともに信頼性の高い接合部3を備える半導体装置1を容易に製造することができる。
 これに対し、例えば、複数の元素を有する合金を蒸着源に用いて第2のはんだ層33を蒸着によって形成すると、設計のとおりの組成を有する第2のはんだ層33を形成することは困難である。その理由は、蒸着源に用いられる合金は複数の元素を含み、この複数の元素は互いに異なる蒸気圧を有するからである。すなわち、蒸着源に用いられる合金には、蒸着源に用いられる合金が加熱された時に蒸発しやすい元素と蒸発しにくい元素が含まれているからである。本実施の形態の半導体装置1の製造方法によれば、このような困難を克服することができる。
 本実施の形態の半導体装置1の製造方法において、第1のはんだ層31は、錫層34と金層35とで構成され、金層35の厚さは、錫層34の厚さの1.3倍以上1.7倍以下であってもよい。金層35の厚さを、錫層34の厚さの1.3倍以上1.7倍以下とすることによって、接合材料3pを加熱し、溶融し、冷却して得られる接合部3の第1のはんだ層31の組成を、80Au-Snと82Au-Snとの間に定めることができる。その結果、本実施の形態の半導体装置1の製造方法によれば、半導体素子2に発生する応力を低減するとともに信頼性の高い接合部3を備える半導体装置1を製造することができる。
 本実施の形態の半導体装置1の製造方法において、第1のはんだ層31は、錫層34と金層35とで構成され、金層35の厚さは、錫層34の厚さの0.8倍以上1.3倍以下であってもよい。金層35の厚さを、錫層34の厚さの0.8倍以上1.3倍以下とすることによって、接合材料3pを加熱し、溶融し、冷却して得られる接合部3の第1のはんだ層31の組成を、70Au-Snと80Au-Snとの間に定めることができる。
 接合材料3pを加熱する際に、第1のはんだ層31に含まれる錫(Sn)と拡散防止層32とが反応して、第1のはんだ層31と拡散防止層32との界面に金属間化合物が形成されることがある。このような金属間化合物が形成されると、第1のはんだ層31中に含まれる錫(Sn)の量が減少して、第1のはんだ層31の第1の融点Tm1が高くなる。第1のはんだ層31の第1の融点Tm1が高くなると、半導体素子2と第1のはんだ層31との接合が不良になりやすく、接合部3の信頼性が低下する。
 これに対し、本実施の形態の半導体装置1の製造方法によれば、接合材料3pを加熱し、溶融し、冷却して得られる接合部3の第1のはんだ層31の組成を、70Au-Snと80Au-Snとの間に定めることができ、金(Au)の含有量が多い第1のはんだ層31を得ることができる。そのため、接合材料3pを加熱する際に、第1のはんだ層31と拡散防止層32との界面に金属間化合物が形成されて、第1のはんだ層31中に含まれる錫(Sn)の量が減少しても、第1のはんだ層31の第1の融点Tm1の上昇を抑制することができる。その結果、本実施の形態の半導体装置1の製造方法によれば、半導体素子2に発生する応力を低減するとともに信頼性の高い接合部3を備える半導体装置1を製造することができる。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明ではなく請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることを意図される。
 1 半導体装置、2 半導体素子、3 接合部、3p 接合材料、4 支持部材、5 第2の電極、6 ヒートシンク、7 配線、8 電源、21 半導体基板、22 半導体層、23 第1の電極、24 電極、31 第1のはんだ層、32 拡散防止層、33 第2のはんだ層、34,36 錫層、35 金層、37 ビスマス層、80 ステージ、81 保持部、82 搬送装置、84 加熱装置、85 冷却装置、90 観察装置。

Claims (29)

  1.  第1の電極を有する半導体素子と、
     前記半導体素子を支持する支持部材とを備え、前記支持部材は、第2の電極を含み、さらに、
     前記半導体素子の前記第1の電極と前記支持部材の前記第2の電極とを接合する接合部を備え、
     前記接合部は、前記半導体素子側から順に、第1のはんだ層と、拡散防止層と、第2のはんだ層とを含み、前記第2のはんだ層は、前記第1のはんだ層の第1の融点よりも低い第2の融点を有し、
     前記拡散防止層は、前記第1のはんだ層と前記第2のはんだ層との間の相互拡散を防止し、
     前記第2のはんだ層は錫(Sn)を含み、
     前記第2の電極と、前記拡散防止層と、前記第2のはんだ層とは、金(Au)を含まない、半導体装置。
  2.  前記第1のはんだ層は、金錫(Au-Sn)系はんだ合金で形成され、前記第2のはんだ層は、錫ビスマス(Sn-Bi)系はんだ合金、錫銀(Sn-Ag)系はんだ合金、錫銅(Sn-Cu)系はんだ合金、錫亜鉛(Sn-Zn)系はんだ合金のいずれかで形成される、請求項1に記載の半導体装置。
  3.  前記金錫(Au-Sn)系はんだ合金は、70Au-Snと82Au-Snとの間の組成を有する、請求項2に記載の半導体装置。
  4.  前記拡散防止層は、金(Au)に比べて、錫(Sn)への拡散速度が小さい材料、または、金(Au)に比べて、錫(Sn)と金属間化合物を形成しにくい材料で形成される、請求項1から請求項3のいずれか1項に記載の半導体装置。
  5.  前記拡散防止層は、ニッケル(Ni)、鉄(Fe)、白金(Pt)、パラジウム(Pd)、銅(Cu)のいずれかで形成される、請求項1から請求項4のいずれか1項に記載の半導体装置。
  6.  前記接合部と接する前記第2の電極の表面は、金(Au)に比べて、錫(Sn)への拡散速度が小さい材料、または、金(Au)に比べて、錫(Sn)と金属間化合物を形成しにくい材料で形成される、請求項1から請求項5のいずれか1項に記載の半導体装置。
  7.  前記接合部と接する前記第2の電極の表面は、ニッケル(Ni)、白金(Pt)、銅(Cu)のいずれかで形成される、請求項1から請求項5のいずれか1項に記載の半導体装置。
  8.  半導体素子の第1の電極と、前記半導体素子を支持する支持部材の第2の電極との間に、接合材料を設けることを備え、前記接合材料は、前記半導体素子側から順に、第1のはんだ層と、拡散防止層と、第2のはんだ層とを含み、前記第2のはんだ層は、前記第1のはんだ層の第1の融点よりも低い第2の融点を有し、前記拡散防止層は、前記第1のはんだ層と前記第2のはんだ層との間の相互拡散を防止し、前記第2のはんだ層は錫(Sn)を含み、前記第2の電極と、前記拡散防止層と、前記第2のはんだ層とは、金(Au)を含まず、さらに、
     前記接合材料を、前記第1のはんだ層の前記第1の融点以上の第1の温度で加熱することと、
     前記接合材料を前記第1の温度で加熱した後、前記接合材料を、前記第2のはんだ層の前記第2の融点未満の第2の温度まで冷却して、前記半導体素子の前記第1の電極と前記支持部材の前記第2の電極とを接合する接合部を形成することとを備える、半導体装置の製造方法。
  9.  前記接合材料を前記第2の温度まで冷却することは、前記接合材料の温度を、前記第1のはんだ層の前記第1の融点未満かつ前記第2のはんだ層の前記第2の融点以上の第3の温度に保持することを含む、請求項8に記載の半導体装置の製造方法。
  10.  前記第3の温度は、前記第2のはんだ層の前記第2の融点よりも0℃以上20℃以下高い、請求項9に記載の半導体装置の製造方法。
  11.  前記接合材料を前記第1の温度で加熱することは、前記半導体素子を前記支持部材の方向に押圧することを含む、請求項8から請求項10のいずれか1項に記載の半導体装置の製造方法。
  12.  前記接合材料を前記第1の温度で加熱することは、前記半導体素子を前記支持部材の方向に押圧しながら、前記半導体素子、前記接合材料及び前記支持部材がスタックされる方向と交差する方向に、前記支持部材に対して前記半導体素子を振動させることを含む、請求項8から請求項10のいずれか1項に記載の半導体装置の製造方法。
  13.  前記第1のはんだ層は、金錫(Au-Sn)系はんだ合金で形成され、前記第2のはんだ層は、錫ビスマス(Sn-Bi)系はんだ合金、錫銀(Sn-Ag)系はんだ合金、錫銅(Sn-Cu)系はんだ合金、錫亜鉛(Sn-Zn)系はんだ合金のいずれかで形成される、請求項8から請求項12のいずれか1項に記載の半導体装置の製造方法。
  14.  前記金錫(Au-Sn)系はんだ合金は、70Au-Snと82Au-Snとの間の組成を有する、請求項13に記載の半導体装置の製造方法。
  15.  前記拡散防止層は、金(Au)に比べて、錫(Sn)への拡散速度が小さい材料、または、金(Au)に比べて、錫(Sn)と金属間化合物を形成しにくい材料で形成される、請求項8から請求項14のいずれか1項に記載の半導体装置の製造方法。
  16.  前記拡散防止層は、ニッケル(Ni)、鉄(Fe)、白金(Pt)、パラジウム(Pd)、銅(Cu)のいずれかで形成される、請求項8から請求項15のいずれか1項に記載の半導体装置の製造方法。
  17.  前記接合部と接する前記第2の電極の表面は、金(Au)に比べて、錫(Sn)への拡散速度が小さい材料、または、金(Au)に比べて、錫(Sn)と金属間化合物を形成しにくい材料で形成される、請求項8から請求項16のいずれか1項に記載の半導体装置の製造方法。
  18.  前記接合部と接する前記第2の電極の表面は、ニッケル(Ni)、白金(Pt)、銅(Cu)のいずれかで形成される、請求項8から請求項16のいずれか1項に記載の半導体装置の製造方法。
  19.  前記半導体素子の前記第1の電極と、前記半導体素子を支持する前記支持部材の前記第2の電極との間に、前記接合材料を設けることは、前記第1のはんだ層を形成することを含み、前記第1のはんだ層を形成することは、それぞれが、前記第1のはんだ層を構成する複数の元素のうち1つの元素のみを有する複数の層を形成することを含み、前記第1のはんだ層における前記複数の層は、互いに異なる元素を有する、請求項8から請求項18のいずれか1項に記載の半導体装置の製造方法。
  20.  前記第1のはんだ層は、錫(Sn)層と金(Au)層とで構成され、前記金(Au)層の厚さは、前記錫(Sn)層の厚さの1.3倍以上1.7倍以下である、請求項19に記載の半導体装置の製造方法。
  21.  前記第1のはんだ層は、錫(Sn)層と金(Au)層とで構成され、前記金(Au)層の厚さは、前記錫(Sn)層の厚さの0.8倍以上1.3倍以下である、請求項19に記載の半導体装置の製造方法。
  22.  第1のはんだ層と、
     前記第1のはんだ層の第1の融点よりも低い第2の融点を有する第2のはんだ層と、
     前記第1のはんだ層と前記第2のはんだ層との間に設けられた拡散防止層とを備え、
     前記拡散防止層は、前記第1のはんだ層と前記第2のはんだ層との間の相互拡散を防止し、
     前記第2のはんだ層は錫(Sn)を含み、
     前記拡散防止層と前記第2のはんだ層とは、金(Au)を含まない、接合材料。
  23.  前記第1のはんだ層は、金錫(Au-Sn)系はんだ合金で形成され、前記第2のはんだ層は、錫ビスマス(Sn-Bi)系はんだ合金、錫銀(Sn-Ag)系はんだ合金、錫銅(Sn-Cu)系はんだ合金、錫亜鉛(Sn-Zn)系はんだ合金のいずれかで形成される、請求項22に記載の接合材料。
  24.  前記金錫(Au-Sn)系はんだ合金は、70Au-Snと82Au-Snとの間の組成を有する、請求項23に記載の接合材料。
  25.  前記拡散防止層は、金(Au)に比べて、錫(Sn)への拡散速度が小さい材料、または、金(Au)に比べて、錫(Sn)と金属間化合物を形成しにくい材料で形成される、請求項22から請求項24のいずれか1項に記載の接合材料。
  26.  前記拡散防止層は、ニッケル(Ni)、鉄(Fe)、白金(Pt)、パラジウム(Pd)、銅(Cu)のいずれかで形成される、請求項22から請求項25のいずれか1項に記載の接合材料。
  27.  前記第1のはんだ層は、複数の層で構成され、前記第1のはんだ層における前記複数の層は、それぞれ、前記第1のはんだ層を構成する複数の元素のうち1つの元素のみを有する層であり、前記第1のはんだ層における前記複数の層は、互いに異なる元素を有する、請求項22から請求項26のいずれか1項に記載の接合材料。
  28.  前記第1のはんだ層は、錫(Sn)層と金(Au)層とで構成され、前記金(Au)層の厚さは、前記錫(Sn)層の厚さの1.3倍以上1.7倍以下である、請求項27に記載の接合材料。
  29.  前記第1のはんだ層は、錫(Sn)層と金(Au)層とで構成され、前記金(Au)層の厚さは、前記錫(Sn)層の厚さの0.8倍以上1.3倍以下である、請求項27に記載の接合材料。
PCT/JP2016/064845 2015-05-26 2016-05-19 半導体装置、半導体装置の製造方法、及び接合材料 WO2016190205A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017520658A JP6345347B2 (ja) 2015-05-26 2016-05-19 半導体装置、半導体装置の製造方法、及び接合材料

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-106447 2015-05-26
JP2015106447 2015-05-26

Publications (1)

Publication Number Publication Date
WO2016190205A1 true WO2016190205A1 (ja) 2016-12-01

Family

ID=57393939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/064845 WO2016190205A1 (ja) 2015-05-26 2016-05-19 半導体装置、半導体装置の製造方法、及び接合材料

Country Status (2)

Country Link
JP (1) JP6345347B2 (ja)
WO (1) WO2016190205A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113287206A (zh) * 2018-12-26 2021-08-20 京瓷株式会社 电子部件的接合方法以及接合构造体
WO2023053208A1 (ja) * 2021-09-28 2023-04-06 三菱電機株式会社 はんだ接合方法
CN118099927A (zh) * 2024-04-17 2024-05-28 化合积电(泉州)半导体科技有限公司 一种金刚石芯片及其制备方法
WO2024135352A1 (ja) * 2022-12-21 2024-06-27 国立大学法人京都大学 面発光レーザ装置
WO2024176947A1 (ja) * 2023-02-22 2024-08-29 三菱電機株式会社 半導体装置、電力変換装置および半導体装置の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11186295A (ja) * 1997-12-17 1999-07-09 Mitsubishi Electric Corp ハンダ付け方法
JP2004072048A (ja) * 2002-08-09 2004-03-04 Sumitomo Electric Ind Ltd サブマウントおよび半導体装置
JP2006278463A (ja) * 2005-03-28 2006-10-12 Dowa Mining Co Ltd サブマウント
JP2006286958A (ja) * 2005-03-31 2006-10-19 Toshiba Corp セラミックス配線基板とそれを用いた半導体装置
JP2011254048A (ja) * 2010-06-04 2011-12-15 Denso Corp 半導体装置の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06163612A (ja) * 1992-11-25 1994-06-10 Mitsubishi Electric Corp 半導体装置の製造方法及び製造装置
JP2000288770A (ja) * 1999-03-31 2000-10-17 Kyocera Corp AuSn多層ハンダ
JP4343117B2 (ja) * 2005-01-07 2009-10-14 株式会社ルネサステクノロジ 半導体装置およびその製造方法
JP2012119609A (ja) * 2010-12-03 2012-06-21 Panasonic Corp 半導体素子の接合構造体および半導体素子の接合構造体の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11186295A (ja) * 1997-12-17 1999-07-09 Mitsubishi Electric Corp ハンダ付け方法
JP2004072048A (ja) * 2002-08-09 2004-03-04 Sumitomo Electric Ind Ltd サブマウントおよび半導体装置
JP2006278463A (ja) * 2005-03-28 2006-10-12 Dowa Mining Co Ltd サブマウント
JP2006286958A (ja) * 2005-03-31 2006-10-19 Toshiba Corp セラミックス配線基板とそれを用いた半導体装置
JP2011254048A (ja) * 2010-06-04 2011-12-15 Denso Corp 半導体装置の製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113287206A (zh) * 2018-12-26 2021-08-20 京瓷株式会社 电子部件的接合方法以及接合构造体
WO2023053208A1 (ja) * 2021-09-28 2023-04-06 三菱電機株式会社 はんだ接合方法
WO2024135352A1 (ja) * 2022-12-21 2024-06-27 国立大学法人京都大学 面発光レーザ装置
WO2024176947A1 (ja) * 2023-02-22 2024-08-29 三菱電機株式会社 半導体装置、電力変換装置および半導体装置の製造方法
CN118099927A (zh) * 2024-04-17 2024-05-28 化合积电(泉州)半导体科技有限公司 一种金刚石芯片及其制备方法

Also Published As

Publication number Publication date
JPWO2016190205A1 (ja) 2017-10-05
JP6345347B2 (ja) 2018-06-20

Similar Documents

Publication Publication Date Title
JP6345347B2 (ja) 半導体装置、半導体装置の製造方法、及び接合材料
US8472208B2 (en) Submount and method of manufacturing the same
TWI627686B (zh) 半導體裝置及半導體裝置的製造方法
JP4136845B2 (ja) 半導体モジュールの製造方法
JP5968046B2 (ja) 半導体装置および半導体装置の製造方法
US20160346857A1 (en) Device Comprising a Connecting Component and Method for Producing a Connecting Component
JP2006278463A (ja) サブマウント
WO2007034791A1 (ja) 半田層及びこれを用いた放熱基板並びにその製造方法
JP5526336B2 (ja) 半田層及びそれを用いたデバイス接合用基板並びにその製造方法
JP2011243752A (ja) 半導体装置の製造方法、半導体内部接続部材および半導体内部接続部材群
US9123704B2 (en) Semiconductor device and method for manufacturing the same
JP4508189B2 (ja) 半導体モジュールの製造方法
WO2003069743A1 (fr) Embase et dispositif a semiconducteur
JP2005236019A (ja) 半導体装置の製造方法
WO2010125800A1 (ja) 接合構造体と接合構造体の接合方法
JP6156693B2 (ja) 半導体装置の製造方法
JP5733466B2 (ja) 半導体装置の製造方法
CN112951786A (zh) 焊料材料、层结构及其形成方法、芯片封装及其形成方法、芯片布置及其形成方法
JP7223772B2 (ja) 電子部品の接合方法および接合構造体
JP6046010B2 (ja) 半導体装置及びその製造方法
JP5023633B2 (ja) 光通信装置及びその製造方法
JP6260941B2 (ja) 半導体装置の製造方法
JP5062545B2 (ja) サブマウント及びその製造方法
JP6344605B2 (ja) 半導体装置の製造方法
JP2006286943A (ja) サブマウント基板及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16799911

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017520658

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16799911

Country of ref document: EP

Kind code of ref document: A1