WO2004015021A1 - Cmp研磨剤および基板の研磨方法 - Google Patents

Cmp研磨剤および基板の研磨方法 Download PDF

Info

Publication number
WO2004015021A1
WO2004015021A1 PCT/JP2003/010001 JP0310001W WO2004015021A1 WO 2004015021 A1 WO2004015021 A1 WO 2004015021A1 JP 0310001 W JP0310001 W JP 0310001W WO 2004015021 A1 WO2004015021 A1 WO 2004015021A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
polished
film
substrate
cmp
Prior art date
Application number
PCT/JP2003/010001
Other languages
English (en)
French (fr)
Inventor
Kouji Haga
Yuto Ootsuki
Yasushi Kurata
Kazuhiro Enomoto
Original Assignee
Hitachi Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co., Ltd. filed Critical Hitachi Chemical Co., Ltd.
Priority to US10/524,064 priority Critical patent/US7311855B2/en
Priority to JP2004527345A priority patent/JP4415854B2/ja
Priority to AU2003254825A priority patent/AU2003254825A1/en
Publication of WO2004015021A1 publication Critical patent/WO2004015021A1/ja
Priority to US11/905,279 priority patent/US8231735B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step

Definitions

  • the present invention relates to a CMP (Chemical Mechanical Polishing) abrasive used in an interlayer insulating film CD flattening step or a shear wrench separation forming step in a semiconductor device manufacturing process such as a semiconductor element. Use a substrate polishing method.
  • CMP Chemical Mechanical Polishing
  • CMP polishing technology In a semiconductor device manufacturing process, a layer to be exposed is completely flattened, thereby enabling miniaturization and improving a yield. Accordingly, CMP is a technology that is required, for example, when flattening an interlayer insulating film and performing shear-wrench separation.
  • LOCOS Silicon Local Oxidation
  • a shallow trench isolation method has recently been used.
  • CMP is necessary to remove the excess silicon oxide film formed on the wafer substrate, and a silicon nitride film is placed under the silicon oxide film to stop polishing. Is formed as a stopper. It is common to use
  • a CMP polishing agent is used to planarize silicon oxide insulating films, etc., formed by methods such as plasma-enhanced chemical vapor deposition (CVD) and low-pressure CVD. For this reason, alkaline abrasives having a pH exceeding 9 and using fumed silicon as abrasive particles have been widely used.
  • CVD plasma-enhanced chemical vapor deposition
  • fumed silicon as abrasive particles have been widely used.
  • the polishing rate of the silicon nitride film which is a stopper, is also high, and the entire wafer surface cannot be uniformly ground. (Ie, high flatness cannot be achieved), or there are many polishing flaws that adversely affect the electrical characteristics.
  • a polishing agent using cerium oxide has been widely used in recent years (for example, see Japanese Patent Application Laid-Open No. 5-326649).
  • the cerium oxide abrasive has the characteristics that the polishing rate of the silicon oxide film is higher than that of the silica abrasive, and the polishing scratches are relatively small.
  • studies have been made in recent years to apply cell oxide oxide abrasives as abrasives for semiconductors, and some of them have been put into practical use as abrasives for semiconductors. (For example, see Japanese Patent Application Laid-Open No. Hei 9-270402).
  • An object of the present invention is to provide a CMP polishing agent capable of highly planarizing a surface to be polished without generating polishing scratches leading to poor electrical characteristics, and a method for polishing a substrate using the same. is there. Disclosure of the invention According to the present invention, a carbon-carbon triple bond portion of an organic compound having an acetylene bond is adsorbed to a film to be polished, so that the surface to be polished can be raised with almost no polishing scratches leading to poor electrical characteristics. It focuses on the fact that it can be flattened.
  • the present invention relates to the following (1) to (7).
  • a CMP abrasive containing cerium oxide particles, an organic compound having an acetylene bond, and water is a CMP abrasive containing cerium oxide particles, an organic compound having an acetylene bond, and water.
  • R 1 represents a hydrogen atom or a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms
  • R 2 represents a substituted or unsubstituted alkyl group having 4 to 10 carbon atoms.
  • R 3 to R 6 each independently represent a hydrogen atom or a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms, and R 7 and R 8 each independently represent a carbon atom.
  • (1) represents a substituted or unsubstituted alkylene group, wherein m and n each independently represent 0 or a positive number.
  • the substrate on which the film to be polished is formed is pressed against the polishing cloth of the polishing platen and pressurized, and the CMP polishing slurry according to any one of (1) to (4) is applied to the film to be polished and the polishing cloth.
  • the substrate on which the film to be polished is formed is pressed against the polishing cloth of the polishing platen and pressurized, and a CMP polishing agent containing cerium oxide particles, an organic compound having an acetylene bond, and water is applied to the film to be polished. Polishing the film to be polished by moving the substrate to be polished and the polishing cloth relatively while the acetylene-bonded portion of the organic compound is adsorbed on the film to be polished while supplying the film to the polishing cloth. Substrate polishing method.
  • cerium oxide particles are obtained by oxidizing cerium compounds of carbonate, nitrate, sulfate, and oxalate.
  • EOS-Cerium oxide particles used for polishing silicon oxide films formed by the CVD method etc. do not limit the manufacturing method, but the cerium oxide crystallite diameter is 5 nm or more and 30 nm or more. It is preferably 0 nm or less.
  • the content of alkali metals such as sodium ions and lithium ions, octogens, and zeolite is less than 10 ppm in cerium oxide particles. It is preferable to keep it to a minimum.
  • firing is used as a method for producing cerium oxide powder. Oxidation methods such as synthesis or hydrogen peroxide can be used.
  • the firing temperature is preferably from 350 ° C. to 900 ° C.
  • cerium oxide particles produced by the above method are agglomerated, they are preferably mechanically pulverized.
  • pulverization method a dry pulverization method using a jet mill or the like and a wet pulverization method using a planetary bead mill or the like are preferable.
  • the jet mill method is described, for example, in Chemical Industry Transactions, Vol. 6, No. 5, (1.980), pp. 527-532.
  • the CMP polisher in the present invention can be obtained, for example, by adding an organic compound described below to a dispersion liquid containing the cerium oxide particles, a dispersant, and water obtained as described above.
  • concentration of the cerium oxide particles is not limited, but is preferably in the range of 0.5% by weight to 20% by weight in the CMP abrasive because of easy handling of the dispersion.
  • the abrasive of the present invention preferably contains a dispersant.
  • the dispersant preferably contains at least one selected from a water-soluble anionic dispersant, a water-soluble nonionic dispersant, a water-soluble cationic dispersant, and a water-soluble amphoteric dispersant.
  • a water-soluble anionic dispersant preferably contains at least one selected from a water-soluble anionic dispersant, a water-soluble nonionic dispersant, a water-soluble cationic dispersant, and a water-soluble amphoteric dispersant.
  • two or more dispersants are used.
  • water-soluble anionic dispersant examples include triethanolamine lauryl sulfate, ammonium lauryl sulfate, and polyoxyethylene alkyl ether sulfate triethanolamine, which will be described later.
  • anion-based compounds may be used.
  • water-soluble nonionic dispersant examples include polyoxyethylene lauryl ether, polyoxyethylene cetyl ether, Polyoxyethylene stearyl, polyether, polyoxyethylene polyol, other polyoxyethylene higher alcohol ethers, polyoxyethylene octylphenyl ether, polyoxyethylene nonylphenyl ether, polyoxyalkylene alkyl Ether, polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monopalmitate, polyoxyethylene zorevitan monostearate, polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan monostearate Monooleate, polyoxyethylene sorbitan trioleate, poly (ethylene glycol sorbate), poly (ethylene glycol monolaurate), poly (ethylene glycol) monolaurate Monostearate, polyethylene glycol distearate, polyethylene glycol monooleate, polyoxyethylene alkylamine, polyoxyethylene hydrogenated castor oil,
  • water-soluble cationic dispersant examples include coconut amine acetate and stearyl amine acetate
  • water-soluble amphoteric dispersant examples include lauryl acetate , Stearyl betaine, lauryl dimethyl amide oxide, 2-alkyl-1-N-potoxymethyl-N-hydroxylethylimidazoline betaine, and the like.
  • the amount of addition of the cerium oxide particles is determined based on the dispersibility and prevention of sedimentation of the particles in the slurry-like abrasive and the relationship between the polishing scratches and the amount of the dispersant added.
  • the range is preferably not less than 0.01 part by weight and not more than 2.0 parts by weight based on 0.00 part by weight.
  • the molecular weight of the dispersant is preferably from 100 to 500, 000, and more preferably from 1, 000 to 100, 000.
  • the molecular weight of the dispersant is 10 If it is less than 0, it is difficult to obtain a sufficient polishing rate when polishing a silicon oxide film or a silicon nitride film, and if the molecular weight of the dispersant exceeds 50, 000, the viscosity becomes low. This is because the storage stability of the CMP abrasive tends to decrease.
  • a homogenizer As a method for dispersing the cerium oxide particles in water, a homogenizer, an ultrasonic disperser, a wet pole mill, or the like can be used in addition to the usual dispersion treatment using a stirrer.
  • the average particle size of the cerium oxide particles in the CMP slurry thus produced is preferably from 0.01 m to l.OITI. If the average particle size of the cerium oxide particles is less than 0.01 m, the polishing rate may decrease, and if it exceeds 1.0 m, the film to be polished is easily damaged.
  • the average particle size of the cerium oxide particles is determined by diluting the cerium oxide slurry to an appropriate concentration as necessary, measuring the particle size with a laser diffraction particle size distribution analyzer, Use the median diameter.
  • any organic compound containing a carbon-carbon triple bond can be used.
  • R 1 represents a hydrogen atom or a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms
  • R 2 represents a substituted or unsubstituted alkyl group having 4 to 10 carbon atoms.
  • R 3 to R 6 each independently represent a hydrogen atom or a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms
  • R 7 and R 8 each represent Independently represents a substituted or unsubstituted alkylene group having 1 to 5 carbon atoms
  • m and n each independently represent 0 or a positive number). Note that the above m and n are generally shown as average values. m + n is preferably 2 to 20 from the viewpoint of improving flatness. These may be used alone or in combination of two or more.
  • the concentration of the organic compound having an acetylene bond in the CMP abrasive is 0.55% by weight to 5.00% by weight in order to obtain sufficient flatness.
  • the abrasive of the present invention preferably further contains a water-soluble polymer compound in order to adjust liquid properties such as viscosity, pH, and surface tension. It is preferable to include such a water-soluble polymer compound from the viewpoint of improving flatness.
  • a water-soluble polymer compound comprising a polymer of the vinyl compound include polyacrylic acid, ammonium salt of polyacrylic acid, and polyacrylic acid amine. Salts, polyvinyl acetate, polyvinyl imidazole, and polypinyl pyrrolidone, among which polyvinylpiperidone is more preferred. These may be used alone or in combination of two or more. Also, a copolymer of at least one compound selected from acrylic acid, ammonium acrylate, amine acrylate, vinyl acetate, and vinylimidazole with vinylpyrrolidone. May be.
  • the weight-average molecular weight of the water-soluble polymer compound (hereinafter, referred to as a water-soluble polymer compound) comprising a polymer of a vinyl compound is preferably from 1,000 to 100,000, and the weight-average molecular weight is preferably 5,0,0. 0 0 to 50, 00 0 are more preferred '.
  • the concentration of the water-soluble polymer compound in the CMP polishing slurry is preferably from 0.05% to 3.0% by weight in order to obtain sufficient flatness, and from 0.06% by weight to 3.0% by weight. 1.0% by weight is more preferred, and 0.07% to 0.5% by weight is even more preferred.
  • the abrasive of the present invention includes additives generally added to the abrasive, such as coloring agents such as dyes and pigments, pH adjusters, and solvents other than water. May be added in a range that does not impair the effect of the above.
  • the abrasive of the present invention comprises two liquids, for example, an additive liquid (first liquid) containing the above-mentioned organic compound having an acetylene bond and preferably a water-soluble polymer compound, and cerium oxide particles, water and preferably Is stored in a two-part solution with a slurry containing a dispersant (second liquid), and is separately supplied to the polishing platen during polishing and mixed on the polishing platen.
  • first liquid an additive liquid
  • second liquid containing a water-soluble polymer compound
  • cerium oxide particles water and preferably Is stored in a two-part solution with a slurry containing a dispersant (second liquid)
  • a preparation method can be adopted in which the two liquids are mixed in advance (just before polishing) and supplied onto a polishing platen. Stable polishing characteristics can be obtained with any of the polishing agents.
  • the pH of the CMP abrasive is preferably 3 or more and 9 or less, More preferably, it is 5 or more and 8.5 or less. If the pH is less than 3, the chemical action is reduced, and the polishing rate may be reduced. If the pH is greater than 9, the chemical action is so strong that dishing may occur.
  • the pH can be adjusted with acids, ammonia, and alkaline components such as tetramethylammonium hydroxide (TMAH).
  • the method for polishing a substrate of the present invention is characterized in that the film to be polished on the substrate on which the film to be polished is formed is polished with the CMP polishing agent of the present invention.
  • the film to be polished on the substrate on which the film to be polished is formed is polished with the CMP polishing agent of the present invention.
  • a silicon oxide film on a semiconductor substrate such as a substrate for manufacturing a semiconductor device, specifically, a semiconductor substrate on which circuit elements and wiring patterns have been formed, and a semiconductor substrate on which circuit elements have been formed.
  • a substrate on which a layer is formed is exemplified.
  • the film to be polished include an inorganic insulating film, for example, the silicon oxide film layer or the silicon nitride film layer and the silicon oxide film layer.
  • the substrate on which the film to be polished is formed is pressed against a polishing cloth of a polishing platen and pressurized, and the CMP polishing slurry of the present invention is supplied between the film to be polished and the polishing cloth. Then, the film to be polished is polished by relatively moving the film to be polished of the substrate and the polishing cloth. Specifically, at least one of the substrate and the polishing table of the polishing apparatus may be moved.
  • the polishing method of the present invention will be described for the case of a semiconductor substrate.
  • a holder for holding the semiconductor substrate and a polishing cloth (pad) can be attached, and the number of rotations can be changed.
  • a general polishing apparatus having a polishing platen to which a functional motor or the like is attached can be used.
  • the polishing cloth on the polishing platen general non-woven fabric, foamed polyurethane, porous fluororesin and the like can be used, and there is no particular limitation. Further, it is preferable that the polishing cloth is subjected to groove processing so that the CMP polishing agent accumulates.
  • the polishing conditions are not limited, but the rotation speed of the platen is preferably 200 r or less so that the substrate does not pop out, and the pressure applied to the substrate (polishing pressure) does not cause scratches after polishing. Particularly, it is preferably about 98 kPa (1 kg Zcm 2 ) or less.
  • the slurry of the present invention is continuously supplied between the polishing cloth and the film to be polished by a pump or the like.
  • the supply amount of the abrasive is not limited, but it is preferable that the surface of the polishing cloth is always covered with the abrasive.
  • the convex portions be selectively polished.
  • the CMP abrasive of the present invention the acetylene-bonded portion of the organic compound having an acetylene bond is adsorbed on the film to be polished.
  • the convex portions are selectively polished to achieve high flatness.
  • the polishing liquid further contains a water-soluble polymer compound composed of a polymer of a vinyl compound, the flatness is further improved.
  • the semiconductor substrate is preferably washed well in running water, and after removing water droplets attached to the semiconductor substrate using a spin dryer or the like, it is preferable to dry the semiconductor substrate.
  • Examples of the CMP method of the present invention for 'preparing an inorganic insulating film to which the polishing agent and the polishing method are applied' include a low-pressure CVD method and a plasma CVD method.
  • a silicon oxide film formed by low pressure CVD method, mono Sila in as the S i source: as the S i H 4 s oxygen source oxygen: 0 2 is used. This can be obtained by carrying out this SiH 4 —O 2 -based oxidation reaction at a low temperature of 400 ° C or lower. In some cases, heat treatment is performed at 100 ° C. or lower after CVD.
  • Hot Li disadvantageous in order to surface flattening by loan: When the de Solo flop P is, S i H 4 - O 2 - PH 3 system arbitrarily favored and the call using a reactive gas.
  • Plasma CVD has the advantage that chemical reactions that require high temperatures under normal thermal equilibrium can be performed at low temperatures.
  • the substrate temperature is preferably in the range of 250 ° C to 400 ° C
  • the reaction pressure is preferably in the range of 67 to 400Pa.
  • the silicon oxide film to which the polishing agent and the polishing method of the present invention are applied may be doped with an element such as phosphorus or boron.
  • a silicon nitride film formed by low pressure CVD method, S i source and to Axis Rorushira emissions: S i H 2 C l 2 , A and the nitrogen source ammonia: NH 3 is used.
  • the S i H 2 C 1 2 - I Ri obtained and this to take place NH 3 based oxidation reaction at a high temperature of 9 0 O t.
  • the substrate temperature is preferably 300: up to 400 ° C.
  • the CMP polishing agent and the polishing method of the present invention are not limited to a silicon oxide film formed on a semiconductor substrate, but are also formed on a wiring board having predetermined wiring, a silicon oxide film, an inorganic insulating film such as glass and silicon nitride, Optical glass such as films mainly containing polysilicon, Al, Cu, Ti, TiN, W, Ta, TaN, etc., photomask lenses, prisms, etc., ITO Inorganic conductive films such as optical integrated circuits
  • the present invention can be applied to polishing of a sapphire substrate for a blue laser LED, a semiconductor single crystal such as SiC, GaP, and GaAs, a glass substrate for a magnetic disk, and a magnetic head.
  • cerium carbonate hydrate 2 kg was placed in an alumina container and calcined in air at 850 ° C for 2 hours to obtain cerium oxide powder.
  • a mixture of 1 kg of the cerium oxide particles prepared above, 23 g of an aqueous solution of polyacrylic acid ammonium salt (40% by weight), and 8977 g of deionized water was mixed with ultrasonic waves while stirring. Minutes to obtain a slurry.
  • the resulting slurry was filtered through a 1-micron filter, and further deionized water was added to obtain a cell oxide slurry containing 5.0% by weight of cell oxide.
  • An 8-inch (20.3 cm) diameter line / line with a line / spacing width of 0.05 to 5111] 11 and a height of 100011111 is placed on the Si substrate.
  • an insulating film layer pattern wafer having a silicon oxide film formed to a thickness of 2000 nm by a TEOS-plasma CVD method was fabricated.
  • This insulating film layer pattern wafer (hereinafter, referred to as a wafer (1)) was set in a holder of a polishing apparatus (polishing apparatus: EPO 11 1 manufactured by Ebara Corporation). A holder was placed on a polishing platen of the polishing apparatus to which a polishing pad (polishing cloth) made of porous urethane resin was attached, with the silicon oxide film (insulating film) surface of the wafer facing down.
  • a polishing apparatus polishing apparatus: EPO 11 1 manufactured by Ebara Corporation
  • the insulating film of the wafer (1) is polished for 3 minutes while supplying the CMP polishing agent (1) prepared above between the insulating film and the polishing cloth (platen rotation speed: 80 rpm, head rotation speed: 80 rpm, polishing load: 200 kPa, and abrasive supply amount: 200 ml Z minute).
  • the level difference between the convex and concave portions after polishing was 40 nm, indicating high flatness.
  • a silicon oxide film is formed on an 8-inch wafer by a plasma CVD method (hereinafter, referred to as a wafer (2A)), and a silicon nitride film is formed on a wafer of the same diameter by a low-pressure plasma CVD method. No. (hereinafter, referred to as a wafer (2B)).
  • the silicon oxide film and silicon nitride film of this wafer (2A, 2B) are polished for 1 minute using the above-mentioned CMP abrasive (0 (platen rotation speed: 80 rpm, head rotation speed: 80 rpm).
  • Polishing load 200 kPa, abrasive supply: 200 m1 / min
  • the difference in film thickness before and after polishing was measured using an optical interference type film thickness measuring device, and the polishing rate was measured.
  • the polishing rate of the silicon oxide film on the wafer (2A) is 220 nmZ
  • the polishing rate of the silicon nitride film on the wafer (2B) is 52 nmZ.
  • the ratio was 4.2.
  • the silicon oxide film after polishing the wafer (2A) was replaced with a KLAT encor Wafer Defect Detector product name “Surfscan 6220” and an Olympus wafer appearance.
  • the number of polishing scratches of 0.2 m or more was counted using the inspection microscope product name “AL-20000”, and it was 15 wafers / wafer.
  • a convex part with a side of 350 nm to 0.1 mm square and a concave part with a depth of 400 nm are formed, and the convex part density is 2 to 40 nm, respectively.
  • a shallow wrench separation layer pattern wafer was prepared.
  • a silicon nitride film having a thickness of 100 nm was formed on the projections, and a silicon oxide film was formed thereon by a TEOS—plasma CVD method to form a silicon oxide film (hereinafter, referred to as a pattern wafer (3)).
  • this pattern wafer (3) was polished for 2 minutes (platen rotation speed: 80 rpm, head rotation speed: 80 rpm, polishing load: 20 k) Pa, abrasive supply amount: 200 m1Z). As a result, the step after polishing was 40 nm, showing high flatness.
  • the cerium oxide slurry prepared in Example 1 was used in an amount of 7500 g, 2,4,7,9-tetramethyl-5-decyne-1,4,7-diol.
  • a mixture of 50 g of toxilate (a reagent manufactured by Aldrich, supra) and 420 g of water was mixed to obtain a concentration of an organic compound having an acetylene bond of 1.0% by weight and a concentration of cerium oxide particles of 0%. 0.75% by weight of CMP polishing slurry (hereinafter referred to as CMP polishing slurry (2)).
  • the pH of the CPM abrasive (2) was 8.4.
  • polishing the wafer (1) for 3 minutes using the above CMP abrasive (2) (Ebara Corporation polishing equipment: EPO11, platen rotation speed: 50 rpm, head rotation speed: 50 rpm, Polishing load: 30 kPa, abrasive supply: 200 m1 / min).
  • CMP abrasive (2) Ebara Corporation polishing equipment: EPO11, platen rotation speed: 50 rpm, head rotation speed: 50 rpm, Polishing load: 30 kPa, abrasive supply: 200 m1 / min.
  • the above-mentioned CMP polishing slurry (2) was used under the same polishing conditions as the wafer (1) of this embodiment.
  • the polishing rate of the silicon oxide film was 29 nm / min
  • the polishing rate of the silicon nitride film was 68 nm / min
  • the polishing rate ratio was 4.26.
  • the polished silicon oxide film was counted for polishing scratches of 0.2 ⁇ m or more in the same manner as in Example 1, and there were 15 Z wafers.
  • the pattern wafer (3) was polished with the CMP polisher (2) for 3 minutes under the same polishing conditions as in (8) of this example.
  • the step after polishing was 50 nm, indicating high flatness.
  • Wafer (1) was polished for 3 minutes under the same polishing conditions as wafer (1) of Example 2 using the above CMP polisher (3).
  • the level difference between the convex and concave portions after polishing was 20 nm, indicating high flatness.
  • the silicon oxide film and the silicon nitride film of the wafer (2A, 2B) were polished for one minute under the same polishing conditions as the wafer (2A, 2B) of the second embodiment (3).
  • the polishing rate of the silicon oxide film was 50 nm / min
  • the polishing rate of the silicon nitride film was 65 nmZ
  • the polishing rate ratio was 0.777.
  • the polishing scratches of 0.2 ⁇ m or more were counted using the polished silicon oxide film in the same manner as in Example 1. As a result, 15 wafers / wafer were obtained.
  • the pattern wafer (3) was polished using the CMP abrasive (3) under the same polishing conditions as the wafer (3) of Example 2 except that the polishing time was set to 200 seconds. As a result, the step after polishing was 10 nm, indicating high flatness.
  • the cerium oxide slurry described in Example 1 was diluted three times with a deionized tube (cerium oxide particle concentration: 1.67% by weight), and the one obtained without adding the organic compound described in Example 1 was used.
  • CMP abrasive was used.
  • the pH of this abrasive was 7.0. (Polishing of insulating film layer and shallow trench separation layer)
  • the wafer (1) was prepared under the same conditions as in Example 1 except that the above-mentioned CMP abrasive (cerium oxide particles: 1.67% by weight) was used.
  • the wafer (2A, 2B) was polished for 1 minute
  • the patterned wafer (3) was polished for 2 minutes.
  • the step after polishing of the wafer (1) was found to be 150 nm, indicating that the flatness was remarkably poor.
  • the silicon oxide film after the polishing of Example 8 (2A) was polished with a scratch of 0.2 m or more in the same manner as in Example 1. As a result, 30 Z wafers were obtained.
  • the patterned wafer (3) had a flatness of 150 nm after polishing and was poor in flatness.
  • the to-be-polished surface can be highly flattened, and it is suitable for the manufacturing process of semiconductor devices, such as a semiconductor element, for example, a single-door wrench separation. is there.
  • a surface to be polished such as a silicon oxide insulating film can be polished at high speed without being damaged.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

本発明は半導体装置の製造工程における層間絶縁膜、シャロー・トレンチ分離用絶縁膜等を平坦化するCMP(化学機械的研磨)技術において、効率的かつ高速の研磨を可能にする。本発明は、酸化セリウム粒子、アセチレン結合(炭素−炭素間の三重結合)を有する有機化合物及び水を含むCMP研磨剤、およびその研磨剤を用いて基板の被研磨膜を研磨する基板の研磨方法である。

Description

明細書
C M P研磨剤および基板の研磨方法 技術分野
本発明は、 半導体素子等の半導体装置製造工程のう ち、 層間 絶縁膜 CD平坦化工程またはシヤ ロー · ト レンチ分離の形成工程 等において使用される C M P ( C h e m i c a l M e c h a n i c a l P o l i s h i n g ) 研磨剤および基板の研磨方 法に する。 背景技術
超大規模集積回路の分野において実装密度を高めるため に 種々 の微細加工技術が研究、 開発されてお り 、 既に、 デザイ ン レールは、 サブハーフミ ク 口 ンのオーダ一になつている。 この よ う な厳しい微細化要求を満足するための技術の一つに C M P 研磨技術がある。この技術は、半導体装置の製造工程において、 露光を施す層を完全に平坦化する こ とによって微細化を可能と し、歩留ま り を向上させる こ とができる。これによ り C M P は、 例えば、 層間絶縁膜の平坦化ゃシヤ ロー · ト レンチ分離等を行 う 際に必要となる技術である。
従来、 集積回路内の素子分離には L O C O S (シリ コ ン局所 酸化)法が用い られてきたが、素子分離幅をよ り狭く するため、 近年ではシヤ ロー · ト レンチ分離法が用い られている。 シャ ロ 一 ' ト レンチ分離法では、 ウェハ基板上に成膜した余分の酸化 珪素膜を除く ために C M P が必須であ り 、 研磨を停止させるた めに、 酸化珪素膜の下に窒化珪素膜がス ト ッパと して形成され るのが一般的である。
半導体装置の製造工程において、 プラズマ一 C V D ( C h e m i c a l V a p o r D e p o s i t i o n、 化学的蒸着 法)、低圧一 C V D等の方法で形成される酸化珪素絶縁膜等を平 坦化するための C M P研磨剤と しては、 従来、 フューム ドシリ 力 を研磨粒子とする p H 9 を超えるアルカ リ性の研磨剤が多用 されてきた。 しかしながら、 酸化珪素膜の研磨速度を高く する ためにアル力 リ性に保持されたシリ カ研磨剤では、 ス ト ッパで ある窒化珪素膜の研磨速度も高く 、 ウェハ全面が均一に削れな い (すなわち高平坦化できない。)、 あるいは電気特性に悪影響 を与える研磨傷が多い等の問題があった。
一方、フォ トマスクやレンズ等のガラス表面研磨剤と しては、 酸化セリ ウムを用いた研磨剤が近年多用されている (例えば日 本特開平 5 _ 3 2 6 4 6 9 号公報参照。)。 酸化セリ ウム研磨剤 はシリ カ研磨剤と比べて酸化珪素膜の研磨速度が速く 、 研磨傷 も比較的少ないという特長を有する。 こ のため、 酸化セ リ.ゥム 研磨剤を半導体用研磨剤と して適用する検討が近年行われてお り 、 その一部は半導体用研磨剤と して実用化されるよう になつ ている (例えば日本特開平 9 一 2 7 0 4 0 2 号公報参照。)。
しかし、 各種デバイスが形成されたウェハ基板の全面を、 電 気特性不良に至る研磨傷をほとんど発生させずに、 完全に平坦 化できるよ うな酸化セリ ウム研磨剤はまだ得られていなかった , 本発明の 目的は、 電気特性不良に至る研磨傷をほとんど発生 させずに被研磨面を高平坦化する こ とが可能な C M P研磨剤お よびそれを用いた基板の研磨方法を提供する こ とにある。 発明の開示 本発明は、 アセチレン結合を有する有機化合物の炭素—炭素 間三重結合部分が被研磨膜に吸着する こ とによ り 、 電気特性不 良に至る研磨傷をほとんど発生させずに被研磨面を高平坦化で きる こ と に着目 したものである。
すなわち本発明は、 下記 ( 1 ) 〜 ( 7 ) に関する。
( 1 ) 酸化セ リ ウム粒子、 アセチレン結合を有する有機化合 物及び水を含む C M P研磨剤。
( 2 ) アセチレン結合を有する有機化合物が下記一般式 ( I )
R1— C≡C— R2 (I)
(一般式 ( I ) 中、 R 1は水素原子または炭素数が 1 〜 5 の置 換も し く は無置換アルキル基を表し、 R 2は炭素数が 4 〜 1 0 の置換または無置換アルキル基を表す。) で示される上記 ( 1 ) 記載の C M P研磨剤。
( 3 ) アセチレン結合を有する有機化合物が下記一般式 ( I I)
Figure imgf000004_0001
(一般式 ( I I) 中、 R 3〜 R 6はそれぞれ独立に水素原子または 炭素数が 1 〜 5 の置換も しく は無置換アルキル基を表し、 R 7、 R 8はそれぞれ独立に炭素数が 1 〜 5 の置換または無置換アル キレン基を表し、 m、 nはそれぞれ独立に 0 または正数を表す。) である上記 ( 1 ) 記載の C M P研磨剤。
( 4 ) さ らにビニル化合物の重合物か らなる水溶性高分子化 合物を含む上記 ( 1 ) 〜 ( 3 ) のいずれ,か一つ記載の C M P研 磨剤。
( 5 ) 被研磨膜を形成した基板を研磨定盤の研磨布に押し当 て加圧し、 上記 ( 1 ) 〜 ( 4 ) のいずれか一つ記載の C M P研 磨剤を被研磨膜と研磨布との間に供給しながら、 基板の被研磨 膜と研磨布とを相対的に動かして被研磨膜を研磨する基板の研 磨方法。
( 6 ) 被研磨膜を形成した基板を研磨定盤の研磨布に押し当 て加圧し、 酸化セ リ ウム粒子、 アセチレン結合を有する有機化 合物及び水を含む C M P研磨剤を被研磨膜と研磨布との間に供 給しながら、 上記'有機化合物のアセチレン結合部分が被研磨膜 に吸着した状態で、 基板の被研磨膜と研磨布と を相対的に動か して被研磨膜を研磨する基板の研磨方法。
( 7 ) C M P研磨剤にさ らにビニル化合物の重合物か らなる 水溶性高分子化合物を含む上 Ϊ3 ( 6 ) 記載の基板の研磨方法。 発明を実施するための最良の形態
一般に酸化セ リ ウム粒子は、 炭酸塩、 硝酸塩、 硫酸塩、 しゅ う酸塩のセ リ ウム化合物を酸化する こ と によって得られる。 Τ E O S 一 C V D法等で形成される酸化珪素膜などの研磨に使用 する酸化セ リ ウム粒子は、 その製造方法を限定するものではな いが、 酸化セリ ウム結晶子径は 5 n m以上 3 0 0 n m以下であ る こ とが好ましい。 また、 半導体装置製造に係る基板研磨に使 用する こ とから、 ナ ト リ ウムイオン、 力 リ ゥムイオン等のアル カ リ金属及び八ロゲン類、 ィォゥの含有率は酸化セリ ウム粒子 中 1 0 p p m以下に抑える こ とが好ま しい。
本発明において、 酸化セリ ウム粉末を作製する方法と して焼 成または過酸化水素等による酸化法が使用できる。 焼成温度は 3 5 0 °C以上 9 0 0 以下が好ま しい。
上記の方法によ り 製造された酸化セリ ウム粒子は凝集してい るため、 機械的に粉碎する こ とが好ま しい。 粉碎方法と して、 ジエツ 卜 ミル等による乾式粉碎ゃ遊星ビーズミル等による湿式 粉碎方法が好ま しい。 ジヱ ッ ト ミル法は例えば化学工業論文集 第 6巻第 5 号( 1 .9 8 0 ) 5 2 7 〜 5 3 2頁に説明されている。
本発明における C M P研磨剤は、 例えば、 上記のよう にして 得られた酸化セ リ ゥム粒子と分散剤及び水からなる分散液に、 後述する有機化合物を添加する こ とによって得られる。こ こで、 酸化セ リ ウム粒子の濃度に制限はないが、 分散液の取り扱いや すさか ら、 C M P研磨剤中 0 . 5 重量%以上 2 0 重量%以下の 範囲が好'ま しい。
本発明の研磨剤には分散剤を含むのが好ま しい。 分散剤と し ては、 水溶性陰イ オン性分散剤、 水溶性非イオン性分散剤、 水 溶性陽イオン性分散剤、 水溶性両性分散剤から選ばれた少なく とも 1 種類を含むのが好ま しく 、 2種類以上の分散剤を使用す るのがよ り好ま しい。 また、 分散剤中のアルカ リ金属及び八口 ゲン類、 ィ ォゥの含有率は 1 0 p p m以下に抑える こ とが好ま しい。
水溶性陰イオン性分散剤と しては、 例えば、 ラウ リル硫酸 ト リ エタノ一ルァミ ン、 ラウ リル硫酸アンモニゥム、 ポリ オキシ ェチレンアルキルエーテル硫酸 ト リ エタ ノ ールァミ ン等が挙げ られるが、 後述する水溶性高分子化合物のうちァニオン系のも のを用いてもよい。
水溶性非イオン性分散剤としては、 例えば、 ポリ オキシェチ レンラウ リ ルェ一テル、 ポリオキシエチレンセチルェ一テル、 ポリ オキシエチレンステア リルェ,一テル、 ポ リ オキシエチレン ォレイルェ—テル、 その他のポリ オキシェチレン高級アルコー ルエーテル、 ポ リ ォキシエチレンォクチルフエ二ルェ一テル、 ポリ オキシエチレンノニルフエニルエーテル、 ポリ オキシアル キレンアルキルエーテル、 ポリ オキシエチレンソリレビタ ンモノ ラウ レー ト、ポ リ オキシエチレンソルビタ ンモノパルミテー ト、 ポリ オキシエチレンゾ レビタ ンモノ ステア レー ト、 ポリ オキシ エチレンソルビ夕 ン ト リ ステアレー ト、 ポ リ オキシエチレンソ ルビタンモノォレエー 卜、 ポリオキシエチレンソルビタン ト リ ォレエー ト、テ ト ラオレイ ン酸ポリ ォキシエチレンソルビッ ト、 ポリ エチレングリ コールモノ ラウ レー ト、 ポリ エチレングリ コ ールモノ ステア レー ト、 ポリ エチレンダリ コールジステア レー ト、 ポリ エチレングリ コールモノォレエ一 ト、 ポ リ オキシェチ レンアルキルァミ ン、 ポ リ オキシエチレン硬化ヒマシ油、 アル キルアル力 ノールアミ ド等が挙げられる。
水溶性陽イオン性分散剤と しては、 例えば、 コ コナッ トアミ ンアセテー ト、 ステア リ ルアミ ンァセテ一 ト等が挙げられ、 水 溶性両性分散剤と しては、 例えば、 ラウ リ ルべ夕イ ン、 ステア リルべタイ ン、 ラウ リ ルジメチルァミ ンオキサイ ド、 2 —アル キル一 N —力ルポキシメチルー N— ヒ ドロキシェチルイ ミ ダゾ リ ニゥムべタイ ン等が挙げられる。
これら の分散剤を添加する場合の添加量は、 スラ リ 状の研磨 剤中の粒子の分散性及び沈降防止、 さ ら に研磨傷と分散剤添加 量との関係か ら酸化セ リ ウム粒子 1 0 0 重量部に対して、 0 . 0 1 重量部以上 2 . 0 重量部以下の範囲が好ま しい。
分散剤の分子量は、 1 0 0 〜 5 0 , 0 0 0 が好ま し く 、 1 , 0 0 0 〜 1 0 , 0 0 0 がよ り好ましい。 分散剤の分子量が 1 0 0 未満の場合は、 酸化珪素膜あるいは窒化珪素膜を研磨する と きに、十分な研磨速度が得られにく く 、分散剤の分子量が 5 0 , 0 0 0 を超えた場合は、 粘度が高く な り 、 C M P研磨剤の保存 安定性が低下傾向があるためである。
酸化セ リ ウム粒子を水中に分散させる方法と しては、 通常の 攪拌機による分散処理の他にホモジナイザ一、 超音波分散機、 湿式ポールミルなどを用いる こ とができる。
こ う して作製された C M P研磨剤中の酸化セ リ ウム粒子の平 均粒径は、 0 . 0 l m〜 l . O ITIである こ とが好ま しい。 酸化セリ ウム粒子の平均粒径が 0 . 0 1 m未満である と研磨 速度が低く なる塲合があ り 、 1 . 0 mを超える と研磨する膜 に傷がつきやすく なるためである。
なお、 本発明において、 酸化セ リ ウム粒子の平均粒径は、 必 要に応じて酸化セ リ ウムのスラ リ を適当な濃度に希釈し、 レ一 ザ回折式粒度分布計で測定し、 粒子径の中央値を採用する。
本発明におけるアセチレン結合、 すなわち炭素一炭素間が互 いに三個の原子価で結合している構造の三重結合を有する有機 化合物と しては、 炭素一炭素間の三重結合を含むものであれば 特に制限はないが、 具体的には、 下記一般式 ( I )
R1— C≡C— R2 (I)
(ただし、 一般式 ( I ) 中、 R 1は水素原子または炭素数が 1 〜 5 の置換も し く は無置換アルキル基を表し、 R 2は炭素数が 4 〜 1 0 の置換または無置換アルキル基を表す。)で示される化合 物、 下記一般式 ( I I )
Figure imgf000009_0001
(ただし、 一般式 ( I I ) 中、 R 3〜 R 6はそれぞれ独立に水素原 子または炭素数が 1 〜 5 の置換も し く は無置換アルキル基を表 し、 R 7、 R 8はそれぞれ独立に炭素数が 1 〜 5 の置換または無 置換アルキレン基を表し、 m、 n はそれぞれ独立に 0 または正 数を表す。) で示される化合物が好ま し く 挙げられる。 なお、 前 記 m、 nは一般に平均値で示される。 m + n は 2 〜 2 0 である こ とが平坦性の向上の点で好ま しい。 これら は単独で、 又は 2 種以上を組み合わせて用い られる。
これらの化合物の中では、 1 —デシン、 5 デシン、 2 , 4 , 7 , 9 ーテ ト ラ メチル一 5 _デシン一 4 , 7 ー ジオール、 2 , 4 , 7 , 9 —テ ト ラメチルー 5 —デシン 4 , 7 —ジオールェ トキシレー トがよ り好ま しい。
アセチレン結合を有する有機化合物の C M P研磨剤中におけ る濃度は、 十分な平坦性を得るために 0 · 0 5 .重量%〜 5 . 0 0 重量%である事が望ま しい。
本発明の研磨剤には、 粘度、 P H、 表面張力等の液状特性を 調整するために、 さ ら に、 水溶性の高分子化合物を含むのが好 ま し く 、 特に、 ビエル化合物の重合物か らなる水溶性高分子化 合物を含むのが平坦性の向上の点で好ま しい。 該ビニル化合物 の重合物か らなる水溶性高分子化合物は、 具体的にはポ リ アク リ ル酸、 ポ リ アク リ ル酸アンモニゥム塩、 ポリ アク リル酸アミ ン塩、 ポリ酢酸ビニル、 ポリ ビエルイ ミ ダゾール、 ポリ ピニル ピロ リ ドンなどが挙げられ、 この中でもポリ ビニルピ口 リ ド ン がよ り好ま しい。 これらは単独でまたは 2 種以上を組み合わせ て用い られる。 また、 ァク リ ル酸、 ァク リ ル酸ア ンモニゥム塩、 アク リル酸アミ ン塩、 酢酸ビニル、 ビニルイ ミ ダゾールから選 ばれた少なく と も 1 つの化合物とビニルピロ リ ド ンとの共重合 体でもよい。
ビニル化合物の重合物か らなる水溶性高分子化合物 (以下、 水溶性高分子化合物という。) の重量平均分子量は 1, 0 0 0〜 1 0 0, 0 0 0 が好まし く 、 5 , 0 0 0〜 5 0 , 0 0 0 がよ り 好ま しい'。 また、 水溶性高分子化合物の C M P研磨剤中におけ る濃度は、 十分な平坦性を得るために 0 . 0 5 重量%〜 3 . 0 重量%が好ま し く 、 0 . 0 6重量%〜 1 . 0 重量%がよ り好ま ., し く 、 0 . 0 7 重量%〜 0 . 5重量%がさ ら によ り好ま しい。 本発明の研磨剤には上述した材料の他に、 染料、 顔料等の着 色剤や、 p H調整剤、 水以外の溶媒などの、 一般に研磨剤に添 加される添加剤を、 研磨剤の作用効果を損なわない範囲で添加 しても良い。
また、 本発明の研磨剤は、 二液、 例えば上記アセチレン結合 を有する有機化合物及び好ま しく は水溶性高分子化合物を含む 添加液 (第 1 液) と、 酸化セリ ウム粒子、 水及び好まし く は分 散剤を含むスラ リ (第 2液) との二液で保存し、 研磨時に別々 に研磨定盤上に供給し、 研磨定盤上で混合する調製方法か、 研 磨前 (保存前または研磨直前) に予め上記二液を混合し、 研磨 定盤上に供給する調製方法をとる こ とができる。 いずれの方法 による研磨剤でも安定した研磨特性が得られる。
C M P研磨剤の P Hは、 3 以上 9以下である こ とが好ましく、 5 以上 8 . 5 以下である こ とがよ り好ま しい。 . p Hが 3 未満で は、 化学的作用が小さ く な り 、 研磨速度が低下するおそれがあ る。 p Hが 9 よ り大きいと、 化学的作用が強く ディ ッ シングが 生じるおそれがある。 p Hは酸や、 アンモニア、 テ ト ラメチル アンモニゥムヒ ド ロキシ ド ( T M A H ) 等のアルカ リ成分によ つて調整可能である。
本発明の基板の研磨方法は、 被研磨膜を形成した基板の被研 磨膜を上記本発明の C M P研磨剤で研磨する こ とを特徴とする < 被研磨膜を形成した基板と して、 例えば半導体装置製造に係る 基板、 具体的には回路素子と配線パターンが形成された段階の 半導体基板、 回路素子が形成された段階の半導体基板等の、 半 導体基板上に少なく と も酸化珪素膜層が形成された基板が挙げ られる。 そして被研磨膜は、 無機絶縁膜、 例えば前記酸化珪素 膜層あるいは窒化珪素膜層及び酸化珪素膜層等が挙げられる。
そして、 本発明の研磨方法は、 被研磨膜を形成した基板を研 磨定盤の研磨布に押しあて加圧し、 本発明の C M P研磨剤を被 '研磨膜と研磨布との間に供給しながら、 基板の被研磨膜と研磨 布とを相対的に動かして被研磨膜を研磨する。 具体的には研磨 装置の基板と研磨定盤との少なく とも一方を動かせば良い。 以 下、 半導体基板の場合について本発明の研磨方法を説明する。
半導体基板上に形成された酸化珪素膜層あるいは窒化珪素膜 層を上記 C M P研磨剤で研磨する こ とによって、 酸化珪素絶縁 膜層表面の凹凸を解消し、 半導体基板全面にわたっ て平滑な面 とする こ とができる。 また、 シヤ ロー ' ト レンチ分離にも好適 に使用できる。 '
こ こで、 研磨する装置と しては、 半導体基板を保持するホル ダ一と、 研磨布 (パッ ド) を貼り付け可能で、 回転数が変更可 能なモー夕等を取り 付けてある研磨定盤とを有する一般的な研 磨装置が使用できる。 研磨定盤上の研磨布と しては、 一般的な 不織布、発泡ポリ ウ レタン、多孔質フ ッ素樹脂などが使用でき、 特に制限がない。 また、 研磨布には C M P研磨剤がたまるよ う な溝加工を施すこ とが好ましい。 研磨条件に制限はないが、 定 盤の回転速度は基板が飛び出さないよう に 2 0 0 r 以下の 低回転が好まし く 、 基板にかける圧力 (研磨圧力) は研磨後に 傷が発生しないよ う に約 9 8 k P a ( 1 k g Z c m 2 ) 以下が好 ま しい。 研磨している間、 スラ リ状の本発明の研磨剤を研磨布 と被研磨膜の間にポンプ等で連続的に供給する。 研磨剤の供給 量に制限はないが、 研磨布の表面が常に研磨剤で覆われている ことが好ま しい。
凹凸が存在する被研磨膜 (酸化珪素膜) のグローバル平坦化 を達成するには、凸部が選択的に研磨される こ とが必要である。 本発明の C M P研磨剤を用いる と上記アセチレ ン結合を有する 有機化合物のアセチレン結合部分が被研磨膜に吸着する。 この 吸着した状態で被研磨膜の研磨を行う と、 凸部が選択的に研磨 されて高平坦性が達成される。 研磨液にさ らに ビニル化合物の 重合物か らなる水溶性高分子化合物を含むと、 平坦性がよ り 向 上する。
研磨終了後の半導体基板は、 流水中で良く洗浄後、 スピン ド ライヤ等を用いて半導体基板上に付着した水滴を払い落と して から乾燥させる こ とが好ま しい。
例えば、 このよ う にして平坦化されたシャ 口一 ' ト レンチを 形成したあと、 酸化珪素絶縁膜の上に、 アルミ ニウム配線を形 成し、 さ ら にその配線間及び配線上に再び酸化珪素絶縁膜を形 成後、上記 C M P研磨剤を用いて同様に研磨する こ とによって、 無機絶縁膜表面の凹凸を解消し、 半導体基板全面にわたっ て平 滑な面が得 られる。 この工程を所定数繰 り 返すこ と によ り 、 所 望の層数を製造する こ とができる。
本発明の C M P'研磨剤および研磨方法が適用 される無機絶縁 膜の作製'方法と して、 低圧 C V D法、 プラズマ C V D法等が挙 げられる。 低圧 C V D法による酸化珪素膜形成は、 S i 源と し てモノ シラ ン : S i H4s 酸素源と して酸素 : 02 を用いる。 こ の S i H4— 02 系酸化反応を 4 0 0 °C以下の低温で行わせる こ とによ り 得 .られる。 場合によっ ては、 C V D後 1 0 0 0 °Cまた はそれ以下の温度で熱処理される。 高温リ フ ローによる表面平 坦化を図るために リ ン : P を ド一プする とき には、 S i H 4- O 2- P H 3 系反応ガスを用いる こ とが好ま しい。
プラズマ C V D法は、 通常の熱平衡下では高温を必要とする 化学反応が低温でできる利点を有する。 プラズマ発生法には、 容量結合型 と誘導結合型の 2 つが挙げられる。 反応ガス と して は、 S i 源と して S i H4、 酸素源と して N 2〇 を用いた S i H4 一 N 2〇系ガス と、 テ ト ラエ トキシシラ ン ( T E O S ) を S i 源 に用いた T E O S — 〇 2 系ガス ( T E O S — プラズマ C V D法) どが挙げられる。 基板温度は 2 5 0 °C〜 4 0 0 °C , 反応圧力は 6 7 〜 4 0 0 P a の範囲が好ま しい。 このよ う に、 本発明の研 磨剤および研磨方法が適用 される酸化珪素膜にはリ ン、 ホウ素 等の元素が ドープされていても良い。 同様に、 低圧 C V D法に よる窒化珪素膜形成は、 S i 源と してジク ロルシラ ン : S i H 2 C l 2、 窒素源と してア ンモニア : N H 3を用いる。 この S i H 2 C 1 2— N H 3 系酸化反応を 9 0 O t の高温で行わせる こ と によ り得 られる。 プラズマ C V D法は、 反応ガス と しては、 S i 源 と して S i H4、 窒素源と して N H 3 を用いた S i H4— N H 3系 ガスが挙げられる。基板温度は 3 0 0 :〜 4 0 0 °Cが好ま しい。 本発明の C M P研磨剤および研磨方法は、 半導体基板に形成 された酸化珪素膜だけでなく 、 所定の配線を有する配線板に形 成され ς酸化珪素膜、 ガラス、 窒化珪素等の無機絶縁膜、 ポリ シリ コ ン、 A l 、 C u、 T i 、 T i N、 W、 T a、 T a N等を 主と して含有する膜、 フォ トマスク · レンズ , プリ ズム等の光 学ガラス、 I T O等の無機導電膜、 光集積回路 · 光スィ ッチン グ素子 · 光導波路を構成するガラス及び結晶質材料、 光フ アイ パーの端面、 シンチレ一夕等の光学用単結晶、 固体レーザ単結 晶、 青色レーザ L E D用サフ アイャ基板、 S i C、 G a P、 G a A s 等の半導体単結晶、 磁気ディ スク用ガラス基板、 磁気へ ッ ド等の研磨に適用する こ とができる。
(実施例)
次に、 本発明を実施例及び比較例を挙げて説明するが、 本発 明はこれらの実施例に限定されるものではない。
(実施例 1 )
(酸化セ リ ウムスラ リ の作製)
炭酸セ リ ウム水和物 2 k g をアルミ ナ製容器に入れ、 8 5 0 °Cの空気中で 2 時間焼成して酸化セリ ウム粉末を得た。 上記 作製の酸化セリ ウム粒子 l k g とポリ アク リ ル酸アンモニゥム 塩水溶液 ( 4 0 重量% ) 2 3 g と脱イオン水 8 9 7 7 g とを混 合し、撹拌しながら超音波分散を 1 0 分間施してスラ リ を得た。 得られたス ラ リ を 1 ミ ク ロ ンフィ ルターでろ過をし、 さ らに脱 イオン水を加えて酸化セリ ゥム 5 . 0 重量%を含む酸化セ リ ウ ムスラ リ を得た。
( C M P研磨剤の作製)
上記の酸化セリ ウムスラ リ を 1 0 0 0 g、 アセチレン結合を 有する有機化合物として 2 , 4 , 7 , 9 ーテ ト ラメチルー 5 — デシン一 4 , 7 —ジオールエ トキシレー ト (アル ド リ ッチ社製 試薬、 前記一般式 ( II) において m + n = 3 . 5 ) を 1 5 g、 水 1 9 8 5 g を混合して、 アセチレン結合を有する有機化合物 濃度 0 . 5 重量%、 酸化セ リ ウム粒子濃度 1 . 6 7 重量%の じ M P研磨剤 (以下、 C M P研磨剤( 1 )という 。) と した。 C M P 研磨剤( 1 )の P Hは 8 . 4であっ た。
(絶縁膜層及びシヤ ロ ー · ト レンチ分離層の研磨)
直径 8 イ ンチ ( 2 0 . 3 c m) S i 基板上に L i n e / S p a c e 幅が 0 . 0 5 〜 5 111 ]11で高さが 1 0 0 0 11 111の八 1 配線 L i n e 部を形成した後、 その上に T E O S —プラズマ C V D 法で酸化珪素膜を 2 0 0 0 n m形成した絶縁膜層パターンゥェ ハを作製した。
この絶縁膜層パターンウェハ (以下、 ウェハ ( 1 ) という 。) を、 研磨装置 (荏原製作所株式会社製 研磨装置: E P O 1 1 1 ) のホルダーにセッ ト した。 多孔質ウ レタ ン樹脂製の研磨パッ ド (研磨布) を貼り付けた前記研磨装置の研磨定盤上に、 ホルダ —をウェハの酸化珪素膜 (絶縁膜) 面を下に向けて載せた。
上記で調製した C M P研磨剤( 1 )を絶縁膜と研磨布との間に 供給しながら、 ウェハ ( 1 ) の絶縁膜を 3 分間研磨 (定盤回転 数 : 8 0 r p m、 ヘッ ド回転数 : 8 0 r p m、 研磨荷重 : 2 0 k P a、 研磨剤供給量 : 2 0 0 m l Z分) した。 その結果、 研 磨後の凸部と凹部の段差が 4 0 n mとな り高平坦性を示した。
また、 8 イ ンチウェハ上に酸化珪素膜をプラズマ C V D法で 形成したウェハ (以下、 ウェハ ( 2 A ) という。)、 及び同径の ウェハ上に窒化珪素膜を低圧プラズマ C V D法で形成したゥェ ノ (以下、 ウェハ ( 2 B ) という。) を用意した。 このウェハ ( 2 A、 2 B ) の酸化珪素膜及び窒化珪素膜を上 記の C M P研磨剤(0を用いて 1 分間研磨 (定盤回転数 : 8 0 r p m、 ヘッ ド回転数 : 8 0 r p m、 研磨荷重 : 2 0 k P a 、 研 磨剤供給量 : 2 0 0 m 1 /分) した。 光干渉式膜厚測定装置を 用いて、研磨前後の膜厚差を測定し、研磨速度を計算した結果、 ウェハ ( 2 A ) の酸化珪素膜の研磨速度は 2 2 0 n mZ分、 ゥ ェハ ( 2 B ) の窒化珪素膜の研磨速度は 5 2 n mZ分とな り 、 研磨速度比は 4 . 2 であづ た。 またウェハ ( 2 A ) 研磨後の酸 化珪素膜を K L A T e n c o r 社製ウェハ欠陥検出装置製品 名 「 S u r f s c a n 6 2 2 0 」 とォリ ンパス社製ウェハ外観 検査顕微鏡製品名 「 A L — 2 0 0 0 」 を用いて 0 . 2 m以上 の研磨傷をカウン ト したと ころ、 1 5個 /ウェハであった。
また、 8 イ ンチの S i 基板に一辺 3 5 0 n m〜 0 . 1 mm四 方の凸部、 深さが 4 0 0 n mの凹部を形成し、 凸部密度がそれ ぞれ 2 〜 4 0 % となるよう なシヤ ロー · ト レンチ分離層パター ンウェハを作製した。 この凸部上に窒化珪素膜を 1 0 0 n m形 成し、 その上に T E O S —プラズマ C V D法で酸化珪素膜を 6 O O n m成膜した (以下、 パターンウェハ ( 3 ) という。)。 上 記の C M P研磨剤( 1 )を用いて、 このパターンウエノ、 ( 3 ) を 2 分間研磨 (定盤回転数.: 8 0 r p m、 ヘッ ド回転数 : 8 0 r p m、 研磨荷重 : 2 0 k P a 、 研磨剤供給量 : 2 0 0 m 1 Z分) した。 その結果、 研磨後の段差は 4 0 n mとな り 、 高平坦性を 示した。
(実施例 2 )
( C M P研磨剤の作製)
上記実施例 1 で作製した酸化セ リ ウムスラ リ を 7 5 0 g 、 2 , 4 , 7 , 9 ーテ ト ラメチルー 5 —デシン一 4 , 7 —ジォ一ルェ トキシレー ト (アル ド リ ッチ社製試薬、 前出) 'を 5 0 g、 水 4 2 0 0 g を混合し、 アセチレン結合を有する有機化合物濃度 1 . 0 重量%、 酸化セリ ウム粒子濃度 0 . 7 5 重量%の C M P研磨 剤 (以下、 C M P研磨剤(2)という 。) と した。 C P M研磨剤(2) の p Hは 8 . 4であった。
(絶縁膜層及びシヤ ロー · 卜レンチ分離層の研磨)
上記の C M P研磨剤(2)を用いて、 ウェハ ( 1 ) を 3分間研磨 (荏原製作所製 研磨装置 : E P O l 1 1 、 定盤回転数 : 5 0 r p m、 ヘッ ド回転数 : 5 0 r p m、 研磨荷重 : 3 0 k P a 、 研 磨剤供給量 : 2 0 0 m 1 /分) した。 その結果、 研磨後の凸部 と凹部の段差が 4 0 n mとな り高平坦性を示した。
また、 ウェハ ( 2 A、 2 B ) の酸化珪素膜及び窒化珪素膜を、 研磨時間を 1 分間と した以外は本実施例のウェハ ( 1 ) と同じ 研磨条件で、 上記の C M P研磨剤(2)を用いて研磨した結果、 酸 化珪素膜の研磨速度は 2 9 Ό n m /分、 窒化珪素膜の研磨速度 は 6 8 n m/分とな り、 研磨速度比は 4 . 2 6 であった。 また 研磨後の酸化珪素膜を実施例 1 と同様にして 0 . 2 x m以上の 研磨傷をカウ ン ト したと ころ、 1 5個 Zウェハであった。
また、 上記の C M P研磨剤(2)で、 上記パターンウェハ ( 3 ) を本実施例のゥェ八 ( 1 ) と同 じ研磨条件で 3 分間研磨した。 その結果、研磨後の段差は 5 0 n mとな り 、高平坦性を示した。
(実施例 3 )
( C M P研磨剤の作製)
上記実施例 1 記載の酸化セ リ ウムスラ リ を 7 5 0 g、 2 , 4 , 7 , 9 —テ ト ラメチルー 5 —デシン— 4 , 7 —ジオールェ トキ シレー ト (アル ド リ ッチ社試薬、 前出) 5 0 g、 ポ リ ビニルピロ リ ド ン (東京化成工業社製試薬、 K 3 0 : 重量平均分子量 : 4 0 0 0 0 ) 3 . 7 5 g、 脱イ オン水 4 1 9 6 . 2 5 g を加える こ とによ り酸化セリ ウム粒子濃度 0 . 7 5 重量%、 アセチレン結 合を有する有機化合物濃度 1 . 0 重量%、 ポリ ビニルピロ リ ド ン濃度 0 . 0 7 5 重量% の 1^ ?研磨剤 (以下、 C M P研磨剤 (3)という 。) とした。 C M P研磨剤(3)の p Hは 8 . 4 0 であつ た。
(絶縁膜層及びシヤ ロー · ト レンチ分離層の研磨)
上記の C M P研磨剤( 3 )を用いて、 ウェハ ( 1 ) を実施例 2 の ウェハ ( 1 ) と同じ研磨条件で 3 分間研磨した。 その結果、 研 磨後の凸部と凹部の段差が 2 0 n mとな り高平坦性を示した。
また、 ウェハ ( 2 A、 2 B ) の酸化珪素膜及ぴ窒化珪素膜を、 実施例 2 のウェハ ( 2 A、 2 B ) と同じ研磨条件で 1 分間、 上 記の C M P研磨剤(3)を用いて研磨した結果、酸化珪素膜の研磨 速度は 5 0 n m/分、 窒化珪素膜の研磨速度は 6 5 n mZ分と な り 、 研磨速度比は 0 . 7 7 であっ た。 また研磨後の酸化珪素 膜を実施例 1 と同様.にして 0 . 2 〃 m以上の研磨傷をカ ウン ト したと ころ、 1 5個/ウェハであっ た。
また、 パターンウェハ ( 3 ) を研磨時間を 2 0 0 秒間と した 以外は実施例 2 のウェハ ( 3 ) と同 じ研磨条件で上記の C M P 研磨剤(3)を用いて研磨した。 その結果、 研磨後の段差は 1 0 n mとな り 、 高平坦性を示した。
(比較例 1 )
( C M P研磨剤の作製)
実施例 1 記載の酸化セ リ ウムスラ リ を脱イオン本で 3 倍に希 釈し (酸化セリ ウム粒子濃度 1 . 6 7 重量% )、 実施例 1 記載の 有機化合物を加えず得られたものを C M P研磨剤と した。 この 研磨剤の p Hは 7 . 0 であっ た。 (絶縁膜層及びシヤ ロー · ト レンチ分離層の研磨) 上記の C M P研磨剤 (酸化セ リ ウム粒子 : 1 . 6 7重量% ) を用いた以外は実施例 1 と同じ条件でウェハ ( 1 ) は 3 分間、 ウェハ ( 2 A、 2 B ) は 1 分間、 パターンウェハ ( 3 ) は 2 分 間研磨した。 その結果、 ウェハ ( 1 ) の研磨後の段差は 1 5 0 n m .とな り 、 平坦性が著し く劣る こ とがわかっ た。 また、 ゥェ 八 ( 2 A ) の研磨後の酸化珪素膜を実施例 1 と同様にして 0 . 2 m以上の研磨傷をカ ウ ン ト したと ころ、 3 0 個 Zウェハで あっ た。 パターンウェハ ( 3 ) は研磨後の段差が 1 5 0 n mで 平坦性が劣っていた。 産業上の利用の可能性
本発明の C M P研磨剤および基板の研磨方法によれば,、 被研 磨面の高平坦化が可能であ り、 半導体素子等の半導体装置製造 工程、 例えばシャ 口一 · ト レンチ分離に好適である。 また、 酸 化珪素絶縁膜等の被研磨面を傷なく 、 高速に研磨する こ とがで きる。

Claims

請求の範囲
1 . 酸化セ リ ウム粒子、 アセチレン結合を有する有機化合物 及び水を含む C M P研磨剤。
2 . アセチレン結合を有する有機化合物が下記一般式 ( I )
R1— C≡C一 R2 (I)
(一般式 ( I ) 中、 R 1は水素原子または炭素数が 1 〜 5 の置換 も し く は無置換アルキル基を表し、 R 2は炭素数が 4〜 1 0 の 置換または無置換アルキル基を表す。)で示される請求の範囲第 1 項記載の C M P研磨剤。
3 . アセチレン結合を有する有機化合物が下記一般式 ( II)
Figure imgf000020_0001
(一般式 ( II) 中、 R 3 〜 R 6はそれぞれ独立に水素原子または 炭素数が 1 〜 5 の置換も しく は無置換アルキル基を表し、 R 7 、 R 8はそれぞれ独立に炭素数が 1 〜 5 の置換または無置換アル キレン基を表し、 m、 nはそれぞれ独立に 0 または正数を表す。) である請求の範囲第 1 項記載の C M P研磨剤。
4. さ らにビニル化合物の重合物か らなる水溶性高分子化合 物を含む請求の範囲第 1 項〜第 3項のいずれか一項記載の C M
P研磨剤。
5 . 被研磨膜を形成した基板を研磨定盤の研磨布に押し当て 加圧し、 請求の範囲第 1 項〜第 4項のいずれか一項記載の C M P研磨剤を被研磨膜と研磨布との間に供給しながら、 基板の被 研磨膜と研磨布とを相対的に動かして被研磨膜を研磨する基板 の研磨方法。
6 . 被研磨膜を形成した基板を研磨定盤の研磨布に押し当て 加圧し、 酸化セ リ ウム粒子、 アセチレン結合を有する有機化合 物及び水を含む C M P研磨剤を被研磨膜と研磨布との間に供給 しながら、 上記有機化合物のアセチレン結合部分が被研磨膜に 吸着した状態で、 基板の被研磨膜と研磨布とを相対的に動かし て被研磨膜を研磨する基板の研磨方法。
7 . C M P研磨剤にさ らにビニル化合物の重合物からなる水 溶性高分子化合物を含む請求の範囲第 6 項記載の基板の研磨方 法。
PCT/JP2003/010001 2002-08-09 2003-08-06 Cmp研磨剤および基板の研磨方法 WO2004015021A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/524,064 US7311855B2 (en) 2002-08-09 2003-08-06 Polishing slurry for chemical mechanical polishing and method for polishing substrate
JP2004527345A JP4415854B2 (ja) 2002-08-09 2003-08-06 Cmp研磨剤および基板の研磨方法
AU2003254825A AU2003254825A1 (en) 2002-08-09 2003-08-06 Cmp abrasive and substrate polishing method
US11/905,279 US8231735B2 (en) 2002-08-09 2007-09-28 Polishing slurry for chemical mechanical polishing and method for polishing substrate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002/233702 2002-08-09
JP2002233702 2002-08-09
JP2003059280 2003-03-06
JP2003/59280 2003-03-06

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10524064 A-371-Of-International 2003-08-06
US11/905,279 Division US8231735B2 (en) 2002-08-09 2007-09-28 Polishing slurry for chemical mechanical polishing and method for polishing substrate

Publications (1)

Publication Number Publication Date
WO2004015021A1 true WO2004015021A1 (ja) 2004-02-19

Family

ID=31719876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/010001 WO2004015021A1 (ja) 2002-08-09 2003-08-06 Cmp研磨剤および基板の研磨方法

Country Status (7)

Country Link
US (2) US7311855B2 (ja)
JP (2) JP4415854B2 (ja)
KR (1) KR100714246B1 (ja)
CN (1) CN100339954C (ja)
AU (1) AU2003254825A1 (ja)
TW (1) TWI256971B (ja)
WO (1) WO2004015021A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1324106C (zh) * 2004-07-15 2007-07-04 捷时雅株式会社 化学机械研磨用水性分散剂以及化学机械研磨方法
EP1868769A2 (en) * 2005-04-08 2007-12-26 Ferro Corporation Slurry composition and method for polishing organic polymer-based ophthalmic substrates
WO2008136593A1 (en) * 2007-05-03 2008-11-13 Lg Chem, Ltd. Cerium oxide powder for abrasive and cmp slurry comprising the same
JP2011223018A (ja) * 2005-11-11 2011-11-04 Hitachi Chem Co Ltd 酸化ケイ素用研磨剤、添加液および研磨方法
US8361419B2 (en) 2005-09-20 2013-01-29 Lg Chem, Ltd. Cerium carbonate powder, method for preparing the same, cerium oxide powder made therefrom, method for preparing the same, and CMP slurry comprising the same

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4864698B2 (ja) * 2004-04-23 2012-02-01 東京応化工業株式会社 リソグラフィー用リンス液
KR100611064B1 (ko) * 2004-07-15 2006-08-10 삼성전자주식회사 화학 기계적 연마 공정용 슬러리 조성물, 상기 슬러리조성물을 이용한 화학 기계적 연마 방법 및 상기 방법을이용한 게이트 패턴의 형성 방법
US20060021972A1 (en) * 2004-07-28 2006-02-02 Lane Sarah J Compositions and methods for chemical mechanical polishing silicon dioxide and silicon nitride
KR100574984B1 (ko) * 2004-08-16 2006-05-02 삼성전자주식회사 산화세륨 연마 입자 및 그 제조 방법과 cmp용 슬러리조성물 및 그 제조 방법과 이들을 이용한 기판 연마 방법
US20070218811A1 (en) * 2004-09-27 2007-09-20 Hitachi Chemical Co., Ltd. Cmp polishing slurry and method of polishing substrate
KR20080011044A (ko) * 2006-07-28 2008-01-31 주식회사 엘지화학 산화세륨 분말, 그 제조방법, 및 이를 포함하는cmp슬러리
US8388710B2 (en) * 2005-01-26 2013-03-05 Lg Chem, Ltd. Cerium oxide powder, method for preparing the same, and CMP slurry comprising the same
JPWO2006098141A1 (ja) * 2005-03-16 2008-08-21 旭硝子株式会社 半導体集積回路装置用研磨剤、研磨方法および半導体集積回路装置の製造方法
TWI363790B (en) * 2005-10-19 2012-05-11 Hitachi Chemical Co Ltd Cerium oxide slurry, cerium oxide polishing solution and polishing method by utilizing the same
US20090325323A1 (en) * 2006-07-18 2009-12-31 Jsr Corporation Aqueous dispersion for chemical mechanical polishing, production method thereof, and chemical mechanical polishing method
JP5220428B2 (ja) * 2008-02-01 2013-06-26 株式会社フジミインコーポレーテッド 研磨用組成物を用いた研磨方法
DE102008008184A1 (de) * 2008-02-08 2009-08-13 Evonik Degussa Gmbh Verfahren zum Polieren einer Siliciumoberfläche mittels einer ceroxidhaltigen Dispersion
EP2329519B1 (en) 2008-09-26 2013-10-23 Rhodia Opérations Abrasive compositions for chemical mechanical polishing and methods for using same
KR101050789B1 (ko) * 2009-09-21 2011-07-20 주식회사 엘지화학 탄산세륨계 화합물의 제조 방법, 산화세륨의 제조 방법 및 결정성 산화세륨
US20120214307A1 (en) * 2009-11-12 2012-08-23 Hitachi Chemical Company, Ltd. Chemical-mechanical polishing liquid, and semiconductor substrate manufacturing method and polishing method using said polishing liquid
JP2011110637A (ja) * 2009-11-25 2011-06-09 Asahi Glass Co Ltd 磁気ディスク用ガラス基板の製造方法
KR101469258B1 (ko) 2009-12-31 2014-12-09 제일모직주식회사 Cmp 슬러리 조성물 및 이를 이용한 연마 방법
WO2011081503A2 (en) * 2009-12-31 2011-07-07 Cheil Industries Inc. Chemical mechanical polishing slurry compositions and polishing method using the same
EP2502969A1 (en) 2011-03-22 2012-09-26 Basf Se A chemical mechanical polishing (cmp) composition comprising two types of corrosion inhibitors
JP2017011162A (ja) * 2015-06-24 2017-01-12 日立化成株式会社 研磨液の製造方法、研磨液及び研磨方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0897744A1 (en) * 1993-11-29 1999-02-24 Air Products And Chemicals, Inc. Waterborne coating and ink comprising ethoxylated acetylenic glycols having low dynamic surface tension
JP2001023938A (ja) * 1999-07-07 2001-01-26 Tama Kagaku Kogyo Kk Cmp用研磨剤
JP2001185514A (ja) * 1999-12-27 2001-07-06 Hitachi Chem Co Ltd Cmp研磨剤及び基板の研磨方法
US20010009840A1 (en) * 2000-01-18 2001-07-26 Kazuya Orii Lapping oil composition for finish-grinding
US6383239B1 (en) * 1999-03-15 2002-05-07 Tokyo Magnetic Printing Co., Ltd. Free abrasive slurry composition and a grinding method using the same
JP2002134444A (ja) * 2000-10-26 2002-05-10 Hitachi Chem Co Ltd Cmp研磨剤及び基板の研磨方法
JP2002294222A (ja) * 2001-03-29 2002-10-09 Tokyo Magnetic Printing Co Ltd 遊離砥粒スラリー組成物
JP2003128910A (ja) * 2001-10-17 2003-05-08 Rodel Nitta Co 研磨パッド
JP2003168660A (ja) * 2001-11-30 2003-06-13 Toshiba Corp 銅のcmp用研磨スラリーおよびそれを用いた半導体装置の製造方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0546728A3 (en) * 1991-12-13 1993-09-08 Alcon Laboratories Inc Physiological tear compositions and methods for their preparation
JP3335667B2 (ja) 1992-05-26 2002-10-21 株式会社東芝 半導体装置の製造方法
JP3258427B2 (ja) * 1993-04-22 2002-02-18 川崎マイクロエレクトロニクス株式会社 半導体装置の製造方法
US5532191A (en) * 1993-03-26 1996-07-02 Kawasaki Steel Corporation Method of chemical mechanical polishing planarization of an insulating film using an etching stop
JP3514908B2 (ja) * 1995-11-13 2004-04-05 株式会社東芝 研磨剤
JPH09168966A (ja) * 1995-12-19 1997-06-30 Mitsubishi Chem Corp ハードディスク基板の研磨用組成物
JPH09270402A (ja) 1996-03-29 1997-10-14 Hitachi Chem Co Ltd 酸化セリウム研磨剤及び基板の製造法
JP4323012B2 (ja) 1999-07-21 2009-09-02 株式会社トッパンTdkレーベル 遊離砥粒スラリー組成物
US6238450B1 (en) * 1999-06-16 2001-05-29 Saint-Gobain Industrial Ceramics, Inc. Ceria powder
MY118582A (en) * 2000-05-12 2004-12-31 Kao Corp Polishing composition
JP4195212B2 (ja) * 2000-10-23 2008-12-10 花王株式会社 研磨液組成物
JP2002203819A (ja) 2000-12-28 2002-07-19 Hitachi Chem Co Ltd Cmp研磨剤及び基板の研磨方法
US6612911B2 (en) 2001-01-16 2003-09-02 Cabot Microelectronics Corporation Alkali metal-containing polishing system and method
JP2002217139A (ja) * 2001-01-17 2002-08-02 Hitachi Chem Co Ltd Cmp研磨剤
US20030168627A1 (en) * 2002-02-22 2003-09-11 Singh Rajiv K. Slurry and method for chemical mechanical polishing of metal structures including refractory metal based barrier layers
US6974777B2 (en) * 2002-06-07 2005-12-13 Cabot Microelectronics Corporation CMP compositions for low-k dielectric materials
US6936543B2 (en) * 2002-06-07 2005-08-30 Cabot Microelectronics Corporation CMP method utilizing amphiphilic nonionic surfactants
TWI285668B (en) * 2002-07-22 2007-08-21 Seimi Chem Kk Semiconductor abrasive, process for producing the same and method of polishing

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0897744A1 (en) * 1993-11-29 1999-02-24 Air Products And Chemicals, Inc. Waterborne coating and ink comprising ethoxylated acetylenic glycols having low dynamic surface tension
US6383239B1 (en) * 1999-03-15 2002-05-07 Tokyo Magnetic Printing Co., Ltd. Free abrasive slurry composition and a grinding method using the same
JP2001023938A (ja) * 1999-07-07 2001-01-26 Tama Kagaku Kogyo Kk Cmp用研磨剤
JP2001185514A (ja) * 1999-12-27 2001-07-06 Hitachi Chem Co Ltd Cmp研磨剤及び基板の研磨方法
US20010009840A1 (en) * 2000-01-18 2001-07-26 Kazuya Orii Lapping oil composition for finish-grinding
JP2002134444A (ja) * 2000-10-26 2002-05-10 Hitachi Chem Co Ltd Cmp研磨剤及び基板の研磨方法
JP2002294222A (ja) * 2001-03-29 2002-10-09 Tokyo Magnetic Printing Co Ltd 遊離砥粒スラリー組成物
JP2003128910A (ja) * 2001-10-17 2003-05-08 Rodel Nitta Co 研磨パッド
JP2003168660A (ja) * 2001-11-30 2003-06-13 Toshiba Corp 銅のcmp用研磨スラリーおよびそれを用いた半導体装置の製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1324106C (zh) * 2004-07-15 2007-07-04 捷时雅株式会社 化学机械研磨用水性分散剂以及化学机械研磨方法
EP1868769A2 (en) * 2005-04-08 2007-12-26 Ferro Corporation Slurry composition and method for polishing organic polymer-based ophthalmic substrates
EP1868769A4 (en) * 2005-04-08 2010-03-10 Ferro Corp THICK SUSPENSION COMPOSITION AND METHOD FOR POLISHING OPHTHALMIC SUBSTRATES BASED ON ORGANIC POLYMER
US8361419B2 (en) 2005-09-20 2013-01-29 Lg Chem, Ltd. Cerium carbonate powder, method for preparing the same, cerium oxide powder made therefrom, method for preparing the same, and CMP slurry comprising the same
JP2011223018A (ja) * 2005-11-11 2011-11-04 Hitachi Chem Co Ltd 酸化ケイ素用研磨剤、添加液および研磨方法
JP2012044197A (ja) * 2005-11-11 2012-03-01 Hitachi Chem Co Ltd 酸化ケイ素用研磨剤、添加液および研磨方法
WO2008136593A1 (en) * 2007-05-03 2008-11-13 Lg Chem, Ltd. Cerium oxide powder for abrasive and cmp slurry comprising the same
JP2010526433A (ja) * 2007-05-03 2010-07-29 エルジー・ケム・リミテッド 研磨材用酸化セリウム粉末及びこれを含むcmpスラリー
US8333815B2 (en) 2007-05-03 2012-12-18 Lg Chem, Ltd. Cerium oxide powder for abrasive and CMP slurry comprising the same

Also Published As

Publication number Publication date
TWI256971B (en) 2006-06-21
AU2003254825A1 (en) 2004-02-25
KR20050026524A (ko) 2005-03-15
US7311855B2 (en) 2007-12-25
KR100714246B1 (ko) 2007-05-02
JPWO2004015021A1 (ja) 2005-12-02
JP4952745B2 (ja) 2012-06-13
JP2009218619A (ja) 2009-09-24
TW200402464A (en) 2004-02-16
CN100339954C (zh) 2007-09-26
US20080176982A1 (en) 2008-07-24
US8231735B2 (en) 2012-07-31
US20060124591A1 (en) 2006-06-15
CN1675331A (zh) 2005-09-28
JP4415854B2 (ja) 2010-02-17

Similar Documents

Publication Publication Date Title
JP4952745B2 (ja) Cmp研磨剤および基板の研磨方法
JP4983603B2 (ja) 酸化セリウムスラリー、酸化セリウム研磨液及びこれらを用いた基板の研磨方法
JP4729834B2 (ja) Cmp研磨剤、これを用いた基板の研磨方法及び半導体装置の製造方法並びにcmp研磨剤用添加剤
JP5516604B2 (ja) Cmp用研磨液及びこれを用いた研磨方法
JP2006318952A (ja) Cmp研磨剤及び基板の研磨方法
JP4972829B2 (ja) Cmp研磨剤及び基板の研磨方法
JP2012186339A (ja) 研磨液及びこの研磨液を用いた基板の研磨方法
JP2003347248A (ja) 半導体絶縁膜用cmp研磨剤及び基板の研磨方法
JP4062977B2 (ja) 研磨剤及び基板の研磨方法
JP2003007660A (ja) Cmp研磨材および基板の研磨方法
KR20090057249A (ko) Cmp 연마제, cmp 연마제용 첨가액 및 이들을 이용한 기판의 연마방법
JP2003158101A (ja) Cmp研磨剤及び製造方法
JP2006179678A (ja) 半導体絶縁膜用cmp研磨剤及び基板の研磨方法
JP2009266882A (ja) 研磨剤、これを用いた基体の研磨方法及び電子部品の製造方法
JP2003017445A (ja) Cmp研磨剤及び基板の研磨方法
JP5418571B2 (ja) Cmp研磨剤及び基板の研磨方法
JP4491857B2 (ja) Cmp研磨剤及び基板の研磨方法
JP4830194B2 (ja) Cmp研磨剤及び基板の研磨方法
JP2001332516A (ja) Cmp研磨剤及び基板の研磨方法
JP4878728B2 (ja) Cmp研磨剤および基板の研磨方法
JP2003017447A (ja) Cmp研磨剤及び基板の研磨方法
JP2005286160A (ja) Cmp研磨剤及び基板の研磨方法
JP2001308043A (ja) Cmp研磨剤及び基板の研磨方法
JP2003171653A (ja) Cmp研磨剤及び基板の研磨法
JP2003347245A (ja) 半導体絶縁膜用cmp研磨剤及び基板の研磨方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020057001478

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20038189461

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2006124591

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10524064

Country of ref document: US

Ref document number: 2004527345

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 1020057001478

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10524064

Country of ref document: US