JP4972829B2 - Cmp研磨剤及び基板の研磨方法 - Google Patents

Cmp研磨剤及び基板の研磨方法 Download PDF

Info

Publication number
JP4972829B2
JP4972829B2 JP2001197276A JP2001197276A JP4972829B2 JP 4972829 B2 JP4972829 B2 JP 4972829B2 JP 2001197276 A JP2001197276 A JP 2001197276A JP 2001197276 A JP2001197276 A JP 2001197276A JP 4972829 B2 JP4972829 B2 JP 4972829B2
Authority
JP
Japan
Prior art keywords
polishing
water
abrasive
cmp
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001197276A
Other languages
English (en)
Other versions
JP2003017446A (ja
Inventor
浩二 芳賀
圭三 平井
勉 間宮
和郎 会津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2001197276A priority Critical patent/JP4972829B2/ja
Publication of JP2003017446A publication Critical patent/JP2003017446A/ja
Application granted granted Critical
Publication of JP4972829B2 publication Critical patent/JP4972829B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体素子製造工程のうち、層間絶縁膜の平坦化工程またはシャロー・トレンチ分離の形成工程等において使用されるCMP(Chemical Mechanical Polishing)研磨剤および研磨方法に関する。
【0002】
【従来の技術】
超大規模集積回路の分野において実装密度を高めるために種々の微細加工技術が研究、開発されており、既に、デザインルールは、サブハーフミクロンのオーダーになっている。このような厳しい微細化要求を満足するための技術の一つにCMP研磨技術がある。この技術は、半導体装置の製造工程において、露光を施す層を完全に平坦化することによって微細化を可能とし、歩留まりを向上させることができるため、例えば、層間絶縁膜の平坦化やシャロー・トレンチ分離等を行う際に必要となる技術である。
【0003】
従来、集積回路内の素子分離にはLOCOS(シリコン局所酸化)法が用いられてきたが、素子分離幅をより狭くするため、近年ではシャロー・トレンチ分離法が用いられている。シャロー・トレンチ分離法では、ウエハ基板上に成膜した余分の酸化珪素膜を除くためにCMPが必須であり、研磨を停止させるために、酸化珪素膜の下に窒化珪素膜がストッパとして形成されるのが一般的である。
【0004】
半導体装置の製造工程において、プラズマ−CVD(Chemical Vapor Deposition、化学的蒸着法)、低圧−CVD等の方法で形成される酸化珪素絶縁膜等を平坦化するためのCMP研磨剤としては、従来、ヒュームドシリカを研磨粒子とするpH9を超えるアルカリ性のシリカ系研磨剤が広く用いられてきた。
【0005】
一方、フォトマスクやレンズ等のガラス表面研磨剤として多用されてきた酸化セリウムを研磨粒子とする研磨剤が近年CMP研磨剤として注目されるようになった。この技術は、例えば特開平5−326469号公報に開示されている。酸化セリウム系研磨剤はシリカ系研磨剤と比べて酸化珪素膜の研磨速度が早く、研磨傷も比較的少ないという点で優るため種々の適用検討がなされ、その一部は半導体用研磨剤として実用化されるようになっている。この技術は、例えば特開平9−270402号公報に開示されている。
【0006】
近年、半導体素子の多層化・高精細化が進むにつれ、半導体素子の歩留り及びスループットのさらなる向上が要求されるようになってきている。それに伴い研磨剤を用いたCMPプロセスに対しても、研磨傷フリーで且つより高速な研磨が望まれるようになっている。
【0007】
酸化セリウム研磨剤を用いたCMPプロセスにおいて研磨傷をさらに低減する方法としては、研磨圧力もしくは定盤回転数低減といったプロセス改良法や砥粒の濃度もしくは密度低減といった研磨剤改良法が挙げられるが、いずれの場合も研磨速度が低下してしまう問題点があった。
【0008】
また、酸化セリウムを水に分散させた研磨剤としては、酸化セリウム1重量%当たりの電気伝導度を30μS/cm以下とする技術が特開2000−239654号公報に開示されているが、酸化セリウム、水に加えて水溶性高分子を加えてより一層の平坦化特性を向上させた研磨剤においては、さらなる研磨速度向上と研磨傷低減の両立は実現していなかった。
【0009】
【発明が解決しようとす課題】
請求項1〜3記載の発明は、電気特性不良に至る研磨傷をほとんど発生させずに且つ高速研磨して高平坦化された基板を得ることが可能なCMP研磨剤を提供するものである。
請求項4記載の発明は、電気特性不良に至る研磨傷をほとんど発生させずに且つ高速研磨して高平坦化された基板を得ることが可能な、歩留まり作業性に優れる基板の研磨方法を提供するものである。
【0010】
【課題を解決するための手段】
本発明において、発明者らは水溶性高分子の電気伝導度を制御することにより研磨剤中の解離したイオン量を調節し、酸化セリウム粒子と被研磨面との化学相互作用を変え研磨傷の低減及び研磨速度の向上を狙い水溶性高分子濃度、水溶性高分子と塩を作るアミン種及びその濃度を変えて、最大限の努力をもって検討した結果、一例としてアルコールアミン等のアンモニアとは異なるアミンを用いた水溶性高分子塩を含有する特定範囲の電気伝導度を有する研磨剤で研磨する場合に、研磨傷低減及び研磨速度向上を同時に達成することを見出した。
すなわち、本発明は、酸化セリウム粒子、水溶性高分子及び水を含み電気伝導度が0.5〜5.0mS/cmであるCMP研磨剤に関する。
また、本発明は、水溶性高分子がポリカルボン酸のアルコールアミン塩である前記のCMP研磨剤に関する。
また、本発明は、水溶性高分子の重量平均分子量が1000〜100000である前記のCMP研磨剤に関する。
また、本発明は、酸化セリウム粒子、水溶性高分子及び水を含み電気伝導度が0.5〜5.0mS/cmであるCMP研磨剤を研磨定盤上の研磨パッドに供給し、酸化珪素絶縁膜が形成された半導体チップである基板の被研磨面と接触させて被研磨面と研磨パッドを相対運動させて研磨することを特徴とする基板の研磨方法に関する。
【0011】
【発明の実施の形態】
一般に酸化セリウム粒子は、炭酸塩、硝酸塩、硫酸塩、しゅう酸塩のセリウム化合物を焼成または酸化することによって得られる。
本発明において、酸化セリウム粉末を作製する方法として焼成または過酸化水素等による酸化法が使用できる。焼成温度は350℃以上900℃以下が好ましい。
【0012】
上記の方法により製造された酸化セリウム粒子は凝集しているため、機械的に粉砕することが好ましい。粉砕方法として、ジェットミル等による乾式粉砕や遊星ビーズミル等による湿式粉砕方法が好ましい。ジェットミルは例えば化学工業論文集第6巻第5号(1980)527〜532頁に説明されている。
【0013】
本発明における研磨剤は、上記方法で合成された酸化セリウム粒子を洗浄し、水溶性高分子、水及び必要に応じて分散剤を加えた組成物を分散させることによって得られる。洗浄は、遠心分離等で固液分離を数回繰り返す方法等が使用できる。
【0014】
本発明のCMP研磨剤の電気伝導度は0.5〜5.0mS/cmである必要がある。添加液の電気伝導度が0.5mS/cm未満では、研磨時の平坦化特性が低下する傾向があり、5.0mS/cmを超えると、研磨傷が入りやすくなる。
【0015】
上記研磨剤のpHは、3以上9以下であることが好ましく、5以上8以下であることがより好ましい。pHが3未満では、化学的作用が小さくなり、研磨速度が低下する。pHが9より大きいと、粒子が凝集して被研磨膜との接触面積が低下し、研磨速度が低下する傾向がある。
また、半導体チップ研磨に使用することから、アルカリ金属及びハロゲン類の含有率は酸化セリウム粒子中10ppm以下に抑えることが好ましい。
【0016】
水に分散させた酸化セリウム粒子は完全には1ヶずつバラバラになってはいないと一般に考えられており、水に分散させた酸化セリウムの粒子径測定値は、粉体状態でのSEM写真撮影等の方法を用いて得られる1次粒子径測定値より大きくなる。
【0017】
水に分散させた酸化セリウムの2次粒子径は、1nm以上300nm以下であることが望ましい。2次粒子径が1nmより小さいと、砥粒として被研磨膜への影響が低下し、研磨速度が低下する。2次粒子径が300nmより大きいと、被研磨膜との接触面積が小さくなり、研磨速度が低下する傾向がある。粒子径は、光子相関法(例えばマルバーン社製ゼータサイザー3000HS)で測定する。
【0018】
また、酸化セリウムの1次粒子径は、0nmより大きく300nm以下であることを要する。1次粒子径が0nmでは、全く酸化珪素膜が研磨されない。また、結晶子径が300nmより大きいと、2次粒子径が300nmより大きくなり研磨速度が低下する。
酸化セリウム粒子の濃度に制限はないが、分散液の取り扱いやすさから0.5重量%以上20重量%以下の範囲が好ましく、0.5重量%以上3.0重量%以下の範囲がより好ましい。
【0019】
水溶性高分子としては、特殊ポリカルボン酸型高分子、ポリビニルスルホン酸、ポリメタクリル酸、ポリスチレンスルホン酸、ポリアクリル酸、ポリアクリル酸誘導体、ポリ(4−ビニルピリジニウム塩)、ポリ(1(3−スルホニル)−2−ビニルピリジニウムベタイン−co−p−スチレンスルホン酸)、ポリビニルアルコール誘導体、ポリアクロレイン、ポリ(酢酸ビニル−co−メタクリル酸メチル)、ポリ(スチレン−co−無水マレイン酸)、ポリ(オレフィン−co−無水マレイン酸)、ポリアクリルアミド部分加水分解物、ポリ(アクリルアミド−co−アクリル酸)、アルギン酸、ポリメタクリル酸メチル及びこれらのアンモニウム塩、アミン塩及びカリウム塩等が挙げられる。
【0020】
また、上記水溶性高分子のアンモニウム塩及びアミン塩、とりわけポリカルボン酸と塩をつくるものとしては、アンモニア、ジメチルアミン、トリエチルアミン、プロピレンジアミン等のアルキルアミン;エチレンジアミン、エチレンジアミン四酢酸等のアルキルジアミン;2−アミノエタノール、2−ジメチルアミノエタノール、2−ジエチルアミノエタノール、2−シクロヘキシルアミノエタノール、1−アミノ−2−プロパノール等のアルコールアミン;が挙げられ、その中でも低い電気伝導度が得られる点で2−アミノエタノール、2−ジメチルアミノエタノールがより好ましい。
【0021】
また、水溶性高分子の重量平均分子量(GPC測定し、標準ポリスチレン換算した値)は、1,000〜100,000が好ましい。
水溶性高分子のモノマー単位のモル数/水溶性高分子と塩を作るアミンのモル数の比に特に制限はないが、研磨剤のpHを3以上9以下にする必要から、10/7以上10/14以下であることが好ましい。
【0022】
本発明のCMP研磨剤は水溶性高分子の量が酸化セリウム粒子に対して1〜3重量倍となるように研磨剤に混合することが好ましい。1重量倍未満では水溶性高分子の効果が薄れ平坦化特性が悪くなる傾向があり、3重量倍を超えると、研磨速度が低くなる傾向がある。
本発明のCMP研磨剤における水溶性高分子の濃度は、取り扱い性、混合作業性等の点から1〜5重量であることが好ましい。
【0023】
本発明のCMP研磨剤に含まれる水溶性高分子は、特開平8―302338号公報に示されたような増粘作用を持つ必要はなく、また、特開平8―22970号公報に示されたように摩擦係数調整作用を持つ必要もない。本発明では、用いる水溶性高分子は、酸化セリウム粒子、酸化珪素膜および窒化珪素膜それぞれへの吸着性すなわち吸着量と吸着強さが制御され、そのため、電気伝導度を前記のごとく規定する必要がある。
【0024】
本発明においては、必要に応じて研磨剤に分散剤を加えて組成物を分散させたものを使用することができる。
分散剤としては、上述した水溶性高分子の他、水溶性陰イオン性分散剤、水溶性非イオン性分散剤、水溶性陽イオン性分散剤、水溶性両性分散剤から選ばれた少なくとも1種類を含む2種類以上の分散剤を使用することができる。
【0025】
水溶性陰イオン性分散剤としては、例えば、ラウリル硫酸トリエタノールアミン、ラウリル硫酸アンモニウム、ポリオキシエチレンアルキルエーテル硫酸トリエタノールアミン等が挙げられるが、後述するアニオン系水溶性高分子を用いてもよい。
【0026】
水溶性非イオン性分散剤としては、例えば、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレン高級アルコールエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリオキシアルキレンアルキルエーテル、ポリオキシエチレン誘導体、ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノパルミテート、ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタントリステアレート、ポリオキシエチレンソルビタンモノオレエート、ポリオキシエチレンソルビタントリオレエート、テトラオレイン酸ポリオキシエチレンソルビット、ポリエチレングリコールモノラウレート、ポリエチレングリコールモノステアレート、ポリエチレングリコールジステアレート、ポリエチレングリコールモノオレエート、ポリオキシエチレンアルキルアミン、ポリオキシエチレン硬化ヒマシ油、アルキルアルカノールアミド等が挙げられる。
【0027】
水溶性陽イオン性分散剤としては、例えば、ココナットアミンアセテート、ステアリルアミンアセテート等が挙げられ、水溶性両性分散剤としては、例えば、ラウリルベタイン、ステアリルベタイン、ラウリルジメチルアミンオキサイド、2−アルキル−N−カルボキシメチル−N−ヒドロキシエチルイミダゾリニウムベタイン等が挙げられる。これらの分散剤添加量は、分散性及び沈降防止、さらに研磨傷と分散剤添加量との関係から酸化セリウム粒子100重量部に対して、0.01重量部以上2.0重量部以下の範囲が好ましい。
【0028】
これらの酸化セリウム粒子を水中に分散させる方法としては、通常の攪拌機による分散処理の他にホモジナイザー、超音波分散機、湿式ボールミルなどを用いることができる。
【0029】
本発明の研磨剤が使用される無機絶縁膜の作製方法として、定圧CVD法、プラズマCVD法等が挙げられる。
【0030】
定圧CVD法による酸化珪素絶縁膜形成は、Si源としてモノシラン:SiH、酸素源として酸素:Oを用いる。このSiH−O系酸化反応を400℃程度以下の低温で行わせることにより得られる。高温リフローによる表面平坦化を図るためにリン:Pをドープするときには、SiH−O−PH系反応ガスを用いることが好ましい。
【0031】
プラズマCVD法は、通常の熱平衡下では高温を必要とする化学反応が低温でできる利点を有する。プラズマ発生法には、容量結合型と誘導結合型の2つが挙げられる。反応ガスとしては、Si源としてSiH、酸素源としてNOを用いたSiH−NO系ガスとテトラエトキシシラン(TEOS)をSi源に用いたTEOS−O系ガス(TEOS−プラズマCVD法)が挙げられる。基板温度は250℃〜400℃、反応圧力は67〜400Paの範囲が好ましい。酸化珪素絶縁膜にはリン、ホウ素等の元素がド−プされていても良い。
【0032】
同様に、低圧CVD法による窒化珪素膜形成は、Si源としてジクロルシラン:SiHCl、窒素源としてアンモニア:NHを用いる。このSiHCl−NH系酸化反応を900℃の高温で行わせることにより得られる。プラズマCVD法は、Si源としてSiH、窒素源としてNHを用いたSiH−NH系ガスが挙げられる。基板温度は300〜400℃が好ましい。
【0033】
基板として、図1(a)(b)に示す様に、半導体基板すなわち回路素子と配線パターンが形成された段階の半導体基板、回路素子が形成された段階の半導体基板等の半導体基板上に酸化珪素膜或いは酸化珪素膜及び窒化珪素膜が形成された基板が使用できる。このような半導体基板上に形成された酸化珪素膜層を上記研磨剤で研磨することによって、酸化珪素膜層表面の凹凸を解消し、半導体基板全面に渡って平滑な面とする。
【0034】
シャロー・トレンチ分離の場合には、酸化珪素膜層の凹凸を解消しながら下層の窒化珪素層まで研磨することによって、素子分離部に埋め込んだ酸化珪素膜のみを残す。この際、ストッパーとなる窒化珪素との研磨速度比が大きければ、研磨のプロセスマージンが大きくなる。また、シャロー・トレンチ分離に使用するためには、研磨時に傷発生が少ないことも必要である。
【0035】
ここで、研磨する装置としては、半導体基板を保持するホルダーと研磨布(パッド)を貼り付けた(回転数が変更可能なモータ等を取り付けてある)定盤を有する一般的な研磨装置が使用できる。図2は本発明の実施例において使用するCMP装置を示す概略図である。研磨定盤18の上に貼り付けられた研磨パッド17の上に、酸化セリウム粒子、水溶性高分子、及び水を含むCMP研磨剤を供給し、半導体チップである基板13に形成された酸化珪素絶縁膜14を被研磨面としてウエハホルダ11に貼り付け、酸化珪素絶縁膜14を研磨パッドと接触させ、被研磨面と研磨パッドを相対運動、具体的にはウエハホルダ11と研磨定盤18を回転させてCMPすなわち基板の研磨を行う構造となっている。
【0036】
研磨パッドとしては、一般的な不織布、発泡ポリウレタン、多孔質フッ素樹脂などが使用でき、特に制限がない。また、研磨パッドには研磨剤が溜まる様な溝加工を施すことが好ましい。研磨条件には制限はないが、定盤の回転速度は半導体が飛び出さない様に100min−1以下の低回転が好ましい。被研磨膜を有する半導体基板の研磨パッドへの押しつけ圧力が10〜100kPaであることが好ましく、研磨速度のウエハ面内均一性及びパターンの平坦性を満足するためには、20〜50kPaであることがより好ましい。研磨している間、研磨パッドには研磨剤をポンプ等で連続的に供給する。この供給量には制限はないが、研磨パッドの表面が常に研磨剤で覆われていることが好ましい。
【0037】
また、図3は本発明の実施例においてのCMPプロセスを示す図である。研磨パッドの表面状態を常に同一にしてCMPを行うため、CMPの前に研磨パッドのコンディショニング工程を入れる。具体的には、ダイヤモンド粒子のついたドレッサを用いて少なくとも水を含む液で研磨を行う。続いて本発明の研磨工程を実施し、さらに、
1)研磨後の基板に付着した粒子等の異物を除去するためのブラシ洗浄、
2)研磨剤等を水に置換するためのメガソニック洗浄、
3)基板表面から水を除去するためのスピン乾燥、
からなるウエハ洗浄工程を加える。
【0038】
研磨終了後の半導体基板は、流水中で良く洗浄後、スピンドライヤ等を用いて半導体基板上に付着した水滴を払い落としてから乾燥させることが好ましい。このようにして、Si基板上にシャロー・トレンチ分離を形成したあと、酸化珪素絶縁膜層及びその上にアルミニウム配線を形成し、その上に形成した酸化珪素絶縁膜を平坦化する。平坦化された酸化珪素絶縁膜層の上に、第2層目のアルミニウム配線を形成し、その配線間および配線上に再度上記方法により酸化珪素膜を形成後、上記研磨剤を用いて研磨することによって、酸化珪素絶縁膜表面の凹凸を解消し、半導体基板全面に渡って平滑な面とする。この工程を所定数繰り返すことにより、所望の層数の半導体を製造する。
【0039】
本発明の研磨剤は、半導体基板に形成された酸化珪素膜や窒化珪素膜だけでなく、所定の配線を有する配線板に形成された酸化珪素膜、ガラス、窒化珪素等の無機絶縁膜、フォトマスク・レンズ・プリズムなどの光学ガラス、ITO等の無機導電膜、ガラス及び結晶質材料で構成される光集積回路・光スイッチング素子・光導波路、光ファイバ−の端面、シンチレ−タ等の光学用単結晶、固体レ−ザ単結晶、青色レ−ザ用LEDサファイア基板、SiC、GaP、GaAS等の半導体単結晶、磁気ディスク用ガラス基板、磁気ヘッド等を研磨するために使用される。
【0040】
【実施例】
以下、実施例により本発明を説明する。本発明はこれらの実施例により限定されるものではない。
【0041】
実施例1
(電気伝導度の測定方法)
電気伝導度については、富士工業社製の超音波濃度計FUD−1 MODEL−51に付属の電磁導伝率計変換器MD−35D(S)、電磁導伝率計検出器MC−111T、電磁導伝率計電源ユニット(PA−24)を用いて測定した。
【0042】
(添加液Aの作製)
2−ジメチルアミノエタノールを重量平均分子量10、000のポリアクリル酸に加え、上記アミン中のアミノ基のモル数/ポリアクリル酸中のカルボキシル基のモル数=95/100となるようにした。これを脱イオン水で希釈し、濃度が2.5重量%のポリアクリル酸アミン塩水溶液(添加液A)とした。
【0043】
(添加液Bの作製)
炭酸セリウム水和物2kgを白金製容器に入れ、850℃で2時間空気中で焼成することにより酸化セリウム粉末を得た。上記作製の酸化セリウム粒子1kgとポリアクリル酸アンモニウム塩水溶液(重量平均分子量15000、40重量%)23gと脱イオン水8977gを混合し、撹拌しながら超音波分散を10分間施した。得られたスラリーを1μmフィルターを介してろ過し、さらに脱イオン水を加えて2倍に希釈した(酸化セリウム粒子濃度5重量%)。
【0044】
(研磨剤の作製)
上記の添加液A/添加液B/脱イオン水の重量比3/1/1で混合し、酸化セリウム粒子濃度1重量%、ポリマ濃度1.5重量%のCMP研磨剤を作成した。研磨剤のpHは6.2、電気伝導度は2.0mS/cmであった。研磨剤原液を用いる光子相関法により2次粒子径を測定したところ、その中央値は270nmであった。
【0045】
(絶縁膜層及びシャロートレンチ分離層の研磨)
8インチSi基板上にLine/Space幅が0.05〜5mmで高さが1000nmのAl配線Line部を形成した後、その上にTEOS−プラズマCVD法で酸化珪素膜を2000nm形成した絶縁膜層パターンウエハを作製する。上記のCMP研磨剤で、3分間研磨(定盤回転数:50min−1、研磨荷重:30kPa、研磨剤供給量:200ml/分)した。その結果、研磨後の凸部と凹部の段差が40nmとなり高平坦性を示した。
【0046】
次に、8インチの酸化珪素膜ブランケットウエハ及び窒化珪素ブランケットウエハを上記のCMP研磨剤で各々研磨(定盤回転数:50min−1、研磨荷重:30kPa、研磨剤供給量:200ml/分)した結果、酸化珪素膜の研磨速度は370nm/分、窒化珪素膜の研磨速度は5nm/分となり、研磨速度比は74であった。
【0047】
また、図1(a)に示す様に、8インチSi基板に一辺350nm〜0.1mm四方の凸部、深さが400nmの凹部を形成し、凸部密度がそれぞれ2〜40%となるようなシャロートレンチ分離層パターンウエハを作製した。続いて図1(b)に示す様に、凸部上に酸化窒素膜を100nm形成し、その上にTEOS−プラズマCVD法で酸化珪素膜を600nm成膜した。上記のCMP研磨剤で、このパターンウエハを2分間研磨(定盤回転数:50min−1、研磨荷重:30kPa、研磨剤供給量:200ml/分)した。その結果、図1(c)の様に、凸部の研磨は窒化珪素膜でストップし、研磨後の段差は40nmとなり、高平坦性を示した。
また、いずれの研磨においても研磨による研磨傷は観察されなかった。
【0048】
比較例1
(添加液A′の作製)
重量平均分子量6000で、アンモニウムイオンのモル数/ポリアクリル酸中のカルボキシル基のモル数=1のポリアクリル酸アンモニウム塩を脱イオン水で希釈し、3重量%の水溶液(添加液A′)を調整した。
(添加液Bの作製)
実施例1と同一の方法で添加液Bを作製した。
【0049】
(研磨剤の作製)
上記の添加液A′/添加液B/脱イオン水の重量比3/1/1で混合し、酸化セリウム粒子濃度1重量%、ポリマ濃度1.8重量%のCMP研磨剤を作成した。研磨剤のpHは6.6、電気伝導度は8.3mS/cmであった。2次粒子径の中央値は250nmであった。
【0050】
(絶縁膜層及びシャロートレンチ分離層の研磨)
上記の通り作製したCMP研磨剤を用いて、実施例1と同一の絶縁膜層パターンウエハを、同一の研磨条件で3分間研磨した。その結果、研磨後の凸部と凹部の段差が65nmとなった。
また、実施例1と同一の8インチ酸化珪素膜ブランケットウエハ及び窒化珪素膜ブランケットウエハについても上記のCMP研磨剤を用いて実施例1と同一の研磨条件で各々研磨した結果、酸化珪素膜の研磨速度は176nm/分、窒化珪素膜の研磨速度は5nm/分となり、研磨速度比は35であった。
【0051】
さらに、上記のCMP研磨剤を用いて、実施例1と同様にシャロートレンチ分離層パターンウエハの凸部上に酸化窒素膜を100nm形成しその上にTEOS−プラズマCVD法で酸化珪素膜を600nm成膜したものを実施例1と同一の研磨条件で2分間研磨した。その結果、研磨後の段差は60nmとなった。
また、研磨による研磨傷については、酸化珪素膜ブランケットウエハにおいてのみわずかに傷が観察された。
【0052】
実施例1に対して比較例1は、酸化珪素膜の研磨速度が低く、それに伴い研磨速度比(酸化珪素膜/窒化珪素膜)も低くなり、平坦性が特性が劣る。また、研磨傷に関しても、実施例1は比較例1に優っている。図4に示す様に、比較例で用いたアンモニウム塩を含む研磨剤においては電気伝導度が高く、電気伝導度を下げる目的で水溶性高分子濃度を低減すると、平坦化特性も低下してしまう。これに対し、実施例で用いたエタノールアミン塩を含む研磨剤においては、水溶性高分子濃度が増加しても3重量%以下であれば電気伝導度は5mS/cm以下であり、高研磨速度、高平坦化性、低研磨傷の両立が可能である。
【0053】
【発明の効果】
請求項1〜3記載の発明は、電気特性不良に至る研磨傷をほとんど発生させずに且つ高速研磨して高平坦化された基板を得ることが可能なCMP研磨剤を提供するものである。
請求項4記載の発明は、電気特性不良に至る研磨傷をほとんど発生させずに且つ高速研磨して高平坦化された基板を得ることが可能な、歩留まり作業性に優れる基板の研磨方法を提供するものである。
【図面の簡単な説明】
【図1】本発明の基板表面の凹凸平坦化を示す説明図である。
【図2】本発明を実施したCMP装置を示す図である。
【図3】本発明のCMPプロセスを示す説明図である。
【図4】本発明の実施例及び比較例で用いた研磨剤ベースの組成における、酸化セリウム粒子濃度と電気伝導度の相関を示す説明図である。
【符号の説明】
1 Si基板
2 窒化珪素膜
3 酸化珪素膜
11 ウエハホルダ
12 リテーナ
13 半導体チップである基板
14 酸化珪素絶縁膜
15 研磨剤供給機構
16 酸化セリウム粒子、水溶性高分子及び水を含む研磨剤
17 研磨パッド
18 研磨定盤

Claims (4)

  1. 酸化セリウム粒子、水溶性高分子及び水を含み
    前記水溶性高分子は、ポリカルボン酸のアルコールアミン塩を含み、且つ、前記酸化セリウム粒子に対して1〜3重量倍含まれ、
    電気伝導度が0.5〜5.0mS/cmであるCMP研磨剤。
  2. さらに分散剤を含む、請求項1記載のCMP研磨剤
  3. 前記ポリカルボン酸の重量平均分子量が1000〜100000である請求項1又は2記載のCMP研磨剤。
  4. 請求項1〜3のいずれか1項記載のCMP研磨剤を研磨定盤上の研磨パッドに供給し、酸化珪素絶縁膜が形成された半導体チップである基板の被研磨面と接触させて被研磨面と研磨パッドを相対運動させて研磨することを特徴とする基板の研磨方法。
JP2001197276A 2001-06-28 2001-06-28 Cmp研磨剤及び基板の研磨方法 Expired - Lifetime JP4972829B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001197276A JP4972829B2 (ja) 2001-06-28 2001-06-28 Cmp研磨剤及び基板の研磨方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001197276A JP4972829B2 (ja) 2001-06-28 2001-06-28 Cmp研磨剤及び基板の研磨方法

Publications (2)

Publication Number Publication Date
JP2003017446A JP2003017446A (ja) 2003-01-17
JP4972829B2 true JP4972829B2 (ja) 2012-07-11

Family

ID=19034908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001197276A Expired - Lifetime JP4972829B2 (ja) 2001-06-28 2001-06-28 Cmp研磨剤及び基板の研磨方法

Country Status (1)

Country Link
JP (1) JP4972829B2 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6811474B2 (en) * 2002-07-19 2004-11-02 Cabot Microelectronics Corporation Polishing composition containing conducting polymer
WO2004068570A1 (ja) * 2003-01-31 2004-08-12 Hitachi Chemical Co., Ltd. Cmp研磨剤及び研磨方法
US7071105B2 (en) 2003-02-03 2006-07-04 Cabot Microelectronics Corporation Method of polishing a silicon-containing dielectric
KR100582771B1 (ko) * 2004-03-29 2006-05-22 한화석유화학 주식회사 반도체 얕은 트렌치 소자 분리 공정용 화학적 기계적 연마슬러리
JPWO2006009160A1 (ja) 2004-07-23 2008-05-01 日立化成工業株式会社 Cmp研磨剤及び基板の研磨方法
TWI273632B (en) 2004-07-28 2007-02-11 K C Tech Co Ltd Polishing slurry, method of producing same, and method of polishing substrate
KR100641348B1 (ko) 2005-06-03 2006-11-03 주식회사 케이씨텍 Cmp용 슬러리와 이의 제조 방법 및 기판의 연마 방법
US7842193B2 (en) 2005-09-29 2010-11-30 Fujifilm Corporation Polishing liquid
EP1813656A3 (en) 2006-01-30 2009-09-02 FUJIFILM Corporation Metal-polishing liquid and chemical mechanical polishing method using the same
JP2007214518A (ja) 2006-02-13 2007-08-23 Fujifilm Corp 金属用研磨液
US7902072B2 (en) 2006-02-28 2011-03-08 Fujifilm Corporation Metal-polishing composition and chemical-mechanical polishing method
JP5322455B2 (ja) 2007-02-26 2013-10-23 富士フイルム株式会社 研磨液及び研磨方法
JP2009081200A (ja) 2007-09-25 2009-04-16 Fujifilm Corp 研磨液
JP5326492B2 (ja) * 2008-02-12 2013-10-30 日立化成株式会社 Cmp用研磨液、基板の研磨方法及び電子部品
JP5314329B2 (ja) 2008-06-12 2013-10-16 富士フイルム株式会社 研磨液
JP5371416B2 (ja) 2008-12-25 2013-12-18 富士フイルム株式会社 研磨液及び研磨方法
JP2016056292A (ja) * 2014-09-10 2016-04-21 株式会社フジミインコーポレーテッド 研磨用組成物及びその製造方法、研磨方法、並びに基板及びその製造方法
US20170275498A1 (en) * 2014-09-30 2017-09-28 Fujimi Incorporated Polishing composition

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10172936A (ja) * 1996-12-05 1998-06-26 Fujimi Inkooporeetetsudo:Kk 研磨用組成物
JP2000351956A (ja) * 1999-06-10 2000-12-19 Seimi Chem Co Ltd 増粘剤を添加した半導体用研磨剤
JP2001007061A (ja) * 1999-06-18 2001-01-12 Hitachi Chem Co Ltd Cmp研磨剤及び基板の研磨方法
JP3570543B2 (ja) * 1999-09-17 2004-09-29 日立化成工業株式会社 Cmp研磨方法
JP4807905B2 (ja) * 2001-04-05 2011-11-02 昭和電工株式会社 研磨材スラリー及び研磨微粉

Also Published As

Publication number Publication date
JP2003017446A (ja) 2003-01-17

Similar Documents

Publication Publication Date Title
JP4952745B2 (ja) Cmp研磨剤および基板の研磨方法
KR100822116B1 (ko) Cmp 연마제, cmp 연마제용 첨가액 및 기판의 연마방법
JP4729834B2 (ja) Cmp研磨剤、これを用いた基板の研磨方法及び半導体装置の製造方法並びにcmp研磨剤用添加剤
JP4983603B2 (ja) 酸化セリウムスラリー、酸化セリウム研磨液及びこれらを用いた基板の研磨方法
JP4972829B2 (ja) Cmp研磨剤及び基板の研磨方法
JP2009182344A (ja) 酸化セリウム研磨剤及び基板の研磨法
JP3725357B2 (ja) 素子分離形成方法
JPH10106988A (ja) 酸化セリウム研磨剤及び基板の研磨法
JP4088811B2 (ja) Cmp研磨剤及び基板の研磨方法
JP2003007660A (ja) Cmp研磨材および基板の研磨方法
JPH10106990A (ja) 酸化セリウム研磨剤及び基板の研磨法
JP2003158101A (ja) Cmp研磨剤及び製造方法
JP5418571B2 (ja) Cmp研磨剤及び基板の研磨方法
JP2003017445A (ja) Cmp研磨剤及び基板の研磨方法
JP2003017447A (ja) Cmp研磨剤及び基板の研磨方法
JP2009266882A (ja) 研磨剤、これを用いた基体の研磨方法及び電子部品の製造方法
JP4604727B2 (ja) Cmp研磨剤用添加液
JP4407592B2 (ja) 研磨剤
JP4501694B2 (ja) Cmp研磨剤用添加液
JP4608925B2 (ja) Cmp研磨剤用添加液
JP2001332516A (ja) Cmp研磨剤及び基板の研磨方法
JP4878728B2 (ja) Cmp研磨剤および基板の研磨方法
JPH10106986A (ja) 酸化セリウム研磨剤及び基板の研磨法
JPH10102039A (ja) 酸化セリウム研磨剤及び基板の研磨法
JP2004291232A (ja) 酸化セリウム研磨剤及び基板の研磨法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110304

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120326

R151 Written notification of patent or utility model registration

Ref document number: 4972829

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term