WO2004002946A1 - Neue erdalkalimetallkomplexe und ihre verwendung - Google Patents

Neue erdalkalimetallkomplexe und ihre verwendung Download PDF

Info

Publication number
WO2004002946A1
WO2004002946A1 PCT/EP2003/006501 EP0306501W WO2004002946A1 WO 2004002946 A1 WO2004002946 A1 WO 2004002946A1 EP 0306501 W EP0306501 W EP 0306501W WO 2004002946 A1 WO2004002946 A1 WO 2004002946A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
compounds
compound
barium
strontium
Prior art date
Application number
PCT/EP2003/006501
Other languages
English (en)
French (fr)
Inventor
Federica Martina Benvenuti
Dominique Jan
Original Assignee
Solvay Barium Strontium Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Solvay Barium Strontium Gmbh filed Critical Solvay Barium Strontium Gmbh
Priority to AU2003242738A priority Critical patent/AU2003242738A1/en
Priority to KR10-2004-7020825A priority patent/KR20050014872A/ko
Priority to JP2004516624A priority patent/JP2005531619A/ja
Priority to EP03761477A priority patent/EP1519914A1/de
Publication of WO2004002946A1 publication Critical patent/WO2004002946A1/de
Priority to US11/022,674 priority patent/US7132556B2/en
Priority to HK05109292A priority patent/HK1077292A1/xx

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F3/00Compounds containing elements of Groups 2 or 12 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C251/00Compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C251/02Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups
    • C07C251/20Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups having carbon atoms of imino groups being part of rings other than six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C249/00Preparation of compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C249/02Preparation of compounds containing nitrogen atoms doubly-bound to a carbon skeleton of compounds containing imino groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C251/00Compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C251/02Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups
    • C07C251/04Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups having carbon atoms of imino groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C251/06Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups having carbon atoms of imino groups bound to hydrogen atoms or to acyclic carbon atoms to carbon atoms of a saturated carbon skeleton
    • C07C251/08Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups having carbon atoms of imino groups bound to hydrogen atoms or to acyclic carbon atoms to carbon atoms of a saturated carbon skeleton being acyclic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F3/00Compounds containing elements of Groups 2 or 12 of the Periodic Table
    • C07F3/04Calcium compounds

Definitions

  • the invention relates to new, evaporable chelate complexes of calcium, barium and strontium, a process for their preparation, their use for the deposition of layers containing calcium, barium or strontium and intermediates for the preparation of the compounds.
  • MOCVD metal-organic chemical vapor deposition
  • the organometallic alkaline earth metal compounds have a high volatility, which facilitates sublimation and transport to the deposition site, that they can be thermally decomposed at a relatively low temperature, for example in the range of 450 ° C, and that they separate for certain applications in the form of the oxides, but not, for example, in other decomposition products such as carbonates.
  • Alkaline earth metal beta diketonates and certain derivatives have already been used for the MOCVD process.
  • Classic are complexes of alkaline earth metals with 1, 1, 6, 6-tetramethyl heptanedionate.
  • such complexes can exist as oligomers. These show unsatisfactory volatility and stability.
  • the tetramethylheptanedionate complex compounds were used in the form of Lewis base adducts, for example as an adduct with polyethers or polyamines. Such complexes still have stability problems.
  • Barium and strontium compounds with ligands that have three coordination sites have also been proposed.
  • the object of the present invention is to provide alkaline earth metal compounds which are very suitable for metal-organic chemical phase deposition and are particularly suitable for the production of ceramic thin films. This object is achieved by the compounds of the present invention.
  • the compounds according to the invention correspond to the formula (I), M (R) 2 .
  • 'M is calcium, strontium and barium.
  • R stands for a beta-ketiminate compound (ie the ligand has a keto group and an imino group) in which • the nitrogen atom of the imine function is substituted by a group of the formula (CH 2 ) m NR 1 2 where m is 2 to 4 and R 1 is a Cl-C3 alkyl group, and in which the carbon chain is substituted by R 2 0 (CH 2 ) n , where R 2 is C1-C3 alkyl and n is 2 to 4.
  • M preferably stands for strontium and barium. The invention is further explained on the basis of this preferred embodiment.
  • the compounds according to the invention have the peculiarity that the anions in the compound of the formula (I) have four coordination sites for an interaction with the metal cation: the keto group; the imino group; the Nitrogen atom of the aminoalkyl group attached to the imine function; and the oxygen atom of the alkoxyalkyl group which is bonded to the carbon chain (“backbone”), preferably via the carbon atom of the ketimine group.
  • the keto group the imino group
  • Nitrogen atom of the aminoalkyl group attached to the imine function
  • oxygen atom of the alkoxyalkyl group which is bonded to the carbon chain (“backbone”), preferably via the carbon atom of the ketimine group.
  • m is calcium and preferably barium and strontium
  • R 1 and R 2 have the meaning given above
  • R 3 is Cl-C4-alkyl.
  • the symmetrical representation of the drawing of the molecule should not mean that there is actually a symmetrical arrangement of the atoms in the three-dimensional structure of the respective molecule.
  • the lines drawn between the nitrogen and oxygen atoms and the metal cation indicate that a particularly strong interaction is assumed between them.
  • R 1 groups on the nitrogen atoms can be the same or different, but are preferably the same and are in particular methyl or ethyl.
  • R 3 particularly preferably represents t-butyl.
  • n is preferably 3.
  • the metallic alkaline earth metal or a hydride thereof which is advantageously finely divided, can be prepared using the method described above.
  • the acidic proton is reduced to hydrogen
  • the alkaline earth metal is oxidized to the alkaline earth metal cation or the hydride anion is hydrogen, and the desired complex compound according to the invention is formed.
  • an alkaline earth metal salt can be reacted with a salt which contains the ligand as an anion, e.g. B. the Li salt (obtainable by reaction of BuLi and the ligand).
  • N ', N' -dialkylaminoalkylimino) -8-alkoxy-5-alkanone compound is reacted in a corresponding manner with the most finely divided alkaline earth metal or the hydride.
  • Bariu (II) bis [2, 2-dimethyl-5-N- (N ', N' - dimethylaminopropylimino) -8-methoxy-5-octanonate] and strontium (II) bis are very particularly preferably prepared in this way [2,2-dimethyl-5-N- (N 1 , N '-dimethylaminopropylimino) -8-methoxy-5-octanonate].
  • ketimine compounds of the formula RH which can be used in the preparation of the complex compounds, where R has the meaning given above, and in particular N ', N' - (dialkylaminoalkylimino) -8-alkoxy-5-alkanone compounds of the formula (II) are also new and are also an important intermediate of the invention.
  • R 2 0 (CH 2 ) n C (NCH 2 CH 2 CH 2 R 1 2 ) CH 2 C (O) R 3 apply to R 1 , R 2 , R 3 and n the above meanings.
  • the ketimine compounds can be prepared as described below.
  • the beta-diketo compound corresponding to the ketimine compound is produced.
  • the synthesis is possible via a claise condensation of a ketone with an omega alkoxy carboxylic acid ester.
  • the ketone and the omega alkoxycarboxylic acid ester are selected so that the alkyl group of the ketone, the alkyl group the omega alkoxy group and the alkylene chain between the omega alkoxy group and the ester function corresponds to the desired substituents in the ketimine compound to be produced.
  • the claise condensation is carried out with heating in the presence of sodium hydride in a solvent, for example in dirthhoxyethane.
  • the reaction mixture is worked up, for. B. with aqueous hydrochloric acid.
  • the beta-diketo compound prepared in this way can be reacted at elevated temperature with a diamine of the desired chain length.
  • a nitrogen atom of this diamine must be substituted by two hydrogen atoms and reacts with a keto group of the beta-diketo compound with elimination of water to form the desired ketimine compound.
  • the preparation of the ketimine compounds is based on the preparation of 2,2-dimethyl-5-N- (N 1 , N '-dimethylaminopropyl-imino) -8-methoxy-5-octanone, the particularly preferred ligand for the complexation of the alkaline earth metals , explained further.
  • the first stage involves the preparation of 2,2-dimethyl-8-methoxyoctan-3, 5-dione. It can be performed as described by WS Rees Jr., CR Caballero and W. Hesse in Angew. Chem. 104 (1992), No. 6, pages 786 to 788.
  • ketimine compounds can be produced analogously.
  • the ketimine compounds are not only useful for the preparation of Ba, Sr or Ca complex compounds, but also also for the production of compounds or complexes with other metals.
  • alkaline earth metal complexes according to the invention can be used for all those applications in which alkaline earth metal organic compounds are used with the aim of depositing an alkaline earth metal.
  • alkaline earth metal deposition is not limited to metallic alkaline earth metal here, but is also intended to include cations of alkaline earth metals.
  • a preferred area of application for the alkaline earth metal complexes according to the invention is the deposition of layers which contain the alkaline earth metal in the form of oxides.
  • the alkaline earth metal complexes according to the invention are particularly preferably used in the MOCVD process for the production of thin layers which contain the alkaline earth metal, preferably barium and / or strontium in oxidic form.
  • Such layers are used, for example, in high-temperature superconductor technology.
  • Barium titanate and barium strontium titanate layers are one example.
  • Such layers are required, for example, in DRAM technology.
  • Such DRAMs have plugs made of polysilicon, which, insulated by a nitride layer, have a platinum coating.
  • the platinum layer is coated with a barium strontium titanate layer.
  • This can be done using the alkaline earth metal complexes according to the invention in accordance with the MOCVD process.
  • MOCVD processes are usually carried out in a vacuum apparatus in which the alkaline earth metal complex compound or a mixture of such compounds is evaporated at low pressure.
  • the complex compound is then decomposed and separates in the case of the alkaline earth metal complexes according to the invention on the substrate, for. B. the DRAM, ceramic layers containing the alkaline earth metal in oxidic form.
  • Thermal decomposition can also be induced by radiation or photolysis. Another method of decomposition tongue is the plasma-induced decomposition, see also the US patent ' 5,451,434.
  • the decomposition is preferably in inert gas, e.g. B. N 2 or Ar performed. If desired, you can also use a reactive gas, e.g. B. 0 2 . This can help maintain good oxide layers. Of course, oxidative aftertreatment can also be provided.
  • metals are to be additionally deposited, other commercially available metal compounds can be used simultaneously, before or after the decomposition of the complexes according to the invention, e.g. B. Titanium compounds. Are suitable for. B. the amine pyrrolyl titans mentioned in DE 41 20 344.
  • the alkaline earth metal complexes according to the invention are particularly advantageous when used in the MOCVD process, because they are volatile even at low temperatures, are thermally stable, have a stable vapor pressure, and can be decomposed neatly into ceramic oxide layers.
  • the compounds are also very useful in the presence of moisture.
  • Ketone side 1.84 (p, 2H, -CH 2 central); 1.11 (s, 9H, -CH 3 t-butyl) in ppm against TMS.
  • Example 1.1 7.7399 g (38.6 mmol) of the in Example 1.1.
  • 2-dimethyl-8-methoxy-3, 5-octanedione and 4.9 ml (3.979 g, 38.9 mmol) of freshly distilled N, N-dimethylaminopropylamine were placed under a dry nitrogen atmosphere in a 25 ml round bottom flask which was equipped with a reflux condenser and magnetic stirrer. The solution was heated to reflux (130 ° C) with vigorous stirring for 18 hours. The mixture was then cooled to room temperature and an equivalent volume of demineralized water was added.
  • aqueous phase was then extracted twice with diethyl ether (25 ml each) and the combined organic extracts were dried over anhydrous magnesium sulfate. After filtration, the solvent was removed in vacuo and the residue was distilled in a dynamic vacuum.
  • Example 1.2 0.807 g (5.88 mmol) of finely comminuted metallic barium and 3.714 g (13.1 mmol) of the in Example 1.2. prepared octanons were placed under a dry nitrogen atmosphere in a 25 ml round bottom flask equipped with a mechanical stirrer. The suspension was stirred at room temperature until the solid metallic barium had reacted. A highly viscous brown oil was obtained after a reaction time of about 1 week.
  • Example 1.2 0.708 g (8.08 mmol) of finely divided metallic strontium and 4.92 g (17.3 mmol) of that in Example 1.2. produced Octanons were added under a dry nitrogen atmosphere in a 25 ml round bottom flask equipped with a mechanical stirrer. The suspension was stirred at room temperature until the solid metallic strontium had completely reacted. A highly viscous oil was obtained after a reaction time of about 1 week.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

Beschrieben werden neue Chelatkomplexe des Calciums, Strontiums and Bariums. Bei den Liganden, die zusammen mit dem Metallkation den Komplex bilden, handelt es sich um BetaKetiminat-Verbindungen, die einen 'Skorpionenschwanz' aufweisen. Beschrieben wird auch die Herstellung der Verbindungen, ihre Verwendung und Zwischenprodukte.

Description

Neue Erdalkalimetallkomplexe und ihre Verwendung
Beschreibung
Die Erfindung bezieht sich auf neue, verdampfbare Che- latkomplexe von Calcium, Barium und Strontium, ein Verfahren zu ihrer Herstellung, ihre Verwendung zur Abscheidung von Calcium, Barium bzw. Strontium enthaltenden Schichten und Zwischenprodukte zur Herstellung der Verbindungen.
Die metallorganische chemische Dampfphasenabscheidung ( "metal-organic chemical vapour deposition", MOCVD) ist ein Verfahren, welches sehr gut zur Abscheidung von Metall oder Metallverbindungen enthaltenen Schichten benutzt werden kann. Es ist das Verfahren der Wahl, um keramische Dünnschichten für eine Vielzahl von elektronischen Bauteilen abzuscheiden. Ein Beispiel sind, ferroelektrische Schichten auf Basis von Bariumtitanat oder Bariumstrontiumtitanat . Solche Schichten werden beispielsweise bei DRAM-Bauteilen eingesetzt.
Bei dieser Anwendung und auch bei anderen Anwendungen ist es wünschenswert, daß die organometallischen Erdalkalimetall-Verbindungen eine hohe Flüchtigkeit aufweisen, was die Sublimation und den Transport zum Ort der Abscheidung erleichtert, daß sie bei verhältnismäßig niedriger Temperatur thermisch zersetzt werden können, beispielsweise im Bereich von 450 °C, und daß sie sich für bestimmte Anwendungsbereiche in Form der Oxide, nicht aber beispielsweise in anderen Zersetzungsprodukten wie Karbonaten abscheiden.
Erdalkalimetall-Beta-Diketonate und bestimmte Derivate wurden bereits für das MOCVD-Verfahren eingesetzt. Klassisch sind Komplexe von Erdalkalimetallen mit 1, 1, 6, 6-Tetramethyl- heptandionat. Derartige Komplexe können aber als Oligomere vorliegen. Diese zeigen eine nicht zufriedenstellende Flüchtigkeit und Stabilität. Um diese Eigenschaften zu verbessern, wurden die Tetramethylheptandionatkomplex-Verbindungen in Form von Lewis-Base-Addukten eingesetzt, beispielsweise als Addukt mit Polyethern oder Polyaminen. Solche Komplexe weisen immer noch Stabilitätsprobleme auf. Vorgeschlagen wurden auch Bariumverbindungen und Strontiumverbindungen mit Liganden, die drei Koordinationsstellen aufweisen.
Aufgabe der vorliegenden Erfindung ist es, Erdalkalimetallverbindungen anzugeben, die sich sehr gut für die metallorganische chemische Da pfphasenabscheidung eignen und insbesondere zur Herstellung von keramischen Dünnfilmen geeignet sind. Diese Aufgabe wird durch die Verbindungen der vorliegenden Erfindung gelöst.
Die erfindungsgemäßen Verbindungen entsprechen der Formel (I), M(R)2. Dabei' steht M für Calcium, Strontium und Barium. R steht für eine Beta-Ketiminat-Verbindung (d. h. der Ligand weist eine Ketogruppe und eine Iminogruppe auf) , in • welcher das Stickstoffatom der Iminfunktion substituiert ist durch eine Gruppe der Formel (CH2)mNR1 2 worin m 2 bis 4 ist und R1 eine Cl-C3-Alkylgruppe, und in welcher die Kohlenstoffkette durch R20(CH2)n substituiert ist, wobei R2 C1-C3- Alkyl ist und n 2 bis 4 ist.
Bevorzugt steht M für Strontium und Barium. Anhand dieser bevorzugten Ausführungsform wird die Erfindung weiter erläutert .
Die erfindungsgemäßen Verbindungen weisen die Besonderheit auf, daß die Anionen in der Verbindung der Formel (I) vier Koordinationsstellen für eine Wechselwirkung mit dem Metallkation aufweisen: die Ketogruppe; die Iminogruppe; das Stickstoffato der Aminoalkylgruppe, die an die Iminfunktion gebunden ist; und das Sauerstoffatom der Alkoxyalkylgruppe, welches an die Kohlenstoffkette ( "Backbone" ) , und zwar bevorzugt über das Kohlenstoffatom der Ketimingruppe, gebunden ist. Ganz besonders bevorzugt sind Verbindungen der Formel (Ia) ,
Figure imgf000004_0001
In den Verbindungen der Formel (Ia) bedeutet m Calcium und vorzugsweise Barium und Strontium, R1 und R2 weisen die oben angegebene Bedeutung auf, und R3 steht für Cl-C4-Alkyl. Die symmetrische Wiedergabe der Zeichnung des Moleküls soll nicht bedeuten, daß im dreidimensional aufgebauten jeweiligen Molekül tatsächlich eine symmetrische Anordnung der Atome vorliegt. Die eingezeichneten Striche zwischen den Stickstoff- und Sauerstoffatomen und dem Metallkation deuten an, daß zwischen ihnen eine besonders starke Wechselwirkung angenommen wird.
Die R1-Gruppen an den Stickstoffatomen können gleich oder verschieden sein, sind bevorzugt aber gleich und stehen insbesondere für Methyl oder Ethyl . R3 steht besonders bevorzugt für t-Butyl. n ist vorzugsweise 3.
Zur Herstellung der erfindungsgemäßen Verbindungen kann man das metallische Erdalkalimetall oder ein Hydrid davon, das vorteilhaft fein verteilt ist, mit der dem obenbezeichne- ten Liganden R entsprechenden Ketimin-Verbindung RH umsetzen. Das saure Proton wird zu Wasserstoff reduziert, das Erdalkalimetall zum Erdalkalimetallkation bzw. das Hydridanion zu Wasserstoff oxidiert, und es bildet sich die gewünschte erfindungsgemäße Komplexverbindung. Alternativ kann man auch ein Erdalkalimetallsalz mit einem Salz umsetzen, welches den Liganden als Anion enthält, z. B. das Li-Salz (erhältlich durch Umsetzung von BuLi und dem Liganden) .
Zur Herstellung der bevorzugten Verbindungen der allgemeinen Formel (Ia) setzt man die entsprechende N' ,N' -Dialkyl- aminoalkylimino) -8-alkoxy-5-alkanon-Verbindung in ganz entsprechender Weise mit dem möglichst fein verteilten Erdalkalimetall oder dem Hydrid um. Ganz besonders bevorzugt stellt man auf diese Weise Bariu (II) -bis [2, 2-dimethyl-5-N- (N' ,N' - dimethylaminopropylimino) -8-methoxy-5-octanonat] und Strontium(II) -bis [2 , 2-dimethyl-5-N- (N1 ,N' -dimethylaminopropylimino) -8-methoxy-5-octanonat] her.
Die bei der Herstellung der Komplexverbindungen verwendbaren Ketimin-Verbindungen der Formel RH, wobei R die oben angegebene Bedeutung besitzt, und insbesondere N',N'-(Dial- kylaminoalkylimino) -8-alkoxy-5-alkanon-Verbindungen der Formel (II) sind ebenfalls neu und als wichtige Zwischenprodukte ebenfalls Gegenstand der Erfindung.
In der Formel (II), R20(CH2)nC(NCH2CH2CH2 R1 2)CH2C (O)R3 gelten für R1, R2, R3 und n die oben angegebenen Bedeutungen.
Die Herstellung der Ketimin-Verbindungen kann wie im folgenden beschrieben erfolgen. Zunächst wird die der Ket- imin-Verbindung entsprechende Beta-Diketoverbindung hergestellt. Die Synthese ist möglich über eine Claisenkondensa- tion eines Ketons mit einem Omega-Alkoxycarbonsäureester. Dabei wird das Keton und der Omega-Alkoxycarbonsäureester so ausgewählt, daß die Alkylgruppe des Ketons, die Alkylgruppe der Omega-Alkoxygruppe und die Alkylenkette zwischen der Omega-Alkoxygruppe und der Esterfunktion den gewünschten Substituenten in der herzustellenden Ketimin-Verbindung entspricht. Die Claisenkondensation wird unter Erhitzen in Anwesenheit von Natriumhydrid in einem Lösungsmittel, beispielsweise in Dirnethoxyethan, durchgeführt. Die Aufarbeitung des Reaktionsgemisches erfolgt z. B. mit wäßriger Salzsäure.
Die derart hergestellte Beta-Diketoverbindung wird kann bei erhöhter Temperatur mit einem Diamin der gewünschten Kettenlänge zur Reaktion gebracht. Ein Stickstoffatom dieses Diamins muß durch zwei Wasserstoffatome substituiert sein und reagiert mit einer Ketogruppe der Beta-Diketoverbindung unter Wasserabspaltung zur gewünschten Ketimin-Verbindung.
Die Herstellung der Ketimin-Verbindungen wird anhand der Herstellung von 2, 2-Dimethyl-5-N- (N1 ,N' -dimethylaminopropyl- imino) -8-methoxy-5-octanon, dem besonders bevorzugten Liganden für die Komplexierung der Erdalkalimetalle, weiter erläutert. Die erste Stufe umfaßt die Herstellung von 2,2-Dime- thyl-8-methoxyoctan-3 , 5-dion. Sie kann so durchgeführt werden, wie sie von W. S. Rees Jr. , C. R. Caballero und W. Hesse in Angew. Chem. 104 (1992), Nr. 6, Seiten 786 bis 788 beschrieben wird.
(CH3)3CC(0)CH3 (Pinacolon) und CH30 (0) C (CH2) 3OCH3 werden unter Verwendung von Natriumhydrid einer Claisenkondensation unterworfen. Das erhaltene 2 , 2-Dimethyl-8-methoxyoctan-3 , 5- dion wird dann mit N,N-Dimethylaminopropylamin zum gewünschten 2 , 2-Dimethyl-5-N- (N1 ,N' -dimethylaminopropylimino) -8- methoxy-5-octanon umgesetzt.
Analog können andere Ketimin-Verbindungen produziert werden. Die Ketimin-Verbindungen sind nicht nur zur Herstellung von Ba-, Sr- oder Ca-Ko plexverbindungen brauchbar, son- dern auch zur Herstellung von Verbindungen oder Komplexen mit anderen Metallen.
Die erfindungsgemäßen Erdalkalimetallkomplexe können für all jene Anwendungszwecke verwendet werden, in welchen erdalkalimetallorganische Verbindungen mit dem Ziel der Abscheidung eines Erdalkalimetalls eingesetzt werden. Der Begriff "Erdalkalimetallabscheidung" ist hier nicht auf metallisches Erdalkalimetall beschränkt, sondern soll auch und gerade Kationen von Erdalkalimetallen umfassen.
Ein bevorzugtes Anwendungsgebiet für die erfindungsgemäßen Erdalkalimetallkomplexe ist die Abscheidung von Schichten, die das Erdalkalimetall in Form von Oxiden enthalten. Besonders bevorzugt verwendet man die erfindungsgemäßen Erdalkalimetallkomplexe im MOCVD-Verfahren zur Herstellung von Dünnschichten, die das Erdalkalimetall, vorzugsweise Barium und/oder Strontium in oxidischer Form enthalten. Derartige Schichten werden beispielsweise in der Hochtemperatursupraleiter-Technik eingesetzt. Ein Beispiel sind Bariumtitanat- und Bariumstrontiumtitanat-Schichten. Solche Schichten werden beispielsweise in der DRAM-Technologie benötigt. Solche DRAMs weisen Stecker aus Polysilicium auf, die, durch eine Nitridschicht isoliert, eine Platinbeschichtung aufweisen. Die Platinschicht wird mit einer Bariumstrontiumtitanatschicht belegt. Dies kann mittels der erfindungsgemäßen Erdalkalimetallkomplexe gemäß dem MOCVD-Verfahren geschehen. MOCVD-Verfahren werden üblicherweise in einer Vakuumapparatur durchgeführt, in welcher die Erdalkalimetallkomplexverbindung oder ein Gemisch solcher Verbindungen bei niedrigem Druck verdampft wird. Die Komplexverbindung wird dann zersetzt und scheidet im Falle der erfindungsgemäßen Erdalkalimetall- Komplexe auf dem Substrat, z. B. dem DRAM, keramische Schichten ab, welche das Erdalkalimetall in oxidischer Form enthalten. Die thermische Zersetzung kann auch durch Strahlung oder Photolyse induziert werden. Eine weiter Methode der Zerset- zung ist die plasmainduzierte Zersetzung, siehe auch das US-Patent '5,451,434.
Die Zersetzung wird bevorzugt in Inertgas, z. B. N2 oder Ar, durchgeführt. Gewünschtenfalls kann man auch ein Reaktivgas einsetzen, z. B. 02. Dies kann helfen, gute Oxidschichten zu erhalten. Natürlich kann man auch eine oxidative Nachbehandlung vorsehen.
Sollen andere Metalle zusätzlich abgeschieden werden, kann man gleichzeitig, vorher oder nach der Zersetzung der erfindungsgemäßen Komplexe andere handelsübliche Metallverbindungen verwenden, z. B. Titan-Verbindungen. Geeignet sind z. B. die in der DE 41 20 344 genannten Amin-Pyrrolyl-Titane.
Die erfindungsgemäßen Erdalkalimetallkomplexe sind vorteilhaft insbesondere bei der Anwendung im MOCVD-Verfahren, weil sie bereits bei niedrigen Temperaturen flüchtig sind, thermisch stabil sind, einen stabilen Dampfdruck aufweisen, und sauber zu keramischen Oxidschichten zersetzt werden können. Die Verbindungen sind auch in Anwesenheit von Feuchtigkeit sehr gut brauchbar.
Die Erfindung wird nun in den folgenden Beispielen weiter erläutert, ohne sie in ihrem Umfang einzuschränken.
Beispiele
Beispiel 1;
Herstellung von 2 , 2-Dimethyl-5-N- (N1 ,N' -dimethylaminopropyl- imino) -8-methoxy-5-octanon
Beispiel 1.1.
Herstellung von 2 , 2-Dimethyl-8-methoxyoctan-3 , 5-dion Reaktionsgleichung :
(CH3)3C(0)CH3 + CH3OC(0)CH2CH2CH2θCH3 >
(CH3 ) 3CC (O) CH2C (O) CH2CH2CH2OCH3
40 ml (38,76 g, 0,2933 mol) CH30 (CH2) 3C (O) OCH3 , gelöst in ungefähr 160 ml frisch destilliertem Dimethoxyether und 12,49 g
(0,541 mol) Natriumhydrid wurden in einen Rundkolben eingegeben, der mit Rückflußkühler, Tropftrichter mit Druckausgleich sowie Magnetrührer ausgerüstet war. Die Lösung wurde gerührt. 44 ml (35,244 g, 0,352 mol) wasserfreies Pinacolon wurden tropfenweise zugegeben. Beim Ende der Zugabe wurde die Mischung auf Rückfluß erhitzt. Nach 18 h wurde die Reaktionsmischung auf Raumtemperatur gekühlt, und ungefähr 56 ml konzentrierte Salzsäure vorsichtig zugegeben. Das 2-Phasenge- misch wurde in einen Phasentrenner gegeben. Die wäßrige Phase wurde mit Diethylether (2 x 100 ml) extrahiert. Die vereinigten organischen Extrakte wurden mit verdünnter Natronlauge
(1 Gew.-% in Wasser, 2 x 100 ml) und schließlich mit Wasser gewaschen. Die organische Phase wurde über wasserfreiem Magnesiu sulfat getrocknet; nach der Filtration wurde das Lösungsmittel bei vermindertem Druck entfernt. Die Destillation des Rückstands ergab das reine Produkt (Siedepunkt ungefähr 45 bis 47 °C/0,01 mm Hg).
Ausbeute :
29,3 g (49,8 % der Theorie)
Analyse :
1H-NMR (CDC13-300K) • (ppm) = 5,58 (s, 1H, CH Diketon) ;
3,36 (t, 2H, CH2-0) ; 3,30 (s, 3H, -OCH3 ) ; 2,36 (t, 2H, -CH2-
Ketonseite) ; 1,84 (p, 2H, -CH2-zentral) ; 1,11 (s, 9H, -CH3 t-butyl) in ppm gegen TMS. Beispiel 1.2.;
Herstellung von 2 , 2-Dimethyl-5-N- (N' ,N' -dimethylaminopropyl- imino) -8-methoxy-5-octanon
Reaktionsgleichung:
(CH3 ) 3CC ( 0 ) CH2C ( 0) CH2CH2CH2OCH3 + (CH3 ) 2NCH2CH2CH2NH2 → ( CH3 ) 3CC ( 0 ) CH2C [NCH2CH2CH2N ( CH33 ) 3 ] CH2CH2CH2OCH3
Durchführung ;
7,7399 g (38,6 mmol) des in Beispiel 1.1. hergestellten 2, 2-Dimethyl-8-methoxy-3, 5-octandions und 4,9 ml (3,979 g, 38,9 mmol) frisch destilliertes N,N-Dimethylaminopropylamin wurden unter trockener Stickstoffatmosphäre in einen 25 ml- Rundkolben eingegeben, der mit Rückflußkühler und Magnetrührer ausgerüstet war. Die Lösung wurde auf Rückfluß (130 °C) unter kräftigem Rühren 18 h lang erhitzt. Danach wurde die Mischung auf Raumtemperatur abgekühlt und ein äquivalentes Volumen demineralisiertes Wasser zugegeben. Die wäßrige Phase wurde dann zwei mal mit Diethylether (je 25 ml) extrahiert und die kombinierten organischen Extrakte über wasserfreiem Magnesiumsulfat getrocknet. Nach der Filtration wurde das Lösungsmittel im Vakuum entfernt und der Rückstand im dynamischen Vakuum destilliert.
Ausbeute :
9,22 g (32,4 mmol) einer farblosen Flüssigkeit (84 % der
Theorie) .
Analyse:
^-H-NMR (CDC13 - 300K) • (ppm) = 11,0 (s, 1H, breit -OH); 5,15 (s, 1H, -CH-«-Ketoimine) ; 3,42 (t, 2H, CH2-0) ; 3,3.6 (s, 3H, -OCH3); 3,28 (q, 2H, -CH2-) ; 1,12 (s, 9H, -CH3 t-butyl) in ppm gegen TMS als Standard. Beispiel 2 ;
Herstellung der Barium- und Strontiumkomplexe
Beispiel 2.1.;
Herstellung von Barium(II) -bis- [2 , 2-dimethyl-5-N- (N'N' -di- methylaminopropylimino) -8-methoxy-5-octanoat]
Durchführun :
0,807 g (5,88 mmol) fein zerkleinertes metallisches Barium und 3,714 g (13,1 mmol) des in Beispiel 1.2. hergestellten Octanons wurden unter trockener Stickstoffatmosphäre in einem 25 ml-Rundkolben eingegeben, der mit einem mechanischem Rührer ausgerüstet war. Die Suspension wurde bei Raumtemperatur gerührt, bis das feste metallische Barium abreagiert war. Ein hochviskoses braunes Öl wurde nach etwa 1 Woche Umsetzungszeit erhalten.
Ausbeute :
4,1 g (5,8 mmol) dunkelrotes, viskoses Öl (99 % der Theorie).
Analysendaten:
Elementaranalyse: C = 52,7 (Theorie: 54,6); H = 8,7 (Theorie:
8,9); N = 7,6 (Theorie: 8,0), Angaben in Gew.-%.
Unter N2 setzt die Verdampfung bei etwa 200 °C ein. Auch in Anwesenheit von 5 ppm Wasser ist das Verdampfungsverhalten nicht schlechter.
Beispiel 2.2.;
Herstellung von Strontium(II) -bis- [2, 2-dimethyl-5-N- (N'N' - dimethylaminopropylimino) -8-methoxy-5-octanoat]
Durchführun :
0,708 g (8,08 mmol) fein zerteiltes metallisches Strontium und 4,92 g (17,3 mmol) des in Beispiel 1.2. hergestellten Octanons wurden unter trockener Stickstoffatmosphäre in einem 25 ml-Rundkolben eingegeben, der mit mechanischem Rührer versehen war. Die Suspension wurde bei Raumtemperatur gerührt bis zur kompletten Abreaktion des festen metallischen Strontiums . Ein hochviskoses Öl wurde nach etwa 1 Woche Umsetzungszeit erhalten.
Ausbeute :
5,28 g (8,1 mmol) dunkelrotes, viskoses Öl (99 % d. Theorie).
Unter N2 setzt die Verdampfung ab etwa 210 °C merkbar ein. Eine gleichförmige Verdampfungsrate wurde bei Temperaturen von 125 °C und 150 °C beobachtet über einen Zeitraum von 250 min. , selbst in Anwesenheit von 5 ppm Wasser. Die Verbindung ist somit thermisch sehr stabil.

Claims

Patentansprüche
1. Verbindungen der Formel (I)
M(R)2 I),
wobei
M Calcium, Strontium und Barium bedeutet, und
R eine Beta-Ketiminat-Verbindung darstellt, in welcher das Stickstoffatom der Iminfunktion durch (CH2)mNR1 2 substituiert ist, wobei m 2 bis 4 ist und
R1 eine C1-C3 -Alkylgruppe ist, und wobei die Kohlenstoffkette der Beta-Ketiminat- Verbindung durch R20(CH2)n substituiert ist, wobei
R2 Cl-C3-Alkyl ist und n 2 bis 4 ist.
2. Verbindungen nach Anspruch 1, entsprechend der Formel
(Ia)
Figure imgf000013_0001
worin'
M, n, R1 und R2 die obenangegebene Bedeutung besitzen und R3 für Cl-C4-Alkyl steht.
3. Verbindungen entsprechend den Ansprüchen 1 oder 2 , wobei R1 Methyl oder Ethyl ist.
4. Verbindungen entsprechend Anspruch 1 oder 2, worin R2 Methyl oder Ethyl ist.
5. Verbindungen entsprechend den Ansprüchen 1 oder 2 , wobei R3 t-Butyl ist.
6. Verbindungen entsprechend Anspruch 1 oder 2 , wobei n 3 ist.
7. Verfahren zur Herstellung von Verbindungen der allgemeinen Formel (I) , wobei man metallisches Calcium, Barium oder Strontium oder ein Hydrid davon mit einer Beta-Ketimin- Vebindungen der Formel RH umsetzt, wobei R die oben angegebene Bedeutung besitzt, oder wobei man ein Salz von Calcium, Strontium oder Barium mit einem Salz umsetzt, welches den Liganden als Anion enthält.
8. Verfahren nach Anspruch 7 zur Herstellung von Verbindungen der Formel (Ia), wobei man metallisches Calcium, Barium oder Strontium mit einer Beta-Ketimin-Verbindung der Formel (II) R20 (CH2)nC (NCH2CH2CH2NR1 2) CH2C (0) R3 umsetzt, wobei R1, R2, R3 und n die oben angegebene Bedeutung besitzen.
9. Verfahren zum Abscheiden einer Erdalkalimetall enthaltenden Schicht auf einem Substrat, wobei das Verfahren umfaßt: zur Verfügungstellung einer Verbindung der Formel (I)
M(R)2 (I),
worin
M und R die oben angegebene Bedeutung besitzen, und Zersetzen der Verbindung der Formel (I) in der Anwesenheit des Substrates.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß man eine Verbindung der Formel (Ia)
Figure imgf000015_0001
worin
M, n, R1 und R2 die oben angegebene Bedeutung besitzen und R3 für Cl-C4-Alkyl steht.
11. Verfahren nach Anspruch 9 oder 10, dadurch gekennzeichnet, daß die Verbindung der Formel (I) oder (Ia) verdampft und dann zersetzt wird.
12. Verfahren entsprechend einem der Ansprüche 9, 10 oder 11, dadurch gekennzeichnet, daß mindestens eine Verbindung von mindestens einem weiteren Metall, vorzugsweise Titan, zersetzt wird.
13. Verfahren nach einem der Ansprüche 9 bis 12 , dadurch gekennzeichnet, daß das Substrat ein DRAM-Bauteil ist.
14. Verfahren nach einem der Ansprüche 9 bis 13 , dadurch gekennzeichnet, daß Bariumstrontiumtitanat-Schichten gebildet werde .
15. Als Zwischenverbindungen, Verbindungen der Formel
R-H, worin
R eine Beta-Ketiminat-Verbindung darstellt, in welcher das Stickstoffatom der Iminfunktion durch (CH2)mNR:I-2 substituiert ist, wobei m . 2 bis 4 ist und
R1 eine C1-C3-Alkylgruppe ist, und wobei die Kohlenstoffkette der Beta-Ketiminat- Verbindung durch R20(CH )n substituiert ist, wobei
R2 Cl-C3-Alkyl ist und n 2 bis 4 ist.
16. Verbindungen nach Anspruch 15 der Formel (II)
R20(CH2)nC(NCH2CH2CH2NR1 2)CH2C(0)R3 (II) ,
wobei R1, R2, R3 und n die oben angegebene Bedeutung besitzen.
17. Verwendung von Verbindungen der Formel RH, vorzugsweise der Formel (II) , zur Herstellung von Metallchelatver- bindungen.
PCT/EP2003/006501 2002-06-28 2003-06-20 Neue erdalkalimetallkomplexe und ihre verwendung WO2004002946A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2003242738A AU2003242738A1 (en) 2002-06-28 2003-06-20 Novel alkaline earth metal complexes and use thereof
KR10-2004-7020825A KR20050014872A (ko) 2002-06-28 2003-06-20 신규한 알칼리토금속 착체 및 그 이용
JP2004516624A JP2005531619A (ja) 2002-06-28 2003-06-20 新規アルカリ土類金属錯体及びその使用
EP03761477A EP1519914A1 (de) 2002-06-28 2003-06-20 Neue erdalkalimetallkomplexe und ihre verwendung
US11/022,674 US7132556B2 (en) 2002-06-28 2004-12-28 Alkaline earth metal complexes and their use
HK05109292A HK1077292A1 (en) 2002-06-28 2005-10-20 Alkaline earth metal complexes and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10229040A DE10229040A1 (de) 2002-06-28 2002-06-28 Neue Erdalkalimetallkomplexe und ihre Verwendung
DE10229040.7 2002-06-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/022,674 Continuation US7132556B2 (en) 2002-06-28 2004-12-28 Alkaline earth metal complexes and their use

Publications (1)

Publication Number Publication Date
WO2004002946A1 true WO2004002946A1 (de) 2004-01-08

Family

ID=29795933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/006501 WO2004002946A1 (de) 2002-06-28 2003-06-20 Neue erdalkalimetallkomplexe und ihre verwendung

Country Status (11)

Country Link
US (1) US7132556B2 (de)
EP (1) EP1519914A1 (de)
JP (1) JP2005531619A (de)
KR (1) KR20050014872A (de)
CN (1) CN1291972C (de)
AU (1) AU2003242738A1 (de)
DE (1) DE10229040A1 (de)
HK (1) HK1077292A1 (de)
MY (1) MY134966A (de)
TW (1) TWI257393B (de)
WO (1) WO2004002946A1 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7132556B2 (en) * 2002-06-28 2006-11-07 Solvay Barium Strontium Gmbh Alkaline earth metal complexes and their use
KR100799083B1 (ko) * 2006-08-04 2008-01-29 테크노세미켐 주식회사 신규한 베타-디케톤 화합물 및 이의 제조방법
US7691984B2 (en) 2007-11-27 2010-04-06 Air Products And Chemicals, Inc. Metal complexes of tridentate β-ketoiminates
US7947814B2 (en) 2006-04-25 2011-05-24 Air Products And Chemicals, Inc. Metal complexes of polydentate beta-ketoiminates
US8617305B2 (en) 2011-01-25 2013-12-31 Air Products And Chemicals, Inc. Metal complexes for metal-containing film deposition
US8722933B2 (en) 2009-03-11 2014-05-13 Air Products And Chemicals, Inc. Method for preparing metal complexes of polydentate beta-ketoiminates
US9079923B2 (en) 2010-08-05 2015-07-14 Air Products And Chemicals, Inc. Multidentate ketoimine ligands for metal complexes

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7323581B1 (en) * 1990-07-06 2008-01-29 Advanced Technology Materials, Inc. Source reagent compositions and method for forming metal films on a substrate by chemical vapor deposition
US7205422B2 (en) * 2004-12-30 2007-04-17 Air Products And Chemicals, Inc. Volatile metal β-ketoiminate and metal β-diiminate complexes
US8092870B2 (en) * 2008-04-11 2012-01-10 Air Products And Chemicals, Inc. Preparation of metal oxide thin film via cyclic CVD or ALD
US20100119726A1 (en) * 2008-11-07 2010-05-13 Air Products And Chemicals, Inc. Group 2 Metal Precursors For Deposition Of Group 2 Metal Oxide Films
JP5544198B2 (ja) * 2010-03-17 2014-07-09 株式会社Adeka β−ケトイミン化合物、金属錯体及び薄膜形成用原料

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0369297A1 (de) * 1988-11-14 1990-05-23 Air Prod & Chem Flüchtige beta-Ketoimine und ihre Metallkomplexe
US5008415A (en) * 1988-11-14 1991-04-16 Air Products And Chemicals, Inc. Volatile fluorinated β-ketoimines and associated metal complexes

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3594216A (en) * 1969-06-19 1971-07-20 Westinghouse Electric Corp Vapor phase deposition of metal from a metal-organic beta-ketoamine chelate
DE4120344A1 (de) 1990-06-26 1992-01-02 Kali Chemie Ag Verfahren zur abscheidung von titan, zirkonium oder hafnium enthaltenden schichten
DE4108731A1 (de) * 1991-03-18 1992-09-24 Solvay Barium Strontium Gmbh Neuartige erdalkalimetall-heptandionat-verbindungen
JP3227891B2 (ja) * 1993-04-20 2001-11-12 三菱マテリアル株式会社 新規な有機金属錯体とその配位子
JP3904255B2 (ja) 1995-11-14 2007-04-11 株式会社Adeka β−ジケトン化合物およびその金属錯体
EP1184365A3 (de) * 2000-08-26 2003-08-06 Samsung Electronics Co., Ltd. Metall-Vorläufer der Gruppe IV und ein Chemical-Vapor-Deposition-Verfahren mit diesem
KR100807947B1 (ko) * 2001-01-30 2008-02-28 삼성전자주식회사 비대칭형 β-케토이미네이트 리간드 화합물의 제조방법
DE10229040A1 (de) * 2002-06-28 2004-01-29 Solvay Barium Strontium Gmbh Neue Erdalkalimetallkomplexe und ihre Verwendung

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0369297A1 (de) * 1988-11-14 1990-05-23 Air Prod & Chem Flüchtige beta-Ketoimine und ihre Metallkomplexe
US5008415A (en) * 1988-11-14 1991-04-16 Air Products And Chemicals, Inc. Volatile fluorinated β-ketoimines and associated metal complexes

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NEUMAYER, D A ET AL: "Approaches to alkaline earth metal-organic chemical vapor deposition precursors. Synthesis and characterisation of barium fluoro-beta-letoiminate complexes having appended poyether "lariats"", INORGANIC CHEMISTRY., vol. 37, no. 21, 1998, AMERICAN CHEMICAL SOCIETY. EASTON., US, pages 5625 - 5633, XP002261922, ISSN: 0020-1669 *
SCHULZ, D L ET AL: "Barium beta-ketoiminate complexes containing appended ether "lariats". Synthesis, characterization, and implementation as fluorine-free barium MOCVD precursors", CHEMISTRY OF MATERIALS., vol. 5, no. 11, 1993, AMERICAN CHEMICAL SOCIETY, WASHINGTON., US, pages 1605 - 1617, XP002261923, ISSN: 0897-4756 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7132556B2 (en) * 2002-06-28 2006-11-07 Solvay Barium Strontium Gmbh Alkaline earth metal complexes and their use
US7947814B2 (en) 2006-04-25 2011-05-24 Air Products And Chemicals, Inc. Metal complexes of polydentate beta-ketoiminates
KR100799083B1 (ko) * 2006-08-04 2008-01-29 테크노세미켐 주식회사 신규한 베타-디케톤 화합물 및 이의 제조방법
US7691984B2 (en) 2007-11-27 2010-04-06 Air Products And Chemicals, Inc. Metal complexes of tridentate β-ketoiminates
US7723493B2 (en) 2007-11-27 2010-05-25 Air Products And Chemicals, Inc. Metal complexes of tridentate BETA -ketoiminates
US8722933B2 (en) 2009-03-11 2014-05-13 Air Products And Chemicals, Inc. Method for preparing metal complexes of polydentate beta-ketoiminates
US9079923B2 (en) 2010-08-05 2015-07-14 Air Products And Chemicals, Inc. Multidentate ketoimine ligands for metal complexes
US8617305B2 (en) 2011-01-25 2013-12-31 Air Products And Chemicals, Inc. Metal complexes for metal-containing film deposition

Also Published As

Publication number Publication date
AU2003242738A1 (en) 2004-01-19
MY134966A (en) 2008-01-31
CN1291972C (zh) 2006-12-27
CN1665775A (zh) 2005-09-07
HK1077292A1 (en) 2006-02-10
TWI257393B (en) 2006-07-01
US7132556B2 (en) 2006-11-07
TW200403249A (en) 2004-03-01
EP1519914A1 (de) 2005-04-06
KR20050014872A (ko) 2005-02-07
DE10229040A1 (de) 2004-01-29
JP2005531619A (ja) 2005-10-20
US20050170092A1 (en) 2005-08-04

Similar Documents

Publication Publication Date Title
WO1997034875A1 (de) Verfahren zur herstellung heterocyclischer carbene
EP2513120B1 (de) Verfahren zur herstellung von indiumchlordialkoxiden
WO2004002946A1 (de) Neue erdalkalimetallkomplexe und ihre verwendung
DE69906501T2 (de) Lewis-base-addukte von wasserfreien mononuklearen tris(beta-diketonat)bismuth-verbindungen zum auftragen von bismuth enthaltenden schichten und verfahren zu ihrer herstellung
DE112007001558T5 (de) Organometallische Verbindungen mit sterisch gehinderten Amiden
EP2050754A1 (de) Verfahren zur Herstellung von Alkyl-methoxymethyl-trimethylsilanylmethylaminen
EP0799168A1 (de) Werwendung von pyrazolderivaten mit hydrophoben resten als nitrifikationsinhibitoren
EP1697296A2 (de) Kupfer(i)formiatkomplexe
EP3724204A1 (de) Metallkomplexe mit triazenidoliganden und deren verwendungen zur abscheidung von metallen aus der gasphase
DE2242387A1 (de) Verfahren zur synthese von derivaten des spiro(4,5)-decans
DE2914496C3 (de) Verfahren zur Herstellung von olidomeren Iminoalanen mit einer dreidimensionalen offenen Käfig-Struktur
DE2748535B2 (de) Verfahren zur Herstellung von gemischten Polyiminoderivaten von Aluminium und Magnesium und von Magnesiumamiden
DE2833943C2 (de)
DE102010004181A1 (de) Metallcarboxylatkomplexe mit Alkinligand als verdampfbarer Precursor zur Metall- oder Metalloxidabscheidung
WO2020144155A1 (de) Metallorganische verbindungen
EP3947405A1 (de) Metallkomplexe für gasphasen-dünnschichtabscheidung
EP4294817A1 (de) Edelmetallkomplexe mit dihydroguajazulenyl-liganden und deren verwendung
DE10358956A1 (de) Neue Metallkomplexe und ihre Verwendung
AT283381B (de) Verfahren zur Herstellung komplexer, organisch substituierter Natriumaluminiumhydride
AT366054B (de) Reduktionsmittel
DE2360679A1 (de) Verfahren zur herstellung von diketonen
DE2038956A1 (de) Verfahren zur Herstellung stickstoffhaltiger Derivate von 1,12-Dodekandicarbonsaeure
DE3000490A1 (de) Verfahren zur herstellung von alkoxyalanaten von erdalkalimetallen
WO1998014455A1 (de) Verfahren zur herstellung von phenylchlorphosphinen
DE102008014028A1 (de) Verfahren zur Herstellung 1,3-disubstituierter Imidazoliumsalze

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003761477

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020047020825

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2004516624

Country of ref document: JP

Ref document number: 20038153173

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020047020825

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003761477

Country of ref document: EP