WO2004001477A1 - 投写レンズ製造装置、投写レンズ製造方法、この投写レンズ製造方法により製造された投写レンズ、およびこの投写レンズを備えるプロジェクタ - Google Patents

投写レンズ製造装置、投写レンズ製造方法、この投写レンズ製造方法により製造された投写レンズ、およびこの投写レンズを備えるプロジェクタ Download PDF

Info

Publication number
WO2004001477A1
WO2004001477A1 PCT/JP2003/007720 JP0307720W WO2004001477A1 WO 2004001477 A1 WO2004001477 A1 WO 2004001477A1 JP 0307720 W JP0307720 W JP 0307720W WO 2004001477 A1 WO2004001477 A1 WO 2004001477A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
projection lens
light
projection
adjustment
Prior art date
Application number
PCT/JP2003/007720
Other languages
English (en)
French (fr)
Inventor
Shohei Fujisawa
Hirotatsu Okubo
Shunji Umemura
Original Assignee
Seiko Epson Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corporation filed Critical Seiko Epson Corporation
Priority to JP2004515505A priority Critical patent/JPWO2004001477A1/ja
Publication of WO2004001477A1 publication Critical patent/WO2004001477A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/025Mountings, adjusting means, or light-tight connections, for optical elements for lenses using glue
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/62Optical apparatus specially adapted for adjusting optical elements during the assembly of optical systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/08Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted to co-operate with a remote control mechanism

Definitions

  • the present invention relates to a projection lens manufacturing apparatus, a projection lens manufacturing method, a projection lens manufactured by the projection lens manufacturing method, and a projector including the projection lens.
  • the present invention relates to a projection lens manufacturing apparatus, a projection lens manufacturing method, a projection lens manufactured by the projection lens manufacturing method, and a projector including the projection lens. 1 Background technology
  • a projection lens used in such a projector As a projection lens used in such a projector, a plurality of lenses including a convergence lens and a divergence lens are combined in order to suppress a reduction in resolution and occurrence of aberrations such as distortion and chromatic aberration in a projected image.
  • a composite lens composed of the above is used.
  • the position of the optical axis (core) between the lenses constituting the projection lens had to be adjusted with high precision.
  • holes for adjusting the lens position are formed at three equal positions on the tube in a plane orthogonal to the illumination optical axis of the optical path formed in the lens holding tube, and It has been proposed to construct a projection lens by attaching pin members such as screws from the outside of the cylinder to the center of the cylinder in these three position adjustment holes.
  • pin members such as screws from the outside of the cylinder to the center of the cylinder in these three position adjustment holes.
  • the lens to be adjusted is urged at the tip of the pin member, and the position of the lens is adjusted in a plane orthogonal to the illumination optical axis. Is adjusted.
  • a method has been proposed in which a lens to be adjusted is clamped at a predetermined position, and a lens holding cylinder in which the lens is accommodated is moved to adjust the position of the lens (for example, Patent Document 1 (Japanese Patent Laid-Open No. No. 8-333464 (Fig. 1, page 3)). Further, there is a method in which a lens is fixed in a lens holding cylinder provided with a strain absorbing portion by force-shrinking in advance, and then the lens position is adjusted by moving the lens. Japanese Patent Publication No. 02-1899-159 (Fig. 1, pages 3 to 4)). In this case, the distortion generated by the adjustment of the lens is absorbed by the distortion absorbing section, and the distortion generated in the distortion absorbing section is eliminated by heating.
  • the lens holding cylinder for holding the lens is composed of a first lens holding cylinder and a second lens holding cylinder provided on the outer peripheral side of the first lens holding cylinder.
  • a lens holding spring is arranged between the lens holding cylinders.
  • a method has been proposed in which the lens holding spring is compressed by a screw provided in the second holding cylinder, and the first lens holding cylinder is moved in the direction orthogonal to the optical axis to adjust the position.
  • Japanese Patent Publication No. 2002-400308 (FIG. 1, pages 3-4)).
  • a holding ring is arranged at the front end of the first lens holding cylinder, and the first lens holding cylinder is sandwiched and fixed between the holding ring and the second lens holding cylinder.
  • An object of the present invention is to reduce the number of members constituting a projection lens and reduce the cost of the projection lens. This makes it possible to reduce the cost, reduce the size and weight, and to adjust the optical axis position of the multiple lenses that make up the projection lens with high precision and ease, enabling high-quality image projection.
  • An object of the present invention is to provide a projection lens manufacturing apparatus, a projection lens manufacturing method, a projection lens manufactured by the projection lens manufacturing method, and a projector including the projection lens, which can easily manufacture a projection lens in which the material of the lens to be used is not limited. It is in. Disclosure of the invention
  • a projection lens manufacturing apparatus is configured to manufacture a projection lens including a lens holding cylinder having a predetermined optical path set therein and a plurality of lenses sequentially arranged on an illumination optical axis of the optical path.
  • a lens manufacturing apparatus wherein the lens holding cylinder adjusts a position of any one of the plurality of lenses in a direction along two axes orthogonal to each other in a plane orthogonal to an illumination optical axis.
  • a pair of position adjustment holes are formed on each of the axes, and a light source for emitting a light beam for adjustment, and a projection lens to be manufactured, and a lens to be adjusted on the illumination optical axis.
  • a projection lens holding mechanism that holds the lens at a lens adjustment position that adjusts the position of the lens, and an image light that includes a predetermined test pattern based on a light beam emitted from the light source.
  • An image light emitting mechanism for introducing the light into the projected projection lens, and a position of a lens to be adjusted while detecting the image light projected from the projection lens to which the image light has been introduced, through the position adjustment hole. It is characterized by comprising: two lens position adjustment mechanisms for adjusting the respective directions along the two axes; and an adhesive fixing mechanism for adhering and fixing the position-adjusted lens to the lens holding cylinder.
  • the plurality of lenses is constituted by at least two or more lens groups, and the number, shape, size, and function of the lens groups are not particularly limited.
  • one of the lenses to be adjusted is one or more lenses to be adjusted.For example, one lens having the greatest influence on the quality of the projected image is selected, and A configuration for adjusting this lens can be adopted. Note that the number of position adjustment mechanisms can be appropriately changed according to the number of lenses to be adjusted.
  • a lens holding tube having a collar portion for attaching to one end of an optical system constituting a projector into which the projection lens is incorporated can be adopted as the lens holding tube.
  • the projection lens holding mechanism can be configured to include, for example, a lens holding member having a circular opening formed in a central portion of a plate material. That is, the lens holding cylinder is inserted through the circular opening, and the flange portion is arranged at the outer peripheral portion of the circular opening, so that a configuration for holding the projection lens can be adopted.
  • the position adjustment hole is orthogonal to the illumination optical axis of the optical path formed by the plurality of lenses housed therein and orthogonal to each other. It can be formed at the position on the Y axis.
  • the lens holding cylinder has a total of four position adjustment holes: two position adjustment holes formed at opposing positions on the X axis and two position adjustment holes formed at opposing positions on the Y axis.
  • the position adjusting mechanism it is possible to adopt a configuration in which a pin member is inserted into a pair of position adjusting holes formed in the lens holding cylinder, and the position of the lens is adjusted by moving the pin member forward and backward.
  • the lens to be adjusted is held at the tip of a pin member that is inserted into a pair of position adjustment holes and faces each other, and the other pin member contacts the lens outer peripheral portion as one pin member advances or retreats. It can be configured to regress and progress as it is. It should be noted that such a configuration in which the pin member is advanced and retracted can be automatically configured by a computer or the like, or manually configured by an operator.
  • means for detecting image light means for visually detecting an image light projected from a projection lens onto a screen or the like, or an imaging device such as a CCD camera arranged on the back side of the screen are used. Means for detecting and performing image processing can be employed. A configuration in which the image light is directly detected by the imaging device without projecting the image light onto a screen or the like can also be adopted.
  • a linear light-shielding portion is formed at a predetermined interval. Those arranged in a stripe shape in the vertical direction or the horizontal direction can be adopted. At this time, it can be provided for every three colors of RGB.
  • a projection lens can be manufactured by the following procedure.
  • the cylindrical lens holding cylinder that constitutes the projection lens is located at a position on the X-axis and the Y-axis that is orthogonal to the illumination optical axis of the optical path formed by the plurality of stored lenses and that are orthogonal to each other.
  • An adjustment hole is formed in advance.
  • the lens holding barrel has a total of four position adjustment holes: two position adjustment holes formed at opposing positions on the X-axis and two position adjustment holes formed at opposing positions on the Y-axis. A hole is formed.
  • the projection lens before this adjustment is held at the lens adjustment position by the projection lens holding mechanism (projection lens holding step).
  • the pin members constituting the lens position adjusting mechanism are inserted into the respective position adjusting holes, and four points on the outer peripheral portion of the lens to be adjusted are held by the tips of the pin members.
  • a light beam for adjustment is emitted from the light source (light beam emission step), and an image light emitting mechanism emits image light including a predetermined test pattern based on the light beam for adjustment and projects the image before adjustment.
  • the light is introduced into the lens (image light detection process) and enlarged and projected on a screen or the like.
  • the worker adjusts the position of the lens to be adjusted in the direction along the X-axis by using the lens position adjustment mechanism on the X-axis side while viewing the projected image on the screen, for example (lens position Adjustment process).
  • a pair of pin members inserted into a pair of position adjustment holes on the X-axis are in a state where their tips are in contact with the outer peripheral portion of the lens to be adjusted.
  • the pair of pin members are configured such that when one of them advances, the other retreats, and when one retreats, the other advances.
  • the pair of pin members are moved forward and backward to manually adjust the lens position in the direction along the X-axis direction.
  • the position of the lens along the Y-axis direction is manually adjusted by the lens position adjustment mechanism on the Y-axis side. This allows multiple lenses The optical axis position can be adjusted accurately.
  • the projection lens is manufactured by moving the projection lens from the lens holding position and removing it from the projection lens manufacturing apparatus. By repeating such operations, the projection lens is manufactured continuously.
  • one of the lenses constituting the projection lens is independently provided along both directions of the X axis and the Y axis orthogonal to each other.
  • Position can be adjusted with high accuracy. Therefore, it is possible to easily grasp the direction to be adjusted, as compared with the case where the adjustment is performed with the three-way pin member as in the related art.
  • the operation of adjusting the optical axis position is simple. At this time, a pair of position adjusting holes are formed along each axis, and the lens position adjusting mechanism may be always inserted straight into these pair of position adjusting holes and moved forward and backward. It is not necessary to increase the opening size of the position adjustment hole. For this reason, light leakage from the projection lens can be prevented, and an appropriate image can be projected.
  • the lens position adjustment mechanism is provided on the lens manufacturing device side instead of on the projection lens side, the number of members that make up the projection lens can be reduced, reducing the manufacturing cost of the projection lens and reducing its size and weight. Can be achieved.
  • the lens itself is moved instead of the lens holding tube, if there is another lens fixed to the lens holding tube, the other lens fixed to the light source for adjustment may be used.
  • the optical axis position of the lens does not shift. Therefore, it is easy to match the optical axis of the optical axis position of the lens to be adjusted with another lens, and the optical axis position of the lens can be adjusted with high accuracy.
  • the lens to be adjusted is bonded to the lens holding cylinder.
  • the position is adjusted before fixing, no distortion occurs in the lens holding cylinder due to the adjustment of the lens position. Therefore, since it is not necessary to provide the lens holding cylinder with the strain absorbing portion, the size of the lens holding frame and the size of the projection lens can be reduced. Further, since no distortion occurs in the lens holding cylinder, there is no need to heat the lens holding cylinder to eliminate the distortion. Therefore, the material of the lens can be made weak to heat, and the material of the lens is not limited. Furthermore, since the lens adjustment is performed before the lens is fixed to the lens holding cylinder, fine adjustment of the lens position can be easily performed, and the lens position can be adjusted with high accuracy.
  • the lens position adjusting mechanism includes two pin members that are respectively inserted into one position adjusting hole formed on the axis and abut on an outer peripheral portion of the lens to be adjusted.
  • the pin members are inserted into the opposing position adjustment holes on a predetermined axis, and the urging portions urge these pin members in a direction approaching each other to hold the lens. Let it.
  • the advance / retreat section in this state to advance / retreat one of the pin members, the position of the lens can be easily adjusted while the lens is held by the two pin members.
  • adjustment can be similarly performed for other axes.
  • the urging portion is a cylinder device that is arranged for each of the pin members and urges the pin members with a pressure of a fluid.
  • the position of the pin member can always be kept constant by setting the pressure of the fluid such as air or oil / fat in the cylinder device to be always constant. For this reason, even when the next projection lens is manufactured by replacing the projection lens, the lens to be adjusted can be adjusted to a position near the optical axis alignment position, and thereafter, the deviation for each projection lens can be finely adjusted. Therefore, the position adjustment work can be further simplified.
  • the advance / retreat portion is a micro head for moving the one pin member forward / backward with respect to the other pin member.
  • a micro-medium head having a high resolution such as a 1-m level can be adopted, so that the optical axis position adjustment can be performed with higher accuracy.
  • the resolution of the micro head can be appropriately changed depending on the design of the projection lens to be manufactured.
  • a moving mechanism for moving the projection lens holding mechanism from a position where the lens position adjusting mechanism is installed to a supply position of a projection lens to be manufactured.
  • the adjustment mechanism and the feeding position of the projection lens are separated by the moving mechanism that moves the lens holding mechanism between the position where the projection lens position adjustment mechanism is installed and the feeding position of the projection lens. Therefore, the projection lens can be easily set at a position where other mechanisms do not interfere.
  • the moving mechanism rotates the lens holding mechanism around a base end of an arm connected to the lens holding mechanism in a direction perpendicular to the illumination optical axis, and holds the lens holding mechanism. It is preferable to provide a rotary moving device for moving a mechanism between on and off the illumination optical axis.
  • the lens holding mechanism rotates between the upper side and the outer side of the illumination optical axis around the base end of the arm portion, if the projection lens is set outside the illumination optical axis, another configuration is possible.
  • the projection lens can be easily set at a position that does not interfere with the mechanism, and the efficiency of manufacturing operations can be improved.
  • an adhesive injection hole for injecting an adhesive for bonding and fixing the position-adjusted lens is formed in the lens holding cylinder, and the adhesive fixing mechanism is injected into the adhesive injection hole. It is preferable to provide a light irradiation unit for curing the photocurable adhesive.
  • the injection of the adhesive into the adhesive injection hole may be performed manually by an operator, and the adhesive fixing mechanism of the projection lens manufacturing apparatus may be configured to inject a light-curing adhesive into the adhesive injection hole.
  • a light-curable adhesive may be automatically injected.
  • the adhesive fixing mechanism is inserted into the adhesive injection hole formed in the projection lens.
  • an ultraviolet-curable adhesive injection tube is provided.
  • An adhesive is injected from the adhesive injection section through the ultraviolet-curable adhesive injection tube, and a light beam such as ultraviolet light is emitted from the light irradiation section.
  • a light beam such as ultraviolet light is emitted from the light irradiation section.
  • the positions of the holes may be changed as appropriate.
  • the lens position adjusted by the lens position adjusting mechanism With the lens position adjusted by the lens position adjusting mechanism, the light-curing adhesive is injected from the adhesive injection section through the adhesive injection hole, and then the light is irradiated from the light irradiation section.
  • the lens By irradiating, the lens can be adhesively fixed to the lens holding cylinder. Since the lens is fixed with the lens position fixed in this manner, defects that occur during the bonding and fixing can be minimized.
  • an optical path between the light source and the arranged projection lens is provided with a light shielding mechanism that shields a light beam from the light source so as not to be introduced into the projection lens.
  • the light blocking mechanism a configuration in which a plate member or the like for blocking light from the light source is inserted into an optical path between the light source and the projection lens can be adopted.
  • the light-curable adhesive when the light beam is irradiated from the light beam irradiating section to cure the light-curable adhesive, the light-curable adhesive can be prevented from being erroneously cured by mixing the light flux from the light source.
  • a screen that projects image light projected through the projection lens is disposed downstream of the optical path of the projection lens.
  • the position of the projection lens can be adjusted while observing the image projected on the screen enlarged, so that the optical axis position can be adjusted more accurately.
  • an optical path from the light source to the projection lens is formed in a direction substantially along a vertical direction.
  • the optical path is in the vertical direction
  • a plurality of The lenses are arranged side by side in the horizontal direction
  • the adjustment direction of the lens to be adjusted is the horizontal direction. Therefore, for example, even when a configuration in which the above-described insertion portion (for example, an ultraviolet ray curable adhesive injection tube or the like) is arranged in a horizontal direction with respect to the pin member is adopted, the adhesive remaining at the tip of the insertion portion is not removed. Since it flows in the vertical direction, the adhesive can be prevented from adhering to the tip of the pin member, and the projection lens can be manufactured efficiently.
  • the above-described insertion portion for example, an ultraviolet ray curable adhesive injection tube or the like
  • a reflecting member that bends and reflects the optical path of the image light emitted from the projection lens and projects the reflected image light is disposed downstream of the optical path of the projection lens. And a screen.
  • the reflecting member can be configured to reflect the image light emitted from the projection lens at a substantially right angle.
  • the image light emitted from the projection lens is reflected at right angles by the reflecting member and projected on a screen
  • the light path direction of the main body of the manufacturing apparatus and the screen surface are arranged in parallel. For this reason, the dimensions of the main body of the manufacturing apparatus other than the screen can be reduced as compared with the case where the optical path from the main body of the manufacturing apparatus to the screen is formed in a straight line along the vertical direction.
  • a method of manufacturing a projection lens according to the present invention is directed to a projection lens for manufacturing a projection lens including: a lens holding cylinder having a predetermined optical path set therein; and a plurality of lenses sequentially arranged on an illumination optical axis of the optical path.
  • the lens holding cylinder wherein the position of any one of the plurality of lenses is set in a direction along two axes orthogonal to each other in a plane orthogonal to the illumination optical axis.
  • a pair of position adjustment holes are formed on each of the axes to adjust the position of the lens to be adjusted on the illumination optical axis.
  • illumination An image light emitting step of introducing the image light into a projection lens disposed on the optical axis, and detecting the position of the lens to be adjusted while detecting the image light projected from the projection lens into which the image light has been introduced.
  • the present invention since it can be manufactured in the same manner as the above-described manufacturing method, substantially the same operation and effect as those of the above-described projection lens manufacturing apparatus can be achieved, and the object of the present invention can be achieved. That is, one of the lenses constituting the projection lens can be independently and precisely adjusted along both directions of two axes orthogonal to each other. Therefore, the direction of adjustment can be easily grasped as compared with the conventional art, and the work of adjusting the optical axis position is easier. Also, for example, by providing a pin member for adjusting the position of the lens on the manufacturing apparatus side and not on the projection lens side, the number of members constituting the projection lens can be reduced, and the production of the projection lens can be reduced. Cost reduction, downsizing, and weight reduction can be achieved.
  • the lens is moved instead of the lens holding cylinder, if there is another lens fixed to the lens holding frame, another lens fixed to the light source for adjustment is used. Does not shift. Therefore, it is easy to match the optical axis of the other lens with the optical axis position of the lens to be adjusted, and the optical axis position of the lens can be adjusted with high accuracy.
  • the lens to be adjusted is fixed to the lens holding cylinder after the position adjustment, no distortion occurs in the lens holding cylinder due to the position adjustment of the lens. Therefore, since it is not necessary to provide the lens holding cylinder with the strain absorbing portion, the size of the lens holding frame and the size of the projection lens can be reduced. Further, since no distortion occurs in the lens holding cylinder, there is no need to heat the lens holding cylinder to eliminate the distortion. Therefore, the material of the lens can be made weak to heat, and the material of the lens is not limited. Further, since the lens is adjusted before being fixedly bonded to the lens holding cylinder, fine adjustment of the lens position can be easily performed, and the lens position can be adjusted with high precision.
  • a projection lens according to the present invention is manufactured by the method for manufacturing a projection lens. According to the present invention, substantially the same effects as those of the above-described projection lens manufacturing apparatus or manufacturing method can be obtained. Therefore, it is possible to provide a projection lens capable of adjusting the optical axis position with high accuracy, projecting a high-quality image, and reducing the manufacturing cost. Furthermore, a projector according to the present invention includes the projection lens. I do. According to the present invention, the same function and effect as those of the above-described projection lens can be obtained. Therefore, high-quality images can be projected while manufacturing costs can be reduced. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a perspective view of a projector according to an embodiment of the present invention as viewed from the upper front side.
  • FIG. 2 is a perspective view of the projector viewed from the lower rear side.
  • FIG. 3 is a perspective view showing the inside of the projector, specifically, a view in which an upper case is removed from the state of FIG.
  • FIG. 4 is a perspective view showing the inside of the projector, specifically, a view in which a control board is removed from the state of FIG.
  • FIG. 5 is an exploded perspective view showing an optical unit constituting the projector.
  • FIG. 6 is a diagram schematically showing the optical unit.
  • FIG. 7 is a perspective view of the projection lens constituting the optical unit as viewed from the front (projection) side.
  • FIG. 8 is an exploded perspective view showing the projection lens.
  • FIG. 9 is a longitudinal sectional view showing the projection lens.
  • FIG. 10 is a perspective view of the projection lens as viewed from the rear side.
  • FIG. 11 is a side view of a projection lens manufacturing apparatus for manufacturing the projection lens.
  • FIG. 12 is a side view of a device main body constituting the projection lens manufacturing device.
  • FIG. 13 is a view of the apparatus main body as viewed from the rear side.
  • FIG. 14 is a side view showing an inspection sheet constituting the apparatus main body.
  • FIG. 15 is a front view showing the inspection sheet.
  • FIG. 16 is an enlarged front view showing a part of the inspection sheet.
  • FIG. 17 is an enlarged plan view showing a part of a lens position adjusting mechanism and an adhesive fixing mechanism which constitute the projection lens manufacturing apparatus.
  • FIG. 18 is a flowchart showing a procedure for manufacturing the projection lens.
  • FIGS. 19A and 19B are schematic diagrams showing a state where the third lens group of the projection lens is held by a pin member.
  • FIG. 20 is a side view of the projection lens manufacturing apparatus according to the second embodiment of the present invention.
  • FIG. 21A is a schematic diagram showing a state in which an adhesive is injected into an injection hole of a lens holding cylinder of the projection lens.
  • FIG. 21B is a schematic view showing a state in which the adhesive injected into the injection hole is cured.
  • FIG. 1 is a perspective view of a projector 1 according to the present invention as viewed from the upper front side.
  • FIG. 2 is a perspective view of the projector 1 as viewed from the lower rear side.
  • the projector 1 includes a substantially rectangular parallelepiped outer case 2 formed by injection molding.
  • the outer case 2 is a synthetic resin housing for housing the main body of the projector 1 and includes an upper case 21 and a lower case 22. These cases 21 and 22 are detachable from each other. It has been done.
  • the upper case 21 includes an upper surface 21A, a side surface 21B, a front surface 21C, and a rear surface 21D which constitute the upper surface, the side surface, the front surface, and the rear surface of the projector 1, respectively. Be composed.
  • the lower case 22 also includes a lower surface 22A, a side surface 22B, a front surface 22C, and a rear surface, which constitute the lower surface, side surface, front surface, and rear surface of the projector 1, respectively. It is configured to include 22D.
  • the side portions 21B and 22B of the upper case 21 and the lower case 22 are continuously connected to each other. Then, the side part 210 of the rectangular parallelepiped is formed. Similarly, the front part 220 is connected by connecting the front parts 21 C and 22 C, and the rear part is connected by connecting the rear part 2 ID and 22 D.
  • the upper surface portion 21A constitutes the upper surface portion 240, and the lower surface portion 22A constitutes the lower surface portion 250.
  • an operation panel 23 is provided in front of the upper surface 240, and a speaker hole 24OA for audio output is formed near the operation panel 23. ing.
  • An opening 211 that straddles the two side portions 21B and 22B is formed in the side portion 210 on the right side when viewed from the front.
  • a main board 51, which will be described later, and an interface board 52 are provided in the outer case 2, and the main board 51 and the interface board 52, which will be described later, are attached to the opening 2 11 through an inner space panel 53.
  • the connecting portion 51 B mounted on the main board 51 and the connecting portion 52 A mounted on the interface board 52 are exposed to the outside. External electronic devices and the like are connected to the projector 1 at these connection portions 51B and 52A.
  • a circular opening 221 straddling the two front parts 21C and 22C is formed near the operation panel 23 on the right side when viewed from the front.
  • a projection lens 46 is disposed inside the outer case 2 so as to correspond to the opening 222. At this time, the front end of the projection lens 46 is exposed to the outside through the opening 221, and the focus operation of the projection lens 46 is manually performed through the lever 46A, which is a part of this exposed portion. You can do it.
  • An exhaust port 222 is formed in the front part 220 at a position opposite to the opening 221.
  • the exhaust port 222 has a safety cover 222 A formed therein.
  • a rectangular opening 231 is formed on the right side as viewed from the rear, and the inlet connector 24 is exposed from the opening 231. .
  • a rectangular opening 251 is formed at a central position on the right end side when viewed from below.
  • the opening 2 51 has a lamp cover 2 5 is provided detachably. By removing the lamp cover 25, a light source lamp (not shown) can be easily replaced.
  • a rectangular surface 252 recessed inward by one step is formed at the corner on the left side on the left side when viewed from below.
  • the rectangular surface 255 is provided with an intake port 255A for sucking cooling air from outside.
  • An intake cover 26 that covers the rectangular surface 25 2 is detachably provided on the rectangular surface 25 2.
  • the inlet 26 has an opening 26A corresponding to the inlet 25A.
  • An air filter (not shown) is provided in the opening 26A to prevent dust from entering the inside.
  • a rear leg 2R constituting a leg of the projector 1 is formed at a substantially central position on the rear side.
  • Front legs 2F which also constitute the legs of the projector 1, are provided at the left and right corners on the front side of the lower surface 22A. That is, projector 1 is supported at three points by rear leg 2R and two front legs 2F.
  • the two front legs 2F are configured to be able to move up and down, respectively, so that the inclination (posture) of the projector 1 in the front-rear direction and the left-right direction can be adjusted so that the position of the projected image can be adjusted. I have.
  • a rectangular parallelepiped recessed portion 253 is formed at a substantially central position on the front side of the outer case 2 so as to straddle the lower surface portion 250 and the front surface portion 220.
  • the concave portion 253 is provided with a cover member 27 slidable in the front-rear direction to cover the lower side and the front side of the concave portion 253. Due to the cover member 27, a remote controller (remote controller) (not shown) for remote-controlling the projector 1 is stored in the concave portion 25 3.
  • FIGS. 3 and 4 are perspective views showing the inside of the projector 1. Specifically, FIG. 3 is a diagram in which the upper case 21 of the projector 1 has been removed from the state of FIG. FIG. 4 is a view in which the control board 5 is removed from the state of FIG.
  • the outer case 2 includes a power supply unit 3 disposed along the rear surface and extending in the left-right direction, and a plan view disposed in front of the power supply unit 3.
  • An optical unit 4 as an optical system having a substantially L-shape, and a control board 5 as a control unit disposed above and on the right side of these units 3 and 4 are provided.
  • the main body of the projector 1 is constituted by these devices 3 to 5.
  • the power supply unit 3 includes a power supply 31 and a not-shown lamp driving circuit (palast) arranged below the power supply 31.
  • the power supply 31 supplies electric power externally supplied through a power supply cable (not shown) connected to the inlet connector to the lamp drive circuit, the control board 5, and the like.
  • the lamp drive circuit supplies the power supplied from the power supply 31 to a light source lamp (not shown in FIGS. 3 and 4) constituting the optical unit 4, and is electrically connected to the light source lamp. I have.
  • a lamp drive circuit can be configured by, for example, wiring to a substrate.
  • the power supply 31 and the lamp driving circuit are arranged substantially vertically in parallel, and their occupied space extends in the left-right direction on the rear side of the projector 1.
  • the power supply 31 and the lamp driving circuit are covered by a metal shield member 31A such as aluminum having left and right openings.
  • the shielding member 31A has a function of preventing electromagnetic noise generated in the power supply 31 and the lamp driving circuit from leaking outside in addition to a function as a duct for guiding cooling air. .
  • control board 5 is arranged so as to cover the upper sides of the units 3 and 4, and includes a main board 51 including a CPU, a connection portion 51B, and the like, and a lower side of the main board 51. And an interface board 52 including a connecting portion 52A.
  • control board 5 a CPU or the like of the main board 51 controls a liquid crystal panel constituting an optical device described later, in accordance with image information input via the connection sections 51B and 52A. .
  • the periphery of the main board 51 is covered with a metal shield member 51A.
  • the main substrate 51 is in contact with the upper end portion 472A (FIG. 4) of the upper light guide 472 constituting the optical unit 4, although it is difficult to understand in FIG. [2. Detailed configuration of optical unit]
  • FIG. 5 is an exploded perspective view showing the optical unit 4.
  • FIG. 6 is a diagram schematically showing the optical unit 4. As shown in FIG.
  • the optical unit 4 optically processes the luminous flux emitted from the light source lamp 416 constituting the light source device 411 to form an optical image corresponding to image information. It is a unit that enlarges and projects an image, and includes an Integral evening illumination optical system 41, a color separation optical system 42, a relay optical system 43, an optical device 44, a projection lens 46, and A light guide 47 (FIG. 5) made of synthetic resin for housing the optical components 41 to 44 and 46 is provided.
  • the integrator illumination optical system 41 is composed of three liquid crystal panels 44 1 constituting the optical device 44 (liquid crystal panels 44 1 R, 44 1 G, 44 4 respectively for red, green, and blue color lights). 1B) for illuminating the image forming area substantially uniformly, and includes a light source device 4 11, a first lens array 4 12, a second lens array 4 13, and a polarization converter. And a superimposing lens 4 15.
  • the light source device 411 includes a light source lamp 4 16 as a radiation light source and a reflector 4 17, and a radial light beam emitted from the light source lamp 4 16 is reflected by the reflector 4 17 to be a parallel light beam.
  • the parallel rays are emitted to the outside.
  • a high-pressure mercury lamp is used as the light source lamp 416.
  • a metal halide lamp, a halogen lamp, and the like can be used.
  • a parabolic mirror is used for the reflector 417. Instead of a parabolic mirror, a combination of a parallelizing concave lens and an ellipsoidal mirror may be used.
  • the first lens array 4 12 has a configuration in which small lenses having a substantially rectangular outline when viewed from the optical axis direction are arranged in a matrix. Each small lens divides the light beam emitted from the light source lamp 416 into a plurality of partial light beams.
  • the contour shape of each small lens is set to be substantially similar to the shape of the image forming area of the liquid crystal panel 441. For example, if the aspect ratio (ratio of horizontal to vertical dimensions) of the image forming area of the liquid crystal panel 441 is 4: 3, the aspect ratio of each small lens is also set to 4: 3.
  • the second lens array 4 13 has substantially the same configuration as the first lens array 4 12, and has a configuration in which small lenses are arranged in a matrix.
  • the second lens array 4 13 has a function of forming an image of each small lens of the first lens array 4 12 on the liquid crystal panel 4 41 together with the superimposing lens 4 15.
  • the polarization conversion element 4 14 is arranged between the second lens array 4 13 and the superimposing lens 4 15. Such a polarization conversion element 4 14 converts the light from the second lens array 4 13 into one type of polarized light, thereby increasing the light use efficiency of the optical device 44. ing.
  • the respective partial lights converted into one kind of polarized light by the polarization conversion element 4 14 are finally superimposed almost on the liquid crystal panel 4 4 1 of the optical device 4 4 by the superposition lens 4 5.
  • Project 1 using a liquid crystal panel that modulates polarized light 441 only one type of polarized light can be used, so approximately half the luminous flux from a light source lamp 416 that emits other types of randomly polarized light. Is not used. For this reason, by using the polarization conversion element 4 14, all the light beams emitted from the light source lamp 4 16 are converted into one kind of polarized light, and the light use efficiency of the optical device 44 is improved.
  • a polarization conversion element 4 14 is introduced in, for example, Japanese Patent Application Laid-Open No. 8-304739.
  • the color separation optical system 4 2 includes two dichroic mirrors 4 2 1 and 4 2 2 and a reflective mirror 4 2 3. It has a function of separating a plurality of partial light beams emitted from the optical system 41 into three color lights of red (R), green (G), and blue (B).
  • Relay optical system 4 3 has an incident-side lens 4 3 1, a relay lens 4 3 3, and a reflecting Mi La one 4 3 2, 4 3 4, are separated color light by the color separation optical system 4 2 It has a function to guide red light to the liquid crystal panel 4441R.
  • the dichroic mirror 4 21 of the color separation optical system 42 transmits the red light component and the green light component and reflects the blue light component of the light flux emitted from the integrator evening illumination optical system 41. I do.
  • the blue light reflected by the dichroic mirror 4 2 1 is reflected by the reflection mirror 4 2 3, passes through the field lens 4 18, and is LCD panel 4 4 1 B is reached.
  • the field lens 4 18 converts each partial light beam emitted from the second lens array 4 13 into a light beam parallel to its central axis (principal ray). The same applies to the field lens 418 provided on the light incident side of the other liquid crystal panels 441 G and 441 B.
  • the green light is reflected by the dichroic mirror 422, passes through the field lens 418, and passes through the liquid crystal panel 444 for green. Reach 1 G.
  • the red light passes through the dichroic mirror 422, passes through the relay optical system 43, further passes through the field lens 418, and reaches the liquid crystal panel 441R for red light.
  • the reason why the relay optical system 43 is used for red light is that the light path length of red light is longer than the light path lengths of other color lights, thus preventing a reduction in light use efficiency due to light divergence. To do that. That is, it is for transmitting the partial light beam incident on the incident side lens 431 to the field lens 418 as it is.
  • the relay optical system 43 is configured to transmit red light of the three color lights, but is not limited thereto, and may be configured to transmit blue light, for example.
  • the optical device 44 modulates the incident light beam according to image information to form a color image.
  • the three light beams into which the color lights separated by the color separation optical system 42 enter are input.
  • Side polarizing plates 4 4 2 liquid crystal panels 4 4 1 R, 4 4 1 G, 4 4 1 B as light modulators disposed downstream of each incident side polarizing plate 4 4 2, and each liquid crystal panel 4
  • An exit-side polarizing plate 443 disposed downstream of 41R, 4411G, and 4411B, and a cross dichroic prism 444 as a color combining optical system are provided.
  • the liquid crystal panels 441 R, 441 G, and 441 B use, for example, polysilicon TFT as a switching element.
  • each color light separated by the color separation optical system 42 is applied to the three liquid crystal panels 441, R41, G41, and B41, the incident-side polarizing plate 4442, and the emission light.
  • the light is modulated by the side polarizing plate 443 in accordance with image information to form an optical image.
  • the incident-side polarizing plate 442 transmits only polarized light of a certain direction among the color lights separated by the color separation optical system 432, and absorbs other light beams.
  • a polarizing film is attached to a substrate such as a substrate.
  • a polarizing film may be attached to the field lens 418 without using a substrate.
  • the exit-side polarizing plate 4 4 3 is also configured in substantially the same manner as the incident-side polarizing plate 4 42, and is configured to output the light flux emitted from the liquid crystal panel 4 4 1 (4 4 1 R, 4 4 1 G, 4 4 1 B). Of these, it transmits only polarized light in a predetermined direction and absorbs other light beams. Also, a polarizing film may be attached to the cross dichroic prism 444 without using a substrate.
  • the incident side polarizing plate 442 and the exit side polarizing plate 443 are set such that their polarization axes are orthogonal to each other.
  • the cross dichroic prism 444 combines the optical images emitted from the emission-side polarizing plate 443 and modulated for each color light to form a color image.
  • a dielectric multilayer film that reflects red light and a dielectric multilayer film that reflects blue light are provided in an approximately X shape along the interface of the four right-angle prisms.
  • the three colored lights are synthesized by the dielectric multilayer film.
  • the projection lens 46 enlarges and projects a single color image formed by the cross dichroic prism 44 4 of the optical device 44.
  • the light guides 47 are arranged such that the optical components 4 12 to 4 15, 4 18, 4 2 1 to 4 2 3, 4 3 1 to 4 3 4 and 4 4 It comprises a lower light guide 471 having a groove to be fitted in a sliding manner, and a lid-like upper light guide 472 closing the upper opening of the lower light guide 471.
  • a light source device 411 is housed on one end side of a substantially L-shaped lower light guide 471 in plan view.
  • a projection lens 46 is screwed and fixed to the other end via a head portion 473 formed in the lower light guide 471. The details of the projection lens 46 will be described later.
  • the optical device body 45 housed in the lower light guide 47 1 is screwed and fixed to the lower light guide 47 1 with the two spring members 50 interposed therebetween.
  • the two spring members 50 urge the field lens 4 18 and the incident side polarizing plate 4 42 downward to specify the position.
  • FIG. 7 is a perspective view of the projection lens 46 as viewed from the front side (projection side).
  • FIG. 8 is an exploded perspective view showing the projection lens 46.
  • FIG. 9 is a longitudinal sectional view showing the projection lens 46.
  • FIG. 10 is a perspective view of the projection lens 46 as viewed from the rear side.
  • the projection lens 46 enlarges and projects a color image synthesized by the cross prism opening prism 444 of the optical device body 45.
  • the projection lens 46 is sequentially arranged on a lens barrel 100 made of resin or the like in which a predetermined optical path is set, and on the illumination optical axis of the optical path in the lens barrel 100.
  • a lens group 110 as a plurality of lenses.
  • the first lens group 1 11, the second lens group 1 1 2, the third lens group 1 1 3, and the third lens group 1 1 3 are arranged in order from the projection side (the right side in the figure).
  • the first lens group 1 1 1 is a concave lens for magnifying and projecting in the tilt direction, and is formed as an aspheric lens.
  • the second lens group 1 1 2 is a convex lens for adjusting the light flux.
  • the third group lens 1 13 is a balsam lens in which the concave lens 1 13 A has a smaller dimension than the concave lens 1 13 A and a convex lens 1 13 B with an aspherical lens on the entrance side. It is.
  • the fourth group lens 114 is a convex lens that receives image light, and is formed as a spherical lens.
  • the lens barrel 100 includes a lens barrel body 101 as a lens holding barrel fixed to one end of the lower light guide, and a projection of the lens barrel body 101. It has a front frame 102 mounted on the side (right side in the figure) and a rear frame 103 mounted on the opposite side (left side in the figure) of the lens barrel main body 101 from the projection side.
  • the lens barrel body 101 is a member made of synthetic resin that adjusts and stores the third lens group 113 to be adjusted at a predetermined position, and is provided at one end of the lower light guide 471 (FIG. 4).
  • Flat flange 1 2 1 screwed to a certain mounting surface, and projection of this flange 1 2 1 Via a cylindrical attitude adjustment section 122 formed on the projection side and a connection section 123, the diameter of the attitude adjustment section 122 formed on the projection side of this attitude adjustment section 122 is determined.
  • a cylindrical mounting portion 124 having a large diameter.
  • the collar portion 121 is a rectangular plate-shaped member attached to the mounting surface of the lower light guide for connecting the lower light guide to the projection lens 46.
  • the collar portion 121 has a rectangular plate-shaped flange portion main body 125 having a substantially circular opening 125 A formed in the center portion, and an outer peripheral portion of the opening 125 A. And a protruding portion 126 formed in a cylindrical shape from the left side surface of the flange main body 125 in the drawing.
  • An opening 125A formed in the plate-shaped flange main body 125 is formed to penetrate the left and right sides in the figure in order to transmit image light for projection.
  • screw-through holes 125 B for attaching to the lower light guide are formed at the four corners of the plate-shaped flange portion 121.
  • the inner portion of the cylinder is a concave portion 126 A, and the protruding portion 126 is on the left side surface 126 L of the drawing.
  • screw holes 126B are formed at three locations which are substantially equal to each other.
  • the posture adjustment section 122 is formed in a cylindrical shape surrounding the opening 125A formed in the flange main body 125, and the main part of the third group lens 113 is formed.
  • the concave lens 1 13 A is accommodated in a loosely fitted state.
  • circular position adjustment holes 122 are formed in the outer periphery of the cylinder at four equally spaced locations on the top, bottom, left, and right in the figure. Have been.
  • two position adjustment holes 122 AV are located at the upper and lower symmetrical positions in the figure sandwiching the center of the cylinder.
  • a straight line connecting these two position adjusting holes 122 AV and a straight line passing through the two position adjusting holes 122 AH are substantially orthogonal to each other.
  • each position adjustment hole 122A (122A, 122AH) is provided with a flowing adhesive such as an ultraviolet curing type.
  • Adhesive injection holes 122 B for injecting an adhesive or the like are respectively formed.
  • the posture adjustment unit 122 is located between the four position adjustment holes 122 formed at equal positions in the top, bottom, left, and right in the figure, and two adjacent position adjustment holes 122, respectively. Each of them includes a total of eight adhesive injection holes 1 2 2B.
  • the connecting portion 123 is a cylindrical member that connects the posture adjusting portion 122 and the mounting portion 124, and is smaller than the diameter of the posture adjusting portion 122 and the mounting portion 124. It is formed with dimensions.
  • a lens holding claw 123 A into which the second group lens 112 is fitted is formed on the right side of the connection part 123 in the figure.
  • the second group lens 1 1 2 is attached by heat staking.
  • the lens holding claw 123 A is formed such that the core position of the second lens 112 is exactly on the optical axis Z based on the outer shape of the second lens 112.
  • a rib 1 2 3 B is provided at a position corresponding to the position adjusting hole 122 a to reinforce the connection between the attitude adjusting portion 122 and the mounting portion 124. It is formed.
  • the mounting portion 124 is a member that is formed in a cylindrical shape that protrudes from the side of the connecting portion 123 in the figure to the outer peripheral side, and that holds the front frame 102 at the right side in the drawing. As shown in FIG. 9, the mounting portion 124 has an internal thread 124A formed along the inner peripheral surface thereof.
  • a screw hole 124B is formed on the lower side of the mounting portion 124 in the drawing.
  • a screw 124C is passed through the screw hole 124B from the outside of the mounting portion 124 so that the tip protrudes into the inside of the mounting portion 124.
  • the screw 124 C prevents unnecessary rotation of the front frame 102.
  • the front frame 102 is a cylindrical frame member, and includes a lens holding frame 102 A and a connecting portion 102 B attached to the mounting portion 124.
  • a cosmetic power bar provided with a lever 46A is provided so as to cover the outer periphery of the connection portion 102B.
  • the lens holding frame 102A is a frame-shaped portion into which the first group lens 111 is fitted, and the fitted first group lens 111 is fixed to the lens holding frame 102A by heat staking. You.
  • This lens holding frame 102A is based on the outer shape of the first lens group 111, The first lens group 111 is formed so that the core position thereof is exactly on the optical axis Z.
  • the connecting portion 102B is inserted inside the mounting portion 124.
  • a male screw 103C screwed with the female screw 124A is formed on the outer periphery of the connecting portion 102B.
  • the front frame 102 advances and retreats in the direction along the optical axis Z with respect to the mounting portion 124 when the female screw 124 A and the male screw 103 C are screwed together. As a result, focus adjustment of the projected image can be performed.
  • the rear frame 103 has a disc-shaped rear frame main body 13 1 having a substantially circular opening 13 1 A formed in the center portion, and an opening 13 1 A. It has a projection 1332 projecting from the outer periphery to the right in the figure to the right side in the figure, and a lens holding claw 1333 formed on the left side in the figure from the outer periphery of the opening 13A.
  • the rear frame main body 13 1 is a portion connected to the left side surface 126 L of the protruding portion 126 of the flange main body 125.
  • three adjustment portions 134 are formed at three positions on the right side 1311R of the right side in the figure at substantially equal intervals, and project to the right side in the figure along the circumferential direction. Have been.
  • Each of these adjusting portions 134 is formed as a gentle inclined surface having a uniform inclined direction. For this reason, the rear frame body 13 1 moves itself in the direction along the optical axis Z with respect to the collar portion 121 by rotating by the rotation about the optical axis Z. Focus adjustment is possible.
  • the adjusting portion 13 4 has a loose hole 13 A that penetrates in the left-right direction along the shape of the adjusting portion 13 4.
  • the loose hole 13 A is formed in the rear frame.
  • the body 13 1 also penetrates. That is, the hole penetrates the rear frame 103 in the left-right direction.
  • Three screws 135 are passed through the loose holes 134A, and are connected to the screw holes 126B of the flange 121.
  • the protruding portion 132 is inserted into the concave portion 126A of the flange portion 121 via the concentric spacer 104, and urges the third lens group 113 to the right in the figure. It is a member to hold.
  • the spacer 104 is in contact with only the outer peripheral left side of the concave lens 113 of the third group lens 113, and the inner opening of the spacer 104 is the third group lens 111. 3 convexity 1 13 B is located.
  • the lens holding claw 133 is a frame-shaped portion into which the fourth group lens 114 is fitted, and the fitted fourth group lens 114 is fixed by heat caulking.
  • the lens holding claw 133 is formed such that the center position of the fourth lens group 114 is exactly on the optical axis Z based on the outer shape of the fourth lens group 114.
  • FIG. 11 is a side view of the projection lens manufacturing apparatus 500.
  • the projection lens manufacturing apparatus 500 is an apparatus for manufacturing the projection lens 46 used in the projector 1, and as shown in FIG. 11, a device main body 501 and a screen for projecting an image emitted from the device main body 501. 502.
  • FIG. 12 is a diagram of the apparatus main body 501 viewed from the side.
  • FIG. 13 is a view of the apparatus main body 501 as viewed from the rear side.
  • XY coordinates that are orthogonal to the optical axis Z of the projection lens 46 and orthogonal to each other are set.
  • the X-axis and the Y-axis are axes in the direction in which the opposing pin members advance and retreat, as described below.
  • the apparatus main body 501 is a part that mainly manufactures the projection lens 46, and includes an apparatus table 510 formed in two upper and lower stages 511, 512; Projection unit 520 arranged on the upper surface 51 1 A side of the upper stage 51 1, a moving mechanism 540 arranged on the upper surface 512 A of the lower stage 512 of the mounting table 510, and a projection lens connected to the moving mechanism 540.
  • a mechanism 550 which is a reflecting member arranged on the upper surface 512A of the lower stage 5 12 of the device base 510, and a lens position adjusting mechanism arranged on the lower surface 51 1B side of the upper stage 51 1 of the apparatus stage 5 10 570, and an adhesive fixing mechanism 580, some of which are not shown.
  • the device base 510 is a member that is disposed on the floor or a desk and supports the above-described components 520, 540, 560, and 570, and is configured as two stages, an upper stage 511 and a lower stage 512. ing.
  • An opening 5111X through which the light beam emitted from the light source device 521 passes is formed in the upper stage 511.
  • a part of the projection A support surface 511Y is formed.
  • the four legs 5 13 are provided, although not shown.
  • the four legs 5 13 are in contact with the floor or the like to support the device main body 501 at four points.
  • the projection unit 520 is a device that introduces image light including a predetermined test pattern into the projection lens 46, and includes a light source device 521, a first lens array 522, and a second lens array 523. , A polarization conversion element 5 2 4, a superimposing lens 5 2 5, an inspection sheet 5 2 6, a dummy prism 5 2 7, a light shielding device 5 2 8, and these parts 5 2 1 to 5 2 8. And a plurality of fans 530 installed on side surfaces of the housing 5229.
  • the light source device 521 emits a reference light beam for inspection, and although not shown, includes a light source lamp and a parabolic reflector.
  • the parabolic reflector has a concave paraboloidal surface, and the light source lamp is disposed near a focal point of the paraboloidal concave surface. With this configuration, the light beam emitted from the light source lamp and reflected by the parabolic reflector is emitted from the light source device 521 as a substantially parallel light beam.
  • the first lens array 522 is the same as the first lens array 412 constituting the projector 1.
  • the second lens array 523 is the same as the second lens array 413.
  • the polarization conversion element 524 is the same as the polarization conversion element 414
  • the superposition lens 525 is the same as the superposition lens 415.
  • Each of the components 522 to 525 has the same function as that of each of the components 412 to 415.
  • FIG. 14 is a side view showing the inspection sheet 5 26.
  • FIG. 15 is a front view showing the inspection sheet 5 26.
  • FIG. 16 is an enlarged front view showing a part of the inspection sheet 52 6.
  • the inspection sheet 5 2 6 introduces the light beam emitted from the light source device 5 2 1, forms a test pattern image for performing resolution measurement, chromatic aberration measurement, etc., and outputs the image light to the projection lens 4 6. Functions as a unit.
  • the inspection sheet 5 2 6 is translucent and has a predetermined thickness (for example, The image area (test pattern) TP is formed on the front of a quartz glass base material of 1.1 mm), and the base material has a predetermined dimension (for example, 13.0 mm x 16. Omm). Inside, a rectangular image area (test pattern) TP is formed with predetermined dimensions (for example, 8.4 plates XII.2 marauder).
  • the test pattern TP has nine measurement areas A divided into nine locations.
  • Each measurement area A has a resolution measurement test pattern TP 1 and a frame measurement test pattern TP 2, a test pattern TP3 for measuring chromatic aberration, a test pattern TP4 for adjusting focus, and a test pattern TP5 formed as an outer peripheral portion of the test pattern TP for measuring distortion. Some are formed as vertical or horizontal.
  • the test pattern TP1 for resolution measurement has a pattern TP11 in which light-shielding regions TPV are arranged in a stripe pattern in the horizontal direction and a light-shielding region TPH in a stripe pattern in the vertical direction.
  • the numbers TPN are formed on the upper and lower sides of these patterns TP11 and TP12.
  • This number TPN represents the spatial frequency of the pattern TP 11 or TP 12 formed on either the upper or lower side.
  • two patterns TP 11 and TP 12 arranged below “30” are patterns having a spatial frequency of 30 lines / mm.
  • the image light including the patterns TP11 and TP12 is projected on a screen, and a spatial frequency that can be visually identified is detected, and the resolution of the projection lens 46 is measured.
  • the patterns TP11 and TP12 in the figure On the right side of the patterns TP11 and TP12 in the figure, five kinds of circular small hole patterns S having different diameters, which are light-transmitting regions, are formed.
  • the amount of flare can be specified from the difference between the hole diameter of the sample and the image area of transmitted light.
  • the test pattern TP2 for flare measurement is configured as a rectangular light-shielding area having a predetermined dimension, and the light-shielding area includes two types of rectangular light-transmitting areas P and Q having different sizes TP21 to TP 24 pairs are formed.
  • a blue filter, a green filter, and a red filter are provided in order from the top in a set TP21 to ⁇ 24 of the light-transmitting regions P and Q, and a color filter is provided in a lowermost set TP24. Is not provided. Therefore, it passes through inspection sheet 526
  • the image light thus formed is projected on the screen 502 as blue, green, red, and white image light in a shape corresponding to the light-transmitting regions P and Q.
  • the flare is measured based on the sharpness (blur condition) of the outline of the rectangular image light projected on the screen 502.
  • the test pattern TP3 for measuring chromatic aberration is configured as a rectangular light-shielding area, and in this light-shielding area, six substantially vertically rectangular light-transmitting areas including three rectangular areas T1 to T3 are formed. ing.
  • Each light-transmitting region ⁇ has a configuration in which a step is formed in a central portion thereof. The difference between these six light-transmitting regions ⁇ is that the dimension of the step, that is, the width dimension (the dimension in the left-right direction in the figure) of the rectangular area ⁇ 2 changes stepwise.
  • the rectangular areas # 1 to # 3 are provided with red, green, and blue filters in order from the top.
  • the image light transmitted through the inspection sheet 5 26 is projected on the screen as image light corresponding to the substantially vertically rectangular rectangular areas ⁇ 1 to ⁇ 3 of red, green, and blue, and the green area is used as a reference.
  • Chromatic aberration is measured by the sharpness of the step between the red and blue regions (the degree of blur).
  • the focus adjustment test pattern TP4 is an adjustment test pattern for adjusting the focus state of the image light projected onto the screen, and is provided at the four corners of the test pattern TP.
  • the dummy prism 527 is a glass block having a shape corresponding to the cross dichroic prism 444 of the projector 1 and imitating the cross dichroic prism 444.
  • a fixed plate 527A is attached to the incident end face side of the dummy prism 527.
  • the fixing plate 527A is supported by the support surface 5111Y of the upper stage 511 of the device stand 5110.
  • the dummy prism 527 attached to the fixing plate 527A is accommodated in the opening 5111X of the upper stage 5111.
  • the light blocking device 528 has an opening 531A corresponding to the light beam emitted from the superimposing lens 525, and a base 5 fixed to the housing 529. 31 and a light-shielding plate 532 that rotates about an axis parallel to the X-axis with respect to the base 531 and covers the opening 531A.
  • the shading device 5 2 8 turns the shading plate 5 3 2
  • the light beam emitted from the superimposing lens 5 25 is blocked and passed.
  • the housing 5 229 is a light-shielding housing for preventing the light flux inside from leaking, and is fixed to the upper surface 5 11 A of the upper stage 5 11 1 of the device stand 5 110. Holders 533 for holding 521 to 526 on the optical path are provided. Openings for passing the light flux are formed in these holding portions 533.
  • the plurality of fans 530 include three axial fans 530 A to 530 arranged side by side on the left side of the housing 529 in the figure. C, and an axial fan 530D installed at the lower center in the front in the figure. These fans 530A to 530D prevent overheating in the housing 529.
  • An optical path that is linear in a direction substantially along the vertical direction is set in the projection unit 520.
  • the projection unit 520 is configured so that a light beam substantially similar to that when the projection lens 46 is used in the projector 1 is incident on the projection lens 46. For this reason, the projection lens 46 can be manufactured under the same environment as when the projection lens is used for the projector, and the projection lens 46 more suitable for the conditions at the time of use can be manufactured.
  • the movement mechanism 540 moves the projection lens holding mechanism 550 between a position on the lens position adjustment mechanism 570 side and a supply position for supplying the projection lens 46 to be manufactured.
  • the linear moving device 5 41 fixed to the upper surface 5 12 A of the lower stage 5 12 of the device table 5 10 And a rotational movement device 542 provided.
  • the linear movement device 541 is composed of a base 541 A fixed to the upper surface 511 A of the lower stage 511 of the device base 510 and a cylinder 540 mounted on the upper surface of the base 541 A. 1B and a piston 541C provided in the cylinder 541B and extending and retracting in a direction parallel to the optical axis Z, that is, in a substantially vertical direction.
  • the linear movement device 541 moves the piston 541 C by a predetermined amount in the direction along the optical axis Z by the pressure of the air in the cylinder 541 B, and moves the rotation movement device 542. It is moved linearly in the direction along the optical axis Z.
  • the rotary movement device 542 is connected to the tip of the piston 541C via a connection member 542D. It has a mounted tubular portion 542A, a shaft portion 542B inserted through the tubular portion 542A, and an arm portion 542C mounted at the tip of the shaft portion. As shown by arrows in FIG. 13 and FIG. 17 described later, the rotary moving device 542 rotates the arm 542C about the shaft 542B, thereby holding the projection lens. The mechanism 550 is moved between on and off the illumination optical axis of the optical path.
  • the projection lens holding mechanism 550 holds the projection lens 46 to be manufactured at a lens adjustment position for adjusting the position of the third lens group 113 on the illumination optical axis. As shown in FIG. 12, the projection lens holding mechanism 550 includes a base 551, which is attached to the distal end of the arm 542C, and a holding section 552, which is provided on the base. Prepare.
  • the base part 55 1 is a plate-like member for supporting the holding part 55 2, and an opening 55 1 A for inserting the lens barrel 100 of the projection lens 46 at a substantially central position thereof. Are formed. Four recesses are formed around the fitting recesses at positions that are equally spaced from each other.
  • the holding section 55 2 is a jig for holding the projection lens 46 with the projection side facing downward in FIG. 12, and has a rectangular plate-shaped holding section body 55 2 A and a holding section body 55. And four legs provided at four corners of 2A and inserted into each of the four recesses.
  • the holding portion 552 is used by appropriately replacing it with a corresponding one according to the type and dimensions of the projection lens 46 to be manufactured.
  • a circular opening is formed substantially at the center of the holder main body 55 A.
  • the lens barrel 100 is passed through this opening.
  • a fitting concave portion having a shape corresponding to the shape of the flange portion 121 of the projection lens 46 is formed around the opening. Therefore, the projection lens 46 is held at a substantially accurate position on the basis of the outer shape by fitting the collar portion 121 into the concave portion of the holding portion body 552A.
  • the reflection mirror 560 reflects the optical path of the image light, including the test pattern, emitted through the projection lens 46, by bending the optical path by approximately 90 °, and guiding it to the screen.
  • the lens position adjusting mechanism 570 adjusts the position on the XY plane of the third group lens 1 13 constituting the projection lens 46, and adjusts the position along the X-axis direction.
  • a directional lens adjustment mechanism 570X and a Y-axis direction lens adjustment mechanism 570Y for adjusting the position along the Y-axis are provided.
  • the configurations of these directional lens adjustment mechanisms 570X and 570Y are the same, and are denoted by the same reference numerals.
  • the configuration of the Y-axis direction lens adjustment mechanism 570Y will be described, and the description of the configuration of the X-axis direction lens adjustment mechanism 570X will be omitted.
  • the Y-axis direction lens adjustment mechanism 570 Y is provided with two sliders 5 13 A, 5 provided on the lower surface 5 11 B of the upper stage 5 11 B of the device table 5 10.
  • a first cylinder device 571 and a second cylinder device 572 are provided slidably in the direction along the Y axis via 13B. These cylinder devices 571, 572 function as urging portions.
  • FIG. 17 is an enlarged plan view showing a part of the lens position adjusting mechanism and the adhesive fixing mechanism.
  • the first cylinder device 571 includes a cylinder 571 A attached to the slider 513 A and a piston 571 provided to the cylinder 571 A. 1B, a box 571C mounted on the tip of the piston 571B, a first pin member 571D mounted inside the box 571C, and a first pin A micro-medium head 571 E is provided as an advancing / retreating part for finely adjusting the advancing / retreating of the member 571D in the direction along the Y-axis.
  • the cylinder 571A moves the piston 571B forward and backward along the Y axis with respect to the projection lens 46 depending on the pressure of the air injected into the cylinder.
  • the piston 571B moves back and forth along the Y axis due to the air pressure in the cylinder 571A, and accordingly, the box 571C also moves back and forth along the Y axis.
  • the first pin member 5 7 1 D is inserted into the position adjustment hole 1 2 2 A of the projection lens 46, and the Y of the third group lens 1 13 constituting the projection lens 46 is formed. It adjusts the position in the axial direction.
  • the distal end of the first pin member 571D is a portion that comes into contact with the outer peripheral portion of the third lens group 113, and is polished so as not to damage the third lens group 113.
  • the micrometer head 571E can move the pin member 571D forward and backward with a resolution of 1 m. It is constructed so that it can be adjusted.
  • the second cylinder device 572 includes a cylinder 572 A mounted on the slider 513 B and a piston 572 mounted on the cylinder 572 A. 2B, a box 572C attached to the tip of the piston 572B, a second pin member 572D attached inside the box 572C, and a box 57 It has a focus adjustment unit 5 7 2 E attached below 2 C.
  • the second cylinder device 572 differs from the first cylinder device 571 in that the second cylinder device 572 does not include the micro head 571 E, but includes a focus adjustment unit 572 E.
  • the other parts have substantially the same configuration.
  • the cylinder 572 A moves the piston 572 B forward and backward along the Y axis with respect to the projection lens 46 depending on the pressure of the air injected into the cylinder.
  • the piston 572B is a member similar to the piston 571B.
  • the box 572C is a member similar to the box 571C, and the second pin member 572D is a member similar to the pin member 571D.
  • the air pressure in the cylinder 571 A of the first cylinder device 571 is set to be higher than the air pressure in the cylinder 572 A of the second cylinder device 572. For this reason, when the first pin member 571D of the first cylinder device 571 advances to the second pin member 572D, the second pin member 572D of the second cylinder device 572 becomes The first pin member 571 1 will retreat from the D side. Also, when the first pin member 571D retreats from the second pin member 572D side, the second pin member 572D of the second cylinder device 572 becomes the first pin member 571D. Will progress to the side.
  • the portion corresponding to the position adjustment hole 122 A that is, both ends on the Y axis are two pin members 5 7 1D and 5 It is abutted by the polished tip of 72D and is always held in a sandwiched state. Therefore, when the first pin member 571D moves back and forth along the Y axis, the third lens group 113 moves back and forth along the Y axis inside the lens barrel body 101. Become.
  • the third lens group 1 13 includes the first pin members 5 7 1 D and With respect to the second pin member 572D and the second pin member 572D, it moves along the Y-axis direction between the ground end portions of both pin members 571D and 572D.
  • the focus adjustment section 5 7 2 E connects the rod 5 7 3 which comes into contact with the front frame 10 2 of the projection lens 46 placed at the lens adjustment position, and this rod 5 7 3 It is equipped with a micro-mechanical device for moving back and forth.
  • the focus adjuster 572 E rotates the front frame 102 with the rod 573 by operating the micrometer 574 to adjust the focus of the projection lens 46.
  • the X-axis direction lens adjustment mechanism 570X has substantially the same configuration and the same function and function as the Y-axis direction lens adjustment mechanism 570Y, and does not include the focus adjustment section 572E. Only the point is different. Therefore, the X-axis direction lens adjustment mechanism 570X adjusts the position of the third lens group 113 in the lens barrel main body 101 in the direction along the X-axis. Note that, similarly to the adjustment in the Y-axis direction, the third lens group 113 is attached to both the first pin member 571D and the second pin member 572D arranged in the Y-axis direction. It moves along the X-axis direction between the polished tip portions of the pin members 571D and 572D.
  • the bonding and fixing mechanism 580 is for bonding and fixing the third group lens 1 13 to the lens barrel main body 101, and includes pin members 57 1 D, 57 A total of eight UV-curable adhesive injection tubes 581, which are arranged side by side on both sides of the 2D and are inserted into the corresponding adhesive injection holes 1 22 B, respectively, and the injection holes 1 22 B
  • An ultraviolet irradiation section (light irradiation section) 5884 connected to the ultraviolet irradiation fiber 582 is provided.
  • a part of the UV-curable adhesive injection tube 581 and the UV-irradiation fiber 582 is housed in each of the box bodies 571C and 572C.
  • the adhesive fixing mechanism 580 After the UV-curable adhesive is injected from the UV-curable adhesive injection section 585 through the UV-curable adhesive injection tube 581 into the injection hole 122B. UV light is irradiated from the UV irradiation section 584 through the UV irradiation fiber 582, and the third group lens 113 is set at a predetermined position of the lens barrel body 101 at eight places. Adhesive fixed. That is, in the present embodiment, the insertion of the ultraviolet-curable adhesive into the injection hole 122B and the ultraviolet irradiation of the ultraviolet-curable adhesive are continuously performed, and the injection of the adhesive and the ultraviolet irradiation are performed. Be automated.
  • the UV-curable adhesive injection tube 581 is retracted from the position where the adhesive was injected, and the adhesive in the UV-curable adhesive injection tube 581 is irradiated with ultraviolet light. Has been prevented.
  • the projection lens 46 is manufactured according to the flowchart shown in FIG.
  • the operator moves the projection lens 46 before adjustment in which only the third group lens 113 is arranged in a loosely fitted state, and the other group lenses 111, 112, 114 are fixed in advance based on the outer shape.
  • the operator activates the projection lens manufacturing apparatus 500 (process S2) and moves each component to the initial position (process S3).
  • the projection lens holding mechanism 550 is located at a material supply position outside the illumination optical axis as an initial position.
  • the light shielding plate 532 of the light shielding device 528 is located outside the optical path as an initial position.
  • the worker fits the flange portion 121 of the projection lens 46 before adjustment into the fitting recess formed in the holding portion 552, based on the outer shape standard.
  • the projection lens 46 before adjustment is held by the projection lens holding mechanism 550 (process S4).
  • the operator drives the moving mechanism 540.
  • the projection lens holding mechanism 550 is moved in the vertical direction by the linear moving device 541, and is rotated about the axis along the optical axis Z by the rotary moving device 542.
  • the projection lens 46 before adjustment is held at the lens adjustment position on the illumination optical axis (process S5: projection lens holding step).
  • the operator After setting the projection lens 46 at the lens adjustment position, the operator drives the first and second cylinder devices 571, 572.
  • the air pressure in the cylinders 57 1 A and 57 2 A rises to a preset pressure, and the first and second pin members 5 7 1 D and 5 7 2 D that constitute the lens position adjustment mechanism 5 70 Move in a direction closer to each other, As shown in FIGS. 19 (A) and 19 (B), these pin members 571D and 572D are inserted into the respective position adjustment holes 122A. Therefore, the outer periphery of the third lens group 113 is held at four points by the polished tips of the inserted four pin members 571D and 572D (processing S6).
  • the ultraviolet-curable adhesive injection tube 581 of the adhesive fixing mechanism 580 moves to the vicinity of the adhesive injection hole 122B of the projection lens 46.
  • the air pressure in the cylinders 571A and 572A is set in advance so that the tip of each of the pin members 571D and 572D is located at a position where the center position between the group lenses 11 1 to 114 substantially matches. .
  • a light beam for adjustment is emitted from the light source device 521 (process S7: light beam emitting step), and the emitted light beam includes a predetermined test pattern TP when passing through the inspection sheet 526 through each optical component.
  • the image light including the test pattern TP is introduced into the projection lens 46 before adjustment via the dummy prism 527 (processing S8: image light emission step).
  • the image light including the introduced test pattern TP is bent forward by 90 ° by the reflection mirror, and is then enlarged and projected on the screen 502 (processing S9).
  • the operator adjusts the focus of the image light on the screen 502 while observing the image light including the test pattern TP projected on the screen 502 (processing S10). Specifically, while observing the image light of the focus adjustment test pattern TP4, the operator operates the micrometer 574 of the focus adjustment unit 572E to move the rod 573 forward and backward, and moves the front frame 102 to the lens barrel. By rotating the main body 101, the focus of the projected image is adjusted.
  • the operator adjusts the lens position adjusting mechanism 570 so that each of the test patterns TP1 to TP3 is optimal (clear) and the occurrence of flare or the like is minimized.
  • the operator adjusts the positions of the third group lens 113 in the X-axis direction and the ⁇ -axis direction independently.
  • the operator has to use the X-axis lens adjustment mechanism 570 mm 5 57 IE, the first pin member 57 1 D of the pin members 57 1 D and 57 2 D inserted into the pair of position adjustment holes 1 22 A on the X-axis is The second pin member 5 7 2 is advanced or retracted to the D side, and the position in the X-axis direction is finely adjusted manually (process S11: lens position adjustment step).
  • the light-blocking device 528 has a light-blocking plate 532 arranged on the optical path, and functions to block the light flux emitted from the light source device 521 1 from being introduced into the projection lens 46.
  • the operator drives the adhesive fixing mechanism 580.
  • adhesive fixing mechanism 5 8 0 UV curing of 8 adhesive injection holes 1 2 2 B
  • the mold adhesive injection tube 581 is inserted, and the ultraviolet curing adhesive in a flowing state is injected from the ultraviolet curing adhesive injection section 583 (processing S14: adhesive fixing step).
  • the UV-curable adhesive is injected, the UV-curable adhesive injection tube 580 1 of the bonding and fixing mechanism 580 is pulled out from the adhesive injection hole 122B.
  • the injected ultraviolet-curing adhesive is irradiated with ultraviolet light from the ultraviolet irradiation section 584 through the ultraviolet irradiation fiber 582 (processing S15: adhesive fixing step), and the third group lens is formed. 1 13 is adhesively fixed to the lens barrel body 101.
  • the projection lens holding mechanism 550 holding the projection lens 46 fixed by adhesion is It moves from the lens adjustment position on the illumination optical axis to the material supply position outside the illumination optical axis (processing S17).
  • the operator takes out the adjusted projection lens 46 from the projection lens holding mechanism 550 at the material supply position, and ends the production of one projection lens 46 (process S18).
  • After removing the manufactured projection lens 46 place the projection lens 46 before adjustment in the projection lens holding mechanism 550 in the same manner as described above, and continuously manufacture the projection lens 46 in the same procedure. (Processing S 19).
  • the drive of the projection lens manufacturing device 500 is stopped to end the manufacturing (process S20).
  • a pair of position adjusting holes 1 2 2 A are formed along the X axis and the Y axis, respectively. Since 7 1D and 5 72 D are inserted and advance and retreat, there is no need to increase the opening dimension of the position adjustment hole 122 A as in the conventional case. Therefore, it is possible to provide a projection lens 46 capable of projecting an appropriate image while preventing light leakage or the like.
  • the position adjustment of the third group lens 1 13 causes distortion in the lens barrel main body 101.
  • nothing. since it is not necessary to provide a distortion absorbing section or the like for absorbing distortion in the lens barrel main body 101, it is possible to reduce the size of the lens barrel main body 101 and the size of the projection lens 46. Further, since no distortion occurs in the lens barrel main body 101, it is not necessary to heat the lens barrel main body 101 to eliminate the distortion. Therefore, the materials of the lenses 112 to 113 used for the projection lens can be made weak to heat, and the material of the lens is not limited.
  • the third group lens 1 1 3 is adjusted. At the time of adjustment, the third group lens 1 1 3 is not fixed, so the third group lens 1 1 3 Fine adjustment of the optical axis position can be easily performed, and highly accurate adjustment can be performed.
  • the projection lens holding mechanism 550 moves between the lens adjustment position on the illumination light axis and the material supply position off the illumination light axis.
  • the set of lenses 46 can be easily set, and the efficiency of the manufacturing operation can be improved.
  • the provision of the light-shielding device 528 prevents the light flux from the light source device 521 from being introduced into the projection lens 46 during bonding and fixing. For this reason, it is possible to prevent the ultraviolet curing adhesive from being cured by mistake.
  • the image light emitted from the projection lens 46 is reflected at a substantially right angle by a reflection mirror 56 and projected onto the screen 502, the light path direction of the apparatus body 501 and the screen And the plane of the pin 502 is arranged substantially in parallel. Therefore, the size of the device main body 501 can be reduced as compared with the case where the light source device 521 to the screen 502 are formed as a straight optical path along the vertical direction.
  • the bonding and fixing mechanism 580 includes an ultraviolet-curable adhesive injection section 583 and an ultraviolet-curable adhesive injection tube 581, an ultraviolet irradiation section 5884 and ultraviolet irradiation.
  • Fiber 1 58 2 is provided, and insertion of UV curable adhesive into injection hole 1 2 2 B and UV irradiation of UV curable adhesive are continuously performed, and injection of adhesive and UV irradiation Since the steps are automated, there is no need to fix the third group lens 1 1 3.
  • the adhesive fixing mechanism 580 includes an ultraviolet curing adhesive injection section 583 and an ultraviolet curing adhesive injection tube 581, an ultraviolet irradiation fiber 582 and an ultraviolet irradiation section 58. 4 and that the injection of the ultraviolet curing adhesive and the irradiation of the ultraviolet light were automated.
  • the adhesive fixing mechanism 580 ′ according to the present embodiment does not include the ultraviolet curing adhesive injection section and the ultraviolet curing adhesive injection tube as shown in FIG. Is manually performed by an operator. That is, the adhesive fixing mechanism 580 'of the present embodiment includes an ultraviolet irradiation fiber 582, and an ultraviolet irradiation unit (light irradiation unit) 584 connected to the ultraviolet irradiation fiber 582. It will be.
  • the projection lens 46 is manufactured in substantially the same procedure as in the above-described embodiment (see FIG. 18), but the ultraviolet curable adhesive 5 shown in FIG.
  • the injection into the adhesive injection hole 122 of B is different from that of the above-described embodiment only in that the worker manually performs the injection (process S14 shown in FIG. 18).
  • the projection lens 46 is removed from the projection lens holding mechanism 550, the ultraviolet curing adhesive 585 is injected, and the projection lens 46 is again held in the projection lens holding mechanism 550. May be.
  • the projection lens manufacturing device 500 stores the adjustment position of the third lens group 113, the projection lens 46 is removed from the projection lens holding mechanism 550, and then the projection lens 46 is projected. Even when the lens is attached to the lens holding mechanism 550, it is not necessary to adjust the position of the third lens group 113 again. In addition, even if the position is adjusted again, fine adjustment can be performed in a short time, and the ultraviolet-curing adhesive 585 does not harden during the adjustment.
  • ultraviolet rays are injected from the ultraviolet ray irradiating section 584 through the ultraviolet ray irradiating fiber 582 to the injected ultraviolet ray curable adhesive 585. Irradiation (processing S15 shown in FIG. 18).
  • the UV-curable adhesive 585 is manually injected into the injection hole 122 B, and the adhesive fixing mechanism 580 ′ is a UV-curable adhesive. Since the injection unit and the ultraviolet-curable adhesive injection tube are not provided, the structure of the adhesive fixing mechanism 580 'and the projection lens manufacturing apparatus 500 can be simplified.
  • the present invention is not limited to the above-described embodiment, but includes other configurations that can achieve the object of the present invention, and the following modifications are also included in the present invention.
  • the operator himself / herself operates each mechanism to adjust the position of the lens to be adjusted.
  • the present invention is not limited to this. Good.
  • a configuration in which an image projected on a screen or the like is captured by an image sensor such as a CCD camera and image processing is performed by a computer to adjust the lens position can be adopted.
  • not only the automatic adjustment of the high-axis position of the lens but also a configuration in which all the processes from supply to take-out are automatically performed can be adopted.
  • a cylinder device that urges the pin member toward the projection lens by air pressure is employed.
  • the present invention is not limited thereto.
  • Various urging parts such as electromagnetic urging means can be adopted.
  • air is used as the fluid, a gas other than air, a liquid such as oil, or the like can be used, and any fluid can be used.
  • the number of the position adjustment holes 122A is set to four, and the number of the adhesive injection holes 122B is set to eight. It is good also as above.
  • the shape of the hole is not particularly limited, but may be configured according to the diameter of the pin member.
  • an ultraviolet curable adhesive was used as the adhesive.
  • the present invention is not limited to this.
  • another adhesive such as a so-called instant adhesive may be used.
  • a projector using three light modulation devices is employed, but the invention is not limited thereto.
  • a projector using only one light modulation device, a projector using two light modulation devices, or A projector using four or more light modulation devices may be used.
  • a liquid crystal panel is used as the light modulation device, the invention is not limited to this, and a light modulation device other than liquid crystal, such as a device using a micromirror, may be used.
  • a transmission type light modulation device a reflection type light modulation device may be used.
  • the projection lens manufacturing apparatus and the projection lens manufacturing method of the present invention are useful as a manufacturing apparatus and a manufacturing method for manufacturing a projection lens used in a projector.
  • the number of components that make up the projection lens is reduced to reduce costs, make it smaller and lighter, and the optical axis positions of the multiple lenses that make up the projection lens can be adjusted with high precision and ease, resulting in high quality. It is suitable for the production of projection lenses in which the material of the lens to be used is not restricted.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Projection Apparatus (AREA)

Abstract

投写レンズ(46)は、レンズ群(110)が順次配置され、内部に光路が設定された鏡筒(100)を備え、鏡筒(100)には、3群レンズ(113)を光軸に直交し互いに直交する位置に位置調整孔(122A)が形成されている。投写レンズ(46)をレンズ調整位置に保持する投写レンズ保持機構(550)と、光源装置(521)からの射出光に応じて形成されたテストパターン画像を投写レンズ(46)に導入する画像光射出機構(526)と、投写レンズ(46)を介して投写された画像光を検出しながら3群レンズ(113)の位置をX軸,Y軸に沿って調整するレンズ位置調整機構(570)と、調整後の3群レンズ(113)を接着固定する接着固定機構(580)とを備える。

Description

投写レンズ製造装置、 投写レンズ製造方法、 この投写レンズ製造方法により製造 された投写レンズ、 およびこの投写レンズを備えるプロジェクタ 技術分野
本発明は、 投写レンズ製造装置、 投写レンズ製造方法、 この投写レンズ製造方 法により製造された投写レンズ、 お明よびこの投写レンズを備えるプロジェクタに 関する。 細 1 背景技術
従来、 複数の色光を画像情報に応じて各色光ごとに変調する複数の液晶パネル と、各液晶パネルで変調された色光を合成するクロスダイクロイツクプ ϋズムと、 このプリズムで合成された光束を拡大投写して投写画像を形成する投写レンズと を備えるプロジェクタが利用されている。
このようなプロジェクタに用いられる投写レンズとしては、投写画像において、 解像度の低下や、 歪曲収差および色収差等の収差の発生等を抑えるために、 収束 用レンズおよび発散用レンズを含む複数のレンズを組み合わせて構成された複合 レンズが利用されている。 しかしながら、 これらのレンズを正しく機能させて投 写画像の高品質を確保するためには、 投写レンズを構成する各レンズの間の光軸 (芯) 位置を高精度に調整する必要があった。
このため、 従来は、 複数のレンズおよびこれらのレンズを保持するレンズ保持 筒のそれぞれの外形精度を高めておいた上で、 これらの部品から必要な部品を取 り出して投写画像を観察し、 光軸位置が合致するまで部品交換を行う卜ライアル アンドエラ一により高品質の投写レンズを製造していた。 しかしながら、 この場 合には、 外形精度のばらつきの影響が光軸位置合わせ精度よりも大きくなつて高 精度な光軸位置調整ができない上、 トライアルアンドエラ一による製造作業のた め作業も繁雑となっていた。 3 007720
2
そこで、 レンズ保持筒には、 このレンズ保持筒内に形成される光路の照明光軸 に直交する面内で筒上の均等な 3箇所の位置にレンズ位置調整用の孔を形成し、 かつ、 これらの 3つの位置調整孔に筒外から筒内の中心に向かうビス等のピン部 材を取りつけて投写レンズを構成することが提案されている。 このような投写レ ンズでは、 これらの 3本のピン部材を進退させることにより、 ピン部材の先端で 調整対象となるレンズを付勢して、 このレンズの位置を照明光軸に直交する面内 で調整している。
また、 調整すべきレンズを所定位置でクランプし、 このレンズが収容されたレ ンズ保持筒を移動させることで、 レンズの位置を調整する方法も提案されている (例えば、特許文献 1 (特開平 8— 3 3 4 6 6 4号公報(図 1、第 3頁))参照)。 さらに、 歪吸収部が設けられたレンズ保持筒内に予めレンズを力シメて固定し ておき、 その後、 レンズの位置を移動させて調整する方法もある (例えば、 特許 文献 2 (特開 2 0 0 2 - 1 8 9 1 5 9号公報 (図 1、 第 3〜第 4頁) ) 参照) 。 この場合には、 レンズの調整により生じた歪を歪吸収部で吸収しており、 歪吸収 部に生じる歪は、 加熱することにより、 解消させている。
また、 レンズを保持するレンズ保持筒を第 1レンズ保持筒と、 この第 1レンズ 保持筒の外周側に設けられる第 2レンズ保持筒の 2部材で構成し、 第 1レンズ保 持筒と第 2レンズ保持筒の間に、 レンズ保持ばねを配置する。 そして、 第 2保持 筒に設けられたねじでレンズ保持ばねを圧縮させ、 第 1レンズ保持筒を光軸直交 方向に移動させ、 調整する方法も提案されている (例えば、 特許文献 3 (特開 2 0 0 2 - 4 0 3 0 8号公報 (図 1、 第 3〜4頁) ) 参照) 。 なお、 この場合には、 第 1レンズ保持筒の前端に押え環を配置し、 この押え環と、 第 2レンズ保持筒と で第 1レンズ保持筒を挟み込み固定している。
しかしながら、 従来は、 製品である投写レンズ自体にピン部材を設けてレンズ の位置を調整する方法では、 投写レンズを構成する部材の点数が多くなり、 投写 レンズがコスト高になるとともに、小型化、軽量化できないという問題があった。 また、 3方向でレンズの面内位置を調整する場合には、 1つのピン部材を進退 させた際に他の 2つのピン部材も進退させなければならず、 2つのピン部材をど れだけ動かす必要があるのか、 換言すれば、 ピン部材の進退とレンズの動く方向 との関係がわかり難いため、 光軸位置調整作業が繁雑になっていた。 この際、 各 ピン部材の進退方向がそれぞれ異なることから、 調整対象となるレンズに応じて 位置調整孔の開口寸法もある程度大きく形成する必要があり、 この場合には、 こ の開口からの光束の漏れ等により、 投写画像の品質低下を招くおそれもあった。 さらに、 特許文献 1に記載されたような方法では、 レンズ保持筒を移動させて いるため、 レンズ保持筒の移動に伴ってレンズ保持筒に固定された固定レンズま で移動させることとなり、調整用の光源に対する固定レンズの芯がずれてしまう。 この場合には、 固定レンズの光軸と、 調整対象となるレンズの光軸とを一致させ ることが困難となり、 レンズの光軸位置を高精度に調整することができない場合 がある。
さらに、 特許文献 2に記載されたような方法では、 レンズ保持筒に歪吸収部を 設けなければならないので、 レンズ保持筒、 さらにはこのレンズ保持筒を備えた 投写レンズが大型化するという問題がある。 また、 歪吸収部に生じる歪を、 加熱 することにより、 解消させているため、 レンズの材質に熱に弱いプラスチック等 を採用することができない。 これに加え、 レンズ保持筒に固定されているレンズ の位置を調整しており、 レンズ保持筒の保持力に逆らってレンズの位置を調整す ることとなるので、 微調整しにくく、 レンズの光軸位置を高精度に調整すること が困難となる可能性がある。
また、 特許文献 3に記載されたような方法では、 投写レンズにレンズ保持ばね とねじとで構成される位置調整機構を設けているため、 投写レンズを構成する部 材が増加し、 投写レンズの構造が複雑化してしまうという問題がある。 さらに、 このようなレンズ保持ばねとねじとで構成される位置調整機構を投写レンズ側に 設けるためには、 第 1レンズ保持筒と第 2レンズ保持筒の 2つのレンズ保持筒を 備える構成としなければならず、 第 1レンズ保持筒を第 2レンズ保持筒に固定す るため、 第 1レンズ保持筒の前端に押え環を設ける必要があり、 投写レンズが光 軸方向に大きくなつてしまうという問題もある。
本発明の目的は、 投写レンズを構成する部材の点数を減少して投写レンズのコ スト削減や小型化、 軽量化を図ることができるとともに、 投写レンズを構成する 複数のレンズの光軸位置を高精度に、 かつ簡単に調整できて、 高品質な画像投写 を可能とし、 さらには、 使用するレンズの材質が制限されない投写レンズを簡単 に製造できる投写レンズ製造装置、 投写レンズ製造方法、 この投写レンズ製造方 法により製造された投写レンズ、 およびこの投写レンズを備えるプロジェクタを 提供することにある。 発明の開示
本発明に係る投写レンズ製造装置は、 内部に所定の光路が設定されたレンズ保 持筒と、 この光路の照明光軸上に順次配置される複数のレンズとを備える投写レ ンズを製造する投写レンズ製造装置であって、 前記レンズ保持筒には、 前記複数 のレンズのうちのいずれかのレンズの位置を、 照明光軸に直交する面内で互いに 直交する 2つの軸に沿った方向に調整するために、 前記各軸上にそれぞれ一対の 位置調整孔が形成され、 調整用の光束を射出する光源と、 製造対象となる投写レ ンズを、 前記照明光軸上で前記調整対象となるレンズの位置を調整する位置であ るレンズ調整位置に保持する投写レンズ保持機構と、 前記光源から射出された光 束に基づいて、 所定のテストパターンを含む画像光を形成し、 前記レンズ調整位 置に配置された投写レンズに導入する画像光射出機構と、 この画像光が導入され た投写レンズから投写された画像光を検出しながら、 調整対象となるレンズの位 置を、 前記位置調整孔を介して前記 2つの軸に沿った方向にそれぞれ調整する 2 つのレンズ位置調整機構と、 この位置調整されたレンズを前記レンズ保持筒に接 着固定する接着固定機構とを備えることを特徴とする。
ここで、 例えば、 複数のレンズとは、 少なくとも 2群以上のレンズ群で構成さ れるものであり、 そのレンズの群数や、 形状、 寸法、 機能は特に限定されない。 また、 調整対象となるいずれかのレンズとは、 1または 2以上の調整対象となる レンズのことであり、 例えば、 投写される画像の品質に最も影響度が大きいもの を 1つ選択して、 このレンズを調整する構成を採用できる。 なお、 調整対象とな るレンズの数に応じて、 適宜、 位置調整機構の設置数も変更できる。 また、 製造対象となる投写レンズにおいて、 レンズ保持筒には、 この投写レン ズが組み込まれるプロジェクタを構成する光学系の一端に取りつけるためのつば 部が形成されたものを採用できる。
この場合において、 投写レンズ保持機構は、 例えば、 板材の中央部分に円形開 口が形成されたレンズ保持用の部材を含んで構成できる。 つまり、 円形開口には レンズ保持筒が挿通され、 円形開口の外周部分にはつば部が配置されることによ り、 投写レンズを保持する構成を採用できる。
また、 例えば、 位置調整孔は、 投写レンズを構成する円筒状のレンズ保持筒に おいて、 収納された複数のレンズで形成される光路の照明光軸に直交し、 かつ互 いに直交する X軸, Y軸上の位置に形成できる。 つまり、 レンズ保持筒には、 X 軸上の対向する位置に形成された 2つの位置調整孔と、 Y軸上の対向する位置に 形成された 2つの位置調整孔との合計 4つの位置調整孔として形成できる。 具体 的には、 レンズ保持筒を投写側から見た場合に、 レンズ保持筒の上下左お位置に 形成できる。 なお、 直交する 2軸は、 照明光軸を通らない軸を採用することもで さる。
位置調整機構としては、 レンズ保持筒に形成された一対の位置調整孔にピン部 材を揷入し、 このピン部材を進退させることによりレンズの位置を調整する構成 を採用できる。 例えば、 一対の位置調整孔に揷入され互いに対向するピン部材の 先端で調整対象となるレンズを保持し、 一方のピン部材の進退に応じて他方のピ ン部材がレンズ外周部分に当接したまま退行および進行する構成にできる。なお、 このようなピン部材の進退は、 コンピュータ等の制御により自動で行う構成や、 作業者による手動で行う構成を採用できる。
さらに、 画像光を検出する手段としては、 投写レンズからスクリーン等に投写 された画像光を、 作業者が目視で検出する手段や、 スクリーンの裏面側に配置さ れた C C Dカメラ等の撮像装置で検出し画像処理を行う手段等を採用できる。 な お、 画像光をスクリーン等に投写せずに、 前記撮像装置により、 投写レンズから 投写された画像光を直接検出する構成も採用できる。
また、 所定のテストパターンとしては、 例えば、 線状の遮光部分が所定間隔で ストライプ状に縦方向または横方向に配列されたもの等を採用できる。 この際、 R G Bの 3色毎に設けることができる。
本発明では、 例えば、 以下の手順で投写レンズを製造できる。
(1)まず、投写レンズを構成する円筒状のレンズ保持筒には、収納された複数の レンズにより形成された光路の照明光軸に直交し互いに直交する X軸, Y軸上の 位置に位置調整孔を形成しておく。 つまり、 レンズ保持筒には、 X軸上の対向す る位置に形成された 2つの位置調整孔と、 Y軸上の対向する位置に形成された 2 つの位置調整孔との合計 4つの位置調整孔が形成されている。
(2)このようなレンズ保持筒に対して、調整対象となるレンズを調整可能な遊嵌 状態で配置するとともに、 その他のレンズを外形基準で配置して接着固定した調 整前の投写レンズを構成しておく。
(3)次に、投写レンズ保持機構により、 この調整前の投写レンズをレンズ調整位 置に保持させる (投写レンズ保持工程) 。 この際、 レンズ位置調整機構を構成す るピン部材を各位置調整孔に揷入させて、 調整対象となるレンズの外周部分の 4 箇所を各ピン部材の先端で保持する。
(4)この状態で、 光源から調整用の光束を射出し (光束射出工程) 、 画像光射出 機構により、 この調整用光束に基づいて所定のテストパターンを含む画像光を射 出して調整前投写レンズに導入し (画像光検出工程) 、 スクリーン等に拡大投写 させる。
(5)作業者は、例えば、 スクリーン上の投写画像を見ながら、 X軸側のレンズ位 置調整機構により、 調整対象となるレンズの X軸方向に沿った方向の位置を調整 する (レンズ位置調整工程) 。 具体的には、 X軸上の一対の位置調整孔に揷入さ れた一対のピン部材を、 その先端が調整対象となるレンズの外周部分に当接した 状態としておく。一方、 一対のピン部材は、 その一方が進行すると他方が退行し、 また、 一方が退行すると他方が進行するように構成しておく。 例えば、 このよう な構成とすることにより、 一対のピン部材を進退させて X軸方向に沿った方向に レンズ位置を手動で調整する。 同様に、 Y軸側のレンズ位置調整機構により、 Y 軸方向に沿ったレンズの位置を手動で調整する。 これにより、 複数のレンズ間の 光軸位置を正確に調整できる。
また、 光軸位置調整作業時では、 投写画像の画質を観察しながら、 フレア等の 発生が最も少なくなり、 所定のテストパターンの画像が鮮明となる位置にレンズ を調整する。
(6)このようにして位置調整されたレンズをレンズ保持筒に接着剤を用いて接 着固定する (接着固定工程) 。
(7)最後に、投写レンズをレンズ保持位置から移動させ、投写レンズ製造装置か ら取り外すことにより、 投写レンズを製造する。 このような作業を繰り返すこと により、 投写レンズを連続的に製造する。
本発明によれば、例えば、前述した手順等で投写レンズを製造することにより、 投写レンズを構成するレンズのうちの 1つのレンズを、 互いに直交する X軸と Y 軸との両方向に沿って独立して高精度に位置調整できる。 従って、 従来のように 3方向のピン部材で調整する場合に比べて、調整したい方向を簡単に把握できる。 また、調整する部材も各軸方向に対応する 2つのレンズ調整機構だけでよいから、 光軸位置調整作業が簡単である。 この際、 各軸に沿って一対の位置調整孔を形成 し、 これらの一対の位置調整孔には、 常に、 まっすぐにレンズ位置調整機構を揷 入し、 進退させればよく、 従来に比べて、 位置調整孔の開口寸法を大きくする必 要もない。 このため、 投写レンズからの光漏れ等を防止して、 適切な画像を投写 できる。
また、 レンズ位置調整機構を、 投写レンズ側ではなくレンズ製造装置側に設け たので、 投写レンズを構成する部材の点数を減少できて、 投写レンズの製造コス 卜の低減や、 小型化、 軽量化を図ることができる。
さらに、 本発明の製造装置では、 レンズ保持筒ではなく、 レンズ自身を移動さ せているため、 レンズ保持筒に固定された他のレンズがある場合に、 調整用の光 源に対する固定された他のレンズの光軸位置がずれてしまうことがない。 そのた め、 他のレンズと調整対象となるレンズの光軸位置の光軸を一致させることが容 易となり、 レンズの光軸位置を高精度に調整することができる。
さらに、 本発明の製造装置では、 調整対象となるレンズをレンズ保持筒に接着 T/JP2003/007720
8
固定する前に、 位置調整を行っているため、 レンズの位置調整によりレンズ保持 筒に歪が生じることがない。 従って、 レンズ保持筒に歪吸収部を設ける必要がな いので、 レンズ保持枠の小型化、投写レンズの小型化を図ることができる。 また、 レンズ保持筒に歪が生じないので、 歪解消のためにレンズ保持筒を加熱する必要 もない。 従って、 レンズの材質を熱に弱いものとすることもでき、 レンズの材質 が制限されない。さらに、レンズ保持筒に接着固定される前にレンズの調整を行つ ているので、 レンズの位置の微調整を行いやすく、 レンズの位置を高精度に調整 することができる。
以上の投写レンズ製造装置において、 前記レンズ位置調整機構は、 前記軸上に 形成された一つの位置調整孔にそれぞれ揷入され、 前記調整対象となるレンズの 外周部分に当接する 2つのピン部材と、 これらの 2つのピン部材を互いに近接す る方向に付勢する付勢部と、 これらの 2つのピン部材のうちの一方を他方に対し て進退させるとともに、 この一方の進行または退行に応じて前記他方を退行また は進行させる進退部とを備えることが好ましい。
このような場合では、 所定の一軸上にあって対向する位置調整孔にそれぞれピ ン部材を揷入し、 付勢部により、 これらのピン部材が互いに近接する方向に付勢 してレンズを保持させる。 この状態で進退部を操作して、 一方のピン部材を進退 させることにより、 2つのピン部材でレンズを保持した状態のままレンズの位置 を簡単に調整できる。 また、 他の軸においても同様に調整できる。
また、 前記付勢部は、 前記各ピン部材毎に配置され、 このピン部材を流体によ る圧力で付勢するシリンダ装置であることが好ましい。
この場合には、 シリンダ装置内での空気や油脂等の流体の圧力を常に一定に設 定することにより、 ピン部材の位置を常に一定にできる。 このため、 投写レンズ を交換して次の投写レンズを製造する場合でも、 調整対象となるレンズを光軸合 致位置近傍の位置に調整でき、 後は、 投写レンズ毎の偏差を微調整するだけでよ いから、 位置調整作業をより一層簡略化できる。
また、 前記進退部は、 前記一方のピン部材を他方のピン部材に対して進退させ るマイクロメ一夕へッドであることが好ましい。 この場合には、 例えば、 分解能が 1 mレベル等の分解能の高いマイクロメ一 夕へッドを採用できるので、光軸位置調整をより一層高精度に実施できる。なお、 このマイクロメ一夕へッドは、製造対象となる投写レンズの設計に応じて、適宜、 異なる分解能のものに変更できる。
以上において、 前記投写レンズ保持機構を、 前記レンズ位置調整機構が設置さ れた位置から製造対象となる投写レンズの給材位置まで移動させる移動機構を備 えることが好ましい。
この場合には、 投写レンズ位置調整機構が設置された位置と投写レンズの給材 位置との間で、 レンズ保持機構を移動させる移動機構により、 投写レンズの調整 位置と給材位置とが分離されるため、 他の機構等が干渉しない位置で投写レンズ を簡単にセットできる。
ここで、 前記移動機構は、 前記レンズ保持機構に接続された腕部の基端を中心 として、前記照明光軸に直交する面内の方向に前記レンズ保持機構を回動させて、 このレンズ保持機構を前記照明光軸上および照明光軸外の間で移動させる回転移 動装置を備えることが好ましい。
この場合には、 レンズ保持機構が腕部の基端を中心に照明光軸の上と外との間 で回動するため、 照明光軸外で投写レンズをセットする構成とすれば、 他の機構 に干渉しない位置で簡単に投写レンズをセットでき、 製造作業の効率化を図るこ とができる。
以上において、 前記レンズ保持筒には、 位置調整されたレンズを接着固定する 接着剤を注入するための接着剤注入孔が形成され、 前記接着固定機構は、 前記接 着剤注入孔に注入された光硬化型接着剤を硬化させる光線照射部を備えることが 好ましい。
ここで、 接着剤注入孔への接着剤の注入は、 作業者が手作業で行ってもよく、 また、 投写レンズ製造装置の接着固定機構を前記接着剤注入孔に光硬化型接着剤 を注入する接着剤注入部を備えるものとし、 自動で光硬化型接着剤の注入を行つ てもよい。
この場合、 接着固定機構は、 投写レンズに形成された接着剤注入孔に挿入され る揷入部、 例えば、 紫外線硬化型接着剤注入用チューブを備え、 この紫外線硬化 型接着剤注入用チューブを介して、接着剤注入部から接着剤を注入するとともに、 光線照射部から紫外線等の光線を照射する構成を採用できる。 この際、 前記ピン 部材と紫外線硬化型接着剤注入用チューブとを略平行に配置して、 これらの部材 を一体化させた構成も採用でき、 これに応じて、 レンズ保持筒における接着剤注 入孔の位置も適宜変更して形成すればよい。
このような場合には、レンズ位置調整機構によりレンズ位置を調整した状態で、 接着剤注入孔を介して、 接着剤注入部から光線硬化型接着剤を注入した後に、 光 線照射部から光線を照射することにより、 レンズ保持筒にレンズを接着固定でき る。 このようにレンズ位置を固定したまま接着固定するので、 接着固定時に発生 する不良を最小限にできる。
また、 前記投写レンズ製造装置において、 前記光源と、 配置された投写レンズ との間の光路には、 前記光源からの光束が前記投写レンズに導入されないように 遮光する遮光機構を備えることが好ましい。
ここで、 遮光機構としては、 光源と投写レンズとの間の光路に、 光源光遮蔽用 の板状部材等を挿入する構成を採用できる。
この場合には、 光線照射部から光線を照射して光線硬化型接着剤硬化させる際 に、 光源からの光束が混入することにより、 光線硬化型接着剤が誤って硬化する ことを防止できる。
以上の投写レンズ製造装置において、 前記投写レンズの光路後段には、 この投 写レンズを介して投写された画像光を投影するスクリーンが配置されていること が好ましい。
この場合には、 スクリーンに拡大して投写された画像を観察しながら、 投写レ ンズの位置調整を行うことができるため、 より一層正確に光軸位置調整を行うこ とができる。
以上の投写レンズ製造装置において、 前記光源から前記投写レンズに至る光路 は、 略鉛直方向に沿った方向に形成されていることが好ましい。
この場合には、 光路が鉛直方向となることから、 投写レンズを構成する複数の レンズが水平方向に並設された状態となり、調整対象となるレンズの調整方向は、 水平方向となる。 従って、 例えば、 ピン部材に対して前述した揷入部 (例えば紫 外線硬化型接着剤注入用チューブ等) を水平方向に並べた構成を採用した場合で も、 挿入部の先端に残った接着剤が鉛直方向に流れるため、 ピン部材の先端に接 着剤が付着することを防止でき、 投写レンズを効率的に製造できる。
ここで、 前記投写レンズ製造装置において、 前記投写レンズの光路後段には、 この投写レンズから射出された画像光の光路を曲折して反射する反射部材と、 こ の反射された画像光を投影するスクリーンとを備えることが好ましい。
例えば、 反射部材は、 投写レンズから射出された画像光を略直角に反射する構 成にできる。
このように投写レンズから射出された画像光を、 反射部材で直角に反射してス クリーンに投写する場合には、 製造装置の本体部分の光路方向と、 スクリーン面 とが平行に配置される。 このため、 製造装置の本体部分からスクリーンまでの光 路を鉛直方向に沿った一直線状として構成する場合に比べて、 スクリーン以外の 製造装置の本体部分の寸法を小さくできる。
本発明に係る投写レンズの製造方法は、 内部に所定の光路が設定されたレンズ 保持筒と、 この光路の照明光軸上に順次配置される複数のレンズとを備える投写 レンズを製造する投写レンズの製造方法であって、 前記レンズ保持筒には、 前記 複数のレンズのうちのいずれかのレンズの位置を、 照明光軸に直交する面内で互 いに直交する 2つの軸に沿った方向に調整するために、 前記各軸上にそれぞれ一 対の位置調整孔が形成され、 製造対象となる投写レンズを、 前記照明光軸上で調 整対象となるレンズの位置を調整する位置であるレンズ調整位置に保持する投写 レンズ保持工程と、 調整用の光束を光源から射出する光束射出工程と、 前記光源 から射出された光束に基づいて、 所定のテストパターンを含む画像光を形成し、 前記照明光軸上に配置された投写レンズに導入する画像光射出工程と、 この画像 光が導入された投写レンズから投写された画像光を検出しながら、 調整対象とな る前記レンズの位置を、 前記位置調整孔を介して前記 2つの軸に沿った方向にそ れぞれ調整する 2つのレンズ位置調整工程と、 この位置調整されたレンズを前記 レンズ保持筒に接着固定する接着固定工程とを備えることを特徵とする。
このような本発明によれば、 前述した製造方法の手順と同様にして製造できる ため、 前述した投写レンズの製造装置と略同様の作用効果を奏することができ、 本発明の目的を達成できる。 つまり、 投写レンズを構成するレンズのうちの 1つ のレンズを、 互いに直交する 2つの軸の両方向に沿って独立して高精度に位置調 整できる。 従って、 従来に比べて、 調整したい方向を簡単に把握できるため、 光 軸位置調整作業が簡単である。 また、 例えば、 レンズの位置を調整するピン部材 を製造装置側に設けて、 投写レンズ側に設けない構成とすることにより、 投写レ ンズを構成する部材の点数を減少できて、 投写レンズの製造コストの低減や、 小 型化、 軽量化を図ることができる。
さらに、 本発明の製造方法では、 レンズ保持筒ではなく、 レンズを移動させて いるため、 レンズ保持枠に固定された他のレンズがある場合に、 調整用の光源に 対する固定された他のレンズの光軸がずれてしまうことがない。 そのため、 他の レンズと調整対象となるレンズの光軸位置の光軸を一致させることが容易とな り、 レンズの光軸位置を高精度に調整することができる。
さらに、 調整対象となるレンズを位置調整した後にレンズ保持筒に固定してい るため、 レンズの位置調整によりレンズ保持筒に歪が生じることがない。従って、 レンズ保持筒に歪吸収部を設ける必要がないので、 レンズ保持枠の小型化、 投写 レンズの小型化を図ることができる。 また、 レンズ保持筒に歪が生じないので、 歪解消のためにレンズ保持筒を加熱する必要もない。 従って、 レンズの材質を熱 に弱いものとすることもでき、 レンズの材質が制限されない。 さらに、 レンズ保 持筒に接着固定される前に、 レンズの調整を行っているので、 レンズの位置の微 調整を容易に行うことができ、 レンズの位置を高精度に調整することができる。 本発明に係る投写レンズは、 前記投写レンズの製造方法により製造されたこと を特徴とする。 本発明によれば、 前述した投写レンズ製造装置または製造方法と 略同様の作用効果を奏することができる。 従って、 高精度に光軸位置調整できて 高品質の画像を投写でき、かつ製造コストを低減できる投写レンズを提供できる。 さらに、 本発明に係るプロジェクタは、 前記投写レンズを備えることを特徴と する。 本発明によれば、 前述した投写レンズと同様の作用効果を奏することがで きる。 従って、 製造コストを低減できた上で、 高品質の画像を投写できる。 図面の簡単な説明
図 1は、 本発明の実施形態に係るプロジェクタを上方前面側から見た斜視図で ある。
図 2は、 前記プロジェクタを下方背面側から見た斜視図である。
図 3は、 前記プロジェクタの内部を示す斜視図であり、 具体的には、 図 1の状 態からアッパーケースを外した図である。
図 4は、 前記プロジェクタの内部を示す斜視図であり、 具体的には、 図 3の状 態から制御基板を外した図である。
図 5は、 前記プロジェクタを構成する光学ュニットを示す分解斜視図である。 図 6は、 前記光学ユニットを模式的に示す図である。
図 7は、 前記光学ユニットを構成する投写レンズを前方 (投写) 側から見た斜 視図である。
図 8は、 前記投写レンズを示す分解斜視図である。
図 9は、 前記投写レンズを示す縦断面図である。
図 1 0は、 前記投写レンズを後方側から見た斜視図である。
図 1 1は、 前記投写レンズを製造する投写レンズ製造装置を側面から見た図で ある。
図 1 2は、 前記投写レンズ製造装置を構成する装置本体を側面側から見た図で ある。
図 1 3は、 前記装置本体を背面側から見た図である。
図 1 4は、 前記装置本体を構成する検査シートを示す側面図である。
図 1 5は、 前記検査シートを示す正面図である。
図 1 6は、 前記検査シートの一部を拡大して示す正面図である。
図 1 7は、 前記投写レンズ製造装置を構成するレンズ位置調整機構および接着 固定機構の一部を拡大して示す平面図である。 図 18は、 前記投写レンズの製造手順を示すフローチヤ一卜である。
図 19 (A) 及び図 19 (B) は、 前記投写レンズの 3群レンズがピン部材に より保持された状態を示す模式図である。
図 20は、 本発明の第 2実施形態にかかる投写レンズ製造装置を側面から見た 図である。
図 21 (A) は、 前記投写レンズのレンズ保持筒の注入孔に接着剤が注入され た状態を示す模式図である。 図 21 (B) は、 前記注入孔に注入された接着剤を 硬化させる状態を示す模式図である。 発明を実施するための最良の形態
1. 第 1実施形態
以下、 本発明の第 1実施形態を図面に基づいて説明する。
〔1. プロジェクタの主な構成〕
図 1は、 本発明に係るプロジェクタ 1を上方前面側から見た斜視図である。 図 2は、 プロジェクタ 1を下方背面側から見た斜視図である。
図 1または図 2に示すように、 プロジェクタ 1は、 射出成形によって成形され た略直方体状の外装ケース 2を備える。 この外装ケース 2は、 プロジェクタ 1の 本体部分を収納する合成樹脂製の筐体であり、アツパ一ケース 21と、ロアーケ一 ス 22とを備え、 これらのケース 21, 22は、 互いに着脱自在に構成されてい る。
アツパ一ケース 21は、 図 1, 2に示すように、 プロジェクタ 1の上面、 側面、 前面、 および背面をそれぞれ構成する上面部 21A、 側面部 21 B、 前面部 21 Cおよび背面部 21Dを含んで構成される。
同様に、 ロアーケース 22も、 図 1, 2に示すように、 プロジェクタ 1の下面、 側面、 前面、 および背面をそれぞれ構成する下面部 22 A、 側面部 22 B、 前面 部 22 C、 および背面部 22Dを含んで構成される。
従って、 図 1, 2に示すように、 直方体状の外装ケース 2において、 アッパー ケース 21およびロアーケース 22の側面部 21 B, 22 B同士が連続的に接続 されて直方体の側面部分 2 1 0が構成され、 同様に、 前面部 2 1 C , 2 2 C同士 の接続で前面部分 2 2 0が、 背面部 2 I D , 2 2 D同士の接続で背面部分 2 3 0 が、 上面部 2 1 Aにより上面部分 2 4 0が、 下面部 2 2 Aにより下面部分 2 5 0 がそれぞれ構成される。
図 1に示すように、 上面部分 2 4 0において、 その前方側には操作パネル 2 3 が設けられ、 この操作パネル 2 3の近傍には音声出力用のスピ一カ孔 2 4 O Aが 形成されている。
前方から見て右側の側面部分 2 1 0には、 2つの側面部 2 1 B , 2 2 Bを跨る 開口 2 1 1が形成されている。 ここで、 外装ケース 2内には、 後述するメイン基 板 5 1と、 インターフェース基板 5 2とが設けられており、 この開口 2 1 1に取 りつけられるイン夕一フエ一スパネル 5 3を介して、 メイン基板 5 1に実装され た接続部 5 1 Bと、 インターフェース基板 5 2に実装された接続部 5 2 Aとが外 部に露出している。 これらの接続部 5 1 B , 5 2 Aにおいて、 プロジェクタ 1に は外部の電子機器等が接続される。
前面部分 2 2 0において、 前方から見て右側で、 前記操作パネル 2 3の近傍に は、 2つの前面部 2 1 C , 2 2 Cを跨ぐ円形状の開口 2 2 1が形成されている。 この開口 2 2 1に対応するように、 外装ケース 2内部には、 投写レンズ 4 6が配 置されている。 この際、 開口 2 2 1から投写レンズ 4 6の先端部分が外部に露出 しており、 この露出部分の一部であるレバ一 4 6 Aを介して、 投写レンズ 4 6の フォーカス操作が手動で行えるようになつている。
前面部分 2 2 0において、 前記開口 2 2 1の反対側の位置には、 排気口 2 2 2 が形成されている。 この排気口 2 2 2には、 安全カバ一 2 2 2 Aが形成されてい る。
図 2に示すように、 背面部分 2 3 0において、 背面から見た右側には矩形状の 開口 2 3 1が形成され、 この開口 2 3 1からインレットコネクタ 2 4が露出する ようになつている。
下面部分 2 5 0において、 下方から見て右端側の中央位置には矩形状の開口 2 5 1が形成されている。 開口 2 5 1には、 この開口 2 5 1を覆うランプカバ一 2 5が着脱自在に設けられている。 このランプカバー 2 5を取り外すことにより、 図示しない光源ランプの交換が容易に行えるようになつている。
また、 下面部分 2 5 0において、 下方から見て左側で背面側の隅部には、 一段 内側に凹んだ矩形面 2 5 2が形成されている。 この矩形面 2 5 2には、 外部から 冷却空気を吸入するための吸気口 2 5 2 Aが形成されている。矩形面 2 5 2には、 この矩形面 2 5 2を覆う吸気ロカバー 2 6が着脱自在に設けられている。 吸気口 カバ一 2 6には、 吸気口 2 5 2 Aに対応する開口 2 6 Aが形成されている。 開口 2 6 Aには、 図示しないエアフィルタが設けられており、 内部への塵埃の侵入が 防止されている。
さらに、 下面部分 2 5 0において、 後方側の略中央位置にはプロジェクタ 1の 脚部を構成する後脚 2 Rが形成されている。 また、 下面部 2 2 Aにおける前方側 の左右の隅部には、 同じくプロジェクタ 1の脚部を構成する前脚 2 Fがそれぞれ 設けられている。 つまり、 プロジェクタ 1は、 後脚 2 Rおよび 2つ前脚 2 Fによ り 3点で支持されている。
2つの前脚 2 Fは、 それぞれ上下方向に進退可能に構成されており、 プロジェ クタ 1の前後方向および左右方向の傾き (姿勢) を調整して、 投写画像の位置調 整ができるようになつている。
また、 図 1, 2に示すように、 下面部分 2 5 0と前面部分 2 2 0とを跨るよう に、 外装ケース 2における前方側の略中央位置には、 直方体状の凹部 2 5 3が形 成されている。 この凹部 2 5 3には、 該凹部 2 5 3の下側および前側を覆う前後 方向にスライド自在なカバー部材 2 7が設けられている。 このカバ一部材 2 7に より、凹部 2 5 3には、プロジェクタ 1の遠隔操作を行うための図示しないリモー トコントローラ (リモコン) が収納される。
ここで、 図 3, 4は、 プロジェクタ 1の内部を示す斜視図である。具体的には、 図 3は、図 1の状態からプロジェクタ 1のアッパーケース 2 1を外した図である。 図 4は、 図 3の状態から制御基板 5を外した図である。
外装ケース 2には、 図 3 , 4に示すように、 背面部分に沿って配置され、 左右 方向に延びる電源ュニット 3と、 この電源ュニット 3の前側に配置された平面視 ^ 略 L字状で光学系としての光学ユニット 4と、 これらのユニット 3, 4の上方お よび右側に配置される制御部としての制御基板 5とを備える。 これらの各装置 3 〜 5によりプロジェクタ 1の本体が構成されている。
電源ュニット 3は、 電源 3 1と、 この電源 3 1の下方に配置された図示しない ランプ駆動回路 (パラスト) とを含んで構成される。
電源 3 1は、 前記インレットコネクタに接続された図示しない電源ケ一ブルを 通して外部から供給された電力を、 前記ランプ駆動回路や制御基板 5等に供給す るものである。
前記ランプ駆動回路は、 光学ユニット 4を構成する図 3, 4では図示しない光 源ランプに、 電源 3 1から供給された電力を供給するものであり、 前記光源ラン プと電気的に接続されている。 このようなランプ駆動回路は、 例えば、 基板に配 線することにより構成できる。
電源 3 1および前記ランプ駆動回路は、略平行に上下に並んで配置されており、 これらの占有空間は、 プロジェクタ 1の背面側で左右方向に延びている。
また、 電源 3 1および前記ランプ駆動回路は、 左右側が開口されたアルミニゥ ム等の金属製のシールド部材 3 1 Aによって周囲を覆われている。
シールド部材 3 1 Aは、 冷却空気を誘導するダクトとしての機能に加えて、 電 源 3 1や前記ランプ駆動回路で発生する電磁ノイズが、 外部へ漏れないようにす る機能も有している。
制御基板 5は、 図 3に示すように、 ユニット 3 , 4の上側を覆うように配置さ れ C P Uや接続部 5 1 B等を含むメイン基板 5 1と、 このメイン基板 5 1の下側 に配置され接続部 5 2 Aを含むインタ一フェース基板 5 2とを備える。
この制御基板 5では、 接続部 5 1 B , 5 2 Aを介して入力された画像情報に応 じて、 メイン基板 5 1の C P U等が、 後述する光学装置を構成する液晶パネルの 制御を行う。
メイン基板 5 1は、金属製のシールド部材 5 1 Aによって周囲を覆われている。 メイン基板 5 1は、 図 3ではわかり難いが、 光学ユニット 4を構成する上ライト ガイド 4 7 2の上端部分 4 7 2 A (図 4 ) に当接している。 〔2 . 光学ユニットの詳細な構成〕
ここで、図 5は、光学ユニット 4を示す分解斜視図である。図 6は、光学ュニッ ト 4を模式的に示す図である。
光学ユニット 4は、 図 6に示すように、 光源装置 4 1 1を構成する光源ランプ 4 1 6から射出された光束を光学的に処理して画像情報に対応した光学像を形成 し、 この光学像を拡大して投射するユニットであり、 インテグレー夕照明光学系 4 1と、 色分離光学系 4 2と、 リレー光学系 4 3と、 光学装置 4 4と、 投写レン ズ 4 6と、 これらの光学部品 4 1〜4 4, 4 6を収納する合成樹脂製のライトガ イド 4 7 (図 5 ) とを備える。
インテグレ一タ照明光学系 4 1は、 光学装置 4 4を構成する 3枚の液晶パネル 4 4 1 (赤、 緑、 青の色光毎にそれぞれ液晶パネル 4 4 1 R, 4 4 1 G, 4 4 1 Bとする) の画像形成領域をほぼ均一に照明するための光学系であり、 光源装置 4 1 1と、 第 1レンズアレイ 4 1 2と、 第 2レンズアレイ 4 1 3と、 偏光変換素 子 4 1 4と、 重畳レンズ 4 1 5とを備える。
光源装置 4 1 1は、 放射光源としての光源ランプ 4 1 6と、 リフレクタ 4 1 7 とを備え、 光源ランプ 4 1 6から射出された放射状の光線をリフレクタ 4 1 7で 反射して平行光線とし、 この平行光線を外部へと射出する。 光源ランプ 4 1 6に は、 高圧水銀ランプを採用している。 なお、 高圧水銀ランプ以外に、 メタルハラ イドランプやハロゲンランプ等も採用できる。 また、 リフレクタ 4 1 7には、 放 物面鏡を採用している。 なお、 放物面鏡の代わりに、 平行化凹レンズおよび楕円 面鏡を組み合わせたものを採用してもよい。
第 1レンズアレイ 4 1 2は、 光軸方向から見てほぼ矩形状の輪郭を有する小レ ンズがマトリクス状に配列された構成を有している。 各小レンズは、 光源ランプ 4 1 6から射出される光束を、 複数の部分光束に分割している。 各小レンズの輪 郭形状は、 液晶パネル 4 4 1の画像形成領域の形状とほぼ相似形をなすように設 定されている。 たとえば、 液晶パネル 4 4 1の画像形成領域のアスペクト比 (横 と縦の寸法の比率) が 4 : 3であるならば、 各小レンズのアスペクト比も 4 : 3 に設定する。 第 2レンズアレイ 4 1 3は、 第 1レンズアレイ 4 1 2と略同様な構成を有して おり、 小レンズがマトリクス状に配列された構成を有している。 この第 2レンズ アレイ 4 1 3は、 重畳レンズ 4 1 5とともに、 第 1レンズアレイ 4 1 2の各小レ ンズの像を液晶パネル 4 4 1上に結像させる機能を有する。
偏光変換素子 4 1 4は、 第 2レンズアレイ 4 1 3と重畳レンズ 4 1 5との間に 配置される。 このような偏光変換素子 4 1 4は、 第 2レンズアレイ 4 1 3からの 光を 1種類の偏光光に変換するものであり、 これにより、 光学装置 4 4での光の 利用効率が高められている。
具体的に、 偏光変換素子 4 1 4によって 1種類の偏光光に変換された各部分光 は、 重畳レンズ 4 1 5によって最終的に光学装置 4 4の液晶パネル 4 4 1上にほ ぼ重畳される。 偏光光を変調するタイプの液晶パネル 4 4 1を用いたプロジェク 夕 1では、 1種類の偏光光しか利用できないため、 他種類のランダムな偏光光を 発する光源ランプ 4 1 6からの光束の略半分が利用されない。 このため、 偏光変 換素子 4 1 4を用いることにより、 光源ランプ 4 1 6から射出された光束を全て 1種類の偏光光に変換し、 光学装置 4 4での光の利用効率を高めている。 なお、 このような偏光変換素子 4 1 4は、 たとえば特開平 8— 3 0 4 7 3 9号公報に紹 介されている。
色分離光学系 4 2は、 2枚のダイクロイツクミラ一 4 2 1, 4 2 2と、 反射ミ ラ一 4 2 3とを備え、 ダイクロイツクミラ一 4 2 1、 4 2 2によりインテグレー 夕照明光学系 4 1から射出された複数の部分光束を赤 (R) 、 緑 (G) 、 青 (B ) の 3色の色光に分離する機能を有している。
リレー光学系 4 3は、 入射側レンズ 4 3 1と、 リレーレンズ 4 3 3と、 反射ミ ラ一4 3 2、 4 3 4とを備え、 色分離光学系 4 2で分離された色光である赤色光 を液晶パネル 4 4 1 Rまで導く機能を有している。
この際、 色分離光学系 4 2のダイクロイツクミラー 4 2 1では、 インテグレー 夕照明光学系 4 1から射出された光束のうち、 赤色光成分と緑色光成分とは透過 し、 青色光成分は反射する。 ダイクロイツクミラー 4 2 1によって反射した青色 光は、 反射ミラ一 4 2 3で反射し、 フィールドレンズ 4 1 8を通って、 青色用の 液晶パネル 4 4 1 Bに到達する。 このフィールドレンズ 4 1 8は、 第 2レンズァ レイ 4 1 3から射出された各部分光束をその中心軸 (主光線) に対して平行な光 束に変換する。他の液晶パネル 4 4 1 G、 4 4 1 Bの光入射側に設けられたフィ一 ルドレンズ 4 1 8も同様である。
また、 ダイクロイツクミラー 4 2 1を透過した赤色光と緑色光のうちで、 緑色 光は、 ダイクロイツクミラー 4 2 2によって反射し、 フィールドレンズ 4 1 8を 通って、緑色用の液晶パネル 4 4 1 Gに到達する。一方、赤色光は、ダイクロイツ クミラー 4 2 2を透過してリレー光学系 4 3を通り、 さらにフィールドレンズ 4 1 8を通って、 赤色光用の液晶パネル 4 4 1 Rに到達する。
なお、 赤色光にリレー光学系 4 3が用いられているのは、 赤色光の光路の長さ が他の色光の光路長さよりも長いため、 光の発散等による光の利用効率の低下を 防止するためである。 すなわち、 入射側レンズ 4 3 1に入射した部分光束をその まま、 フィールドレンズ 4 1 8に伝えるためである。 なお、 リレー光学系 4 3に は、 3つの色光のうちの赤色光を通す構成としたが、 これに限らず、 例えば、 青 色光を通す構成としてもよい。
光学装置 4 4は、 入射された光束を画像情報に応じて変調してカラ一画像を形 成するものであり、 色分離光学系 4 2で分離された各色光が入射される 3つの入 射側偏光板 4 4 2と、 各入射側偏光板 4 4 2の後段に配置される光変調装置とし ての液晶パネル 4 4 1 R , 4 4 1 G, 4 4 1 Bと、 各液晶パネル 4 4 1 R, 4 4 1 G, 4 4 1 Bの後段に配置される射出側偏光板 4 4 3と、 色合成光学系として のクロスダイクロイツクプリズム 4 4 4とを備える。
液晶パネル 4 4 1 R , 4 4 1 G, 4 4 1 Bは、 例えば、 ポリシリコン T F Tを スィツチング素子として用いたものである。
光学装置 4 4において、 色分離光学系 4 2で分離された各色光は、 これら 3枚 の液晶パネル 4 4 1 R , 4 1 G, 4 4 1 B、 入射側偏光板 4 4 2、 および射出 側偏光板 4 4 3によって画像情報に応じて変調されて光学像を形成する。
入射側偏光板 4 4 2は、 色分離光学系 4 2で分離された各色光のうち、 一定方 向の偏光光のみ透過させ、 その他の光束を吸収するものであり、 サファイアガラ ス等の基板に偏光膜が貼付されたものである。 また、 基板を用いずに、 偏光膜を フィールドレンズ 4 1 8に貼り付けてもよい。
射出側偏光板 4 4 3も、 入射側偏光板 4 4 2と略同様に構成され、 液晶パネル 4 4 1 ( 4 4 1 R , 4 4 1 G, 4 4 1 B ) から射出された光束のうち、 所定方向 の偏光光のみ透過させ、 その他の光束を吸収するものである。 また、 基板を用い ずに、 偏光膜をクロスダイクロイツクプリズム 4 4 4に貼り付けてもよい。
これらの入射側偏光板 4 4 2および射出側偏光板 4 4 3は、 互いの偏光軸の方 向が直交するように設定されている。
クロスダイクロイツクプリズム 4 4 4は、 射出側偏光板 4 4 3から射出され、 各色光毎に変調された光学像を合成してカラ一画像を形成するものである。
クロスダイクロイツクプリズム 4 4 4には、 赤色光を反射する誘電体多層膜と 青色光を反射する誘電体多層膜とが、 4つの直角プリズムの界面に沿って略 X字 状に設けられ、 これらの誘電体多層膜により 3つの色光が合成される。
投写レンズ 4 6は、 光学装置 4 4のクロスダイクロイックプリズム 4 4 4で合 成されたカラ一画像を拡大して投写するものである。
ライトガイド 4 7は、 図 5に示すように、 各光学部品 4 1 2〜 4 1 5, 4 1 8, 4 2 1〜4 2 3, 4 3 1〜4 3 4, 4 4 2を上方からスライド式に嵌め込む溝部 が形成された下ライトガイド 4 7 1と、 下ライトガイド 4 7 1の上側開口を閉塞 する蓋状の上ライトガイド 4 7 2とを備えて構成される。
図 5に示すように、 平面視略 L字状の下ライトガイド 4 7 1の一端側には、 光 源装置 4 1 1が収容されている。 他端側には、 下ライトガイド 4 7 1に形成され たヘッド部 4 7 3を介して、 投写レンズ 4 6がねじ止め固定されている。 なお、 投写レンズ 4 6の詳細については後述する。
また、 図 5に示すように、 下ライトガイド 4 7 1に収納された光学装置本体 4 5は、 2つのばね部材 5 0を挟んだ状態で下ライトガイド 4 7 1にねじ止め固定 される。 この 2つのばね部材 5 0は、 フィールドレンズ 4 1 8および入射側偏光 板 4 4 2を下方へと付勢して位置を特定する。
〔3 . 投写レンズの構成〕 図 7は、 投写レンズ 4 6を前方側 (投写側) から見た斜視図である。 図 8は、 投写レンズ 4 6を示す分解斜視図である。 図 9は、 投写レンズ 4 6を示す縦断面 図である。 図 1 0は、 投写レンズ 4 6を後方側から見た斜視図である。
投写レンズ 4 6は、 図 6で示したように、 光学装置本体 4 5のクロスダイク口 イツクプリズム 4 4 4で合成されたカラ一画像を拡大して投写するものである。 投写レンズ 4 6は、 図 7に示すように、 内部に所定の光路が設定された樹脂製 等の鏡筒 1 0 0と、 この鏡筒 1 0 0内の光路の照明光軸上に順次配置される複数 のレンズとしてのレンズ群 1 1 0とを備える。
レンズ群 1 1 0は、 図 8および図 9に示すように、 投写側 (図中の右側) から 順に、 1群レンズ 1 1 1、 2群レンズ 1 1 2、 3群レンズ 1 1 3、 および 4群レ ンズ 1 1 4の合計 4つのレンズの群として構成されている。
1群レンズ 1 1 1は、 あおり方向に拡大投写するための凹レンズであり、 非球 面レンズとして形成されている。 2群レンズ 1 1 2は、 光束を調整する凸レンズ である。 3群レンズ 1 1 3は、 凹レンズ 1 1 3 Aに対して、 この凹レンズ 1 1 3 Aよりも小さな寸法を有し入射側が非球面レンズとされた凸レンズ 1 1 3 Bが貼 り合わされたバルサムレンズである。 4群レンズ 1 1 4は、 画像光をのみこむ凸 レンズであり、 球面レンズとして形成されている。
前記クロスダイクロイツクプリズムから射出された画像光は、 球面レンズとさ れた 4群レンズ 1 1 4に入射した後に、 バルサムレンズである 3群レンズ 1 1 3 で色収差の補正がなされ、 2群レンズ 1 1 2で光量調整されてから、 非球面レン ズである 1群レンズ 1 1 1で歪曲補正をしながら外部へと拡大投写される。 鏡筒 1 0 0は、 図 8および図 9に示すように、 前記下ライトガイドの一端側に 固定されるレンズ保持筒としての鏡筒本体 1 0 1と、 この鏡筒本体 1 0 1の投写 側 (図中右側) に取りつけられた前枠 1 0 2と、 鏡筒本体 1 0 1における投写側 とは反対側 (図中左側) に取りつけられた後枠 1 0 3とを備えている。
鏡筒本体 1 0 1は、 調整対象となる 3群レンズ 1 1 3を所定位置に調整して収 納する合成樹脂製の部材であり、 下ライトガイド 4 7 1 (図 4 ) の一端部分であ る取り付け面にねじ止めされる平板状のつば部 1 2 1と、 このつば部 1 2 1の投 写側に形成された円筒状の姿勢調整部 1 2 2と、 接続部 1 2 3を介して、 この姿 勢調整部 1 2 2の投写側に形成され姿勢調整部 1 2 2の径寸法よりも大きな径寸 法を有する円筒状の取付部 1 2 4とを備える。
つば部 1 2 1は、 前記下ライトガイドの取り付け面に取りつけられて、 この下 ライトガイドと投写レンズ 4 6との接続用の矩形状で板状の部材である。
つば部 1 2 1は、 図 9に示すように、 中央部分に略円形の開口 1 2 5 Aが形成 された矩形板状のつば部本体 1 2 5と、 開口 1 2 5 Aの外周外側で、 つば部本体 1 2 5の図中左側面から筒状に突出して形成された突出部 1 2 6とを備える。 板状のつば部本体 1 2 5に形成された開口 1 2 5 Aは、 投写するための画像光 を通すために、 図中左右側の面を貫通して形成されている。
板状のつば部 1 2 1の四隅部分には、 図 8に示すように、 前記下ライトガイド に取り付け用のねじ揷通孔 1 2 5 Bが形成されている。
図 9に示すように、 円筒状の突出部 1 2 6において、 その円筒の内側部分は凹 部 1 2 6 Aとされ、 また、 突出部 1 2 6の図中左側の面 1 2 6 Lには、 図示を一 部省略するが、 互いに略均等となる 3個所にビス孔 1 2 6 Bが形成されている。 姿勢調整部 1 2 2は、 図 8 , 9に示すように、 つば部本体 1 2 5に形成された 開口 1 2 5 Aを囲む円筒状に形成され、 3群レンズ 1 1 3のうちの主に凹レンズ 1 1 3 Aを遊嵌状態で収納するものである。
姿勢調整部 1 2 2において、図示を一部省略するが、その円筒の外周部分には、 均等間隔となる図中の上下左右の 4箇所に円形状の位置調整孔 1 2 2 Aが形成さ れている。 つまり、 4つの位置調整孔 1 2 2 Aのうち、 円筒の中心を挟んだ図中 の上下の対称位置には 2つの位置調整孔 1 2 2 AVが、 円筒の中心を挟んだ図中 の左右の対称位置には 2つの位置調整孔 1 2 2 AHが形成されている。 これらの 2つの位置調整孔 1 2 2 A Vを繋ぐ直線と、 2つの位置調整孔 1 2 2 AHを繫ぐ 直線とは、 互いに略直交する関係にある。
また、 姿勢調整部 1 2 2において、 各位置調整孔 1 2 2 A ( 1 2 2 A V , 1 2 2 AH) を挟んだ両側の均等位置には、 流動状態の接着剤、 例えば、 紫外線硬化 型接着剤等を注入するための接着剤注入孔 1 2 2 Bがそれぞれ形成されている。 以上より、 姿勢調整部 1 2 2は、 図中の上下左右の均等位置に形成された 4つ の位置調整孔 1 2 2 Aと、 これらの隣接する位置調整孔 1 2 2 Aの間に 2つずつ 合計 8つの接着剤注入孔 1 2 2 Bとを含んで構成されることになる。
接続部 1 2 3は、 姿勢調整部 1 2 2と取付部 1 2 4との間を接続する円筒状の 部材であり、 姿勢調整部 1 2 2および取付部 1 2 4の径寸法よりも小さな寸法で 形成されている。
図 9に示すように、 接続部 1 2 3の図中右側には、 2群レンズ 1 1 2がはめ込 まれるレンズ保持爪 1 2 3 Aが形成されている。 レンズ保持爪 1 2 3 A内には、 2群レンズ 1 1 2が熱かしめにより取りつけられている。 このレンズ保持爪 1 2 3 Aは、 2群レンズ 1 1 2の外形を基準に、 2群レンズ 1 1 2の芯位置が正確に 光軸 Z上の位置となるように形成されている。
また、 接続部 1 2 3の外周には、 前記位置調整孔 1 2 2 Aに対応する位置に、 姿勢調整部 1 2 2と取付部 1 2 4との接続を補強するリブ 1 2 3 Bが形成されて いる。
取付部 1 2 4は、 接続部 1 2 3の図中お側から外周側へ張り出した円筒状とし て形成され、 図中右側で前枠 1 0 2を保持する部材である。 図 9に示すように、 取付部 1 2 4には、 その内周面に沿ってめねじ 1 2 4 Aが形成されている。
また、取付部 1 2 4の図中下部側には、 ビス揷通孔 1 2 4 Bが形成されている。 このビス揷通孔 1 2 4 Bには、 その先端が取付部 1 2 4の内部側に突出するよう に、 取付部 1 2 4の外部側からビス 1 2 4 Cが揷通されている。 このビス 1 2 4 Cにより、 前枠 1 0 2の不必要な回転が防止されている。
前枠 1 0 2は、 円筒状の枠部材であり、 レンズ保持枠 1 0 2 Aと、 取付部 1 2 4に取りつけられる接続部 1 0 2 Bとを備える。 なお、 図 8, 9では図示を省略 したが、 図 4に示すように、 接続部 1 0 2 Bの外周を覆うように、 レバー 4 6 A が形成された化粧用力バーが設けられる。
レンズ保持枠 1 0 2 Aは、 1群レンズ 1 1 1がはめ込まれる枠状の部分であり、 このはめ込まれた 1群レンズ 1 1 1は、 レンズ保持枠 1 0 2 Aに熱かしめにより 固定される。 このレンズ保持枠 1 0 2 Aは、 1群レンズ 1 1 1の外形を基準に、 1群レンズ 1 1 1の芯位置が正確に光軸 Z上の位置となるように形成されてい る。
接続部 1 0 2 Bは、 取付部 1 2 4の内側に揷入される。 接続部 1 0 2 Bの外周 には、 前記めねじ 1 2 4 Aに螺合するおねじ 1 0 3 Cが形成されている。 これら のめねじ 1 2 4 Aとおねじ 1 0 3 Cとが螺合することにより、 前枠 1 0 2は、 取 付部 1 2 4に対して光軸 Zに沿った方向に進退する。 これにより、 投写画像の フォーカス調整が行えるようになつている。
図 8 , 9に示すように、 後枠 1 0 3は、 中央部分に略円形の開口 1 3 1 Aが形 成された円板状の後枠本体 1 3 1と、 開口 1 3 1 Aの外周から図中右側へ筒状に 突出した突出部 1 3 2と、 開口 1 3 1 Aの外周から図中左側に形成されレンズ保 持爪 1 3 3とを備える。
後枠本体 1 3 1は、 つば部本体 1 2 5の突出部 1 2 6の左側面 1 2 6 Lと接続 される部分である。 後枠本体 1 3 1において、 図中の右側面 1 3 1 Rの略均等間 隔の 3箇所の位置には、 円周方向に沿って図中右側へ突出する調整部 1 3 4が形 成されている。
これらの調整部 1 3 4は、 傾斜方向が揃ったなだらかな傾斜面として、 それぞ れ形成されている。 このため、 後枠本体 1 3 1は、 自身が光軸 Zを中心に回転す ることにより、 つば部 1 2 1に対して、 傾斜による突出分だけ光軸 Zに沿った方 向に進退してフォーカス調整可能となっている。
また、 調整部 1 3 4には、 この調整部 1 3 4の形状に沿って左右方向に貫通す るルーズ孔 1 3 4 Aが形成されており、 このルーズ孔 1 3 4 Aは、 後枠本体 1 3 1も貫通している。つまり、後枠 1 0 3を左右方向に貫通する孔である。このルー ズ孔 1 3 4 Aを介して 3つのビス 1 3 5が揷通され、 つば部 1 2 1のビス孔 1 2 6 Bに接続される。
突出部 1 3 2は、 同心円状のスぺーサ 1 0 4を介して、 つば部 1 2 1の凹部 1 2 6 Aに挿入されて、 3群レンズ 1 1 3を図中右側へ付勢して保持する部材であ る。 スぺーサ 1 0 4は、 3群レンズ 1 1 3の凹レンズ 1 1 3 Aの外周左側面部分 のみに当接しており、 スぺ一サ 1 0 4の内側開口には、 3群レンズ 1 1 3の凸レ ンズ 1 13 Bが位置している。
レンズ保持爪 133は、 図 10にも示すように、 4群レンズ 1 14がはめ込ま れる枠状の部分であり、 はめ込まれた 4群レンズ 1 14は、 熱かしめにより固定 される。 このレンズ保持爪 133は、 4群レンズ 1 14の外形を基準に、 4群レ ンズ 1 14の芯位置が正確に光軸 Z上の位置となるように形成されている。
〔4. 投写レンズ製造装置の構成〕
次に、 投写レンズ 46を製造する投写レンズ製造装置について説明する。 図 1 1は、 投写レンズ製造装置 500を側面から見た図である。
投写レンズ製造装置 500は、 プロジェクタ 1に用いられる投写レンズ 46を 製造するための装置であり、 図 1 1に示すように、 装置本体 501と、 この装置 本体 501から射出された画像を投影するスクリーン 502とを備える。
図 12は、 装置本体 50 1を側面側から見た図である。 図 13は、 装置本体 5 01を背面側から見た図である。 なお、 図 12, 13に示すように、 投写レンズ 46の光軸 Zに対して直交し、 かつ互いに直交する XY座標を設定する。 X軸お よび Y軸は、 後述するが対向するピン部材が進退する方向上の軸である。
装置本体 501は、 図 12, 13に示すように、 投写レンズ 46の製造を主と して行う部分であり、 上下 2段 51 1, 512に形成された装置台 510と、 こ の装置台 510の上段 51 1の上面 51 1 A側に配置された投写部 520と、 装 置台 510の下段 512の上面 512 Aに配置された移動機構 540と、 この移 動機構 540に接続された投写レンズ保持機構 550と、 装置台 510の下段 5 12の上面 512 Aに配置された反射部材である反射ミラー 560と、 装置台 5 10の上段 51 1の下面 51 1 B側に配置されたレンズ位置調整機構 570と、 一部図示を省略した接着固定機構 580とを備える。
装置台 510は、 図 12に示すように、 床や机等に配置され前述した各部品 5 20, 540, 560, 570を支持する部材であり、 上段 51 1および下段 5 12の 2段として構成されている。
上段 51 1には、 光源装置 52 1から射出された光束を通す開口 5 1 1 Xが形 成されている。 開口 51 I Xの周囲には、 投写部 520の一部を保持するための 支持面 5 1 1 Yが形成されている。
下段 5 1 2の下面 5 1 2 B側には、 図示を一部省略するが 4つの脚部 5 1 3が 設けられている。 4つの脚部 5 1 3は、 床等に当接され装置本体 5 0 1を 4点で 支持している。
投写部 5 2 0は、 所定のテストパターンを含む画像光を投写レンズ 4 6に導入 する装置であり、 光源装置 5 2 1と、 第 1レンズアレイ 5 2 2と、 第 2レンズァ レイ 5 2 3と、 偏光変換素子 5 2 4と、 重畳レンズ 5 2 5と、 検査シート 5 2 6 と、 ダミープリズム 5 2 7と、 遮光装置 5 2 8と、 これらの部品 5 2 1〜5 2 8 を収納する筐体 5 2 9と、 この筐体 5 2 9の側面部分に設置される複数のファン 5 3 0とを備える。
光源装置 5 2 1は、 検査用の基準光束を射出する部分であり、 図示を省略する が、 光源ランプと、 放物面リフレクタとを備える。 前記放物面リフレクタは、 そ の凹面が回転放物面形状となっており、 前記光源ランプは、 回転放物面形状の凹 面の焦点位置近傍に配置されている。 この構成により、 前記光源ランプから射出 され前記放物面リフレクタで反射された光束光は、 略平行な光線束となって光源 装置 5 2 1から射出される。
第 1レンズアレイ 5 2 2は、 プロジェクタ 1を構成する第 1レンズアレイ 4 1 2と同様のものである。 また、 第 2レンズアレイ 5 2 3は、 前記第 2レンズァレ ィ 4 1 3と同様のものである。 さらに、 偏光変換素子 5 2 4は、 前記偏光変換素 子 4 1 4と、 重畳レンズ 5 2 5は、 前記重畳レンズ 4 1 5と同様のものである。 各部品 5 2 2〜5 2 5は、前記各部品 4 1 2〜4 1 5と同様の機能を有している。 ここで、 図 1 4は、 検査シート 5 2 6を示す側面図である。 また、 図 1 5は、 検查シート 5 2 6を示す正面図である。 さらに、 図 1 6は、 検査シート 5 2 6の 一部を拡大して示す正面図である。
検査シート 5 2 6は、 光源装置 5 2 1から射出された光束を導入して、 解像度 測定、 色収差測定等を行うためのテストパターン画像を形成して、 投写レンズ 4 6に導入する画像光射出部として機能する。
検査シート 5 2 6は、 図 1 4に示すように、 透光性があり所定厚み寸法 (例え ば、 1.1mm) で形成された石英ガラス製の基材の正面に、 画像領域 (テストパター ン) TPが形成されたものであり、 基材の縦横が所定寸法 (例えば、 13.0mmX16. Omm) とされ、 その内部には縦横が所定寸法 (例えば、 8.4皿 XII.2匪) の矩形状 の画像領域 (テストパターン) TPが形成されている。
テストパターン TPは、 図 1 5に示すように、 9箇所に分割された 9つの測定 領域 Aを備え、 各測定領域 Aには、 解像度測定用テストパターン TP 1と、 フレ ァ測定用テストパターン TP 2と、色収差測定用テストパターン TP 3と、フォー カス調整用テストパターン TP 4と、 該テストパターン TPの外周部分として形 成され、 歪曲収差測定用テストパ夕一ン TP 5とのうちの全部または一部が縦方 向または横方向として形成されている。
解像度測定用テストパターン TP 1は、 図 16に示すように、 遮光領域 TPV が水平方向にストライプ状に配列されたパタ一ン TP 1 1と、 遮光領域 TPHが 垂直方向にストライプ状に配列されたパターン TP 12とを備える。
これらのパターン TP 1 1, TP 12の上下側には、 数字 TP Nが形成されて いる。 この数字 TPNは、 上下のいずれかに形成されたパターン TP 1 1, TP 12の空間周波数を表している。 例えば、 「30」 の下方に配置された 2つのパ 夕一ン TP 1 1、 TP 12は、 空間周波数が 30本/ mmのパターンである。 この パターン TP 1 1, TP 12を含む画像光をスクリーンに投影し、 目視により判 別可能な空間周波数を検出して、 投写レンズ 46の解像度を測定する。
また、 これらのパターン TP 1 1, TP 12の図中右側には、 透光領域である 径が異なる 5種類の円形小孔パターン Sが形成され、 自動検査を行う場合には、 各小孔 Sの孔径と透過した光の画像面積との差からフレア量を特定できる。
フレア測定用テストパターン TP 2は、 所定寸法で矩形状の遮光領域として構 成され、 この遮光領域には、 大きさが異なる 2種類の矩形状の透光領域 P, Qの 組み TP 21〜TP 24が 4組形成されている。
図 16において、 透光領域 P, Qの組み TP 21〜ΤΡ 24には、 上から順番 に、 青色フィルタ, 緑色フィルタ、 赤色フィル夕が設けられ、 最下段の組み TP 24には、 色フィル夕は設けられていない。 このため、 検査シート 526を透過 した画像光は、 透光領域 P , Qに対応する形状で、 青色光, 緑色光、 赤色光, 白 色光の画像光としてスクリーン 5 0 2上に投影される。 スクリーン 5 0 2に投影 された矩形画像光の輪郭部分の鮮明さ (ぼけ具合) により、 フレアを測定する。 色収差測定用テストパターン T P 3は、 矩形状の遮光領域として構成され、 こ の遮光領域には、 3つの矩形領域 T 1〜T 3を含む略縦長矩形状の透光領域丁が 6個形成されている。 各透光領域 Τは、 その中央部分に段差が形成された構成と なっている。 これらの 6個の透光領域 Τ間の相違点は、 前記段差の寸法、 つまり、 矩形領域 Τ 2の幅寸法 (図中の左右方向の寸法) が段階的に変化していることで ある。 また、 図 1 6において、 矩形領域 Τ 1〜Τ 3には、 上から順番に赤色フィ ルタ、 緑色フィルタ、 青色フィルタの各色フィルタが設けられている。
このため、 検査シート 5 2 6を透過した画像光は、 略縦長矩形状で赤、 緑、 青 の矩形領域 Τ 1〜Τ 3に対応する画像光としてスクリーンに投影され、 緑色領域 を基準として、 赤色領域と青色領域と間の段差の鮮明さ (ぼけ具合) により、 色 収差を測定する。
フォーカス調整用テストパターン T P 4は、 前記スクリーンに投影される画像 光のフォーカス状態を調整する調整用のテストパ夕一ンであり、 テストパターン T Pの四隅部分に設けられている。
図 1 2に戻って、 ダミープリズム 5 2 7は、 前記プロジェクタ 1のクロスダイ クロイツクプリズム 4 4 4に対応する形状とされ、 クロスダイクロイツクプリズ ム 4 4 4を模したガラス製のブロックである。 ダミープリズム 5 2 7の入射端面 側には、 固定板 5 2 7 Aが取りつけられている。 固定板 5 2 7 Aは、 装置台 5 1 0の上段 5 1 1の支持面 5 1 1 Yによって支持されている。 固定板 5 2 7 Aに取 りつけられたダミープリズム 5 2 7は、 上段 5 1 1の開口 5 1 1 Xに収まってい る。
図 1 2に示すように、 遮光装置 5 2 8は、 重畳レンズ 5 2 5から射出された光 束に応じた開口 5 3 1 Aが形成され、かつ筐体 5 2 9に固定された基部 5 3 1と、 この基部 5 3 1に対して、 X軸に平行な軸を中心として回動し、 開口 5 3 1 Aを 覆う遮光板 5 3 2とを備えて構成される。 遮光装置 5 2 8は、 遮光板 5 3 2を回 動させて、 重畳レンズ 5 2 5から射出された光束の遮断と通過とを行っている。 筐体 5 2 9は、 内部の光束が漏れるのを防止する遮光用の筐体であり、 装置台 5 1 0の上段 5 1 1の上面 5 1 1 Aに固定され、 内部には、 各部品 5 2 1〜5 2 6を光路上にそれぞれ保持する保持部 5 3 3が設けられている。 これらの保持部 5 3 3には、 光束を通過させるための開口が形成されている。
複数のファン 5 3 0は、 図 1 3に示すように、 筐体 5 2 9の図中左側の側面部 分に鉛直方向に並設された 3つの軸流フアン 5 3 0 A〜5 3 0 Cと、 図中正面の 中央下部分に設置された軸流ファン 5 3 0 Dとを備えている。 これらのファン 5 3 0 A〜5 3 0 Dにより、 筐体 5 2 9内の過熱を防止している。
投写部 5 2 0には、 略鉛直方向に沿った方向に一直線状とされた光路が設定さ れている。 また、 投写部 5 2 0は、 プロジェクタ 1において投写レンズ 4 6が使 用された場合と略同様の光束を投写レンズ 4 6に入射するように構成されてい る。 このため、 プロジェクタに投写レンズを使用する場合と同様の環境下で投写 レンズ 4 6を製造でき、 より使用時の条件に合った適切な投写レンズ 4 6を製造 できる。
移動機構 5 4 0は、 投写レンズ保持機構 5 5 0を、 レンズ位置調整機構 5 7 0 側の位置と、 製造対象となる投写レンズ 4 6を供給する給材位置との間で移動さ せるものであり、 図 1 2に示すように、 装置台 5 1 0の下段 5 1 2の上面 5 1 2 Aに固定された直線移動装置 5 4 1と、 この直線移動装置 5 4 1の先端側に設け られた回転移動装置 5 4 2とを備える。
直線移動装置 5 4 1は、 装置台 5 1 0の下段 5 1 2の上面 5 1 2 Aに固定され た基部 5 4 1 Aと、 この基部 5 4 1 Aの上面に取りつけられたシリンダ 5 4 1 B と、 このシリンダ 5 4 1 Bに設けられ光軸 Zと平行な方向、 つまり略鉛直方向に 沿って進退するピストン 5 4 1 Cとを備える。 直線移動装置 5 4 1は、 シリンダ 5 4 1 B内の空気の圧力により、 ピストン 5 4 1 Cを光軸 Zに沿った方向に予め 設定された分だけ移動させ、 回転移動装置 5 4 2を光軸 Zに沿った方向に直線移 動させている。
回転移動装置 5 4 2は、 ピストン 5 4 1 Cの先端に接続部材 5 4 2 Dを介して 取りつけられた筒部 5 4 2 Aと、この筒部 5 4 2 Aに挿通された軸部 5 4 2 Bと、 この軸部の先端に取りつけられた腕部 5 4 2 Cとを備える。 回転移動装置 5 4 2 は、 図 1 3および後述する図 1 7の矢印で示すように、 軸部 5 4 2 Bを中心とし て腕部 5 4 2 Cを回動させることにより、 投写レンズ保持機構 5 5 0を、 光路の 照明光軸上および照明光軸外の間で移動させている。
投写レンズ保持機構 5 5 0は、 製造対象となる投写レンズ 4 6を、 照明光軸上 において、 3群レンズ 1 1 3の位置を調整する位置であるレンズ調整位置に保持 するものである。 投写レンズ保持機構 5 5 0は、 図 1 2に示すように、 腕部 5 4 2 Cの先端側に取りつけられた基部 5 5 1と、 この基部上に設けられた保持部 5 5 2とを備える。
基部 5 5 1は、 保持部 5 5 2を支持するための板状の部材あり、 その略中央位 置には、 投写レンズ 4 6の鏡筒 1 0 0を挿通するための開口 5 5 1 Aが形成され ている。 この嵌合凹部の周囲には、 互いに均等間隔となる位置に 4つの凹部が形 成されている。
保持部 5 5 2は、 投写側を図 1 2中の下方に向けて投写レンズ 4 6を保持する 治具であり、 矩形板状の保持部本体 5 5 2 Aと、 この保持部本体 5 5 2 Aの四隅 に設けられ、 前記 4つの凹部のそれぞれに挿入される 4つの脚部とを備える。 な お、 この保持部 5 5 2は、 製造する投写レンズ 4 6の種類や寸法に応じて、 適宜 対応するものに交換して使用される。
保持部本体 5 5 2 Aの略中央位置には、 円形の開口が形成されている。 この開 口には、 鏡筒 1 0 0が揷通される。 また、 開口の周囲には、 投写レンズ 4 6のつ ば部 1 2 1の形状に対応した形状の嵌合凹部が形成されている。 従って、 保持部 本体 5 5 2 Aの凹部につば部 1 2 1が嵌合されることにより、 外形基準で略正確 な位置に、 投写レンズ 4 6が保持されるようになっている。
反射ミラー 5 6 0は、 投写レンズ 4 6を介して射出された前記テストパターン を含む画像光の光路を略 9 0 ° 曲折して反射してスクリーンに導くものである。 レンズ位置調整機構 5 7 0は、 投写レンズ 4 6を構成する 3群レンズ 1 1 3の X Y平面上の位置を調整するものであり、 X軸方向に沿って位置を調整する X軸 方向レンズ調整機構 5 7 0 Xと、 Y軸に沿って位置を調整する Y軸方向レンズ調 整機構 5 7 0 Yとを備える。 これらの各方向レンズ調整機構 5 7 0 X, 5 7 0 Y の構成は同じであり同じ符号を付す。 以下には、 Y軸方向レンズ調整機構 5 7 0 Yの構成についてのみ説明し、 X軸方向レンズ調整機構 5 7 0 Xの構成について は説明を省略する。
Y軸方向レンズ調整機構 5 7 0 Yは、 図 1 2に示すように、 装置台 5 1 0の上 段 5 1 1の下面 5 1 1 Bに設けられた 2つのスライダ 5 1 3 A, 5 1 3 Bを介し て、 Y軸に沿った方向にスライド移動可能に取りつけられた第 1シリンダ装置 5 7 1および第 2シリンダ装置 5 7 2を備える。 これらのシリンダ装置 5 7 1, 5 7 2は付勢部として機能している。
図 1 7は、 レンズ位置調整機構および接着固定機構の一部を拡大して示す平面 図である。
第 1シリンダ装置 5 7 1は、 図 1 2 , 1 7に示すように、 スライダ 5 1 3 Aに 取りつけられたシリンダ 5 7 1 Aと、 このシリンダ 5 7 1 Aに設けられたピスト ン 5 7 1 Bと、 このピストン 5 7 1 Bの先端に取りつけられた箱体 5 7 1 Cと、 この箱体 5 7 1 C内に取りつけられた第 1ピン部材 5 7 1 Dと、 この第 1ピン部 材 5 7 1 Dを Y軸に沿った方向の進退を微調整する進退部としてのマイクロメ一 夕へッド 5 7 1 Eとを備える。
シリンダ 5 7 1 Aは、 内部に注入される空気の圧力具合により、 ピストン 5 7 1 Bを、 投写レンズ 4 6に対し Y軸に沿って進退させるものである。
ピストン 5 7 1 Bは、シリンダ 5 7 1 A内の空気圧により Y軸に沿って進退し、 これに伴って、 箱体 5 7 1 Cも Y軸に沿って進退させる。
第 1ピン部材 5 7 1 Dは、 図 1 7に示すように、 投写レンズ 4 6の位置調整孔 1 2 2 Aに揷入され、 投写レンズ 4 6を構成する 3群レンズ 1 1 3の Y軸方向の 位置を調整するものである。 第 1ピン部材 5 7 1 Dの先端は、 3群レンズ 1 1 3 の外周部分に当接する部分であり、 この 3群レンズ 1 1 3を損傷させないように 研磨されている。
マイクロメータへッド 5 7 1 Eは、ピン部材 5 7 1 Dの進退を分解能 1 mで、 閼整可能に構成されている。
第 2シリンダ装置 5 7 2は、 図 1 2, 1 7に示すように、 スライダ 5 1 3 Bに 取りつけられたシリンダ 5 7 2 Aと、 このシリンダ 5 7 2 Aに設けられたピスト ン 5 7 2 Bと、 このピストン 5 7 2 Bの先端に取りつけられた箱体 5 7 2 Cと、 この箱体 5 7 2 C内に取りつけられた第 2ピン部材 5 7 2 Dと、 箱体 5 7 2 Cの 下側に取りつけられたフォーカス調整部 5 7 2 Eとを備える。
第 2シリンダ装置 5 7 2は、第 1シリンダ装置 5 7 1とは、マイクロメ一夕へッ ド 5 7 1 Eを備えずに、 フォーカス調整部 5 7 2 Eを備える点で相違しており、 その他の部分については、 略同様の構成である。
シリンダ 5 7 2 Aは、 内部に注入される空気の圧力具合により、 ピストン 5 7 2 Bを、 投写レンズ 4 6に対し Y軸に沿って進退させる。 なお、 ピストン 5 7 2 Bは、 前記ピストン 5 7 1 Bと同様の部材である。 また、 箱体 5 7 2 Cは前記箱 体 5 7 1 Cと、 第 2ピン部材 5 7 2 Dは前記ピン部材 5 7 1 Dと、 同様の部材で ある。
ここで、 第 1シリンダ装置 5 7 1のシリンダ 5 7 1 A内の空気圧は、 第 2シリ ンダ装置 5 7 2のシリンダ 5 7 2 A内の空気圧よりも大きな圧力として設定され ている。 このため、 第 1シリンダ装置 5 7 1の第 1ピン部材 5 7 1 Dが第 2ピン 部材 5 7 2 D側へ進行すると、 第 2シリンダ装置 5 7 2の第 2ピン部材 5 7 2 D は、 第 1ピン部材 5 7 1 D側から退行することになる。 また、 第 1ピン部材 5 7 1 Dが第 2ピン部材 5 7 2 D側から退行すると、 第 2シリンダ装置 5 7 2の第 2 ピン部材 5 7 2 Dは、 第 1ピン部材 5 7 1 D側へ進行することになる。
以上より、 投写レンズ 4 6を構成する 3群レンズ 1 1 3において、 位置調整孔 1 2 2 Aに対応する部分、 つまり、 Y軸上の両端部分は、 2つのピン部材 5 7 1 D, 5 7 2 Dの研磨された先端部分によって当接され、 常に挟まれた状態で保持 されることになる。 このため、第 1ピン部材 5 7 1 Dが Y軸に沿って進退すると、 これに伴って、 3群レンズ 1 1 3は、 鏡筒本体 1 0 1内で Y軸に沿って進退する ことになる。
尚、 3群レンズ 1 1 3は、 X軸方向に各々配置された第 1ピン部材 5 7 1 D及 び第 2ピン部材 5 7 2 Dに対しては、 両ピン部材 5 7 1 D , 5 7 2 Dの研磨され た先端部分の間を Y軸方向へ沿って移動する。
フォーカス調整部 5 7 2 Eは、 図 1 3に示すように、 レンズ調整位置に配置さ れた投写レンズ 4 6の前枠 1 0 2に当接するロッド 5 7 3と、 このロッド 5 7 3 を進退させるマイクロメ一夕 5 7 4とを備える。 フォーカス調整部 5 7 2 Eは、 マイクロメ一夕 5 7 4を操作することにより、 ロッド 5 7 3で前枠 1 0 2を回転 させて、 投写レンズ 4 6のフォーカス調整を行う。
X軸方向レンズ調整機構 5 7 0 Xは、 前記 Y軸方向レンズ調整機構 5 7 0 Yと 略同様の構成で同様の作用および機能を有しており、 フォーカス調整部 5 7 2 E を備えない点のみ相違している。 このため、 X軸方向レンズ調整機構 5 7 0 Xは、 鏡筒本体 1 0 1内での 3群レンズ 1 1 3の X軸に沿った方向の位置調整を行う。 尚、 Y軸方向への調整時と同様に 3群レンズ 1 1 3は Y軸方向に各々配置され た第 1ピン部材 5 7 1 D及び第 2ピン部材 5 7 2 Dに対しては、 両ピン部材 5 7 1 D , 5 7 2 Dの研磨された先端部分の間を X軸方向へ沿って移動する。
接着固定機構 5 8 0は、 図 1 2または図 1 7に示すように、 3群レンズ 1 1 3 を鏡筒本体 1 0 1に接着固定するものであり、 ピン部材 5 7 1 D, 5 7 2 Dの両 側に並べて配置され、 それぞれ対応する接着剤注入孔 1 2 2 Bに挿入される合計 8つの紫外線硬化型接着剤注入用チュ一ブ 5 8 1と、 注入孔 1 2 2 Bに注入され た紫外線硬化型接着剤に紫外線を照射する紫外線照射用ファイバー 5 8 2と、 紫 外線硬化型接着剤注入用チューブ 5 8 1に接続された紫外線硬化型接着剤注入部 5 8 3と、 紫外線照射用ファイバー 5 8 2に接続された紫外線照射部 (光線照射 部) 5 8 4とを備える。 紫外線硬化型接着剤注入用チューブ 5 8 1および紫外線 照射用ファイバ一 5 8 2の一部は、 前記各箱体 5 7 1 C, 5 7 2 C内に収納され ている。
接着固定機構 5 8 0において、 紫外線硬化型接着剤注入部 5 8 3から紫外線硬 化型接着剤注入用チューブ 5 8 1を介して紫外線硬化型接着剤を注入孔 1 2 2 B に注入した後に、 紫外線照射部 5 8 4から紫外線照射用ファイバー 5 8 2を介し て紫外線を照射して、 8箇所で 3群レンズ 1 1 3を鏡筒本体 1 0 1の所定位置に 接着固定している。 すなわち、 本実施形態では、 紫外線硬化型接着剤の注入孔 1 2 2 Bへの挿入と、 紫外線硬化型接着剤の紫外線照射とが連続して行われ、 接着 剤の注入と、 紫外線照射とが自動化されている。
なお、 紫外線照射時には、 紫外線硬化型接着剤注入用チューブ 5 8 1を接着剤 注入時の位置から後退させ、 紫外線硬化型接着剤注入用チューブ 5 8 1内の接着 剤に紫外線が照射されるのを防止している。
〔5 . 投写レンズの製造方法〕
投写レンズ 4 6は、 図 1 8に示すフローチャートに従って製造される。
作業者は、 3群レンズ 1 1 3のみが遊嵌状態で配置され、 その他の群レンズ 1 1 1 , 1 1 2 , 1 1 4が予め外形基準で固定された調整前の投写レンズ 4 6を用 意する (処理 S 1 ) 。
作業者は、 投写レンズ製造装置 5 0 0を起動させ (処理 S 2 ) 、 各構成部品を 初期位置に移動させる (処理 S 3 ) 。 具体的には、 投写レンズ保持機構 5 5 0は、 初期位置として照明光軸外の給材位置に位置する。 また、 遮光装置 5 2 8の遮光 板 5 3 2は、 初期位置として光路の外側に位置する。
作業者は、 給材位置にある投写レンズ保持機構 5 5 0において、 その保持部 5 5 2に形成された嵌合凹部に、 調整前の投写レンズ 4 6のつば部 1 2 1を外形基 準で正確に嵌合させ、 この保持部 5 5 2を基部 5 5 1に取りつけることより、 調 整前の投写レンズ 4 6を投写レンズ保持機構 5 5 0に保持させる (処理 S 4 ) 。 調整前の投写レンズ 4 6を供給した後に、 作業者は、 移動機構 5 4 0を駆動さ せる。 この際、 投写レンズ保持機構 5 5 0は、 直線移動装置 5 4 1により鉛直方 向上方へ移動するとともに、 回転移動装置 5 4 2により光軸 Zに沿った軸を中心 として回転移動する。 そして、 照明光軸上のレンズ調整位置に調整前の投写レン ズ 4 6を保持する (処理 S 5 :投写レンズ保持工程) 。
投写レンズ 4 6をレンズ調整位置にセットした後に、 作業者は、 第 1および第 2シリンダ装置 5 7 1 , 5 7 2を駆動させる。 予め設定された圧力までシリンダ 5 7 1 A, 5 7 2 A内の空気圧が上昇し、 レンズ位置調整機構 5 7 0を構成する 第 1および第 2ピン部材 5 7 1 D , 5 7 2 Dが互いに近接する方向に移動して、 図 19 (A) 及び図 19 (B) に示すように、 これらのピン部材 571 D, 57 2Dは、 各位置調整孔 122 Aにそれぞれ揷入される。 このため、 揷入された 4 つのピン部材 571 D, 572Dの研磨された先端により、 3群レンズ 1 13は、 その外周部分が 4点で保持される (処理 S 6) 。 また、 シリンダ装置 571, 5 72の近接方向への移動に伴い、 接着固定機構 580の紫外線硬化型接着剤注入 用チューブ 581は、 投写レンズ 46の接着剤注入孔 122Bの近傍まで移動す る。
なお、 シリンダ 571 A, 572A内の空気圧は、 各ピン部材 571 D, 57 2Dの先端が、 群レンズ 1 1 1〜1 14間の芯位置が概ね合致する位置となるよ うに予め設定しておく。
この状態で、 作業者は、 投写部 520を駆動させる。 光源装置 521から調整 用の光束が射出され (処理 S 7 :光束射出工程) 、 この射出された光束は、 各光 学部品を経て検査シート 526を通過する際に所定のテストパターン TPを含む 画像光となり、 このテストパターン TPを含む画像光は、 ダミープリズム 527 を介して調整前の投写レンズ 46に導入される (処理 S 8 :画像光射出工程) 。 この導入されたテストパターン TPを含む画像光は、 反射ミラ一により前方側へ 90° 曲折された後、 スクリーン 502に拡大投写される (処理 S 9) 。
作業者は、 スクリーン 502に投影されたテストパターン TPを含む画像光を 観察しながら、 スクリーン 502上の画像光のフォーカス調整を行う (処理 S 1 0 ) 。 具体的には、 作業者は、 フォーカス調整用テストパターン TP 4の画像光 を観察しながら、 フォーカス調整部 572 Eのマイクロメ一夕 574を操作して ロッド 573を進退させ、 前枠 102を鏡筒本体 101に対して回動させること により、 投影画像のフォーカス調整を行う。
次に、 作業者は、 スクリーン 502上の投写画像を観察しながら、 各テストパ ターン TP 1〜TP 3が最適 (鮮明) で、 かつフレア等の発生が最も小さくなる ように、 レンズ位置調整機構 570を操作して、 3群レンズ 1 13の X軸方向お よび Υ軸方向の位置をそれぞれ独立して調整する。
具体的には、作業者は、 X軸方向レンズ調整機構 570 Χのマイクロメ一夕へッ ド 5 7 I Eを操作して、 X軸上の一対の位置調整孔 1 2 2 Aに挿入されたピン部 材 5 7 1 D, 5 7 2 Dのうちの第 1ピン部材 5 7 1 Dを第 2ピン部材 5 7 2 D側 へ進退させて、 手動により X軸方向の位置を微調整する (処理 S 1 1 : レンズ位 置調整工程) 。
同様にして、作業者は、 Y軸方向レンズ調整機構 5 7 0 Yのマイクロメータへッ ド 5 7 1 Eを操作して、 Y軸方向の 3群レンズ 1 1 3の位置を手動で調整する(処 理 S 1 2 : レンズ位置調整工程) 。 これにより、 複数の群レンズ 1 1 1〜1 1 4 間の芯位置が正確に調整される。
3群レンズ 1 1 3の位置調整をした後に、 作業者は、 遮光装置 5 2 8を駆動さ せる (処理 S 1 3 ) 。 遮光装置 5 2 8は、 光路上に遮光板 5 3 2を配置して、 光 源装置 5 2 1から射出された光束が投写レンズ 4 6に導入されることを遮るよう に機能する。
次に、 作業者は、 接着固定機構 5 8 0を駆動する。 4つのピン部材 5 7 1 D, 5 7 2 Dにより 3群レンズ 1 1 3が 4点で保持されたまま、 8つの接着剤注入孔 1 2 2 Bに接着固定機構 5 8 0の各紫外線硬化型接着剤注入用チューブ 5 8 1が 挿入され、 紫外線硬化型接着剤注入部 5 8 3から流動状態の紫外線硬化型接着剤 が注入される (処理 S 1 4 :接着固定工程) 。 紫外線硬化型接着剤注入後、 接着 固定機構 5 8 0の紫外線硬化型接着剤注入用チューブ 5 8 1は、 接着剤注入孔 1 2 2 Bから引き抜かれる。
この後に、 注入された紫外線硬化型接着剤に対して紫外線照射部 5 8 4から紫 外線照射用ファイバー 5 8 2を介して紫外線が照射され (処理 S 1 5 :接着固定 工程) 、 3群レンズ 1 1 3が鏡筒本体 1 0 1に接着固定される。
接着固定が終了すると、 第 1および第 2シリンダ装置 5 7 1, 5 7 2を構成す るシリンダ 5 7 1 A, 5 7 2 A内の空気圧が減圧され、 シリンダ装置 5 7 1, 5 7 2のピストン 5 7 1 B , 5 7 2 Bは、 互いに離間する方向に移動し、 第 1およ び第 2ピン部材 5 7 I D , 5 7 2 Dは位置調整孔 1 2 2 Aから引き抜かれ、 これ により、 3群レンズ 1 1 3の保持が解除される (処理 S 1 6 ) 。
次に、接着固定された投写レンズ 4 6を保持する投写レンズ保持機構 5 5 0は、 照明光軸上のレンズ調整位置から照明光軸外の給材位置へと移動する (処理 S 1 7 ) 。 作業者は、 給材位置の投写レンズ保持機構 5 5 0から調整済みの投写レン ズ 4 6を取り出して、 1つの投写レンズ 4 6の製造を終了する (処理 S 1 8 ) 。 製造された投写レンズ 4 6を取り出した後に、 前述と同様にして調整前の投写 レンズ 4 6を投写レンズ保持機構 5 5 0に配置し、 同様の手順で投写レンズ 4 6 を連続的に製造する (処理 S 1 9 ) 。 最後に、 投写レンズ製造装置 5 0 0の駆動 を止めて製造を終了する (処理 S 2 0 ) 。
〔6 . 実施形態の効果〕
本実施形態によれば、 以下のような効果がある。
(1-1) X軸方向および Y軸方向のレンズ位置調整機構 5 7 0を備え、前述した手 順で製造することにより、 投写レンズ 4 6を構成する 3群レンズ 1 1 3を互いに 直交する X軸と Y軸との両方向に沿って独立して高精度に位置調整できる。 この ため、 従来の 3方向で調整する場合に比べて、 調整したい方向を簡単に把握でき るため、 調整作業が簡単である。
(1- 2) X軸上の対向する位置調整孔 1 2 2 Aにそれぞれピン部材 5 7 1 D , 5 7 2 Dを揷入して、 2つのピン部材 5 7 1 D, 5 7 2 Dで 3群レンズ 1 1 3を挟ん で保持することにより、 3群レンズ 1 1 3の X軸方向の位置を簡単に調整できる。 同様に、 Y軸方向の位置も簡単に調整できる。
(1 - 3) X軸および Y軸に沿ってそれぞれ一対の位置調整孔 1 2 2 Aを形成し、こ れらの一対の位置調整孔 1 2 2 Aには、 常に、 まっすぐにピン部材 5 7 1 D , 5 7 2 Dが揷入され進退するため、 従来のように位置調整孔 1 2 2 Aの開口寸法を 大きくする必要もない。 従って、 光漏れ等が防止され適切な画像を投写可能な投 写レンズ 4 6を提供できる。
(1 - 4)ピン部材 5 7 1 D , 5 7 2 Dを、投写レンズ 4 6側、 つまりプロジェクタ 1側に設けずに、 投写レンズ製造装置 5 0 0側に設けたので、 投写レンズ 4 6を 構成する部材の点数を減少できて、 投写レンズ 4 6の製造コストの低減や、 小型 化、 軽量化を図ることができる。
(1-5) 投写レンズ製造装置 5 0 0では、 鏡筒本体 1 0 1ではなく、 3群レンズ 1 1 3を移動させているため、 鏡筒本体 1 0 1に固定された 4群レンズ 1 1 4、 2群レンズ 1 1 2の光軸が、 調整用の光源装置 5 2 1に対してずれてしまうこと がない。 そのため、 4群レンズ 1 1 4、 2群レンズ 1 1 2と 3群レンズ 1 1 3の 光軸位置の光軸を一致させることが容易となり、 3群レンズ 1 1 3の光軸位置を 高精度に調整することができる。
(1-6) 3群レンズ 1 1 3を位置調整後に鏡筒本体 1 0 1に接着固定しているた め、 3群レンズ 1 1 3の位置調整により鏡筒本体 1 0 1に歪が生じることがない。 従って、 鏡筒本体 1 0 1に歪を吸収するための歪吸収部等を設ける必要がないの で、 鏡筒本体 1 0 1の小型化、 投写レンズ 4 6の小型化を図ることができる。 ま た、 鏡筒本体 1 0 1に歪が生じないので、 歪解消のために鏡筒本体 1 0 1を加熱 する必要もない。 従って、 投写レンズに使用されるレンズ 1 1 2〜1 1 3の材質 を熱に弱いものとすることもでき、 レンズの材質が制限されない。 さらに、 鏡筒 本体 1 0 1に接着固定される前に、 3群レンズ 1 1 3の調整を行っており、 調整 時には 3群レンズ 1 1 3が固定されていないので、 3群レンズ 1 1 3の光軸位置 の微調整を容易に行うことができ、 高精度な調整を行うことが可能となる。
(1-7) 1 mレベルの高分解能のマイクロメータへッド 5 7 1 Eを採用したの で、 群レンズ 1 1 1〜1 1 5の光軸位置調整をより一層高精度に実施できる。
(1-8)第 1および第 2シリンダ装置 5 7 1 , 5 7 2を構成するシリンダ 5 7 1 A, 5 7 2 A内の空気圧を常に一定に設定したので、 ピン部材 5 7 1 D, 5 7 2 Dの位置が常に一定となる。 このため、 投写レンズ 4 6を交換して次の投写レン ズ 4 6を製造する場合でも、 調整対象となる 3群レンズ 1 1 3の芯を他の群レン ズ 1 1 1, 1 1 2 , 1 1 4の芯に対して略合致する位置に調整できるから、 後は、 投写レンズ 4 6毎の偏差を微調整するだけでよく、 位置調整作業の迅速化、 簡素 化を図ることができる。
(1-9)移動機構 5 4 0を備えることにより、投写レンズ保持機構 5 5 0が照明光 軸上のレンズ調整位置と、 照明光軸外の給材位置との間で移動するので、 投写レ ンズ 4 6のセットを容易にでき、 製造作業の効率化を図ることができる。
(1 - 10)レンズ位置調整機構 5 7 0により 3群レンズ 1 1 3を保持した状態のま まで、 接着固定機構 5 8 0により 3群レンズ 1 1 3を鏡筒本体 1 0 1に接着固定 できるため、 接着固定時に発生する不良を最小限にできる。
(1 - 11)遮光装置 5 2 8を備えることにより、 接着固定の際に光源装置 5 2 1か らの光束が投写レンズ 4 6側へ導入されるのを防止できる。 このため、 紫外線硬 化型接着剤が誤つて硬化することを防止できる。
(1-12)投写レンズ 4 6から射出された画像光を反射ミラ一 5 6 0で略直角に反 射してスクリーン 5 0 2に投写するので、装置本体 5 0 1の光路方向と、スクリー ン 5 0 2の面とが、 略平行に配置される構成となる。 このため、 光源装置 5 2 1 からスクリーン 5 0 2までを鉛直方向に沿った一直線状の光路とする場合に比べ て、 装置本体 5 0 1の小型化を図ることができる。
(1 - 13)スクリーン 5 0 2に拡大して投写された投写画像を観察しながら、 投写 レンズ 4 6の位置調整を行うため、 群レンズ 1 1 1〜1 1 4間の光軸位置を正確 に調整できる。
(1 - 14)投写部 5 2 0から投写レンズ 4 6までの光路を略鉛直方向とし、 X軸お よび Y軸を水平方向としたので、 接着固定機構 5 8 0の紫外線硬化型接着剤注入 用チューブ 5 8 1に接着剤が残っていたとしても、 この接着剤はピン部材 5 7 1 D , 5 7 2 D側には流れないため、 ピン部材 5 7 1 D , 5 7 2 Dの先端に接着剤 が付着することを防止でき、 投写レンズ 4 6を効率的に製造できる。
(1-15)また、 接着固定機構 5 8 0は、 紫外線硬化型接着剤注入部 5 8 3及び紫 外線硬化型接着剤注入用チューブ 5 8 1と、 紫外線照射部 5 8 4及び紫外線照射 用ファイバ一 5 8 2とを備え、紫外線硬化型接着剤の注入孔 1 2 2 Bへの挿入と、 紫外線硬化型接着剤の紫外線照射とが連続して行われ、 接着剤の注入と、 紫外線 照射とが自動化されているため、 3群レンズ 1 1 3の固定に手間を要しない。
(1-16)以上より、 高精度に光軸位置調整できて高品質の画像を投写でき、 かつ 製造コストを低減できる投写レンズ 4 6を提供できる。 このような投写レンズ 4 6を採用したプロジェクタ 1において、 コストの低減や、 小型化、 軽量化を図る ことができる。
2 . 第 2実施形態 図 2 0及び図 2 1を参照して本発明の第 2実施形態について説明する。 尚、 以 下の説明では、 既に説明した部分と同一の部分については、 同一符号を付してそ の説明を省略する。
前記実施形態では、 接着固定機構 5 8 0は、 紫外線硬化型接着剤注入部 5 8 3 及び紫外線硬化型接着剤注入用チューブ 5 8 1と、 紫外線照射用ファイバー 5 8 2及び紫外線照射部 5 8 4とを備え、 紫外線硬化型接着剤の注入と、 紫外線照射 とが自動化されているとした。 これに対し、 本実施形態の接着固定機構 5 8 0 ' は、 図 2 0に示すように紫外線硬化型接着剤注入部及び紫外線硬化型接着剤注入 用チューブを備えておらず、 接着剤の注入を作業者が手作業で行う。 すなわち、 本実施形態の接着固定機構 5 8 0 ' は紫外線照射用ファイバー 5 8 2と、 この紫 外線照射用ファイバー 5 8 2に接続された紫外線照射部 (光線照射部) 5 8 4と を備えたものとなる。
このような本実施形態では、 投写レンズ 4 6は、 前記実施形態と略同様の手順 で製造されるが (図 1 8参照) 、 図 2 1 (A) に示すような紫外線硬化型接着剤 5 8 5の接着剤注入孔 1 2 2 Bへの注入は、 作業者が手作業で行う点のみが前記 実施形態と異なっている (図 1 8に示す処理 S 1 4 ) 。
なお、 この際、 投写レンズ 4 6を投写レンズ保持機構 5 5 0から取り外して紫 外線硬化型接着剤 5 8 5を注入し、 再度、 投写レンズ保持機構 5 5 0に投写レン ズ 4 6を保持させてもよい。 このようにすれば、 紫外線硬化型接着剤 5 8 5の接 着剤注入孔 1 2 2 Bへの注入を容易に行うことができる。 なお、 投写レンズ製造 装置 5 0 0は、 3群レンズ 1 1 3の調整位置を記憶しているため、 投写レンズ 4 6を投写レンズ保持機構 5 5 0から取り外した後、 投写レンズ 4 6を投写レンズ 保持機構 5 5 0に取りつけた場合であっても、 再度、 3群レンズ 1 1 3の位置調 整を行う必要はない。 また、 例え、 再度、 位置調整を行うことがあっても、 微調 整ですむため短時間で調整することができ、 調整中に紫外線硬化型接着剤 5 8 5 が硬化してしまうことはない。
そして、 図 2 1 ( B ) に示すように、 注入された紫外線硬化型接着剤 5 8 5に 対して紫外線照射部 5 8 4から紫外線照射用ファイバー 5 8 2を介して紫外線を 照射する (図 1 8に示す処理 S 1 5 ) 。
以上のような第 2実施形態によれば、 第 1実施形態の (1-1) 〜 (1-13) (1-1 6)と略同様の効果を奏することができるうえ、以下の効果を奏することができる。 (2-1)本実施形態では、紫外線硬化型接着剤 5 8 5の注入孔 1 2 2 Bへの注入を 手作業で行っており、 接着固定機構 5 8 0 ' は、 紫外線硬化型接着剤注入部及び 紫外線硬化型接着剤注入用チューブを備えない構成であるため、 接着固定機構 5 8 0 '、 さらには、 投写レンズ製造装置 5 0 0の構造を簡略化することができる。
3 . 実施形態の変形
なお、 本発明は、 前記実施形態に限定されるものではなく、 本発明の目的を達 成できる他の構成等を含み、 以下に示すような変形等も本発明に含まれる。
例えば、 前記実施形態では、 作業者自身が各機構を操作して調整対象となるレ ンズの位置を調整する構成としたが、 これに限らず、 コンピュータ制御により自 動的に調整する構成としてもよい。 この場合には、 例えば、 スクリーン等に投写 された画像を C C Dカメラ等の撮像素子で撮像し、 コンピュータで画像処理を行 うことにより、 レンズ位置を調整する構成を採用できる。 また、 スクリーンに投 影せずに、 直接 C C Dカメラ等の撮像素子で撮像する構成とすることもできる。 また、 レンズの高軸位置調整だけの自動化に限らず、 給材から取り出しまで全 ての工程を自動で行う構成も採用できる。
前記実施形態において、 付勢部として、 ピン部材を投写レンズ側に空気圧で付 勢するシリンダ装置を採用したが、 これに限らず、 例えば、 板ばね、 コイルばね 等のばねやゴム等弾性部材、 電磁的な付勢手段等の各種の付勢部を採用できる。 また、 流体として空気を採用したが、 空気以外の気体や、 油等の液体等も採用で き、 任意の流体を採用できる。
前記実施形態において、 位置調整孔 1 2 2 Aの数を 4個、 接着剤注入孔 1 2 2 Bの数を 8個としたが、 これらの数には限定されず、 3個以下や 9個以上として もよい。 また、 孔の形状は、 特に限定されないがピン部材の径に合わせて構成す ればよい。
前記実施形態において、 接着剤として紫外線硬化型接着剤を採用したが、 これ には限定されず、 例えば、 いわゆる瞬間接着剤等のその他の接着剤を採用しても よい。
また、 前記実施形態において、 3つの光変調装置を用いたプロジェクタを採用 したが、 これに限らず、 例えば、 1つの光変調装置のみを用いたプロジェクタ、 2つの光変調装置を用いたプロジェクタ、 または 4つ以上の光変調装置を用いた プロジェクタとしてもよい。 また、 光変調装置として液晶パネルを採用したが、 これに限らず、 マイクロミラーを用いたデバイス等の液晶以外の光変調装置を採 用してもよい。 さらに、 透過型の光変調装置ではなく、 反射型の光変調装置を用 いてもよい。
その他、 本発明の実施時の具体的な構造および形状等は、 本発明の目的を達成 できる範囲で、 他の構造等としてもよい。 産業上の利用可能性
以上のように、本発明の投写レンズ製造装置、投写レンズ製造方法は、プロジェ クタに使用される投写レンズを製造する製造装置、 製造方法として有用である。 特に、 投写レンズを構成する部材の点数を減少してコスト削減や小型化、 軽量化 を図り、 投写レンズを構成する複数のレンズの光軸位置を高精度に、 かつ簡単に 調整でき、 高品質な画像投写を可能とし、 さらには、 使用するレンズの材質が制 限されない投写レンズの製造に適している。

Claims

請 求 の 範 囲
1 . 内部に所定の光路が設定されたレンズ保持筒と、 この光路の照明光軸上に 順次配置される複数のレンズとを備える投写レンズを製造する投写レンズ製造装 置であって、
前記レンズ保持筒には、前記複数のレンズのうちのいずれかのレンズの位置を、 前記照明光軸に直交する面内で互いに直交する 2つの軸に沿った方向に調整する ために、 前記各軸上にそれぞれ一対の位置調整孔が形成され、
調整用の光束を射出する光源と、
製造対象となる投写レンズを、 前記照明光軸上で前記調整対象となるレンズの 位置を調整する位置であるレンズ調整位置に保持する投写レンズ保持機構と、 前記光源から射出された光束に基づいて、 所定のテストパターンを含む画像光 を形成し、 前記レンズ調整位置に配置された投写レンズに導入する画像光射出機 構と、
この画像光が導入された投写レンズから投写された画像光を検出しながら、 調 整対象となるレンズの位置を、 前記位置調整孔を介して前記 2つの軸に沿った方 向にそれぞれ調整する 2つのレンズ位置調整機構と、
この位置調整されたレンズを前記レンズ保持筒に接着固定する接着固定機構と を備えることを特徴とする投写レンズ製造装置。
2 . 請求項 1に記載の投写レンズ製造装置において、
前記レンズ位置調整機構は、前記軸上の一対の位置調整孔にそれぞれ揷入され、 前記調整対象となるレンズの外周部分に当接する 2つのピン部材と、
これらの 2つのピン部材を互いに近接する方向に付勢する付勢部と、 これらの 2つのピン部材のうちの一方を他方に対して進退させるとともに、 こ の一方の進行または退行に応じて前記他方を退行または進行させる進退部とを備 えることを特徴とする投写レンズ製造装置。
3 . 請求項 2に記載の投写レンズ製造装置において、
前記付勢部は、 前記ピン部材毎に配置され、 このピン部材を流体による圧力で WO 2004/001477 A r. PCT/JP2003/007720
45
付勢するシリンダ装置であることを特徴とする投写レンズ製造装置。
4 . 請求項 2または請求項 3に記載の投写レンズ製造装置において、
前記進退部は、 前記一方のピン部材を他方のピン部材に対して進退させるマイ クロメータへッドであることを特徴とする投写レンズ製造装置。
5 . 請求項 1〜請求項 4のいずれかに記載の投写レンズ製造装置において、 前記投写レンズ保持機構を、 前記レンズ位置調整機構が設置された位置から製 造対象となる投写レンズの給材位置まで移動させる移動機構を備えることを特徴 とする投写レンズ製造装置。
6 . 請求項 5に記載の投写レンズ製造装置において、
前記移動機構は、 前記レンズ保持機構に接続された腕部の基端を中心として、 前記照明光軸に直交する面内の方向に前記レンズ保持機構を回動させて、 このレ ンズ保持機構を前記照明光軸上および照明光軸外の間で移動させる回転移動装置 を備えることを特徴とする投写レンズ製造装置。
7 . 請求項 1〜請求項 6のいずれかに記載の投写レンズ製造装置において、 前記レンズ保持筒には、 位置調整されたレンズを接着固定する接着剤を注入す るための接着剤注入孔が形成され、
前記接着固定機構は、 前記接着剤注入孔に注入された光硬化型接着剤を硬化さ せる光線照射部を備えることを特徴とする投写レンズ製造装置。
8 . 請求項 7に記載の投写レンズ製造装置において、
前記接着固定機構は、 前記接着剤注入孔に光硬化型接着剤を注入する接着剤注 入部を備えることを特徴とする投写レンズ製造装置。
9 . 請求項 7又は請求項 8に記載の投写レンズ製造装置において、
前記光源と、 配置された投写レンズとの間の光路には、 前記光源からの光束が 前記投写レンズに導入されないように遮光する遮光機構を備えることを特徴とす る投写レンズ製造装置。
1 0 . 請求項 1〜請求項 9のいずれかに記載の投写レンズ製造装置において、 前記投写レンズの光路後段には、 この投写レンズを介して投写された画像光を 投影するスクリーンが配置されていることを特徴とする投写レンズ製造装置。
1 1 . 請求項 1〜請求項 1 0のいずれかに記載の投写レンズ製造装置において、 前記光源から前記投写レンズに至る光路は、 略鉛直方向に沿った方向に形成さ れていることを特徴とする投写レンズ製造装置。
1 2 . 請求項 1 1に記載の投写レンズ製造装置において、
前記投写レンズの光路後段には、 この投写レンズから射出された画像光の光路 を曲折して反射する反射部材と、 この反射された画像光を投影するスクリーンと を備えること特徴とする投写レンズ製造装置。
1 3 . 内部に所定の光路が設定されたレンズ保持筒と、 この光路の照明光軸上 に順次配置される複数のレンズとを備える投写レンズを製造する投写レンズの製 造方法であって、
前記レンズ保持筒には、前記複数のレンズのうちのいずれかのレンズの位置を、 照明光軸に直交する面内で互いに直交する 2つの軸に沿った方向に調整するため に、 前記各軸上にそれぞれ一対の位置調整孔が形成され、
製造対象となる投写レンズを、 前記照明光軸上で調整対象となるレンズの位置 を調整する位置であるレンズ調整位置に保持する投写レンズ保持工程と、
調整用の光束を光源から射出する光束射出工程と、
前記光源から射出された光束に基づいて、 所定のテストパターンを含む画像光 を形成し、前記照明光軸上に配置された投写レンズに導入する画像光射出工程と、 この画像光が導入された投写レンズから投写された画像光を検出しながら、 調 整対象となる前記レンズの位置を、 前記位置調整孔を介して前記 2つの軸に沿つ た方向にそれぞれ調整するレンズ位置調整工程と、
この位置調整されたレンズを前記レンズ保持筒に接着固定する接着固定工程と を備えることを特徴とする投写レンズの製造方法。
1 4 . 請求項 1 3に記載の投写レンズの製造方法により製造されたことを特徴 とする投写レンズ。
1 5 . 請求項 1 4に記載の投写レンズを備えることを特徴とするプロジェクタ。
PCT/JP2003/007720 2002-06-19 2003-06-18 投写レンズ製造装置、投写レンズ製造方法、この投写レンズ製造方法により製造された投写レンズ、およびこの投写レンズを備えるプロジェクタ WO2004001477A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004515505A JPWO2004001477A1 (ja) 2002-06-19 2003-06-18 投写レンズ製造装置、投写レンズ製造方法、この投写レンズ製造方法により製造された投写レンズ、およびこの投写レンズを備えるプロジェクタ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-178637 2002-06-19
JP2002178637 2002-06-19

Publications (1)

Publication Number Publication Date
WO2004001477A1 true WO2004001477A1 (ja) 2003-12-31

Family

ID=29996533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/007720 WO2004001477A1 (ja) 2002-06-19 2003-06-18 投写レンズ製造装置、投写レンズ製造方法、この投写レンズ製造方法により製造された投写レンズ、およびこの投写レンズを備えるプロジェクタ

Country Status (5)

Country Link
US (1) US6829111B2 (ja)
JP (1) JPWO2004001477A1 (ja)
CN (1) CN1299143C (ja)
TW (1) TWI255360B (ja)
WO (1) WO2004001477A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006138914A (ja) * 2004-11-10 2006-06-01 Matsushita Electric Ind Co Ltd レンズユニット
JP2007155761A (ja) * 2005-11-30 2007-06-21 Fujinon Corp レンズ鏡筒、レンズの固定方法及びレンズの固定装置
JP2015143739A (ja) * 2014-01-31 2015-08-06 コニカミノルタ株式会社 レンズ鏡胴
JP2017107230A (ja) * 2017-02-20 2017-06-15 株式会社デンソー 接着剤で互いに固定された複数の部品を有する製品の製造方法、および、部品の組み付け固定方法
JP2017151429A (ja) * 2016-02-25 2017-08-31 カシオ計算機株式会社 光源装置及び投影装置
KR20190014428A (ko) * 2017-08-02 2019-02-12 오토센서코리아(주) 광원을 이용한 리크센서
CN113296286A (zh) * 2021-06-10 2021-08-24 重庆市天实精工科技有限公司 摄像头模组镜片组装矫正治具及其使用方法
WO2023145688A1 (ja) * 2022-01-31 2023-08-03 富士フイルム株式会社 撮像装置のテストチャート及び評価方法、並びに記録媒体

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004341194A (ja) * 2003-05-15 2004-12-02 Sekinosu Kk 投射レンズユニット
US7408727B2 (en) * 2004-09-17 2008-08-05 Nittoh Kogaku K.K. Lens holder and lens unit
US7400461B2 (en) * 2004-09-29 2008-07-15 Nittoh Kogaku K.K. Lens holder and lens unit
JP2007213652A (ja) * 2006-02-07 2007-08-23 Funai Electric Co Ltd 対物レンズ駆動装置及びそれを備える光ピックアップ装置
JP4577584B2 (ja) * 2008-01-23 2010-11-10 ソニー株式会社 レンズ鏡筒及び撮像ユニット
JP5621723B2 (ja) 2011-07-04 2014-11-12 セイコーエプソン株式会社 投写光学系及びこれを備えるプロジェクター
JP5533798B2 (ja) * 2011-07-04 2014-06-25 セイコーエプソン株式会社 投写光学系及びこれを備えるプロジェクター
JP2013029569A (ja) * 2011-07-27 2013-02-07 Seiko Epson Corp 投写光学系及びこれを備えるプロジェクター
CN103885270A (zh) * 2012-12-19 2014-06-25 鑫晶鑚科技股份有限公司 具有保护镜的取像装置以及投影装置
US9560279B2 (en) * 2013-03-11 2017-01-31 Tera Xtal Technology Corporation Camera device and projector device having protective lens
US9563107B2 (en) * 2014-10-15 2017-02-07 Hong Fu Jin Precision Industry (Wuhan) Co., Ltd. Imaging device
AT518381A1 (de) * 2016-02-19 2017-09-15 Sticht Tech Gmbh Verfahren und Vorrichtung zum Fertigen von Linsenpaketen
US10416408B2 (en) * 2017-09-05 2019-09-17 Himax Technologies Limited Projector assembling equipment
CN108761976A (zh) * 2018-04-28 2018-11-06 深圳暴风统帅科技有限公司 一种投影仪
JP7237578B2 (ja) * 2018-12-28 2023-03-13 浜松ホトニクス株式会社 光源ユニット、投影表示装置、光源ユニットの製造方法
CN111736289B (zh) * 2019-03-25 2022-06-17 信泰光学(深圳)有限公司 光学模块
CN111338047A (zh) * 2020-04-08 2020-06-26 西安光衡光电科技有限公司 一种胶合透镜调节系统、控制方法及应用
CN113031383B (zh) * 2021-03-16 2022-04-19 深圳市火乐科技发展有限公司 投影机镜头组件和投影机
CN116931209A (zh) * 2022-04-08 2023-10-24 苏州佳世达光电有限公司 定位机构及定位方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62199281A (ja) * 1986-02-28 1987-09-02 Anritsu Corp レ−ザ加工機のレンズ保持装置
JPH11174301A (ja) * 1997-12-17 1999-07-02 Canon Inc レンズ装置およびこれを備えた光学機器
JP2000206388A (ja) * 1999-01-19 2000-07-28 Canon Inc レンズ系光軸調整方法およびレンズ系光軸調整装置
JP2000352650A (ja) * 1999-06-14 2000-12-19 Canon Inc 投射レンズ鏡筒構造
JP2001056426A (ja) * 1999-08-18 2001-02-27 Nikon Corp 光学装置の組立方法とこれを用いた露光装置の組立方法、および光学装置の組立装置とこれを用いた露光装置の組立装置
JP2001066485A (ja) * 1999-08-27 2001-03-16 Toshiba Mach Co Ltd 光部品のクランプ装置
JP2001100071A (ja) * 1999-09-28 2001-04-13 Fuji Photo Optical Co Ltd レンズ装置
US6262853B1 (en) * 1998-12-25 2001-07-17 Olympus Optical Co., Ltd. Lens barrel having deformable member
JP2002062463A (ja) * 2000-08-18 2002-02-28 Olympus Optical Co Ltd 対物レンズユニット
US20020027725A1 (en) * 2000-08-17 2002-03-07 Jenoptik Laser, Optik, Systeme Gmbh Radially adjustable lens mounting
JP2002098875A (ja) * 2000-09-26 2002-04-05 Olympus Optical Co Ltd 光学系の調整方法及び調整装置
US6392819B1 (en) * 1999-05-11 2002-05-21 Sharp Kabushiki Kaisha Objective lens and fabrication method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08334664A (ja) 1995-06-07 1996-12-17 Olympus Optical Co Ltd レンズ偏芯調整治具
JP2002040308A (ja) 2000-07-19 2002-02-06 Canon Inc レンズ装置および光学機器
JP2002189159A (ja) 2000-12-20 2002-07-05 Victor Co Of Japan Ltd レンズ保持装置及びレンズの偏芯修正方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62199281A (ja) * 1986-02-28 1987-09-02 Anritsu Corp レ−ザ加工機のレンズ保持装置
JPH11174301A (ja) * 1997-12-17 1999-07-02 Canon Inc レンズ装置およびこれを備えた光学機器
US6262853B1 (en) * 1998-12-25 2001-07-17 Olympus Optical Co., Ltd. Lens barrel having deformable member
JP2000206388A (ja) * 1999-01-19 2000-07-28 Canon Inc レンズ系光軸調整方法およびレンズ系光軸調整装置
US6392819B1 (en) * 1999-05-11 2002-05-21 Sharp Kabushiki Kaisha Objective lens and fabrication method thereof
JP2000352650A (ja) * 1999-06-14 2000-12-19 Canon Inc 投射レンズ鏡筒構造
JP2001056426A (ja) * 1999-08-18 2001-02-27 Nikon Corp 光学装置の組立方法とこれを用いた露光装置の組立方法、および光学装置の組立装置とこれを用いた露光装置の組立装置
JP2001066485A (ja) * 1999-08-27 2001-03-16 Toshiba Mach Co Ltd 光部品のクランプ装置
JP2001100071A (ja) * 1999-09-28 2001-04-13 Fuji Photo Optical Co Ltd レンズ装置
US20020027725A1 (en) * 2000-08-17 2002-03-07 Jenoptik Laser, Optik, Systeme Gmbh Radially adjustable lens mounting
JP2002062463A (ja) * 2000-08-18 2002-02-28 Olympus Optical Co Ltd 対物レンズユニット
JP2002098875A (ja) * 2000-09-26 2002-04-05 Olympus Optical Co Ltd 光学系の調整方法及び調整装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006138914A (ja) * 2004-11-10 2006-06-01 Matsushita Electric Ind Co Ltd レンズユニット
JP2007155761A (ja) * 2005-11-30 2007-06-21 Fujinon Corp レンズ鏡筒、レンズの固定方法及びレンズの固定装置
JP2015143739A (ja) * 2014-01-31 2015-08-06 コニカミノルタ株式会社 レンズ鏡胴
JP2017151429A (ja) * 2016-02-25 2017-08-31 カシオ計算機株式会社 光源装置及び投影装置
JP2017107230A (ja) * 2017-02-20 2017-06-15 株式会社デンソー 接着剤で互いに固定された複数の部品を有する製品の製造方法、および、部品の組み付け固定方法
KR20190014428A (ko) * 2017-08-02 2019-02-12 오토센서코리아(주) 광원을 이용한 리크센서
KR101965866B1 (ko) * 2017-08-02 2019-04-05 오토센서코리아(주) 광원을 이용한 리크센서
CN113296286A (zh) * 2021-06-10 2021-08-24 重庆市天实精工科技有限公司 摄像头模组镜片组装矫正治具及其使用方法
CN113296286B (zh) * 2021-06-10 2022-10-11 重庆市天实精工科技有限公司 摄像头模组镜片组装矫正治具及其使用方法
WO2023145688A1 (ja) * 2022-01-31 2023-08-03 富士フイルム株式会社 撮像装置のテストチャート及び評価方法、並びに記録媒体

Also Published As

Publication number Publication date
CN1299143C (zh) 2007-02-07
US6829111B2 (en) 2004-12-07
JPWO2004001477A1 (ja) 2005-10-20
CN1592864A (zh) 2005-03-09
TW200400375A (en) 2004-01-01
US20040061947A1 (en) 2004-04-01
TWI255360B (en) 2006-05-21

Similar Documents

Publication Publication Date Title
WO2004001477A1 (ja) 投写レンズ製造装置、投写レンズ製造方法、この投写レンズ製造方法により製造された投写レンズ、およびこの投写レンズを備えるプロジェクタ
TWI230816B (en) Manufacturing method of optical apparatus
JP2005208318A (ja) プロジェクタ
KR100657071B1 (ko) 광학장치의 제조방법, 이 방법에 의해 제조된 광학장치 및이 광학장치를 구비하는 프로젝터
JP4396582B2 (ja) 光学装置の製造装置、およびその製造方法
US7048390B2 (en) Producing method of optical device, positioning master, optical device and projector
TW518449B (en) Position adjusting method and position adjusting system of color combining optical system, position adjusting method and position adjusting system of optical modulator, color combining optical system and projector
JP3646716B2 (ja) 光変調装置の位置調整装置および光変調装置の位置調整方法
JP4311377B2 (ja) 光学装置、プロジェクタ、および光学装置の製造方法
JP2005099116A (ja) 投写光学系、投写光学系の製造方法、および投写光学系を備えたプロジェクタ
JP2003287665A (ja) 投写レンズ、この投写レンズを備えるプロジェクタ、およびこの投写レンズの製造方法
JP2005070504A (ja) 光学装置、プロジェクタ及び光学装置の製造方法
KR100664818B1 (ko) 투사 렌즈 제조 장치 및 투사 렌즈 제조 방법
US6603606B2 (en) System and methods for position-control of light modulation device
JP2004354482A (ja) 投写光学系、投写光学系の製造方法、および投写光学系を備えたプロジェクタ
JP2006208472A (ja) 光学装置の製造装置、その製造方法、およびプロジェクタ
JP2010066570A (ja) 位置調整装置、及び、光学装置の製造装置
JP3736306B2 (ja) 光変調装置の位置調整装置および光変調装置の固定方法
JP2003131098A (ja) 色合成光学系の製造方法、この製造方法により製造された色合成光学系、およびこの色合成光学系を備えたプロジェクタ
JP3716767B2 (ja) 色合成光学系の製造装置、色合成光学系の製造方法、およびこの製造方法により製造された色合成光学系を備えたプロジェクタ
JP2008190905A (ja) 紫外線照度測定装置、および光学装置の製造装置
JP2006071928A (ja) 光学装置の製造装置、およびその製造方法
JP2006243139A (ja) 光学装置の製造装置、その製造方法、および光学装置
JP2006337580A (ja) 色合成光学装置の製造装置
JP2005345823A (ja) プロジェクタの製造方法、及び当該製造方法により製造されたプロジェクタ

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR

WWE Wipo information: entry into national phase

Ref document number: 20038015633

Country of ref document: CN

Ref document number: 1020047007656

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2004515505

Country of ref document: JP