WO2003102079A1 - Composition polyester et matiere d'emballage la contenant - Google Patents

Composition polyester et matiere d'emballage la contenant Download PDF

Info

Publication number
WO2003102079A1
WO2003102079A1 PCT/JP2003/006963 JP0306963W WO03102079A1 WO 2003102079 A1 WO2003102079 A1 WO 2003102079A1 JP 0306963 W JP0306963 W JP 0306963W WO 03102079 A1 WO03102079 A1 WO 03102079A1
Authority
WO
WIPO (PCT)
Prior art keywords
content
weight
ppm
polyester composition
polyester
Prior art date
Application number
PCT/JP2003/006963
Other languages
English (en)
French (fr)
Inventor
Seiji Nakayama
Atsushi Hara
Yasuki Nakai
Gaku Maruyama
Yoshitaka Etho
Original Assignee
Toyo Boseki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002226314A external-priority patent/JP3997479B2/ja
Priority claimed from JP2002325302A external-priority patent/JP2005298533A/ja
Application filed by Toyo Boseki Kabushiki Kaisha filed Critical Toyo Boseki Kabushiki Kaisha
Priority to DE60323490T priority Critical patent/DE60323490D1/de
Priority to US10/517,115 priority patent/US20050222345A1/en
Priority to CNB038128551A priority patent/CN100334151C/zh
Priority to KR1020047019618A priority patent/KR100934555B1/ko
Priority to JP2004510325A priority patent/JPWO2003102079A1/ja
Priority to EP03733243A priority patent/EP1516892B1/en
Priority to AU2003241749A priority patent/AU2003241749A1/en
Priority to CA2488409A priority patent/CA2488409C/en
Publication of WO2003102079A1 publication Critical patent/WO2003102079A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/008Additives improving gas barrier properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers

Definitions

  • the present invention relates to a polyester composition and a polyester packaging material comprising the same.
  • the present invention relates to a polyester composition which is suitably used as a material for molded articles such as hollow molded containers such as beverage bottles, films and sheets, and excellent transparency, heat stability and flavor retention comprising the same, and a gas barrier. It relates to polyester packaging materials with excellent uniformity. Background art
  • thermoplastic polyesters such as polyethylene terephthalate (hereinafter sometimes abbreviated as PET) have high industrial value due to their excellent mechanical and chemical properties, and are widely used as fibers, films, sheets and bottles. It is used. Furthermore, thermoplastic polyester is excellent in heat resistance, transparency and gas barrier properties, and is particularly suitable as a material for packaging materials for beverage filling containers such as juices, soft drinks and carbonated drinks.
  • PET contains acetoaldehyde (hereinafter sometimes abbreviated as AA) as a by-product during melt polycondensation.
  • AA acetoaldehyde
  • PET produces acetoaldehyde by thermal decomposition when a molded article such as a hollow molded article is thermoformed, resulting in an increased content of acetoaldehyde in the material of the obtained molded article. Affects the flavor and odor of beverages and other ingredients filled in.
  • thermoplastic polyester molded article In order to solve such a problem, various measures have conventionally been taken to reduce the content of acetoaldehyde in the thermoplastic polyester molded article.
  • a method using a thermoplastic polyester whose AA content is reduced by solid-state polymerization of melt-polycondensed prepolymers, and AA generation during molding using a copolymerized thermoplastic polyester with a lower melting point There are known methods for lowering the molding temperature, methods for lowering the molding temperature during thermoforming, and methods for minimizing the shear stress during thermoforming.
  • thermoplastic polyester containers mainly polyethylene terephthalate
  • these beverages are generally sterilized by hot filling or heating after filling, but only by reducing the AA content in the thermoplastic polyester molded material by the method described above, these beverages can be used. It has been found that the flavor and odor of the contents of the container have not been improved, and improvements are required.
  • a method using a polyester composition in which a metaxylylene group-containing polyamide resin is added in an amount of 0.05 to less than 1 part by weight based on 100 parts by weight of a thermoplastic polyester resin (Japanese Patent Publication No. 6-6662) and a polyester container made of a polyester composition containing thermoplastic polyamide and a specific polyamide whose terminal amino group concentration is restricted to a certain range (Japanese Patent Publication No. No. 7 1 4 2 5) has been proposed, but it has also been found that there are still cases where the flavor and odor of beverages are insufficient as containers for low-flavour beverages such as mineral water. Was.
  • thermoplastic polyester packaging material mainly composed of PET is excellent in gas-sprayability as described above, but is a hollow molding for contents containing a compound which is very sensitive to oxygen such as vitamin C.
  • the body was found to be unsatisfactory, and improvement is required.
  • thermoplastic polyester hollow molded article (particularly, 100 to 100 parts by weight of a thermoplastic polyester resin) containing 1 to 100 parts by weight of a metaxylylene group-containing polyamide resin.
  • Japanese Patent Application Publication No. Hei 4-415702 Japanese Patent Application Publication No. Hei 4-415702
  • thermoplastic polyester film for laminating metal plates with an acetoaldehyde content of 20 ppm or less (Japanese Patent Laid-Open No. 5-339393) is known. Proposed, but does not completely solve the problem Have been identified and improvements are required.
  • An object of the present invention is to solve the above-mentioned problems of the prior art, and to provide a polyester composition having excellent transparency, heat stability and flavor retention, or excellent transparency, heat stability, flavor retention and gas barrier properties. And a polyester packaging material comprising the same.
  • FIG. 1 is a top view of a stepped plate used for evaluation.
  • FIG. 2 is a side view of the stepped plate used for the evaluation. Disclosure of the invention
  • the inventors of the present invention used a polyester composition comprising 100 parts by weight of a thermoplastic polyester and 0.1 to 50 parts by weight of a partially aromatic polyamide to obtain transparency and flavor retention, or transparency,
  • a polyester packaging material having excellent flavor retention and gas barrier properties and its production
  • the content of alkali metal atoms in the polyester composition or the content of alkali metal atoms in the polyester packaging material was determined.
  • the polyester composition of the present invention is a polyester composition consisting of 100 parts by weight of a thermoplastic polyester and 0.1 to 50 parts by weight of a partially aromatic polyamide, wherein the polyester composition contains an alkali metal atom.
  • the amount is in the range of 0.1 to 300 ppm.
  • the present invention is a polyester composition
  • a polyester composition comprising 100 parts by weight of a thermoplastic polyester and 0.1 to 50 parts by weight of a partially aromatic polyamide, wherein a phosphorus atom content in the polyester composition is 5 to 2 parts. It is characterized by being 0 ppm.
  • the present invention provides 100 parts by weight of a thermoplastic polyester comprising a dicarboxylic acid component mainly composed of an aromatic dicarboxylic acid or an ester-forming derivative thereof and a glycol component mainly composed of ethylene glycol;
  • a polyester composition comprising from 0.1 to 30 parts by weight, the molded product obtained by injection-molding the polyester composition at a molding temperature of 290 ° C. has a Color-L value of 80. 0 And a haze of not more than 20%.
  • the content of antimony atoms is preferably 20 O ppm or less.
  • the content of alkali metal atoms in the thermoplastic polyester composition may be 0.1 to 300 ppm, and the content of phosphorus atoms may be 5 to 200 ppm.
  • a polyester composition and a thermoplastic polyester 100 parts by weight partially aromatic polyamides from 0.01 to 100 parts by weight, characterized in that it consists an amino group-containing compound 5 X 10 one 4 to 1 parts by weight.
  • the partially aromatic polyamide is preferably a meta-xylylene group-containing polyamide.
  • thermoplastic polyester is a polyester having ethylene terephthalate as a main repeating unit.
  • the difference (A t —A 0 ) from (p pm) is preferably 20 p pm or less.
  • the acetoaldehyde content (A t ) of the molded product obtained by injection molding of the polyester composition is a value measured according to the measurement method (7) of Examples described later.
  • the content of the cyclic trimer derived from the thermoplastic polyester can be 0.7% by weight or less.
  • the amount of the cyclic trimer derived from the thermoplastic polyester when melt-processed at 290 ° C. for 30 minutes can be 0.4% by weight or less.
  • the polyester packaging material of the present invention is a polyester packaging material obtained by molding the above polyester composition.
  • the packaging material can be at least one of a hollow molded body, a sheet, and a film.
  • polyester composition of the present invention and a polyester packaging material comprising the same will be specifically described.
  • the thermoplastic polyester used in the present invention is a crystalline thermoplastic polyester mainly obtained from an aromatic dicarbonic acid component and a glycol component, and more preferably, the aromatic dicarboxylic acid unit is at least 85 mol% of the acid component. It is a thermoplastic polyester containing at least 90 mol%, and most preferably a thermoplastic polyester containing an aromatic dicarboxylic acid unit at least 95 mol% of the acid component.
  • aromatic dicarboxylic acid component constituting the thermoplastic polyester used in the present invention include aromatic dicarboxylic acids such as terephthalic acid, 2,6-naphthalenedicarboxylic acid, diphenyl-1,4′-dicarboxylic acid, and diphenoxene dicarboxylic acid. And functional derivatives thereof.
  • glycol component constituting the thermoplastic polyester used in the present invention examples include alicyclic glycols such as ethylene glycol, trimethylene glycol, tetramethylene glycol, and cyclohexanedimethanol.
  • Examples of the acid component used as a copolymer component in the thermoplastic polyester include terephthalic acid, 2,6-naphthalenedicarbonic acid, isophthalic acid, diphenyl-1,4,4'-dicarboxylic acid, and diphenoxyethanedicarboxylic acid.
  • Aromatic dicarboxylic acids such as acids, oxy acids such as p-benzobenzoic acid and oxycaproic acid and functional derivatives thereof, and adipic acids, sebacic acids, succinic acids, daltaric acids, dimer acids, and other aliphatic dicarboxylic acids and their functions Derivatives, hexahydroterephthalic acid, hexahydroisophthalic acid, alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid, and functional derivatives thereof.
  • glycol component used as a copolymer component in the thermoplastic polyester examples include aliphatic darcols such as ethylene glycol, trimethylene daricol, tetramethylene glycol, diethylene glycol, and neopentyl glycol, and cyclohexyl.
  • Alicyclic glycols such as sandimethanol, 1,3-bis (2-hydroxyethoxy) benzene, aromatic glycols such as bisphenol A, alkylene oxide adducts of bisphenol A, and polyalkylene glycols such as polyethylene glycol and polybutylene glycol —Ru and others.
  • thermoplastic polyester a polyfunctional compound within a range where the thermoplastic polyester is substantially linear
  • trimellitic acid, trimesic acid, pyromellitic acid, tolylvalivalic acid, glycerin, pentaerythritol, trimethylolpropane, etc. may be copolymerized, and monofunctional compounds such as benzoic acid, naphthoic acid, etc. It may be copolymerized.
  • One preferred example of the thermoplastic polyester used in the present invention is a thermoplastic polyester whose main repeating unit is composed of ethylene terephthalate, and more preferably contains 85 mol% or more of ethylene terephthalate units.
  • thermoplastic polyester containing isophthalic acid, 2,6-naphthalenedicarboxylic acid, 1,4-cyclohexanedimethanol, etc. as the copolymer component. Particularly preferred is 95 mol% of ethylene terephthalate units. It is a linear thermoplastic polyester containing the above.
  • linear thermoplastic polyesters examples include polyethylene terephthalate (hereinafter abbreviated as PET), poly (ethylene terephthalate-ethylene isophthalate) copolymer, and poly (ethylene terephthalate 1-1,4).
  • PET polyethylene terephthalate
  • poly (ethylene terephthalate-ethylene isophthalate) copolymer examples include poly (ethylene terephthalate 1-1,4).
  • thermoplastic polyester used in the present invention is a thermoplastic polyester whose main repeating unit is composed of ethylene-2,61-naphthalate, and more preferably ethylene-1,6-naphthalate.
  • a linear thermoplastic polyester containing 85% by mole or more of units is particularly preferable, and a linear thermoplastic polyester containing 95% by mole or more of ethylene-1,6-naphtholate units is particularly preferable.
  • linear thermoplastic polyesters examples include polyethylene-2,6-naphthalate, poly (ethylene-1,2,6-naphthalate-ethylene terephthalate) copolymer, and poly (ethylene-1,2,6-naphthalate-ethylene isophthalate). Phthalate) copolymer and poly (ethylene-2,6-naphthalatedioxyethylene-2,61-naphthalate) copolymer.
  • thermoplastic polyester used in the present invention As other preferable examples of the thermoplastic polyester used in the present invention,
  • thermoplastic polyester containing 85 mol% or more of unit It is a linear thermoplastic polyester containing 85 mol% or more of 1,4-cyclohexanedimethylene terephthalate units or a linear thermoplastic polyester containing 85 mol% or more of butylene terephthalate units.
  • the thermoplastic polyester can be produced by a conventionally known production method. That is, in the case of PET, terephthalic acid and ethylene glycol and, if necessary, the above copolymerization component are directly reacted to distill off water and esterify, and then as a polycondensation catalyst, Sb compound, Ge compound, Ti A direct esterification method in which polycondensation is performed under reduced pressure using one or more compounds selected from a compound or an A1 compound, or dimethyl terephthalate and ethylene glycol and, if necessary, After reacting in the presence to remove methyl alcohol and carry out ester exchange, one or more compounds selected from Sb compounds, Ge compounds, Ti compounds or A1 compounds are used as polycondensation catalysts. It is mainly produced by a transesterification method in which polycondensation is carried out under reduced pressure.
  • solid-state polymerization may be performed to increase the intrinsic viscosity of the thermoplastic polyester and to reduce the formaldehyde and acetate aldehyde contents and the cyclic ester trimer content.
  • the above-mentioned esterification reaction, transesterification reaction, melt polycondensation reaction and solid-phase polymerization reaction may be carried out in a batch reactor or in a continuous reactor. In any of these methods, the melt polycondensation reaction may be performed in one stage, or may be performed in multiple stages.
  • the solid-state polymerization reaction can be carried out in a batch-type apparatus or a continuous-type apparatus as in the melt polycondensation reaction.
  • the melt polycondensation and the solid phase polymerization may be performed continuously or may be performed separately.
  • Sb compound used for producing the thermoplastic polyester used in the present invention examples include antimony trioxide, antimony acetate, antimony tartrate, antimony tartrate, antimony oxychloride, antimony glycol, antimony pentoxide, and trif. Enyl antimony and the like.
  • the Sb compound is preferably added so that the residual amount of Sb in the resulting polymer is 250 ppm or less.
  • a preferred upper limit is more than 200 ppm, a more preferred upper limit is 190 ppm, and a still more preferred upper limit is 180 ppm.
  • Antimony atoms remaining in the polyester used in the present invention When the content of styrene is more than 250 ppm, a molded article obtained from the polyester composition of the present invention is liable to generate darkening due to antimony and may have poor transparency.
  • a preferred lower limit is 50 ppm, and a more preferred lower limit is 70 ppm. If the amount is less than 50 ppm, the polycondensation reaction of the polyester is slowed down, and the productivity is poor.
  • Examples of the Ge compound used for producing the thermoplastic polyester used in the present invention include amorphous germanium dioxide, crystalline germanium dioxide, germanium chloride, germanium tetraethoxide, germanium tetra-n-butoxide, and phosphorous acid. Germanium and the like can be mentioned.
  • the amount used is 5 to 150 ppm, preferably 10 to 100 ppm, more preferably 15 to 70 ppm as the residual amount of Ge in the thermoplastic polyester. is there.
  • Ti compound used in the production of the thermoplastic polyester used in the present invention examples include tetraalkyl titanates such as tetraethyl titanate, tetraisopropyl titanate, tetra_n-propyl titanate, and tetra-n-butyl titanate. And their partial hydrolysates, titanyl oxalate, titanyl ammonium oxalate, sodium titanyl oxalate, potassium titanyl oxalate, titanyl calcium oxalate, titanyl oxalate compounds such as titanyl strontium oxalate, titanium trimellitate, and titanium sulfate And titanium chloride. The Ti compound is added so that the Ti remaining in the resulting polymer is in the range of 0.1 to 10 ppm.
  • tetraalkyl titanates such as tetraethyl titanate, tetraisopropyl titanate, tetra_n-propyl titan
  • the A1 compound used in the production of the thermoplastic polyester used in the present invention includes, specifically, aluminum formate, aluminum acetate, basic aluminum acetate, aluminum propionate, aluminum oxalate,
  • Aluminum carboates such as aluminum acrylate, aluminum laurate, aluminum stearate, aluminum benzoate, aluminum trichloride, aluminum lactate, aluminum citrate, aluminum salicylate, aluminum chloride, aluminum hydroxide Inorganic acid salts, such as aluminum, aluminum hydroxide chloride, polyaluminum chloride, aluminum nitrate, aluminum sulfate, aluminum carbonate, aluminum phosphate, aluminum phosphonate, aluminum methoxide, aluminum ethoxide I, aluminum n- propoxide, aluminum iso- propoxide, Al Aluminum chelate such as aluminum n-butoxide, aluminum t-butoxide, etc., aluminum alkoxide, aluminum acetyl acetate, aluminum acetyl acetate, aluminum ethyl acetate, aluminum
  • Examples include compounds, organoaluminum compounds such as trimethyl aluminum and triethylaluminum, and partial hydrolysates thereof, and aluminum oxide.
  • carboxylate, inorganic acid salt and chelate compound are preferable, and among these, basic aluminum acetate, aluminum chloride, aluminum hydroxide, aluminum hydroxide chloride and aluminum acetyl acetonate are particularly preferable.
  • the A 1 compound is added so that the residual amount of A 1 in the resulting polymer is in the range of 5 to 200 ppm.
  • an alkali metal compound or an alkaline earth metal compound may be used in combination.
  • the alkali metal compound or alkaline earth metal compound includes carboxylate such as acetate of these elements, alkoxide and the like, and is added to the reaction system as powder, aqueous solution, ethylene glycol solution and the like.
  • the alkali metal compound or alkaline earth metal compound is added so that the remaining amount of these elements in the resulting polymer is in the range of 1 to 50 ppm.
  • the catalyst compound can be added at any stage of the thermoplastic polyester production reaction step.
  • phosphorus compounds can be used as stabilizers.
  • the phosphorus compound used in the present invention include phosphoric acid, phosphorous acid, phosphonic acid and derivatives thereof. Specific examples include phosphoric acid, trimethyl phosphate, triethyl phosphate, tributyl phosphate, triphenyl phosphate, monomethyl phosphate, dimethyl phosphate, monobutyl phosphate, dibutyl phosphate, and dibutyl phosphate.
  • Esters phosphorous acid, trimethyl phosphite, triethyl phosphite, triptyl phosphite, methyl phosphonic acid, dimethyl methyl phosphonate, dimethyl phosphonate, dimethyl phenyl phosphonate, dimethyl phenyl phosphonate, phenyl phosphonic acid Getyl ester, Phenylphosphonic acid diphenyl ester and the like, which may be used alone or in combination of two or more.
  • the phosphorus compound is preferably added at any stage of the above-mentioned thermoplastic polyester production reaction step so that the residual amount of phosphorus in the produced polymer is in the range of 5 to 100 ppm.
  • the intrinsic viscosity of the thermoplastic polyester used in the present invention is preferably from 0.55 to 1.5 deciliter / gram, more preferably It is in the range of 0.58 to 1.30 deciliter / gram, more preferably 0.60 to 0.90 deciliter / gram. If the intrinsic viscosity is less than 0.55 deciliters Z gram, the mechanical properties of the obtained packaging material are poor. If it exceeds 1.50 deciliters / gram, the resin temperature rises during melting by a molding machine, etc., causing severe thermal decomposition, increasing the amount of free low-molecular-weight compounds that affect fragrance retention, and packaging. Problems such as yellowing of the material occur.
  • the ultimate viscosity of the thermoplastic polyester used in the present invention is preferably 0.40 to 1.00 deciliter Z.gram, preferably. Is in the range of 0.42 to 0.95 deciliters Z gram, more preferably 0.45 to 0.90 deciliters Z gram.
  • the intrinsic viscosity is less than 0.40 deciliters Z gram, the mechanical properties of the obtained packaging material are poor. If it exceeds 1.00 deciliter gram, the resin temperature rises when the resin is melted by a molding machine or the like, and the thermal decomposition becomes severe, which increases the amount of free low-molecular-weight compounds that affect the fragrance retention or packaging. Problems such as yellowing of the material occur.
  • the shape of the thermoplastic polyester chip used in the present invention may be any of a cylinder type, a square type, a spherical shape, a flat plate shape and the like.
  • the average particle size is usually in the range of 1.3 to 5 mm, preferably 1.5 to 4.5 mm, more preferably 1.6 to 4.0 Omm.
  • the length is about 1.3 to 4 mm and the diameter is about 1.3 to 4 mm.
  • the maximum particle size is 1.1 to 2.0 times the average particle size and the minimum particle size is 0.7 times or more the average particle size.
  • the practical weight of the chip is in the range of 10 to 3 Omg / piece.
  • the content of the cyclic ester trimer of the thermoplastic polyester used in the present invention is preferably 0.7% by weight or less, more preferably 0.6% by weight or less, and further preferably 0.50% by weight. % Or less, particularly preferably 0.45 or less.
  • a heat-resistant hollow molded article or the like is formed from the polyester composition of the present invention, when a polyester having a cyclic ester trimer content of more than 0.7% by weight is used, a heating metal is used. The adhesion of oligomers to the mold surface increases rapidly, and the transparency of the obtained hollow molded article and the like becomes extremely poor.
  • the cyclic ester trimer is a cyclic trimer composed of terephthalic acid and ethylenedalicol.
  • the amount of increase in the cyclic trimer when melt-processed at 290 ° C. for 30 minutes is preferably 0.4% by weight.
  • Such a polyester can be produced by deactivating the polycondensation catalyst remaining in the polyester obtained after the melt polycondensation or after the solid phase polymerization.
  • Examples of the method for deactivating the polycondensation catalyst in the polyester include a method in which the polyester chip is contacted with water, steam or a steam-containing gas after melt polycondensation or after solid-phase polymerization.
  • the polyester after the completion of the melt polycondensation reaction and the polyester resin containing the phosphorus compound are mixed in a molten mixer or other equipment to deactivate the polycondensation catalyst.
  • the method of blending the phosphorus compound into the solid-phase polymerized polyester there are two methods: dry blending of the phosphorus compound with the solid-phase polymerized polyester; melt-kneading of the phosphorus compound; Mix For example, a method in which a predetermined amount of a phosphorus compound is blended into a polyester by a method of mixing and then melted in an extruder or a molding machine to inactivate a polycondensation catalyst.
  • Examples of the phosphorus compound used include phosphoric acid, phosphorous acid, phosphonic acid, and derivatives thereof. Specific examples include phosphoric acid, trimethyl phosphate, triethyl phosphate, tributyl phosphate, triphenyl phosphate, monomethyl phosphate, dimethyl phosphate, monobutyl phosphate, dibutyl phosphate, dibutyl phosphate, Phosphorous acid, Trimethyl phosphite, Triethyl phosphite, Tributyl phosphite, Methylphosphonic acid, Dimethyl methylphosphonate, Dimethyl ethylphosphonate, Dimethyl phenylphosphonate, Dimethyl phenylphosphonate And phenylphosphonic acid diphenyl ester, etc., which may be used alone or in combination of two or more.
  • thermoplastic polyesters contain a significant amount of fines, i.e., fines, which are generated during the manufacturing process and have a copolymerization component and the same content of the copolymerization components as the thermoplastic polyester chips.
  • fines have a property of accelerating the crystallization of the thermoplastic polyester, and when present in a large amount, the transparency of a molded article molded from the polyester composition containing such fines is extremely poor.
  • the amount of shrinkage at the time of crystallization of the bottle plug falls outside the specified range, and there is a problem that the bottle cannot be sealed.
  • the content of fines in the thermoplastic polyester used in the present invention is 100 ppm or less, preferably 500 ppm or less, more preferably 500 ppm or less, and still more preferably 300 ppm or less. It is particularly preferably at most 200 ppm, most preferably at most 100 ppm.
  • the partially aromatic polyamide according to the present invention includes a polyamide having a unit derived from an aliphatic dicarboxylic acid and an aromatic diamine as a main constituent unit, or a unit derived from an aromatic dicarboxylic acid and an aliphatic diamine.
  • Polyamide as the main structural unit.
  • the aromatic dicarboxylic acid component constituting the partially aromatic polyamide according to the present invention includes terephthalic acid, isophthalic acid, fluoric acid, 2,6-naphthalenedicarboxylic acid, diphenyl-1,4′-dicarboxylic acid, diphenyl Enoxyethanedicarboxylic acid and its functional derivatives are exemplified.
  • a linear aliphatic dicarboxylic acid is preferable, and further, a linear aliphatic dicarboxylic acid having an alkylene group having 4 to 12 carbon atoms. Is particularly preferred.
  • linear aliphatic dicarboxylic acids include adipic acid, sebacic acid, malonic acid, succinic acid, daltaric acid, pimelic acid, spearic acid, azelaic acid, pendecanoic acid, pendeforcedionic acid, dodecandionic acid And dimer monoacids and their functional derivatives.
  • aromatic diamine component constituting the partially aromatic polyamide according to the present invention examples include metaxylylenediamine, paraxylylenediamine, parabis- (2-aminoethyl) benzene, and the like.
  • the aliphatic diamine component constituting the partially aromatic polyamide according to the present invention is an aliphatic diamine having 2 to 12 carbon atoms or a functional derivative thereof.
  • the aliphatic diamine may be a linear aliphatic diamine or a branched aliphatic diamine. Specific examples of such linear aliphatic diamines include ethylenediamine, 1-methylethylenediamine, 1,3-propylenediamine, and tetradiamine.
  • an alicyclic dicarboxylic acid can be used in addition to the above-mentioned aromatic dicarboxylic acid and aliphatic dicarboxylic acid.
  • the alicyclic dicarboxylic acid include alicyclic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid, hexahydroterephthalic acid, and hexahydroisophthalic acid.
  • an alicyclic diamine can be used in addition to the aromatic diamine / aliphatic diamine as described above.
  • the alicyclic diamine include alicyclic diamines such as cyclohexanediamine and bis (4,4'-aminohexyl) methane.
  • ⁇ -lactams such as prolactam and laurolactam
  • aminocaponic acids such as aminocaproic acid and aminoundecanoic acid
  • aromatic aminophosphoric acids such as paraaminomethylbenzoic acid
  • ⁇ -force prolactam is preferred.
  • Preferred examples of the partially aromatic polyamide according to the present invention include: metaxylylenediamine, or a mixture derived from metaxylylenediamine and a mixed xylylenediamine containing not more than 30% of paraxylylenediamine and an aliphatic dicarboxylic acid. It is a meta-xylylene group-containing polyamide containing at least 20 mol%, more preferably at least 30 mol%, particularly preferably at least 40 mol%, of the constituent units in the molecular chain.
  • the partially aromatic polyamide according to the present invention contains structural units derived from a polycarboxylic acid having three or more bases such as trimellitic acid and pyromellitic acid within a substantially linear range. Is also good.
  • polystyrene foams examples include homopolymers such as polymethaxylylene adipamide, polymer silylene sebacamide, polymethaxylylene speramide, etc., and metaxylylenediamine / adipic acid / isophthalic acid copolymer.
  • the partially aromatic polyamide according to the present invention include an aliphatic diamine and at least one acid selected from terephthalic acid and isophthalic acid.
  • the polyamide contains at least 20 mol% or more, more preferably 30 mol% or more, and particularly preferably 40 mol% or more, of a structural unit derived from the following.
  • Examples include sophthalamide, acid copolymers, acid copolymers, and the like.
  • the partially aromatic polyamide according to the present invention include, in addition to aliphatic diamine and at least one acid selected from terephthalic acid and isophthalic acid, lactams such as ⁇ -force prolactam and laurolactam. , Aminocarboxylic acids such as aminocaproic acid and aminoundecanoic acid, and aromatic aminocarboxylic acids such as paraaminomethylbenzoic acid.
  • the polyamide contains at least 20 mol%, more preferably at least 30 mol%, particularly preferably at least 40 mol%, of a structural unit derived from at least one kind of acid obtained in the molecular chain.
  • polyamides examples include hexamethylene diamine / terephthalic acid / ⁇ one-strength prolactam copolymer, hexamethylene diamine / isophthalic acid ⁇ -caprolactam copolymer, hexamethylene diamine / terephthalic acid And phosphoric acid / adipic acid / ⁇ -force prolactam copolymer.
  • the partially aromatic polyamide is subjected to polycondensation in a molten state by heating an aqueous solution of an aminocarboxylate formed from diamine and dicarboxylic acid under pressure and normal pressure to remove water and water generated by the polycondensation reaction. It can be produced by a method or a method in which diamine and dicarboxylic acid are heated and directly reacted under normal pressure in a molten state or subsequently under vacuum to carry out polycondensation. By subjecting the polyamide chips obtained by the melt polycondensation reaction to solid-phase polymerization, a partially aromatic polyamide having a higher viscosity can be obtained.
  • the polycondensation reaction of the partially aromatic polyamide may be performed in a batch reactor. Alternatively, the reaction may be performed in a continuous reaction apparatus.
  • the heat stability is improved.
  • the alkali metal-containing compound represented by the following chemical formula (A) is preferably in the range of 1 to 1000 ppm.
  • the lower limit of the alkali metal atom content in the partially aromatic polyamide is preferably 10 ppm, more preferably 20 ppm, especially 30 ppm or more, and the upper limit is 900 ppm, more preferably 800 ppm, especially 750 ppm. Desirably pm.
  • Z is an alkali metal
  • R 8 is hydrogen, an alkyl group, an aryl group, a cycloalkyl group, one C (O) CH 3 or one C (O) ⁇ '
  • ( ⁇ ' is hydrogen or an alkali metal).
  • alkali compound represented by ( ⁇ ) include sodium hydroxide, sodium methoxide, sodium ethoxide, sodium propoxide, sodium butoxide, potassium methoxide, lithium methoxide, sodium acetate, sodium carbonate, and alkaline earth metal. Examples include alkaline earth compounds containing a class of metals, but none of these compounds is limited to these compounds.
  • the partially aromatic polyamide it is preferable to carry out polymerization by adding a phosphorus compound as a stabilizer for preventing gelation due to thermal degradation.
  • the content of the phosphorus atom derived from the phosphorus compound in the partially aromatic polyamide used in the present invention is X
  • the content is preferably in the range of 0 ⁇ 500 ppm.
  • the lower limit is preferably 0.1 pm, more preferably 1 pm, and even more preferably 5 pm.
  • the upper limit is preferably 400 ppm, more preferably 3 OO ppm, and even more preferably 250 ppm. If X is 0, that is, if no phosphorus atom is contained, the effect of preventing gelation during polycondensation is poor. On the other hand, if is larger than the above range, the effect of preventing gelation is limited, and it is uneconomical.
  • Sb of the catalyst may be reduced to metal Sb by the reducing action of phosphorus, which may lower the cholor-L value.
  • Sb of the catalyst may be reduced to metal Sb by the reducing action of phosphorus, which may lower the cholor-L value.
  • the phosphorus compound to be added to the partially aromatic polyamide is represented by the following chemical formula (B It is preferable to use at least one selected from the compounds represented by (1) to (B-4).
  • Ri R? Is hydrogen, alkyl group, aryl group, cycloalkyl group or arylalkyl group
  • Xt Xs is hydrogen, alkyl group, aryl group, cycloalkyl group, arylalkyl group or alkali metal, or each formula And 1 to 5 and R 1 to R 7 may be connected to each other to form a ring structure
  • the phosphinic acid compound represented by the chemical formula (B_l) is dimethylphosphine Acid, phenylmethylphosphinic acid, hypophosphorous acid, sodium hypophosphite, potassium hypophosphite, lithium hypophosphite, ethyl hypophosphite,
  • Examples of the phosphonous acid compound represented by the chemical formula (B_2) include phenylphosphonite, sodium phenylphosphonite, potassium phenylphosphonite, lithium phenylphosphonite, and ethylphenylphosphonite. .
  • Phosphonic acid compounds represented by the chemical formula (B-3) include phenylphosphonic acid, ethylphosphonic acid, sodium phenylphosphonate, lithium phenylphosphonic acid, lithium phenylphosphonate, getyl phenylphosphonate, sodium ethylphosphonate, and potassium ethylphosphonate.
  • Examples of the phosphite compound represented by the chemical formula (B-4) include phosphorous acid, sodium hydrogen phosphite, sodium phosphite, triethyl phosphite, triphenyl phosphite, and pyrophosphorous acid.
  • the content of the total alkali metal in the partially aromatic polyamide used in the present invention (the total amount of the amount of the alkali metal atom contained in the phosphorus-based stabilizer and the amount of the alkali metal atom contained in the alkali metal compound) is It is preferable that the content is 1.0 to 6.0 times mol of the phosphorus atom content in the polyamide.
  • the lower limit is more preferably 1.5 moles, still more preferably 2.0 moles, particularly preferably 2.3 moles, and most preferably 2.5 moles, and the upper limit is more preferably 5.5 moles. Double mole, more preferred Or 5.0 moles. If the total alkali metal content is less than 1.0 times the phosphorus atom content, gelation is likely to be promoted.
  • the content of all alkali metals is more than 6.0 times the phosphorus atom content, the polymerization rate will be slow, the viscosity will not be sufficient, and gelation will be accelerated, especially in a reduced pressure system. It is uneconomical.
  • the compounds represented by the chemical formula (A) and the chemical formulas (B-1) to (B-4) used in the present invention may be used alone, respectively. Is preferred because of improving the thermal stability.
  • the raw materials before the polymerization of the polyamide are added, or they are added during the polymerization or melted into the polymer. You may mix.
  • the relative viscosity of the partially aromatic polyamide used in the present invention is 1.3 to 4.0, preferably 1.5 to 3.0, more preferably 1.7 to 2.5, and still more preferably 1. It is in the range of 8 to 2.0.
  • the relative viscosity is less than 1.3, the molecular weight is too small, and the mechanical properties of the packaging material comprising the polyester composition of the present invention may be inferior.
  • the relative viscosity is 4.0 or more, it takes a long time to polymerize the polyamide, which may cause deterioration of the polymer or undesired coloring, as well as lower productivity and cost increase. May be.
  • the terminal amino group concentration (imo 1 / g) of the partially aromatic polyamide used in the present invention is AEG and the terminal lipoxyl group concentration (mo 1 / g) of the partially aromatic polyamide is CEG
  • the ratio of AEG to EG (AEG / CEG) is preferably 1.05 or more. If the ratio of the terminal amino group concentration to the terminal lipoxyl group concentration (AEGZCEG) in the partially aromatic polyamide is smaller than 1.05, the polyester packaging material of the present invention has poor flavor retention, and such polyester packaging is poor. The material may not be practical for low flavor beverage containers.
  • the partially aromatic polyamide includes diamine and diamine used as starting materials. Cyclic amide monomer, cyclic amide dimer, cyclic amide trimer and cyclic amide tetramer and other cyclic oligomers composed of carboxylic acid and unreacted monomers such as the dicarboxylic acid and the diamine, and the diamine And linear oligomers such as a linear dimer and a linear trimer composed of the above and dicarboxylic acid.
  • cyclic amide monomer is 0.2 to 2.0% by weight
  • cyclic amide dimer is 0%. 1 to 2.0% by weight
  • Cyclic amide trimer 0.1 to 1.0% by weight
  • Cyclic amide tetramer 0.005 to 0.5% by weight
  • Linear oligomers 1 to 5000
  • the order of p pm and the unreacted monomers are of the order of 0.1 to 2000 ppm.
  • the partially aromatic polyamide is a polyamide composed of metaxylylenediamine and adipic acid
  • n represents an integer of 1 to 4.
  • the content of the cyclic amide monomer in the partially aromatic polyamide is 0.9% by weight or less, preferably 0.8% by weight or less, and further, Preferably, it is not more than 0.6% by weight.
  • the flavor retention of the content filled in the obtained molded product is deteriorated, and the molded product is hardened at the time of molding. Mold contamination due to foreign matter adhering to the inner surface of the mold, the gas exhaust port of the mold, and the exhaust pipe becomes extremely severe.
  • the content of the cyclic amide monomer refers to the content of the cyclic amide monomer contained in the polyamide.
  • the lower limit of the cyclic amide monomer content is preferably 0.001 ppm for economic reasons. Good. Cyclic amide monomer can be measured by the high performance liquid chromatography method described below.
  • a partially aromatic polyamide having a cyclic amide monomer content of 0.9% by weight or less can be produced, for example, as follows. That is, it can be obtained by subjecting the polyamide chip obtained by the above-mentioned production method to heat treatment or extraction treatment with an alcohol such as methanol or ethanol, an aqueous methanol solution or an aqueous ethanol solution.
  • an alcohol such as methanol or ethanol, an aqueous methanol solution or an aqueous ethanol solution.
  • the above-mentioned polyamide chips are placed in a heat treatment tank, a 50% aqueous ethanol solution is added, and the mixture is treated at about 50 to 60, and the obtained chips are subjected to molding.
  • a heat treatment or the like may be performed by a batch processing apparatus or a continuous processing apparatus.
  • the partially aromatic polyamide used in the present invention can be obtained by changing the addition ratio of diamine such as mexylylenediamine and dicarponic acid such as adipic acid at the time of polycondensation, or changing the polycondensation conditions. Can also be obtained.
  • the content of tertiary nitrogen in the partially aromatic polyamide constituting the polyester composition of the present invention is preferably 2.0 mol% or less, more preferably 1.5 mol% or less, and further preferably 1.0 mol% or less. % Or less.
  • a molded article obtained using a polyester composition containing a partially aromatic polyamide having a tertiary nitrogen content of more than 2.0 mol% contains a colored foreign substance due to a gelled substance and has a poor color. There is.
  • stretched films and biaxially stretched hollow molded products obtained by stretch molding the places where the gel-like material is present are not stretched normally and become thicker, causing unevenness in thickness, resulting in molding without commercial value. In some cases, a large number of bodies are generated, and the yield may be reduced. In the worst case, only a molded body having no commercial value may be obtained.
  • the lower limit of the content of tertiary nitrogen is preferably 0.01 mol%, more preferably 0.01 mol%, and still more preferably 0.05 mol%, for production reasons. And particularly preferably 0.1 mol%.
  • tertiary nitrogen refers to both nitrogen based on imino compounds and nitrogen based on tertiary amide.
  • the content of tertiary nitrogen is defined as secondary amide (1-NHCO—: ordinary main chain). The content is expressed as a molar ratio (mol%) based on nitrogen based on the amide (constituting amide).
  • the imino group and the dicarboxylic acid terminal may react during molding to form a gelled product. If the polyamide has too much tertiary amide, the gelled product may be increased. .
  • the shape of the partially aromatic polyamide chip used in the present invention may be any of a cylinder type, a square type, a spherical shape, a flat plate shape and the like.
  • the average particle size is usually in the range of 1.0 to 5 mm, preferably 1.2 to 4.5 mm, more preferably 1.5 to 4.0 mm.
  • the length is about 1.0 to 4 mm and the diameter is about 1.0 to 4 mm.
  • the maximum particle size is 1.1 to 2.0 times the average particle size and the minimum particle size is 0.7 times or more the average particle size.
  • the practical weight of the chip is in the range of 5 to 3 Omg / piece.
  • the polyester composition of the present invention may have a shape obtained by molding and processing a molten mixture of a thermoplastic polyester and a partially aromatic polyamide.
  • the formed state is not limited to a strand shape, a chip shape, a cylinder shape, but may be a hollow molded body shape, a sheet shape, a film shape, or a crushed product thereof, and the shape is not particularly limited. .
  • the polyester composition may be a thidry blend of a thermoplastic polyester and a partially aromatic polyamide, or a dry blend of a thermoplastic polyester and a batch containing a partially aromatic polyamide. Is also good.
  • the mixing ratio of the thermoplastic polyester and the partially aromatic polyamide constituting the polyester composition of the present invention is 0.01 part by weight to 500 parts by weight of the front aromatic polyamide with respect to 100 parts by weight of the thermoplastic polyester. Parts by weight, preferably from 0.01 to 30 parts by weight.
  • Addition of a partially aromatic polyamide to obtain a polyester composition having a very low AA content and excellent flavor retention from the above polyester composition The addition amount is at least 0.01 part by weight, more preferably at least 0.1 part by weight, particularly preferably at least 0.5 part by weight, preferably at least 5 parts by weight, based on 100 parts by weight of the polyester. It is desirable that the amount be less than 2 parts by weight, more preferably less than 1 part by weight.
  • thermoplastic polyester 10 In order to obtain a polyester composition having excellent gas barrier properties, transparency that does not impair practicality, and very low AA content and excellent flavor retention, thermoplastic polyester 10 is preferred. 0 parts by weight or more preferably 2 parts by weight or more, more preferably 3 parts by weight or more, particularly preferably 5 parts by weight or more, preferably 30 parts by weight or less, more preferably 25 parts by weight or less, More preferably, the amount is desirably 20 parts by weight or less.
  • the mixing amount of the partially aromatic polyamide is less than 0.01 part by weight relative to 100 parts by weight of the thermoplastic polyester, the AA content of the obtained polyester composition is not reduced, and the polyester composition is not reduced.
  • the flavor retention of the contents may be very poor, which is not preferable.
  • the amount of the partially aromatic polyamide exceeds 30 parts by weight based on 100 parts by weight of the thermoplastic polyester, the transparency of the obtained polyester molded article becomes extremely poor, The mechanical properties of the material may be reduced, which is not preferable.
  • a molten mixture of a thermoplastic polyester and a partially aromatic polyamide can be used as a master batch for mixing with a thermoplastic polyester.
  • the amount of the partially aromatic polyamide be 3 to 50 parts by weight based on 100 parts by weight of the thermoplastic polyester.
  • the polyester composition of the present invention is characterized in that the content of alkali metal atoms in the polyester composition is in the range of 0.1 to 300 ppm.
  • the lower limit of the alkali metal atom content in the polyester composition is preferably 1 ppm, and more preferably 5 ppm.
  • the upper limit of the alkali metal atom content in the polyester composition is preferably 270 ppm, more preferably 250 ppm, and even more preferably 200 ppm.
  • the alkali metal atom content in the polyester composition is less than 0.1 ppm, When a molded article is produced using such a polyester composition, coloring is severe, burn streaks and unmelted materials are easily generated, and as a result, the appearance of the polyester molded article is deteriorated. On the other hand, the alkali metal atom content in the polyester composition is
  • the content is more than 300 ppm, although burn streaks and unmelted matter are hardly generated, the resulting molded product has poor transparency and flavor retention, has a reduced molecular weight, and has poor mechanical strength. Or drop.
  • the content of the alkali metal contained in the partially aromatic polyamide is determined depending on the amount of the partially aromatic polyamide used. Adjustment, adjustment of the amount of alkali metal contained in the polyester, and the like can be used.
  • the content of metal atoms in the partially aromatic polyamide used in the present invention is determined by atomic absorption spectroscopy, emission spectroscopy, inductively coupled plasma (hereinafter abbreviated as ICP) emission spectroscopy, ICP mass spectrometry, fluorescence It is determined by X-ray analysis, etc., and can be used depending on the concentration of alkali metal atoms.
  • the polyester composition of the present invention is characterized in that the content of phosphorus atoms in the polyester composition is 5 to 200 ppm.
  • the lower limit of the phosphorus atom content in the polyester composition is preferably 6 ppm, more preferably 7 ppm, and still more preferably 8 ppm.
  • the upper limit of the phosphorus atom content in the polyester composition is preferably 180 ppm, more preferably 160 ppm, and still more preferably 130 ppm.
  • the thermal stability in the polyester composition is more than 200 ppm, the thermal stability is excellent, and burn streaks and unmelted substances are almost eliminated, but the transparency and flavor of the obtained molded article are reduced. Retention may deteriorate.
  • the method of controlling the phosphorus atom content in the polyester composition to be in the range of 5 to 20 O ppm is to adjust the phosphorus atom content contained in the partially aromatic polyamide according to the amount of the partially aromatic polyamide used. Content of phosphorus atom in polyester Can be adjusted.
  • the molded product obtained by injection-molding the polyester composition of the present invention by the method described in the following measurement method (8) has a Co 1 or 1 L value of 80.0 or more and a haze of 20% or less.
  • the C 0 or —L value is more preferably 82.0 or more, and still more preferably 84.0 or more. Further, the haze is more preferably at most 15%, further preferably at most 10%. If the Co 1 or _L value of the obtained molded product is less than 80.0 or the haze is higher than 20%, not only the transparency of the molded product is poor, but also the appearance of the molded product looks dark, so it is poor in value as a packaging material There are cases.
  • the polyester and the partially aromatic polyamide have low compatibility, when the content of the partially aromatic polyamide in the composition increases, not only does the haze increase, but also the precipitation of metallic antimony, turbidity due to excessive phosphorus atoms, alkali
  • the haze value increases due to the crystallization promoting effect of polyester by metal, the crystallization promoting effect of fine resin powder called fine, and the like. Accordingly, the haze can be reduced to 20% or less by adjusting the content of the partially aromatic polyamide, the antimony content, the phosphorus content, the phosphorus content, and the fine content of the polyester composition. It is also effective to increase the compatibility by, for example, copolymerizing an aromatic dicarboxylic acid component or the like with the partially aromatic polyamide, or to make the refractive indexes of the polyester and the partially aromatic polyamide closer to each other.
  • the difference (A t -A 0 ) from the acetoaldehyde content (A.) (p pm) of the product is 20 ppm or less, preferably 15 ppm or less, more preferably 1 ppm or less, and most preferably It is preferably at most 5 ppm. If the difference in the acetoaldehyde content before and after injection molding (A t — A) exceeds 20 ppm, The resulting polyester packaging material has poor flavor retention.
  • a polyester composition having a difference (A t — A Q ) of 20 ppm or less between the acetoaldehyde content (A t ) after the injection molding and the acetoaldehyde content (A.) before the injection molding is used. It can be obtained by using a thermoplastic polyester having a content of 5 ppm or less or a thermoplastic polyester having an acetoaldehyde content of 10 ppm or less and deactivating the remaining polycondensation catalyst as a component. it can.
  • the polyester composition having the difference (A t —A Q ) of 20 ppm or less is a polyester composition comprising a thermoplastic polyester having an acetate aldehyde content of 10 ppm or less and a partially aromatic polyamide. It can also be obtained by subjecting a substance to contact treatment with water, steam or a steam-containing gas.
  • the acetoaldehyde content in the polyester composition of the present invention is 2 O ppm or less, preferably 15 ppm or less, more preferably 10 ppm or less.
  • the acetoaldehyde content in the polyester composition of the present invention exceeds 20 ppm, the flavor retention of the polyester composition deteriorates.
  • the lower limit of the acetoaldehyde content in the polyester composition is 3 ppm, and if it is reduced to less than 3 ppm, the molding will be neglected from the viewpoint of profitability, which is a problem.
  • the polyester composition of the present invention has an increase in the acetoaldehyde content ( ⁇ ) (ppm) when melt-processed at 29 Ot: for 30 minutes, preferably 2 Oppm or less, more preferably 15 ppm Or less, more preferably 13 ppm or less. If the increase in the acetoaldehyde content ( ⁇ () (ppm) after melt processing exceeds 20 ppm, the polyester composition is molded using some recycled PET bottles and other recycled products. In this case, it is extremely difficult to reduce the AA content of the obtained polyester composition to the target value, or the mixing ratio of recycled products to virgin PET resin must be extremely reduced. .
  • Formaldehyde hereinafter abbreviated as FA in the polyester composition of the present invention.
  • the content is preferably 3 ppm or less, more preferably 2 ppm or less, and still more preferably 1 ppm or less.
  • the formaldehyde content in the polyester composition of the present invention exceeds 3 ppm, the flavor retention of the polyester composition is deteriorated.
  • the polyester composition of the present invention has a polyester-derived cyclic trimer content of preferably 0.7% by weight or less, more preferably 0.5% by weight or less.
  • the content of the cyclic ester trimer in the polyester composition is preferably Should be 0.50% by weight or less, more preferably 0.45% by weight or less, further preferably 0.40% by weight or less.
  • the polyester composition is a heat-resistant hollow molded body, when the content of the cyclic ester trimer in the polyester composition used for molding exceeds 0.70% by weight, the cyclic shape on the heating mold surface is reduced.
  • the adhesion of oligomers derived from polyesters such as ester trimers will increase over time, resulting in a great deal of cleaning effort to clean the mold and economic losses due to molding interruptions.
  • the lower limit is 0.10% by weight, and reducing it to less than this is a problem because it is necessary to adopt polyester production conditions that ignore profitability.
  • the polyester composition of the present invention preferably has an increased amount (ACT ⁇ ) of the cyclic ester trimer of 0.30% by weight or less, more preferably 0.3% by weight, when melt-processed at a temperature of 290 ° C. for 30 minutes. % By weight or less.
  • thermoplastic polyester having a cyclic ester trimer increase (ACT ⁇ ) of 0.40% by weight or less, preferably 0.35% by weight or less, more preferably 0.30% by weight or less when treated. is necessary.
  • the amount of the cyclic ester trimer increased (ACT ⁇ ) at a temperature of 290 ° C for 30 minutes by melting for 30 minutes is more than 0.40% by weight, the use of a thermoplastic polyester in forming the polyester composition
  • the amount of cyclic ester trimer increases, and depending on the heat treatment conditions, the adhesion of oligomers to the surface of the heating mold increases sharply, and the transparency of the obtained hollow molded article and the like increases. The lightness deteriorates very much.
  • Thermoplastic polyesters with an increase in cyclic ester trimer ( ⁇ CT X ) of 0.40% by weight or less when melt-processed at a temperature of 290 for 30 minutes can be used after melt polycondensation or solid state polymerization ⁇ :. It can be produced by deactivating the polycondensation catalyst remaining in the obtained thermoplastic polyester. As a method of deactivating the polycondensation catalyst in the thermoplastic polyester, the same method as described above can be used.
  • the cyclic ester trimer is a cyclic trimer composed of terephthalic acid and ethylene glycol.
  • the content of the cyclic ester trimer derived from the thermoplastic polyester in the polyester composition of the present invention is preferably 0.50% by weight or less, more preferably 0.45% by weight or less, and still more preferably 0.40% by weight. The following is preferred.
  • the content of the cyclic ester trimer derived from the thermoplastic polyester in the polyester composition exceeds 0.5% by weight, the adhesion of the oligomer to the surface of the heating mold rapidly increases, and this is the cause. This is a problem because the transparency of the obtained hollow molded article is extremely deteriorated, and the flavor retention is also deteriorated.
  • the content of the meta-xylylene group-containing cyclic amide monomer in the polyester composition of the present invention may be 0.3% by weight or less, preferably 0.28% by weight or less, more preferably 0.25% by weight or less. preferable. If the content of the cyclic amide monomer in the polyester composition is more than 0.3% by weight, the content of the content filled in the polyester molded article is deteriorated in flavor retention, which is a problem.
  • the content of the meta-xylylene group-containing cyclic amide monomer in the polyester composition of the present invention is 0.3% by weight or less, preferably 0.28% by weight or less, more preferably 0.25% by weight or less. It is preferable that the content be not more than weight%.
  • the content of the cyclic amide monomer in the polyester composition exceeds 0.3% by weight, the inside of the mold and the exhaust port and exhaust gas of the mold when molding the polyester composition having improved heat resistance. Mold fouling caused by foreign matter adhering to the tube becomes very severe.
  • the lower limit of the content of the cyclic amide monomer in the polyester composition or the polyester composition is preferably 0.000 lp pm for economic reasons and the like. Cyclic amide monomer was analyzed by high performance liquid chromatography as described below. Can be measured.
  • the method for adjusting the content of the cyclic amide monomer in the polyester composition or the polyester composition of the present invention to the above-mentioned value is not particularly limited, and can be produced, for example, as follows. That is, the content of the cyclic amide monomer in the polyester composition or the polyester composition satisfies the value of the claims of the present invention according to the blending amount of the partially aromatic polyamide with respect to the thermoplastic polyester. This can be achieved by using a partially aromatic polyamide having a reduced cyclic amide monomer content. It is also achieved by extracting and removing the above-mentioned cyclic substance from a polyester composition containing a partially aromatic polyamide or a polyester composition obtained from the polyester composition with water or an organic solvent. be able to.
  • the method for producing the partially aromatic polyamide having a low content of the cyclic amide monomer is not limited at all. Extraction with water or an organic solvent, change in polycondensation conditions, heat treatment under reduced pressure, and a method combining these methods Etc. can be mentioned
  • the intrinsic viscosity of the polyester composition of the present invention is preferably 0.55 to 1.0 deciliter / gram, more preferably 0.58 to 0.95 deciliter / g, and still more preferably 0.60. It is in the range of ⁇ 0.90 deciliters / gram.
  • polyester compositions of the invention a thermoplastic polyester 1 0 0 parts by weight, partially aromatic polyamide 0.0 and 1 to 1 0 0 parts by weight, an amino group-containing compound 5 X 1 0 one quarter to one part by weight It may be a polyester composition characterized by comprising:
  • amino group-containing compounds examples include 1,8-diaminonaphthalate, 3,4-diaminobenzoic acid, 2-aminobenzamide, piuret, malonamide, salicylamide, salicylanilide, o_phenylenediamine, o— Mercaptobenzamide, N-acetyldaricinamide, 3-mercapto-11,2-propanediol, 4-amino-3-hydroxybenzoic acid, 4,5-dihydroxy-2,7-naphthalenedisulfonic acid sodium salt, 2,3-diaminopyridine, 2-7 minobene sulfonamide, 2-amino-2-methyl-1,3-propanediol, 4,4, -diaminodiphenylmethane, 4,4, diaminodiphenyl ether, 4, 4,1-diaminodiphenyl sulfone, 2,2-bis (4-aminophenyl) p Mouth bread, melamine, benzoqua
  • amino group-modified olefin resin such as polyolefin, polypropylene, ethylene-propylene copolymer graft-modified with amino group-containing acrylate or methacrylate, amino group-containing organopolysiloxane, such as 3-methylphenylsiloxane, etc.
  • polyester and the partially aromatic polyamide those described above can be used.
  • polyester composition those described above are preferable except that an amino group-containing compound is added. .
  • Mixing amount of the amino group-containing compound is preferably at 5 X 1 0 one 3 or more of the polyester 1 0 0 parts by weight, and further preferably not 1 X 1 0 one more.
  • the polyester composition of the present invention may contain other additives as necessary, for example, known UV absorbers, antioxidants, oxygen absorbers, oxygen scavengers, lubricants added from outside, and internal precipitation during the reaction.
  • additives such as lubricants, release agents, nucleating agents, stabilizers, antistatic agents, dyes and pigments may be added. It is also possible to mix the UV-blocking resin, the heat-resistant resin, and the recovered products from used polyethylene terephthalate bottles at an appropriate ratio.
  • polyester composition of the present invention is a film
  • calcium carbonate, magnesium carbonate, barium carbonate, and sulfuric acid are added to the polyester composition in order to improve handling properties such as slipperiness, winding property, and anti-blocking property.
  • Calcium, sulfuric acid Inorganic particles such as barium, lithium phosphate, calcium phosphate, and magnesium phosphate; and organic salt particles such as terephthalate such as calcium and calcium oxalate, barium, zinc, manganese, and magnesium divinylbenzene, styrene, acrylic acid, and methacrylic acid
  • Inert particles such as cross-linked polymer particles such as homo- or copolymers of vinyl monomers of acrylic acid or methacrylic acid can be blended.
  • Polyester compositions other than polyolefin and partially aromatic polyamide, such as polyamide, polyoxymethylene, and polyolefin are also used to promote crystallization and to accelerate and stabilize the crystallization rate of the stopper in the biaxially stretched blow molded bottle.
  • Butylene terephthalate may be contained in an amount of 0.1 ppb to 100 ppm.
  • the lower limit of the content of these resins is preferably 0.5 ppb, more preferably 1 ppb, and the upper limit is preferably 100 ppm, more preferably 1 ppm, particularly preferably 100 ppb.
  • the polyester composition of the present invention can be obtained by a known production method.
  • the thermoplastic polyester is polyethylene terephthalate (PET)
  • PET polyethylene terephthalate
  • the polyester composition of the present invention can be obtained by mixing the above-mentioned thermoplastic polyester and the above-mentioned polyamide by a conventionally known method.
  • the above-mentioned polyamide chips and the above-mentioned thermoplastic polyester chips are dry-blended with a tumbler, a V-type blender, a Henschel mixer, or the like.
  • the dry-blended mixture is a single-screw extruder, a twin-screw extruder, or a kneader. And the like, and those obtained by solid-state polymerization of the molten mixture under high vacuum or in an inert gas atmosphere, if necessary. .
  • the polyamide may be pulverized and used. It is particularly advantageous for a composition using a small amount of the polyamide.
  • the particle size when crushed is preferably about 10 mesh or less.
  • polyester composition of the present invention is in the form of a sheet, it can be produced, for example, using a general sheet molding machine equipped with an extruder and a die.
  • the sheet-like material can be formed into a pressure-pressure forming, a vacuum forming, a cup-like shape or a tray shape.
  • the polyester composition of the present invention can also be used for cooking foods in a microwave oven and / or a microwave oven or for use as a tray-shaped container for heating frozen foods. In this case, the sheet is formed into a tray shape and then heat-crystallized to improve heat resistance.
  • the polyester composition of the present invention is a stretched film
  • a sheet-like product obtained by injection molding or extrusion molding may be used to obtain one of uniaxial stretching, sequential biaxial stretching, and simultaneous biaxial stretching which are usually used for stretching PET. Is formed by using an arbitrary stretching method described above.
  • the stretching temperature is usually from 80 to 130 ° C.
  • the stretching may be uniaxial or biaxial, but is preferably biaxial stretching from the viewpoint of practical physical properties of the film. If the stretching ratio is uniaxial, it is usually 1.1 to 10 times, preferably 1.1.
  • the stretching may be carried out in the longitudinal and transverse directions usually in the range of 1.:! To 8 times, preferably 1.5 to 5 times. Further, the vertical magnification Z and the horizontal magnification are usually 0.5 to 2, preferably 0.7 to 1.3.
  • the obtained stretched film can be further heat-set to improve heat resistance and mechanical strength.
  • the heat setting is usually performed under tension at 120 ° C. to 240 ° C., preferably at 150 ° C. to 230 ° C., usually for several seconds to several hours, preferably for several tens seconds to several minutes.
  • a preform molded from the PET composition of the present invention is obtained by stretch blow molding, and an apparatus conventionally used in PET professional molding can be used.
  • a preform is molded once by injection molding or extrusion molding, and after processing the stopper and bottom, it is reheated, and biaxial stretch blow molding such as hot parison method or cold parison method is performed.
  • the molding temperature specifically, the temperature of each part of the cylinder and the nozzle of the molding machine is usually in the range of 260 to 310 ° C.
  • the stretching temperature is usually 70 to 120 ° C., preferably 90 to 110 ° C., and the stretching ratio is usually 1.5 to 3.0 in the longitudinal direction.
  • the obtained hollow molded body can be used as it is, but in general, in the case of beverages that require hot filling, such as fruit juice drinks and oolong tea, heat-setting treatment is further performed in a professional mold. It is used after imparting heat resistance.
  • the heat setting is usually carried out at 100 to 200 ° C., preferably at 120 to 180 ° C., for several seconds to several hours, preferably for several seconds to several minutes, under a tension such as pressure.
  • the bung part of the preform obtained by injection molding or extrusion molding is crystallized in a far-infrared or near-infrared heating oven, or After forming the plug, the plug is crystallized with the above-mentioned heater.
  • the polyester composition of the present invention can be a constituent layer of a laminated molded article, a laminated film, or the like. In particular, it is used for containers and the like in the form of a laminate with PET.
  • Examples of the laminated molded article include a two-layer structure composed of an outer layer composed of the polyester composition of the present invention and an inner layer of PET or a two-layer structure composed of an inner layer composed of the polyester composition of the present invention and an outer layer of PET.
  • Molded article having a two-layer structure, an intermediate layer containing the polyester composition of the present invention and an outer layer and innermost layer of PET, or an outer layer and an innermost layer containing the polyester composition of the present invention.
  • the PET layer other gas barrier resins, ultraviolet shielding resins, heat-resistant resins, recovered products from used polyethylene terephthalate pottle, and the like can be mixed and used at an appropriate ratio.
  • Examples of other laminated molded articles include a laminated molded article with a resin other than a thermoplastic polyester such as polyolefin, and a laminated molded article with a different kind of base material such as paper or a metal plate.
  • the laminated molded article can be used in various shapes such as a sheet, a film, a plate, a hollow body, and a container.
  • the production of the laminate can be carried out by co-extrusion using a number of extruders corresponding to the type of resin layer and a multi-layered die, or a number of extruders corresponding to the type of resin layer. Can also be performed by co-injection using an injection runner and injection mold You.
  • the polyester composition of the present invention can be a film that is laminated on one or both sides of a laminated metal plate.
  • the metal plate used include tin, tin-free steel, and aluminum.
  • the laminating method a conventionally known method can be applied, and there is no particular limitation.However, it is preferable to use a thermal laminating method which can achieve an organic solvent free process and can avoid adverse effects on the taste and smell of foodstuffs due to residual solvents. Is preferred. Above all, the thermal lamination method by energizing metal plates is particularly recommended. In the case of double-sided lamination, lamination may be performed simultaneously or sequentially.
  • the film can be laminated to the metal plate using an adhesive.
  • the metal container is obtained by molding using the laminated metal plate.
  • the method for forming the metal container is not particularly limited.
  • the shape of the metal container is not particularly limited, but it is preferably applied to a so-called two-piece can which is made by molding such as drawing, drawing and ironing, and stretch draw molding. It is also applicable to so-called three-piece cans in which the contents are filled by wrapping a top lid suitable for filling food items such as coffee and coffee drinks.
  • the main method of measuring characteristic values in the present invention will be described below.
  • CT content Cyclic ester trimer content
  • Acetaldehyde content (hereinafter referred to as “AA content”) (p pm)
  • Sample / distilled water 1 gram / 2 cc in a nitrogen-purged glass ampule, then dissolve the top of the ampoule under a nitrogen seal. Sealed, extracted with 16 O: for 2 hours, cooled, and the acetoaldehyde in the extract was measured by high-sensitivity gas chromatography.
  • FA content Formaldehyde content (hereinafter referred to as “FA content”) (p pm)
  • Sample / distilled water 6 g Z12 cc was placed in a glass-substituted nitrogen ampoule, and the top of the ampoule was sealed under a nitrogen seal. The mixture was extracted at 160 ° C. for 2 hours and cooled. Then, formaldehyde in the extract was derivatized with dinitrophenylhydrazine and measured by high performance liquid chromatography. Concentrations were expressed in ppm.
  • Injection molding of a stepped molded plate is performed by the method described in (17) below, a sample is collected from a 2 mm thick plate (A
  • Acetaldehyde content of the stepped plate after injection molding (A t ) (ppm) Acetaldehyde content of the dried polyester composition before injection molding (A.) (PP m)
  • Acetaldehyde content after melt processing (p pm) Acetaldehyde content after drying before melt processing (p pm)
  • ACT ⁇ amount Increase in cyclic ester trimer during melt treatment of polyester
  • ACT 2 Amount increase in cyclic ester trimer during melt treatment of polyester composition
  • 3 g of the dried polyester chip or polyester composition is placed in a glass test tube and immersed in an oil bath at 290 ° C for 30 minutes under a nitrogen atmosphere at normal pressure and melted.
  • the polyester composition is cut into a size of about 1 to 3 mm square and used for measurement.
  • the cyclic ester trimer increase (ACT ⁇ amount) during polyester melt treatment and the cyclic ester trimer increase (ACT 2 amount) during polyester composition melt treatment are determined by the following formulas.
  • Cyclic amide monomer content of metaxylylene group-containing polyamide and polyester packaging materials (hereinafter referred to as “CM content”) (% by weight)
  • the sample is incinerated and decomposed in a platinum crucible, and 6 mo 1ZL hydrochloric acid is added to evaporate to dryness. It was dissolved in 1.2 mol 1 ZL hydrochloric acid and quantified by atomic absorption.
  • Phosphorus atom content (ppm) (hereinafter, the phosphorus atom content in the polyester composition is referred to as "X”, and the phosphorus atom content in the polyester packaging material is referred to as "Y”)
  • Polyester chips were melted at 300 and quantified by X-ray fluorescence.
  • the fines sieved under the sieve were collected by washing with ion-exchanged water and filtering through a G1 glass filter manufactured by Iwaki Glass Co., Ltd. These were dried together with the glass filter in a dryer at 100 ° C for 2 hours, cooled, and weighed. The same operation of washing and drying with ion-exchanged water was repeated again to confirm that the weight became constant, and the weight of the glass filter was subtracted from this weight to obtain the fine weight.
  • the fine content is the fine weight / the total resin weight sieved.
  • thermoplastic polyester chips dried in a drier using nitrogen gas and a predetermined amount of meta-xylylene group-containing polyamide chips dried in a drier using nitrogen gas are dry-blended.
  • a preform was molded at a resin temperature of 285 ° C using an M-150 C (DM) injection molding machine.
  • the plug part of this preform was heated and crystallized with a home-made plug part crystallizer, and then biaxially stretched and blow-molded using a LB-O1E stretch blow-molding machine manufactured by Corpoplast. It was heat-set in a mold set at 45 ° C to obtain a 1000 cc hollow molded body. Under the same conditions, 2,000 hollow molded articles were continuously stretch blow-molded, and the state of the mold surface before and after the blow molding was visually observed and evaluated as follows.
  • a sample was cut out from the following molded product (thickness: 2 mm) of (17) and measured using a color difference meter TC-1500MC-88 manufactured by Tokyo Denshoku Co., Ltd. Color-L values indicate white as the measured value approaches 100 and gray to black as the measured value approaches 0.
  • the device was allowed to stand for at least one hour after the power was turned on beforehand to ensure sufficient stability.
  • polyester and meta-xylylene group-containing polyamide chips dried under reduced pressure for about 16 hours at 14 Ot: using a Shojo dryer are used as injection molding machines M-150 C-DM manufactured by Meiki Seisakusho.
  • the injection conditions were such that the injection speed and the dwelling speed were 20%, and the injection pressure and dwelling pressure were adjusted so that the molded article weight was 146 ⁇ 0.2 g. Adjusted 5MPa lower.
  • the upper limits of the injection time and dwell time are set to 10 and 7 seconds, respectively, and the cooling time is set to 50 seconds.
  • the total cycle time including the removal time of the molded product is about 75 seconds.
  • Cooling water with a water temperature of 1 o ° c is always introduced into the mold to control the temperature, but the mold surface temperature is around 22 ° C when molding is stable.
  • the test plate for evaluating the characteristics of the molded product was selected arbitrarily from among the stable molded products at the 11th to 18th shots from the start of molding after the molding material was introduced and the resin was replaced.
  • the 2 mm-thick plate (part A in Fig. 1) was measured for crystallization temperature (Te l)
  • the 5 mm thick plate (D in Fig. 1) is used for haze (haze percentage) measurement.
  • Non-heat-resistant hollow molded article The appearance of the hollow molded article molded by the method described in Example 1 was visually observed and evaluated according to the following evaluation criteria.
  • Heat-resistant hollow molded article The appearance of the hollow molded article obtained after the molding of (15) was visually observed and evaluated according to the following evaluation criteria. The short-term transparency was evaluated after 10 moldings, and the continuous molding transparency was evaluated after 2000 moldings.
  • Transparent in a practical range, but foreign matters such as unmelted matter are observed.
  • X poor transparency, coloring, or unmelted material
  • Non-heat resistant hollow molded body After boiling distilled water is cooled down to 50, it is put into the hollow molded body. After sealing, it was kept for 30 minutes, and then left at 50 ° C for 10 days. After opening, tests such as flavor and odor were conducted. Distilled water was used as a blank for comparison. The sensory test was conducted by 10 panelists according to the following criteria and compared with the average value.
  • the amount of permeation per 100 cc bottle was measured at 20 ° C and 0% RH using an oxygen permeation meter OX-TRAN 100 manufactured by Modern Controls.
  • Table 1 shows the properties of PET (1A) to (1E) and (2A) to (2E) used in the evaluation test of the hollow molded article. These PET are polymerized using a Ge-based catalyst in a continuous melt polycondensation-solid phase polymerization apparatus. (2A) and (2B) were obtained by solid-phase polymerization followed by treatment with 90 in ion-exchanged water for 5 hours. The PET content of these PET was about 2.8 mol%.
  • Table 1 shows the properties of PET (3A), (3B), and (3C) using antimony as a catalyst.
  • PET (3A), (3 B) Are all polymerized by a continuous melt polycondensation-solid-state polymerization apparatus
  • PET (3C) is a melt polycondensation PET obtained by a continuous melt polycondensation apparatus and the IV is raised by a batch solid-state polymerization apparatus. It is.
  • Table 2 shows the characteristics of Ny-MXD6 (IF) to (11), (2F) to (21), (3D), and (3E) used.
  • Ny-MXD 6 (IF) to (1H), (2F) to (2H), (3D), and (3E) convert metaxylylenediamine and adipic acid to NaOH or NaH in a pressure-resistant polycondensation tank. It is obtained by a batch method in which polycondensation is carried out by heating under pressure and normal pressure in the presence of 2 P 0 2 ⁇ ⁇ 20 .
  • Ny-MXD 6 (1F) to (1H) and (2F) to (2H) sodium amounts were sodium hypophosphite and sodium hydroxide. The total amount of the palladium atoms was adjusted to be 3.0 to 3.5 times the mol of the phosphorus atoms. The properties were changed by changing the ratio of metaxylylenediamine to adipic acid and the polymerization conditions.
  • Ny-MXD6 (1I) and (2I) were also obtained by the same polymerization method as Ny-MXD6 (1H), but the phosphorus atom-containing compound and the alkali compound were not added.
  • Table 3 shows the results of evaluating the properties of the obtained hollow molded body.
  • a hollow molded article having extremely excellent transparency and flavor retention was obtained.
  • the sodium content of the polyester composition was 59 ppm, the difference in acetate content before and after injection molding (A t — A) was 6 ppm, and the AA content of the hollow molded article was 8 ppm, and the content was 8 ppm. 0.2 ppm, sensory test evaluation was “ ⁇ ”, and transparency was “ ⁇ ”, indicating no problem. Also, the oxygen barrier integrity has been improved.
  • a hollow molded body was molded in the same manner as in Example 1 using 100 parts by weight of PET (1 C) and 30 parts by weight of Ny-MXD 6 (IF), and evaluated.
  • Table 3 shows the value results of the properties of the obtained hollow molded body.
  • the sodium content of the polyester composition is 150 ppm
  • the difference in the acetoaldehyde content before and after injection molding (A t — A) is 5 ppm
  • the AA content of the hollow molded article is 6 ppm
  • the FA content was 0.1 lppm
  • the sensory evaluation was “ ⁇ ”, and the transparency was “ ⁇ ”, so there was no problem.
  • Table 3 shows the results of evaluating the properties of the obtained hollow molded body.
  • the sodium content of the polyester composition was 0 ppm, the difference in the acetoaldehyde content before and after injection molding (A t — A) was 18 ppm, the AA content of the hollow molded article was 22 ppm, and the FA content was 4. At 8 ppm, the transparency was poor as “X (colored unmelted material is seen)” and was not practical.
  • Table 3 shows the results of evaluating the properties of the obtained hollow molded body.
  • the sodium content of the polyester composition is 346 ppm, the difference in the acetoaldehyde content before and after injection molding (A t — A) is 1 lp pm, the AA content of the hollow molded article is 15 ppm, and the FA content was 4.2 ppm, but the transparency was “X (poorly transparent)” and the sensory test evaluation was “XX”, which was not practical.
  • Table 3 shows the results of evaluating the properties of the obtained hollow molded body.
  • Table 4 shows the properties of the obtained hollow molded body and the results of evaluation of mold contamination.
  • the difference in the acetoaldehyde content before and after the injection molding of the polyester composition was 5 ppm, the sodium content of the hollow molded product was 11 ppm, and the AA content of the hollow molded product was 11 ppm.
  • 9 ⁇ ⁇ m, ⁇ A content is 10 ppm, FA content is 0.3 ppm, cyclic ester trimer content is 0.32% by weight, cyclic ester trimer content increase (ACT 2 content ) was 0.04% by weight, the CM content was 530 ppm, the organoleptic evaluation was “ ⁇ ”, the transparency was “ ⁇ ”, and no adhesion to the mold was observed.
  • Table 4 shows the properties of the obtained hollow molded body and the results of evaluation of mold contamination.
  • the difference between the acetate aldehyde content before and after injection molding of the polyester composition (A t — A 0 ) was 5 ppm, the sodium content of the hollow molded article was 108 ppm, and the hollow molded article was AA content of 7 ppm, ⁇ content of 10 ppm, FA content of 0.1 lppm, cyclic ester trimer content of 0.34% by weight, increase of cyclic ester trimer content (ACT 2 amount) was 0.09% by weight, the CM content was 1100 ppm, the sensory test evaluation was “ ⁇ ”, the transparency was “ ⁇ ”, and no adhesion to the mold was observed.
  • Difference ⁇ acetaldehyde content before and after injection molding of the polyester composition (A t - A 0) is 4 ppm, the sodium content of the hollow molded body 0.99 ppm, AA content of the hollow molded body 5 ppm, ⁇ AA content is 8. ppm, FA content is 0.1 ppm, cyclic ester trimer content is 0.31% by weight, and cyclic ester trimer content increase (ACT 2 volume) is 0.05.
  • the weight%, the CM content was 1400 ppm, the sensory evaluation was “ ⁇ ”, the transparency was “ ⁇ ”, and no adhesion to the mold was observed.
  • Table 4 shows the properties of the obtained hollow molded body and the results of evaluation of mold contamination.
  • the difference in the acetoaldehyde content (A t — A 0 ) of the polyester composition before and after injection molding was 27 ppm, the phosphorus content of the hollow molded article was 0 ppm, and the AA content of the hollow molded article was 41 ppm, ⁇ content is 35 ppm, FA content is 5.4 ppm, cyclic ester trimer content is 0.66% by weight, cyclic ester trimer content increase ( ⁇ CT 2 ) Was 0.50% by weight, the sensory evaluation was "XX", the transparency was “X”, and the mold stain was severe.
  • the difference in the acetoaldehyde content (A t — A 0 ) of the polyester composition before and after the injection molding was 7 ppm, the sodium content of the hollow molded product was 346 ppm, and the content of the hollow molded product was 88. 1 3 1) 111, ⁇ content is 18 ppm, FA content is 4.3 ppm, cyclic ester trimer content is 0.71% by weight, cyclic ester trimer content increase (ACT 2 )) was 0.52% by weight, the CM content was 3800 ppm, the sensory evaluation was "XX", the transparency was "X”, and the mold stain was severe.
  • a preform was molded at a resin temperature of 285T: using an M-150C (DM) injection molding machine manufactured by Kiki Seisakusho.
  • the preform was biaxially stretched and blow-molded using an LB-01E stretch blow molding machine manufactured by Corpoplast to obtain a 2000 cc non-heat-resistant hollow molded body.
  • Table 5 shows the evaluation results of the properties of the obtained hollow molded body.
  • a hollow molded body was molded in the same manner as in Example 1 using 100 parts by weight of PET (2 C) and 30 parts by weight of Ny-MXD 6 (2 G), and was evaluated.
  • Table 5 shows the value results of the properties of the obtained hollow molded body.
  • the phosphorus content of the polyester composition was 107 ppm, the difference between the acetoaldehyde content before and after injection molding (A t — A) was 5 ppm, the AA content of the hollow molded article was 6 ppm, and the FA content.
  • the sensory evaluation was “ ⁇ ”, and the transparency was “ ⁇ ”.
  • Example 6 A hollow molded body was molded in the same manner as in Example 7 using 100 parts by weight of PET (2D) and 10 parts by weight of Ny-MXD 6 (2 1), and evaluated.
  • Table 5 shows the evaluation results of the properties of the obtained hollow molded body.
  • the phosphorus content of the polyester composition is 0 ppm
  • the difference in the acetoaldehyde content before and after injection molding (A t — A) is 23 ppm
  • the AA content of the hollow molded article is 29 ppm
  • the FA content The amount was 4.8 ppm
  • the transparency was “X” (inferior in transparency, and a colored unmelted substance was observed), and the sensory evaluation was “ ⁇ ”, which was not practical.
  • Table 5 shows the evaluation results of the properties of the obtained hollow molded body.
  • the phosphorus content of the polyester composition was 211 ppm, the difference in acetoaldehyde content (A T — AQ) before and after injection molding was 12 ppm, and the AA content of the hollow molded article was 15 ppm, FA The content was 4.1 ppm, but the transparency was “X (poor in transparency)” and the sensory test evaluation was "XX", which was poor and was not practical.
  • Table 5 shows the evaluation results of the properties of the obtained hollow molded body.
  • Table 6 shows the properties of the obtained hollow molded body and the results of evaluation of mold contamination.
  • the difference (A T — A 0 ) in the content of acetoaldehyde before and after injection molding of the polyester composition was 5 ppm, the phosphorus content of the hollow molded body was 44 ppm, and the AA content of the hollow molded body was 8 ppm.
  • p pm, ⁇ content is 1 1 p pm,? Eight content 0. 2 p pm, cyclic ester trimer content 0.32 wt%, the increase of cyclic ester trimer content ( ⁇ (: Ding 2 weight) 0.0 5 wt%, CM content is 510 ppm, sensory evaluation is " ⁇ ", The transparency was “ ⁇ ”, and no deposit on the mold was observed.
  • Table 6 shows the properties of the obtained hollow molded body and the results of evaluation of mold contamination.
  • Difference ⁇ acetaldehyde content before and after injection molding of the polyester composition (A t - A 0) is 5 ppm, phosphorus content of the hollow molded body 83 p pm, the AA-containing Yuryou the hollow molded body 8 ppm, ⁇ content is 11 ppm,? Eight content 0. l ppm, a cyclic ester trimer content 0.37 wt%, the increase of cyclic ester trimer content ( ⁇ . Chome 2 amount) 0.10 wt%, CM content Was 1000 ppm, the sensory evaluation was “ ⁇ ”, the transparency was “ ⁇ ”, and no adhesion to the mold was observed.
  • Example 12 A hollow molded body was molded by the method of the evaluation method (15) using 30 parts by weight of Ny-MXD 6 (2 G) per 100 parts by weight of PET (2 A), and a mold was used. Dirt evaluation was also performed. Table 6 shows the properties of the obtained hollow molded body and the results of evaluation of mold contamination.
  • the difference in the acetoaldehyde content (A t — A 0 ) of the polyester composition before and after injection molding was 4 ppm, the phosphorus content of the hollow molded product was 104 ppm, and the AA content of the hollow molded product was 6 p. pm, ⁇ content is 9 ppm, octane content is 0.1 ppm, cyclic ester trimer content is 0.32% by weight, and cyclic ester trimer content increase ( ⁇ 2 2 quantity) is 0 .05% by weight, CM content was 1300 ppm, sensory test evaluation was " ⁇ ", transparency was " ⁇ ", and no mold adhesion was observed.
  • the difference in the acetoaldehyde content before and after the injection molding of the polyester composition (A t — A) was 7 ppm, the phosphorus content of the hollow molded article was 211 ppm, and the AA content of the hollow molded article was 21 ppm. 13 ppm, ⁇ AA content is 17 ppm, FA content is 4.2 ppm, cyclic ester trimer content is 0.70% by weight, cyclic ester trimer content increase (ACT 2 weight) Was 0.54% by weight, the CM content was 4000 ppm, the sensory test evaluation was "XX", the transparency was “X (poor transparency)", and the mold stain was severe.
  • Table 7 shows the properties and evaluation results of the obtained molded plate and the hollow molded body.
  • the molded plate obtained by injection molding had good color tone and haze.
  • the AA content of the hollow molded article was 7 ppm, the octane content was 0.1 ppm, the sensory evaluation was 0.7, and the appearance was transparent in a practical range.
  • Table 7 shows the properties and evaluation results of the obtained molded plate and the hollow molded body.
  • the molded plate obtained by injection molding had good color tone and haze.
  • the AA content of the hollow molded article was 6 ppm, the FA content was 0.08 ppm, the sensory evaluation was 0.6, and the appearance was transparent in a practical range.
  • a molded plate and a hollow molded body were molded by the method of the evaluation method (15) and evaluated.
  • Table 7 shows the properties and evaluation results of the obtained molded plate and the hollow molded body.
  • the molded plate obtained by injection molding had good color tone and haze.
  • the AA content of the hollow compact is 7 ppm,? The content was 0.87 ppm, the sensory evaluation was 0.6, and the appearance was transparent within a practical range.
  • a molded plate and a hollow molded body were molded by the method of evaluation method (15) and evaluated.
  • Table 7 shows the properties and evaluation results of the obtained molded plate and the hollow molded body.
  • the molded plate obtained by injection molding had good color tone and haze.
  • the AA content of the hollow molded article was 6 ppm, the FA content was 0.05 ppm, and the sensory test was evaluated. Was 0.7, and the appearance was as transparent as practical.
  • the molded plate obtained by injection molding had a low Co1or-1L value and was dark.
  • the AA content of the hollow molded article was 9 ppm, the FA content was 0.5 ppm, and the sensory test evaluation was 0.8, which was good, but the transparency was poor.
  • Table 7 shows the properties and evaluation results of the obtained molded plate and the hollow molded body.
  • the color tone of the molded plate obtained by injection molding was good, but the haze value was high.
  • the hollow molded article had an excellent 88-content of 10111, an FA content of 0.3 ppm and a sensory test evaluation of 0.8, which was good, but the transparency was poor.
  • Table 8 shows the properties of the obtained hollow molded body and the results of evaluation of mold contamination.
  • the PET (4a) was polymerized in a continuous melt polycondensation-solid state polymerization apparatus, and then treated with hot water at about 90 ° C for 3 hours in ion-exchanged water.
  • Phosphorous residual amount 35 ppm, IV 0.74 d 1 / g, AA content 2.4ppm, CT content 0.3 1% by weight, ⁇ , ⁇ .04% by weight.
  • Ny-MXD 6 (4b) has Rv l. 8, CM content of 2.3% by weight.
  • the polyester composition of the present invention a polyester composition excellent in transparency, heat stability and flavor retention, or transparency, heat stability, flavor retention and gas barrier properties can be obtained.
  • the polyester composition is very suitable as a packaging material for beverages such as soft drinks.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Wrappers (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Description

ポリエステル組成物およびそれからなるポリエステル包装材料 技術分野
本発明は、 飲料用ボトルをはじめとする中空成形容器、 フィルム、 シートなど の成形体の素材として好適に用いられるポリエステル組成物およびそれからなる 透明性、 熱安定性および香味保持性に優れ、 またガスバリヤ一性に優れたポリエ ステル包装材料に関するものである。 背景技術
ポリエチレンテレフタレート (以下、 P E Tと略称することがある) などの熱 可塑性ポリエステルは、 機械的性質及び化学的性質が共に優れているため、 工業 的価値が高く、繊維、 フィルム、シート、ボトルなどとして広く使用されている。 さらに、 熱可塑性ポリエステルは、 耐熱性、 透明性およびガスパリヤー性に優れ ているので、 特にジュース、 清涼飲料、 炭酸飲料などの飲料充填用容器等の包装 材料の素材として最適である。
しかしながら、 P E Tは、 溶融重縮合時の副生物としてァセトアルデヒド (以 下、 AAと略称することがある) を含有する。 また、 P E Tは、 中空成形体等の 成形体を熱成形する際に熱分解によりァセトアルデヒドを生成し、 得られた成形 体の材質中のァセトアルデヒド含有量が多くなり、 中空成形体等に充填された飲 料等の風味や臭いに影響を及ぼす。
かかる問題を解決するために、 従来より熱可塑性ポリエステル成形体中のァセ トアルデヒド含有量を低減させるために種々の方策が採られてきた。一般的には、 溶融重縮合したプレボリマーを固相重合することによって A A含有量を低下させ た熱可塑性ポリエステルを用いる方法、 融点がより低い共重合熱可塑性ポリエス テルを使用して成形時の AA生成を低下させる方法、 熱成形時における成形温度 を可及的に低くする方法および熱成形時におけるせん断応力を可及的に小さくす る方法等が知られている。
近年、 ポリエチレンテレフ夕レートを中心とする熱可塑性ポリエステル製容器 は、 ミネラルウォー夕やウーロン茶等の低フレーバー飲料用の容器として使用さ れるようになってきた。 このような飲料の場合は、 一般にこれらの飲料を熱充填 したりまたは充填後加熱して殺菌されるが、 前記の方法による熱可塑性ポリエス テル成形体材質中の AA含有量低減だけでは、 これらの容器内容物の風味や臭い が改善されないことが判明し、 改善が求められている。
かかる問題を解決する技術として、 熱可塑性ポリエステル樹脂 1 0 0重量部に 対して、 メタキシリレン基含有ポリアミド樹脂を 0 . 0 5重量部以上、 1重量部 未満の量を添加したポリエステル組成物を用いる方法 (特公平 6— 6 6 6 2号公 報) や、 熱可塑性ポリエステルに、 末端アミノ基濃度をある範囲に規制した特定 のポリアミドを含有させたポリエステル組成物からなるポリエステル製容器 (特 公平 4一 7 1 4 2 5号公報) が提案されているが、 ミネラルウォー夕等の低フレ 一バー飲料用の容器としては、 なお飲料の風味、 臭いの点で不十分な場合がある ことも判ってきた。
また一方、 P E Tを主体とする熱可塑性ポリエステル包装材料は前記のとうり ガスパリャ—性に優れているが、 ビタミン C等のように酸素に非常に敏感な化合 物を含有する内容物用の中空成形体等としては不満足であることが判明し、 改善 が求められている。
このような問題を解決する技術として、 我々は、 熱可塑性ポリエステル樹脂 1 0 0重量部に対して、 メタキシリレン基含有ポリアミド樹脂 1〜1 0 0重量部を 含有させた熱可塑性ポリエステル中空成形体 (特公平 4一 5 4 7 0 2号公報) を 提案した。 しかしながら、 このようなポリエステル組成物からなる中空成形体に 充填された飲料、 特に低フレーバー飲料の風味や臭いが問題となることが判って きた。
また、 耐熱性の良好な熱可塑性ポリエステル系フィルムを金属板にラミネート し、 前記ラミネート金属板を清涼飲料、 ビール、 缶詰等の主として食料品容器用 金属缶に利用することが検討されている。 このような用途において、 香味保持性 を改良するために、 ァセトアルデヒド含有量を 2 0 p p m以下にした金属板張り 合わせ用熱可塑性ポリエステルフィルム (特開平 5— 3 3 9 3 9 3号公報) が提 案されているが、 このような手段を用いても問題の完全な解決にはならないこと が判明し、 改善が求められている。
本発明は、 前記の従来技術の問題点を解決することにあり、 透明性、 熱安定性 および香味保持性、 あるいは透明性、 熱安定性、 香味保持性およびガスバリヤ一 性に優れたポリエステル組成物及びそれからなるポリエステル包装材料を提供す ることを目的とする。 図面の簡単な説明
図 1は、 評価に用いた段付き成形板の上面図である。
図 2は、 評価に用いた段付き成形板の側面図である。 発明の開示
本発明者らは、 熱可塑性ポリエステル 1 0 0重量部と、 部分芳香族ポリアミド 0 . :!〜 5 0重量部とからなるポリエステル組成物を用いて、 透明性と香味保持 性、 あるいは透明性、 香味保持性およびガスバリヤ一性に優れたポリエステル包 装材料およびその製造について検討した結果、 前記ポリエステル組成物中のアル 力リ金属原子含有量あるいは前記ポリエステル包装材料中のアル力リ金属原子含 有量が透明性、 香味保持性に関係があることを見出し、 本発明を完成した。 すなわち本発明のポリエステル組成物は、 熱可塑性ポリエステル 1 0 0重量部 と、 部分芳香族ポリアミド 0 . 1〜 5 0重量部とからなるポリエステル組成物で あって、 ポリエステル組成物中のアルカリ金属原子含有量が 0 . l〜3 0 0 p p mの範囲内であることを特徴とする。
また、 本発明は熱可塑性ポリエステル 1 0 0重量部と、 部分芳香族ポリアミド 0 . 1〜 5 0重量部とからなるポリエステル組成物であって、 ポリエステル組成 物中のリン原子含有量が 5〜 2 0 0 p p mであることを特徴とする。
さらに、 本発明は芳香族ジカルボン酸またはそのエステル形成性誘導体を主体 とするジカルボン酸成分とエチレングリコールを主体とするグリコール成分とか らなる熱可塑性ポリエステル 1 0 0重量部と、 部分芳香族ポリアミド 0 . 0 1〜 3 0重量部とからなるポリエステル組成物であって、 該ポリエステル組成物を 2 9 0 °Cの成形温度で射出成形して得られた成形体の C o l o r - L値が 8 0 . 0 以上であり、 かつヘイズが 20 %以下であることを特徴とするポリエステル組成 物である。 この場合にアンチモン原子の含有量は 20 O ppm以下であることが 好ましい。 さらに上記において、 熱可塑性ポリエステル組成物中のアルカリ金属 原子含有量が 0. l〜300 p pm、 リン原子含有量が 5〜200 p pmである ことができる。
さらには、 熱可塑性ポリエステル 100重量部と、 部分芳香族ポリアミド 0. 01〜100重量部、 アミノ基含有化合物 5 X 10一4〜 1重量部とからなること を特徴とするポリエステル組成物である。
この場合において、 部分芳香族ポリアミドがメタキシリレン基含有ポリアミド であることが好ましい。
この場合において、 前記熱可塑性ポリエステルが、 エチレンテレフ夕レートを 主たる繰り返し単位とするポリエステルであることが好ましい。
この場合において、 前記ポリエステル組成物を射出成形して得られた成形体の ァセトアルデヒド含有量 (At) (ppm) と、 射出成形前のポリエステル組成物 のァセ卜アルデヒド含有量 (A。) (p pm) との差 (At— A0) が、 20 p pm 以下であることが好ましい。
ここで、 ポリエステル組成物を射出成形して得られた成形体のァセトアルデヒ ド含有量 (At) とは、 後述する実施例の測定方法 (7) に従って測定した値で ある。
この場合において、 熱可塑性ポリエステル由来の環状 3量体の含有量が 0. 7 重量%以下であることができる。
この場合において、 290°Cで 30分間溶融処理した際の熱可塑性ポリエステ ル由来の環状 3量体増加量が 0. 4重量%以下であることをができる。
さらには、 本発明のポリエステル包装材料は上記のポリエステル組成物を成形 してなることを特徴とするポリエステル包装材料である。
包装材料は、 中空成形体、 シート状物、 フィルムの少なくともいずれかである ことができる。
以下、 本発明のポリエステル組成物およびそれからなるポリエステル包装材料 の実施の形態を具体的に説明する。 <ポリエステル >
本発明に用いられる熱可塑性ポリエステルは、 主として芳香族ジカルポン酸成 分とグリコール成分とから得られる結晶性熱可塑性ポリエステルであり、 さらに 好ましくは、 芳香族ジカルボン酸単位が酸成分の 8 5モル%以上含む熱可塑性ポ リエステルであり、 特に好ましくは 9 0モル%以上、 最も好ましくは、 芳香族ジ カルボン酸単位が酸成分の 9 5モル%以上含む熱可塑性ポリエステルである。 本発明に用いられる熱可塑性ポリエステルを構成する芳香族ジカルボン酸成分 としては、テレフタル酸、 2、 6—ナフタレンジカルボン酸、 ジフェニール一 4, 4 'ージカルボン酸、ジフエノキシェ夕ンジカルボン酸等の芳香族ジカルボン酸及 びその機能的誘導体等が挙げられる。
また本発明に用いられる熱可塑性ポリエステルを構成するグリコール成分とし ては、 エチレングリコール、 トリメチレングリコール、 テトラメチレングリコ一 ル、 シクロへキサンジメタノール等の脂環族グリコール等が挙げられる。
前記熱可塑性ポリエステル中に共重合成分として使用される酸成分としては、 テ レフタル酸、 2、 6—ナフタレンジカルポン酸、 イソフ夕ル酸、 ジフェニール一 4 , 4 'ージカルボン酸、ジフエノキシエタンジカルボン酸等の芳香族ジカルボン 酸、 P—ォキシ安息香酸、ォキシカブロン酸等のォキシ酸及びその機能的誘導体、 アジピン酸、 セバシン酸、 コハク酸、 ダルタル酸、 ダイマー酸等の脂肪族ジカル ボン酸及びその機能的誘導体、 へキサヒドロテレフタル酸、 へキサヒドロイソフ タル酸、 シクロへキサンジカルボン酸等の脂環族ジカルボン酸及びその機能的誘 導体などが挙げられる。
前記熱可塑性ポリエステル中に共重合成分として使用されるグリコール成分と しては、 エチレングリコール、 トリメチレンダリコール、 テトラメチレングリコ ール、 ジエチレングリコール、 ネオペンチルグリコール等の脂肪族ダリコ—ル、 シクロへキサンジメタノール等の脂環族グリコール、 1 , 3—ビス (2—ヒドロ キシエトキシ) ベンゼン、 ビスフエノール A、 ビスフエノール Aのアルキレンォ キサイド付加物等の芳香族グリコール、 ポリエチレングリコール、 ポリプチレン グリコール等のポリアルキレングリコ—ルなどが挙げられる。
さらに、 熱可塑性ポリエステルが実質的に線状である範囲内で多官能化合物、 例えばトリメリット酸、 トリメシン酸、 ピロメリット酸、 トリ力ルバリル酸、 グ リセリン、 ペン夕エリスリトール、 トリメチロールプロパン等を共重合してもよ く、 また単官能化合物、 例えば安息香酸、 ナフトェ酸等を共重合させてもよい。 本発明に用いられる熱可塑性ポリエステルの好ましい一例は、 主たる繰り返し 単位がエチレンテレフ夕レートから構成される熱可塑性ポリエステルであり、 さ らに好ましくはエチレンテレフタレ—卜単位を 8 5モル%以上含み、 共重合成分 としてイソフタル酸、 2 , 6一ナフタレンジカルボン酸、 1, 4ーシクロへキサ ンジメタノールなどを含む線状共重合熱可塑性ポリエステルであり、 特に好まし いくはェチレンテレフ夕レート単位を 9 5モル%以上含む線状熱可塑性ポリエス テルである。
これら線状熱可塑性ポリエステルの例としては、 ポリエチレンテレフ夕レート (以下、 P E Tと略称)、 ポリ (エチレンテレフ夕レート一エチレンイソフタレ一 ト) 共重合体、 ポリ (エチレンテレフ夕レート一 1 , 4—シクロへキサンジメチ レンテレフタレー卜)共重合体、ポリ (エチレンテレフタレート一エチレン一 2 , 6 _ナフ夕レート) 共重合体、 ポリ (エチレンテレフタレ一トージォキシェチレ ンテレフ夕レート) 共重合体などが挙げられる。
また本発明に用いられる熱可塑性ポリエステルの好ましい他の一例は、 主たる 繰り返し単位がエチレン— 2、 6一ナフタレ—トから構成される熱可塑性ポリエ ステルであり、 さらに好ましくはエチレン一 2、 6—ナフタレート単位を 8 5モ ル%以上含む線状熱可塑性ポリエステルであり、 特に好ましいのは、 エチレン一 2、 6—ナフ夕レート単位を 9 5モル%以上含む線状熱可塑性ポリエステルであ る。
これら線状熱可塑性ポリエステルの例としては、 ポリエチレン— 2, 6—ナフ 夕レート、 ポリ (エチレン一 2, 6—ナフタレート一エチレンテレフタレート) 共重合体、 ポリ (エチレン一 2, 6—ナフタレート一エチレンイソフタレート) 共重合体、 ポリ (エチレン— 2, 6—ナフタレートージォキシエチレン— 2 , 6 一ナフタレート) 共重合体などが挙げられる。
また本発明に用いられる熱可塑性ポリエステルの好ましいその他の例としては、
'一卜単位を 8 5モル%以上含む線状熱可塑性ポリエステル、 1, 4ーシクロへキサンジメチレンテレフ夕レー卜単位を 8 5モル%以上含む線 状熱可塑性ポリエステル、 またはブチレンテレフタレ—ト単位を 8 5モル%以上 含む線状熱可塑性ポリエステルである。
前記の熱可塑性ポリエステルは、 従来公知の製造方法によって製造することが 出来る。 即ち、 P E Tの場合には、 テレフタール酸とエチレングリコールおよび 必要により上記共重合成分を直接反応させて水を留去しエステル化した後、 重縮 合触媒として S b化合物、 G e化合物、 T i化合物または A 1化合物から選ばれ た 1種またはそれ以上の化合物を用いて減圧下に重縮合を行う直接エステル化法、 またはテレフタル酸ジメチルとエチレングリコールおよび必要により上記共重合 成分をエステル交換触媒の存在下で反応させてメチルアルコールを留去しエステ ル交換させた後、 重縮合触媒として S b化合物、 G e化合物、 T i化合物または A 1化合物から選ばれた 1種またはそれ以上の化合物を用いて主として減圧下に 重縮合を行うエステル交換法により製造される。
さらに熱可塑性ポリエステルの極限粘度を増大させ、 ホルムアルデヒド、 ァセ トアルデヒド含有量や環状エステル 3量体含有量を低下させるために固相重合を 行ってもよい。
前記のエステル化反応、 エステル交換反応、 溶融重縮合反応および固相重合反 応は、 回分式反応装置で行っても良いしまた連続式反応装置で行っても良い。 こ れらいずれの方式においても、 溶融重縮合反応は 1段階で行っても良いし、 また 多段階に分けて行っても良い。 固相重合反応は、 溶融重縮合反応と同様、 回分式 装置や連続式装置で行うことが出来る。 溶融重縮合と固相重合は連続で行っても 良いし、 分割して行ってもよい。
本発明に用いられる熱可塑性ポリエステルの製造に使用される S b化合物とし ては、 三酸化アンチモン、 酢酸アンチモン、 酒石酸アンチモン、 酒石酸アンチモ ンカリ、 ォキシ塩化アンチモン、 アンチモングリコレ一卜、 五酸化アンチモン、 トリフエニルアンチモン等が挙げられる。 S b化合物は、 生成ポリマー中の S b 残存量として 2 5 0 p p m以下になるように添加することが好ましい。 好ましい 上限は 2 0 0 p p mより好ましい上限は 1 9 0 p p m、 更に好ましい上限は 1 8 0 p p mである。 本発明に用いられるポリエステル中に残存するアンチモン原子 の含有量が 2 5 0 p p mより多いと、 本発明のポリエステル組成物から得られる 成形体にアンチモン由来の黒ずみが発生しやすくなり、 透明性が乏しくなる場合 がある。 好ましい下限は 5 0 p p mであり、 より好ましい下限は 7 0 p p mであ る。 5 0 p p mより少ないとポリエステルの重縮合反応が遅くなり、 生産性に乏 しくなるため実用的ではない場合がある。
本発明に用いられる熱可塑性ポリエステルの製造に使用される G e化合物とし ては、 無定形二酸化ゲルマニウム、 結晶性二酸化ゲルマニウム、 塩化ゲルマニウ ム、 ゲルマニウムテトラエトキシド、 ゲルマニウムテトラ一 n—ブトキシド、 亜 リン酸ゲルマニウム等が挙げられる。 G e化合物を使用する場合、 その使用量は 熱可塑性ポリエステル中の G e残存量として 5〜1 5 0 p p m、 好ましくは 1 0 〜1 0 0 p p m、 更に好ましくは 1 5〜7 0 ρ p mである。
本発明に用いられる熱可塑性ポリエステルの製造に使用される T i化合物とし ては、 テトラエチルチ夕ネート、 テトライソプロピルチタネート、 テトラ _ n— プロピルチタネ—ト、 テトラ— n—ブチルチタネート等のテトラアルキルチタネ 一トおよびそれらの部分加水分解物、蓚酸チタニル、蓚酸チタ二ルアンモニゥム、 蓚酸チタ二ルナトリウム、 蓚酸チタニルカリウム、 蓚酸チタニルカルシウム、 蓚 酸チタニルストロンチウム等の蓚酸チタニル化合物、 トリメリット酸チタン、 硫 酸チタン、 塩化チタン等が挙げられる。 T i化合物は、 生成ポリマー中の T i残 存量として 0 . 1〜1 0 p p mの範囲になるように添加する。
また、 本発明に用いられる熱可塑性ポリエステルの製造に使用される A 1化合 物としては、 具体的には、 ギ酸アルミニウム、 酢酸アルミニウム、 塩基性酢酸ァ ルミ二ゥム、 プロピオン酸アルミニウム、 蓚酸アルミニウム、 アクリル酸アルミ 二ゥム、 ラウリン酸アルミニウム、 ステアリン酸アルミニウム、 安息香酸アルミ 二ゥム、 トリクロ口酢酸アルミニウム、 乳酸アルミニウム、 クェン酸アルミニゥ ム、 サリチル酸アルミニウムなどのカルポン酸塩、 塩化アルミニウム、 水酸化ァ ルミ二ゥム、 水酸化塩化アルミニウム、 ポリ塩化アルミニウム、 硝酸アルミニゥ ム、 硫酸アルミニウム、 炭酸アルミニウム、 リン酸アルミニウム、 ホスホン酸ァ ルミニゥムなどの無機酸塩、 アルミニウムメトキサイド、 アルミニウムエトキサ ィド、 アルミニウム n-プロポキサイド、 アルミニウム iso-プロポキサイド、 アル ミニゥム n-ブトキサイド、アルミニウム t—ブトキサイドなどアルミニウムアル コキサイド、 アルミニウムァセチルァセトネート、 アルミニウムァセチルァセテ ート、 アルミニウムェチルァセトアセテート、 アルミニウムェチルァセトァセテ ートジ iso-プロポキサイドなどのアルミニウムキレート化合物、 トリメチルアル ミニゥム、 トりェチルアルミニウムなどの有機アルミニウム化合物およびこれら の部分加水分解物、 酸化アルミニウムなどが挙げられる。 これらのうちカルボン 酸塩、 無機酸塩およびキレート化合物が好ましく、 これらの中でもさらに塩基性 酢酸アルミニウム、 塩化アルミニウム、 水酸化アルミニウム、 水酸化塩化アルミ ニゥムおよびアルミニウムァセチルァセトネートがとくに好ましい。 A 1化合物 は、 生成ポリマ—中の A 1残存量として 5〜 2 0 0 p p mの範囲になるように添 加する。
また、 本発明に用いられる熱可塑性ポリエステルの製造において、 アルカリ金 属化合物またはアルカリ土類金属化合物を併用してもよい。 アルカリ金属化合物 またはアルカリ土類金属化合物は、 これら元素の酢酸塩等のカルボン酸塩、 アル コキサイド等があげられ、 粉体、 水溶液、 エチレングリコール溶液等として反応 系に添加される。 アルカリ金属化合物またはアルカリ土類金属化合物は、 生成ポ リマー中のこれらの元素の残存量として 1〜 5 0 p p mの範囲になるように添加 する。
前記の触媒化合物は、 前記熱可塑性ポリエステル生成反応工程の任意の段階で 添加することができる。
また、 安定剤として種々のリン化合物を使用することができる。 本発明で使用 されるリン化合物としては、 リン酸、 亜リン酸、 ホスホン酸およびそれらの誘導 体等が挙げられる。 具体例としてはリン酸、 リン酸トリメチルエステル、 リン酸 卜リエチルエステル、 リン酸トリブチルエステル、 リン酸トリフエニールエステ ル、 リン酸モノメチルエステル、 リン酸ジメチルエステル、 リン酸モノブチルェ ステル、 リン酸ジブチルエステル、 亜リン酸、 亜リン酸トリメチルエステル、 亜 リン酸トリェチルエステル、 亜リン酸トリプチルエステル、 メチルホスホン酸、 メチルホスホン酸ジメチルエステル、 ェチルホスホン酸ジメチルエステル、 フエ ニールホスホン酸ジメチルエステル、 フエニールホスホン酸ジェチルエステル、 フエニールホスホン酸ジフェニールエステル等であり、 これらは単独で使用して もよく、 また 2種以上を併用してもよい。 リン化合物は、 生成ポリマー中のリン 残存量として 5〜100 p pmの範囲になるように前記の熱可塑性ポリエステル 生成反応工程の任意の段階で添加することが好ましい。
本発明に用いられる熱可塑性ポリエステル、 特に、 主たる繰り返し単位がェチ レンテレフタレ—トから構成される熱可塑性ポリエステルの極限粘度は、 好まし くは 0. 55〜 1 · 50デシリットル/グラム、 より好ましくは 0. 58〜 1. 30デシリットル/グラム、 さらに好ましくは 0. 60〜0. 90デシリットル ノグラムの範囲である。 極限粘度が 0. 55デシリットル Zグラム未満では、 得 られた包装材料等の機械的特性が悪い。'また 1. 50デシリットル/グラムを越 える場合は、成型機等による溶融時に樹脂温度が高くなって熱分解が激しくなり、 保香性に影響を及ぼす遊離の低分子量化合物が増加したり、 包装材料が黄色に着 色する等の問題が起こる。
また本発明に用いられる熱可塑性ポリエステル、 特に、 主たる繰り返し単位が エチレン— 2、 6—ナフ夕レートから構成される熱可塑性ポリエステルの極限粘 度は 0. 40〜1. 00デシリットル Z.グラム、 好ましくは 0. 42〜0. 95 デシリットル Zグラム、 さらに好ましくは 0. 45〜0. 90デシリットル Zグ ラムの範囲である。 極限粘度が 0. 40デシリットル Zグラム未満では、 得られ た包装材料等の機械的特性が悪い。 また、 1. 00デシリットルノグラムを越え る場合は、 成型機等による溶融時に樹脂温度が高くなつて熱分解が激しくなり、 保香性に影響を及ぼす遊離の低分子量化合物が増加したり、 包装材料が黄色に着 色する等の問題が起こる。
本発明に用いられる熱可塑性ポリエステルのチップの形状は、 シリンダー型、 角型、 球状または扁平な板状等の何れでもよい。 その平均粒径は通常 1.. 3〜5 mm、 好ましくは 1. 5〜4. 5mm、 さらに好ましくは 1. 6〜4. Ommの 範囲である。 例えば、 シリンダー型の場合は、 長さは 1. 3〜4mm、 径は 1. 3〜4mm程度であるのが実用的である。 球状粒子の場合は、 最大粒子径が平均 粒子径の 1. 1〜2. 0倍、 最小粒子径が平均粒子径の 0. 7倍以上であるのが 実用的である。また、チップの重量は 10〜3 Omg/個の範囲が実用的である。 また本発明に用いられる前記熱可塑性ポリエステルの環状エステル 3量体の含 有量は、 好ましくは 0 . 7 0重量%以下、 より好ましくは 0 . 6 0重量%以下、 さらに好ましくは 0 . 5 0重量%以下、 特に好ましくは 0 . 4 5以下である。 本 発明のポリエステル組成物から耐熱性の中空成形体等を成形する場合、 環状エス テル 3量体の含有量が 0 . 7 0重量%を超える含有量のポリエステルを使用する 場合には、 加熱金型表面へのオリゴマー付着が急激に増加し、 得られた中空成形 体等の透明性が非常に悪化する。 また、 シート状物を製膜する場合には、 冷却口 一ルゃ夕ツチロールの汚れが激しく、 表面状態の悪い、 透明性に劣るシート状物 しか得られない。 なお、 環状エステル 3量体とは、 テレフタル酸とエチレンダリ コールとから構成される環状 3量体のことである。
また、 本発明に用いられる熱可塑性ポリエステルは、 2 9 0 °Cで 3 0分間溶融 処理した際の環状 3量体の増加量が 0 . 4重量%であることが好ましい。 このよ うなポリエステルは溶融重縮合後や固相重合後に得られたポリエステルに残存す る重縮合触媒を失活処理することにより製造することができる。
ポリエステル中の重縮合触媒を失活処理する方法としては、 溶融重縮合後や固 相重合後にポリエステルチップを水や水蒸気または水蒸気含有気体と接触処理す る方法が挙げられる。
これらの方法は、 特開平 3— 1 7 4 4 4 1号公報、 特開 2 0 0 0— 7 2 8 6 7 号公報等に詳細が記載されており、 この方法を用いることにより製造することが できる。
また重縮合触媒を失活させる別の手段として、 リン化合物を溶融重縮合後また は固相重合後のポリエステルの溶融物に添加、 混合して重合触媒を不活性化する 方法が挙げられる。
溶融重縮合ポリエステルの場合には、溶融重縮合反応終了後のポリエステルと、 リン化合物を配合したポリエステル樹脂とを溶融状態で混合できるラインミキサ 一等の機器中で混合して重縮合触媒を不活性化する方法が挙げられる。
また固相重合ポリエステルにリン化合物を配合する方法としては、 固相重合ポ リエステルにリン化合物をドライブレンドする方法ゃリン化合物を溶融混練して 配合したポリエステルマス夕一バッチチップと固相重合ポリエステルチップを混 合する方法によって所定量のリン化合物をポリエステルに配合後、 押出機や成形 機中で溶融し、 重縮合触媒を不活性化する方法等が挙げられる。
使用されるリン化合物としては、 リン酸、 亜リン酸、 ホスホン酸およびそれら の誘導体等が挙げられる。 具体例としてはリン酸、 リン酸卜リメチルエステル、 リン酸トリェチルエステル、 リン酸トリブチルエステル、 リン酸トリフエニール エステル、 リン酸モノメチルエステル、 リン酸ジメチルエステル、 リン酸モノブ チルエステル、 リン酸ジブチルエステル、 亜リン酸、 亜リン酸トリメチルエステ ル、 亜リン酸トリェチルエステル、 亜リン酸トリブチルエステル、 メチルホスホ ン酸、メチルホスホン酸ジメチルエステル、ェチルホスホン酸ジメチルエステル、 フエニールホスホン酸ジメチルエステル、 フエニールホスホン酸ジェチルエステ ル、 フエニールホスホン酸ジフェニールエステル等であり、 これらは単独で使用 してもよく、 また 2種以上を併用してもよい。
一般的に熱可塑性ポリエステルは、 製造工程中で発生する、 共重合成分及び該 共重合成分含量が熱可塑性ポリエステルのチップと同一である微粉、 すなわち、 ファインをかなりの量含んでいる。 このようなファインは熱可塑性ポリエステル の結晶化を促進させる性質を持っており、 多量に存在する場合には、 このような フアインを含む前記ポリエステル組成物から成形した成形体の透明性が非常に悪 くなつたり、 またボトルの場合には、 ボトルロ栓部結晶化時の収縮量が規定値の 範囲内に収まらずキヤップで密栓できなくなるという問題が生じる。したがって、 本発明に用いられる熱可塑性ポリエステル中のファインの含有量は 1 0 0 0 p p m以下、 好ましくは 5 0 0 p p m以下、 より好ましくは 5 0 0 p p m以下、 さら に好ましくは 3 0 0 p p m以下、 特に好ましくは 2 0 0 p p m以下、 最も好まし くは 1 0 0 p p m以下であることが望ましい。 <部分芳香族ポリアミド >
本発明に係る部分芳香族ポリアミドは、 脂肪族ジカルボン酸と芳香族ジアミ ンとから誘導される単位を主構成単位とするポリアミド、 または芳香族ジカルポ ン酸と脂肪族ジァミンとから誘導される単位を主構成単位とするポリアミドであ る。 本発明に係る部分芳香族ポリアミドを構成する芳香族ジカルボン酸成分として は、テレフタル酸、イソフ夕ル酸、 フ夕ル酸、 2、 6—ナフタレンジカルボン酸、 ジフェニール一 4, 4 'ージカルボン酸、ジフエノキシエタンジカルボン酸及びそ の機能的誘導体等が挙げられる。
本発明に係る部分芳香族ポリアミドを構成する脂肪族ジカルボン酸成分として は、 直鎖状の脂肪族ジカルボン酸が好ましく、 さらに炭素数 4〜1 2のアルキレ ン基を有する直鎖状脂肪族ジカルボン酸が特に好ましい。 このような直鎖状脂肪 族ジカルボン酸の例としては、 アジピン酸、 セバシン酸、 マロン酸、 コハク酸、 ダルタル酸、 ピメリン酸、 スペリン酸、 ァゼライン酸、 ゥンデカン酸、 ゥンデ力 ジオン酸、 ドデカンジオン酸、 ダイマ一酸およびこれらの機能的誘導体などを挙 げることができる。
本発明に係る部分芳香族ポリアミドを構成する芳香族ジァミン成分としては、 メタキシリレンジァミン、 パラキシリレンジァミン、 パラービス一 (2—ァミノ ェチル) ベンゼンなどが挙げられる。
本発明に係る部分芳香族ポリアミドを構成する脂肪族ジァミン成分としては、 炭素数 2〜1 2の脂肪族ジァミンあるいはその機能的誘導体である。 脂肪族ジァ ミンは直鎖状の脂肪族ジァミンであっても分岐を有する鎖状の脂肪族ジァミンで あってもよい。 このような直鎖状の脂肪族ジァミンの具体例としては、 エチレン ジァミン、 1—メチルエチレンジァミン、 1 , 3—プロピレンジァミン、 テトラ
ジァミンが挙げられる。
【0 0 0 1】
また本発明に係る部分芳香族ポリアミドを構成するジカルボン酸成分として、 上記のような芳香族ジカルボン酸や脂肪族ジカルボン酸以外に脂環族ジカルボン 酸を使用することもできる。 脂環族ジカルボン酸としては、 1 , 4—シクロへキ サンジカルボン酸、 へキサヒドロテレフタル酸、 へキサヒドロイソフタル酸等の 脂環式ジカルボン酸が挙げられる。 また本発明に係る部分芳香族ポリアミドを構成するジァミン成分として、 上記 のような芳香族ジアミンゃ脂肪族ジァミン以外に脂環族ジァミンを使用すること もできる。 脂環族ジァミンとしては、 シクロへキサンジァミン、 ビス一 (4 , 4 'ーァミノへキシル) メタン等の脂環族ジアミンが挙げられる。
前記のジァミン及び、 ジカルボン酸以外にも、 ε —力プロラクタムやラウロラ クタム等のラクタム類、 アミノカプロン酸、 アミノウンデカン酸等のアミノカル ポン酸類、 パラーアミノメチル安息香酸のような芳香族ァミノ力ルポン酸等も共 重合成分として使用できる。 とりわけ、 ε—力プロラクタムの使用が望ましい。
【0 0 0 1】
本発明に係る部分芳香族ポリアミドの好ましい例としては、 メタキシリレンジ ァミン、 もしくはメタキシリレンジァミンと全量の 3 0 %以下のパラキシリレン ジァミンを含む混合キシリレンジァミンと脂肪族ジカルボン酸とから誘導される 構成単位を分子鎖中に少なくとも 2 0モル%以上、 さらに好ましくは 3 0モル% 以上、 特に好ましくは 4 0モル%以上含有するメタキシリレン基含有ポリアミド である。
また本発明に係る部分芳香族ポリアミドは、 トリメリット酸、 ピロメリット酸 などの 3塩基以上の多価カルボン酸から誘導される構成単位を実質的に線状であ る範囲内で含有していてもよい。
これらポリアミドの例としては、 ボリメタキシリレンアジパミド、 ポリメ夕キ シリレンセバカミド、 ポリメタキシリレンスペラミド等のような単独重合体、 及 ぴメタキシリレンジァミン/アジピン酸 イソフタル酸共重合体、 メタキシリレ ン Ζパラキシリレンァジパミド共重合体、 メ夕キシリレン/パラキシリレンピぺ ラミド共重合体、 メタキシリレン/パラキシリレンァゼラミド共重合体、 メ夕キ シリレンジァミン Ζアジピン酸/ィソフ夕ル酸/ 8一力プロラクタム共重合体、 メタキシリレンジァミン/アジピン酸 Ζイソフタル酸 Ζω—アミノカプロン酸共 重合体等が挙げられる。
【0 0 0 1】
また本発明に係る部分芳香族ポリアミドの好ましいその他の例としては、 脂肪 族ジァミンとテレフタル酸またはイソフ夕ル酸から選ばれた少なくとも一種の酸 とから誘導される構成単位を分子鎖中に少なくとも 2 0モル%以上、 さらに好ま しくは 3 0モル%以上、 特に好ましくは 4 0モル%以上含有するポリアミドであ る。
Figure imgf000016_0001
ソフタルアミド、 酸共重合体、 酸共重合体等が挙げられる。
【0 0 0 1】
また本発明に係る部分芳香族ポリアミドの好ましいその他の例としては、 脂肪 族ジァミンとテレフタル酸またはイソフ夕ル酸から選ばれた少なくとも一種の酸 以外に、 ε —力プロラクタムやラウロラクタム等のラクタム類、 アミノカプロン 酸、 アミノウンデカン酸等のアミノカルボン酸類、 パラーアミノメチル安息香酸 のような芳香族ァミノカルボン酸等を共重合成分として使用して得た、 脂肪族ジ ァミンとテレフタル酸またはイソフタル酸から選ばれた少なくとも一種の酸とか ら誘導される構成単位を分子鎖中に少なくとも 2 0モル%以上、 さらに好ましく は 3 0モル%以上、 特に好ましくは 4 0モル%以上含有するポリアミドである。 これらポリアミドの例としては、 へキサメチレンジァミン/テレフタル酸/ ε 一力プロラクタム共重合体、 へキサメチレンジァミン/イソフタル酸 Ζ ε—カブ ロラクタム共重合体、 へキサメチレンジアミン /テレフ夕ル酸/アジピン酸/ ε —力プロラクタム共重合体等が挙げられる。
前記の部分芳香族ポリアミドは、 ジァミンとジカルボン酸から生成するァミノ カルボン酸塩の水溶液を加圧下および常圧下に加熱し、 水および重縮合反応で生 ずる水を除去しながら溶融状態で重縮合させる方法、 あるいはジァミンとジカル ボン酸を加熱し、 溶融状態で常圧下、 あるいは引き続き真空下に直接反応させて 重縮合させる方法等により製造することができる。 また、 これらの溶融重縮合反 応により得られた前記ポリアミドのチップを固相重合することによって、 さらに 高粘度の部分芳香族ポリアミドを得ることができる。
前記の部分芳香族ポリアミドの重縮合反応は、 回分式反応装置で行っても良い しまた連続式反応装置で行つても良い。
本発明に用いられる部分芳香族ポリアミドの製造の際には、 熱安定性を向上さ
' せてゲル化を防止するために下記化学式 (A) で表されるアルカリ金属含有化合 物を添加することが好ましい。 前記部分芳香族ポリアミド中のアルカリ金属原子 含有量は、 1〜1000 p pmの範囲内にあることが好ましい。 前記部分芳香族 ポリアミド中のアルカリ金属原子含有量の下限は 10 ppm、 さらには 20 p p m、 特には 30 p pm以上であることが望ましく、 上限は 900 ppm、 さらに は 800 p pm、 特には 750 p pmであることが望ましい。
Z - OR8 (A)
(ただし、 Zはアルカリ金属、 R8は水素、 アルキル基、 ァリール基、 シクロア ルキル基、 一 C (O) CH3または一 C (O) ΟΖ'、 (Ζ'は水素、 アルカリ金属)) 化学式 (Α) で表されるアルカリ化合物としては、 水酸化ナトリウム、 ナトリ ゥムメトキシド、 ナトリウムェ卜キシド、 ナトリウムプロポキシド、 ナトリウム ブトキシド、 カリウムメトキシド、 リチウムメトキシド、 酢酸ナトリウム、 炭酸 ナトリゥム、 およびアル力リ土類金属を含むアル力リ土類化合物などが挙げられ るが、 いずれもこれらの化合物に限定されるものではない。
また前記部分芳香族ポリアミドの製造の際には、 熱劣化によるゲル化を防止す るための安定剤として、 リン化合物を添加して重合することが好ましい。
本発明に用いられる部分芳香族ポリアミド中の前記リン化合物由来のリン原子 含有量を Xとすると、 0<Χ≤ 500 p pmの範囲であることが好ましい。 下限 は好ましくは 0. l p pmであり、 より好ましくは 1 p pmであり、 さらに好ま しくは 5 pmである。 上限は好ましくは 400 p pmであり、 より好ましくは 3 O O p pmであり、 さらに好ましくは 250 p pmである。 Xが 0、 すなわちリ ン原子が全く含まれていないと、 重縮合時のゲル化防止効果が劣る。 一方、 が 上記範囲より多いとゲル化防止効果に限界が認められ、 かつ不経済である。 さら には、 リンの還元作用により触媒の Sbが還元され金属 Sbとなり、 c o l o r —L値を低下させる場合がある。 c o 1 o r—L値を高くするには、 Sb量が多 い場合であれば、 リンの含有量を低くすることが好ましい。
前記部分芳香族ポリアミド中に添加するリン化合物としては、 下記化学式 (B 一 1) 〜 (B— 4) で表される化合物から選ばれる少なくとも 1つを用いること が好ましい。
op=
Figure imgf000018_0001
R4 ■ox4 (B— 2)
ox.
OX2
-P— OX3 (B— 3)
O 6
RcO一 P一 0R7 (B-4)
(ただし、 Ri R?は水素、 アルキル基、 ァリール基、 シクロアルキル基または ァリールアルキル基、 Xt Xsは水素、 アルキル基、 ァリール基、 シクロアルキ ル基、 ァリールアルキル基またはアルカリ金属、 あるいは各式中の 15と尺 丄〜 R 7のうちそれぞれ 1個は互いに連結して環構造を形成してもよい) , 化学式 (B_ l) で表されるホスフィン酸化合物としては、 ジメチルホスフィ ン酸、 フエニルメチルホスフィン酸、 次亜リン酸、 次亜リン酸ナトリウム、 次亜 リン酸カリウム、 次亜リン酸リチウム、 次亜リン酸ェチル、
Figure imgf000019_0001
Figure imgf000019_0002
の化合物およびこれらの加水分解物、 ならびに上記ホスフィン酸化合物の縮合物 などがある。
化学式 (B _ 2 ) で表される亜ホスホン酸化合物としては、 フエニル亜ホスホ ン酸、 フエニル亜ホスホン酸ナトリウム、 フエニル亜ホスホン酸カリウム、 フエ ニル亜ホスホン酸リチウム、 フエニル亜ホスホン酸ェチルなどがある。
化学式 (B— 3 ) で表されるホスホン酸化合物としてはフエニルホスホン酸、 ェチルホスホン酸、 フエニルホスホン酸ナトリウム、 フエニルホスホン酸力リウ ム、 フエニルホスホン酸リチウム、 フエニルホスホン酸ジェチル、 ェチルホスホ ン酸ナトリウム、 ェチルホスホン酸カリウムなどがある。
化学式 (B— 4 ) で表される亜リン酸化合物としては、 亜リン酸、 亜リン酸水素 ナトリウム、亜リン酸ナトリウム、亜リン酸トリェチル、亜リン酸トリフエニル、 ピロ亜リン酸などがある。
本発明に用いられる部分芳香族ポリアミド中の全アルカリ金属の含有量 (前記 リン系安定剤に含まれるアルカリ金属原子の量と前記アルカリ金属化合物に含ま れるアルカリ金属原子の量との合計量) が、 同ポリアミド中のリン原子の含有量 の 1 . 0〜6 . 0倍モルであることが好ましい。 下限はより好ましくは 1 . 5倍 モル、 さらに好ましくは 2 . 0倍モル、 特に好ましくは 2 . 3倍モル、 最も好ま しくは 2 . 5倍モルであり、 上限はより好ましくは、 5 . 5倍モル、 更に好まし くは 5. 0倍モルである。 全アルカリ金属の含有量がリン原子含有量の 1. 0倍 モルより少ないと、 ゲル化が促進されやすくなる。 一^、 全アルカリ金属の含有 量がリン原子含有量の 6. 0倍モルより多いと、 重合速度が遅くなり、 粘度も充 分に上がらず、 かつ特に減圧系ではかえつてゲル化が促進され不経済である。 本発明で使用する前記化学式 (A) および化学式 (B— 1) 〜 (B— 4) で表 される化合物はそれぞれ単独で用いてもよいが、 特に併用して用いる方が、 ポリ エステル組成物の熱安定性が向上するので好ましい。
本発明で用いられる部分芳香族ポリアミドに前記リン化合物や前記アル力リ金 属含有化合物を配合するには、 ポリアミドの重合前の原料、 重合中にこれらを添 加するかあるいは前記重合体に溶融混合してもよい。
またこれらの化合物は同時に添加してもよいし、 別々に添加してもよい。 本発明に用いられる部分芳香族ポリアミドの相対粘度は、 1. 3〜4. 0、 好 ましくは 1. 5〜3. 0、 より好ましくは 1. 7〜2. 5、 さらに好ましくは 1. 8〜2. 0の範囲である。 相対粘度が 1. 3以下では分子量が小さすぎて、 本発 明のポリエステル組成物からなる包装材料の機械的性質に劣ることがある。 逆に 相対粘度が 4. 0以上では、 前記ポリアミドの重合に長時間を要し、 ポリマーの 劣化や好ましくない着色の原因となる場合があるだけでなく、 生産性が低下しコ ストアップ要因となることがある。
また、 本発明に用いられる部分芳香族ポリアミドの末端アミノ基濃度 ( imo 1/g) を AEG、 また部分芳香族ポリアミドの末端力ルポキシル基濃度 ( m o 1 /g) を C EGとした場合、 C EGに対する AEGの比 (AEG/CEG) が、 1. 05以上であることが好ましい。 部分芳香族ポリアミド中の末端力ルポ キシル基濃度に対する末端アミノ基濃度の比 (AEGZCEG) が 1. 05より 小さい場合は、 本発明のポリエステル包装材料の風味保持性が乏しくなり、 この ようなポリエステル包装材料は低フレーバー飲料用の容器としては実用性に乏し い場合がある。 また、 部分芳香族ポリアミド中の末端力ルポキシル基濃度に対す る末端アミノ基濃度の比 (AEG/CEG) が 20を超える場合は、 得られたポ リエステル包装材料の着色が激しくなり商品価値がなくなるので好ましくない。 なお、 前記部分芳香族ポリアミドには、 出発物質として使用するジァミンとジ カルボン酸とから構成される環状アミド 1量体、 環状アミド 2量体、 環状アミド 3量体及び環状アミド 4量体等の環状オリゴマー、 前記ジカルボン酸および前記 ジァミン等の未反応モノマー、 および前記ジァミンと前記ジカルポン酸とからな る線状 2量体、 線状 3量体等の線状オリゴマーが含まれている。 重縮合方法や重 縮合条件、 あるいは生成ポリアミドの分子量等によってもそれらの含有量は異な るが、 一例として環状アミド 1量体は 0. 2〜2. 0重量%、 環状アミド 2量体 は 0. 1〜2. 0重量%、 環状ァミド 3量体は 0. 1〜1. 0重量%、 環状アミ ド 4量体は 0. 005〜0. 5重量%、 線状オリゴマー類は 1〜5000 p pm のオーダー、また未反応モノマ—類は 0.1〜2000 p pmのオーダーである。 ここで、 部分芳香族ポリアミドがメタキシリレンジァミンとアジピン酸とから 構成されるポリアミドである場合は、 環状オリゴマーの化学式は下記の式で表さ れ、 n = 1の場合が環状ァミド 1量体である。
0 O H H
II II I
C— (C )厂 C—N- -Hつ C CH2— N- n
(上記式中、 nは 1〜4の整数を表す。) 部分芳香族ポリアミド中の環状アミド 1量体の含有量は 0. 9重量%以下、 好 ましくは 0. 8重量%以下、 さらに好ましくは 0. 6重量%以下であることが好 ましい。
環状アミド 1量体の含有量が 0. 9重量%を超える部分芳香族ポリアミドを用 いると、 得られた成形体に充填された内容物の香味保持性が悪くなり、 また成形 体成形時の金型内面や金型のガスの排気口、 排気管に異物が付着するために生じ る金型汚れが非常に激しくなる。なお、ここで言う環状アミド 1量体の含有量は、 ポリアミドが含む、 環状アミド 1量体の含有量を意味する。 この環状アミド 1量 体含有量の下限値は、 経済的な理由などから、 0. 001 ppmであることが好 ましい。 環状アミド 1量体は下記に記載する高速液体クロマトグラフ法によって 測定することができる。
環状アミド 1量体の含有量が 0 . 9重量%以下の部分芳香族ポリアミドは、 例 えば下記のようにして製造することができる。 すなわち、 前記の製造方法で得ら れたポリアミドチップをメタノールあるいはエタノール等のアルコール類または メタノール水溶液あるいはエタノ—ル水溶液により加熱処理あるいは抽出処理す ることによって得ることができる。
例えば、 加熱処理槽に前記のポリアミドチップを入れ、 5 0 %エタノール水溶 液を加えて、 約 5 0〜6 0でで処理して得られたチップを成形に供する。 このよ うな加熱処理等は、 回分式処理装置で行っても良いしまた連続式処理装置で行つ ても良い。
また、 本発明に用いられる部分芳香族ポリアミドは、 重縮合時のメ夕キシリレ ンジァミン等のジァミンとアジピン酸等のジカルポン酸の添加比率を変更したり、 また重縮合条件を変更することによつても得ることができる。
本発明のポリエステル組成物を構成する部分芳香族ポリアミドの三級窒素の含 有量は、 好ましくは 2 . 0モル%以下、 より好ましくは 1 . 5モル%以下、 さら に好ましくは 1 . 0モル%以下である。 三級窒素の含有量が 2 . 0モル%を超え る部分芳香族ポリアミドを含むボリエステル組成物を用いて得た成形体は、 ゲル 化物による着色した異物状物を含み、 また色も悪くなることがある。 特に延伸成 形して得た延伸フィルムや二軸延伸中空成形体では、 ゲル状物の存在する個所は 正常に延伸されずに肉厚となって、 厚み斑の原因となり、 商品価値のない成形体 が多く発生し、 歩留まりを悪くする場合があり、 最悪の場合は商品価値のない成 形体しか得られないことがある。
また、 3級窒素の含有量の下限は、 製造上の理由から 0 . 0 0 1モル%である ことが好ましく、 より好ましくは 0 . 0 1モル%、 さらに好ましくは 0 . 0 5モ ル%、特に好ましくは 0 . 1モル%である。 3級窒素の含有量が 0 . 0 0 1モル% 未満の部分芳香族ポリアミドを製造しょうとする際には、 高度に精製した原料を 用いる、 劣化防止剤を大量に必要とする、 重合温度を低く保つ必要がある等の生 産性に問題が起こることがある。 なお, ここで言う三級窒素とは、 ィミノ化合物に基づく窒素と三級アミドに基 づく窒素の両者であり、 三級窒素の含有量は、 二級アミド (一 NH C O—:通常 の主鎖を構成するアミド) に基づく窒素に対するモル比 (モル%) で表わした含 有量である。
ポリアミド中にイミノ基が多い場合は、 成形中にイミノ基部分とジカルボン酸 末端が反応してゲル化物が発生する場合があり、 ポリアミド中に三級アミドが多 いとゲル化物が多くなることがある。
本発明に用いられる部分芳香族ポリアミドのチップの形状は、 シリンダー型、 角型、 球状または扁平な板状等の何れでもよい。 その平均粒径は通常 1 . 0〜5 mm、 好ましくは 1 . 2〜4 . 5 mm, さらに好ましくは 1 . 5〜4. O mmの 範囲である。 例えば、 シリンダー型の場合は、 長さは 1 . 0〜4 mm、 径は 1 . 0〜4 mm程度であるのが実用的である。 球状粒子の場合は、 最大粒子径が平均 粒子径の 1 . 1〜2 . 0倍、 最小粒子径が平均粒子径の 0 . 7倍以上であるのが 実用的である。 また、 チップの重量は 5〜3 O m g /個の範囲が実用的である。
<ポリエステル組成物 >
本発明のポリエステル組成物は、 熱可塑性ポリエステルと部分芳香族ポリアミ ドとの溶融混合体を成形加工した形状であることができる。 成形加工した状態と は、ストランド状やチップ状、 シリンダ一状に限らず、 中空成形体状、シート状、 フィルム状およびこれらの粉砕物であっても良く、 特にその形状を限定するもの ではない。
また、 ボリエステル組成物は熱可塑性ポリエステルと、 部分芳香族ポリアミド のチドライブレンド物であっても良く、 熱可塑性ポリエステルと部分芳香族ポリ アミドを含有するマス夕一バッチとのドライブレンド物であっても良い。
本発明のポリエステル組成物を構成する前記熱可塑性ポリエステルと部分芳香 族ポリアミドとの混合割合は、 熱可塑性ポリエステル 1 0 0重量部に対して前部 分芳香族ポリアミド 0 . 0 1重量部〜 5 0重量部であり、 好ましくは 0 . 0 1〜 3 0重量部である。 前記のポリエステル組成物から A A含有量が非常に少なく香 味保持性に優れたポリエステル組成物を得たい場合の部分芳香族ポリアミドの添 加量は、 前記ポリエステル 1 0 0重量部に対して 0 . 0 1重量部以上、 さらに好 ましくは 0 . 1重量部以上、 特に好ましくは 0 . 5重量部以上であり、 好ましく は 5重量部未満、 より好ましくは 2重量部未満、 さらに好ましくは 1重量部未満 であることが望ましい。
またガスバリヤ—性が非常に優れ、 かつ実用性を損なわない透明性を持ち、 か つ A A含有量が非常に少なく香味保持性に優れたポリエステル組成物を得たい場 合は、 熱可塑性ポリエステル 1 0 0重量部に対して好ましくは 2重量部以上、 さ らに好ましくは 3重量部以上、 特に好ましくは 5重量部以上であり、 好ましくは 3 0重量部以下、 より好ましくは 2 5重量部以下、 さらに好ましくは 2 0重量部 以下であることが望ましい。
部分芳香族ポリアミドの混合量が、 熱可塑性ポリエステル 1 0 0重量部に対し て 0 . 0 1重量部未満の場合は、 得られたポリエステル組成物の AA含有量が低 減されず、 ポリエステル組成物内容物の香味保持性が非常に悪くなることがあり 好ましくない。 また、 部分芳香族ポリアミドの混合量が、 熱可塑性ポリエステル 1 0 0重量部に対して 3 0重量部を超える場合は、 得られたポリエステル成形体 の透明性が非常に悪くなったり、 またポリエステル包装材料の機械的特性も低下 する場合があり好ましくない。
また、 熱可塑性ポリエステルと部分芳香族ポリアミドの溶融混合物は熱可塑性 ポリエステルと混合するためのマスターバッチとして用いることができる。 マス ターバッチとして使用する場合は、 熱可塑性ポリエステル 1 0 0重量部に対して 部分芳香族ポリアミド 3重量部〜 5 0重量部であることが好ましい。
本発明のポリエステル組成物は、 ポリエステル組成物中のアルカリ金属原子含 有量が、 0 . 1〜3 0 0 p p mの範囲内にあることを特徴とする。
ポリエステル組成物中のアルカリ金属原子含有量の下限は、 好ましくは 1 p p mであり、 より好ましく 5 p p mであることが好ましい。 また前記ポリエステル 組成物中のアルカリ金属原子含有量の上限は、 好ましくは 2 7 0 p p mであり、 より好ましくは 2 5 0 p p mであり、 さらに好ましくは 2 0 0 p mであること が好ましい。
ポリエステル組成物中のアルカリ金属原子含有量が 0 . 1 p p m未満の場合は、 このようなポリエステル組成物を用いて成形体を製造する際に着色が激しかった り、 焼けすじや未溶融物が発生しやすくなり、 その結果、 ポリエステル成形体の 外観が悪くなる。 一方、 前記ポリエステル組成物中のアルカリ金属原子含有量が
3 0 0 p p mより多い場合は、 焼けすじや未溶融物の発生はほとんどなくなるも のの、 得られる成形体の透明性や香味保持性が悪くなり、 また分子量低下が起こ り、 機械的強度が低下したりする。
ポリエステル組成物中のアルカリ金属原子含有量を 0 . 1〜3 0 0 p p mの範 囲内にする方法としては、 用いる部分芳香族ポリアミドの量に応じて部分芳香族 ポリアミドに含まれるアルカリ金属含有量を調整する、 ポリエステルに含まれる アルカリ金属量を調整する、 などといった方法を用いることができる。
本発明に用いられる前記部分芳香族ボリアミド中のアル力リ金属原子含有量は 原子吸光分析法、 発光分析法、 誘導結合プラズマ (以下、 I C Pと略する) 発光 分析法、 I C P質量分析法、 蛍光 X線分析法などによって求められ、 アルカリ金 属原子濃度により使い分けることができる。
また、 本発明のポリエステル組成物はポリエステル組成物中のリン原子含有量 が 5〜2 0 0 p p mであることを特徴とする。
ポリエステル組成物中のリン原子含有量の下限は、好ましくは 6 p p mであり、 より好ましくは 7 p p mであり、 さらに好ましくは 8 p p mである。 また前記ポ リエステル組成物中のリン原子含有量の上限は、好ましくは 1 8 0 p p mであり、 より好ましくは 1 6 0 p p mであり、 さらに好ましくは 1 3 0 p p mである。 ポリエステル組成物中のリン原子含有量が 5 p p m未満の場合は、 このような ポリエステル組成物を用いて成形体を製造する際に着色が激しくなつたり、 焼け すじや未溶融物が発生しやすくなり、 また成形加工時の熱劣化も大きい。 一方、 ポリエステル組成物中のリン原子含有量が 2 0 0 p p mより多い場合は、 熱安定 性は優れ、 焼けすじや未溶融物の発生はほとんどなくなるものの、 得られた成形 体の透明性や香味保持性が悪くなることがある。
ポリエステル組成物中のリン原子含有量を 5〜 2 0 O p p mの範囲内とする方 法としては、 用いる部分芳香族ポリアミドの量に応じて部分芳香族ポリアミドに 含まれるリン原子含有量を調整する、 ポリエステルに含まれるリン原子含有量量 を調整する、 などといった方法を用いることができる。
本発明のポリエステル組成物を下記の測定法 (8) に記載した方法で射出成形 して得られた成形体の Co 1 o r一 L値が 80. 0以上であり、 かつヘイズが 2 0 %以下であることが好ましレ^より好ましい C 0 1 o r—L値は 82.0以上、 さらに好ましくは 84. 0以上である。 また、 より好ましいヘイズは 15 %以下 であり、 さらに好ましくは 10%以下である。 得られた成形体の Co 1 o r _L 値が 80. 0より小さい、 もしくはヘイズが 20 %より高いと成形体の透明性が 悪いだけでなく、 外観が黒ずんで見えるので包装材料としての価値に乏しい場合 がある。
ポリエステル組成物にアンチモン触媒を用いたポリエステルを用いた場合、 前 述したように、 アンチモンがリンの作用により還元されて金属アンチモンとして 析出し、 外観が黒ずむ場合がある。 従って、 ポリエステル組成物のアンチモン含 有量、 リン原子含有量を調整することにより達成しることができる。
また、 ポリエステルと部分芳香族ポリアミドは相溶性が低いため、 組成物中の 部分芳香族ポリアミドの含有量が高くなるとヘイズが増大するだけでなく、 金属 アンチモンの析出、 過剰のリン原子による濁り、 アルカリ金属によるポリエステ ルの結晶促進効果、 ファインと呼ばれる樹脂微粉末の結晶促進効果、 等によりへ ィズ値は増大する。 従って、 部分芳香族ポリアミドの添加量、 ポリエステル組成 物のアンチモン含有量、' リン原子含有量、 リン原子含有量、 ファイン等の含有量 を調整することによりヘイズを 20%以下とすることが出来る。 また、 部分芳香 族ポリアミドに芳香族ジカルボン酸成分等を共重合させるなど相溶性を高めたり、 ポリエステルと部分芳香族ポリアミドとの屈折率を近づける等の方策も有効であ る。
本発明のポリエステル組成物を下記の測定法 (5) に記載した方法で射出成形 して得られた成形体のァセトアルデヒド含有量 (At) (p pm) と、 射出成形前 のポリエステル組成物のァセトアルデヒド含有量 (A。) (p pm) との差 (At 一 A0) が、 20 p pm以下、 好ましくは 15 p pm以下、 さらに好ましくは 1 O ppm以下、 最も好ましくは 5 p pm以下であることが好ましい。 射出成形前 後のァセトアルデヒド含有量の差 (At— A。)が 20 p pmを超える場合には、 得られたポリエステル包装材料の香味保持性が悪くなる。 また、 射出成形前後の ァセトアルデヒド含有量の差 (At_A。) の下限は l p pmであり、 これ以下に 低減するにはポリエステル組成物の生産条件を非生産的な条件にしなければなら ず、 不経済である。
射出成形後のァセトアルデヒド含有量 (At) と射出成形前のァセトアルデヒ ド含有量(A。) との差(At— AQ)が 20 p pm以下のポリエステル組成物は、 ァセトアルデヒド含有量が 5 p pm以下の熱可塑性ポリエステルか、 あるいはァ セトアルデヒド含有量が 10 p pm以下で、 かつ残存する重縮合触媒を失活処理 した熱可塑性ポリエステルを構成成分として用いることによって得ることができ る。
また、 前記の差 (At— AQ) が 20 p pm以下のポリエステル組成物は、 ァセ' トアルデヒド含有量が 10 p pm以下の熱可塑性ポリエステルと部分芳香族ポリ アミドとからなるポリエステル組成物を水や水蒸気または水蒸気含有気体と接触 処理することによつても得ることが出来る。
本発明のポリエステル組成物中のァセトアルデヒド含有量は 2 O ppm以下、 好ましくは 1 5 p pm以下、 さらに好ましくは 10 p pm以下である。 本発明の ポリエステル組成物中のァセトアルデヒド含有量が 20 p pmを超える場合には、 ポリエステル組成物の香味保持性が悪くなる。 また、 ポリエステル組成物中のァ セトアルデヒド含有量の下限値は 3 p pmであり、 これ以下に低減するには採算 を度外視した成形となり問題である。
本発明のポリエステル組成物は、 これを 29 Ot:で 30分間溶融処理した時の ァセトアルデヒド含有量の増加量(ΔΑΑ) (ppm) が、 好ましくは 2 O ppm 以下、より好ましくは 15 p pm以下、さらに好ましくは 13 p pm以下である。 溶融処理した時のァセトアルデヒド含有量の増加量(ΔΑΑ) (ppm)が 20 p pmを超える場合は、 使用済み後の PETボトルなどのリサイクル回収品を一部 用いてポリエステル組成物を成形する際、 得られたポリエステル組成物の A A含 有量を目的の値に低下させることが非常に困難となったり、 またバージン PET 樹脂へのリサイクル回収品の混合比率を極端に低下させなければならなくなる。 また、 本発明中のポリエステル組成物中のホルムアルデヒド (以下、 FAと略 することがある) 含有量は好ましくは 3 p pm以下、 より好ましくは 2 ppm以 下、 さらに好ましくは 1 p pm以下である。 本発明のポリエステル組成物中のホ ルムアルデヒド含有量が 3 p pmを超える場合には、 ポリエステル組成物の香味 保持性が悪くなる。
本発明のポリエステル組成物はポリエステル由来の環状 3量体含有量が好まし くは 0. 7重量%以下、 より好ましくは 0. 5重量%以下である。
ポリエステル組成物中の熱可塑性ポリエステル由来の環状エステル 3量体の含 有量を 0. 7重量%以下に維持するためには、 ポリエステル組成物中の前記環状 エステル 3量体の含有量は、好ましくは 0. 50重量%以下、より好ましくは 0. 45重量%以下、さらに好ましくは 0.40重量%以下であることが必要である。 ポリエステル組成物が耐熱性中空成形体の場合には、 成形に用いるポリエステル 組成物中の環状エステル 3量体の含有量が 0. 70重量%を超える場合には、 加 熱金型表面への環状エステル 3量体等のボリエステル由来のオリゴマ—付着が経 時的に増加し、 金型清浄化のための掃除に多大な労力がかると同時に成形中断に よる経済的な損失をこうむることになる。 下限値は 0. 10重量%でぁり、 これ 以下に低減するには採算を度外視したポリエステルの製造条件を採用せねばなら ず、 問題である。
また、 本発明のポリエステル組成物は 290°Cの温度で 30分間溶融処理した 時の環状エステル 3量体の増加量(ACT^)が好ましくは 0. 40重量%以下、 より好ましくは 0. 3重量%以下である。
ポリエステル組成物を 290°Cで 30分間溶融処理した時の前記環状エステル 3量体の増加量(ACT2) を 0. 40重量%以下に維持するためには、 290で の温度で 30分間溶融処理した時の環状エステル 3量体の増加量 (ACT\) が 0. 40重量%以下、 好ましくは 0. 35重量%以下、 さらに好ましくは 0. 3 0重量%以下の熱可塑性ポリエステルを用いることが必要である。 290°Cの温 度で 30分間溶融処理した時の環状エステル 3量体の増加量 (ACT\) が 0. 40重量%を越える熱可塑性ポリエステルを用いると、 ポリエステル組成物を成 形する際の樹脂溶融時に環状エステル 3量体量が増加し、 加熱処理条件によって は加熱金型表面へのオリゴマー付着が急激に増加し、 得られた中空成形体等の透 明性が非常に悪化する。
290 の温度で 30分間溶融処理した時の環状エステル 3量体の増加量 (△ CTX) が 0. 40重量%以下である熱可塑性ポリエステルは、 溶融重縮合後や 固相重合^:.に得られた熱可塑性ポリエステルに残存する重縮合触媒を失活処理す ることにより製造することができる。 熱可塑性ポリエステル中の重縮合触媒を失 活処理する方法としては、 前記したと同じ方法を用いることができる。
なお、 熱可塑性ポリエステルが PETの場合は、 環状エステル 3量体とは、 テ レフタル酸とエチレングリコ一ルとから構成される環状 3量体のことである。 本発明のポリエステル組成物中の熱可塑性ポリエステル由来の環状エステル 3量 体の含有量は、 好ましくは 0. 50重量%以下、 より好ましくは 0. 45重量% 以下、 さらに好ましくは 0. 40重量%以下であることが好ましい。 ポリエステ ル組成物中の熱可塑性ポリエステル由来の環状エステル 3量体の含有量が 0. 5 0重量%を超える場合には、 加熱金型表面へのオリゴマー付着が急激に増加し、 これが原因で得られた中空成形体の透明性が非常に悪化するとともに、 香味保持 性も悪くなり問題である。
本発明のポリエステル組成物中のメタキシリレン基含有環状アミド 1量体の含 有量は 0. 3重量%以下、好ましくは 0. 28重量%以下、 さらに好ましくは 0. 25重量%以下であることが好ましい。 ポリエステル組成物中の前記環状アミド 1量体の含有量が 0. 3重量%を超える場合には、 ポリエステル成形体に充填さ れた内容物の香味保持性が悪くなり問題である。
これを達成するためには、 本発明のポリエステル組成物中のメタキシリレン基 含有環状アミド 1量体の含有量が 0. 3重量%以下、 好ましくは 0. 28重量% 以下、 さらに好ましくは 0. 25重量%以下であることが好ましい。
ポリエステル組成物中の環状アミド 1量体の含有量が 0. 3重量%を超える場 合には、 耐熱性が向上したポリエステル組成物成形時の金型内面や金型のガスの 排気口、 排気管に異物が付着するために生じる金型汚れが非常に激しくなる。 前記ポリエステル組成物中または前記ポリエステル組成物中の、 前記環状アミド 1量体の含有量の下限は、 経済的な理由などから、 0. O O l p pmであること が好ましい。 環状アミド 1量体は下記に記載する高速液体クロマトグラフ法によ つて測定することができる。
本発明のポリエステル組成物やポリエステル組成物中の環状アミド 1量体の含 有量を前記の値に調整する方法は、 特に制限はなく、 例えば下記のようにして製 造することができる。 すなわち、 熱可塑性ポリエステルに対する部分芳香族ポリ アミドの配合量に応じて、 前記ポリエステル組成物中やポリエステル組成物中の 環状アミド 1量体の含有量が本発明の請求範囲の値を満足するように、 環状アミ ド 1量体含有量を減少させた部分芳香族ポリアミドを用いることによつて達成す ることができる。 また、 部分芳香族ポリアミドを含むポリエステル組成物、 ある いは前記ポリエステル組成物から得られたポリエステル組成物を水や有機溶剤な どによって、前記の環状体を抽出除去することによつても達成することができる。 前記環状アミド 1量体含有量の少ない部分芳香族ポリアミドを製造する方法も何 ら制限はなく、 水や有機溶剤による抽出、 重縮合条件の変更、 減圧加熱処理およ びこれらの方法を組合わせた方法等を挙げることができる
本発明のポリエステル組成物の極限粘度は、 好ましくは 0 . 5 5〜1 . 0 0デ シリットル/グラム、より好ましくは 0 . 5 8〜0 . 9 5デシリットル Zグラム、 さらに好ましくは 0 . 6 0〜0 . 9 0デシリットル/グラムの範囲である。
さらに、 本発明のポリエステル組成物は、 熱可塑性ポリエステル 1 0 0重量部 と、 部分芳香族ポリアミド 0 . 0 1〜1 0 0重量部、 アミノ基含有化合物 5 X 1 0一4〜 1重量部とからなることを特徴とするポリエステル組成物であつても良 い。
アミノ基含有化合物の例としては、 1, 8—ジァミノナフタレート、 3 , 4— ジァミノ安息香酸、 2—ァミノべンズアミド、 ピウレット、 マロンアミド、 サリ シルアミド、 サリシルァニリド、 o _フエ二レンジァミン、 o—メルカプトベン ズアミド、 N—ァセチルダリシンアミド、 3 _メルカプト一 1, 2—プロパンジ オール、 4ーァミノ— 3—ヒドロキシ安息香酸、 4 , 5—ジヒドロキシ— 2 , 7 一ナフタレンジスルホン酸ニナ卜リゥム塩、 2 , 3—ジァミノピリジン、 2 - 7 ミノべンズスルホアミド、 2—アミノー 2—メチルー 1 , 3—プロパンジオール、 4, 4, —ジアミノジフエニルメタン、 4, 4, ージアミノジフエニルエーテル、 4 , 4, 一ジアミノジフエニルスルホン、 2, 2—ビス(4—ァミノフエ二ル)プ 口パン、 メラミン、 ベンゾクアナミン、 プロピオグアナミン、 ステアロヅァナミ ン、 スピログアナミン、 ステアリルァミン、 ラウロイルァミン、 エイコシルアミ ン、 スピロアセタールジァミン、 ポリオキシエチレンジァミン、 アミノ基末端ポ リエーテル、 例えばァミノェチルエーテル化乃至ァミノプロピルエーテル化ポリ エチレングリコ一ル及びノ又はポリプロピレングリコール、 ァミノ末端ポリエス テル、 例えばァミノェチルエーテル化乃至ァミノプロピルエーテル化ポリェチレ ンアジペート又はセバゲート、 ァミノ末端ポリウレタン、 ァミノ末端ポリ尿素、 アミノ基含有アクリル樹脂、 例えば、 2—アミノエチルァクリレート、 2—アミ ノエチルメタクリレート、 3 _アミノエチルァクリレート、 3—アミノエチルメ タクリレー卜、 N— ( 2—アミノエチル) アミノエチルメ夕クリレート、 N— ( 2 —アミノエチル) ァミノプロピルメタクリレートなどのアミノ基含有ァクリレ一 ト又はメタクリレートとメチルメタクリレート、 ェチルァクリレート、 スチレン 等との共重合体、 アミノ基変性ォレフィン樹脂、 例えばアミノ基含有ァクリレー 卜又はメタクリレートでグラフト変性したボリエチレン、 ポリプロピレン、 エヂ レン—プロピレン共重合体、 アミノ基含有オルガノポリシロキサン、 例えば 3— メチルフエニルシロキサンなどの単位を含むオルガノポリシロキサン、 第一級ァ ミノ基含有メラミン樹脂、 第一級ァミノ基含有グアナミン樹脂、 第一級ァミノ基 含有アルキド樹脂、 例えばァミノアルコール変性アルキド樹脂、 ァグマチン、 ァ ルカイン、 才クトパミン、 D—ォクトピン、 カダベリン、 シス夕ミン、 システア ミン、 スべルミジン、 チラミン、 スベルミン、 卜リブ夕ミン、 ノルァドレナリン、 ヒスタミン、 ビチアミン、 ヒドロキシチラミン、 5—ヒドロキシトリブ夕ミン、 ピポタウリン、 ァゼセリン、 L—ァスパラギン、 Lーァスパラギン酸、 L _ a— ァミノ酪酸、 L アルギニン、 L—ァロイソロイシン、 L—ァロトレオニン、 L. 一イソロイシン、 L—ェチォニン、 L—オル二チン、 L一力ナバニン、 L一カル ボキシメチルシスティン、 L—キヌレニン、 グリシン、 L—グルタミン、 L—グ ル夕ミン酸、 クレアチン、 L—シスタチォニン、 L—システィン、 L—システィ ン酸、 L—シスチン、 L—シトルリン、 3 , 4—ジヒドロキシフエ二ルァラニン、 L - 3 , 5—ジョ一ドチロシン、 Lーセリン、 L一チロキシン、 L—チロシン、 L -トリプトファン、 L一卜レオニン、 ノルバリン、 ノルロイシン、 L一バリン、 L—ヒスチジン、 L—ヒドロキシプロリン、 L—ヒドロキシリシン、 L一フエ二 ルァラニン、 L一《—フエニルダリシン、 L—ホモセリン、 L一メチォニン、 L 一 1—メチルヒスチジン、 L一ランチォニン、 L一リシン、 L一口イシン、 ァク チノマイシン C 1 ;- ァパミン、 エレドイシン、 才キシトシン、 ガス卜リン H、 L 一力ルノシン、 L一ダル夕チオン、 L - rーグル夕ミル一 L _システィン、 L - システィニルダリシン、 バソプレツシン、 α—メラノトロピン、 インシュリン、 a—キモトリプシン、 グルカゴン、 クルペイン、 コルチコトロピン、 サチライシ ン、 セクレチン、 シトクロム C、 チロカルシトニン、 トリプシン、 パパイン、 ヒ ストン、 フェレドキシン、 プロインシュリン、 ペプシン、 ヘモグロビン、 ミオグ ロビン、 ラクトアルブミン、 リゾチームが挙げられる。
ポリエステルおよび部分芳香族ポリアミドとしては前述のものを用いることが でき、 ポリエステル組成物としてもァミノ基含有化合物が添加されている以外は 前述のものが好ましい。 .
アミノ基含有化合物の混合量は、 ポリエステル 1 0 0重量部に対して 5 X 1 0 一3以上であることが好ましく、 さらには 1 X 1 0一2以上であることが好ましい。
5 X 1 0— 4重量部未満の場合、 得られた成形体の AA含有量が低減されず、 成 形体内容物の香味保持性が非常に悪くなることがある。 また、 1重量鄣を超える 場合は、 得られた成形体がアミノ基含有化合物特有の色に着色され、 実用性に乏 しいことがある。
発明のポリエステル組成物には、 必要に応じて他の添加剤、 例えば、 公知の紫 外線吸収剤、 酸化防止剤、 酸素吸収剤、 酸素捕獲剤、 外部より添加する滑剤や反 応中に内部析出させた滑剤、 離型剤、 核剤、 安定剤、 帯電防止剤、 染料や顔料な どの各種の添加剤を配合してもよい。 また、 紫外線遮断性樹脂、 耐熱性樹脂、 使 用済みポリエチレンテレフタレートボトルからの回収品等を適当な割合で混合す ることも可能である。
また、 本発明のポリエステル組成物がフィルムの場合には、 滑り性、 巻き性、 耐プロッキング性などのハンドリング性を改善するために、 ポリエステル組成物 中に炭酸カルシウム、 炭酸マグネシウム、 炭酸バリウム、 硫酸カルシウム、 硫酸 バリウム、 リン酸リチウム、 リン酸カルシウム、 リン酸マグネシウム等の無機粒 子、 蓚酸カルシウムやカルシウム、 バリウム、 亜鉛、 マンガン、 マグネシウム等 のテレフタル酸塩等の有機塩粒子ゃジビニルベンゼン、 スチレン、 アクリル酸、 メタクリル酸、 アクリル酸またはメタクリル酸のビニル系モノマーの単独または 共重合体等の架橋高分子粒子などの不活性粒子を配合させることが出来る。 また、 結晶化を促進させ、 2軸延伸ブロー成形ボトルにする際のロ栓部結晶化 速度促進し、 安定させるためポリエステル組成物にはポリオレフイン、 部分芳香 族ポリアミド以外のポリアミド、 ポリオキシメチレン、 ポリブチレンテレフタレ 一ト等を 0 . 1 p p b〜l 0 0 0 p p m含有させても良い。 これら樹脂の含有量 の下限は好ましくは 0 . 5 p p b、 より好ましくは 1 p p bであり、 上限は好ま しくは 1 0 0 p p m、 さらに好ましくは 1 p p m、 特に好ましくは 1 0 0 p p b である。
これらの添加方法としては特開 2 0 0 2— 2 4 9 5 7 3等に詳細が記載されて おり、 本出願にはこの内容を組み込み、 参照することが出来る。
本発明のポリエステル組成物は、 公知の製造方法によって得ることができる。 以下には、 代表例として、 熱可塑性ポリエステルがボリエチレンテレフタレー 卜 (P E T) の場合、 種々のポリエステル組成物の簡単な製法を説明する。 本発明のポリエステル組成物は、 従来公知の方法により前記の熱可塑性ポリェ ステルと前記のポリアミドを混合して得ることができる。 例えば、 前記のポリア ミドチップと前記の熱可塑性ポリエステルチップとをタンブラ一、 V型プレンダ 一、 ヘンシェルミキサー等でドライブレンドしたもの、 さらにドライブレンドし た混合物を一軸押出機、 二軸押出機、 ニーダ一等で 1回以上溶融混合したもの、 さらには必要に応じて溶融混合物を高真空下または不活性ガス雰囲気下で固相重 合したものなどが挙げられる。 .
さらに、 前記ポリアミドを粉砕して用いてもよい。 特に前記ポリアミドを少量 用いる組成物の場合は好都合である。 粉砕した場合の粒径は約 1 0メッシュ以下 が好ましい。 また前記ポリアミドをへキサフロロイソプロパノールなどの溶剤に 溶解させた溶液を熱可塑性ポリエステルのチップの表面に付着させる方法、 前記 ポリアミド製の部材が存在する空間内で、 前記熱可塑性ポリエステルを前記部材 に衝突接触させて前記熱可塑性ボリエステルチップ表面に前記ポリアミドを付着 させる方法などが挙げられる。
本発明のポリエステル組成物がシート状物である場合は、 例えば、 押出機とダ ィを備えた一般的なシ一ト成形機を用いて製造することができる。
またこのシート状物は、 圧空成形、 真空成形にょリカップ状ゃトレイ状に成形 することもできる。 また、 本発明のポリエステル組成物は、 電子レンジおよび / またはオーブンレンジ等で食品を調理したり、 あるいは冷凍食品を加熱するため のトレイ状容器の用途にも用いることができる。 この場合は、 シート状物をトレ ィ形状に成形後、 熱結晶化させて耐熱性を向上させる。
本発明のポリエステル組成物が延伸フィルムである場合は、 射出成形もしくは 押出成形して得られたシート状物を、 通常 P E Tの延伸に用いられる一軸延伸、 逐次二軸延伸、 同時二軸延伸のうちの任意の延伸方法を用いて成形される。 延伸フィルムを製造するに当たっては、 延伸温度は通常は 8 0〜1 3 0 °Cであ る。 延伸は一軸でも二軸でもよいが、 好ましくはフィルム実用物性の点から二軸 延伸である。延伸倍率は一軸の場合であれば通常 1 . 1〜1 0倍、好ましくは 1 .
5〜 8倍の範囲で行い、 二軸延伸であれば縦方向および横方向ともそれぞれ通常 1 . :!〜 8倍、 好ましくは 1 . 5〜 5倍の範囲で行えばよい。 また、 縦方向倍率 Z横方向倍率は通常 0 . 5〜2、 好ましくは 0 . 7〜1 . 3である。 得られた延 伸フィルムは、さらに熱固定して、耐熱性、機械的強度を改善することもできる。 熱固定は通常緊張下、 1 2 0 °C〜 2 4 0、 好ましくは 1 5 0〜 2 3 0 °Cで、 通常 数秒〜数時間、 好ましくは数十秒〜数分間行われる。
中空成形体を製造するにあたっては、 本発明の P E T組成物から成形したプリ フォームを延伸ブロー成形してなるもので、 従来 P E Tのプロ一成形で用いられ ている装置を用いることができる。 具体的には例えば、 射出成形または押出成形 で一旦プリフォームを成形し、 そのままあるいはロ栓部、 底部を加工後、 それを 再加熱し、 ホットパリソン法あるいはコールドパリソン法などの二軸延伸ブロー 成形法が適用される。 この場合の成形温度、 具体的には成形機のシリンダー各部 およびノズルの温度は通常 2 6 0〜3 1 0 °Cの範囲である。 延伸温度ば通常 7 0 〜1 2 0 °C、好ましくは 9 0〜1 1 0 °Cで、延伸倍率は通常縦方向に 1 . 5〜3 . 5倍、 円周方向に 2〜5倍の範囲で行えばよい。 得られた中空成形体は、 そのま ま使用できるが、 特に果汁飲料、 ウーロン茶などのように熱充填を必要とする飲 料の場合には一般的に、 さらにプロ一金型内で熱固定処理を行い、 耐熱性を付与 して使用される。 熱固定は通常、 圧空などによる緊張下、 1 0 0〜2 0 0 °C、 好 ましくは 1 2 0〜1 8 0 °Cで、数秒〜数時間、好ましくは数秒〜数分間行われる。 また、 ロ栓部に耐熱性を付与するために、 射出成形または押出成形により得ら れたプリフォームの口栓部を遠赤外線や近赤外線ヒー夕設置オーブン内で結晶化 させたり、 あるいはポ卜ル成形後に口栓部を前記のヒー夕で結晶化させる。 また、 本発明のポリエステル組成物は、 積層成形体や積層フィルム等の一構成 層であることができる。 特に、 P E Tとの積層体の形で容器等に使用される。 積 層成形体の例としては、 本発明のポリエステル組成物からなる外層と P E T内層 との二層から構成される二層構造あるいは本発明のポリエステル組成物からなる 内層と P E T外層との二層から構成される二層構造の成形体、 本発明のポリエス テル組成物を含む中間層と P E Tの外層および最内層から構成される三層構造あ るいは本発明のポリエステル組成物を含む外層および最内層と P E Tの中間層か ら構成される三層構造の成形体、 本発明のポリエステル組成物を含む中間層と P E Tの最内層、 中心層および最内層から構成される五層構造の成形体等が挙げら れる。 P E T層には、他のガスバリアー性樹脂、紫外線遮断性樹脂、耐熱性樹脂、 使用済みポリエチレンテレフタレートポトルからの回収品等を適当な割合で混合 使用することができる。
また、 その他の積層成形体の例としては、 ポリオレフイン等の熱可塑性ポリエ ステル以外の樹脂との積層成形体、 紙や金属板等の異種の基材との積層成形体が 挙げられる。
前記の積層成形体の厚み及び各層の厚みには特に制限は無い。 また前記の積層 成形体は、 シート状物、 フィルム状物、 板状物、 中空体、 容器等、 種々の形状で 使用可能である。
前記の積層体の製造は、 樹脂層の種類に対応した数の押出機と多層多種ダイス を使用して共押出しにより行うこともできるし、 また樹脂層の種類に対応した数 の射出機と共射出ランナーおよび射出型を使用して共射出により行うこともでき る。
本発明のポリエステル組成物は、 ラミネート金属板の片面あるいは両面にラミ ネートするフィルムであることができる。 用いられる金属板としては、 ブリキ、 ティンフリースチール、 アルミニウム等が挙げられる。
ラミネート法としては、 従来公知の方法が適用でき、 特に限定されないが、 有 機溶剤フリ一が達成でき、 残留溶剤による食料品の味や臭いに対する悪影響が回 避できるサ一マルラミネート法で行うことが好ましい。 なかでも、 金属板の通電 加工によるサーマルラミネート法が特に推奨される。 また、 両面ラミネートの場 合は、 同時にラミネートしてもよいし、 逐次でラミネートしてもよい。
なお、 接着剤を用いてフィルムを金属板にラミネートできることはいうまでも ない。
また、 金属容器は、 前記ラミネート金属板を用いて成形することによって得ら れる。 前記金属容器の成形方法は特に限定されるものではない。 また、 金属容器 の形状も特に限定されるものではないが、 絞り成型、 絞りしごき成型、 ストレツ チドロー成型等の成型加工により製缶されるいわゆる 2ピース缶への適用が好ま しいが、 例えばレトルト食品やコーヒー飲料等の食料品を充填するのに好適な天 地蓋を巻締めて内容物を充填する、 いわゆる 3ピース缶へも適用可能である。 なお、 本発明における、 主な特性値の測定法を以下に説明する。 発明を実施するための最良の形態
以下本発明を実施例により具体的に説明するが、 本発明はこれらの実施例に限 定させるものではない。 なお、 本明細書中における主な特性値の測定法を以下に 説明する。
(評価方法)
( 1 ) 極限粘度 (I V)
1 , 1, 2 , 2ーテトラクロルエタン フエノール ( 2 : 3重量比) 混合溶媒 中 3 0ででの溶液粘度から求めた。 (単位はデシリットル/グラム)
( 2 ) ポリエステル中に共重合されたジエチレングリコール含有量 (以下 [D E G含有量」 という) メタノールにより分解し、 ガスクロマトグラフィーにより DEG量を定量し、 全グリコール成分に対する割合 (モル%) で表した。
(3) 環状エステル 3量体の含有量 (以下 「CT含有量」 という) (重量%) 試料 30 Omgをへキサフルォロイソプロパノール クロロフオルム混合液 (容量比 =2/ 3) 3mlに溶解し、 さらにクロロフオルム 30 m 1を加えて希 釈する。これにメタノール 15 m 1を加えてポリマーを沈殿させた後、濾過する。 濾液を蒸発乾固し、 ジメチルフオルムアミド 1 Om 1で定容とし、 高速液体クロ マトグラフ法により環状エステル 3量体を定量した。
(4) ァセトアルデヒド含有量 (以下 「AA含有量」 という) (p pm) 試料/蒸留水 =1グラム /2 c cを窒素置換したガラスアンプルに入れたあと、 窒素シール下にアンプル上部を溶封し、 16 O :で 2時間抽出処理を行い、 冷却 後抽出液中のァセトアルデヒドを高感度ガスクロマトグラフィーで測定し、 濃度 を p pmで表示し 7こ。
(5) ホルムアルデヒド含有量 (以下 「FA含有量」 という) (p pm) 試料/蒸留水 = 6グラム Z 12 c cを窒素置換したガラスアンプルに入れた後、 窒素シール下にアンプル上部を溶封し、 160°Cで 2時間抽出処理を行い、 冷却 した。 その後、 抽出液中のホルムアルデヒドをジニトロフエニルヒドラジンで誘 導体化し、 高速液体クロマトグラフィーで測定した。 濃度は p pmで表示した。
(6) 射出成形前後のァセトアルデヒド含有量の差 (以下 「At_A。」 という) p pm)
下記 (17) に記載した方法で段付き成形板を射出成形し、 2mm厚みのプレ —ト (図 1の A咅 |5) より試料を採取し、 (4) の測定方法によってァセトアルデヒ ド含有量 (At) を求め、 下記の式より射出成形前後のァセトアルデヒド含有量 の差を求める。
射出成形前後のァセトアルデヒド含有量の差 (At— A。) (ppm) =
射出成形後の段付成形板のァセトアルデヒド含有量 (At) (ppm) 一射 出成形前の乾燥したポリエステル組成物のァセトアルデヒド含有量 (A。) (P P m)
(7) ポリエステル組成物の溶融処理時のァセトアルデヒド含有量の増加量 (以 下 「ΔΑΑ」 という) (ρ pm)
ポリエステル組成物より約 1〜 3mm角の試料 3 gを採取し、 これをガラス製 試験管に入れて約 50〜70°Cで真空乾燥したあと常圧窒素雰囲気下で 290°C のオイルバスに 30分浸漬させて溶融処理する。 溶融処理時のァセトアルデヒド 含有量の増加量は、 次式により求める。
融処理時のァセトアルデヒド含有量の増加量 (p pm) =
溶融処理後のァセトアルデヒド含有量 (p pm) —溶融処理前の乾燥後の ァセトアルデヒド含有量 (p pm)
(8) ポリエステルの溶融処理時の環状エステル 3量体増加量 (以下 「ACT\ 量」 という) (重量%)およびポリエステル組成物の溶融処理時の環状エステル 3 量体増加量 (以下 「ACT2量」 という) (重量%)
乾燥したポリエステルチップあるいはポリエステル組成物、 3 gをガラス製試 験管に入れ、 常圧窒素雰囲気下で 290°Cのオイルバスに 30分浸漬させ溶融処 理する。 ポリエステル組成物は約 1〜 3mm角の大きさにカツトして測定に供す る。
ポリエステル溶融処理時の環状エステル 3量体増加量 (ACT\量) およびポ リエステル組成物の溶融処理時の環状エステル 3量体増加量 (ACT2量) は、 次式により求める。
溶融処理時の環状エステル 3量体増加量 (重量%) =
溶融処理後の環状エステル 3量体含有量 (重量%) - 溶融処理前の環 状エステル 3量体含有量 (重量%)
(9) メタキシリレン基含有ポリアミドおよびポリエステル包装材料の環状ァミ ド 1量体含有量 (以下 「CM含有量」 という) (重量%)
試料 1 0 Omgをへキサフルォロイソプロパノール Zクロロフォルム混合液 (容量比 =2/3) 3mlに溶解し、 さらにクロロフオルム 2 Om 1を加えて希 釈し、 メタノール 1 Om 1を加える。 これをエバポレー夕により濃縮し、 ジメチ ルフオルムアミド 2 Om 1に再溶解する。 遠心濾過後、 高速液体クロマトグラフ 法により定量した。
(10) メタキシリレン基含有ポリアミドの相対粘度 (以下 「: v」 という) 試料 0. 25 gを 96 %硫酸 25m 1に溶解し、 この溶液 10 m 1をォストヮ ルド粘度管にて 2 Otで測定、 下式より求めた。
R v= t / t 0
t。 :溶媒の落下秒数
t :試料溶液の落下秒数
(11) メタキシリレン基含有ボリアミド、 ポリエステル組成物およびポリエス テル組成物のナトリウム原子含有量 (以下 「Na含有量」 という)
試料を白金るつぼにて灰化分解し、 6 mo 1ZL塩酸を加えて蒸発乾固する。 1. 2mo 1 ZL塩酸で溶解し、 原子吸光で定量して求めた。
(12) リン原子含有量(p pm) (以下、 ポリエステル組成物中のリン原子含有 量を 「X」、 ポリエステル包装材料のリン原子含有量を 「Y」 という)
試料を炭酸ソ一ダ共存下において乾式灰化分解するか、 硫酸 ·硝酸 ·過塩素酸 系または硫酸 ·過酸化水素水系において湿式分解し、 リンを正リン酸とする。 つ いで、 lmol/L 硫酸溶液中においてモリブデン酸塩を反応させてリンモリブデン 酸とし、 これを硫酸ヒドラジンで還元して生ずるヘテロポリ青の 830 nmの吸 光度を吸光光度計 (島津 UV-150-02) で測定して、 比色定量する。
(13) ポリエステル中の残存アンチモン原子の定量 (p pm)
ポリエステルチップを 300 で溶融処理した後、 蛍光 X線法で定量した。
(14) ファインの含有量の測定
樹脂約 0. 5 kgを、 J I S— Z 8801による呼び寸法 1. 7 mmの金網を はった篩 (直径 30 cm) の上に乗せ、 テラ才力社製揺動型篩い振トウ機 SNF — 7で 1800 r pmで 1分間篩った。 この操作を繰り返し、 樹脂を合計 2 O k g篩った。
篩の下にふるい落とされたファインは、 イオン交換水で洗浄し岩城硝子社製 G 1ガラスフィルターで濾過して集めた。 これらをガラスフィルターごと乾燥器内 で 100°Cで 2時間乾燥後、 冷却して秤量した。 再度、 イオン交換水で洗浄、 乾 燥の同一操作を繰り返し、 恒量になったことを確認し、 この重量からガラスフィ ルターの重量を引き、 ファイン重量を求めた。 ファイン含有量は、 ファイン重量 /篩いにかけた全樹脂重量、 である。 (15) 金型汚れの評価
窒素ガスを用いた乾燥機で乾燥した熱可塑性ポリエステルチップの所定量およ び窒素ガスを用いた乾燥機で乾燥したメタキシリレン基含有ポリアミドチップの 所定量をドライブレンドし、 これを用いて名機製作所製 M— 150 C (DM) 射 出成型機により樹脂温度 285°Cでプリフォームを成形した。 このプリフォーム の口栓部を自家製のロ栓部結晶化装置で加熱結晶化させた後、 コーポプラスト社 製 LB—O 1 E延伸ブロー成型機を用いて二軸延伸ブロー成形し、 引き続き約 1 45°Cに設定した金型内で熱固定し、 1000 c cの中空成形体を得た。 同様の 条件で 2000本の中空成形体を連続的に延伸ブロー成形し、 その前後における 金型表面の状態を目視で観察し、 下記のように評価した。
◎ : 連続成形試験の前後において変化なし
〇 : 連続成形試験後にわずかに付着物あり
△ : 連続成形試験後にかなり付着物あり
X : 連続成形試験後に付着物が非常に多い
【000 1】
(16) 色調 (Co l o r _L値)
下記 (17) の成形体 (肉厚 2mm) より試料を切り取り、 東京電色 (株) 製 色差計 TC— 1 500MC- 88型を用いて測定した。 Co l o r— L値は測定 値が 100に近いほど白色、 0に近づくほど灰色から黒を示す。 また、 測定の際 は、 予め装置を電源投入後 1時間以上放置して十分安定させて行った。
(17) 段付成形板の成形
段付成形板の成形においては、 減庄乾燥機を用いて 14 Ot:で 16時間程度減 圧乾燥したポリエステルおよびメタキシリレン基含有ポリアミドのチップを名機 製作所製射出成形機 M— 150 C-DM型射出成形機により図 1、 図 2に示すよ うにゲ一ト部 (G) を有する、 2mm〜l 1mm (八部の厚み=2111111、 B部の 厚み =3mm、 C部の厚み =4mm、 D部の厚み =5mm、 E部の厚み =10m m、 F部の厚み =1 lmm) の厚さの段付成形板を射出成形した。
ャマト科学製真空乾燥器 DP 61型を用いて予め減圧乾燥したポリエステルお よびメタキシリレン基含有ポリアミドのチップを用い、 成形中にチップの吸湿を 防止するために、 成形材料ホッパー内は乾燥不活性ガス (窒素ガス) パージを行 つた。 M— 150 C— DM射出成形機による可塑化条件としては、 フィードスク リュウ回転数 =70%、 スクリュウ回転数 = 120rpm、 背圧 5MPa、 シリ ンダー温度はホッパー直下から順に 45°C、 250°C、以降ノズルを含め 290°C に設定した。 射出条件は射出速度及び保圧速度は 20%、 また成形品重量が 14 6±0. 2 gになるように射出圧力及び保圧を調整し、 その際保圧は射出圧力に 対して 0. 5MPa低く調整した。
射出時間、保圧時間はそれぞれ上限を 10秒、 7秒,冷却時間は 50秒に設定し、 成形品取出時間も含めた全体のサイクルタイムは概ね 75秒程度である。
金型には常時、 水温 1 o°cの冷却水を導入し温調するが、 成形安定時の金型表面 温度は 22 °C前後である。
成形品特性評価用のテストプレートは、 成形材料導入し樹脂置換を行った後、 成形開始から 1 1〜18ショット目の安定した成形品の中から任意に選ぶものと した。
2 mm厚みのプレート (図 1の A部) は昇温時の結晶化温度 (Te l) 測定、
5mm厚みのプレート (図 1の D部) はヘイズ (霞度%) 測定、 に使用する。
(18) 中空成形体の透明性
a) 非耐熱中空成形体:実施例 1において記載した方法で成形した中空成形体 の外観を目視で観察し、 下記の評価基準によって評価した。
b)耐熱中空成形体:(15)の成形後に得られた中空成形体の外観を目視で観察 し、 下記の評価基準によって評価した。 短期透明性は 10本成形後、 連続成形透 明性は 2000本後で評価した。
(評価基準)
◎ : 透明である
〇 : 実用的な範囲で透明であり、 未溶融物等の異物は見られない
△ : 実用的な範囲で透明であるが、 未溶融物等の異物が認められる。 X : 透明性に劣る、 着色が認められる、 又は未溶融物が見られる
(19) 官能試験
a) 非耐熱中空成形体:沸騰した蒸留水を 50でに冷却後、 中空成形体に入れ 密栓後 30分保持し、 その後 50°Cで 10日間放置し、 開栓後風味、 臭いなどの 試験を行った。 比較用のブランクとして、 蒸留水を使用。 官能試験は 10人のパ ネラーにより次の基準により実施し、 平均値で比較した。
b)耐熱中空成形体:中空成形体に沸騰した蒸留水を入れ密栓後 30分保持し、 その後 50 で 5日間放置し、 開栓後前記と同様に風味、 臭いなどの試験を行つ た。
(評価基準)
◎ : 異味、 臭いを感じない
〇 : ブランクとの差をわずかに感じる
Δ : ブランクとの差を感じる
X : ブランクとのかなりの差を感じる
X X : ブランクとの非常に大きな差を感じる
(20) 酸素透過量 (c cZ容器 1本 · 241ir · atm)
Modern Controls社製酸素透過量測定器 OX— TRAN 100により、 100 0 c cのボトル 1本当りの透過量として 20°C、 0%RHで測定した。
(21) 中空成形体の黄変度
(15) の 3000本成形後に得られた中空成形体の外観を目視で観察し、 下 記のように評価した。
◎ : 着色は見られない。
〇 : 着色が見られるが、 実用的な範囲である。
X : 着色がひどく、 実用性に乏しい。 中空成形体の評価試験に用いた PET (1 A) 〜 (1 E)、 (2 A) 〜 (2E) の 特性を表 1に示す。 これらの PETは、 Ge系触媒を用いて連続溶融重縮合一固 相重合装置で重合したものである。 また、 (2A) および (2B) は固相重合後ィ オン交換水中 90でで 5時間処理したものである。 なお、 これらの PETの DE G含有量は約 2. 8モル%であった。
また、 アンチモンを触媒として用いた PET (3A)、 (3 B)、 (3 C) の特性 を表 1に示す。 (D EG含有量はすべて約 2. 7モル%) PET (3A)、 (3 B) は、すべて連続溶融重縮合一固相重合装置で重合したものであり、また PET (3 C) は連続溶融重縮合装置による溶融重縮合 P ETを回分式固相重合装置で I V を上げたものである。
表 1 ポリエステルの特性
Figure imgf000043_0001
(メタキシリレン基含有ポリアミド (Ny— MXD6))
使用した Ny— MXD6 (I F) 〜 (1 1)、 (2 F) 〜 (21)、 (3D)、 (3 E) の特性を表 2に示す。
Ny-MXD 6 (I F) 〜 ( 1 H)、 (2 F) 〜 (2H)、 (3D)、 (3 E) は、 耐圧重縮合釜中でメタキシリレンジァミンとアジピン酸を NaOHや NaH2P 02·Η20の存在下において加圧下および常圧下に加熱して重縮合する回分式方 法により得たものである。 Ny-MXD 6 (1 F) 〜 (1H)、 (2 F) 〜 (2 H) のナトリゥム量としては次亜リン酸ナトリゥムと水酸化ナトリゥムのナトリ ゥム原子の合計量としてリン原子の 3. 0倍モル〜 3. 5倍モルになるようにし た。 なお、 メタキシリレンジァミンとアジピン酸の使用比率および重合条件を変 更することによって特性を変化させた。
Ny-MXD6 (1 I) および (2 I) も、 Ny— MXD6 ( 1 H) と同様の 重合方法により得たものであるがリン原子含有化合物、 およびアルカリ化合物は 添加しなかった。
表 2 ポリアミドの特 I生
Figure imgf000044_0001
(実施例 1 )
PET (1 C) 100重量部に対して Ny_MXD 6 ( 1 G) 2重量部を用い、 これらをそれぞれ評価方法 (15) に記した乾燥方法により乾燥後ドライブレン ドし、 これを用いて名機製作所製 M— 150 C (DM) 射出成型機により樹脂温 度 2.85 でプリフォームを成形した。 このプリフォームをコーポプラスト社製 LB- 01 E延伸ブロー成型機を用いて二軸延伸ブロー成形し、 2000 c cの 非耐熱中空成形体を得た。
得られた中空成形体の特性の評価結果を表 3に示す。 ポリエステル組成物のナトリウム含有量は 2 p pm、 射出成形前後のァセトァ ルデヒド含有量の差 (At— A。) は 8 ppmであり、 中空成形体の AA含有量は 10 p pm、 FA含有量は0. 4ppm、 官能試験評価は 「◎」、 透明性は 「◎」 であり、透明性および香味保持性に非常に優れた中空成形体を得ることができた。
(実施例 2 )
PET (1 C) 100重量部に対して Ny— MXD 6 (I F) 10重量部を用 いて、実施例 1と同様にして 2000 c cの中空成形体を成形し、評価を行った。 得られた中空成形体の特性の評価結果を表 3に示す。
ポリエステル組成物のナトリゥム含有量は 59 p pm、 射出成形前後のァセトァ ルデヒド含有量の差 (At— A。) は 6 ppmであり、 中空成形体の AA含有量は 8 p pm、 含有量は0. 2 p pm、 官能試験評価は 「〇」、 透明性は 「◎」 で あり問題なかった。 また酸素バリヤ一性も改善されている。
(実施例 3 )
PET (1 C) 100重量部に対して Ny— MXD 6 (I F) 30重量部を用 いて、 実施例 1と同様にして中空成形体を成形し、 評価を行った。
得られた中空成形体の特性の価結果を表 3に示す。
ポリエステル組成物のナトリウム含有量は 150 p pm、 射出成形前後のァセト アルデヒド含有量の差 (At— A。) は 5 p pmであり、 中空成形体の AA含有量 は 6 ppm、 FA含有量は0. l ppm、 官能試験評価は 「〇」、 透明性は 「〇」 であり問題なかった。
(比較例 1 )
PET (ID) 100重量部に対して Ny—MXD 6 (I I) 10重量部を用 いて、 実施例 1と同様にして中空成形体を成形し、 評価を行った。
得られた中空成形体の特性の評価結果を表 3に示す。
ポリエステル組成物のナトリウム含有量は 0 p pm、 射出成形前後のァセトアル デヒド含有量の差 (At— A。) は 18 ppmであり、 中空成形体の AA含有量は 22 ppm、 FA含有量は 4. 8 ppm、 透明性は 「X (着色未溶融物が見られ る)」 と悪く、 実用性がないものであった。
(比較例 2) PET (I E) 100重量部に対して Ny— MXD 6 ( 1 H) 30重量部を用 いて、 実施例 1と同様にして中空成形体を成形し、 評価を行った。
得られた中空成形体の特性の評価結果を表 3に示す。
ポリエステル組成物のナトリウム含有量は 346 p pm、 射出成形前後のァセト アルデヒド含有量の差 (At— A。) は 1 l p pmであり、 中空成形体の AA含有 量は 15 ppm、 FA含有量は 4. 2 p pm、 であったが、 透明性は 「X (透明 性に劣る)」、 官能試験評価は 「XX」 と悪く、 実用性がないものであった。
(比較例 3 )
PET (ID) 100重量部を用いて、 実施例 1と同様にして中空成形体を成 形し、 評価を行った。
得られた中空成形体の特性の評価結果を表 3に示す。
(実施例 4)
PET (1 A) 100重量部に対して Ny— MXD 6.(G) 10重量部を用い て、 評価方法 (15) の方法により中空成形体を成形し、 また金型汚れ評価も行 つた。
得られた中空成形体の特性及び金型汚れ評価結果を表 4に示す。
ポリエステル組成物の射出成形前後のァセトアルデヒド含有量の差 (At— A0) は 5 p pmであり、 中空成形体のナトリウム含有量は 1 1 p pm、 中空成形体の A A含有量は 9 ρ ρ m、 ΔΑ A含有量は 10 p p m、 F A含有量は 0. 3 p p m、 環状エステル 3量体含有量は 0. 32重量%、 環状エステル 3量体含有量の増加 量 (ACT2量) は 0. 04重量%、 CM含有量は 530 p pm、 官能試験評価 は 「〇」、 透明性は 「〇」 であり、 また金型付着物は認められなかった。
(実施例 5)
PET (I B) 100重量部に対して Ny— MXD 6 (I F) 20重量部を用 いて、 評価方法 (15) の方法により中空成形体を成形し、 また金型汚れ評価も 行った。
得られた中空成形体の特性及び金型汚れ評価結果を表 4に示す。
ポリエステル組成物の射出成形前後のァセ卜アルデヒド含有量の差 (At— A0) は 5 p pmであり、 中空成形体のナトリウム含有量は 108 ppm、 中空成形体 の AA含有量は 7 ppm、 ΔΑΑ含有量は 10 p pm、 FA含有量は0. l pp m、 環状エステル 3量体含有量は 0. 34重量%、 環状エステル 3量体含有量の 増加量 (ACT2量) は 0. 09重量%、 CM含有量は 1 100 p pm、 官能試 験評価は 「〇」、 透明性は 「〇」 であり、 また金型付着物は認められなかった。
(実施例 6 )
PET (A) 100重量部に対して Ny— MXD 6 (I F) 30重量部を用い て、 評価方法 (15) の方法により中空成形体を成形し、 また金型汚れ評価も行 つた。 得られた中空成形体の特性及び金型汚れ評価結果を表 4に示す。
ポリエステル組成物の射出成形前後のァセトアルデヒド含有量の差 (At— A0) は 4ppmであり、 中空成形体のナトリウム含有量は 150 ppm、 中空成形体 の A A含有量は 5 p p m、△ A A含有量は 8.p p m、 F A含有量は 0. 1 p p m、 環状エステル 3量体含有量は 0. 31重量%、 環状エステル 3量体含有量の増加 量 (ACT2量) は 0. 05重量%、 CM含有量は 1400 p pm、 官能試験評 価は 「〇」、 透明性は 「〇」 であり、 また金型付着物は認められなかった。
(比較例 4)
PET (ID) 100重量部に対して Ny— MXD 6 (I I) 0. 05重量部 を用いて、 評価方法 (15) の方法により中空成形体を成形し、 また金型汚れ評 価ち打つた。
得られた中空成形体の特性及び金型汚れ評価結果を表 4に示す。
ポリエステル組成物の射出成形前後のァセトアルデヒド含有量の差 (At— A0) は 27 p pmであり、 中空成形体のリン含有量は 0 p pm、 中空成形体の A A含 有量は 41 ppm、 ΔΑΑ含有量は 35 p pm、 FA含有量は 5. 4p pm、 環 状エステル 3量体含有量は 0. 66重量%、 環状エステル 3量体含有量の増加量 (△CT2量) は 0. 50重量%、 官能試験評価は 「XX」、 透明性は 「X」 と悪 く、 また金型汚れもひどかった。
(比較例 5)
PET (IE) 100重量部に対して Ny— MXD 6 ( 1 H) 30重量部を用 いて、 評価方法 (15) の方法により中空成形体を成形し、 また金型汚れ評価も 行った。 得られた中空成形体の特性及び金型汚れ評価結果を表 4に示す。
ポリエステル組成物の射出成形前後のァセトアルデヒド含有量の差 (At— A0) は 7 p pmであり、 中空成形体のナトリウム含有量は 346 p pm、 中空成形体 の八八含有量は1 3 1)111、 ΔΑΑ含有量は 18 p pm、 FA含有量は 4. 3 p pm、 環状エステル 3量体含有量は 0. 71重量%、 環状エステル 3量体含有量 の増加量 (ACT 2量) は 0. 52重量%、 CM含有量は 3800 p pm、 官能 試験評価は 「XX」、 透明性は 「X」 と悪く、 また金型汚れもひどかった。
表 3 ポリエステ 物およ!^ 注
Figure imgf000049_0001
00
表 4 中^^体 < ¾tft
Figure imgf000049_0002
CT=環状エステル 3量体 CM=獻アミド 1量体
(実施例 7 )
PET (2 C) 100重量部に対して Ny— MXD 6 (2 F) 2重量部を用い、 これらをそれぞれ評価方法 (15) に記した乾燥方法により乾燥後ドライプレン ドし、 これを用いて名機製作所製 M— 150 C (DM) 射出成型機により樹脂温 度 285T:でプリフォームを成形した。 このプリフォームをコーポプラスト社製 LB- 01 E延伸ブロー成型機を用いて二軸延伸ブロー成形し、 2000 c cの 非耐熱中空成形体を得た。
得られた中空成形体の特性の評価結果を表 5に示す。
ポリエステル組成物のリン含有量は 36 ppm、 射出成形前後のァセトアルデ ヒド含有量の差 (At— A。) は 9 p pmであり、 中空成形体の A A含有量は 10 ppm、 FA含有量は 0. 4ppm、 官能試験評価は 「◎」、 透明性は 「◎」 であ り、 透明性および香味保持性に非常に優れた中空成形体を得ることができた。 (実施例 8 )
PET (2 C) 100重量部に対して Ny— MXD 6 (2 F) 10重量部を用 いて、実施例 7と同様にして 2000 c cの中空成形体を成形し、評価を行った。 得られた中空成形体の特性の評価結果を表 5に示す。
ポリエステル組成物のリン含有量は 47 p pm、 射出成形前後のァセトアルデヒ ド含有量の差 (At— A。) は 6 p pmであり、 中空成形体の A A含有量は 9 p p m、 八含有量は0. l p pm、 官能試験評価は 「〇」、 透明性は 「◎」 であり問 題なかった。 また酸素バリヤ一性も改善されている。
(実施例 9 )
PET (2 C) 100重量部に対して Ny— MXD 6 (2 G) 30重量部を用 いて、 実施例 1と同様にして中空成形体を成形し、 評価を行った。
得られた中空成形体の特性の価結果を表 5に示す。
ポリエステル組成物のリン含有量は 107 ppm、 射出成形前後のァセトアルデ ヒド含有量の差 (At— A。) は 5 p pmであり、 中空成形体の A A含有量は 6 p pm、 FA含有量は 0. 1 ppm、 官能試験評価は 「〇」、 透明性は 「〇」 であり 問題なかった。
(比較例 6 ) PET (2D) 1 00重量部に対して Ny— MXD 6 (2 1) 10重量部を用 いて、 実施例 7と同様にして中空成形体を成形し、 評価を行った。
得られた中空成形体の特性の評価結果を表 5に示す。
ポリエステル組成物のリン含有量は 0 ppm、 射出成形前後のァセトアルデヒド 含有量の差 (At— A。) は 23 p pmであり、 中空成形体の AA含有量は 29 p pm、 FA含有量は 4. 8 p pm、 透明性は 「X (透明性に劣り、 かつ着色未溶 融物が見られる)」、 官能試験評価は 「△」 と悪く、 実用性がないものであった。
(比較例 7 )
PET (2 E) 1 00重量部に対して Ny— MXD 6 ( 2 H) 30重量部を用 いて、 実施例 7と同様にして中空成形体を成形し、 評価を行った。
得られた中空成形体の特性の評価結果を表 5に示す。
ポリエステル組成物のリン含有量は 21 1 p pm、 射出成形前後のァセトアル デヒド含有量の差 (AT— AQ) は 1 2 p pmであり、 中空成形体の A A含有量は 1 5 ppm、 FA含有量は 4. 1 p pm、 であったが、 透明性は 「X (透明性に 劣る)」、 官能試験評価は 「X X」 と悪く、 実用性がないものであった。
(比較例 8 )
PET (2D) 1 00重量部を用いて、 実施例 7と同様にして中空成形体を成 形し、 評価を行った。
得られた中空成形体の特性の評価結果を表 5に示す。
(実施例 10 )
PET (2 A) 1 00重量部に対して Ny— MXD 6 (2 F) 10重量部を用 いて、 評価方法 (1 5) の方法により中空成形体を成形し、 また金型汚れ評価も 行った。
得られた中空成形体の特性及び金型汚れ評価結果を表 6に示す。
ポリエステル組成物の射出成形前後のァセトアルデヒド含有量の差 (AT— A0) は 5 ppmであり、 中空成形体のリン含有量は 44 p pm、 中空成形体の A A含 有量は 8 p pm、 ΔΑΑ含有量は 1 1 p pm、 ?八含有量は0. 2 p pm、 環状 エステル 3量体含有量は 0. 32重量%、環状エステル 3量体含有量の増加量(△ (:丁2量)は0. 0 5重量%、 CM含有量は 51 0 p pm、官能試験評価は「〇」、 透明性は 「〇」 であり、 また金型付着物は認められなかった。
(実施例 11)
PET (2 B) 100重量部に対して Ny—MXD 6 (2 G) 20重量部を用 いて、 評価方法 (1 5) の方法により中空成形体を成形し、 また金型汚れ評価も 行った。
得られた中空成形体の特性及び金型汚れ評価結果を表 6に示す。
ポリエステル組成物の射出成形前後のァセトアルデヒド含有量の差 (At— A0) は 5 ppmであり、 中空成形体のリン含有量は 83 p pm、 中空成形体の AA含 有量は 8 ppm、 ΔΑΑ含有量は 1 1 p pm、 ?八含有量は0. l ppm、 環状 エステル 3量体含有量は 0. 37重量%、環状エステル 3量体含有量の増加量(△ 。丁2量)は0. 10重量%、 CM含有量は 1000 p pm、官能試験評価は「〇」、 透明性は 「〇」 であり、 また金型付着物は認められなかった。
(実施例 12) . PET (2 A) 100重量部に対して Ny— MXD 6 (2 G) 30重量部を用 いて、 評価方法 (15) の方法により中空成形体を成形し、 また金型汚れ評価も 行った。 得られた中空成形体の特性及び金型汚れ評価結果を表 6に示す。
ポリエステル組成物の射出成形前後のァセトアルデヒド含有量の差 (At— A0) は 4 ppmであり、 中空成形体のリン含有量は 104 p pm、 中空成形体の AA 含有量は 6 p pm、 ΔΑΑ含有量は 9 ppm、 八含有量は0. l ppm、 環状 エステル 3量体含有量は 0. 32重量%、環状エステル 3量体含有量の増加量(△ 丁2量)は0. 05重量%、 CM含有量は 1300 p pm、官能試験評価は「〇」、 透明性は 「〇」 であり、 また金型付着物は認められなかった。
(比較例 9 )
PET (2D) 100重量部に対して Ny— MXD 6 (21) 0. 05重量部 を用いて、 評価方法 (15) の方法により中空成形体を成形し、 また金型汚れ評 価も行った。 得られた中空成形体の特性及び金型汚れ評価結果を表 6に示す。 ポリエステル組成物の射出成形前後のァセトアルデヒド含有量の差 (A t— A 。) は 25 p pmであり、 中空成形体のリン含有量は 0 p pm、 中空成形体の A A含有量は 40 p p m、 ΔΑ A含有量は 35 p p m、 F A含有量は 6. 5 p p m、 環状エステル 3量体含有量は 0. 65重量%、 環状エステル 3量体含有量の増加 量 (ACT2量) は 0. 51重量%、 官能試験評価は 「X」、 透明性は 「X (透明 性に劣り、 かつ着色未溶融物が見られる)」 と悪く、 また金型汚れもひどかった。
(比較例 10 )
PET (2 E) 100重量部に対して Ny— MXD 6 ( 2 H) 30重量部を用 いて、 評価方法 (15) の方法により中空成形体を成形し、 また金型汚れ評価も 行った。 得られた中空成形体の特性及び金型汚れ評価結果を表 6に示す。
ポリエステル組成物の射出成形前後のァセトアルデヒド含有量の差 (At— A 。) は 7 p pmであり、 中空成形体のリン含有量は 21 1 p pm、 中空成形体の AA含有量は 13 p pm、 △ A A含有量は 17 p p m、 FA含有量は 4. 2 p p m、 環状エステル 3量体含有量は 0. 70重量%、 環状エステル 3量体含有量の 増加量 (ACT2量) は 0. 54重量%、 CM含有量は 4000 p pm、 官能試 験評価は 「XX」、 透明性は 「X (透明性に劣る)」 と悪く、 また金型汚れもひど かった。
表 5 ポリエステゾ «g物および中
Figure imgf000054_0001
CO
表 6 中^
Figure imgf000054_0002
C T=環状エステル 3量体 CM=環状アミド 1難
(実施例 13 )
PET '(3 A) 100重量部に対して Ny— MXD 6 (3 E) 0. 5重量部を 用いて、 評価方法 (15) の方法により成形板、 中空成形体を成形し評価を行つ た。
得られた成形板、 および中空成形体の特性及び評価結果を表 7に示す。
射出成形により得られた成形板は色調、 ヘイズともに良好であった。 また、 中空 成形体の AA含有量は 7 p pm、 八含有量は0. 1 p p m、官能試験評価は 0. 7、 外観は実用的な範囲で透明であった。
(実施例 14)
PET (3 A) 100重量部に対して Ny— MXD 6 (3 E) 3. 0重量部を 用いて、 評価方法 (15) の方法により成形板、 中空成形体を成形し評価を行つ た。
得られた成形板、 および中空成形体の特性及び評価結果を表 7に示す。
射出成形により得られた成形板は色調、 ヘイズともに良好であった。 また、 中空 成形体の AA含有量は 6 p pm、 FA含有量は 0. 08 p pm、 官能試験評価は 0. 6、 外観は実用的な範囲で透明であった。
(実施例 1 5 )
PET (3 A) 100重量部に対して Ny— MXD 6 (3D) 3. 0重量部を 用いて、 評価方法 (15) の方法により成形板、 中空成形体を成形し評価を行つ た。 得られた成形板、 および中空成形体の特性及び評価結果を表 7に示す。 射出成形により得られた成形板は色調、 ヘイズともに良好であった。 また、 中 空成形体の AA含有量は 7 p pm、 ?八含有量は0. 07 p pm、 官能試験評価 は 0. 6、 外観は実用的な範囲で透明であった。
(実施例 16 )
PET (3 A) 100重量部に対して Ny—MXD 6 (3 E) 20. 0重量部 を用いて、 評価方法 (15) の方法により成形板、 中空成形体を成形し評価を行 つた。 得られた成形板、 および中空成形体の特性及び評価結果を表 7に示す。 射出成形により得られた成形板は色調、 ヘイズともに良好であった。 また、 中 空成形体の A A含有量は 6 p pm、 FA含有量は0. 05 p pm, 官能試験評価 は 0. 7、 外観は実用的な範囲で透明であった。
(比較例 11 )
PET (3 B) 100重量部に対して Ny— MXD 6 (3 E) 3. 0重量部を用 いて、評価方法(15)の方法により成形板、中空成形体を成形し評価を行った。 得られた成形板、 および中空成形体の特性及び評価結果を表 7に示す。
射出成形により得られた成形板は C o 1 o r一 L値が低ぐ黒ずんでいた。また、 中空成形体の AA含有量は 9 p pm、 FA含有量は 0. 5 ppm、 官能試験評価 は 0. 8と良好であつたが、 透明性は悪かった。
(比較例 12)
PET (3 C) 100重量部に対して Ny— MXD 6 (3 E) 20. 0重量部 を用いて、 評価方法 (15) の方法により成形板、 中空成形体を成形し評価を行 つた。
得られた成形板、 および中空成形体の特性及び評価結果を表 7に示す。
射出成形により得られた成形板の色調はよかったが、ヘイズ値が高かった。また、 中空成形体の八八含有量は10 111、 FA含有量は 0. 3 p pm、 官能試験評 価は 0. 8と良好であつたが、 透明性は悪かった。
Figure imgf000056_0001
(実施例 1 7)
PET (4 a) 100重量部に対して Ny— MXD 6 (4b) 1. 0重量部、 2—ァミノべンズアミド (東京化成工業(株)製試薬) 0. 03重量部を用いて、 評価方法 (1 5) の方法により中空成形体を成形し、 その成形体の CM含有量、 CT含有量、 AA含有量を測定した。 また金型汚れ評価も行った。
得られた中空成形体の特性及び金型汚れ評価結果を表 8に示す。
なお、 PET (4 a) は連続溶融重縮合一固相重合装置で重合た後、 イオン交 換水中で約 90°Cで 3時間、 熱水処理したものであり、 Ge残存量 40 p pm、 リン残存量 3 5 p pm、 I V 0. 74 d 1 /g, A A含有量 2 · 4p pm、 CT 含有量 0. 3 1重量%、 ΑΟΎ,Ο. 04重量%でぁる。 また、 Ny— MXD 6 (4 b) は Rv l. 8、 CM含有量 2. 3重量%である。
(実施例 1 8〜20、 比較例 1 3、 14)
表 8に示す割合で実施例 1と同様に中空成形体を作製して評価した。 結果を表 8に示す。 なお、 1, 8—ジァミノナフ夕レートは東京化成工業 (株) 製の試薬 を用いた。
5¾S
魏例 W例 鶴例 m m
17 18 19 20 13 14
PET(4a) 100 100 100 100 100 100 ポリエ
Ny-MXD6(4c) 観部) 1.0 0.5 0.5 10.0
ステル
2—ァミノベン (MM 0.03 0.05 0.05 1.2 誠物
1, 8—ジァミノナフタレ— Kfiftg® 0.10
成赚 ヘイズ (%, 5mm) 7.4 5.8 5.1 15.2 22.0 1.5
AA含 Siftipm) 7 8 8 7 10 28
0.2 0, 1 0.1 0.1 4.2 6.7 cj mm.%) 0.35 0.37 0.38 0.36 0.35 0.37
CM合 |} ^有: K¾S0&) 0.02 0.01 0.01 0.23
中空 金型 O O O O 厶 O 成形体 透明性 O O O O X O
0 O O O X O 官 0.7 0.7 0.6 0.7 2.6 2.5
0.20
(CG/難 1本' 2hr'atm) <発明の効果 >
本発明のポリエステル組成物によれば、 透明性、 熱安定性および香味保持性、 あるいは透明性、 熱安定性、 香味保持性およびガスバリヤ一性に優れたポリエス テル組成物が得られ、 また本発明のポリエステル組成物は、 上述したように、 清 涼飲料などの飲料用包装材料として非常に好適である。

Claims

請求の範囲
1. 熱可塑性ポリエステル 100重量部と、 部分芳香族ポリアミド 0. 1〜50重 量部とからなるポリエステル組成物であって、 記ポリエステル組成物中のアルカリ 金属原子含有量が 0. 1〜300 p pmの範囲内であることを特徴とするポリエス テル組成物。
2. 熱可塑性ポリエステル 100重量部と、 部分芳香族ポリアミド 0. 1〜50重 量部とからなるポリエステル組成物であって、 ポリエステル組成物中のリン原子含 有量が 5〜200 p pmの範囲であることを特徴とするポリエステル組成物。
3. 熱可塑性ポリエステル組成物中のリン原子含有量が 5〜 200 p p mの範囲で あることを特徴とする請求項 1に記載のポリエステル組成物。
4. 芳香族ジカルボン酸またはそのエステル形成性誘導体を主体とするジカルボン 酸成分とェチレングリコールを主体とするグリコール成分とからなる熱可塑性ポリ エステル 100重量部と、 部分芳香族ポリアミド 0· 01〜30重量部とからなる ポリエステル組成物であって、 該ポリエステル組成物を 290°Cの成形温度で射出 成形して得られた成形体の C o 1 o r _ L値が 80. 0以上であり、 かつヘイズが 20%以下であることを特徴とするポリエステル組成物。
5. アンチモン原子の含有量が 200 ppm以下であることを特徴とする請求項 4 に記載のポリエステリレ組成物。
6. 熱可塑性ポリエステル組成物中のアル力リ金属原子含有量が 0. 1〜 300 p p m、 リン原子含有量が 5〜200ppmであることを特徴とする請求項 4または 5に記載のポリエステル組成物。
7. 熱可塑性ポリエステル 100重量部と、 部分芳香族ポリアミド 0. 01〜10 0重量部、 アミノ基含有化合物 5 X I 0一4〜 1重量部とからなることを特徴とする ポリエステル組成物。
8. 部分芳香族ポリアミドがメタキシリレン基含有ポリアミドであることを特徴と する請求項 1〜 7のいずれかに記載のポリエステル組成物。
9. 熱可塑性ポリエステルがエチレンテレフ夕レートを主たる繰り返し単位とする ポリエステルであることを特徴とする請求項 1〜 8のいずれかに記載のポリエステ ル組成物。
10. ポリエステル組成物を射出成形して得られた成形体のァセトアルデヒド含有 量 (At) (ppm) と、 射出成形前のポリエステル組成物のァセトアルデヒド含有 量 (A。) (ppm) との差 (At— AQ) が、 20 ppm以下であることを特徴とす る請求項 1〜 9のいずれかに記載のポリエステル組成物。
11. 熱可塑性ポリエステル由来の環状 3量体の含有量が 0. 7重量%以下である ことを特徴とする請求項:!〜 10のいずれかに記載のポリエステル組成物。
12. 290 で 30分間溶融処理した際の熱可塑性ポリエステル由来の環状 3量 体増加量が 0 · 4重量%以下であることを特徴とする請求項 1〜 11のいずれかに 記載のポリエステル組成物。 ,
13. 請求項 1〜12いずれかのポリエステル組成物を成形してなることを特徴と するポリエステル包装材料。
14. 包装材料が、 中空成形体、 シート状物、 フィルムの少なくともいずれかであ ることを特徴とする請求項 13に記載のポリエステル包装材料。
PCT/JP2003/006963 2002-06-03 2003-06-02 Composition polyester et matiere d'emballage la contenant WO2003102079A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
DE60323490T DE60323490D1 (de) 2002-06-03 2003-06-02 Polyesterzusammensetzung und diese enthaltendes verpackungsmaterial
US10/517,115 US20050222345A1 (en) 2002-06-03 2003-06-02 Polyester composition and polyester packaging material comprising the same
CNB038128551A CN100334151C (zh) 2002-06-03 2003-06-02 聚酯组合物和由其组成的聚酯包装材料
KR1020047019618A KR100934555B1 (ko) 2002-06-03 2003-06-02 폴리에스테르 조성물 및 그것으로 되는 폴리에스테르포장재료
JP2004510325A JPWO2003102079A1 (ja) 2002-06-03 2003-06-02 ポリエステル組成物およびそれからなるポリエステル包装材料
EP03733243A EP1516892B1 (en) 2002-06-03 2003-06-02 Polyester composition and packaging material comprising the same
AU2003241749A AU2003241749A1 (en) 2002-06-03 2003-06-02 Polyester composition and packaging material comprising the same
CA2488409A CA2488409C (en) 2002-06-03 2003-06-02 Polyester composition and polyester packaging material comprising the same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2002-161788 2002-06-03
JP2002161788 2002-06-03
JP2002226314A JP3997479B2 (ja) 2002-08-02 2002-08-02 ポリエステル組成物およびそれからなるポリエステル包装材料
JP2002-226314 2002-08-02
JP2002-325302 2002-11-08
JP2002325302A JP2005298533A (ja) 2002-11-08 2002-11-08 ポリエステル組成物及びそれからなるポリエステル包装材料

Publications (1)

Publication Number Publication Date
WO2003102079A1 true WO2003102079A1 (fr) 2003-12-11

Family

ID=29715913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/006963 WO2003102079A1 (fr) 2002-06-03 2003-06-02 Composition polyester et matiere d'emballage la contenant

Country Status (10)

Country Link
US (1) US20050222345A1 (ja)
EP (1) EP1516892B1 (ja)
JP (1) JPWO2003102079A1 (ja)
KR (1) KR100934555B1 (ja)
CN (1) CN100334151C (ja)
AT (1) ATE407973T1 (ja)
AU (1) AU2003241749A1 (ja)
CA (1) CA2488409C (ja)
DE (1) DE60323490D1 (ja)
WO (1) WO2003102079A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005206747A (ja) * 2004-01-26 2005-08-04 Toyobo Co Ltd ポリエステル樹脂およびそれからなるポリエステル樹脂組成物並びにポリエステル成形体
JP2005213293A (ja) * 2004-01-27 2005-08-11 Toyobo Co Ltd ポリエステル樹脂組成物およびそれからなるポリエステル成形体
JP2005220234A (ja) * 2004-02-05 2005-08-18 Toyobo Co Ltd ポリエステル樹脂およびそれからなるポリエステル樹脂組成物並びにポリエステル成形体
JP2006028301A (ja) * 2004-07-14 2006-02-02 Toyobo Co Ltd ポリエステル樹脂およびそれからなるポリエステル樹脂組成物並びにポリエステル成形体
WO2007142093A1 (ja) * 2006-06-02 2007-12-13 Toyo Boseki Kabushiki Kaisha ポリエステル組成物およびそれからなるポリエステル成形体
JP2008531830A (ja) * 2005-03-02 2008-08-14 イーストマン ケミカル カンパニー 透明ポリマーブレンド及びそれから製造される物品
JP2008531827A (ja) * 2005-03-02 2008-08-14 イーストマン ケミカル カンパニー 透明な造形品の製造方法
JP2008542450A (ja) * 2005-03-02 2008-11-27 イーストマン ケミカル カンパニー 透明な酸素捕捉性組成物及びそれから製造される物品
US7475786B2 (en) * 2005-08-03 2009-01-13 Ppg Industries Ohio, Inc. Can coatings, methods for coating can and cans coated thereby
WO2011076324A1 (en) 2009-12-23 2011-06-30 Merck Patent Gmbh Compositions comprising organic semiconducting compounds
JP2011132394A (ja) * 2009-12-25 2011-07-07 Mitsubishi Gas Chemical Co Inc 二軸延伸中空容器
WO2011128035A1 (en) 2010-04-12 2011-10-20 Merck Patent Gmbh Composition and method for preparation of organic electronic devices
WO2011147523A1 (en) 2010-05-27 2011-12-01 Merck Patent Gmbh Formulation and method for preparation of organic electronic devices
AU2006307493B2 (en) * 2005-10-25 2012-02-02 APG Polytech, LLC Stable polyamides for simultaneous solid phase polymerization of polyesters and polyamides
JP2012101546A (ja) * 2004-02-12 2012-05-31 Valspar Sourcing Inc バリア性を有する容器及びその製造方法

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10322099A1 (de) * 2003-05-15 2005-01-27 Dupont Sabanci Polyester Europe B.V. Polymerisationskatalysator für die Herstellung von Polyestern, Verfahren zur Herstellung von Polyethylenterephthalat und Verwendung des Polymerisationskatalysators
KR20070012634A (ko) * 2003-12-26 2007-01-26 토요 보세키 가부시기가이샤 폴리아미드 수지 조성물
EP1570970A1 (de) * 2004-03-05 2005-09-07 A. Schulman Gmbh Mehrschicht-Hohlkörper und Verfahren für dessen Herstellung
PT2159027E (pt) * 2004-05-18 2013-04-26 M & G Polimeri Italia Spa Grânulos de resina compartimentados e processo para tratar termicamente os referidos grânulos
KR101145948B1 (ko) * 2004-05-31 2012-05-15 도레이 카부시키가이샤 폴리에스테르 수지 조성물, 그의 제조 방법 및 폴리에스테르 필름
US7955674B2 (en) 2005-03-02 2011-06-07 Eastman Chemical Company Transparent polymer blends containing polyesters comprising a cyclobutanediol and articles prepared therefrom
US7959836B2 (en) 2005-03-02 2011-06-14 Eastman Chemical Company Process for the preparation of transparent, shaped articles containing polyesters comprising a cyclobutanediol
US20060199871A1 (en) * 2005-03-02 2006-09-07 Hale Wesley R Multilayered, transparent articles and a process for their preparation
US7462684B2 (en) 2005-03-02 2008-12-09 Eastman Chemical Company Preparation of transparent, multilayered articles containing polyesters comprising a cyclobutanediol and homogeneous polyamide blends
US7786252B2 (en) * 2005-03-02 2010-08-31 Eastman Chemical Company Preparation of transparent multilayered articles
US8557950B2 (en) 2005-06-16 2013-10-15 Grupo Petrotemex, S.A. De C.V. High intrinsic viscosity melt phase polyester polymers with acceptable acetaldehyde generation rates
JP4857634B2 (ja) * 2005-07-22 2012-01-18 三菱瓦斯化学株式会社 ポリアミド樹脂
US9267007B2 (en) 2005-09-16 2016-02-23 Grupo Petrotemex, S.A. De C.V. Method for addition of additives into a polymer melt
US8431202B2 (en) 2005-09-16 2013-04-30 Grupo Petrotemex, S.A. De C.V. Aluminum/alkaline or alkali/titanium containing polyesters having improved reheat, color and clarity
US7655746B2 (en) 2005-09-16 2010-02-02 Eastman Chemical Company Phosphorus containing compounds for reducing acetaldehyde in polyesters polymers
US7932345B2 (en) 2005-09-16 2011-04-26 Grupo Petrotemex, S.A. De C.V. Aluminum containing polyester polymers having low acetaldehyde generation rates
US7838596B2 (en) 2005-09-16 2010-11-23 Eastman Chemical Company Late addition to effect compositional modifications in condensation polymers
CN101374907B (zh) * 2005-10-25 2011-08-31 M&G聚合物意大利有限公司 用于聚酯和聚酰胺的同时固相聚合的稳定聚酰胺
US7709593B2 (en) 2006-07-28 2010-05-04 Eastman Chemical Company Multiple feeds of catalyst metals to a polyester production process
US7745368B2 (en) 2006-07-28 2010-06-29 Eastman Chemical Company Non-precipitating alkali/alkaline earth metal and aluminum compositions made with organic hydroxyacids
US7709595B2 (en) 2006-07-28 2010-05-04 Eastman Chemical Company Non-precipitating alkali/alkaline earth metal and aluminum solutions made with polyhydroxyl ether solvents
EP2064270A2 (en) 2006-09-11 2009-06-03 Graham Packaging Company, L.P. Phosphorous containing reprocessed polymer materials, articles formed thereof, and methods of forming such articles
US8563677B2 (en) 2006-12-08 2013-10-22 Grupo Petrotemex, S.A. De C.V. Non-precipitating alkali/alkaline earth metal and aluminum solutions made with diols having at least two primary hydroxyl groups
US20080161529A1 (en) * 2006-12-28 2008-07-03 Jason Christopher Jenkins Oxygen-scavenging polyesters useful for packaging
US20080161465A1 (en) * 2006-12-28 2008-07-03 Jason Christopher Jenkins Oxygen-scavenging polyester compositions useful for packaging
US8901272B2 (en) 2007-02-02 2014-12-02 Grupo Petrotemex, S.A. De C.V. Polyester polymers with low acetaldehyde generation rates and high vinyl ends concentration
US20080255280A1 (en) * 2007-04-11 2008-10-16 Susan Sims Oxygen-scavenging polymer blends suitable for use in packaging
US8058360B2 (en) 2007-06-01 2011-11-15 Grupo Petrotemex, S.A. De C.V. Polyester blends exhibiting low temperature toughness
IT1392656B1 (it) * 2007-12-07 2012-03-16 Bangkok Synthetics Co Ltd Tecnologia di reticolazione alternativa
GB0902941D0 (en) * 2009-02-20 2009-04-08 Colormatrix Holdings Inc Polyesters
WO2010103023A1 (en) * 2009-03-13 2010-09-16 Basf Se Stabilized blends of polyester and polyamide
KR20120014888A (ko) * 2009-03-13 2012-02-20 바스프 에스이 폴리에스테르 및 폴리아미드의 안정화된 블렌드
GB0915687D0 (en) 2009-09-08 2009-10-07 Dupont Teijin Films Us Ltd Polyester films
GB2488787A (en) * 2011-03-07 2012-09-12 Dupont Teijin Films Us Ltd Stabilised polyester films
GB201310837D0 (en) 2013-06-18 2013-07-31 Dupont Teijin Films Us Ltd Polyester film -IV
JP2015021014A (ja) * 2013-07-16 2015-02-02 三菱樹脂株式会社 積層ポリエステルフィルム
GB201317551D0 (en) 2013-10-03 2013-11-20 Dupont Teijin Films Us Ltd Co-extruded polyester films
CN106280293B (zh) * 2015-06-09 2020-04-07 东丽纤维研究所(中国)有限公司 一种聚酯组合物及其制备方法和用途
WO2017038949A1 (ja) * 2015-09-04 2017-03-09 三菱化学株式会社 ポリエステル樹脂及び該ポリエステル樹脂の製造方法並びにポリエステル樹脂組成物
CN109014213A (zh) * 2018-09-03 2018-12-18 深圳市贝斯特精工科技有限公司 一种具有特殊气味的粉末注射成形烧结喂料的制作方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997015629A1 (en) * 1995-10-25 1997-05-01 Eastman Chemical Company Polyester/polyamide blend having improved flavor retaining property and clarity

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3872055A (en) * 1972-08-19 1975-03-18 Toyo Boseki Polyamide composition having decreased gel-forming property in molten state
JPS58189787A (ja) * 1982-04-28 1983-11-05 Fujitsu Ltd 線図形の直線・円弧近似方式
MX163432B (es) * 1988-07-13 1992-05-12 Rohm & Haas Estructuras de multiples capas
JP3137347B2 (ja) * 1991-01-30 2001-02-19 ポリプラスチックス株式会社 ポリオレフィン系樹脂組成物構造体及びその製造法
JP2000302952A (ja) * 1999-04-19 2000-10-31 Mitsubishi Gas Chem Co Inc ポリエステル樹脂組成物
US6908650B2 (en) * 2001-03-02 2005-06-21 Ciba Specialty Chemicals Corporation Polyester and polyamide compositions of low residual aldehyde content
DE60200355T2 (de) * 2001-03-05 2004-08-12 Mitsubishi Gas Chemical Co., Inc. Polyesterharz-Zusammensetzung und geformte Gegenstände aus dem Polyesterharz

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997015629A1 (en) * 1995-10-25 1997-05-01 Eastman Chemical Company Polyester/polyamide blend having improved flavor retaining property and clarity

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005206747A (ja) * 2004-01-26 2005-08-04 Toyobo Co Ltd ポリエステル樹脂およびそれからなるポリエステル樹脂組成物並びにポリエステル成形体
JP2005213293A (ja) * 2004-01-27 2005-08-11 Toyobo Co Ltd ポリエステル樹脂組成物およびそれからなるポリエステル成形体
JP2005220234A (ja) * 2004-02-05 2005-08-18 Toyobo Co Ltd ポリエステル樹脂およびそれからなるポリエステル樹脂組成物並びにポリエステル成形体
JP2012101546A (ja) * 2004-02-12 2012-05-31 Valspar Sourcing Inc バリア性を有する容器及びその製造方法
JP2006028301A (ja) * 2004-07-14 2006-02-02 Toyobo Co Ltd ポリエステル樹脂およびそれからなるポリエステル樹脂組成物並びにポリエステル成形体
JP4645085B2 (ja) * 2004-07-14 2011-03-09 東洋紡績株式会社 ポリエステル樹脂およびそれからなるポリエステル樹脂組成物並びにポリエステル成形体
JP2008531830A (ja) * 2005-03-02 2008-08-14 イーストマン ケミカル カンパニー 透明ポリマーブレンド及びそれから製造される物品
JP2008531827A (ja) * 2005-03-02 2008-08-14 イーストマン ケミカル カンパニー 透明な造形品の製造方法
JP2008542450A (ja) * 2005-03-02 2008-11-27 イーストマン ケミカル カンパニー 透明な酸素捕捉性組成物及びそれから製造される物品
US7475786B2 (en) * 2005-08-03 2009-01-13 Ppg Industries Ohio, Inc. Can coatings, methods for coating can and cans coated thereby
AU2006307493B2 (en) * 2005-10-25 2012-02-02 APG Polytech, LLC Stable polyamides for simultaneous solid phase polymerization of polyesters and polyamides
WO2007142093A1 (ja) * 2006-06-02 2007-12-13 Toyo Boseki Kabushiki Kaisha ポリエステル組成物およびそれからなるポリエステル成形体
WO2011076324A1 (en) 2009-12-23 2011-06-30 Merck Patent Gmbh Compositions comprising organic semiconducting compounds
JP2011132394A (ja) * 2009-12-25 2011-07-07 Mitsubishi Gas Chemical Co Inc 二軸延伸中空容器
WO2011128035A1 (en) 2010-04-12 2011-10-20 Merck Patent Gmbh Composition and method for preparation of organic electronic devices
WO2011147523A1 (en) 2010-05-27 2011-12-01 Merck Patent Gmbh Formulation and method for preparation of organic electronic devices

Also Published As

Publication number Publication date
CA2488409C (en) 2011-10-04
EP1516892A1 (en) 2005-03-23
EP1516892A4 (en) 2006-05-24
KR20050042460A (ko) 2005-05-09
CA2488409A1 (en) 2003-12-11
DE60323490D1 (de) 2008-10-23
ATE407973T1 (de) 2008-09-15
CN100334151C (zh) 2007-08-29
JPWO2003102079A1 (ja) 2005-09-29
US20050222345A1 (en) 2005-10-06
EP1516892B1 (en) 2008-09-10
KR100934555B1 (ko) 2009-12-29
CN1659231A (zh) 2005-08-24
AU2003241749A1 (en) 2003-12-19

Similar Documents

Publication Publication Date Title
WO2003102079A1 (fr) Composition polyester et matiere d&#39;emballage la contenant
JP2006176571A (ja) ポリエステル包装材料
JP2005015791A (ja) ポリエステル組成物及びそれからなるポリエステル成形体
JP2007138156A (ja) ポリエステル組成物、それからなるポリエステル成形体およびポリエステル中空成形体の製造方法
JP2006097013A (ja) ポリエステル組成物及びそれからなるポリエステル成形体
JP3997479B2 (ja) ポリエステル組成物およびそれからなるポリエステル包装材料
JP2005041921A (ja) ポリエステル組成物およびそれからなるポリエステル包装材料
JP2007138160A (ja) ポリエステル組成物の製造方法
JP3758091B2 (ja) ポリエステル組成物およびそれからなるポリエステル包装材料
JP2007002240A (ja) ポリエステル延伸中空成形体及びその製造方法
JP2005298533A (ja) ポリエステル組成物及びそれからなるポリエステル包装材料
JP2007138157A (ja) ポリエステル組成物、それからなるポリエステル成形体およびポリエステル中空成形体の製造方法
JP4710484B2 (ja) ポリエステル組成物およびそれからなるポリエステル包装材料
JP2004231951A (ja) ポリエステル組成物およびその用途
JP2004210997A (ja) ポリエステル組成物およびその用途
JP2004059917A (ja) ポリエステル組成物及びそれからなる包装材料
JP2004002804A (ja) ポリエステル組成物及びそれからなる成形体
JP2004189947A (ja) ポリエステル組成物及びそれからなる成形体
JP2004155994A (ja) ポリエステル組成物及びそれからなる成形体
JP3726959B2 (ja) ポリエステル組成物及びそれからなる成形体
JP2007063467A (ja) ポリエステル組成物およびそれからなるポリエステル包装材料
JP3758087B2 (ja) ポリエステル組成物及びそれからなる成形体
JP2004059916A (ja) ポリエステル組成物およびそれからなるポリエステル包装材料
JP2003342455A (ja) ポリエステル組成物及びそれからなる成形体
JP2004059915A (ja) ポリエステル組成物及びそれからなる成形体

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004510325

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2488409

Country of ref document: CA

Ref document number: 1020047019618

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20038128551

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2003733243

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10517115

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2003733243

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020047019618

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 2003733243

Country of ref document: EP