WO2003101616A1 - Procede pour regenerer un catalyseur contenant du titane - Google Patents

Procede pour regenerer un catalyseur contenant du titane Download PDF

Info

Publication number
WO2003101616A1
WO2003101616A1 PCT/CN2003/000422 CN0300422W WO03101616A1 WO 2003101616 A1 WO2003101616 A1 WO 2003101616A1 CN 0300422 W CN0300422 W CN 0300422W WO 03101616 A1 WO03101616 A1 WO 03101616A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
titanium
deactivated
acid
acidic solution
Prior art date
Application number
PCT/CN2003/000422
Other languages
English (en)
French (fr)
Other versions
WO2003101616A8 (fr
Inventor
Bin Sun
Wei Wu
Enquan Wang
Yongxiang Li
Shuzhong Zhang
Lingmin Hu
Original Assignee
China Petroleum & Chemical Corporation
Research Institute Of Petroleum Processing, Sinopec
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum & Chemical Corporation, Research Institute Of Petroleum Processing, Sinopec filed Critical China Petroleum & Chemical Corporation
Priority to JP2004508958A priority Critical patent/JP4772326B2/ja
Priority to AU2003246095A priority patent/AU2003246095A1/en
Priority to EP03737833.8A priority patent/EP1552886B1/en
Publication of WO2003101616A1 publication Critical patent/WO2003101616A1/zh
Publication of WO2003101616A8 publication Critical patent/WO2003101616A8/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/48Liquid treating or treating in liquid phase, e.g. dissolved or suspended
    • B01J38/60Liquid treating or treating in liquid phase, e.g. dissolved or suspended using acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/20Regeneration or reactivation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/90Regeneration or reactivation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/89Silicates, aluminosilicates or borosilicates of titanium, zirconium or hafnium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S502/00Catalyst, solid sorbent, or support therefor: product or process of making
    • Y10S502/514Process applicable either to preparing or to regenerating or to rehabilitating catalyst or sorbent

Definitions

  • the present invention relates to a method for regenerating a catalyst, and more particularly, to a method for regenerating a titanium-containing catalyst in an ammoximation of a carbonyl compound or an oxidation reaction of a nitrogen-based compound.
  • cyclohexanone oxime is a key intermediate for the production of ⁇ -caprolactam.
  • Caprolactam is an important organic chemical raw material, mainly used as a monomer for synthetic fibers and engineering plastics (such as nylon-6).
  • About 91% of industrial caprolactam is produced via the cyclohexanone oxime route, the cyclohexanone-hydroxylamine process. This process is not only complex process, long production process, high equipment investment, but also due to produce or use ⁇ 0 ⁇ , 30) (such as the existence of serious corrosion and pollution problems.
  • EP 0208311, EP 0267362, EP 0496385, EP 0564040, etc. have reported successively a method for preparing cyclohexanone oxime from cyclohexanone with ammonia and hydrogen peroxide by ammoximation reaction under the catalysis of titanium silicon molecules.
  • the method has mild reaction conditions, high yields of target products, and has the characteristics of simple process, less investment in equipment, less waste, and environmental friendliness.
  • EP 0347926 reports the cyclohexanone ammoximation reaction using titanium oxide supported on silica as a catalyst; J. Le Bars et al. Appl. Catal. A 136 (1996) P69, P. Wu et al. J. Catal. 168 (1997) p.400 also reported other types of zeolites containing Ti (such as Ti-ZSM-48, Ti- ⁇ , Ti-MOR) and other ammoximation reactions of various aldehydes and ketone compounds. .
  • USP 4794198 discloses a method for pretreating a catalyst, which can increase selectivity and help extend stability.
  • p. 43 proposed that by optimizing the process conditions, such as selecting a suitable solvent, increasing the catalyst concentration and the reaction temperature, the catalytic reaction rate can be enhanced to reduce non-catalytic reaction.
  • extending the stability of the catalyst by the above method is limited. Because of the high cost of the titanium-silicon molecular sieve, how to use and regenerate it after deactivation is a problem that must be solved.
  • a regeneration method disclosed in CN 1302693A is a method in which a pre-calcined catalyst is treated with hydrogen peroxide in an aqueous medium in the presence of inorganic fluoride, and then heat-treated.
  • the regeneration process of the catalyst in cyclohexanone oxime preparation by cyclohexanone ammoximation is taken as an example.
  • the regeneration agent activity can be restored to 84% of the fresh agent.
  • Roasting the regenerator activity is only restored to 31% of the fresh agent.
  • the activity of the regenerant using this method has not been fully restored to the level of the fresh agent, and the chemical treatment using the method is liable to produce toxic fluoride, which has certain hazards.
  • CN 1290194A discloses a method for regenerating a catalyst.
  • the method essentially regenerates a catalyst based on gold loaded on a titanium dioxide or hydrated titanium dioxide carrier.
  • the specific process is to regenerate the catalyst with water or with a dilute acid or with a dilute peroxide Contact with hydrogen solution, then Its catalytic activity.
  • the catalyst described in the patent is prepared by a "deposition-precipitation" method for oxidizing unsaturated hydrocarbons in the gas phase; the dilute acid has a pH of 4 to 7.5, preferably a dilute sulfuric acid or hydrofluoric acid with a pH of 5.5 to 6.
  • An object of the present invention is to provide a method for regenerating a titanium-containing catalyst that can restore the regenerant to the level of a fresh agent and has good stability in response to the shortcomings of the prior art.
  • the regeneration method of the titanium-containing catalyst provided by the present invention is to treat the deactivated catalyst in an acidic solution of pH ⁇ 3, preferably pH ⁇ 1, and then dry and roast it.
  • the method provided by the present invention is to treat a deactivated catalyst in an acidic solution having a pH ⁇ 3, preferably pH ⁇ 1, wherein the concentration of the catalyst in the acidic solution is 1 to 20% by weight, preferably 3 to 15% by weight. %,
  • the processing conditions are 0.5 to 6 hours, preferably 1 to 4 hours at 50 to 10 () TC, preferably 70 to 90, and then drying and baking.
  • the acidic solution is selected from one of inorganic acids such as nitric acid, sulfuric acid, hydrochloric acid, and phosphoric acid, and may also be a mixed solution of the foregoing inorganic acid and hydrogen peroxide.
  • concentration of hydrogen oxide is from 0 to 10% by weight, preferably from 0 to 5% by weight.
  • the titanium-containing catalyst may be a titanium-silicon molecular sieve or a titanium-supported composite catalytic material.
  • the titanium-silicon molecular sieve is in a raw powder form or a molding form. From TS-1, TS-2, Ti-ZSM-5, Ti-ZSM-12, Ti-ZSM-48, Ti-p, Ti-MCM-41 and Ti-MOR.
  • the regeneration method provided by the present invention is particularly suitable for regeneration of a deactivated titanium-containing catalyst in an ammoximation reaction of a carbonyl compound or an oxidation reaction of a nitrogen-based compound.
  • the carbonyl compound may be cyclohexanone, acetone, acetophenone, cyclopentanone, p-hydroxyacetophenone, acetophenone, cyclododecanone, furfural, benzaldehyde, or p-methylbenzaldehyde, etc.
  • the nitrogen-based compounds are secondary amines and ammonia.
  • the regeneration method of the titanium-containing catalyst provided by the present invention has remarkable regeneration effect, and the activity, selectivity, and stability of the regeneration agent can be restored to the level of the fresh agent, and can be regenerated multiple times. Use, thereby greatly improving the utilization rate of the catalyst and reducing the unit consumption of the catalyst.
  • the titanium-silicon molecular sieve (TS-1) used was produced by Yueyang Jianchang Co., Ltd .; cyclohexanone (purity ⁇ 99.5%) was provided by Beijing Chemical Plant, and hydrogen peroxide (containing H 2 0 2 27.5 weight.) Provided by Tianjin Dongfang Chemical Plant; Ammonia (purity> 99.9%) provided by Beijing Experimental Chemical Plant; tert-Butanol (containing 86.5 wt% of tert-Butanol, the rest is water and a small amount of impurities) by Beijing Pingshun Chemical Co., Ltd., unless otherwise specified, all other reagents used are provided by Beijing Chemical Plant, chemically pure.
  • the reactivation of the catalyst was obtained through stability evaluation.
  • the catalyst stability was evaluated using a continuous slurry bed reactor with a reactor volume
  • reaction raw materials and reaction products continuously enter and exit the reactor, and the catalyst is trapped in the reaction kettle.
  • the composition of the reaction product was analyzed by gas chromatography, and the conversion of hydrogen peroxide was determined by measuring the content of iodine.
  • the evaluation test uses more sensitive deactivation process conditions, that is, compared with the optimized process conditions, the evaluation is performed at a higher feed space velocity, lower temperature and catalyst concentration.
  • the results evaluated under these conditions are representative, which can explain the quality of the regeneration effect, but the absolute value is not equal to the stability data of the catalyst under optimized process conditions.
  • the stable running time of the catalyst is calculated based on the single-pass running time of the cyclohexanone conversion rate of ⁇ 97%.
  • the fresh catalyst was used for stability evaluation. The results are shown in Table 1.
  • the deactivated catalyst used was a deactivated sample of a fresh catalyst after 40 hours of stable operation in an evaluation test.
  • the deactivated catalyst used was the regenerated catalyst in Example 1, and after a deactivated sample for 42 hours of stable operation, the same catalyst was subjected to a second regeneration test.
  • the deactivated catalyst used in this comparative example is the same as in Example 1.
  • Example 2 The difference from Example 1 lies in that the deactivated catalyst was directly dried and roasted without being treated with an acid solution to obtain a regenerated catalyst.
  • the stability evaluation results are shown in Table 1 and Comparative Example 2
  • the deactivated catalyst used in this comparative example is the same as in Example 1.
  • Example 1 The difference from Example 1 is that the deactivated catalyst is first roasted, and then treated with acid solution and roasted (the method is the same as that of Example 1) to obtain a regenerated catalyst.
  • the stability evaluation results are shown in Table 1 Comparative Example 3
  • the deactivated catalyst used in this comparative example is the same as in Example 1.
  • Example 1 the catalyst can be regenerated and used multiple times (Example 2).
  • Example 3 the catalyst can be regenerated and used multiple times (Example 2).
  • the deactivated catalyst used was the same as in Example 1.
  • the deactivated catalyst used was the same as in Example 1.
  • the fresh catalyst used was the same as in Example 1, except that it was a deactivated sample after 400 hours of stable operation under the optimized process conditions.
  • the deactivated catalyst of the above reaction was taken for regeneration, and the regeneration conditions were the same as in Example 1.
  • the regenerated catalyst was evaluated for stability.
  • the stable operation time was calculated as a single-pass operation time with a conversion rate of ⁇ 90%.
  • Comparative Examples 4 to 7 the catalyst used and the evaluation reaction were the same as those in Examples 6 to 9, except that the deactivated catalyst was directly dried and calcined without being treated with an acid solution to obtain a regenerated catalyst.
  • the catalyst used was TS-1 molecular sieve, and the freshener was the same as in Example 1.
  • the reaction was the oxidation reaction of diethylamine and hydrogen peroxide, and t-butanol was used as the solvent.
  • the average residence time of the material is 60 minutes, the reaction temperature is 80 ⁇ 1 Torr, and the pressure is normal pressure.
  • the deactivated catalyst of the above reaction was taken for regeneration, and the regeneration conditions were the same as in Example 1.
  • the catalyst and evaluation reaction used in this comparative example are the same as in Example 10, except that the deactivated catalyst is directly dried and calcined without being treated with an acid solution to obtain a regenerated catalyst.
  • a titanium-supported silicon oxide catalyst (the preparation method is the same as that of EP 0347926 Example 6) was used to catalyze the reaction of cyclohexanone with ammonia and hydrogen peroxide.
  • the evaluation test process conditions were the same as those in Example 1.
  • the reaction deactivated catalyst was taken for regeneration, and the regeneration conditions were the same as in Example 1.
  • the catalyst used and its evaluation reaction were the same as in Example 11, except that the deactivated catalyst was directly dried and calcined without being treated with an acid solution. See Table 3 for stability evaluation results.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

一种含钛催化剂的再生方法 技术领域
本发明是关于一种催化剂的再生方法, 更进一步地说是关于一 种羰基化合物氨肟化或氮基化合物氧化反应中含钛催化剂的再生方 法。 背景技术
羰基化合物和羟胺反应是合成相应的肟化合物的主要方法。 例 如, 环己酮肟是生产 ε-己内酰胺的关键中间体, 己内跣胺是重要 的有机化工原料, 主要用作合成纤维和工程塑料(如尼龙 - 6)的单 体。 工业上约 91%的己内醜胺是经过环己酮肟路线生产的, 即环己 酮 -羟胺工艺。 此过程不仅工艺复杂、 生产流程长、 设备投资高, 而且因产生或使用 Ν0Χ、 30)(等而存在较严重的腐蚀和污染问题。
八十年代初, 意大利 Taramasso在 USP 4410501 中, 公开了 一种新型催化材料-钛硅分子筛, 它对烃、 醇、 酚等具有很好的选 择性氧化作用 (EP 0230949, USP 4480135, USP 4396783 ) , 它 应用于苯酴氧化制苯二酚已实现了工业化。
EP 0208311、 EP 0267362、 EP 0496385、 EP 0564040等相继 报道了在钛硅分子歸催化下, 由环己酮与氨、 过氧化氢进行氨肟化 反应一步制备环己酮肟的方法。 该方法反应条件温和、 目标产物收 率高, 而且具有工艺过程简单、 装置投资少、 三废少、 对环境友好 等特点。
此外, 其它含钛催化材料在氨肟化中的应用也有报道。 例如, 在 EP 0347926中报道了以负载于氧化硅上的氧化钛为催化剂的环 己酮氨肟化反应; J. Le Bars等在 Appl. Catal. A 136 (1996) P69, P. Wu等在 J. Catal.168 (1997) p.400中还报道了含 Ti的其它类型 分子筛(如 Ti-ZSM- 48、 Ti-β, Ti-MOR)等对多种醛、 酮化合物的氨 肟化反应。
氮基化合物和过氧化氢反应是合成相应羟胺的主要方法,在 USP 4918194、 USP 5320819中报道了钛硅分子筛或含钛无定形催化剂 对氮基化合物 (如仲胺、 氨等) 的氧化反应。
随着催化反应研究的逐步深入, 含钛催化剂, 特别是钛硅分子 筛在环己酮氨肟化合成环己酮肟反应中的稳定性问题引起重视。 EP 0496385报道, 反应过程中需采用定期取出失活催化剂并补充新鲜 剂的方法, 才能维持理想的催化活性。 如何延长钛硅分子筛的稳定 性已成为人们关注的焦点。
USP 4794198公开了将催化剂进行预处理的方法, 这样可提高 选择性,有助于延长稳定性。 P. Roff ia等在 Stud. Surf. Sci. Catal. 55 (1990)p.43中提出通过优化工艺条件, 如选择合适的溶剂、 提 高催化剂浓度和反应温度, 来强化催化反应速率, 减少非催化反应。 但通过上述方法延长催化剂的稳定性是有限的, 由于钛硅分子筛的 成本较高, 其失活后如何利用、 如何再生是必须解决的问题。
通常, 失活催化剂的再生方法有两种: 溶剂洗涤与焙烧。 在 Select i ve Oxidation by Heterogeneous Catalysis (2001, p.112) 书中, 指出环己酮氨肟化反应中钛硅分子筛的失活原因有三个: ( 1 )硅溶解、 ( 2 ) 钛迁移、 (3) 副产物堵孔, 并进一步指出可采 用叔丁醇洗涤的方法对副产物堵孔造成的失活催化剂进行再生, 但 是活性仅可部分恢复, 催化剂再生效果并不理想。
CN 1302693A中披露的一种再生方法, 是将预先煅烧的催化剂, 在无机氟化物存在的情况下, 在含水介质中用过氧化氢进行处理, 然后再进行热处理。 该方法中是以环己酮氨肟化制备环己酮肟中催 化剂的再生过程为例进行说明, 再生剂活性最高可恢复至新鲜剂的 84%, 并指出催化剂如果仅通过热处理 ( 550°C焙烧) 的方法再生, 再生剂活性仅恢复至新鲜剂的 31%。 但采用该方法再生剂的活性仍 未能完全恢复至新鲜剂水平, 而且该方法化学处理中使用易产生毒 性的氟化物, 具有一定的危害性。
CN 1290194A公开了一种催化剂的再生方法, 其实质在于对一 种基于二氧化钛或水合二氧化钛栽体上负载金的催化剂的再生, 具 体过程是将所述催化剂与水或与稀酸或与稀过氧化氢溶液接触, 再 生其催化活性。 专利中所述催化剂采用 "沉积一沉淀" 方法制备, 用于在气相中氧化不饱和烃;所述稀酸 pH为 4 -7.5,优选 pH 5.5 ~ 6的稀硫酸或氢氟酸。 以丙烯氧化反应为例, 采用该专利方法, 再 生剂活性最高可恢复至新鲜剂的 80%, 未能完全恢复至新鲜剂水平, 也未提及再生剂的稳定性如何。 发明内容
本发明的目的在于针对现有技术的不足, 提供一种再生剂可恢 复至新鲜剂的水平, 并且稳定性好的含钛催化剂的再生方法。
本发明提供的含钛催化剂的再生方法是在 pH≤3、 优选 pH≤l 的 酸性溶液中处理失活催化剂, 然后干燥和焙烧。
更具体地说, 本发明提供的方法是在 pH≤3、 优选 pH≤l 的酸性 溶液中处理失活催化剂, 其中催化剂在酸性溶液中的浓度为 1 ~20 重量%、优选为 3- 15重量%, 处理条件为在 50~10()TC、优选 70~ 90 下 0.5 ~ 6小时、 优选 1-4小时, 然后干燥和焙烧。
在本发明提供的再生方法中, 所说的酸性溶液选自硝酸、 硫酸、 盐酸、 磷酸等无机酸中的一种, 也可为前述无机酸与过氧化氢的混 合液, 在混合液中过氧化氢的浓度为 0~ 10重量%, 优选 0~5重量 所说的含钛催化剂可为钛硅分子筛或负载钛的复合催化材料, 所说的钛硅分子筛为原粉形式或成型形式, 选自 TS- 1、 TS-2、 Ti - ZSM-5、Ti -ZSM-12、Ti-ZSM-48、Ti-p、Ti -MCM- 41和 Ti-MOR 之一。
本发明所提供的再生方法, 尤其适用于羰基化合物的氨肟化反 应或氮基化合物的氧化反应中, 失活的含钛催化剂的再生。
所说的羰基化合物可以为环己酮、 丙酮、 曱乙酮、 环戊酮、 对 -羟基苯乙酮、 苯乙酮、 环十二碳酮、 糠醛、 苯甲醛或对甲基苯曱 醛等, 氮基化合物为仲胺和氨等。
本发明提供的含钛催化剂的再生方法, 再生效果显著, 再生剂 的活性、 选择性及稳定性均可恢复到新鲜剂的水平, 并可多次再生、 使用, 从而大大提高了催化剂的利用率, 降低催化剂单耗。
此外, 本发明提供的方法中, 不使用易产生毒性的氟化物, 原 料廉价易得, 工艺操作简便。 具体实施方式
下面通过的实施例对本发明做进一步说明。
在下述实施例和对比例中, 所用的钛硅分子筛 (TS - 1 ) , 由 岳阳建长股份公司生产; 环己酮(纯度≥99.5% )由北京化工厂提供, 双氧水(含 H202 27.5重量。 /。) 由天津东方化工厂提供; 氨(纯度 >99.9%) 由北京试验化工厂提供; 叔丁醇(含叔丁醇 86.5重量%, 其余为水及少量杂质)由北京平顺化工有限公司提供, 所用的其他 各种试剂如无特别说明, 皆由北京化工厂提供, 化学纯。
催化剂的再生效杲通过稳定性评价得出。
催化剂稳定性评价采用连续式淤浆床反应装置, 反应器体积
150ml, 磁力搅拌, 油浴加热。 反应原料及反应产物连续进出反应 器, 催化剂拦截在反应釜内。 反应产物用气相色谱法分析组成, 过 氧化氢转化率以碘量法测定其含量得到。
为短期内评价出催化剂的稳定性, 评价试验采用较为敏感的催 速失活工艺条件, 即与优化工艺条件相比, 在较高的进料空速、 较 低的温度和催化剂浓度下评价,该条件评价出的结果具有代表性, 可说明再生效果的好坏, 但在绝对数值上并不等于在优化工艺条件 下催化剂的稳定性数据。
实施例 1 ~ 5和对比例 1 ~ 3的评价试验中工艺参数如下, H202: 环己酮 = 1.10: 1 (摩尔比), 氨: 环己酮 = 1.70: 1 (摩尔比), 叔丁 醇: 环己酮 = 3.30: 1 (摩尔比), 催化剂浓度为 1.8重量%, 物料平 均停留时间为 72分钟, 反应温度为 76±11C, 压力为常压。
催化剂稳定运转时间以环己酮转化率≥97 %的单程运转时间计。 采用新鲜催化剂进行稳定性评价, 结果见表 1。 实施例 1
所用失活催化剂为新鲜催化剂经评价试验稳定运转 40小时后 的失活样品。
将 4. 5克失活样品与 9 0克 5%稀硝酸混合,于 85 C搅拌 2小时, 过滤, 固体用去离子水反复沖洗, 120°C干燥后, 于 560°C焙烧 6 小时, 获得再生催化剂。
将上述再生催化剂进行稳定性评价, 结果见表 1 实施例 2
所用失活催化剂为实施例 1 中的再生催化剂, 再经稳定运转 42 小时的失活样品, 即对同一催化剂进行第二次再生试验。
再生方法同实施例 1, 稳定性评价结果见表 1 对比例 1
本对比例所用失活催化剂与实施例 1相同。
与实施例 1不同之处在于, 失活催化剂不经酸性溶液处理, 直 接干燥、 焙烧, 获得再生催化剂, 稳定性评价结果见表 1 对比例 2
本对比例所用失活催化剂与实施例 1相同。
与实施例 1不同之处在于, 失活催化剂先经焙烧, 再进行酸性 溶液处理和焙烧 (方法同实施例 1 ) 获得再生催化剂, 稳定性评价 结果见表 1 对比例 3
本对比例所用失活催化剂与实施例 1相同。
将 4. 0克失活样品与 200克 0. 0005%稀硫酸( pH为 4 ) 混合, 于 70 C搅拌 3小时, 过滤, 固体用去离子水反复沖洗, 120 C干燥 后, 于 56 0°C焙烧 6小时, 获得再生催化剂, 其稳定性评价结果见 表 1 表 1
Figure imgf000007_0001
从表 1可以看出: 仅采用焙烧的方法 (对比例 1 ) 或采用先焙 烧、 再酸性溶液处理和焙烧的方法 (对比例 2 )再生催化剂, 虽然 再生剂的活性、 选择性可恢复, 但其稳定性并未恢复至新鲜剂的水 平; 而采用酸性溶液处理和焙烧的方法再生催化剂, 若酸浓度过低
( pH为 4 ) (对比例 3), 亦不能获得理想的再生效果, 而采用本发 明的方法, 再生剂的活性、 选择性、 稳定性均可恢复至新鲜剂水平
(实施例 1 ) , 而且催化剂可多次再生、 使用 (实施例 2 ) 。 实施例 3
所用失活催化剂与实施例 1相同。
将失活样品 4. 5克与 40克 3%稀盐酸、 5克 27. 5重量%双氧水 混合, 于 75。C搅拌 2小时, 过滤, 固体用去离子水反复冲洗, 120。C 干燥后, 于 560°C焙烧 6小时, 获得再生催化剂, 其稳定性评价结 实施例 4
所用失活催化剂与实施例 1相同。
将失活样品 4. 5克与 90克 1 0%稀磷酸、 5克 27. 5重量%双氧水 混合, 于 80。C搅拌 1小时, 过滤, 固体用去离子水反复冲洗, 120。C 干燥后, 于 560°C焙烧 6小时, 获得再生催化剂, 其稳定性评价结
实施例 5
所用新鲜催化剂与实施例 1相同, 不同之处在于是在优化的工 艺条件范围下, 稳定运转 4 00小时后的失活样品。
将上述失活样品 15 0克与 1 000克 5%稀硝酸混合, 于 90°C搅拌 3小时, 过滤, 固体用去离子水反复冲洗, 120 TC干燥后, 于 560°C 焙烧 6小时, 获得再生催化剂, 其稳定性评价结果见表 2。 表 2
Figure imgf000008_0001
从表 2可以看出, 再生剂的活性、 选择性、 稳定性均可恢复至 新鲜剂水平。 实施例 6 ~ 9
以 Ti -MOR(Si/Al = 300, 以 J. Catal.168 (1997) p.400中记载 的方法制备)为催化剂, 实施例 6 ~ 9分别是以丙酮、 环戊酮、 苯曱 醛、 对甲基苯曱醛为原料与氨、 过氧化氢进行氨肟化反应的过程, 以水为溶剂, 评价试验工艺条件如下, H202 : 酮 (醛) = 1.15: 1(摩 尔比), 氨: 酮 (醛) = 2.0: 1 (摩尔比), 水: 酮 (酪) = 8: 1 (体 积比), 催化剂浓度为 3.0重量%, 物料平均停留时间为 120分钟, 反应温度为 60±1 TC , 压力为常压。
取上述反应的失活催化剂进行再生, 再生条件同实施例 1。
将再生后的催化剂进行稳定性评价, 这些实施例中, 所说的稳 定运转时间以转化率≥90 %的单程运转时间计。
结果见表 3。 对比例 4 - 7
对比例 4 ~ 7, 所用催化剂及评价反应同实施例 6 ~ 9, 不同之 处在于失活催化剂不经酸性溶液处理, 直接干燥、 焙烧, 获得再生 催化剂。
稳定性评价结果见表 3。 实施例 10
所用催化剂为 TS - 1分子筛, 新鲜剂同实施例 1, 反应为二乙 胺与过氧化氢的氧化反应, 以叔丁醇为溶剂, 评价试验工艺条件如 下, H202 : 胺 =1.1: 1 (摩尔比), 叔丁醇: 胺 = 5: 1(摩尔比), 催 化剂浓度为 2.5重量。 /。, 物料平均停留时间为 60分钟, 反应温度为 80±1Ό, 压力为常压。
取上述反应的失活催化剂进行再生, 再生条件同实施例 1。
将再生后的催化剂进行稳定性评价, 稳定运转时间以转化率≥90 %的单程运转时间计, 结果见表 3。 对比例 8
本对比例所用催化剂及评价反应同实施例 1 0, 不同之处在于失 活催化剂不经酸性溶液处理, 直接干燥、 焙烧, 获得再生催化剂。
稳定性评价结果见表 3。 实施例 11
采用负载钛的氧化硅催化剂 (制备方法同 EP 0347926 实施例 6 ), 催化环己酮与氨、 过氧化氢的反应, 评价试验工艺条件同实施 例 1。
取反应的失活催化剂进行再生, 再生条件同实施例 1。
将再生后的催化剂进行稳定性评价, 结果见表 3。 对比例 9
所用催化剂及其评价反应同实施例 11, 不同之处在于失活催化 剂不经酸性溶液处理, 直接干燥和焙烧。 稳定性评价结果见表 3。
表 3
Figure imgf000011_0001
从表 3 可以看出, 对比例采用焙烧的方法再生催化剂, 再生剂 的稳定性仅恢复至新鲜剂的 65 ~ 75%, 而采用本发明提供的方法, 再生剂的稳定性均可基本恢复至新鲜剂水平。

Claims

权 利 要 求
1、 一种含钛催化剂的再生方法, 其特征在于该方法是在 pH≤3 的酸性溶液中处理失活催化剂, 然后干燥和焙烧。
2、 按照权利要求 1 所说的方法, 其特征在于, 失活催化剂在 酸性溶液中的浓度为 1 ~ 20重量%,处理在 50 ~ 100 下进行 0.5 - 6小时。
3、 按照权利要求 2 所说的方法, 其特征在于, 失活催化剂在 酸性溶液中的浓度为 3~15 重量%, 处理在 70~90。C下进行 1 - 4 小时。
4、 按照权利要求 1 所述的方法, 其特征在于所说的含钛催化 剂为钛硅分子筛。
5、 按照权利要求 1 所述的方法, 其特征在于所说的含钛催化 剂为负载钛的复合催化材料。
6、 按照权利要求 4 所述的方法, 其特征在于所说的钛硅分子 筛选自 TS-1、 TS-2、 Ti -ZSM- 5, Ti - ZSM- 12、 Ti-ZSM-48> Ti-β, Ti -MCM-41和 Ti-MOR之一。
7、 按照权利要求 4 所述的方法, 其特征在于所说的钛硅分子 筛为原粉的形式或成型的形式。
8、 按照权利要求 1 所述的方法, 其特征在于所说的酸性溶液 为无机酸与过氧化氢的混合液, 混合液中过氧化氢的浓度 0- 10重
9、 按照权利要求 8 所述的方法, 其特征在于所说的无机酸选 自硝酸、 硫酸、 盐酸和磷酸中的一种。
10、 按照权利要求 8 所述的方法, 其特征在于所说的混合液中 过氧化氢的浓度为 0~5重量%。
11、 按照权利要求 1 所述的方法, 其特征在于所说的含钛催化 剂为羰基化合物氨肟化催化剂。
12、 按照权利要求 11 所述的方法, 其特征在于所说的羰基化 合物选自环己酮、 丙酮、 甲乙酮、 环戊酮、 对-羟基苯乙酮、 苯乙 酮、 环十二碳酮、 糠醛、 苯曱醛和对甲基苯甲醛的一种。
1 3、 按照权利要求 1 所述的方法, 其特征在于所说的含钛催化 剂为氮基化合物氧化催化剂。
14、 按照权利要求 1 所述的方法, 其特征在于所说的酸性溶液 的 pH≤l。
PCT/CN2003/000422 2002-05-31 2003-05-30 Procede pour regenerer un catalyseur contenant du titane WO2003101616A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004508958A JP4772326B2 (ja) 2002-05-31 2003-05-30 チタン含有触媒の再生方法
AU2003246095A AU2003246095A1 (en) 2002-05-31 2003-05-30 A process for regenerating catalyst containing titanium
EP03737833.8A EP1552886B1 (en) 2002-05-31 2003-05-30 A process for regenerating catalyst containing titanium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN02120784.4 2002-05-31
CN02120784 2002-05-31

Publications (2)

Publication Number Publication Date
WO2003101616A1 true WO2003101616A1 (fr) 2003-12-11
WO2003101616A8 WO2003101616A8 (fr) 2005-01-06

Family

ID=29589499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2003/000422 WO2003101616A1 (fr) 2002-05-31 2003-05-30 Procede pour regenerer un catalyseur contenant du titane

Country Status (6)

Country Link
US (1) US7384882B2 (zh)
EP (1) EP1552886B1 (zh)
JP (1) JP4772326B2 (zh)
AU (1) AU2003246095A1 (zh)
TW (1) TWI276465B (zh)
WO (1) WO2003101616A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110152726A (zh) * 2019-05-28 2019-08-23 江苏扬农化工集团有限公司 一种hppo工艺中失活钛硅分子筛催化剂的再生方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4534428B2 (ja) * 2003-04-09 2010-09-01 住友化学株式会社 シクロヘキサノンオキシムの製造方法
JP4917549B2 (ja) 2005-01-14 2012-04-18 ダウ グローバル テクノロジーズ エルエルシー チタノシリケートの再生、及び活性な酸化触媒の再構成
ES2358517T3 (es) 2005-12-16 2011-05-11 Evonik Energy Services Gmbh Procedimiento de tratamiento de catalizadores de gas de humo.
DE102007020855A1 (de) 2007-05-02 2008-11-06 Evonik Energy Services Gmbh Verfahren zum Reinigen von Rauchgasen aus Verbrennungsanlagen
JP5495001B2 (ja) * 2007-06-27 2014-05-21 バブコック日立株式会社 触媒の再生方法
US7723251B2 (en) * 2008-03-11 2010-05-25 Evonik Energy Services Llc Method of regeneration of SCR catalyst
US7741239B2 (en) * 2008-03-11 2010-06-22 Evonik Energy Services Llc Methods of regeneration of SCR catalyst poisoned by phosphorous components in flue gas
US20110015055A1 (en) * 2009-07-17 2011-01-20 Cooper Michael D Method for removing a catalyst inhibitor from a substrate
CN102188994A (zh) * 2011-03-24 2011-09-21 欧颖 一种钛硅分子筛催化剂的再生方法
KR20150036632A (ko) 2012-07-19 2015-04-07 인비스타 테크놀러지스 에스.에이 알.엘. 수소화 촉매의 재생
EP2859946A1 (en) * 2013-10-11 2015-04-15 Repsol, S.A. Process for regenerating heterogeneous epoxidation catalysts and their use to catalyze epoxidation reactions
CN110075914A (zh) * 2019-05-28 2019-08-02 江苏扬农化工集团有限公司 一种hppo工艺失活钛硅分子筛催化剂器内再生的方法
CN112158856B (zh) * 2020-08-25 2021-11-19 郑州大学 一种制备Ti-MWW分子筛的方法
CN114229863B (zh) * 2021-11-30 2023-01-13 中国矿业大学 一种Ti-Beta分子筛的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1107495A (en) * 1966-01-15 1968-03-27 Knapsack Ag Process for regenerating palladium carrier catalysts for use in the manufacture of vinyl acetate
WO1998000413A1 (en) * 1996-07-01 1998-01-08 The Dow Chemical Company Process for the direct oxidation of olefins to olefin oxides
CN1290194A (zh) * 1998-02-06 2001-04-04 拜尔公司 再生涂布有金粒的用于氧化不饱和烃的载体上的催化剂的方法

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2869986A (en) * 1955-03-31 1959-01-20 Shell Dev Recovery of tungstic catalysts
US3943051A (en) * 1974-05-17 1976-03-09 Union Oil Company Of California Hydrocarbon conversion processes utilizing rejuvenated zeolite catalysts
US4072628A (en) * 1974-11-05 1978-02-07 Ici Americas Inc. Regeneration of supported ruthenium catalyst
JPS5924662B2 (ja) * 1977-11-12 1984-06-11 日東化学工業株式会社 アンチモン含有酸化物触媒の再生法
US4268415A (en) * 1978-09-01 1981-05-19 Exxon Research & Engineering Co. Regeneration of spent hydrodesulfurization catalysts with heteropoly acids and hydrogen peroxide
IT1127311B (it) * 1979-12-21 1986-05-21 Anic Spa Materiale sintetico,cristallino,poroso costituito da ossidi di silicio e titanio,metodo per la sua preparazione e suoi usi
US4290920A (en) * 1979-12-28 1981-09-22 The Standard Oil Co. Sb-containing catalysts by Sb-oxide impregnation
IT1195029B (it) * 1980-09-09 1988-09-28 Anic Spa Procedimento per la ossidrilazione di idrocarburi aromatici
IT1152298B (it) * 1982-07-28 1986-12-31 Anic Spa Procedimento per l'ossidazione di alcooli ad aldeidi e/o chetoni
IT1214622B (it) 1985-07-10 1990-01-18 Montedipe Spa Processo catalitico per laproduzione di cicloesanonossima.
DE3780476T2 (de) 1986-01-28 1992-12-17 Enichem Sintesi Verfahren zur epoxydation von olefinischen verbindungen.
US4794198A (en) 1986-11-14 1988-12-27 Montedipe S.P.A. Catalytic process for the manufacture of oximes
JP2583911B2 (ja) * 1987-10-26 1997-02-19 バブコツク日立株式会社 窒素酸化物除去用触媒
IT1223330B (it) * 1987-10-29 1990-09-19 Montedipe Spa Processo per la sintesi di una n n dialchil idrossilammina
IT1217899B (it) 1988-06-23 1990-03-30 Montedipe Spa Processo catalitico per la produzione di ossime
JPH0356142A (ja) * 1989-07-25 1991-03-11 Mitsui Toatsu Chem Inc エチレンアミン類製造用触媒の再生法
IT1244680B (it) 1991-01-23 1994-08-08 Montedipe Srl Processo a piu' stadi per l'ammossimazione in fase liquida dei composti carbonilici
IT1252047B (it) * 1991-07-10 1995-05-29 Enichem Anic Processo catalitico diretto per la produzione di idrossilammina
IT1255745B (it) 1992-04-01 1995-11-15 Enichem Anic Srl Processo in due stadi per la produzione in fase liquida di ossime
AU1731195A (en) * 1994-01-27 1995-08-15 Engelhard Corporation Process for recovering catalyst supports
DE4406588A1 (de) 1994-03-01 1995-09-07 Solvay Deutschland Verfahren zur katalytischen Behandlung von Abwasser sowie ein Verfahren zur Regenerierung eines Katalysators
JP3495475B2 (ja) * 1995-10-17 2004-02-09 三菱重工業株式会社 窒素酸化物除去触媒
BE1010717A3 (fr) * 1996-10-25 1998-12-01 Solvay Procede de regeneration de catalyseurs.
JP3377715B2 (ja) * 1997-02-27 2003-02-17 三菱重工業株式会社 脱硝触媒の再生方法
US6395665B2 (en) * 1998-07-24 2002-05-28 Mitsubishi Heavy Industries, Ltd. Methods for the regeneration of a denitration catalyst
IT1314189B1 (it) * 1999-10-18 2002-12-06 Enichem Spa Procedimento per la rigenerazione di catalizzatori zeoliticicontenenti titanio
US6861383B2 (en) * 2000-01-20 2005-03-01 Shell Oil Company Catalyst support material and use thereof
US6764662B2 (en) * 2002-06-20 2004-07-20 Conocophillips Company Recover and recycle rhodium from spent partial oxidation catalysts

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1107495A (en) * 1966-01-15 1968-03-27 Knapsack Ag Process for regenerating palladium carrier catalysts for use in the manufacture of vinyl acetate
WO1998000413A1 (en) * 1996-07-01 1998-01-08 The Dow Chemical Company Process for the direct oxidation of olefins to olefin oxides
CN1290194A (zh) * 1998-02-06 2001-04-04 拜尔公司 再生涂布有金粒的用于氧化不饱和烃的载体上的催化剂的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110152726A (zh) * 2019-05-28 2019-08-23 江苏扬农化工集团有限公司 一种hppo工艺中失活钛硅分子筛催化剂的再生方法

Also Published As

Publication number Publication date
TW200425954A (en) 2004-12-01
JP4772326B2 (ja) 2011-09-14
AU2003246095A8 (en) 2003-12-19
US7384882B2 (en) 2008-06-10
JP2006520676A (ja) 2006-09-14
WO2003101616A8 (fr) 2005-01-06
AU2003246095A1 (en) 2003-12-19
TWI276465B (en) 2007-03-21
EP1552886A4 (en) 2011-02-02
EP1552886A1 (en) 2005-07-13
EP1552886B1 (en) 2020-05-06
US20030228970A1 (en) 2003-12-11

Similar Documents

Publication Publication Date Title
WO2003101616A1 (fr) Procede pour regenerer un catalyseur contenant du titane
Xu et al. Distinctions of hydroxylamine formation and decomposition in cyclohexanone ammoximation over microporous titanosilicates
CN105665002B (zh) 一种失活钛硅分子筛催化剂的再生方法
JP2000229939A (ja) ε−カプロラクタムの製造方法
CN103896302B (zh) 一种硅分子筛及其制备方法
TWI324990B (en) Method for producing cyclohexanone oxime
JP2010195835A (ja) カルボニル化合物のアンモオキシム化法
CN1212195C (zh) 一种含钛催化剂的再生方法
CN109126864A (zh) 失活钛硅分子筛催化剂的再生方法
JP4808308B2 (ja) チタンを含有するゼオライト系触媒の再生方法
TW201219354A (en) Method for manufacturing cyclohexanone oxime
CN109593033B (zh) 一种环己酮氧化的方法
EP1674450B1 (en) Process for producing cyclohexanone oxime
CN110465328A (zh) 酮的肟化方法
WO2003101616A9 (zh)
JP2005528439A5 (zh)
CN109592694B (zh) 钛硅分子筛及其制备方法和应用以及苯酚羟基化方法
WO2012146144A1 (zh) 一种环己烷氧化的方法
CN107986987B (zh) 一种环己醇氨氧化的方法
CN109746041B (zh) 一种Ti-MWW分子筛的改性方法以及环十二酮肟的制备方法
CN101455981B (zh) 一种改进的含钛催化剂的再生方法
JP3969078B2 (ja) ペンタシル型ゼオライトの製造方法およびε−カプロラクタムの製造方法
CN103025708B (zh) 羰基化合物氨肟化的催化方法
JP2007001952A (ja) オキシムの製造方法
CN110128250B (zh) 制备环己酮的方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004508958

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2003737833

Country of ref document: EP

CFP Corrected version of a pamphlet front page

Free format text: UNDER (71) REPLACE "CHINA PETROLEUM & CHEMICAL CORPORATION" BY"CHINA PETROLEUM & CHEMICAL CORPORATION" IN CHINESE/ENGLISH CORRECT

WWP Wipo information: published in national office

Ref document number: 2003737833

Country of ref document: EP

COP Corrected version of pamphlet

Free format text: PAGE 2 IN ENGLISH, INTERNATIONAL SEARCH REPORT, REPLACED BY A NEW PAGE 2 IN ENGLISH