WO2012146144A1 - 一种环己烷氧化的方法 - Google Patents
一种环己烷氧化的方法 Download PDFInfo
- Publication number
- WO2012146144A1 WO2012146144A1 PCT/CN2012/074278 CN2012074278W WO2012146144A1 WO 2012146144 A1 WO2012146144 A1 WO 2012146144A1 CN 2012074278 W CN2012074278 W CN 2012074278W WO 2012146144 A1 WO2012146144 A1 WO 2012146144A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cyclohexane
- molecular sieve
- titanium
- nitrile
- organic solvent
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/89—Silicates, aluminosilicates or borosilicates of titanium, zirconium or hafnium
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C29/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
- C07C29/48—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by oxidation reactions with formation of hydroxy groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2601/00—Systems containing only non-condensed rings
- C07C2601/12—Systems containing only non-condensed rings with a six-membered ring
- C07C2601/14—The ring being saturated
Definitions
- This invention relates to a process for the oxidation of cyclohexane. Background technique
- cyclohexanone and cyclohexanol are widely used in various fields such as fiber, synthetic rubber, industrial coatings, medicines, pesticides, and organic solvents.
- cyclohexanone and cyclohexanol which are intermediates for the preparation of nylon 6 and nylon 66, currently have a total annual demand of more than 2 million tons.
- titanium silicalite there are many factors influencing the oxidation of cyclohexane by titanium silicalite, such as the nature of titanium silicalite itself, the nature of oxidant hydrogen peroxide H 2 0 2 , the choice of solvent, the reaction conditions (such as temperature, raw material ratio, reaction pressure, etc. Etc., in order to improve the selectivity of cyclohexanone in the oxidation of cyclohexane, the researchers are mainly devoted to the development of more efficient titanium-silicon molecular sieve catalysts (such as the hollow titanium-silicon molecular sieve HTS with MFI structure developed by the petrochemical research institute). And optimizing the reaction conditions in the process to achieve the aforementioned objectives.
- solvents are mainly through electronic effects, steric effects, solvent polarity, physical diffusion and distribution, solvents.
- Various factors such as oxidation side reaction, catalyst deactivation and solubility affect the reaction.
- Many researchers have studied the solvent effects of propylene epoxidation and cyclohexanone ammoximation.
- Some researchers have pointed out that methanol and other protic solvents are effective solvents for epoxidation of propylene and other low-carbon olefins.
- the object of the present invention is to provide a cyclohexane conversion rate in order to overcome the defects of cyclohexane conversion rate and low cyclohexanol yield in the process of catalytic oxidation of cyclohexane in the titanium silicon molecular sieve/H 2 O 2 system of the prior art.
- cyclohexane oxidation is divided into two steps. The first step is the oxidation of cyclohexane to cyclohexanol, and the second step is the oxidation of cyclohexanol.
- the yield of hexanone, and the hydrogen resource can be generated during the dehydrogenation process, and the process of avoiding the oxidation of cyclohexanol to cyclohexanone can also be carried out under the catalysis of expensive titanium silicalite and consume twice as much hydrogen peroxide. This can significantly reduce production costs. Therefore, the inventors of the present invention have broken the mindset of the prior art, and in the case where it is difficult to further increase the yield of cyclohexanone by oxidation of cyclohexane in the titanium silicalite/H 2 O 2 system, efforts are made to improve the cyclohexane.
- the yield of alkoxylation to cyclohexanol can be followed by a mature dehydrogenation technique to obtain cyclohexanone at a low cost and in high yield.
- the present invention provides a method for oxidizing cyclohexane, the method comprising: contacting an aqueous solution of cyclohexane, hydrogen peroxide or hydrogen peroxide with a titanium silicalite catalyst in an organic solvent under an oxidation reaction condition, wherein The organic solvent is a nitrile and/or a halogenated hydrocarbon.
- the inventors of the present invention unexpectedly discovered during the course of the research that by using a nitrile and/or a halogenated hydrocarbon as a solvent, under other conditions being substantially the same, it is possible to use a ketone, an alcohol or an acid more than the existing ones.
- a ketone an alcohol or an acid more than the existing ones.
- cyclohexane conversion and cyclohexanol yield are much higher, for example, cyclohexane conversion of Examples 1-9 of the present invention.
- the ratio is 1.5-1.67 times of the conversion of cyclohexane of Comparative Example 1,
- the alcohol yield was 3.3-4.7 times the yield of cyclohexanol of Comparative Example 1.
- the inventors of the present invention have unexpectedly discovered during the research that the titanium silicon molecular sieve/H 2 O 2 oxidation system using nitrile and/or halogenated hydrocarbon as an organic solvent is advantageous for subsequent separation, thereby further saving industrial application process. Production costs in the middle.
- the method for oxidizing cyclohexane of the present invention comprises: contacting cyclohexane, hydrogen peroxide or an aqueous hydrogen peroxide solution with a titanium silicalite catalyst in an organic solvent under an oxidation reaction condition, wherein the organic solvent is a nitrile and / or halogenated hydrocarbons.
- the titanium-silicon molecular sieve catalyst in the present invention may be provided by a titanium-silicon molecular sieve or a formed titanium-silicon molecular sieve catalyst, and may be selected according to a specific reaction form, which is a technique well known to those skilled in the art and will not be described herein.
- the present invention has no particular requirement for the concentration of the aqueous hydrogen peroxide solution, i.e., hydrogen peroxide, and may be hydrogen peroxide at a concentration of 20 to 80% by weight, and may be, for example, commercially available 27.5 wt%, 50 wt%, or 70 wt% hydrogen peroxide.
- the oxidation reaction conditions may be conventional oxidation conditions using a titanium silicalite/H 2 O 2 system to catalyze the oxidation of cyclohexane, generally including cyclohexane, hydrogen peroxide, water, titanium silicalite catalysts and
- the mass ratio of the organic solvent is 1:0.003-5:0.15-3:0.1-15:0.5-30, preferably 1:0.03-2:0.5-2:0.5-5:3-15;
- the temperature of the contact is 30- 150 ° C, preferably 50-12 CTC; contact pressure is 0.01-2 MPa, preferably 0.1-0.5 MPa; contact time is 0.1-10 h, preferably l-5 h.
- the pressure refers to the gauge pressure in the reaction system.
- the inventors of the present invention unexpectedly discovered during the research that when the nitrile and the halogenated hydrocarbon are mixed as an organic solvent, the conversion of cyclohexane and the yield of cyclohexanol can be further improved, that is, a particularly preferred case.
- the organic solvent is a mixture of a nitrile and a halogenated hydrocarbon, preferably a mass ratio of the nitrile to the halogenated hydrocarbon of from 0.1 to 10:1.
- the temperature of the contact is preferably from 50 to 120 ° C, more preferably from 60 to 11 CTC, and the yield of cyclohexanol is remarkably improved.
- the reaction system of the two solvents may cause trouble for the subsequent separation work, and therefore, generally, according to Whether the specific targets in specific industrial production are selected or not, it is necessary to use two solvents for reaction, such as in production.
- the reaction may be carried out under the reaction system of the above two solvents, and conversely, if the overall process requires stricter separation process, the preferred one may be selected.
- the reaction is carried out under a solvent system, which will be known to those skilled in the art, and will not be further described herein.
- the nitrile is a C1-C10 mononitrile and/or a dibasic nitrile, preferably a C2-C8 mononitrile and/or Or a dibasic nitrile, further preferably, the nitrile is one or more of acetonitrile, propionitrile, valeronitrile, and adiponitrile, preferably acetonitrile and/or adiponitrile;
- the halogenated hydrocarbon is a / or a plurality of C1-C10 alkanes substituted with the same or different halogen atoms and / or substituted by one and / or a plurality of the same or different halogen atoms C6-C10 cycloalkane, further preferably C1-C6 dichloride Alkane and/or trichloroalkane, more preferably dichloride
- the inventors of the present invention have found that when the solvent is a nitrile, the temperature of the contact is preferably 60-12 CTC, the conversion of cyclohexane and the yield of cyclohexanol can be further improved; or when the solvent is In the case of a halogenated hydrocarbon, when the temperature of the contact is 50-9 CTC, the conversion of cyclohexane and the yield of cyclohexanol can be further improved.
- the titanium silicon molecular sieve in the titanium silicon molecular sieve catalyst may be a conventional titanium silicon molecular sieve, which may be modified or unmodified, preferably an MFI structure titanium silicon molecular sieve (such as TS-1). At least one of a titanium-silicon molecular sieve of a MEL structure (such as TS-2) and a titanium-silicon molecular sieve of a BETA structure (such as Ti- ⁇ ); more preferably having a structural formula of xTiO Si0 2 , wherein X is 0.0001-0.04, A titanium silicon molecular sieve of preferably 0.01 to 0.03, more preferably 0.015 to 0.025.
- the titanium silicon molecular sieve is commercially available or can be prepared, and a method for preparing the titanium silicon molecular sieve is known to those skilled in the art.
- a method for preparing the titanium silicon molecular sieve is known to those skilled in the art.
- the titanium silicon molecular sieve in the titanium silicon molecular sieve catalyst is an MFI structure
- the titanium silicon molecular sieve crystal grain is a hollow structure
- the hollow portion of the hollow structure has a radial length of 5 to 300 nm
- the titanium silicon Molecular sieves at 25.
- C, P/Po 0.10
- the adsorption amount of benzene measured under the condition of adsorption time of 1 hour is not less than 70 mg/g, and there exists between the adsorption isotherm of low temperature nitrogen adsorption and the desorption isotherm of the titanium silicon molecular sieve.
- Hysteresis loop with the above structure and properties
- the qualitative titanium silicalite molecular sieve is generally referred to as a hollow titanium silicon molecular sieve, which is commercially known as HTS.
- HTS hollow titanium silicon molecular sieve
- the relevant parameters and preparation methods thereof can be referred to CN1301599A.
- the reagents used in the comparative examples and the examples were all commercially available chemically pure reagents.
- the benzene adsorption amount was 78 mg/g measured under the conditions, and the titanium oxide content was 2.5% by weight.
- the conventional titanium silicon molecular sieve (TS-1) used in Example 14 is according to the literature [Cyclohexane Oxidation Catalyzed by Titanium Silicalite (TS-1) With Hydrogen Peroxide Journal of Natural Gas Chemistry 2001, 10(4): 295-307].
- the (TS-1) molecular sieve sample prepared by the method described in lines 9-24 on page 296 has a titanium oxide content of 2.5% by weight.
- the analysis of each component in the system by gas chromatography and the quantification by the calibration normalization method can be carried out by referring to the prior art, on the basis of which the conversion rate of the reactant, the yield and selectivity of the product, etc. are calculated. Evaluation indicators.
- the lg hollow titanium silicon molecular sieve HTS was weighed into a 250 ml three-necked glass vial, and lg cyclohexane, 1.72 g of hydrogen peroxide (27.5 wt%) and 15 g of 1,2-dichloropropane were added to the vessel. Place the three vials in a constant temperature oil bath controlled at 60 °C and place the oil bath on a temperature controlled magnetic stirrer. The magnetic stirring was started, the reaction was started, and the reaction was stopped after 3 hours of reaction.
- the conversion of cyclohexane, the total selectivity of ketol and the yield of cyclohexanol are shown in Table 1.
- the lg hollow titanium silicon molecular sieve HTS was weighed into a 250 ml three-necked glass vial, and lg cyclohexane, 1.72 g of hydrogen peroxide (27.5 wt%) and 5 g of 1,4-dichloropentane were added to the vessel. Place the three vials in a constant temperature oil bath controlled at 80 °0 and place the oil bath on a temperature controlled magnetic stirrer. Magnetic stirring was started, the reaction was started, and the reaction was stopped after 1 hour of reaction. The conversion of cyclohexane, the total selectivity of ketol and the yield of cyclohexanol are shown in Table 1.
- the lg hollow titanium silicon molecular sieve HTS was weighed into a 250 ml three-necked glass vial, and lg cyclohexane, 1.72 g of hydrogen peroxide (27.5 wt%) and 10 g of adiponitrile were added to the vessel. Place the three vials in a constant temperature oil bath controlled at 110 ° C. The oil bath is placed on a temperature controlled magnetic stirrer. The magnetic stirring was started, the reaction was started, and the reaction was stopped after 2 hours of reaction. The conversion of cyclohexane, the total selectivity of ketol and the yield of cyclohexanol are shown in Table 1.
- the lg hollow titanium silicon molecular sieve HTS was weighed into a 250 ml three-necked glass vial, and lg cyclohexane, 1.72 g of hydrogen peroxide (27.5 wt%) and 10 g of acetonitrile were added to the vessel. Place the three vials in a constant temperature oil bath controlled at 70 ° C and place the oil bath on a temperature controlled magnetic stirrer. The magnetic stirring was started, the reaction was started, and the reaction was stopped after 4 hours of reaction.
- the conversion of cyclohexane, the total selectivity of ketol and the yield of cyclohexanol are shown in Table 1.
- Example 6 The procedure was the same as in Example 1, except that the solvent was chloroform and the reaction temperature was 50 °C.
- Example 6 The procedure was the same as in Example 1, except that the solvent was chloroform and the reaction temperature was 50 °C.
- Example 8 The procedure was the same as in Example 1, except that the solvent was 1,1,5-trichloropentane and the reaction temperature was 90 °C. The same procedure as in Example 1, except that the solvent 1,2-dichloropropane 15 g was replaced by 1,2-dichloropropane (7.5 g) + adiponitrile (7.5 g), the conversion of cyclohexane, The total selectivity of ketol and the yield of cyclohexanol are shown in Table 1.
- Example 8 The total selectivity of ketol and the yield of cyclohexanol are shown in Table 1.
- Example 9 The same procedure as in Example 3 except that the solvent adiponitrile 10 g was replaced by 1,2-dichloropropane (lg) + adiponitrile (9 g), the conversion of cyclohexane, the total selectivity of keto alcohol and the ring. The yield of hexanol is shown in Table 1.
- Example 9 The same procedure as in Example 3 except that the solvent adiponitrile 10 g was replaced by 1,2-dichloropropane (lg) + adiponitrile (9 g), the conversion of cyclohexane, the total selectivity of keto alcohol and the ring. The yield of hexanol is shown in Table 1.
- Example 9 The same procedure as in Example 3 except that the solvent adiponitrile 10 g was replaced by 1,2-dichloropropane (lg) + adiponitrile (9 g), the conversion of cyclohexane, the total selectivity of keto alcohol and the ring. The yield of hex
- Example 10 Same as the method of Example 4, except that 10 g of solvent acetonitrile was replaced by acetonitrile (lg) + 1,4-dichloropentane (9 g), conversion of cyclohexane, total selectivity of keto alcohol and cyclohexanol The rate is shown in Table 1.
- Example 10
- Example 11 The procedure was the same as in Example 1, except that the reaction temperature was ioo °c, the conversion of cyclohexane, the total selectivity of ketol and the yield of cyclohexanol are shown in Table 1.
- Example 11 The procedure was the same as in Example 1, except that the reaction temperature was ioo °c, the conversion of cyclohexane, the total selectivity of ketol and the yield of cyclohexanol are shown in Table 1.
- Example 12 The procedure was the same as in Example 3 except that the reaction temperature was 130 ° C, and the conversion of cyclohexane, the total selectivity of ketol and the yield of cyclohexanol are shown in Table 1.
- Example 12 The procedure was the same as in Example 3 except that the reaction temperature was 130 ° C, and the conversion of cyclohexane, the total selectivity of ketol and the yield of cyclohexanol are shown in Table 1.
- Example 13 The procedure was the same as in Example 1, except that the solvent 1,2-dichloropropane was replaced by 1-chloropropane, and the conversion of cyclohexane, the total selectivity of ketol and the yield of cyclohexanol are shown in Table 1.
- Example 13 The procedure was the same as in Example 1, except that the solvent 1,2-dichloropropane was replaced by 1-chloropropane, and the conversion of cyclohexane, the total selectivity of ketol and the yield of cyclohexanol are shown in Table 1.
- Example 13 The procedure was the same as in Example 1, except that the solvent 1,2-dichloropropane was replaced by 1-chloropropane, and the conversion of cyclohexane, the total selectivity of ketol and the yield of cyclohexanol are shown in Table 1.
- Example 13 The procedure was the same as in Example 1, except that the solvent 1,2-dichloropropane was replaced by 1-chloropropane,
- Example 14 The procedure was the same as in Example 2 except that the solvent 1,4-dichloropentane was replaced by 1-chloropentane.
- the conversion of cyclohexane, the total selectivity of ketol and the yield of cyclohexanol are shown in Table 1.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Catalysts (AREA)
Description
一种环己浣氧化的方法 技术领域
本发明涉及一种环己烷氧化的方法。 背景技术
环己酮、 环己醇作为重要的化工原料, 广泛应用于纤维、 合成橡胶、 工业涂料、 医 药、 农药、 有机溶剂等各个领域。 随着聚酰胺行业的迅速发展, 作为制备尼龙 6和尼龙 66中间体的环己酮、 环己醇, 目前全世界每年的总需求量在 200万吨以上。
针对上述需求, 国内外研究者一直致力于开发高效、 无污染的环己酮 (醇) 生产工 艺, 研究者认为以过氧化氢为氧化剂, 以钛硅分子筛为催化剂将环己烷氧化制备环己酮 (醇)的工艺符合绿色化学和原子经济发展理念的要求, 是一种极具发展前景的绿色环 己烷氧化工艺。
钛硅分子筛催化氧化环己烷反应的影响因素很多, 如钛硅分子筛本身的性质, 氧化 剂过氧化氢 H202的性质, 溶剂的选择, 反应条件 (如温度、 原料配比、 反应压力等) 等等, 研究者为了提高环己烷氧化过程中环己酮的选择性, 主要致力于开发更加高效的 钛硅分子筛催化剂 (如石油化工科学研究院开发的具有 MFI 结构的空心钛硅分子筛 HTS), 以及优化该过程中的反应条件来实现前述目标。
溶剂的选择也一直是研究者重点研究的方向, 一般来说, 对于 TS-1/H202体系, 溶 剂主要是通过电子效应、空间位阻效应、溶剂极性、物理扩散和分配、溶剂氧化副反应、 催化剂失活和溶解度等多种因素影响反应的。 目前已有很多研究者研究了丙烯环氧化和 环己酮氨肟化反应中的溶剂效应。部分研究者指出甲醇和其他质子型溶剂是丙烯环氧化 和其它低碳烯烃氧化的有效溶剂。
对于 TS-1/H202氧化环己烷体系,为了尽可能提高氧化过程中环己烷的转化率以及 酮醇总选择性尤其是酮的选择性,不少研究者做了研究。 Sooknoi等在文献 [Sooknoi T, et al. Activity Enhancement by Acetic Acid in Cyclohexane Oxidation Using Ti-Containing Zeolite Catalyst[J].Appl Catal A, 2002, 233(1-2): 227-237]中指出用醋酸作溶剂, 以含钛的 分子筛为催化剂, 80°C条件下反应, 环己烷的转化率可达 12%以上。
文献 [TaoJialin, et al. CYCLOHEXANE OXIDATION CATALYZED BY TITANIUM SILICALITE(TS-l) WITH HYDROGEN PEROXIDE. [J]. Journal of Natural Gas Chemistry,
2001, 10(4), 295-349]等在考察不同溶剂种类对环己烷氧化反应的影响时发现丙酮是 TS- 1/H202催化环己烷氧化反应的最佳溶剂。
上述研究均是基于以尽可能提高环己酮收率以及环己烷转化率的目标进行研究的, 然而事实上, 整个过程中环己烷转化率、 环己酮收率的最大化仍然受限, 因此, 在上述 研究的基础上,如何进一步提高该过程中的环己烷转化率以及环己酮的收率应该仍是研 究的难点与重点。 发明内容
本发明的目的在于为克服现有技术的钛硅分子筛 /H202体系催化氧化环己烷过程中 环己烷转化率、 环己醇收率较低的缺陷, 提供一种环己烷转化率、 环己醇收率较高的钛 硅分子筛催化氧化环己烷的方法。
通过分析可以看出,现有技术一直致力于如何提高该过程中环己烷转变为环己酮的 收率。 然而, 事实上, 在钛硅分子筛 /H202体系内, 环己烷氧化分为两步, 第一步是环 己烷氧化生成环己醇的过程,第二步是环己醇氧化制备环己酮的过程,而在整个过程中, 因为环己醇较环己烷更容易被氧化, 因此如何提高环己醇在该过程中的收率是提高后续 环己酮收率的关键。 并且, 提高环己醇收率的另一个优势在于, 现有的醇脱氢氧化制备 酮的工艺已非常成熟, 例如采用金属(如金属 Ni)催化环己醇脱氢即可获得很高的环己 酮收率, 并且在脱氢过程中还可以产生氢气资源, 同时还可以避免环己醇氧化制备环己 酮的过程也在昂贵的钛硅分子筛催化作用下进行并多消耗一倍的双氧水,从而可以大幅 度的降低生产成本。 因此, 本发明的发明人打破现有技术的思维定势, 在钛硅分子筛 /H202体系中由环己烷氧化生成环己酮收率难以进一步提高的情况下, 着力于提高环己 烷氧化生成环己醇的收率, 后续可以通过成熟的脱氢技术来低成本、 高收率的获得环己 酮。
本发明提供了一种环己烷氧化的方法, 该方法包括: 在氧化反应条件下, 将环己 烷、 过氧化氢或过氧化氢水溶液与钛硅分子筛催化剂在有机溶剂中接触, 其中, 所述有 机溶剂为腈和 /或卤代烃。
本发明的发明人在研究过程中意外的发现,通过采用腈和 /或卤代烃作为溶剂,在其 他条件基本相同的情况下, 即可以较现有的研究较多的采用酮、 醇或酸等作为有机溶剂 的钛硅分子筛 /H202催化氧化环己烷的体系中, 环己烷转化率及环己醇收率高很多, 例 如本发明的实施例 1-9的环己烷转化率为对比例 1的环己烷转化率的 1.5-1.67倍, 环己
醇收率为对比例 1的环己醇收率的 3.3-4.7倍。
并且本发明的发明人在研究过程中还意外的发现,采用腈和 /或卤代烃作为有机溶剂 的钛硅分子筛 /H202氧化体系有利于后续的分离, 从而可以进一步节约工业应用过程中 的生产成本。
本发明的其它特征和优点将在随后的具体实施方式部分予以详细说明。 具体实施方式
以下对本发明的具体实施方式进行详细说明。 应当理解的是, 此处所描述的具体实 施方式仅用于说明和解释本发明, 并不用于限制本发明。
本发明的环己烷氧化的方法包括: 在氧化反应条件下, 将环己烷、 过氧化氢或过氧 化氢水溶液与钛硅分子筛催化剂在有机溶剂中接触,其中,所述有机溶剂为腈和 /或卤代 烃。
本发明中所述钛硅分子筛催化剂可以以钛硅分子筛提供,也可以为成型的钛硅分子 筛催化剂, 可以根据具体的反应形式进行选择, 此为本领域人员公知的技术, 在此不再 赘述。
本发明对所述过氧化氢水溶液即双氧水的浓度无特殊要求, 可以为浓度为 20-80重 量%的双氧水, 例如可以为市售的 27.5重量%、 50重量%、 70重量%的双氧水。
根据本发明, 所述氧化反应的条件可以为常规的采用钛硅分子筛 /H202体系催化氧 化环己烷的氧化条件, 一般包括环己烷、 过氧化氢、 水、 钛硅分子筛催化剂与有机溶剂 的质量比为 1:0.003-5:0.15-3:0.1-15:0.5-30, 优选为 1:0.03-2:0.5-2:0.5-5:3-15; 接触的温度 为 30-150°C, 优选为 50-12CTC ; 接触的压力为 0.01-2MPa, 优选为 0.1-0.5MPa; 接触的 时间为 0.1-10h, 优选为 l-5h。
本发明中, 所述压力指的是反应体系内的表压。
本发明的发明人在研究过程中意外的发现, 将所述腈和卤代烃混用为有机溶剂时, 能够使得环己烷的转化率及环己醇收率获得进一步的提高, 即特别优选情况下, 所述有 机溶剂为腈和卤代烃的混合物, 优选为腈和卤代烃的质量比为 0.1-10:1。 在有机溶剂为 上述混合溶剂的情况下, 所述接触的温度优选为 50-120°C, 更优选为 60-11CTC时, 环己 醇收率明显提高。 尽管采用两种溶剂时, 环己烷的转化率、 目标产物的收率有进一步的 提高, 然而两种溶剂的反应体系, 会给后续的分离工作带来麻烦, 因此, 一般而言, 可 以根据具体工业生产中的具体目标进行选择是否需采用两种溶剂进行反应,如在生产中
主要追求环己烷的转化率以及目标产物的收率的话,可以选择在前述两种溶剂的反应体 系下进行反应, 反之, 若整体工艺对分离过程要求较为严格的话, 则可以选择在优选的 一种溶剂体系下进行反应, 本领域技术人员对此均能知悉, 在此不再一一赘述。
尽管采用上述腈和 /或卤代烃溶剂均可实现本发明的目的, 优选情况下, 所述腈为 C1-C10的一元腈和 /或二元腈, 优选为 C2-C8的一元腈和 /或二元腈, 进一步优选, 所述 腈为乙腈、 丙腈、 戊腈、 己二腈中的一种或多种, 优选为乙腈和 /或己二腈; 所述卤代烃 为被一个和 /或多个相同或不同的卤素原子取代的 C1-C10 的烷烃和 /或被一个和 /或多个 相同或不同的卤素原子取代 C6-C10的环烷烃, 进一步优选为 C1-C6的二氯代烷烃和 /或 三氯代烷烃, 更优选为二氯甲烷、 三氯甲烷、 1,1-二氯乙烷、 1,2-二氯乙烷、 1,1,1-三氯 乙烷、 1,1,2-三氯乙烷、 1,2-二氯丙烷、 2,2-二氯丙烷、 1,3-二氯丙烷、 1,2,3-三氯丙烷、 1,2-二氯丁烷、 2,3-二氯丁烷、 1,4-二氯丁烷、 1,2-二氯戊烷、 2,2-二氯戊烷、 1,3-二氯戊 烷、 2,3-二氯戊烷、 3,3-二氯戊烷、 1,4-二氯戊烷、 2,4-二氯戊烷、 1,2,5-三氯戊烷、 1,1,5- 三氯戊烷和 1,2-二氯环己烷中的一种或多种。
本发明的发明人研究发现, 当所述溶剂为腈时, 所述接触的温度优选为 60-12CTC 时, 环己烷的转化率及环己醇收率能够进一步提高; 或者当所述溶剂为卤代烃时, 所述 接触的温度为 50-9CTC时, 环己烷的转化率及环己醇收率能够进一步提高。
根据本发明, 所述钛硅分子筛催化剂中的钛硅分子筛可以为常规的钛硅分子筛, 可以为改性的也可以为非改性的, 优选为 MFI结构的钛硅分子筛 (如 TS-1 )、 MEL结 构的钛硅分子筛 (如 TS-2)、 BETA结构的钛硅分子筛 (如 Ti- β ) 中的至少一种; 更优 选为具有结构式为 xTiO Si02, 其中, X 为 0.0001-0.04, 优选为 0.01-0.03, 更优选为 0.015-0.025的钛硅分子筛。
在本发明中, 所述钛硅分子筛可以商购得到, 也可以制备得到, 制备所述钛硅分 子筛的方法已为本领域技术人员所公知, 例如, 可以参照 [Cyclohexane Oxidation Catalyzed by Titanium Silicalite(TS-l) With Hydrogen Peroxide Journal of Natural Gas Chemistry 2001, 10(4): 295-307]中所描述的方法制备,也可以参照 CN101279959A中公 开的制备催化剂的方法制得。
更优选为,所述钛硅分子筛催化剂中的钛硅分子筛为 MFI结构,钛硅分子筛晶粒为 空心结构, 该空心结构的空腔部分的径向长度为 5-300 纳米, 且所述钛硅分子筛在 25 。C、 P/Po=0.10 吸附时间为 1小时的条件下测得的苯吸附量为不少于 70毫克 /克, 该钛 硅分子筛的低温氮吸附的吸附等温线和脱附等温线之间存在滞后环,具有上述结构和性
质的钛硅分子筛一般称为空心钛硅分子筛, 商业上称为 HTS, 其相关参数及其制备方法 可以参见 CN1301599A。
以下的实施例将对本发明作进一步的说明, 但并不因此限制本发明。
对比例和实施例中所用到的试剂均为市售的化学纯试剂。
实施例中所用的空心钛硅分子筛 HTS系 CN1301599A所述钛硅分子筛的工业产品 (湖南建长公司制造, 经 X-射线衍射分析为 MFI结构的钛硅分子筛, 该分子筛的低温 氮吸附的吸附等温线和脱附等温线之间存在滞后环, 晶粒为空心晶粒且空腔部分的径向 长度为 15-180纳米; 该分子筛样品在 25°C, P/Po=0.10, 吸附时间 1小时的条件下测得 的苯吸附量为 78毫克 /克), 氧化钛含量为 2.5重量%。
实施例 14 中所用的传统钛硅分子筛 (TS-1 ) 是按文献 [Cyclohexane Oxidation Catalyzed by Titanium Silicalite(TS-l) With Hydrogen Peroxide Journal of Natural Gas Chemistry 2001, 10(4): 295-307]中第 296页 9-24行所描述的方法制备出的 (TS-1 ) 分子 筛样品, 氧化钛含量为 2.5重量%。
本发明中, 采用气相色谱进行体系中各组成的分析, 通过校正归一法进行定量, 均 可参照现有技术进行, 在此基础上计算反应物的转化率、 产物的收率和选择性等评价指 标。
本发明中, 环己烷的转化率计算公式如下:
环己烷 _ m环己烷
x环己烷 = : χ ΐϋϋ%
m 环己烷
组分选择性的计算公式如下:
11环己醇 + w环己酮
醇总 x l 00 %
n 环己烷 — n环己烷 环己醇 — 0 „ χ ιυυ /c
η 环己烷 — η环己烷
组分收率的计算公式如下:
环己醇 S环己醇 χ Χ环己垸
其中, X为转化率; s为选择性(s »,s即表示酮醇总选择性, 或简称酮醇选择性); Y为收率; m为组分的质量; w为组分的物质的量; 其中 mQ和 nQ分别表示反应前的质 量和摩尔量。
实施例 1
称取 lg空心钛硅分子筛 HTS装于 250ml三口玻璃瓶中, 再向容器中加入 lg环己烷、 1.72g双氧水 (27.5重量%)和 15g 1,2-二氯丙烷。 将三口玻璃瓶放于温度控制在 60 °C的 恒温油浴中, 油浴置于温控磁力搅拌器上。 启动磁力搅拌, 开始反应, 反应 3小时后停 止反应, 环己烷的转化率、 酮醇总选择性及环己醇收率见表 1。 实施例 2
称取 lg空心钛硅分子筛 HTS装于 250ml三口玻璃瓶中, 再向容器中加入 lg环己 烷、 1.72g双氧水 (27.5重量%) 和 5g 1,4-二氯戊烷。 将三口玻璃瓶放于温度控制在 80 °0的恒温油浴中, 油浴置于温控磁力搅拌器上。 启动磁力搅拌, 开始反应, 反应 1小时 后停止反应, 环己烷的转化率、 酮醇总选择性及环己醇收率见表 1。 实施例 3
称取 lg空心钛硅分子筛 HTS装于 250ml三口玻璃瓶中, 再向容器中加入 lg环己 烷、 1.72g双氧水 (27.5重量%)和 10g己二腈。 将三口玻璃瓶放于温度控制在 110°C的 恒温油浴中, 油浴置于温控磁力搅拌器上。 启动磁力搅拌, 开始反应, 反应 2小时后停 止反应, 环己烷的转化率、 酮醇总选择性及环己醇收率见表 1。 实施例 4
称取 lg空心钛硅分子筛 HTS装于 250ml三口玻璃瓶中, 再向容器中加入 lg环己 烷、 1.72g双氧水 (27.5重量%) 和 10g乙腈。 将三口玻璃瓶放于温度控制在 70°C的恒 温油浴中, 油浴置于温控磁力搅拌器上。 启动磁力搅拌, 开始反应, 反应 4小时后停止 反应, 环己烷的转化率、 酮醇总选择性及环己醇收率见表 1。 实施例 5
与实施例 1的方法相同, 不同的是, 溶剂为三氯甲烷, 且反应温度为 50°C。 实施例 6
与实施例 1的方法相同, 不同的是, 溶剂为 1,1,5-三氯戊烷, 反应温度为 90°C。
与实施例 1的方法相同, 不同的是, 溶剂 1,2-二氯丙烷 15g由 1,2-二氯丙烷 (7.5g) + 己二腈 (7.5g) 代替, 环己烷的转化率、 酮醇总选择性及环己醇收率见表 1。 实施例 8
与实施例 3的方法相同,不同的是溶剂己二腈 10g由 1,2-二氯丙烷(lg)+己二腈(9g) 代替, 环己烷的转化率、 酮醇总选择性及环己醇收率见表 1。 实施例 9
与实施例 4的方法相同, 不同的是溶剂乙腈 10g由乙腈 (lg) +1,4-二氯戊烷 (9g) 代替, 环己烷的转化率、 酮醇总选择性及环己醇收率见表 1。 实施例 10
与实施例 1的方法相同, 不同的是, 反应温度为 ioo°c, 环己烷的转化率、 酮醇总 选择性及环己醇收率见表 1。 实施例 11
与实施例 3的方法相同, 不同的是, 反应温度为 130°C, 环己烷的转化率、 酮醇总 选择性及环己醇收率见表 1。 实施例 12
与实施例 1的方法相同, 不同的是溶剂 1,2-二氯丙烷由 1-氯丙烷代替, 环己烷的转 化率、 酮醇总选择性及环己醇收率见表 1。 实施例 13
与实施例 2的方法相同, 不同的是溶剂 1,4-二氯戊烷由 1-氯戊烷代替, 环己烷的转 化率、 酮醇总选择性及环己醇收率见表 1。 实施例 14
与实施例 1的方法相同, 不同的是 HTS由传统的 TS-1代替, 环己烷的转化率、 酮 醇总选择性及环己醇收率见表 1。
对比例 1
与实施例 1的方法相同, 不同的是溶剂为丙酮, 环己烷的转化率、 酮醇总选择性及 环己醇收率见表 1。 对比例 2
与实施例 1的方法相同, 不同的是溶剂为乙酸, 环己烷的转化率、 酮醇总选择性及 环己醇收率见表 1。 表 1
由表 2可以看出, 采用本发明的方法, 采用腈和 /或卤代烃作为溶剂相比于现有的 大多数采用丙酮等作为溶剂的反应, 环己烷的转化率更高, 酮醇总选择性更高, 环己醇 收率也更高, 并且对比实施例 1-6与实施例 7-9可以看出, 采用腈和卤代烃的混合物作 为溶剂时较单独采用腈或单独采用卤代烃作为溶剂时效果更好。对比实施例 1与实施例 14可以看出, HTS的活性较常规的 TS-1的活性更高。
并且本发明采用腈和 /或卤代烃作为溶剂, 可以简化后续的产物分离步骤, 有利于 在工业中实施应用。
以上详细描述了本发明的优选实施方式, 但是, 本发明并不限于上述实施方式中 的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型, 这些简单变型均属于本发明的保护范围。
另外需要说明的是, 在上述具体实施方式中所描述的各个具体技术特征, 在不矛 盾的情况下, 可以通过任何合适的方式进行组合。
此外, 本发明的各种不同的实施方式之间也可以进行任意组合, 只要其不违背本 发明的思想, 其同样应当视为本发明所公开的内容。
Claims
1、 一种环己烷氧化的方法, 该方法包括: 在氧化反应条件下, 将环己烷、 过氧化 氢或过氧化氢水溶液与钛硅分子筛催化剂在有机溶剂中接触, 其中, 所述有机溶剂为腈 和 /或卤代烃。
2、 根据权利要求 1所述的方法, 其中, 所述氧化反应的条件包括环己烷、 过氧化 氢、 水、 钛硅分子筛催化剂与有机溶剂的质量比为 1:0.003-5:0.15-3:0.1-15:0.5-30, 接触 的温度为 30-150°C、 压力为 0.01-2MPa、 时间为 0.1-10h。
3、 根据权利要求 2所述的方法, 其中, 所述氧化反应的条件包括环己烷、 过氧化 氢、 水、 钛硅分子筛催化剂与有机溶剂的质量比为 1:0.03-2:0.5-2:0.5-5:3-15, 接触的温 度为 50-120°C、 压力为 0.1-0.5MPa、 时间为 l-5h。
4、根据权利要求 1-3中任意一项所述的方法, 其中, 所述有机溶剂为腈和卤代烃, 腈和卤代烃的质量比为 0.1-10:1 ; 所述接触的温度为 50-120°C, 优选为 60-110°C。
5、 根据权利要求 1-3中任意一项所述的方法, 其中, 所述有机溶剂为腈, 所述接 触的温度为 60-120°C。
6、 根据权利要求 1-3中任意一项所述的方法, 其中, 所述有机溶剂为卤代烃, 所 述接触的温度为 50-90°C。
7、 根据权利要求 1-3中任意一项所述的方法, 其中, 所述腈为 C1-C10的一元腈 和 /或二元腈, 优选为 C2-C8的一元腈和 /或二元腈; 所述卤代烃为被一个和 /或多个相同 或不同的卤素原子取代的 C1-C10的烷烃和 /或 C6-C10的环烷烃。
8、 根据权利要求 7所述的方法, 其中, 所述腈为乙腈、 丙腈、 戊腈、 己二腈中的 一种或多种, 优选为乙腈和 /或己二腈; 所述卤代烃为 C1-C6 的二氯代烷烃和 /或三氯代 烷烃, 更优选为二氯甲烷、 三氯甲烷、 1,1-二氯乙烷、 1,2-二氯乙烷、 1,1,1-三氯乙烷、 1,1,2-三氯乙烷、 1,2-二氯丙烷、 2,2-二氯丙烷、 1,3-二氯丙烷、 1,2,3-三氯丙烷、 1,2-二氯 丁烷、 2,3-二氯丁烷、 1,4-二氯丁烷、 1,2-二氯戊烷、 2,2-二氯戊烷、 1,3-二氯戊烷、 2,3- 二氯戊烷、 3,3-二氯戊烷、 1,4-二氯戊烷、 2,4-二氯戊烷、 1,2,5-三氯戊烷、 1,1,5-三氯戊 烷和 1,2-二氯环己烷中的一种或多种。
9、 根据权利要求 1-3中任意一项所述的方法, 其中, 所述钛硅分子筛催化剂中的 钛硅分子筛为 MFI结构的钛硅分子筛、 MEL结构的钛硅分子筛、 BETA结构的钛硅分 子筛中的至少一种;优选为具有结构式为 xTiO Si02, X为 0.0001-0.04,优选 x为 0.01-0.03 的钛硅分子筛。
10、 根据权利要求 9所述的方法, 其中, 所述钛硅分子筛催化剂中的钛硅分子筛 为 MFI结构的钛硅分子筛,且该钛硅分子筛晶粒为空心结构,该空心结构的空腔部分的 径向长度为 5-300纳米, 且所述钛硅分子筛在 25 °C、 P/Po=0.10 吸附时间为 1小时的条 件下测得的苯吸附量为不少于 70毫克 /克, 该钛硅分子筛的低温氮吸附的吸附等温线和 脱附等温线之间存在滞后环。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110111305.6 | 2011-04-29 | ||
CN201110111305.6A CN102757304B (zh) | 2011-04-29 | 2011-04-29 | 一种环己烷氧化的方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012146144A1 true WO2012146144A1 (zh) | 2012-11-01 |
Family
ID=47051989
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2012/074278 WO2012146144A1 (zh) | 2011-04-29 | 2012-04-18 | 一种环己烷氧化的方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN102757304B (zh) |
WO (1) | WO2012146144A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107983396A (zh) * | 2017-12-08 | 2018-05-04 | 哈尔滨师范大学 | 苯乙酮的催化合成方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104418702B (zh) * | 2013-09-06 | 2016-05-25 | 中国石油化工股份有限公司 | 一种氧化环己烷的方法 |
CN111848345B (zh) * | 2019-04-26 | 2023-04-07 | 中国石油化工股份有限公司 | 联产环己醇和环氧烷烃的方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5126491A (en) * | 1989-08-09 | 1992-06-30 | Eniricerche S.P.A. | Process for oxidating paraffinic compounds |
WO1996034827A1 (en) * | 1995-05-04 | 1996-11-07 | Chevron U.S.A. Inc. | Pure phase titanium, containing zeolite having mel structure |
US5811599A (en) * | 1994-12-30 | 1998-09-22 | Council Scient Ind Res | Process for the selective oxidation of hydrocarbons and their derivatives |
CN1278808A (zh) * | 1997-11-14 | 2001-01-03 | 杜邦药品公司 | 选择性氧化有机化合物的方法 |
CN1301599A (zh) * | 1999-12-24 | 2001-07-04 | 中国石油化工集团公司 | 一种钛硅分子筛及其制备方法 |
CN102206147A (zh) * | 2010-03-31 | 2011-10-05 | 中国石油化工股份有限公司 | 一种环己烷氧化的方法 |
CN202136966U (zh) * | 2011-04-29 | 2012-02-08 | 岳阳昌德化工实业有限公司 | 一种氧化环己烷的设备 |
-
2011
- 2011-04-29 CN CN201110111305.6A patent/CN102757304B/zh active Active
-
2012
- 2012-04-18 WO PCT/CN2012/074278 patent/WO2012146144A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5126491A (en) * | 1989-08-09 | 1992-06-30 | Eniricerche S.P.A. | Process for oxidating paraffinic compounds |
US5811599A (en) * | 1994-12-30 | 1998-09-22 | Council Scient Ind Res | Process for the selective oxidation of hydrocarbons and their derivatives |
WO1996034827A1 (en) * | 1995-05-04 | 1996-11-07 | Chevron U.S.A. Inc. | Pure phase titanium, containing zeolite having mel structure |
CN1278808A (zh) * | 1997-11-14 | 2001-01-03 | 杜邦药品公司 | 选择性氧化有机化合物的方法 |
CN1301599A (zh) * | 1999-12-24 | 2001-07-04 | 中国石油化工集团公司 | 一种钛硅分子筛及其制备方法 |
CN102206147A (zh) * | 2010-03-31 | 2011-10-05 | 中国石油化工股份有限公司 | 一种环己烷氧化的方法 |
CN202136966U (zh) * | 2011-04-29 | 2012-02-08 | 岳阳昌德化工实业有限公司 | 一种氧化环己烷的设备 |
Non-Patent Citations (2)
Title |
---|
RAMASWAMY, A.V. ET AL.: "Selective Oxidation Reactions over Titanium and Vanadium Metallosilicate Molecular Sieves", CATALYSIS LETTERS, vol. 22, 1993, pages 239 - 249 * |
TAO, JIALIN ET AL.: "Cyclohexane Oxidation Catalyzed by Titanium Silicalite (TS-1) with Hydrogen Peroxide", JOURNAL OF NATURAL GAS CHEMISTRY, vol. 10, no. 4, 2001, pages 295 - 307 AND 349 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107983396A (zh) * | 2017-12-08 | 2018-05-04 | 哈尔滨师范大学 | 苯乙酮的催化合成方法 |
Also Published As
Publication number | Publication date |
---|---|
CN102757304A (zh) | 2012-10-31 |
CN102757304B (zh) | 2014-12-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012146144A1 (zh) | 一种环己烷氧化的方法 | |
JP4772326B2 (ja) | チタン含有触媒の再生方法 | |
CN102757306B (zh) | 一种环己酮的制备方法 | |
WO2012003708A1 (zh) | 一种钛硅分子筛与树脂复合催化剂及其制备方法和用途 | |
CN110614093A (zh) | 一种乙炔氢氯化反应低含量金钌双金属催化剂制备方法 | |
JP2000229929A (ja) | 不飽和ニトリル類の製造のための高度な活性および選択性を有する触媒、その製造法および使用法 | |
JP2010195835A (ja) | カルボニル化合物のアンモオキシム化法 | |
CN105439826B (zh) | 一种丙二醇单甲醚的制备方法 | |
CN108187659B (zh) | 负载型非化学计量比钼钨双金属氧化物催化剂及其应用 | |
CN103508845B (zh) | 一种环己烷氧化的方法 | |
CN103130614B (zh) | 一种环己烯氧化制备1,2-环己二醇的方法 | |
WO2012149865A1 (zh) | 一种环己烷氧化制环己醇的方法 | |
CN107721973A (zh) | 一种制备单硫代碳酸丙烯酯的方法 | |
CN107954838B (zh) | 一种制备1,3-二氯-2-丙醇的方法 | |
JP2000239248A (ja) | 不飽和ニトリル類の製造のための高度な活性および選択性を有する触媒、その製造法および使用法 | |
CN104876797B (zh) | 一种丙二醇的制备方法 | |
CN104447628B (zh) | 一种延长烯烃环氧化稳定运行时间的方法 | |
CN104803953B (zh) | 一种烯烃环氧化的方法 | |
CN104072444B (zh) | 一种减弱副反应发生的氧化烯烃的方法 | |
CN105523896B (zh) | 一种苯氧化方法 | |
CN109593072A (zh) | 一种烯烃氧化的方法 | |
CN105524025B (zh) | 一种氧化烯烃的方法 | |
CN105524020B (zh) | 一种烯烃氧化方法 | |
TWI510291B (zh) | A titanium silicon molecular sieve and resin composite catalyst, preparation method and use thereof | |
CN104447626B (zh) | 一种烯烃氧化的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12776984 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12776984 Country of ref document: EP Kind code of ref document: A1 |