WO2012003708A1 - 一种钛硅分子筛与树脂复合催化剂及其制备方法和用途 - Google Patents

一种钛硅分子筛与树脂复合催化剂及其制备方法和用途 Download PDF

Info

Publication number
WO2012003708A1
WO2012003708A1 PCT/CN2011/000747 CN2011000747W WO2012003708A1 WO 2012003708 A1 WO2012003708 A1 WO 2012003708A1 CN 2011000747 W CN2011000747 W CN 2011000747W WO 2012003708 A1 WO2012003708 A1 WO 2012003708A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
molecular sieve
cyclohexanone
titanium
resin
Prior art date
Application number
PCT/CN2011/000747
Other languages
English (en)
French (fr)
Inventor
方向晨
孙万付
王海波
勾连科
黎元生
宋丽芝
艾抚宾
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司抚顺石油化工研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司抚顺石油化工研究院 filed Critical 中国石油化工股份有限公司
Publication of WO2012003708A1 publication Critical patent/WO2012003708A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C249/00Preparation of compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C249/04Preparation of compounds containing nitrogen atoms doubly-bound to a carbon skeleton of oximes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/89Silicates, aluminosilicates or borosilicates of titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)

Definitions

  • Titanium silicon molecular sieve and resin composite catalyst preparation method thereof and use thereof
  • the invention relates to a titanium silicon molecular sieve and a resin composite catalyst and a preparation method thereof, and the application in the catalytic reaction of a fixed bed in the epoxidation of an olefin and the ammoxidation of cyclohexanone to obtain cyclohexanone oxime.
  • Titanium-silicon molecular catalysts play a very important role in the selective oxidation of organic compounds, such as propylene epoxidation with hydrogen peroxide under the action of a titanium-silicon molecular sieve catalyst to produce propylene oxide.
  • titanium-silicon molecular sieve catalysts exhibit excellent shape-selective catalytic properties.
  • the particle size of the titanium-silicon molecular sieve catalyst is about 0.1 -15.0 ⁇ m. However, such a small particle size will bring great difficulty to the separation of the catalyst and the product.
  • the separation of the titanium silicalite catalyst and the product is filtered.
  • the resistance generated is not the size of the pores of the filter material, but from the pores of the filter cake formed by the extremely fine catalyst particles occupying and blocking, especially the catalyst particles having a particle size of less than 2 ⁇ m are most unfavorable for filtration, thus causing
  • the low production efficiency also affects the industrial application of titanium silicalite.
  • the small particle size catalyst is filtered, except for the pores of the filter cake, the part is lost from the pores of the filter medium.
  • the general loss rate is about 5%-8% of the catalyst input, which not only causes the unnecessary consumption of the catalyst, but also enters. Further side reactions in the product materials lead to an increase in the cost of separation, affecting the quality of the product;
  • Propylene oxide ( ⁇ ) is an important basic petrochemical raw material. It is the third largest variety of propylene derivatives after polypropylene and acrylonitrile. It is mainly used to produce polyether, propylene glycol, isopropanolamine. Propyl alcohol, etc., and then produce unsaturated polyester resin, polyurethane, surfactant and other important raw materials, widely used in chemical, light industry, pharmaceutical, food, textile and other industries.
  • chlorohydrin method mainly uses a chlorohydrin method, an indirect oxidation method (co-oxidation method), and a cumene method.
  • the main disadvantage of the chlorohydrin method is the use of toxic chlorine gas, equipment corrosion and a large amount of chlorine-containing wastewater polluting the environment, which does not meet the requirements of green chemistry and clean production. Therefore, with the increasing requirements of environmental protection, the process will eventually be eliminated.
  • Indirect oxidation overcomes chlorohydrins
  • the disadvantages of serious pollution, high corrosion and demand for chlorine resources are also disadvantageous, such as long process flow, strict explosion-proof requirements, large investment, high requirements on raw material specifications, strict operating conditions, large proportion of by-products, etc.
  • Tons of propylene oxide have 2,5 tons of t-butanol or 1.8 tons of styrene, which far exceeds the output of the main products, and the market demand for by-products fluctuates greatly, so production is severely constrained by market factors.
  • the cumene process uses cumene hydroperoxide (CHP) as the oxidant. This process is technically and economically advantageous, but its essence is still a co-oxidation process.
  • CHP cumene hydroperoxide
  • CN 1256274 A proposes a process for continuously producing propylene oxide by propylene and hydrogen peroxide epoxidation by titanium silicalite.
  • the catalyst is in the form of a slurry, although good conversion of raw materials and product yield are obtained, but a good raw material conversion rate and product yield are obtained. Since the catalyst is in a slurry state, it needs to be separated from the product after the reaction and reused. This leads to cumbersome process flow, which is not conducive to large-scale industrial production, and in addition, the catalyst has inevitable losses.
  • the TS-1 of CN1639143A catalyzes the epoxidation of propional and hydrogen peroxide, and the reaction mode of the autoclave still does not solve the problem of difficulty in separating the catalyst from the product.
  • Cyclohexanone-hydroxylamine route to produce caprolactam is based on benzene, hydrogenation of benzene to cyclohexane, cyclohexane oxidation to cyclohexanone, cyclohexanone oximation to cyclohexanone oxime, cyclohexanone
  • the process of ⁇ ⁇ transposition to produce caprolactam The preparation of cyclohexanone oxime is the most critical step in the whole caprolactam production process, and the method of reacting cyclohexanone with a hydroxylamine salt is used.
  • EP020831 1 proposes a method for preparing cyclohexanone oxime by ammoximation of cyclohexanone, ammonia and hydrogen peroxide using titanium silicalite as a catalyst. In the ammoximation reaction, the conversion rate of cyclohexanone and cyclohexene The selectivity of ketone oxime is very high, and the process is simple and there is no three-waste discharge.
  • CN1556098A discloses an integrated reaction process for oxidizing isopropanol to hydrogen peroxide and ammoxidation to cyclohexanone oxime.
  • the conversion rate of cyclohexanone in the reaction process is higher than 99%, and the selectivity of cyclohexanone oxime More than 98%.
  • This integrated process reduces production costs and solves the problem of hydrogen peroxide storage and transportation.
  • the above-mentioned titanium-silicon molecular sieve catalyzed ammoxidation process still adopts a stirring reaction mode in the form of a slurry, and there is no solution The problem of difficult separation of chemicals and products.
  • CN101 199941 A discloses a preparation method of a composite catalyst of titanium silicon molecular sieve/nano carbon fiber, comprising the following steps: (1) mixing titanium silicon molecular sieve particles and nano carbon fibers in distilled water; (2) filtering and drying the above mixture; , a composite catalyst of titanium silicon molecular sieve / nano carbon fiber.
  • the titanium-silicon molecular sieve/nanocarbon fiber composite catalyst has a particle size of micron, which is significantly improved compared with the industrial micro-nano TS-1 powder (100-500 nm), but still uses a stirring reaction mode in the form of a slurry.
  • titanium-silicon molecule is supported on a carrier of a certain scale to form a composite catalyst, which is easy to separate and recover from the liquid phase reaction system while maintaining good catalytic performance, and is one of the methods for solving the above problems.
  • USP 5736479 adopts the classical method to prepare colloidal mother liquor of titanium silicalite, and then add activated carbon or metal oxide such as A1 2 0 3 , Si0 2 , Ti0 2 , Zr0 2 or Al 2 0 3 -SiO 2 to the hydrothermal synthesis system.
  • Titanium silicalite is grown in a support to obtain a supported titanium silica catalyst.
  • the particle size of the titanium silicalite TS-1 alone is ⁇ 5 ⁇ m, and the particle size of the supported catalyst is generally in the range of 8-30 ⁇ m.
  • the catalyst obtained by adding the carrier has higher activity in the ammoxidation of cyclohexanone than the unloaded TS-1, and the yield of cyclohexanone oxime can reach 92.8%, and the selectivity can reach 98.4%.
  • metal oxides as a carrier has the general disadvantage that the carrier itself is unstable in the strong alkaline environment of the preparation of titanium silicalite, and peptization occurs, thereby affecting the crystallinity of the titanium silicalite in the subsequent crystallization process. .
  • it is applied to the cyclohexanone ammoximation reaction process. Because hydrogen peroxide is used as the oxidant and ammonia water as the raw material, under such conditions, the skeleton of the carrier itself will be dissolved, causing the titanium silicalite to fall off. Good support.
  • the composite titanium-silicon catalyst is used for the cyclohexanone ammoximation reaction, and the cyclohexanone conversion rate and cyclohexanone oxime selectivity can reach more than 95%, but the specific surface of graphite is small, the surface is smooth and chemically inert, and the active group Titanium silicon is easy to fall off, resulting in a decrease in catalyst activity.
  • Titanium silicon molecular sieves have a small average particle size and cannot be directly used in industrial fixed bed reactors.
  • a catalyst having a suitable shape, good mechanical strength, and high activity and selectivity must be formed by molding. Therefore, the problem of catalyst formation has become an important issue for the application of titanium-silicon molecular sieves in industrial fixed-bed reaction technology. Summary of the invention
  • the present invention provides a titanium titanium molecular sieve and resin composite catalyst which can be used in a fixed bed reactor and a preparation method thereof.
  • the titanium-silicon molecular sieve and the resin composite catalyst of the present invention have a titanium silicalite content of 1% to 50% and a resin content of 50% to 99% based on the weight of the catalyst.
  • the titanium silicalite is present in an amount of from 5% to 40% and the resin is present in an amount of from 60% to 95%.
  • the resin is a copolymer of styrene and a polyalkenyl compound, preferably, the weight ratio of styrene to polyalkenyl compound is from 2:1 to 5:1.
  • the polyalkenyl compound may be one or more of diethylbenzene, divinyltoluene and diethylenedifluorene, preferably divinylbenzene.
  • the properties of the titanium-silicon molecular sieve and the resin composite catalyst are as follows: a specific surface area of 70-260 m 2 /g, a pore volume of 0.15-0.50 cm 3 /g, and a lateral compressive strength of 8-20 mnf 1 .
  • the method for preparing a titanium-silicon molecular sieve and a resin composite catalyst of the present invention comprises: mixing a titanium-silicon molecular sieve, a polymerizable monomer for preparing a resin, and a pore-forming agent, in the presence of an initiator, at 60 to 150 ° C, preferably 80
  • the polymerization reaction is carried out at -100 ° C for 3 to 10 hours, preferably 4 to 6 hours, to obtain a catalyst solid, and the catalyst solid is swollen in a hydrocarbon, and then solvent-extracted to obtain a titanium-silicon molecule-resin composite catalyst of the present invention.
  • the catalyst solid obtained by the polymerization is processed into catalyst particles which are then swollen with a hydrocarbon.
  • the crushing and sieving method may be employed, and the catalyst solid may be processed into catalyst particles of a suitable size and shape (e.g., strip, spherical, spheroidal, etc.) by a cutting method or the like.
  • the pore former is added in an amount of from 30% to 60% by weight based on the total weight of the titanium silicon molecule and the polymerizable monomer for preparing the resin.
  • the polymerizable monomer for preparing the resin is a mixture of styrene and a polyalkenyl compound.
  • the weight ratio of styrene to polyalkenyl compound is from 2:1 to 5:1.
  • the polymerizable monomer polyene group compound may be one or more of divinylbenzene, divinylbenzene, and diethylenedifluorene.
  • the pore former may be one or more of gasoline, C 5 -C 13 normal paraffin, C 4 -C 12 fatty alcohol, preferably one of C 5 -C 13 normal paraffins or A variety.
  • the initiator may be benzoyl peroxide and/or azobisisobutanol in an amount of
  • the titanium silicon molecular sieve and the polymerized monomer for preparing the resin are from 0.5% to 2.5% by weight based on the total weight of the polymerizable monomer.
  • the hydrocarbon may be a d-C4! 3 ⁇ 4 hydrocarbon, preferably one or both of 1,2-dichloroethane and chloroform, and the swelling time is 3-8 hours, the most Good is 5-6 hours.
  • the volume ratio of the catalyst to the halogenated hydrocarbon is from 1:10 to 1:1.
  • the extraction solvent may be one or more of benzene, toluene, diphenylbenzene, ethyl acetate, butyl acetate, ethanol, butanol, and the like.
  • the extraction temperature is 30-60 ° C, preferably 50-60 ° C; the extraction time is 2-8 hours, preferably 4-6 hours, and the extraction times are 2-5 times. .
  • the volume ratio of the extraction solvent to the catalyst is from 1:1 to 5:1.
  • the temperature of the reaction system is 60 to 90 °C:.
  • the titanium silicon molecular sieve and the resin composite catalyst of the invention can be applied to the catalytic reaction process of the olefin epoxidation of the fixed bed process and the ammoxidation of cyclohexanone to the cyclohexanone oxime, and the catalytic effect is excellent.
  • the titanium silicon molecular sieve and the resin composite catalyst of the invention can be applied to the olefin epoxidation method in the fixed bed process, wherein in the presence of the titanium silicon molecular sieve and the resin composite catalyst, the epoxidation reaction of the olefin with the hydrogen peroxide is carried out by using the alcohol as a solvent, The reaction was carried out in a fixed bed reaction mode.
  • the raw material olefin is, for example, propylene.
  • the alcohol is, for example, one or more of decyl alcohol, ethanol, propanol and tert-butanol, preferably decyl alcohol.
  • the pressure is 1.0-3.0MPa
  • the molar ratio of olefin to H 2 0 2 is 1:1-7:1
  • the molar ratio of alcohol to H 2 0 2 is 20:1-40:1
  • the liquid volume volume velocity is 5 -15h.
  • the titanium silicon molecular sieve and resin composite catalyst of the invention can be applied to a method for ammoxidation of cyclohexanone in a fixed bed process, wherein in the presence of a titanium silicon molecular sieve and a resin composite catalyst, an aqueous solution of an alcohol is used as a solvent, cyclohexanone and ammonia and hydrogen peroxide are used.
  • the ammoxidation reaction is carried out to obtain cyclohexanone oxime, and the reaction is carried out using a fixed bed reactor.
  • the raw materials are, for example, cyclohexanone, hydrogen peroxide and aqueous ammonia
  • the solvent is, for example, an aqueous solution of an alcohol, wherein the alcohol is, for example, one of methanol, ethanol, propanol and tert-butanol. One or more, preferably tert-butanol.
  • the amount of human raw materials is as follows: H 2 0 2 and cyclohexanone molar ratio is 0.8-1.5, ammonia and cyclohexanone The molar ratio is 1.8-2.8, In the aqueous solution of the alcohol, the volume ratio of the alcohol to water is 1:0.5-2.5, and the volume ratio of the aqueous solution of cyclohexanone to the alcohol is 1-10.
  • the catalyst of the invention has the following characteristics:
  • the fixed bed reaction mode can be adopted to solve the problem that the catalyst and the reaction liquid of the titanium-silicon catalyst powder are difficult to be separated, and the reaction efficiency is improved.
  • the titanium silicon molecular sieve exists in an isolated form, so the thermal effect of the oxidation reaction is moderated, the side reaction can be reduced, and the reaction selectivity is improved.
  • the catalyst skeleton is water-resistant and is favorable for carrying out the reaction in a H 2 O 2 reaction atmosphere. detailed description
  • the specific surface area described in the present invention is measured by a low temperature liquid nitrogen adsorption method in accordance with ASTM D3663-2003.
  • the pore volume described in the present invention is measured by a low temperature liquid nitrogen adsorption method in accordance with ASTM D4222-2003.
  • the side pressure strength described in the present invention is measured by a QCY-602 type catalyst strength meter according to the HG/T 2782 - 1996 standard.
  • the particle size described in the present invention is determined using a Tyler standard sieve series.
  • the specific preparation process of the method of the invention is as follows:
  • titanium silicon molecule polymerized monomer styrene, polymerized monomer polyalkenyl compound, pore former, stirring and mixing are added, and the temperature is raised in a water bath, preferably at 60-90 ° C.
  • the polymerization was carried out at 60 to 150 ° C for 3 to 10 hours to obtain a catalyst solid.
  • the catalyst solids described above are subjected to crushing and granulation, and then, for example, a catalyst solid having a particle diameter of about 1 ⁇ 1 to 5 ⁇ 5 mm (mesh of 4-16 mesh) is added to the halogenated hydrocarbon to swell, and the volume of the catalyst and the halogenated hydrocarbon is 1:10-1:1, swell for 3-8 hours at room temperature, pour out the halogenated hydrocarbon, and then add extraction solvent for extraction, which is the volume ratio of extraction solvent to catalyst is 1:1-5:1 ,
  • the extraction temperature is 30-60 ° C
  • the extraction time is 2-6 hours
  • the number of extractions is 2-5 times
  • the catalyst can be directly charged into a fixed bed reactor for catalytic reaction such as epoxidation of an olefin.
  • the polymerization vessel 15 g of titanium silicon molecular hooves, 90 g of polymerized monomer styrene, 15 g of divinylbenzene, 15 g of diethylene diphenylbenzene, and 60 g of a pore-forming agent C 5 fatty alcohol were added, and the mixture was stirred and mixed, and the water bath was heated to a temperature. At 80 ° C, 2.0 g of the initiator azobisisobutanol was added, and the polymerization temperature was carried out at 100 ° C for 6 hours to obtain a bulk titanium-silica molecular catalyst.
  • Example 1 The weight of the titanium-silicon molecular sieve in Example 1 was changed to 30 g, and the solvent was exchanged for chloroform. The same procedure as in Example 1 was carried out to obtain a titanium-silicon molecular sieve and a resin composite catalyst C. The physicochemical properties thereof are shown in Table 1.
  • Example 5 The weight of the titanium-silicon molecular sieve in Example 1 was changed to 45 g, and the remainder was the same as in Example 1, to obtain a titanium-silicon molecule-resin composite catalyst D, and the physicochemical properties thereof are shown in Table 1.
  • Example 5 The weight of the titanium-silicon molecular sieve in Example 1 was changed to 45 g, and the remainder was the same as in Example 1, to obtain a titanium-silicon molecule-resin composite catalyst D, and the physicochemical properties thereof are shown in Table 1.
  • Example 5 The weight of the titanium-silicon molecular sieve in Example 1 was changed to 45 g, and the remainder was the same as in Example 1, to obtain a titanium-silicon molecule-resin composite catalyst D, and the physicochemical properties thereof are shown in Table 1.
  • Example 1 The weight of the titanium silicon molecular sieve in Example 1 was changed to 60 g, and the remainder was the same as in Example 1 to obtain a titanium-silicon molecule-resin composite catalyst E.
  • the physicochemical properties thereof are shown in Table 1.
  • Example 1 The weight of the titanium silicon molecular sieve in Example 1 was changed to 75 g, and the same as in Example 1, the titanium silicon molecule and the resin composite catalyst F were obtained, and the physicochemical properties thereof are shown in Table 1.
  • Example 1 -6 [particle size of about 2x2 mm (mesh size 8-9 mesh)] 50 ml was placed in a fixed bed reactor of 20 mm in diameter and 1200 mm in length to carry out olefin epoxidation reaction, reaction conditions and results. See Table 2.
  • Example 1 -6 [particle size of about 2 x 2 mm (mesh size 8-9 mesh)] 50 ml was placed in a fixed bed reactor of 20 mm in diameter and 1200 mm in length, and ammoxidation of cyclohexanone was carried out to obtain Cyclohexanone oxime.
  • the analysis method of cyclohexanone oxime used HP6890 gas phase color analysis, FID, HP-5 capillary column, reaction conditions and results are shown in Table 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种钛硅分子筛与树脂复合催化剂及其制备方法和应用。该催化剂主要由钛硅分子筛与树脂组成,制备方法如下:将钛硅分子筛、聚合单体以及制孔剂充分混合,在引发剂存在下,再进行聚合反应,得到催化剂固体,然后加到卤代烃中溶胀后,采用溶剂抽提,得到成型的催化剂。本发明所得的催化剂适用于固定床工艺的烯烃环氧化和环己酮氨氧化制取环己酮肟的催化反应过程中,可以简化操作步骤,提高目的产品的选择性,同时还解决了钛硅催化剂粉体和反应液难于分离的问题,提高了反应效率。

Description

一种钛硅分子筛与树脂复合催化剂及其制备方法和用途 技术领域
本发明涉及一种钛硅分子筛与树脂复合催化剂及其制备方法,以及 在烯烃的环氧化和环己酮氨氧化制取环己酮肟等的固定床催化反应过 程中的应用。 背景技术
自意大利 Enichem公司 1983 年首次合成钛硅分子筛催化剂 TS-1 以来,由于其优异的氧化选择性和温和的反应条件而成为氧化催化剂研 究的热点, 这一发现被视为环境友好催化剂开发的一大突破。
钛硅分子 催化剂在有机化合物选择性氧化方面具有非常重要的 作用,如丙烯在钛硅分子筛催化剂作用下用过氧化氢环氧化制备环氧丙 烷。 在工业应用中, 钛硅分子筛催化剂表现出优良的择型催化性能, 一 般粒径越小, 催化剂活性越高, 选择性越好, 实际应用中钛硅分子筛催 化剂的粒径约为 0.1 -15.0μιη, 然而, 这样小的粒径会给催化剂与产物的 分离带来极大的困难,虽然已有各种关于过滤材料的研究成果应用于实 际, 但对于钛硅分子筛催化剂与产物的分离, 其过滤时产生的阻力并不 在于过滤材料的孔道的大小,而是来自于极细小的催化剂粒子占据并堵 塞所形成的滤饼的孔道, 尤其是粒径小于 2μηι 的催化剂粒子对过滤最 为不利, 这样造成生产效率低下, 也影响到钛硅分子筛工业化应用的进 程。 小粒径的催化剂在过滤时除堵塞滤饼孔道外,'部分则从过滤介质的 孔道中流失, 一般流失率约为催化剂投入量的 5%-8%, 不仅造成催化 剂的无谓消耗, 而且进入产品物料中造成进一步的副反应, 导致分离成 本的增加, 影响产品质;量。
环氧丙烷 (ΡΟ)是重要的基础石油化工原料,是丙烯衍生物中产量仅 次于聚丙烯和丙烯腈的第三大品种, 主要用于生产聚醚、 丙二醇、 异丙 醇胺.、 烯丙醇等, 进而生产不饱和聚酯树脂、 聚氨酯、 表面活性剂等重 要原料, 广泛应用于化工、 轻工、 医药、 食品、 纺织等行业。
目前工业上生产 ΡΟ主要采用氯醇法、 间接氧化法(共氧化法)和异 丙苯法。 氯醇法的主要缺点是使用有毒氯气, 设备腐蚀严重并产生大量 污染环境的含氯废水, 不符合绿色化学和清洁生产的要求, 因此随着环 境保护要求的日益提高, 该工艺将最终被淘汰; 间接氧化法克服了氯醇 法三废污染严重、 腐蚀大和需求氯资源的缺点, 但也有其不利之处, 如 工艺流程长、 防爆要求严、投资大、对原料规格要求高、操作条件严格、 副产品比例大等, 每生产 1吨环氧丙烷有 2,5吨叔丁醇或 1.8吨苯乙烯 生成, 这远超过主产品的产量, 而且副产品的市场需求量波动大, 所以 生产受市场因素制约严重。 异丙苯法工艺采用过氧化氢异丙苯 (CHP)为 氧化剂, 该工艺在技术和经济上具有优越性, 但其实质仍是一种共氧化 法工艺。
鉴于目前工业上制备 PO工艺路线存在的弊端, 近 20 多年来研究 者一直致力于流程简单、 副产物少和绿色无污染的 PO绿色清洁生产工 艺的研究,直到现在世界各大公司还在积极开发新技术并不断改进现有 技术, 其中钛硅分子 (TS- 1 )催化, 过氧化氢直接氧化工艺日趋成熟, 展现出良好的工业化前景。
CN 1256274 A提出了钛硅分子筛催化丙烯、双氧水环氧化连续生产 环氧丙烷的工艺, 该过程中催化剂是以淤浆状存在的, 虽然获得了较好 的原料转化率和产品收率,但是由于催化剂为淤浆状态, 反应后需要从 产物中分离, 重新使用。 这导致了工艺流程繁瑣, 而不利于大规模的工 业生产, 另外该过程中, 催化剂也要有不可避免的损耗。 CN1639143A 的 TS- 1催化丙浠、 双氧水环氧化, 采用高压釜的反应方式, 仍然没有 很好的解决催化剂与产品的分离困难的问题。
环己酮-经羟胺路线生产己内酞胺是以苯为原料, 经苯加氢制环己 烷、 环己烷氧化制环己酮、 环己酮肟化制环己酮肟、 环己酮肟转位生成 己内酰胺等过程。其中环己酮肟的制备是整个己内酰胺生产过程中最为 关键的一步, 均采用的是环己酮与一种羟胺盐反应的方法。 该工艺需要 使用贵金属催化剂及特殊设备, 工序多、 设备多、 循环物料量大, 原料 及能量消耗大, 副产物和中间产物多; 同时该方法副产如 NOx、 80)<等 腐蚀和污染严重的废气, 三废排放量大。 EP020831 1提出了以钛硅分子 筛为催化剂,环己酮、氨和双氧水发生氨肟化反应制备环己酮肟的方法, 在所述的氨肟化反应中, 环己酮的转化率和环己酮肟的选择性均很高, 并且该方法过程简单没有三废排放。 CN1556098A公开了一种异丙醇氧 化制过氧化氢与氨氧化制环己酮肟的集成反应工艺,该方法提出的反应 过程环己酮的转化率高于 99%, 环己酮肟的选择性高于 98%。 该集成 工艺可降低生产成本, 并解决了过氧化氢的储运问题。 但是, 上述钛硅 分子筛催化氨氧化过程仍然采用淤浆形式的搅拌反应方式,没有解决催 化剂和产品难以分离的问题。
CN101 199941 A 公开了一种钛硅分子筛 /纳米碳纤维的复合催化剂 的制备方法, 包括如下步骤: (1 )在蒸馏水中, 钛硅分子筛颗粒和纳米 碳纤维混合; (2)将上述混合物过滤、 烘千, 得钛硅分子筛 /纳米碳纤维 的复合催化剂。 该钛硅分子筛 /纳米碳纤维的复合催化剂的颗粒度为微 米级, 较之工业用微纳米 TS - 1 粉体(100 ~ 500nm)的过滤性能显著提 高, 但仍然采用淤浆形式的搅拌反应方式, 仍存在催化剂和产品分离的 问题, 而且会有催化剂的流失, 这样不但会消耗部分催化剂, 而且催化 剂粉末进入产品物料中造成进一步的副反应, 导致分离成本的增加, 影 响产品质量。
鉴于钛硅分子 晶粒小, 直接用于液相催化反应回收难度大, 操作 成本高, 由此阻碍了钛硅分子筛在工业反应装置上的广泛应用。 而将钛 硅分子^负载在一定尺度的载体上形成复合催化剂,使其在保持较好催 化性能的同时, 易于从液相反应体系分离回收, 是解决上述问题的方法 之一。 USP 5736479 采用经典法配制钛硅沸石的胶体母液, 再将活性 炭或金属氧化物如 A1203 , Si02 , Ti02 , Zr02 或 Al203-Si02 等加入水 热合成体系中,钛硅沸石在载体中生长得到负载型的钛硅催化剂。 单独 的钛硅沸石 TS- 1 的粒度 < 5μπι , 而负载型催化剂的粒度范围一般在 8-30μιη。 加入载体后得到的催化剂在环己酮氨氧化反应中活性高于未 加载体的 TS- 1 , 环己酮肟的收率可达 92.8%, 而选择性可达 98.4 % 。 采用金属氧化物作为载体存在普遍的缺点,即载体本身在钛硅分子筛制 备过程的强碱性环境中不稳定, 会发生胶溶现象, 从而在后续的晶化过 程中影响钛硅分子筛的结晶度。 另外, 将其应用于环己酮氨肟化反应过 程中, 由于以双氧水作氧化剂、 氨水为原料, 在这样的条件下, 载体本 身骨架会发生溶解,造成钛硅分子筛的脱落,不能起到很好的支撑作用。 DE 4240698 将活性炭负栽钛硅分子筛用于脂环酮氨肟化反应, 但活性 炭强度低, 极易碎裂, 造成钛硅分子筛的脱落。 CN 1554483A 介绍了 将惰.±的石墨粉末引入钛硅分子 水热合成体系 , 制得复合钛硅催化 剂, 用于脂环酮氨肟化。 该复合钛硅催化剂用于环己酮氨肟化反应, 环 己酮转化率和环己酮肟选择性均可达 95 %以上, 但是石墨的比表面较 小, 表面光滑且化学惰性, 活性组分钛硅易于脱落, 造成催化剂活性下 降。
钛硅分子筛的平均粒径较小, 无法直接用于工业固定床反应器, 必 须通过成型加工制成具有适宜形状、良好机械强度并且有较高活性和选 择性的催化剂。所以催化剂成型问题成为钛硅分子筛能否应用于工业固 定床反应技术的一个重要的课题。 发明内容
为克服现有技术存在的不足, 本发明提供了一种可用于固定床反 应器的、 活性好的钛硅分子筛与树脂复合催化剂及其制备方法。
本发明的钛硅分子筛与树脂复合催化剂, 以催化剂的重量为基准, 钛硅分子筛的含量为 1 %-50% , 树脂的含量为 50%-99%。 在一种实施 方案中, 钛硅分子筛的含量为 5%-40%, 树脂的含量为 60%-95%。
所述的树脂为苯乙烯与多烯基化合物的共聚物, 优选地, 苯乙烯 与多烯基化合物的重量比为 2: 1 -5: 1。 所述的多烯基化合物可以是二乙 烯苯、 二乙烯甲苯和二乙烯二曱苯中的一种或多种, 优选为二乙烯苯。
所述的钛硅分子筛与树脂复合催化剂的性质如下: 比表面积为 70-260m2/g, 孔容为 0.15-0.50 cm3/g, 侧压强度为 8-20 mnf1
本发明的钛硅分子筛与树脂复合催化剂的制备方法, 包括: 将钛硅分子筛、 制备树脂用的聚合单体以及制孔剂混合, 在引发剂 存在下, 在 60-150°C, 优选地 80-100°C进行聚合反应 3-10小时, 优选 地 4-6小时, 得到催化剂固体, 将上述催化剂固体在 代烃中溶胀, 然 后溶剂抽提, 得到本发明的钛硅分子 与树脂复合催化剂。
本发明方法中, 任选且优选地, 将聚合反应得到的催化剂固体加工 成催化剂颗粒, 然后再用 代烃溶胀。 根据实际应用的需要, 可以采用 破碎筛分法, 还可以采用切割法等, 将催化剂固体加工成适宜大小和形 状 (如条型、 球形、 类球形等) 的催化剂颗粒。
本发明方法中,所述制孔剂的加入量为钛硅分子 和制备树脂用的 聚合单体的总重量的 30%-60%。
所述的制备树脂用的聚合单体为苯乙烯与多烯基化合物的混合物。 优选地, 苯乙烯与多烯基化合物的重量比为 2: 1 -5: 1。
所述的聚合单体多烯基化合物可以是二乙烯苯、二乙烯曱苯、二乙 烯二曱苯中的一种或多种。
所述的制孔剂可以是汽油、 C5-C13正构烷烃、 C4-C12脂肪醇中的一 种或多种, 最好是 C5-C13正构烷烃中的一种或多种。
所述的引发剂可以是过氧化苯曱酰和 /或偶氮二异丁醇, 加入量为 钛硅分子筛和制备树脂用的聚合单体的总重量的 0.5%-2.5%。
所述的 代烃可以是 d-C4的! ¾代烃, 其中最好是 1,2-二氯乙烷和 氯仿中的一种或两种, 所述的溶胀时间为 3-8小时, 最好是 5-6小时。 在一种实施方案中, 所述的催化剂与卤代烃的体积比为 1:10-1:1。
所述的抽提溶剂可以是苯、 甲苯、 二曱苯、 乙酸乙酯、 乙酸丁酯、 乙醇、 丁醇等中的一种或多种。 所述的抽提温度为 30-60°C, 最好是 50-60°C; 所述的抽提时间为 2-8 小时, 最好是 4-6 小时, 抽提次数为 2-5 次。 在一种实施方案中, 所述的抽提溶剂与催化剂的体积比为 1:1-5:1。
在一种实施方案中, 当引发剂加入包括钛硅分子筛、 制备树脂用 的聚合单体和制孔剂的反应体系时, 该反应体系的温度为 60-90°C:。
本发明钛硅分子筛与树脂复合催化剂可以应用于固定床工艺的烯 烃环氧化和环己酮氨氧化制取环己酮肟的催化反应过程中, 催化效果 优异。
本发明钛硅分子筛与树脂复合催化剂可以应用于固定床工艺的烯 烃环氧化的方法, 其中在钛硅分子筛与树脂复合催化剂存在下, 以醇 作溶剂, 烯烃与双氧水进行环氧化反应, 该反应采用固定床反应方式。
所述的烯烃环氧化的方法中, 原料烯烃例如是丙烯。 所述的醇例 如为曱醇、 乙醇、 丙醇和叔丁醇中的一种或多种, 优选为曱醇。
所述的浠烃环氧化方法所采用的操作条件如下: 反应温度
40-80°。,压力 1.0-3.0MPa,烯烃与 H202的摩尔比为 1:1-7:1,醇与 H202 的摩尔比为 20:1-40:1、 液相体积空速为 5-15h 。
本发明钛硅分子筛与树脂复合催化剂可以应用于固定床工艺的环 己酮氨氧化的方法, 其中在钛硅分子筛与树脂复合催化剂存在下, 以 醇的水溶液为溶剂, 环己酮与氨和双氧水进行氨氧化反应, 制得环己 酮肟, 该反应采用固定床反应器。
所述的环己酮氨氧化的方法中, 原料例如是环己酮、 双氧水和氨 水, 溶剂例如为醇的水溶液, 其中所述的醇例如为曱醇、 乙醇、 丙醇 和叔丁醇中的一种或多种, 优选为叔丁醇。
所述的环己酮氨氧化方法采用的操作条件如下: 反应温度
55-95°C, 压力 0.1-0.5MPa, 液时体积空速为 0.1-1.Oh人 原料的用量如 下: H202与环己酮的摩尔比为 0.8-1.5,氨与环己酮的摩尔比为 1.8-2.8, 所述醇的水溶液中, 醇与水的体积比为 1:0.5-2.5, 环己酮与醇的水溶 液的体积比为 1-10。
与现有技术相比, 本发明催化剂具有以下的特点:
1、 催化剂成型后可采用固定床反应方式, 解决了钛硅催化剂粉体 的催化剂和反应液难于分离的问题, 提高了反应效率。
2、 在催化反应过程中由于大量分散剂的稀释作用, 使钛硅分子筛 以隔离的形式存在, 所以氧化反应热效应緩和, 可减少副反应发生, 提高了反应选择性。
3、 催化剂成型后, 不需要高温 (>500°C)焙烧脱除成型过程中加入 的制孔剂, 仅需低温 ( < 150°C ) 抽提活化, 可避免造成分子筛骨架坍 塌或钛脱离出骨架, 充分保持钛硅分子筛活性。
4、 催化剂骨架耐水, 有利于在 H202反应氛围中进行反应。 具体实施方式
本发明中所述的比表面积是根据 ASTM D3663-2003标准采用低温 液氮吸附法测定的。
本发明中所述的孔容是根据 ASTM D4222-2003标准采用低温液氮 吸附法测定的。
本发明中所述的侧压强度是根据 HG/T 2782 - 1996 标准, 采用 QCY-602型催化剂强度测定仪测定的。
本发明中所述的粒径是采用美国泰勒标准筛(Tyler standard sieve series)测定的。 本发明方法的具体制备过程如下:
( 1 ) 、 聚合
在聚合釜内, 加入钛硅分子歸、 聚合单体苯乙烯、 聚合单体多烯基 化合物、 制孔剂, 搅拌混合均勾后, 水浴升温, 最好在 60-90°C时加入 引发剂, 在 60-150°C下进行聚合反应 3-10小时, 得到催化剂固体。
( 2) 、 溶剂抽提活化
将上述的催化剂固体进行破碎造粒, 薛分, 然后例如将粒径约为 lxl-5x5mm (筛目为 4-16 目 ) 的催化剂固体加入卤代烃进行溶胀, 催 化剂与卤代烃的体积为 1:10-1:1, 常温下溶胀 3-8小时,倒出卤代烃后, 再加入抽提溶剂进行抽提, 其是抽提溶剂与催化剂的体积比为 1:1-5:1, 抽提温度 30-60°C, 抽提时间 2-6小时, 抽提次数 2-5次, 得到本发明 的钛硅分子筛与树脂复合催化剂。该催化剂可直接装入固定床反应器中 进行如烯烃的环氧化等的催化反应。
下面结合实施例对本发明做进一步的详细说明,以下实施例并不是 对本发明保护范围的限制,本领域的技术人员结合本发明说明书及全文 可以做适当的扩展, 这些扩展都应是本发明的保护范围。
实施例 1
在聚合釜内, 加入钛硅分子 7.5g、 聚合单体苯乙浠 90g和二乙烯 苯 30g, 制孔剂液蜡 ( C9_M烷烃) 60g, 搅拌混合均勾后, 水浴升温到 60 °C时, 加入引发剂过氧化苯甲酰 1 .5g , 在 90°C下聚合反应温度 6小 时, 得到块状钛硅分子 催化剂。 然后进行破碎造粒, 分后选取适宜 粒径的催化剂, 加入 1 ,2-二氯乙烷进行溶胀, 其中催化剂与 1,2-二氯乙 烷体积比为 1 :5 , 常温下溶月长 5小时。 倒出 1 ,2-二氯乙烷后, 再加入乙 酸乙酯进行溶剂抽提, 其中乙酸乙酯与催化剂体积比为 3 : 1 , 抽提温度 55 °C , 抽提时间 4小时, 同样方法进行三次抽提, 得到钛硅分子 与树 脂复合催化剂 A, 其物化性质见表 1。
实施例 2
在聚合釜内, 加入钛硅分子蹄 15g、 聚合单体苯乙烯 90g、 二乙烯 曱苯 15 g、二乙烯二曱苯 25g、制孔剂 C5脂肪醇 60g,搅拌混合均匀后, 水浴升温到 80°C时, 加入引发剂偶氮二异丁醇 2.0g, 在 100°C下聚合 反应温度 6小时, 得到块状钛硅分子 催化剂。 然后进行破碎造粒, 筛 分后选取适宜粒径的催化剂, 加入 1,2-二氯乙烷进行溶胀, 其中催化剂 与 1,2-二氯乙烷体积比为 1 :5 , 常温下溶胀 5小时。 倒出 1 ,2-二氯乙烷 后, 再加入二甲苯进行溶剂抽提, 其中二曱苯与催化剂体积比为 3: 1, 抽提温度 55 °C , 抽提时间 4小时, 同样方法进行三次抽提, 得到钛硅 分子筛与树脂复合催化剂 B, 其物化性质见表 1。
实施例 3
将实施例 1 中钛硅分子筛的重量变为 30g, 抽提溶剂换用氯仿, 其 余同实施例 1 , 得到钛硅分子筛与树脂复合催化剂 C , 其物化性质见表 1。
实施例 4
将实施例 1 中钛硅分子筛的重量变为 45g, 其余同实施例 1 , 得到 钛硅分子 与树脂复合催化剂 D, 其物化性质见表 1。 实施例 5
将实施例 1 中钛硅分子筛的重量变为 60g, 其余同实施例 1 , 得到 钛硅分子 与树脂复合催化剂 E, 其物化性质见表 1。
实施例 6
将实施例 1 中钛硅分子筛的重量变为 75g , 其余同实施例 1, 得到 钛硅分子 与树脂复合催化剂 F, 其物化性质见表 1。
表 1 催化剂的物化性质
Figure imgf000009_0001
实施例 7- 12
取实施例 1 -6 的催化剂 [粒径约为 2x2mm (筛目为 8-9 目 ) ]50ml 装入直径 20mm,长 1200mm的固定床反应器中,进行烯烃环氧化反应, 反应条件及结果见表 2。
表 2 烯烃环氧化操作条件及反应结果
Figure imgf000009_0002
由表 2可见, 采用本发明方法, 02的转化率达到 98%以上, 基 于丙烯的环氧丙烷选择性达到 92%以上。
实施例 13- 18
取实施例 1 -6 的催化剂 [粒径约为 2x2mm (筛目为 8-9 目 ) ]50ml 装入直径 20mm, 长 1200mm的固定床反应器中, 进行环己酮的氨氧化 反应,制得环己酮肟。环己酮肟的分析方法采用 HP6890气相色 i普分析, FID 器, HP-5毛细管柱, 反应条件及结果见表 3。
Figure imgf000010_0001

Claims

权 利 要 求
1、 一种钛硅分子筛与树脂复合催化剂, 以催化剂的重量为基准, 钛硅分子筛的含量为 1 %-50%, 而树脂的含量为 50%-99%; 或者钛硅分 子筛的含量为 5%-40% , 而树脂的含量为 60%-95%。
2、 按照权利要求 1 所述的催化剂, 其特征在于所述的树脂为苯乙 烯与多烯基化合物的共聚物,优选地苯乙烯与多烯基化合物的重量比为 2: 1 -5 : 1 , 多烯基化合物是二乙烯苯、 二乙烯甲苯和二乙烯二曱苯中的一 种或多种, 优选地所述的多烯基化合物为二乙烯苯。
3、 按照权利要求 1 所述的催化剂, 其特征在于所述催化剂的性质 如下:比表面积为 70-260m2/g ,孔容为 0.15-0.50 cm3/g,侧压强度为 8-20 N.mm"1
4、 一种制备权利要求 1 -4中任一项的催化剂的方法, 包括: 将钛硅分子筛、 制备树脂用的聚合单体(优选地, 苯乙烯与多烯基 化合物如二乙烯苯、二乙婦曱笨、二乙烯二甲苯中的一种或多种的混合 物)以及制孔剂混合, 优选地, 制孔剂是汽油、 C5-C13正构烷烃、 C4-C12 脂肪醇中的一种或多种, 更优选地, 制孔剂是 C5-C13正构烷烃中的一 种或多种;
在引发剂存在下, 进行聚合反应, 得到催化剂固体, 优选地所述的 引发剂是过氧化苯曱酰和 /或偶氮二异丁醇,
任选且优选地, 将聚合反应得到的催化剂固体加工成适宜大小和形 状的催化剂颗粒,
将上述催化剂固体或催化剂颗粒在 1¾代烃中溶胀, 优选地, 1¾代烃 是 C , -C4的 代烃, 更有选地 代烃是 1 ,2-二氯乙烷和氯仿中的一种或 两种,
然后溶剂抽提, 得到催化剂, 优选地抽提溶剂是苯、 曱苯、 二曱苯、 乙酸乙酯、 乙酸丁酯、 乙醇、 丁醇中的一种或多种。
5、 按照权利要求 4 所述的方法, 其特征在于所述的制孔剂的加入 量为钛硅分子筛和制备树脂用的聚合单体的总重量的 30%-60%。
6、 按照权利要求 4 所述的方法, 其特征在于所述的聚合反应温度 为 60- 150°C , 优选地 80- 100°C, 反应时间为 3- 10小时, 优选地 4-6小 时。
7、 按照权利要求 4 所述的方法, 其特征在于所述的引发剂的加入 量为钛硅分子筛和制备树脂用的聚合单体的总重量的 0.5%-2.5%。
8、 按照权利要求 4 所述的方法, 其特征在于所述的催化剂与卤代 烃的体积比为 1:10-1:1。
9、 按照权利要求 4所述的方法, 其特征在于溶胀进行 3-8 小时, 优选地 5-6小时。
10、 按照权利要求 4所述的方法, 其特征在于所述的抽提溶剂与催 化剂的体积比为 1:1-5:1。
11、 按照权利要求 4所述的方法, 其特征在于抽提温度为 30-60°C, 优选 50-6CTC; 抽提时间为 2-8 小时, 优选 4-6 小时, 抽提次数为 2-5 次。
12、 按照权利要求 4所述的方法, 其特征在于所述的引发剂加入包 括钛硅分子筛、 制备树脂用的聚合单体和制孔剂的反应体系时, 该反应 体系的温度为 60-90°C。
13、 权利要求 1-3中任一项的催化剂用于烯烃环氧化或环己酮氨氧 化制取环己酮肟在固定床中的用途。
14、 权利要求 13 的用途, 其中以醇 (优选地所述的醇为曱醇、 乙 醇、 丙醇和叔丁醇中的一种或多种)作溶剂, 用双氧水使浠烃(优选丙 烯) 环氧化。
15、 权利要求 13的用途, 其中烯烃环氧化在如下操作条件下进行: 反应温度 40-80°C, 压力 1.0-3.0MPa, 烯烃与 H202的摩尔比为 1:1-7:1, 醇与 H202的摩尔比为 20:1-40:1、 液相体积空速为 5-15h"'0
16、 权利要求 13 的用途, 其中以醇 (优选地曱醇、 乙醇、 丙醇和 叔丁醇中的一种或多种, 更优选地叔丁醇)的水溶液为溶剂, 环己酮与 氨和双氧水进行氨氧化反应, 制得环己酮肟。
17、 权利要求 13 的用途, 其中环己酮氨氧化在如下操作条件下进 行: 反应温度 55-95°C, 压力 0.1-0.5MPa, 液时体积空速为 0.1-1.Oh-1
18、 权利要求 13的用途, 其中所述的环己酮氨氧化中, H202与环 己酮的摩尔比为 0.8-1.5, 氨与环己酮的摩尔比为 1.8-2.8, 所述醇的水 溶液中, 醇与水的体积比为 1:0.5-2.5, 环己酮与醇的水溶液的体积比为 1-10。
PCT/CN2011/000747 2010-07-07 2011-04-27 一种钛硅分子筛与树脂复合催化剂及其制备方法和用途 WO2012003708A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010220855.7A CN102311363B (zh) 2010-07-07 2010-07-07 一种环己酮氨氧化的方法
CN201010220855.7 2010-07-07

Publications (1)

Publication Number Publication Date
WO2012003708A1 true WO2012003708A1 (zh) 2012-01-12

Family

ID=45424970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/000747 WO2012003708A1 (zh) 2010-07-07 2011-04-27 一种钛硅分子筛与树脂复合催化剂及其制备方法和用途

Country Status (2)

Country Link
CN (1) CN102311363B (zh)
WO (1) WO2012003708A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103816929A (zh) * 2014-02-27 2014-05-28 南京工业大学 一种类水滑石催化剂、制备方法及其应用
CN104759292A (zh) * 2015-03-04 2015-07-08 华东师范大学 有机分子笼负载催化剂及其合成方法和用途

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103288675B (zh) * 2012-02-29 2015-06-24 北京安耐吉能源工程技术有限公司 一种环己酮肟的制备方法
CN103288676B (zh) * 2012-02-29 2015-06-24 北京安耐吉能源工程技术有限公司 一种环己酮肟的制备方法
EP3495356B8 (en) 2016-07-29 2023-10-25 Sumitomo Chemical Company, Limited Method for producing propylene oxide
WO2021060263A1 (ja) 2019-09-25 2021-04-01 住友化学株式会社 プロピレンオキサイドの製造方法
KR20220161330A (ko) 2020-03-27 2022-12-06 스미또모 가가꾸 가부시키가이샤 프로필렌옥사이드의 제조 장치, 및, 프로필렌옥사이드의 제조 방법
CN114669325B (zh) * 2022-04-19 2023-07-18 清华大学 一种负载型ts-1催化剂的制备方法及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101124044A (zh) * 2004-03-09 2008-02-13 利安德化学技术有限公司 用于氧化反应的聚合物包封的钛沸石
CN102050803A (zh) * 2009-10-27 2011-05-11 中国石油化工股份有限公司 一种烯烃环氧化的方法
CN102049305A (zh) * 2009-10-27 2011-05-11 中国石油化工股份有限公司 一种钛硅分子筛催化剂的制备方法
CN102049304A (zh) * 2009-10-27 2011-05-11 中国石油化工股份有限公司 一种钛硅分子筛与树脂复合催化剂及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1296134C (zh) * 2003-12-27 2007-01-24 大连理工大学 一种复合钛硅催化剂及其制备和用途

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101124044A (zh) * 2004-03-09 2008-02-13 利安德化学技术有限公司 用于氧化反应的聚合物包封的钛沸石
CN102050803A (zh) * 2009-10-27 2011-05-11 中国石油化工股份有限公司 一种烯烃环氧化的方法
CN102049305A (zh) * 2009-10-27 2011-05-11 中国石油化工股份有限公司 一种钛硅分子筛催化剂的制备方法
CN102049304A (zh) * 2009-10-27 2011-05-11 中国石油化工股份有限公司 一种钛硅分子筛与树脂复合催化剂及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103816929A (zh) * 2014-02-27 2014-05-28 南京工业大学 一种类水滑石催化剂、制备方法及其应用
CN104759292A (zh) * 2015-03-04 2015-07-08 华东师范大学 有机分子笼负载催化剂及其合成方法和用途

Also Published As

Publication number Publication date
CN102311363B (zh) 2014-05-21
CN102311363A (zh) 2012-01-11

Similar Documents

Publication Publication Date Title
WO2012003708A1 (zh) 一种钛硅分子筛与树脂复合催化剂及其制备方法和用途
CN1142823C (zh) 一种可用于氧化反应的催化剂
CN101274922B (zh) 一种制备环氧丙烷的方法
CN101264453A (zh) 一种钛硅分子筛/硅藻土复合催化剂及制备方法
CN102079694B (zh) 一种氧化环己醇制备环己酮的方法
CN103360279A (zh) 一种环己酮氨肟化制备环己酮肟的方法
CN102050803B (zh) 一种烯烃环氧化的方法
JP2005349319A (ja) 反応装置
CN103360344B (zh) 一种催化丙烯环氧化的方法
EP2706051B1 (en) Method for oxidating cyclohexane
CN103864549A (zh) 一种制备二苯甲酮类化合物的方法
CN102755910B (zh) 一种钛硅分子筛与树脂复合改性催化剂及其制备方法
CN103130748B (zh) 一种环己烯氧化的方法
CN102757407B (zh) 一种氯丙烯环氧化制备环氧氯丙烷的方法
TWI510291B (zh) A titanium silicon molecular sieve and resin composite catalyst, preparation method and use thereof
CN102757406B (zh) 一种苯乙烯环氧化制备环氧苯乙烷的方法
CN107879893B (zh) 一种催化氧化法制备邻二醇类化合物的方法
CN105111044A (zh) 由丁烯醇合成异戊烯醇的方法
CN102049305B (zh) 一种钛硅分子筛催化剂的制备方法
WO2012048529A1 (zh) 一种烯烃环氧化生产氧化烯烃的方法
CN102049304B (zh) 一种钛硅分子筛与树脂复合催化剂及其制备方法
TW201217313A (en) Method for producing oxime
CN103130750B (zh) 一种环己烯氧化的方法
CN104072444B (zh) 一种减弱副反应发生的氧化烯烃的方法
CN104001541B (zh) 用于烯烃水合反应纳米孔氟化树脂酸性催化剂的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11803062

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23/04/2013)

122 Ep: pct application non-entry in european phase

Ref document number: 11803062

Country of ref document: EP

Kind code of ref document: A1