WO2003093345A1 - Verfahren und vorrichtung zur herstellulng von polyestern, copolyestern and polycarbonaten - Google Patents

Verfahren und vorrichtung zur herstellulng von polyestern, copolyestern and polycarbonaten Download PDF

Info

Publication number
WO2003093345A1
WO2003093345A1 PCT/EP2003/003412 EP0303412W WO03093345A1 WO 2003093345 A1 WO2003093345 A1 WO 2003093345A1 EP 0303412 W EP0303412 W EP 0303412W WO 03093345 A1 WO03093345 A1 WO 03093345A1
Authority
WO
WIPO (PCT)
Prior art keywords
stage
reactor
reaction
esterification
product
Prior art date
Application number
PCT/EP2003/003412
Other languages
English (en)
French (fr)
Inventor
Fritz Wilhelm
Michael Reisen
Original Assignee
Zimmer Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zimmer Ag filed Critical Zimmer Ag
Priority to JP2004501484A priority Critical patent/JP2005524731A/ja
Priority to AU2003226771A priority patent/AU2003226771A1/en
Priority to US10/513,227 priority patent/US7084234B2/en
Priority to EA200401439A priority patent/EA008507B1/ru
Priority to EP03747404A priority patent/EP1444286B1/de
Priority to DE50303563T priority patent/DE50303563D1/de
Priority to KR1020047017444A priority patent/KR100925931B1/ko
Publication of WO2003093345A1 publication Critical patent/WO2003093345A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/20Stationary reactors having moving elements inside in the form of helices, e.g. screw reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/1856Stationary reactors having moving elements inside placed in parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/1862Stationary reactors having moving elements inside placed in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/785Preparation processes characterised by the apparatus used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/205General preparatory processes characterised by the apparatus used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/30General preparatory processes using carbonates
    • C08G64/307General preparatory processes using carbonates and phenols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00004Scale aspects
    • B01J2219/00006Large-scale industrial plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/18Details relating to the spatial orientation of the reactor
    • B01J2219/182Details relating to the spatial orientation of the reactor horizontal

Definitions

  • the invention relates to a method and a device for the production of polyesters, copolyesters and polycarbonates by esterification of dicarboxylic acids or dicarboxylic acid esters and diols or by transesterification of dialkyl carbonates or diaryl carbonates with bisphenols in at least one reaction step, prepolycondensation of the esterification or transesterification product in at least one reaction step and polycondensation of the prepolycondensation product in at least one polycondensation stage.
  • terephthalic acid PTA
  • DMT dimethyl terephthalate
  • EG ethylene glycol
  • possibly other comonomers are used as starting materials.
  • PTA is mixed with EG and a catalyst solution to give a paste and a first reaction stage for esterification is given, in which the esterification takes place at atmospheric or superatmospheric pressure with elimination of water.
  • DMT the DMT melt and the catalyst are fed together with the EG to a first reaction stage for the transesterification, in which the reaction takes place at atmospheric pressure with the elimination of methanol (MeOH).
  • the split-off substances are fed together with distilled EG to a rectification column for the recovery of EG.
  • the recovered EG is used again for the esterification or for the production of the paste.
  • the product stream of the esterification / transesterification is fed to a reaction stage for prepolycondensation, which is usually carried out under vacuum.
  • the product stream of the prepolycondensation is introduced into a reaction stage for the polycondensation.
  • the polyester melt obtained is processed directly into fibers or chips.
  • the esterification takes place in two reaction stages designed as stirred tanks.
  • the prepolycondensation is carried out in a standing cascade reactor with a floor-standing stirrer and with plant capacities up to 900 t / day in two polycondensation stages of a first reaction stage designed as a stirred tank and a subsequent, lying cascade reactor.
  • a horizontal cascade reactor is also used for polycondensation.
  • These horizontal cascade reactors contain a chamber on the bottom and a stirrer equipped with vertical perforated or ring disks on a horizontal shaft for the purpose of a defined surface generation.
  • the plant comprising two esterification stages, two prepolycondensation stages and a polycondensation stage, of which the first three reaction stages are designed as stirred tanks and the last two reaction stages as horizontal cascade reactors, allows high stability and flexibility of PET production and also offers the best possibilities for increasing the plant capacity, which, however, is associated with a not inconsiderable increase in expenses for equipment and buildings (Schumann, Heinz-Dieter: Polyester producing plants: principles and technology. Landsberg / Lech: Verl. Moderne Industrie, 1996, pp. 27 to 33) ,
  • PBT polybutylene terephthalate
  • BDO 1,4-butanediol
  • the solution to this problem consists in that, in at least one of the reaction stages, the product stream fed in before or within the reaction stage is divided into at least two partial streams and the partial streams are passed through the reaction stage completely or partially separately from one another.
  • the partial streams are routed to one another through the reaction stage or in sections in the reaction stage parallel to one another in the direction of a common product outflow, with the partial streams in the reaction stage at the outlet at the latest be brought together and the amount of product streams introduced and discharged into the reaction stages is controlled.
  • An alternative according to the invention is that the partial streams in the reaction stage for the prepolycondensation or polycondensation are diverged in opposite directions to separate outlets.
  • a cascade reactor or cage reactor is provided within the scope of the development of the invention, which has at least two spatially separated sections, which are divided into sub-spaces through which separate flows can be made.
  • a stirred disk reactor with perforated or ring disks is preferably used as the horizontal cascade reactor.
  • the inlet for the partial streams is in each case arranged on the end faces and the outlet for the product stream formed from the partial streams in the central region of the stirring disk reactor.
  • a stirring disc reactor instead of a stirring disc reactor, it is also possible to use a standing storey reactor, in which the inlets for the product stream are arranged in the head area and the outlet for the product stream of the combined partial streams are arranged in the bottom, and at least in the upper section, storeys connected in parallel for separate guidance the partial streams and a subsequent floor or floor space for merging the partial streams are available.
  • a storey reactor can be used in such a way that the inlet and outlet are connected via a line for the product return located outside the storey reactor, into which a feed for the product, a heater for the product and elements for dividing the product stream into partial streams are integrated.
  • FIG. 1 shows a plant for the production of PET consisting of four reaction stages, in which the first reaction stage (2) designed as a stirred reactor, in which a temperature of 260 ° C. and a pressure of 1600 mbar (abs) prevail, via line (1) , a pasty mixture of PTA and EG together with the catalyst solution are fed continuously.
  • the product stream emerging from the first reaction stage (2) is fed via line (3) to the second reaction stage (4), which is designed as a stirred reactor and has a temperature of 263 ° C. and a pressure of 1080 mbar (abs).
  • the vapors formed during the esterification are discharged via lines (5, 6) to a rectification column (not shown) and are broken down into water and EG in the latter.
  • the product stream which has a degree of esterification of 97%, is derived from the reaction stage (4) via line (7) and divided into two partial product streams of the same quantity, which are fed via lines (8,9) into two identical entrance floors (10, 11) for the purpose of prepolycondensation.
  • a vertical floor reactor (12) with stirred floor space (13) can be fed in at a pressure of 15 mbar (abs), flow over subsequent floors (14, 15) to the floor space (13) and be reunited therein.
  • the product stream flowing out of the deck reactor (12) is fed via line (16) to a stirring disk reactor (17) with annular disks for polycondensation on the front side and the finished polymer is discharged via line (18) on the rear side.
  • the operating vacuum required in each case is applied via line (19) of the deck reactor (12) and via line (20) of the stirring disk reactor (17).
  • the levels (10, 11, 14, 15) of the tier reactor (12) can be chambered and provided with droplet separators. With the system concept described above, critical steam loads can be avoided even at high throughputs.
  • FIG. 1 A further embodiment of the method according to the invention is shown in FIG an existing reaction stage (24) in which a vacuum stage (25) with a pressure of 550 mbar (abs) is integrated.
  • the vapors formed during the esterification are passed via lines (26, 27, 28) to a rectification column (not shown) and separated into water and EG, the vapors flowing out of the vacuum section (25) at a temperature of 267 ° C using a gas jet pump ( 29) which is operated with the vapors of the first reaction stage (22) as motive steam.
  • the product stream withdrawn via line (30) from the vacuum sub-stage (25) is divided into two product sub-streams of the same amount, one of which is a product sub-stream via line (31) on the front side and the other via line (32) on the rear side of a stirring disk reactor (33 ) with perforated disks for the purpose of prepolycondensation, the partial flows flowing axially from the outside inwards through two separate, mirror-symmetrically identical reaction spaces.
  • the product flows are brought together in the central plane of the agitator disc reactor (33) and the one (35) the required vacuum is generated and at the same time the vapors formed in the prepolycondensation are derived for the purpose of recovering EG.
  • the product stream flowing off via line (34) is divided into two partial streams, each of which is fed via a line (36) or a line (37) to a stirring disk reactor (38, 39) for polycondensation.
  • the polycondensation product which has a temperature of 282 ° C., is discharged from the stirring disk reactors (38, 39) via the lines (40, 41).
  • the vacuum required in the stirring disc reactors is applied to the lines (42, 43).
  • Two reactors serve on the one hand to maximize the total plant capacity and on the other hand to polymer diversification and a decentralized product distribution in direct spinning.
  • Fig. 2a it is also possible to give up the partial flow flowing off via the lines (36) at the front and the partial flow flowing off via line (37) at the rear of a stirring disk reactor (44) with perforated disks and annular disks and the partial flows axially from the outside to be led inside through two separate, mirror-symmetrically identical reaction spaces.
  • the product stream resulting from the partial streams brought together is discharged via line (45) in the central plane of the stirring disk container.
  • the necessary vacuum is established via line (46) and the vapors formed during the polycondensation are removed.
  • SSP Solid State Polycondensation
  • PBT polybutylene terephthalate
  • BDO butanediol
  • Partial product streams of the same quantity are divided, which are then piped (56) and piped (57) into the separate entrance floors (58 and 59) of a deck reactor (60) arranged in parallel for esterification at a temperature of 245 ° C and a pressure of 400 mbar ( abs) must be entered.
  • the separate product part flows are brought together on the intermediate floor (61) and removed from the floor space (62) via line (63).
  • a predominant proportion of this product stream is returned via line (64) after removal of the esterification product and feed of the raw materials via line (65) to the top of the stage reactor (60) in line (54).
  • the remaining amount of the product stream discharged from the stage reactor (60) is fed via line (65) to the reaction stage (66), in which the prepolycondensation takes place at a temperature of 240 ° C. and a pressure of 20 mbar (abs).
  • the prepolycondensate is fed via line (67) to a stirring disk reactor (68), from which the finished PBT is discharged via line (69).
  • the mixture of water, tetrahydrofuran (THF) and BDO formed during the esterification is treated in a rectification column, THF and water as the top product of a THF recovery are fed - and BDO as the bottom product is again added to the stage reactor (60).
  • THF tetrahydrofuran
  • BDO BDO as the bottom product is again added to the stage reactor (60).
  • the vapors from the prepolycondensation stage (66) and from the agitator disk (68) are drawn off via lines (70, 71) to separate vacuum systems and subjected to partial condensation for the purpose of recycling BDO.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

Bei einem Verfahren zur Herstellung von Polyestern erfolgen die Veresterung von Dicarbonsäuren und Diolen in wenigstens einer Reaktionasstufe, die Vorpolykondensation des Veresterungsprodukt in wenigstens einer Reaktionsstufe und die Polykondensation des Vorpolykondensationsprodukts in wenigstens einer Reaktionsstufe. Zur Steigerung der Kapazität einer aus mehreren Reaktionsstufen gebildeten Anlage zur Herstellung von Polyestern ist vorgesehen, bei wenigstens einer der Reaktionsstufen den zugeführten Produktstrom vor oder innerhalb der Reaktionsstufe in mindestens zwei Teilströme aufzuteilen und die Teilströme ganz oder teilweise getrennt voneinander durch die Reaktionsstufe zu leiten.

Description

Verfahren und Vorrichtung zur Herstellung von Polyestern- Copolyestern und
Polycarbonaten
Beschreibung
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Herstellung von Polyestern, Copolyestern und Polycarbonaten durch Veresterung von Dicarbonsäuren oder Dicarbonsäureestern und Diolen oder durch Umesterung von Dialkylcarbonaten oder Diarylcarbonaten mit Bisphenolen in wenigstens einer Reaktionsstufe, Vorpolykondensation des Veresterungs- oder Umesterungsprodukts in wenigstens einer Reaktionsstufe und Polykondensation des Vorpolykondensationsprodukts in wenigstens einer Polykondensationsstufe.
Für die kontinuierliche Herstellung von Polyethylenterephthalat (PET) und dessen Copolyestern werden Terephthalsäure (PTA) oder Dimethylterephthalat (DMT) und Ethylenglycol (EG) sowie ggf. weitere Comonomere als Ausgangsstoffe eingesetzt. PTA wird mit EG und einer Katalysatorlösung zu einer Paste gemischt und einer ersten Reaktionsstufe zur Veresterung aufgegeben, in der die Veresterung bei Atmosphären- oder Überatmosphärendruck unter Abspaltung von Wasser erfolgt. Wenn DMT benutzt wird, werden die DMT-Schrnelze und der Katalysator zusammen mit dem EG einer ersten Realctionsstufe zur Umesterung zugeleitet, in der die Reaktion bei Atmosphärendruck unter Abspaltung von Methanol (MeOH) erfolgt. Die abgespaltenen Stoffe werden gemeinsam mit destilliertem EG einer Rektifikationskolonne zur Wiedergewinnung von EG zugeleitet. Das wiedergewonnene EG wird erneut zur Veresterung oder zur Herstellung der Paste eingesetzt. Der Produktstrom der Ver-/Umesterung wird einer Reaktionsstufe zur Vorpolykondensation, die im Regelfall unter Vakuum durchgeführt wird, zugeführt. Der Produktstrom der Vorpolykondensation wird in eine Reaktionsstufe zur Polykondensation eingetragen. Die erhaltene Polyesterschmelze wird direkt zu Fasern oder zu Chips verarbeitet. Beim Verfahren zur Herstellung von PET erfolgt die Veresterung in zwei als Rührbehälter ausgebildeten Reaktionsstufen. Bei Aπlagenkapazitäten bis zu 400 t/Tag wird die Vorpolykondensation in einem stehenden Kaskadenreaktor mit bodenläufigem Rührer und bei Anlagekapazitäten bis 900 t/Tag in zwei Polykondensationsstufen einer ersten als Rührb ehälter ausgebildeten Reaktionsstufe und einem anschließenden, liegenden Kaskadenreaktor durchgeführt. Zur Polykondensation wird ebenfalls ein liegender Kaskadenreaktor benutzt. Diese liegenden Kaskadenreaktoren beinhalten eine sumpfseitige Kammerung und ein mit senkrechten Loch- oder Ringscheiben bestücktes Rührwerk auf einer waagrechten Welle zum Zwecke einer definierten Oberflächenerzeugung.
Die zwei Veresterungsstufen, zwei Vorpolykondensationsstufen und eine Polykondensationsstufe umfassende Anlage, von denen die ersten drei Reaktionsstufen als Rührbehälter und die letzten beiden Reaktionsstufen als liegende Kaskadenreaktoren ausgebildet sind, gestattet eine hohe Stabilität und Flexibilität der PET-Herstellung und bietet darüber hinaus die besten Möglichkeiten zur Erhöhung der Anlagenkapazität, was jedoch mit einer nicht unbeachtlichen Steigerung der Aufwendungen für Ausrüstungen und Gebäude verbunden ist (Schumann, Heinz-Dieter: Polyester producing plants: principles and technology. Landsberg/Lech: Verl. Moderne Industrie, 1996, S. 27 bis 33).
Bei einer Anlage, bestehend aus zwei Rührbehältern zur Veresterung, einem Etagemeaktor zur Vorpolykondensation und einem liegenden Kaskadenreaktor zur Polykondensation ergibt sich bei relativ geringerem Aufwand eine vergleichbare Stabilität und Flexibilität der Polyester-Herstellung, allerdings ist von Nachteil, dass sich die Abmessungen der Reaktoren der Vorpolykondensations- und der Polykondensationsstufe wegen erhöhter Brüdenvolumina vergrößern und die zulässigen Transportabmessungen bereits bei mittleren Anlagekapazitäten erreicht werden. Es ist die Aufgabe der vorliegenden Erfindung, ausgehend von vorstehend beschriebenen Stand der Technik, eine Verfahren und eine Vorrichtung zur Durchführung des Verfahrens bereitzustellen, die eine wesentliche Steigerung der Kapazitäten aus vier Reaktionsstufen gebildeten Anlagen zur Herstellung von PET und alternativ eine Überführung großer fünf Reaktionsstufen umfassender Anlagen auf vier Reaktionsstufen ohne Erhöhung der Dampfbelastung und/oder der erhöhten Gefahr des Produktmitrisses durch die Brüden bei der Vorpolykondensation bzw. Polykondensation erlauben. Ferner soll bei Herstellung von Polybutylenterephthalat (PBT) aus PTA und 1.4-Butandiol (BDO) eine kritische Dampfbelastung bereits in der unter Vakuum betriebenen Verestungsstufe vermieden werden.
Die Lösung dieser Aufgabe besteht darin, dass bei wenigstens einer der Reaktionsstufen der zugeführte Produktstrom vor oder innerhalb der Realctionsstufe in mindestens zwei Teilströme aufgeteilt und die Teilströme ganz oder teilweise getrennt voneinander durch die Reaktionsstufe geleitet werden.
Im Rahmen der weiteren Ausgestaltung der Erfindung werden die Teilströme, vorzugsweise in gleich großen Mengen, bis zu einem gemeinsamen Produktabfluß aufeinander zulaufend durch die Reaktionsstufe oder in der Reaktionsstufe abschnittsweise parallel zueinander in Richtung eines gemeinsamen Produktabflusses geleitet, wobei die Teilströme in der Reaktionsstufe spätestens beim Auslaß zus-immengefuhrt werden und die Menge der in die Reaktionsstufen ein- und ausgeleiteten Produktströme kontrolliert wird.
Eine erfindungsgemäße Alternative besteht darin, dass die Teilströme in der Reaktionsstufe für die Vorpolykondensation oder Polykondensation in entgegengesetzter Richtung auseinanderlaufend zu getrennten Auslässen geleitet werden.
Für die Durchführung des Verfahrens ist im Rahmen des Ausbildung der Erfindung ein Kaskadenreaktor oder Käfigreaktor vorgesehen, der mindestens zwei räumlich getrennte, in nacheinander separat durchströmbare Teilräume gegliederte Abschnitte aufweist.
Als liegender Kaskadenreaktor wird bevorzugt ein Rührscheibenreaktor mit Loch- oder Ringscheiben eingesetzt. Bei aufeinander zulaufenden Teilströmen sind der Einlaß für die Teilströme jeweils an den Stirnseiten und der Auslaß für den aus den Teilströmen gebildeten Produktstrom im Mittelbereich des Rührscheibenreaktor angebracht.
Im Falle einer Produktlinienverzweigung oder einer Produktdifferenzierung durch unterschiedliche Viskositäten ist es auch sinnvoll, den Einlaß für den zur Bildung der Teilströme zugefuhrten Produktstrom im Mittelbereich und dementsprechend den Auslaß der Teilströme jeweils an den Enden des Rührscheibenreaktors vorzusehen.
Anstelle eines Rührscheiberreaktors ist auch der Einsatz eines stehenden Etagenreaktors möglich, bei dem die Einlasse für den Produktstrom im Kopfbereich und der Auslaß für den Produktstrom der zus-ιιnmengef-ihrten Teilströme im Boden angeordnet sind und zumindest im oberen Abschnitt parallel geschaltete Etagen für die separate Führung der Teilströme und eine anschließende Etage oder ein Bodenraum für die Zusan menführung der Teilströme vorhanden sind.
Ein Etagenreaktor kann so eingesetzt werden, dass Einlaß und Auslaß über eine außerhalb des Etagenreaktors liegende Leitung für die Produktrückführung verbunden sind, in die eine Zuführung für das Produkt, eine Beheizung für das Produkt und Elemente zur Aufteilung des Produktstroms in Teilströme integriert sind.
In der Zeichnung sind mehrere Ausfuhrungsbeispiele in Form von verf-ihrenstechnischer Fließbildern dargestellt, die nachstehend näher beschrieben werden.
Fig. 1 zeigt eine aus vier Reaktionsstufen bestehende Anlage zur Herstellung von PET, bei der über Leitung (1) der als Rührreaktor ausgebildeten ersten Reaktionsstufe (2), in der eine Temperatur von 260° C und ein Druck von 1600 mbar (abs) herrschen, eine pastöse Mischung aus PTA und EG zusammen mit Katalysatorlösung kontinuierlich zugeführt werden. Der aus der ersten Reaktionsstufe (2) austretende Produktstrom wird über Leitung (3) der als Rührreaktor ausgebildeten zweiten, eine Temperatur von 263° C und einen Druck von 1080 mbar (abs) aufweisenden Reaktionsstufe (4) aufgegeben. Die bei der Veresterung gebildeten Brüden werden über die Leitungen (5,6) zu einer nicht dargestellten Rektifizierkolonne abgeführt und in dieser in Wasser und EG zerlegt. Das Erzeugung des pastösen Gemisches eingesetzt. Der einen Veresterungsgrad von 97 % aufweisende Produktstrom wird über Leitung (7) aus der Reaktionsstufe (4) abgeleitet und in zwei Produktteilströme gleicher Menge aufgeteilt, die über Leitungen (8,9) zum Zwecke der Vorpolykondensation in zwei identische Eingangsetagen (10,11) eines senkrecht stehenden Etagenreaktors (12) mit gerührtem Bodenraum (13) bei einem Druck von 15 mbar (abs) eingespeist werden, über nachfolgende Etagen (14,15) zum Bodenraum (13) strömen und in diesem wieder vereinigt werden. Über Leitung (16) wird der aus dem Etagenreaktor (12) fließende Produktstrom einem Rührscheibenreaktor (17) mit Ringscheiben zur Polykondensation an dessen Vorderseite aufgegeben und das fertige Polymer an dessen Rückseite über Leitung (18) ausgetragen. Über Leitung (19) des Etagenreaktors (12) und über Leitung (20) des Rührscheibenreaktors (17) wird das jeweils benötigte Betriebs Vakuum angelegt. Zur Vermeidung von Tröpfcher-mitriß können die Etagen (10,11,14,15) des Etagemeaktors (12) gekammert und mit Tropfenabscheidern versehen sein. Mit dem vorstehend beschriebenen Anlagenkonzept lassen sich kritische Dampfbelastungen auch bei hohen Durchsätzen vermeiden.
Eine weitere Ausgestaltung des erfindungsgemäßen Verfahrens zeigt Fig. 2. Über Leitung (21) wird zur Veresterung die aus PTA und EG bestehende pastöse Mischung zusammen mit Katalysatorlösung der ersten als Rührbehälter ausgebildeten Reaktionsstufe (22) und das Reaktionsprodukt über Leitung (23) der zweiten aus einem Rührbehälter bestehenden Reaktionsstufe (24) zugeleitet, in der eine Vakuumteilstufe (25) mit einem Druck von 550 mbar (abs) integriert ist. Über Leitungen (26,27,28) werden die bei der Veresterung entstehenden Brüden zu einer nicht dargestellten Rektifizierkolonne geleitet und in Wasser und EG getrennt, wobei die aus der Vakuumteilstufe (25) bei einer Temperatur von 267 °C ausströmenden Brüden mittels einer Gasstrahlpumpe (29), die mit den Brüden der ersten Reaktionsstufe (22) als Treibdampf betrieben wird, verdichtet werden. Der über Leitung (30) aus der Vakuumteilstufe (25) entnommene Produktstrom wird in zwei Produktteilströme gleicher Menge aufgeteilt, von denen der eine Produktteilstrom über Leitung (31) an der Vorderseite und der andere über Leitung (32) an der Rückseite eines Rührscheibenreaktors (33) mit Lochscheiben zum Zwecke der Vorpolykondensation aufgegeben wird, wobei die Teilströme axial von außen nach innen zwei separate, spiegelsymmetrisch -identische Reaktionsräume durchströmen. Die Produktströme werden in der Mittelebene des Rührscheiberirealctors (33) zus-immengefvJhrt und das eine (35) wird das erforderliche Vakuum erzeugt und gleichzeitig die bei der Vorpolykondensation gebildeten Brüden zum Zwecke der Rückgewinnung von EG abgeleitet. Der über Leitung (34) abfließende Produktstrom wird in zwei Teilströme aufgeteilt, die jeweils über eine Leitung (36) bzw. eine Leitung (37) einem Rührscheibenreaktor (38,39) zur Polykondensation aufgegeben werden. Das Polykondensationsprodukt, das eine Temperatur von 282 °C besitzt, wird jeweils über die Leitungen (40,41) aus den Rührscheibenreaktoren (38,39) ausgetragen. Das in den Rührscheibenreaktoren notwendige Vakuum wird an den Leitungen (42, 43) angelegt. Zwei Reaktoren dienen einerseits der Maximierung der gesamten Anlagenkapazität und zum andern der Polymerdiversifizierung sowie einer dezentralen Produktverteilung beim Direktspinnen.
Gemäß Fig. 2a ist es auch möglich, den über die Leitungen (36) abfließenden Teilstrom an der Vorderseite und den über Leitung (37) abfließenden Teilstrom an der Rückseite eines Rührscheibenreaktors (44) mit Lochscheiben und Ringscheiben aufzugeben und die Teilströme axial von außen nach innen durch zwei separate, spiegelsymmetrisch identische Reaktionsräume zu leiten. Der aus den zusanrniengeführten Teilströmen entstehende Produktstrom wird in der Mittelebene des Rührscheibenbehälters über Leitung (45) ausgetragen. Über Leitung (46) wird das notwendige Vakuum hergestellt und die bei der Polykondensation gebildeten Brüden abgeführt.
Eine weitere Abwandlung des Verfahrens nach Fig. 2 zeigt Fig. 2b. Danach besteht die Möglichkeit, aus dem über Leitung (34) abge-uhrten Produktstrom aus vorpolykondensiertem PET zunächst amorphe oder teilkristalline Chips in einem Granuliersystem (47) herzustellen, diese über Leitung (48) einem Kristallisatorsystem (49) mit einer Temperatur von 210 °C zuzuführen und anschließend über Leitung (50) einer Feststoff-Polykondensation im Inertgasstrom bei Temperaturen bis zu 230 °C einem als SSP-Reaktor (SSP = Solid State Polycondensation) bekannten senkrechten Rohr-Reaktor (51) aufzugeben. Die fertigen Chips werden über Leitung (52) aus dem SSP-Reaktor ausgetragen.
Zur kontinuierlichen Herstellung von Polybutylenterephthalat (PBT) werden PTA und Butandiol (BDO) zusammengemischt und das pastöse Gemisch gemäß Fig. 3 über Leitung Produktteilströme gleicher Menge aufgeteilt, die dann über Leitung (56) und Leitung (57) in die parallel angeordneten separaten Eingangsetagen (58 bzw. 59) eines Etagenreaktors (60) zur Veresterung bei einer Temperatur von 245 °C und einem Druck von 400 mbar (abs) eingetragen werden. Die getrennt voneinander geführten Produktteilströme werden in der Zwischenetage (61) zusammengeführt und aus dem Bodemaum (62) über Leitung (63) abgeführt. Ein überwiegender Anteil dieses Produktstroms wird über Leitung (64) nach Entnahme des Veresterungsprodukts und Einspeisung der Rohstoffe über Leitung (65) zum Kopf des Etagemeaktors (60) in Leitung (54) zurückgeführt. Der verbleibende Restmenge des aus dem Etagemeaktor (60) ausgetragenen Produktstroms wird über Leitung (65) der Reaktionsstufe (66) zugeführt, in der bei einer Temperatur von 240 °C und einem Druck von 20 mbar (abs) die Vorpolykondensation erfolgt. Zur Polykondensation wird das Vorpolykondensat über Leitung (67) einem Rührscheibenreaktor (68) zugeleitet, aus dem das fertige PBT über Leitung (69) ausgetragen wird.
Das bei der Veresterung gebildete Gemisch aus Wasser, Tetrahydrofuran (THF) und BDO wird in einer Rektifizierkolonne behandelt, THF und Wasser als Kopfprodukt einer THF- Rückgewinnung --ugeführt und BDO als Sumpfprodukt dem Etagemeaktor (60) erneut aufgegeben. Die Brüden aus der Vorpolykondensationsstufe (66) und aus dem Rührscheibe eaktor (68) werden über Leitungen (70,71) zu separaten Vakuumsystemen abgesaugt und zum Zwecke der Rückführung von BDO einer partiellen Kondensation unterworfen.

Claims

Patentansprüche
1. Verfahren zur kontinuierlichen Herstellung von Polyestern, Copolyestern oder Polycarbonaten durch Veresterung von Dicarbonsäuren oder Dicarbonsäureestern und Diolen oder durch Umesterung von Dialkylcarbonaten oder Diarylcarbonaten mit Bisphenolen in wenigstens einer Reaktionsstufe, Vorpolykondensation des Veresterungs- oder Umesterungsproduktes in wenigstens einer Reaktionsstufe und Polykondensation des Vorpolykondensationsproduktes in wenigstens einer Reaktionsstufe, dadurch gekennzeichnet, dass bei wenigstens einer der Reaktionsstufen der zugeführte Produktstrom vor oder innerhalb der Reaktionsstufe in mindestens zwei Teilströme aufgeteilt und die Teilströme ganz oder teilweise getrennt voneinander durch die Reaktionsstufe geleitet werden.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Teilströme bis zu einem gemeinsamen Produktabfluß aufeinander zulaufend durch die Reaktionsstufe geleitet werden.
3. Verfahren nach einem der Ansprüche 1 und 2, dadurch gekennzeichnet, dass die Teilströme in der Reaktionsstufe abschnittsweise parallel zueinander in Richtung eines gemeinsamen Produktabflusses geleitet werden.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Teilströme in gleich großen Mengen durch die Reaktionsstufe geleitet werden.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Teilströme in der Reaktionsstufe spätestens beim Auslaß zusarr-mengef hrt werden.
6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Teilströme in der Reaktionsstufe für die Vorpolykondensation oder Polykondensation in entgegengesetzter Richtung auseinanderlaufend zu getrennten Auslässen geleitet werden.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Menge der in die Reaktionsstufen ein- oder ausgeleiteten Produktströme kontrolliert wird.
8. Vorrichtung zur Durchfül rung des Verfahrens zur kontinuierlichen Herstellung von Polyestern, Copolyestern oder Polycarbonaten durch Veresterung von Dicarbonsäuren oder Dicarbonsäureestern und Diolen oder durch Umesterung von Dialkylcarbonaten oder Diarylcarbonaten mit Bisphenolen in wenigstens einer Reaktionsstufe (2,4,22,24,25,60) Vorpolykondensation des Veresterungs- oder Umesterungsproduktes in wenigstens einer Reaktionsstufe (12,33,66) und Polykondensation des Vorpolykondensationsproduktes in wenigstens einer Reaktionsrufe (17,38,39,44,68), wobei bei wenigstens einer der Reaktionsstufen der zugeführte Produktstrom vor oder innerhalb der Reaktionsstufe in mindestens zwei Teilströme aufgeteilt und die Teilströme ganz oder teilweise getrennt voneinander durch die Reaktionsstufe (12,33,44,60) geleitet werden, dadurch gekennzeichnet, dass die die Teilströme leitende Reaktionsstufe (12,33,44,60) ein Kaskademeaktor oder ein Käfigreaktor ist, der mindestens zwei räumlich getrennte in nacheinander separat durchströmbare Teilräume gegliederte Abschnitte aufweist.
9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, dass der Kaskademeaktor ein Ruhrscheibenreaktor (35) mit Loch- oder Ringscheiben ist.
10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, dass bei aufeinander zulaufenden Teilströmen der Einlaß für die Teilströme jeweils an den Stirnseiten und der Auslaß des aus den Teilströmen gebildeten Gesamtproduktstroms im Mittelbereich des Rührscheiberrreaktors (35) angebracht sind.
11. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, dass bei in entgegengesetzter Richtung auseinanderlaufenden Teilströmen der Einlaß für den zur Bildung der Teilströme zugeführte Produktstrom im Mittelbereich und der Auslaß der Teilströme jeweils an den Enden des Rührscheibenreaktors angebracht sind.
12. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, dass der Kaskademeaktor ein Etagemeaktor (12,60) ist, bei dem wenigstens zwei Einlasse (8,9,56,57) für den Produktstrom im Kopfbereich und der Auslaß für den Produktstrom der zusammengeführten Teilströme im Boden und zumindest im oberen Abschnitt parallel geschaltete Etagen (10,11,58,59) für die Führung der Teilströme und eine anschließende Etage (14,15,61) oder ein Bodenraum (13, 62) für die Zusammenführung der Teilströme angeordnet sind.
13. Vorrichtung nach Anspruch 12, dadurch gekennzeichnet, dass Einlaß und Auslaß über eine außerhalb des Etagemeaktors (60) geführte Rückführung des ausgetragenen Produkts mittels der Leitungen (63,64,54) mit darin enthaltenen Elementen zur Aufteilung des Produktstroms in Leitung (54) zu separaten Einlassen (58,59) verbunden sind.
14. Vorrichtung nach einem der Ansprüche 8 bis 13, dadurch gekennzeichnet, dass- der oder die Austrittsöffnungen für die Brüdenabgänge des Kaskaderrreaktors (12,17,33,38,39,44,60,68) oder Käfigreaktors möglichst weit entfernt von der oder den Einlaßöffnungen angeordnet sind.
15. Vorrichtung nach einem der Ansprüche 8 bis 14, gekennzeichnet durch aus zwei Rührreaktoren (2,4) bestehende Veresterungsstufen, eine aus einem Etagemeaktor (12) bestehende Vorpolykondensationsstufe und einem aus einem Rührscheibemeaktor (17) bestehende Polykondensationsstufe.
16. Vorrichtung nach einem der Ansprüche 8 bis 14, gekennzeichnet durch aus zwei Rührreaktoren (22,24,25) bestehende Veresterungsstufen, eine aus einem Rührscheibenreaktor (33) bestehende Vorpolykondensationsstufe und eine aus einem Rührscheibemeaktor (38,39) bestehende Polykondensationsstufe
17. Vorrichtung nach einem der Ansprüche 8 bis 14, gekennzeichnet durch aus zwei Rührreaktoren (22,24,25) bestehende Veresterungsstufen, eine aus einem Rührscheibemeaktor (33) bestehende Vorpolykondensationsstufe, einem Granulatorsystem (47), einem Kristallisatorsystem (49) und einer aus einem
18. Vorrichtung nach einem der Ansprüche 16 und 17, dadurch gekennzeichnet, dass in die zweite Veresterungsstufe (24) eine Vakuumveresterungsstufe (25) integriert ist.
19. Vorrichtung nach einem der Ansprüche 8 bis 14, gekennzeichnet durch einen Etagemeaktor (60) mit äußerem Produktkreislauf als Veresterungsstufe, der eine Vorpolykondensationsstufe (66) und ein Rührscheibemeaktor (68) zur Polykondensation nachgeschaltet sind.
PCT/EP2003/003412 2002-05-02 2003-04-02 Verfahren und vorrichtung zur herstellulng von polyestern, copolyestern and polycarbonaten WO2003093345A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2004501484A JP2005524731A (ja) 2002-05-02 2003-04-02 ポリエステル、コポリエステルおよびポリカルボネートの製造の方法および装置
AU2003226771A AU2003226771A1 (en) 2002-05-02 2003-04-02 Method and device for producing polyesters, copolyesters and polycarbonates
US10/513,227 US7084234B2 (en) 2002-05-02 2003-04-02 Method and device for producing polyesters, copolyesters and polycarbonates
EA200401439A EA008507B1 (ru) 2002-05-02 2003-04-02 Способ и установка для получения полиэфиров, сополиэфиров и поликарбонатов
EP03747404A EP1444286B1 (de) 2002-05-02 2003-04-02 Verfahren und vorrichtung zur herstellulng von polyestern, copolyestern and polycarbonaten
DE50303563T DE50303563D1 (de) 2002-05-02 2003-04-02 Verfahren und vorrichtung zur herstellulng von polyestern, copolyestern and polycarbonaten
KR1020047017444A KR100925931B1 (ko) 2002-05-02 2003-04-02 폴리에스테르, 코폴리에스테르 및 폴리카르보네이트의제조를 위한 방법 및 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10219671.0 2002-05-02
DE10219671A DE10219671A1 (de) 2002-05-02 2002-05-02 Verfahren und Vorrichtung zur Herstellung von Polyestern, Copolyestern und Polycarbonaten

Publications (1)

Publication Number Publication Date
WO2003093345A1 true WO2003093345A1 (de) 2003-11-13

Family

ID=29265005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/003412 WO2003093345A1 (de) 2002-05-02 2003-04-02 Verfahren und vorrichtung zur herstellulng von polyestern, copolyestern and polycarbonaten

Country Status (13)

Country Link
US (1) US7084234B2 (de)
EP (1) EP1444286B1 (de)
JP (1) JP2005524731A (de)
KR (1) KR100925931B1 (de)
CN (1) CN100393772C (de)
AT (1) ATE328024T1 (de)
AU (1) AU2003226771A1 (de)
DE (2) DE10219671A1 (de)
EA (1) EA008507B1 (de)
ES (1) ES2263994T3 (de)
MY (1) MY135132A (de)
TW (1) TW593415B (de)
WO (1) WO2003093345A1 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10320074A1 (de) * 2003-05-05 2004-12-02 Bühler AG Reaktor und Verfahren zur Behandlung von Schüttgütern
WO2005023905A1 (de) * 2003-08-07 2005-03-17 Zimmer Aktiengesellschaft Verfahren und vorrichtung zur kontinuierlichen herstellung von polymeren durch schmelzkondensation
DE10322528B4 (de) * 2002-05-31 2005-08-04 Hyosung Corporation Apparatur zur Batch-Typ-Polyester-Polymerisation
DE102005034455B3 (de) * 2005-07-23 2006-11-02 Zimmer Ag Vorrichtung zur Schmelzepolykondensation mit einem Reaktorkäfig
WO2007023097A1 (de) * 2005-08-24 2007-03-01 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel
US8143367B2 (en) * 2006-01-24 2012-03-27 Lurgi Zimmer Gmbh Method for the esterification of terephtalic acid with butanediol, method for the manufacture of polybutylene terephtalate and a device therefor
WO2013037685A1 (de) * 2011-09-15 2013-03-21 Lindauer Dornier Gesellschaft Mit Beschränkter Haftung Verfahren und vorrichtung zum entgasen einer pet-kunststoffschmelze in einer extrusionsanlage

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6906164B2 (en) 2000-12-07 2005-06-14 Eastman Chemical Company Polyester process using a pipe reactor
DE10337780B4 (de) * 2003-08-14 2005-12-08 Zimmer Ag Verfahren zur kontinuierlichen Herstellung von Polymeren durch Schmelzkondensation
US7649109B2 (en) 2006-12-07 2010-01-19 Eastman Chemical Company Polyester production system employing recirculation of hot alcohol to esterification zone
US7943094B2 (en) * 2006-12-07 2011-05-17 Grupo Petrotemex, S.A. De C.V. Polyester production system employing horizontally elongated esterification vessel
US20080139780A1 (en) * 2006-12-07 2008-06-12 Debruin Bruce Roger Polyester production system employing short residence time esterification
US7863477B2 (en) 2007-03-08 2011-01-04 Eastman Chemical Company Polyester production system employing hot paste to esterification zone
US7892498B2 (en) 2007-03-08 2011-02-22 Eastman Chemical Company Polyester production system employing an unagitated esterification reactor
US7829653B2 (en) 2007-07-12 2010-11-09 Eastman Chemical Company Horizontal trayed reactor
US7842777B2 (en) 2007-07-12 2010-11-30 Eastman Chemical Company Sloped tubular reactor with divided flow
US7868130B2 (en) 2007-07-12 2011-01-11 Eastman Chemical Company Multi-level tubular reactor with vertically spaced segments
US7868129B2 (en) 2007-07-12 2011-01-11 Eastman Chemical Company Sloped tubular reactor with spaced sequential trays
US7858730B2 (en) 2007-07-12 2010-12-28 Eastman Chemical Company Multi-level tubular reactor with dual headers
US7872090B2 (en) 2007-07-12 2011-01-18 Eastman Chemical Company Reactor system with optimized heating and phase separation
US7872089B2 (en) 2007-07-12 2011-01-18 Eastman Chemical Company Multi-level tubular reactor with internal tray
US7847053B2 (en) 2007-07-12 2010-12-07 Eastman Chemical Company Multi-level tubular reactor with oppositely extending segments
DE102007050929B4 (de) * 2007-10-23 2012-10-25 Lurgi Zimmer Gmbh Verfahren und Vorrichtung zur Erzeugung von Vakuum bei der Herstellung von Polyestern und Copolyestern
US7834109B2 (en) * 2007-12-07 2010-11-16 Eastman Chemical Company System for producing low impurity polyester
DE102008044440B4 (de) * 2008-08-18 2011-03-03 Lurgi Zimmer Gmbh Verfahren und Vorrichtung zur Rückgewinnung von Ethylenglykol bei der Polyethylenterephthalatherstellung
DE102012105296A1 (de) 2012-06-19 2013-12-19 Epc Engineering Consulting Gmbh Verfahren und Anlage zur Herstellung von Polycarbonat
US11084904B2 (en) * 2016-05-30 2021-08-10 Sociedad Anonima Minera Catalano-Aragonesa Method for obtaining biodegradable polyesteretheramide
CN109563252B (zh) 2016-08-18 2022-04-26 伊士曼化工公司 使用改进的催化剂体系的包含四甲基环丁二醇和乙二醇的聚酯组合物
WO2018035341A1 (en) 2016-08-18 2018-02-22 Eastman Chemical Company Polyester compositions which comprise tetramethylcyclobutanediol and ethylene glycol for calendering
JP7130621B2 (ja) 2016-08-18 2022-09-05 イーストマン ケミカル カンパニー 改良された触媒系による、テトラメチルシクロブタンジオール及びエチレングリコールを含むポリエステル組成物
CN108948340B (zh) * 2018-06-05 2021-03-09 金聚合科技(宁波)有限公司 一种制备芳香族聚碳酸酯的装置及方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1418672A (fr) * 1963-12-26 1965-11-19 Toyo Rayon Co Ltd Appareil de production en continu de produits de réaction de polycondensation
US3974126A (en) * 1973-06-27 1976-08-10 Idemitsu, Kosan Kabushiki-Kaisha Process and apparatus for continuous production of polycarbonates
JPS61207429A (ja) * 1985-03-08 1986-09-13 Toyobo Co Ltd ポリエステルの連続重縮合方法
US5480616A (en) * 1983-02-16 1996-01-02 Amoco Corporation Polycondensation apparatus
EP0738743A1 (de) * 1993-07-23 1996-10-23 Asahi Kasei Kogyo Kabushiki Kaisha Verfahren zur Herstellung von aromatischen Polycarbonaten
JP2000302874A (ja) * 1999-04-22 2000-10-31 Teijin Ltd 横型反応装置
WO2000076657A1 (en) * 1999-06-12 2000-12-21 Lg Chemical Co., Ltd Process and equipment for preparing aromatic polycarbonate
US6359106B1 (en) * 2000-03-09 2002-03-19 Hitachi, Ltd. Production process and production apparatus for polybutylene terephthalate
WO2002046266A2 (en) * 2000-12-07 2002-06-13 Eastman Chemical Company Low cost polyester process using a pipe reactor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL128231C (de) * 1963-12-26
DE19753378A1 (de) * 1997-12-02 1999-06-10 Lurgi Zimmer Ag Verfahren zur Herstellung von Polyestern mit Mischkatalysatoren
DE10001477B4 (de) * 2000-01-15 2005-04-28 Zimmer Ag Diskontinuierliches Polykondensationsverfahren und Rührscheibenreaktor hierfür

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1418672A (fr) * 1963-12-26 1965-11-19 Toyo Rayon Co Ltd Appareil de production en continu de produits de réaction de polycondensation
US3974126A (en) * 1973-06-27 1976-08-10 Idemitsu, Kosan Kabushiki-Kaisha Process and apparatus for continuous production of polycarbonates
US5480616A (en) * 1983-02-16 1996-01-02 Amoco Corporation Polycondensation apparatus
JPS61207429A (ja) * 1985-03-08 1986-09-13 Toyobo Co Ltd ポリエステルの連続重縮合方法
EP0738743A1 (de) * 1993-07-23 1996-10-23 Asahi Kasei Kogyo Kabushiki Kaisha Verfahren zur Herstellung von aromatischen Polycarbonaten
JP2000302874A (ja) * 1999-04-22 2000-10-31 Teijin Ltd 横型反応装置
WO2000076657A1 (en) * 1999-06-12 2000-12-21 Lg Chemical Co., Ltd Process and equipment for preparing aromatic polycarbonate
US6359106B1 (en) * 2000-03-09 2002-03-19 Hitachi, Ltd. Production process and production apparatus for polybutylene terephthalate
WO2002046266A2 (en) * 2000-12-07 2002-06-13 Eastman Chemical Company Low cost polyester process using a pipe reactor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 198643, Derwent World Patents Index; Class A23, AN 1986-282570, XP002248972 *
DATABASE WPI Section Ch Week 200105, Derwent World Patents Index; Class A23, AN 2001-036264, XP002248971 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10322528B4 (de) * 2002-05-31 2005-08-04 Hyosung Corporation Apparatur zur Batch-Typ-Polyester-Polymerisation
DE10320074A1 (de) * 2003-05-05 2004-12-02 Bühler AG Reaktor und Verfahren zur Behandlung von Schüttgütern
WO2005023905A1 (de) * 2003-08-07 2005-03-17 Zimmer Aktiengesellschaft Verfahren und vorrichtung zur kontinuierlichen herstellung von polymeren durch schmelzkondensation
EA009105B1 (ru) * 2003-08-07 2007-10-26 Лурги Циммер Гмбх Способ и устройство для непрерывного получения полимеров путем конденсации в расплаве
DE102005034455B3 (de) * 2005-07-23 2006-11-02 Zimmer Ag Vorrichtung zur Schmelzepolykondensation mit einem Reaktorkäfig
WO2007023097A1 (de) * 2005-08-24 2007-03-01 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel
US7910675B2 (en) 2005-08-24 2011-03-22 Basf Se Method for producing water-absorbing polymer particles
US8143367B2 (en) * 2006-01-24 2012-03-27 Lurgi Zimmer Gmbh Method for the esterification of terephtalic acid with butanediol, method for the manufacture of polybutylene terephtalate and a device therefor
WO2013037685A1 (de) * 2011-09-15 2013-03-21 Lindauer Dornier Gesellschaft Mit Beschränkter Haftung Verfahren und vorrichtung zum entgasen einer pet-kunststoffschmelze in einer extrusionsanlage

Also Published As

Publication number Publication date
EP1444286B1 (de) 2006-05-31
EA008507B1 (ru) 2007-06-29
AU2003226771A1 (en) 2003-11-17
CN1454913A (zh) 2003-11-12
DE50303563D1 (de) 2006-07-06
KR20050006212A (ko) 2005-01-15
TW593415B (en) 2004-06-21
MY135132A (en) 2008-02-29
US7084234B2 (en) 2006-08-01
DE10219671A1 (de) 2003-11-20
US20050222371A1 (en) 2005-10-06
EA200401439A1 (ru) 2005-06-30
ATE328024T1 (de) 2006-06-15
ES2263994T3 (es) 2006-12-16
EP1444286A1 (de) 2004-08-11
TW200404082A (en) 2004-03-16
CN100393772C (zh) 2008-06-11
JP2005524731A (ja) 2005-08-18
KR100925931B1 (ko) 2009-11-09

Similar Documents

Publication Publication Date Title
WO2003093345A1 (de) Verfahren und vorrichtung zur herstellulng von polyestern, copolyestern and polycarbonaten
DE10155419B4 (de) Verfahren zur kontinuierlichen Herstellung von hochmolekularem Polyester sowie Vorrichtung zur Durchführung des Verfahrens
DE10351085A1 (de) Turmreaktor sowie dessen Verwendung zur kontinuierlichen Herstellung von hochmolekularem Polyester
DE1958777C3 (de) Verfahren zur kontinuierlichen Herstellung von Polyestern
DE10336164B4 (de) Verfahren und Vorrichtung zur kontinuierlichen Herstellung von Polymeren durch Schmelzkondensation
DE60209746T2 (de) Verfahren zur umsetzung von caprolactam zu nylon 6
DE3025574A1 (de) Verfahren zur herstellung von polyestern
DD259410A5 (de) Verfahren und vorrichtung zur herstellung hochmolekularer polyester
DE2014818A1 (de) Verfahren und Vorrichtung zur kon tinuierlichen Herstellung von Polyester kunststoffen
EP1478677B8 (de) Verfahren und vorrichtung zur kontinuierlichen herstellung von polyestern
EP1129124B1 (de) Verfahren und anlage zum herstellen von pet-granulat
EP0906928B1 (de) Kontinuierliche Herstellung von Polytetrahydrofuran über eine Umesterungskaskade mit gezielter Schaumzerstörung
DE102005019732A1 (de) Verfahren und Vorrichtung zur kontinuierlichen Umesterung von Terephthalsäureestern
EP1204472A1 (de) Verfahren zum herstellen von estern aus ungesättigten carbonsäuren und mehrwertigen alkoholen
DE1720666A1 (de) Verfahren zur kontinuierlichen Polykondensation von Bis-(2-hydroxyaethyl)-terephthalat
AT262323B (de) Verfahren und Vorrichtung zur kontinuierlichen Umesterung von Alkylestern der Dicarbonsäuren mit Glykolen zu Diglykolestern
WO2002050159A1 (de) Verfahren zur kontinuierlichen herstellung von polyestern oder copolyestern
DE1593309C (de) Verfahren zur kontinuierlichen Her stellung von Benzoldicarbonsaure bis glycolestern
DE1467527C (de) Verfahren zur kontinuierlichen Spaltung von Fetten
DE1276629B (de) Vorrichtung zur kontinuerlichen Umesterung von Dicarbonsaeurealkylestern mit Glykolen zu Diglykolestern
DE2558468A1 (de) Verfahren zur durchfuehrung von ver- und/oder umesterungsreaktionen
AT258580B (de) Verfahren und Vorrichtung zur Herstellung von Polyäthylenterephthalaten
EP0409843A1 (de) Verfahren zur herstellung von polyesterharzen.
DE3107657A1 (de) Reaktionsverfahren und reaktor zur kontinuierlichen veresterung, umesterung und herstellung von polymeren u.dgl.
EP0885873A1 (de) Methanolyse von Destillationsrückstand der Rohesterdestillation im Witten-Hercules-Verfahren zur Herstellung von Dimethylterephthalat

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1200401103

Country of ref document: VN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003747404

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003747404

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1484/KOLNP/2004

Country of ref document: IN

Ref document number: 01484/KOLNP/2004

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2004501484

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020047017444

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10513227

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200401439

Country of ref document: EA

WWP Wipo information: published in national office

Ref document number: 1020047017444

Country of ref document: KR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 2003747404

Country of ref document: EP