WO2003048419A2 - Verfahren zur elektrolyse einer wässrigen lösung von alkalimetallchlorid - Google Patents

Verfahren zur elektrolyse einer wässrigen lösung von alkalimetallchlorid Download PDF

Info

Publication number
WO2003048419A2
WO2003048419A2 PCT/EP2002/013119 EP0213119W WO03048419A2 WO 2003048419 A2 WO2003048419 A2 WO 2003048419A2 EP 0213119 W EP0213119 W EP 0213119W WO 03048419 A2 WO03048419 A2 WO 03048419A2
Authority
WO
WIPO (PCT)
Prior art keywords
alkali metal
temperature
solution
hydroxide solution
metal chloride
Prior art date
Application number
PCT/EP2002/013119
Other languages
English (en)
French (fr)
Other versions
WO2003048419A3 (de
Inventor
Andreas Bulan
Fritz Gestermann
Hans-Dieter Pinter
Original Assignee
Bayer Materialscience Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Materialscience Ag filed Critical Bayer Materialscience Ag
Priority to HU0600453A priority Critical patent/HUP0600453A2/hu
Priority to JP2003549594A priority patent/JP4498740B2/ja
Priority to ES02798315.4T priority patent/ES2448399T3/es
Priority to EP02798315.4A priority patent/EP1453990B1/de
Priority to AU2002363856A priority patent/AU2002363856A1/en
Publication of WO2003048419A2 publication Critical patent/WO2003048419A2/de
Publication of WO2003048419A3 publication Critical patent/WO2003048419A3/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/34Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
    • C25B1/46Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis in diaphragm cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • C25B15/021Process control or regulation of heating or cooling
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

Die Erfindung beschreibt ein Verfahren zur Elektrolyse einer wässrigen Lösung von Alkalimetallchlorid, insbesondere Natriumchlorid, nach dem Membranverfahren mit einer wässrigen Lösung von Alkalimetallhydroxid, insbesondere Natriumhydroxid, als Katholyt, wobei die Temperatur der Alkalimetallchloridlösung in dem Anodenhalbelement und/oder der Volumenstrom der Alkalimetallchloridlösung in dem Anodenhalbelement so eingestellt werden, dass die Differenz zwischen der Temperatur der Alkalimetallhydroxidlösung am Eintritt in das Kathodenhalbelement und der Temperatur der Alkalimetallhydroxidlösung am Austritt aus dem Kathodenhalbelement nicht größer als 15 °C beträgt.

Description

Verfahren zur Elektrolyse einer wassrigen Lösung von Alkalimetallchlorid
Die Erfindung betrifft ein Verfahren zur Elektrolyse einer wassrigen Alkalimetall- chloridlösung.
Die Herstellung von Chlor und wässriger Alkalimetallhydroxidlösung, beispielsweise Natriumhydroxidlösung (nachfolgend auch als Natronlauge bezeichnet), durch Elektrolyse einer Alkalimetallchloridlösung, beispielsweise Natriumchloridlösung, mittels Gasdiffusionselektroden als Sauerstoffverzehrkathoden ist bekannt. Dabei setzt sich die Elektrolysezelle aus einem Anoden- und einem Kathodenhalbelement zusammen, die durch eine Kationenaustauschermembran getrennt sind. Das Kathodenhalbelement besteht aus einem Elektrolytraum, welcher von einem Gasraum durch eine Gasdiffusionselektrode getrennt ist. Der Elektrolytraum ist mit Alkali- metallhydroxidlösung gefüllt. Der Gasraum wird mit Sauerstoff, Luft oder mit sauerstoffangereicherter Luft bespeist. Im Anodenhalbelement befindet sich eine alkalimetallchloridhaltige Lösung.
Aus EP-A 1 067 215 ist ein Verfahren zur Elektrolyse einer wassrigen Lösung von . Alkalimetallchlorid unter Verwendung einer Gasdiffusionselektrode als Sauerstoffverzehrkathode bekannt, bei dem die Strömungsgeschwindigkeit der Alkalimetallhydroxidlösung im Elektrolytraum der Kathodenhalbzelle mindestens. 1 cm/s beträgt. Gemäß EP-A 1 067 215 bewirkt die hohe Strömungsgeschwindigkeit der Alkalimetallhydroxidlösung eine gute Durchmischung und damit eine Homogenisierung der Alkalimetallhydroxidkonzentration im Elektrolytraum. Bei der Alkalimetallchloridelektrolyse ohne Gasdiffusionselektrode als Sauerstoffverzehrkathode kann dagegen auf hohe Strömungsgeschwindigkeiten verzichtet werden, da der kathodisch gebildete Wasserstoff im Elektrolysebetrieb für feine ausreichende Durchmischung der Alkalimetallhydroxidlösung sorgt. Ein Nachteil des aus EP-A 1 067 215 bekannten Verfahrens ist, dass die Stromausbeute mit zunehmenden Strömungsgeschwindigkeiten der Alkalimetallhydroxidlösung abnimmt. Andererseits nimmt die Temperatur der Alkalimetallhydroxidlösung im Kathodenhalbelement mit abnehmender Strömungsgeschwindigkeit stärker zu.
Aufgabe der vorliegenden Erfindung ist es daher, ein einfach zu handhabendes Verfahren zur Elektrolyse wässriger Lösungen von Alkalimetallchlorid bereitzustellen, das mit möglichst niedrigen Strömungsgeschwindigkeiten arbeitet, ohne die Funk- tionsweise der Elektrolysezelle bzw. des Elektrolyseurs, insbesondere durch zu hohe
Temperaturen der Alkalimetallhydroxidlösung im Kathodenhalbelement, nachteilig zu beeinflussen.
Die Aufgabe wird erfindungsgemäß durch die Merkmale des Anspruchs 1 gelöst.
Gegenstand der Erfindung ist demnach ein Verfahren zur Elektrolyse einer wassrigen Lösung von Alkalimetallchlorid, insbesondere Natriumchlorid, nach dem Membranverfahren mit einer wassrigen Lösung von Alkalimetallhydroxid, insbesondere Natriumhydroxid, als Katholyt, wobei die Temperatur der Alkalimetallchloridlösung in dem Anodenhalbelement und/oder der Volumenstrom der Alkalimetallchloridlösung in dem Anodenhalbelement so eingestellt werden, dass die Differenz zwischen der Temperatur der Alkalimetallhydroxidlösung am Eintritt in das Kathodenhalbelement und der Temperatur der Alkalimetallhydroxidlösung am Austritt aus dem Kathodenhalbelement nicht größer als 15°C beträgt.
Überraschenderweise gelingt es nach dem erfindungsgemäßen Verfahren, mit Hilfe der Temperatur der Alkalimetallchloridlösung in dem Anodenhalbelement sowie, sofern ein Anolytkreislauf, d.h. ein Kreislauf der Alkalimetallchloridlösung, vorhanden ist, mit Hilfe des Volumenstromes der Alkalimetallchloridlösung die Tem- peratur der Alkalimetallhydroxidlösung im Kathodenhalbelement zu regeln. Eine der beiden Maßnahmen oder beide Maßnahmen zusammen erlauben es, einer Erwärmung der Alkalimetallhydroxidlösung, insbesondere auch bei geringen Strömungsgeschwindigkeiten der Alkalimetallhydroxidlösung von weniger als 1 cm/s, entgegenzuwirken. Eine Temperaturdifferenz größer als 15°C, vorzugsweise größer als 10°C, zwischen Eintritt und Austritt der Alkalimetallhydroxidlösung ist unter anderem deshalb nicht wünschenswert, da mit einem starken Temperaturgradienten zwischen Eintritt und Austritt ein starker Gradient in der Leitfähigkeit der Alkalimetallhydroxidlösung verbunden wäre.
Es gelingt also, die Alkalimetallhydroxidlösung im Kathodenhalbelement während des Elektrolyseprozesses entweder bei gegebenem Volumenstrom und gegebener
Auslauftemperatur der Alkalimetallchloridlösung im Anodenhalbelement mit Hilfe einer niedrigeren Einlauftemperatur der Alkalimetallchloridlösung oder bei gegebener Einlauftemperatur und gegebener Auslauftemperatur der Alkalimetallchloridlösung mit Hilfe eines höheren Volumenstroms der Alkalimetallchloridlösung so zu kühlen, dass die Alkalimetallhydroxidlösung im Kathodenhalbelement die erforderliche Temperaturdifferenz nicht überschreitet. Beide Maßnahmen können auch miteinander kombiniert werden. Der Volumenstrom der Alkalimetallchloridlösung wird mittels der Umpumpmenge der Alkalimetallchloridlösung geregelt.
Ein Vorteil des erfindungsgemäßen Verfahrens liegt darin, dass die Temperatur der
Alkalimetallhydroxidlösung nicht durch eine hohe Strömungsgeschwindigkeit von mindestens 1 cm/s im Kathodenhalbelement geregelt werden muss. Da mit höheren Strömungsgeschwindigkeiten die Stromausbeute abnimmt, ist es besonders vorteilhaft bei geringen Strömungsgeschwindigkeiten von kleiner als 1 cm/s zu arbeiten.
Alternativ könnte die Regelung der Temperatur der Alkalimetallhydroxidlösung auch mit Hilfe eines dem Kathodenhalbelement vorgeschalteten Wärmetauschers erfolgen. Dies ist jedoch bei dem erfindungsgemäßen Verfahren nicht erforderlich und erspart daher den zusätzlichen apparativen Aufwand, der durch den Einbau eines Wärme- tauschers hervorgerufen würde. In einer bevorzugten Ausfϊihrungsform des erfindungsgemäßen Verfahrens beträgt die Temperatur der Alkalimetallchloridlösung beim Austritt aus dem Anodenhalbelement und die Temperatur der Alkalimetallhydroxidlösung beim Austritt aus dem Kathodenhalbelement 80°C bis 100°C, vorzugsweise 85°C bis 95°C.
Bevorzugt ist weiterhin eine Ausführungsform, bei der die Strömungsgeschwindigkeit der Alkalimetallhydroxidlösung in dem Kathodenhalbelement weniger als 1 cm/s beträgt.
Vorzugsweise wird das erfindungsgemäße Verfahren unter Einsatz einer Gasdiffusionselektrode als Kathode durchgeführt. Die Alkalimetallchloridlösung als Anolyt und die Alkalimetallhydroxidlösung als Katholyt leiten sich von demselben Alkalimetall, z.B. Natrium oder Kalium, ab. Vorzugsweise handelt es sich bei der Alkalimetallchloridlösung um eine Natriumchloridlösung und bei der Alkalimetall- hydroxidlösung um eine Natriumhydroxidlösung.
Der Volumenstrom der Alkalimetallchloridlösung im Anodenhalbelement ist von der Stromdichte abhängig, mit der der Elektrolyseur betrieben wird. Bei einer Stromdichte von 2,5 kA/m2 sollte der Volumenstrom je Element von 0,02 bis 0,1 m3/h betragen. Bei einer Stromdichte von 4 kA m2 von 0,11 bis 0,25 m3/h.
Das erfindungsgemäße Verfahren kann mit Stromdichten im Bereich von 2 bis 8 kA/m2 betrieben werden.
Beispiele
Die Elektrolyse einer wassrigen Alkalimetallchloridlösung entsprechend der nachfolgend beschriebenen Beispiele wurde mit einem Elektrolyseur bestehend aus 15 Elektrolysezellen durchgeführt. Als Kathoden wurden in den jeweiligen
Elektrolysezellen Gasdiffusionselektroden verwendet, wobei der Abstand von der Gasdiffusionselektrode zu der Ionenaustauschermembran 3 mm und die Länge des Spaltes zwischen Ionenaustauschermembran und Gasdiffusionselektrode 206 cm betrug. Als Anoden wurden Titan-Anoden eingesetzt, welche mit Ruthenium- Iridium-Oxiden beschichtet war. Die Fläche der Anoden betrug 2,5 m2. Als
Ionenaustauschermembran wurde eine Nafion® NX 981 der Firma DuPont verwendet. Die Konzentration der Natriumchloridlösung (NaCl) betrug beim Austritt aus dem Anodenhalbelement 210 g/1. Die Konzentration der Natronlauge (NaOH) im Kathodenhalbelement betrug zwischen 30 und 33 Gew.-%. Falls in den nach- folgenden Beispielen nicht explizit angegeben, betrug die Stromdichte 2,45 kA/m2 und der Volumenstrom der Natronlauge 3 m3/h. Letzterer entspricht einer Geschwindigkeit der Natronlauge im Spalt zwischen Ionenaustauschermembran und Gasdiffusionselektrode von 0,85 cm/s.
Die Ergebnisse der Beispiele sind in Tabelle 1, 2 und 3 zusammengefasst.
Beispiel 1
Unter den oben genannten Bedingungen wurde ein Volumenstrom der Natrium- chloridlösung im Anodenhalbelement von 1,0 m3/h gewählt. Die Temperatur der
Natriumchloridlösung am Einlauf betrug 50°C, am Auslauf 85°C. Die Temperaturdifferenz zwischen Einlauf und Auslauf eines Anodenhalbelements betrug damit 35°C. Die Natronlauge wurde dem Kathodenhalbelement mit einer Temperatur von 80°C zugeführt und mit 85°C wieder abgeführt. Die Stromausbeute wurde mit 96,20 % bestimmt. Beispiel 2
Unter den oben genannten Bedingungen wurde ein Volumenstrom der Natriumchloridlösung im Anodenhalbelement von 1,1 m3/h gewählt. Die Temperatur der Natriumchloridlösung am Einlauf betrug 50°C, am Auslauf 86°C. Die Temperaturdifferenz zwischen Einlauf und Auslauf eines Anodenhalbelements betrug damit 36°C. Die Natronlauge wurde dem Kathodenhalbelement mit einer Temperatur von 79°C zugeführt und mit 85 °C wieder abgeführt. Die Stromausbeute wurde mit 96,09 % bestimmt.
Beispiel 3
Unter den oben genannten Bedingungen wurde ein Volumenstrom der Natriumchloridlösung im Anodenhalbelement von 1,2 m3/h gewählt. Die Temperatur der Natriumchloridlösung am Einlauf betrug 51°C, am Auslauf 85°C. Die Temperaturdifferenz zwischen Einlauf und Auslauf eines Anodenhalbelements betrug damit 34°C. Die Natronlauge wurde dem Kathodenhalbelement mit einer Temperatur von 76°C zugeführt und mit 83°C wieder abgeführt. Die Stromausbeute wurde mit 96,11 % bestimmt.
Beispiel 4
Unter den oben genannten Bedingungen wurde ein Volumenstrom der Natriumchloridlösung im Anodenhalbelement von 1,3 m3/h gewählt. Die Temperatur der Natriumchloridlösung am Einlauf betrug 55°C, am Auslauf 86°C. Die Temperaturdifferenz zwischen Einlauf und Auslauf eines Anodenhalbelements betrug damit 31°C. Die Natronlauge wurde dem Kathodenhalbelement mit einer Temperatur von 77°C zugeführt und mit 83°C wieder abgeführt. Die Stromausbeute wurde mit 95,63 % bestimmt. Beispiel 5 (Vergleichsbeispiel)
Unter den oben genannten Bedingungen wurde ein Volumenstrom der Natriumchloridlösung im Anodenhalbelement von 1,3 m3/h gewählt. Die Stromdichte betrug 2,5 kA/m2. Die Temperatur der Natriumchloridlösung am Einlauf betrug 85°C, am
Auslauf 86°C. Die Temperaturdifferenz zwischen Einlauf und Auslauf eines Anodenhalbelements betrug damit 1°C. Der Volumenstrom der Natronlauge im Kathodenhalbelement betrug 10,5 m3/h, entsprechend einer Geschwindigkeit der Natronlauge im Spalt zwischen Ionenaustauschermembran und Gasdiffüsions- elektrode von 2,95 cm/s. Die Natronlauge wurde dem Kathodenhalbelement mit einer Temperatur von 80°C zugeführt und mit 86°C wieder abgeführt. Die Stromausbeute wurde mit 95,4 % bestimmt.
Beispiel 6
Die Stromdichte betrug hier 4 kA/m2. Es wurde ein Volumenstrom der Natriumchloridlösung eines Anodenhalbelements von 2,08 m3/h gewählt. Die Temperatur der Natriumchloridlösung am Einlauf betrug 77°C, am Auslauf 86°C. Die Temperaturdifferenz zwischen Einlauf und Auslauf eines Anodenhalbelements betrug damit 9°C. Der Volumenstrom der Natronlauge im Kathodenhalbelement betrug 3 m3/h, entsprechend einer Geschwindigkeit der Natronlauge im Spalt zwischen Ionenaustauschermembran und Gasdiffusionselektrode von 0,85 cm/s. Die Natronlauge wurde dem Kathodenhalbelement mit einer Temperatur von 82°C zugeführt und mit 87°C wieder abgeführt. Die Stromausbeute wurde mit 96,1 % bestimmt. Dies zeigt, dass das erfindungsgemäße Verfahren auch bei höheren Stromdichten mit guten
Stromausbeuten betrieben werden kann. Tabelle 1: Messwerte im Anodenhalbelement
Figure imgf000009_0001
Tabelle 2: Messwerte im Kathodenhalbelement
Figure imgf000009_0002
Tabelle 3: Stromdichte und Stromausbeute
Figure imgf000010_0001

Claims

Patentansprüche
1. Verfahren zur Elektrolyse einer wassrigen Lösung von Alkalimetallchlorid, insbesondere Natriumchlorid, nach dem Membranverfahren mit einer wässri- gen Lösung von Alkalimetallhydroxid, insbesondere Natriumhydroxid, als
Katholyt, dadurch gekennzeichnet, dass die Temperatur der Alkalimetallchloridlösung in dem Anodenhalbelement und/oder der Volumenstrom der Alkalimetallchloridlösung in dem Anodenhalbelement so eingestellt werden, dass die Differenz zwischen der Temperatur der Alkalimetallhydroxidlösung am Eintritt in das Kathodenhalbelement und der Temperatur der Alkalimetallhydroxidlösung am Austritt aus dem Kathodenhalbelement nicht größer als 15°C beträgt.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Temperatur der Alkalimetallchloridlösung beim Austritt aus dem Anodenhalbelement und die Temperatur der Alkalimetallhydroxidlösung beim Austritt aus dem Kathodenhalbelement 80°C bis 100°C, vorzugsweise 85°C bis 95°C, beträgt.
3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass die Strömungsgeschwindigkeit der Alkalimetallhydroxidlösung in dem
Kathodenhalbelement weniger als 1 cm/s beträgt.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass . als Kathode eine Gasdiffusionselektrode eingesetzt wird.
PCT/EP2002/013119 2001-12-05 2002-11-22 Verfahren zur elektrolyse einer wässrigen lösung von alkalimetallchlorid WO2003048419A2 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
HU0600453A HUP0600453A2 (en) 2001-12-05 2002-11-22 Method for carrying out the electrolysis of an aqueous solution of alkali metal chloride
JP2003549594A JP4498740B2 (ja) 2001-12-05 2002-11-22 アルカリ金属塩化物水溶液の電解法
ES02798315.4T ES2448399T3 (es) 2001-12-05 2002-11-22 Procedimiento para la electrólisis de una solución acuosa de cloruro de metal alcalino
EP02798315.4A EP1453990B1 (de) 2001-12-05 2002-11-22 Verfahren zur elektrolyse einer wässrigen lösung von alkalimetallchlorid
AU2002363856A AU2002363856A1 (en) 2001-12-05 2002-11-22 Method for carrying out the electrolysis of an aqueous solution of alkali metal chloride

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10159708.8 2001-12-05
DE10159708A DE10159708A1 (de) 2001-12-05 2001-12-05 Alkalichlorid-Elektrolysezelle mit Gasdiffusionselektroden

Publications (2)

Publication Number Publication Date
WO2003048419A2 true WO2003048419A2 (de) 2003-06-12
WO2003048419A3 WO2003048419A3 (de) 2003-10-02

Family

ID=7708113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/013119 WO2003048419A2 (de) 2001-12-05 2002-11-22 Verfahren zur elektrolyse einer wässrigen lösung von alkalimetallchlorid

Country Status (12)

Country Link
US (1) US6890418B2 (de)
EP (1) EP1453990B1 (de)
JP (1) JP4498740B2 (de)
KR (1) KR20050044700A (de)
CN (1) CN1327033C (de)
AR (1) AR037637A1 (de)
AU (1) AU2002363856A1 (de)
DE (1) DE10159708A1 (de)
ES (1) ES2448399T3 (de)
HU (1) HUP0600453A2 (de)
TW (1) TW200304502A (de)
WO (1) WO2003048419A2 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005024068A (ja) * 2003-07-02 2005-01-27 Toyo Tanso Kk ハロゲンガス又はハロゲン含有ガスの供給装置
DE10335184A1 (de) * 2003-07-30 2005-03-03 Bayer Materialscience Ag Elektrochemische Zelle
CN102459708A (zh) * 2009-05-26 2012-05-16 氯工程公司 安装有气体扩散电极的离子交换膜电解槽
US8940139B2 (en) 2009-05-26 2015-01-27 Chlorine Engineers Corp., Ltd. Gas diffusion electrode equipped ion exchange membrane electrolyzer
CN108419139A (zh) * 2018-02-05 2018-08-17 李秀荣 互联网大数据弹幕处理系统
KR20220017587A (ko) 2020-08-05 2022-02-14 한국과학기술연구원 반응물 유체를 재순환할 수 있는 전기화학장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4240883A (en) * 1978-12-28 1980-12-23 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Method for electrolysis of an aqueous alkali metal chloride solution
US4295944A (en) * 1979-09-11 1981-10-20 Toyo Soda Manufacturing Co., Ltd. Electrolysis of aqueous solution of alkali metal chloride
EP1120481A1 (de) * 1999-07-09 2001-08-01 Toagosei Co., Ltd. Elektrolyseverfahren für alkalichloride

Family Cites Families (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3868956A (en) * 1972-06-05 1975-03-04 Ralph J Alfidi Vessel implantable appliance and method of implanting it
US3890977A (en) * 1974-03-01 1975-06-24 Bruce C Wilson Kinetic memory electrodes, catheters and cannulae
GB1600000A (en) * 1977-01-24 1981-10-14 Raychem Ltd Memory metal member
JPS5393199A (en) * 1977-01-27 1978-08-15 Tokuyama Soda Co Ltd Electrolytic method
SE444640B (sv) * 1980-08-28 1986-04-28 Bergentz Sven Erik I djur eller menniska implanterbar kerlprotes samt sett for dess framstellning
DE3249027C2 (de) * 1981-09-16 1992-02-20 Medinvent Sa Chirurgisches Instrument
US4425908A (en) * 1981-10-22 1984-01-17 Beth Israel Hospital Blood clot filter
US4445896A (en) * 1982-03-18 1984-05-01 Cook, Inc. Catheter plug
SE445884B (sv) * 1982-04-30 1986-07-28 Medinvent Sa Anordning for implantation av en rorformig protes
EP0110425A3 (de) * 1982-12-06 1985-07-31 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Elektrolytisches Verfahren für eine wässrige Alkalimetall-Halogenidlösung und Elektrolysezelle dafür
US4494531A (en) * 1982-12-06 1985-01-22 Cook, Incorporated Expandable blood clot filter
US4512338A (en) * 1983-01-25 1985-04-23 Balko Alexander B Process for restoring patency to body vessels
US4503569A (en) * 1983-03-03 1985-03-12 Dotter Charles T Transluminally placed expandable graft prosthesis
US4719916A (en) * 1983-10-03 1988-01-19 Biagio Ravo Intraintestinal bypass tube
US4572186A (en) * 1983-12-07 1986-02-25 Cordis Corporation Vessel dilation
US4636313A (en) * 1984-02-03 1987-01-13 Vaillancourt Vincent L Flexible filter disposed within flexible conductor
US4657530A (en) * 1984-04-09 1987-04-14 Henry Buchwald Compression pump-catheter
US4687468A (en) * 1984-10-01 1987-08-18 Cook, Incorporated Implantable insulin administration device
US4580568A (en) * 1984-10-01 1986-04-08 Cook, Incorporated Percutaneous endovascular stent and method for insertion thereof
ES8705239A1 (es) * 1984-12-05 1987-05-01 Medinvent Sa Un dispositivo para implantar,mediante insercion en un lugarde dificil acceso, una protesis sustancialmente tubular y radialmente expandible
US4699611A (en) * 1985-04-19 1987-10-13 C. R. Bard, Inc. Biliary stent introducer
DE8513185U1 (de) * 1985-05-04 1985-07-04 Koss, Walter, 6222 Geisenheim Endotubus
US4733665C2 (en) * 1985-11-07 2002-01-29 Expandable Grafts Partnership Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft
DE3640745A1 (de) * 1985-11-30 1987-06-04 Ernst Peter Prof Dr M Strecker Katheter zum herstellen oder erweitern von verbindungen zu oder zwischen koerperhohlraeumen
US4681110A (en) * 1985-12-02 1987-07-21 Wiktor Dominik M Catheter arrangement having a blood vessel liner, and method of using it
US4665918A (en) * 1986-01-06 1987-05-19 Garza Gilbert A Prosthesis system and method
US4649922A (en) * 1986-01-23 1987-03-17 Wiktor Donimik M Catheter arrangement having a variable diameter tip and spring prosthesis
EP0556940A1 (de) * 1986-02-24 1993-08-25 Robert E. Fischell Intravaskulärer Stent
US4878906A (en) * 1986-03-25 1989-11-07 Servetus Partnership Endoprosthesis for repairing a damaged vessel
US4723549A (en) * 1986-09-18 1988-02-09 Wholey Mark H Method and apparatus for dilating blood vessels
SE455834B (sv) * 1986-10-31 1988-08-15 Medinvent Sa Anordning for transluminal implantation av en i huvudsak rorformig, radiellt expanderbar protes
US4762128A (en) * 1986-12-09 1988-08-09 Advanced Surgical Intervention, Inc. Method and apparatus for treating hypertrophy of the prostate gland
US4800882A (en) * 1987-03-13 1989-01-31 Cook Incorporated Endovascular stent and delivery system
US4907336A (en) * 1987-03-13 1990-03-13 Cook Incorporated Method of making an endovascular stent and delivery system
US5041126A (en) * 1987-03-13 1991-08-20 Cook Incorporated Endovascular stent and delivery system
US4794928A (en) * 1987-06-10 1989-01-03 Kletschka Harold D Angioplasty device and method of using the same
US5133732A (en) * 1987-10-19 1992-07-28 Medtronic, Inc. Intravascular stent
US4820298A (en) * 1987-11-20 1989-04-11 Leveen Eric G Internal vascular prosthesis
US4877030A (en) * 1988-02-02 1989-10-31 Andreas Beck Device for the widening of blood vessels
US4830003A (en) * 1988-06-17 1989-05-16 Wolff Rodney G Compressive stent and delivery system
US4921484A (en) * 1988-07-25 1990-05-01 Cordis Corporation Mesh balloon catheter device
US5019090A (en) * 1988-09-01 1991-05-28 Corvita Corporation Radially expandable endoprosthesis and the like
US4913141A (en) * 1988-10-25 1990-04-03 Cordis Corporation Apparatus and method for placement of a stent within a subject vessel
US4856516A (en) * 1989-01-09 1989-08-15 Cordis Corporation Endovascular stent apparatus and method
US4955899A (en) * 1989-05-26 1990-09-11 Impra, Inc. Longitudinally compliant vascular graft
US5015253A (en) * 1989-06-15 1991-05-14 Cordis Corporation Non-woven endoprosthesis
DE9010130U1 (de) * 1989-07-13 1990-09-13 American Medical Systems, Inc., Minnetonka, Minn., Us
US5674278A (en) * 1989-08-24 1997-10-07 Arterial Vascular Engineering, Inc. Endovascular support device
US5035706A (en) * 1989-10-17 1991-07-30 Cook Incorporated Percutaneous stent and method for retrieval thereof
US5089006A (en) * 1989-11-29 1992-02-18 Stiles Frank B Biological duct liner and installation catheter
US5108416A (en) * 1990-02-13 1992-04-28 C. R. Bard, Inc. Stent introducer system
US5057092A (en) * 1990-04-04 1991-10-15 Webster Wilton W Jr Braided catheter with low modulus warp
US5221261A (en) * 1990-04-12 1993-06-22 Schneider (Usa) Inc. Radially expandable fixation member
US5158548A (en) * 1990-04-25 1992-10-27 Advanced Cardiovascular Systems, Inc. Method and system for stent delivery
US5123917A (en) * 1990-04-27 1992-06-23 Lee Peter Y Expandable intraluminal vascular graft
US5078736A (en) * 1990-05-04 1992-01-07 Interventional Thermodynamics, Inc. Method and apparatus for maintaining patency in the body passages
ATE135555T1 (de) * 1990-10-09 1996-04-15 Cook Inc Perkutane stentanordnung
JPH0717314Y2 (ja) * 1990-10-18 1995-04-26 ソン ホーヨン 自己膨張脈管内ステント
US5316543A (en) * 1990-11-27 1994-05-31 Cook Incorporated Medical apparatus and methods for treating sliding hiatal hernias
US5112900A (en) * 1990-11-28 1992-05-12 Tactyl Technologies, Inc. Elastomeric triblock copolymer compositions and articles made therewith
US5135536A (en) * 1991-02-05 1992-08-04 Cordis Corporation Endovascular stent and method
US5316023A (en) * 1992-01-08 1994-05-31 Expandable Grafts Partnership Method for bilateral intra-aortic bypass
US5176626A (en) * 1992-01-15 1993-01-05 Wilson-Cook Medical, Inc. Indwelling stent
US5683448A (en) * 1992-02-21 1997-11-04 Boston Scientific Technology, Inc. Intraluminal stent and graft
US5405377A (en) * 1992-02-21 1995-04-11 Endotech Ltd. Intraluminal stent
FR2688401B1 (fr) * 1992-03-12 1998-02-27 Thierry Richard Endoprothese expansible pour organe tubulaire humain ou animal, et outil de mise en place.
US5282823A (en) * 1992-03-19 1994-02-01 Medtronic, Inc. Intravascular radially expandable stent
CA2134090C (en) * 1992-05-08 1997-03-25 Liann M. Johnson Esophageal stent and delivery tool
US5817102A (en) * 1992-05-08 1998-10-06 Schneider (Usa) Inc. Apparatus for delivering and deploying a stent
US5507771A (en) * 1992-06-15 1996-04-16 Cook Incorporated Stent assembly
CA2132011C (en) * 1993-01-14 1999-08-10 Peter J. Schmitt Radially expandable tubular prosthesis
IT1263899B (it) * 1993-02-12 1996-09-05 Permelec Spa Nora Migliorato processo di elettrolisi cloro-soda a diaframma e relativa cella
US5334210A (en) * 1993-04-09 1994-08-02 Cook Incorporated Vascular occlusion assembly
DE69317548T2 (de) * 1993-04-23 1998-08-13 Schneider Europ Gmbh Stent mit einer Beschichtung aus elastischem Material und Verfahren zum Anbringen der Beschichtung auf dem Stent
KR970004845Y1 (ko) * 1993-09-27 1997-05-21 주식회사 수호메디테크 내강확장용 의료용구
EP0676937B1 (de) * 1993-09-30 2004-03-17 Endogad Research PTY Limited Intraluminales transplantat
DE69419877T2 (de) * 1993-11-04 1999-12-16 Bard Inc C R Ortsfeste Gefässprothese
US5405316A (en) * 1993-11-17 1995-04-11 Magram; Gary Cerebrospinal fluid shunt
DE4418336A1 (de) * 1994-05-26 1995-11-30 Angiomed Ag Stent
AU719980B2 (en) * 1995-02-22 2000-05-18 Menlo Care, Inc. Covered expanding mesh stent
BE1009278A3 (fr) * 1995-04-12 1997-01-07 Corvita Europ Tuteur auto-expansible pour dispositif medical a introduire dans une cavite d'un corps, et dispositif medical muni d'un tel tuteur.
US5667523A (en) * 1995-04-28 1997-09-16 Impra, Inc. Dual supported intraluminal graft
US5746766A (en) * 1995-05-09 1998-05-05 Edoga; John K. Surgical stent
US5647834A (en) * 1995-06-30 1997-07-15 Ron; Samuel Speech-based biofeedback method and system
US5788626A (en) * 1995-11-21 1998-08-04 Schneider (Usa) Inc Method of making a stent-graft covered with expanded polytetrafluoroethylene
EP0775471B1 (de) * 1995-11-27 2002-05-29 Schneider (Europe) GmbH Stent zur Anwendung in einem körperlichen Durchgang
US5824042A (en) * 1996-04-05 1998-10-20 Medtronic, Inc. Endoluminal prostheses having position indicating markers
US6010529A (en) * 1996-12-03 2000-01-04 Atrium Medical Corporation Expandable shielded vessel support
US5733330A (en) * 1997-01-13 1998-03-31 Advanced Cardiovascular Systems, Inc. Balloon-expandable, crush-resistant locking stent
US5876450A (en) * 1997-05-09 1999-03-02 Johlin, Jr.; Frederick C. Stent for draining the pancreatic and biliary ducts and instrumentation for the placement thereof
US6302917B1 (en) * 1998-08-31 2001-10-16 Wilson-Cook Medical Incorporated Anti-reflux esophageal prosthesis
JP3112265B1 (ja) * 1999-06-17 2000-11-27 鐘淵化学工業株式会社 塩化アルカリ電解方法
JP3437127B2 (ja) * 1999-07-07 2003-08-18 東亞合成株式会社 塩化アルカリ電解槽の運転方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4240883A (en) * 1978-12-28 1980-12-23 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Method for electrolysis of an aqueous alkali metal chloride solution
US4295944A (en) * 1979-09-11 1981-10-20 Toyo Soda Manufacturing Co., Ltd. Electrolysis of aqueous solution of alkali metal chloride
EP1120481A1 (de) * 1999-07-09 2001-08-01 Toagosei Co., Ltd. Elektrolyseverfahren für alkalichloride

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE CA [Online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; WATAGI, EIICHI: "Membrane-type brine electrolysis cell" retrieved from STN Database accession no. 89:206553 CA XP002249257 & JP 53 093199 A (TOKUYAMA SODA CO., LTD., JAPAN) 15. August 1978 (1978-08-15) *

Also Published As

Publication number Publication date
CN1599808A (zh) 2005-03-23
TW200304502A (en) 2003-10-01
DE10159708A1 (de) 2003-06-18
JP2005511897A (ja) 2005-04-28
US20030121795A1 (en) 2003-07-03
HUP0600453A2 (en) 2007-05-02
EP1453990B1 (de) 2014-01-01
JP4498740B2 (ja) 2010-07-07
WO2003048419A3 (de) 2003-10-02
AR037637A1 (es) 2004-11-17
ES2448399T3 (es) 2014-03-13
EP1453990A2 (de) 2004-09-08
AU2002363856A1 (en) 2003-06-17
CN1327033C (zh) 2007-07-18
KR20050044700A (ko) 2005-05-12
US6890418B2 (en) 2005-05-10
AU2002363856A8 (en) 2003-06-17

Similar Documents

Publication Publication Date Title
DE19940069A1 (de) Verfahren zur elektrochemischen Herstellung eines Alkalimetalls aus wäßriger Lösung
EP0627020B1 (de) Elektrochemisches verfahren zur herstellung von glyoxylsäure
DE10030093C1 (de) Verfahren und Vorrichtung zur Herstellung von Metallhydroxiden oder basischen Metallcarbonaten
DE10101494A1 (de) Tetramethylammoniumhydroxid-Synthese
DE2646825C2 (de)
WO2003048419A2 (de) Verfahren zur elektrolyse einer wässrigen lösung von alkalimetallchlorid
DE3346131C2 (de) Verfahren zur Herstellung von Alkalialkoholaten
EP0051764B1 (de) Salzsäure-Elektrolysezelle zur Herstellung von Chlor und Wasserstoff
DE3116391C2 (de)
DE3640584A1 (de) Elektrodenanordnung fuer gasbildende elektrolyseure mit vertikal angeordneten plattenelektroden
EP0234256B1 (de) Verfahren zur Durchführung der HCI-Membranelektrolyse
DE2240731A1 (de) Verfahren zur herstellung von glyoxylsaeure
DE2124045C3 (de) Verfahren zur elektrolytischen Her stellung von reinem Chlor, Wasserstoff und reinen konzentrierten Alkaliphosphat lösungen und Elektrolyslerzelle zur Durch führung des Verfahrens
DE2819964C2 (de) Metallisches Diaphragma
EP0008470B1 (de) Verfahren zur Elektrolyse wässriger Alkalihalogenid-Lösungen
DE69838632T2 (de) Vefahren zur Elektrolyse einer Salzlösung
DE2952646A1 (de) Verfahren zur elektrolyse einer waessrigen alkalimetallchloridloesung
DD281095A7 (de) Verfahren zur herstellung von peroxodischwefelsaeure und peroxodisulfaten
DE19532784C2 (de) Elektrolyseverfahren zum Regenerieren verbrauchter Eisen-III-chlorid- oder Eisen-III-sulfat-Ätzlösungen
DE2434921B2 (de) Elektrolysezelle und Verfahren zur Elektrolyse ionisierbarer chemischer Verbindungen
EP1440183A2 (de) Verfahren zur elektrolyse von wässrigen lösungen von chlorwasserstoff
DE19905672C2 (de) Verfahren zur elektrolytischen Herstellung von Amalgam aus Metallsalz
DE2856276C2 (de) Verfahren zur Stromausbeutesteigerung einer Schmelzflußelektrolyse mit anodischer Sauerstoffentwicklung
DD298666A5 (de) Verfahren zur kontinuierlichen elektrochemischen herstellung von gut filtrierbarem, hochreinem mg(oh) tief 2, chlor unf wasserstoff aus mgcl tief 2-haltigen loesungen
DE3432684C2 (de)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002798315

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20028240464

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2003549594

Country of ref document: JP

Ref document number: 1020047008615

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2002798315

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642