EP0008470B1 - Verfahren zur Elektrolyse wässriger Alkalihalogenid-Lösungen - Google Patents

Verfahren zur Elektrolyse wässriger Alkalihalogenid-Lösungen Download PDF

Info

Publication number
EP0008470B1
EP0008470B1 EP79200382A EP79200382A EP0008470B1 EP 0008470 B1 EP0008470 B1 EP 0008470B1 EP 79200382 A EP79200382 A EP 79200382A EP 79200382 A EP79200382 A EP 79200382A EP 0008470 B1 EP0008470 B1 EP 0008470B1
Authority
EP
European Patent Office
Prior art keywords
adjusted
solution
value
alkali metal
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP79200382A
Other languages
English (en)
French (fr)
Other versions
EP0008470A1 (de
Inventor
Karl Dipl.-Ing. Lohrberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GEA Group AG
Original Assignee
Metallgesellschaft AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6047970&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0008470(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Metallgesellschaft AG filed Critical Metallgesellschaft AG
Priority to AT79200382T priority Critical patent/ATE978T1/de
Publication of EP0008470A1 publication Critical patent/EP0008470A1/de
Application granted granted Critical
Publication of EP0008470B1 publication Critical patent/EP0008470B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/34Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
    • C25B1/46Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis in diaphragm cells

Definitions

  • the invention relates to a method for the electrical analysis of aqueous alkali halide solutions in membrane cells at pH values above 1.0 in the anode compartment, the alkali halide solution being passed through the anode compartment and zones for concentration with alkali halide and for pH adjustment.
  • amalgam has the advantage of permitting the production of highly concentrated alkali lye of high purity, but due to the use of mercury requires high costs for environmental protection.
  • diaphragm process does not require such expenditure, but only enables the production of alkali lye of considerably lower concentration, which also has considerable alkali halide contents.
  • the anode and cathode spaces of the electrolysis cell are separated by an ion exchange membrane, through which essentially only the alkali ions can pass. These are electrically neutralized at the cathode and form alkali water and hydrogen in the cathode compartment with water. Halogen ions cannot pass through the membrane and are therefore only released in the anode compartment in the form of halogen gas.
  • the OH ions formed in the cathode space migrate through the membrane into the anode space.
  • the OH ions form with halogen gas - depending on the pH of the anolyte chlorine-oxygen acids or their salts, especially hypochlorite and chlorate, which can only be destroyed by adding acid.
  • the pH of the anolyte is in the range from about 1 to 5, preferably 3.0 to 4.0 (DE-A-2 409 193) or at about 2 ( DE-A-2 631 523).
  • the anolyte is adjusted to a pH in the range from 0 to 3 and preferably from 1 to 2.5 by means of hydrochloric acid.
  • the alkali metal halide solution enriched with alkali metal halide is adjusted to a pH of 0.2 to 4.5 and preferably 1.5 to 4.
  • the temperature of the anolyte is kept in the range of 85 to 100 ° C.
  • the object of the invention is to provide a process which is simple to carry out, avoids the disadvantages of the known processes and leads to advantageous results with regard to both halogen yield and alkali yield.
  • the object is achieved by designing the method of the type mentioned at the outset in accordance with the invention in such a way that only a partial stream of the enriched alkali metal halide solution is adjusted to a pH below 1.0.
  • a partial flow of 15% should only be set to a pH of 0.67.
  • a part Stream of 10% should be brought to a pH of 0.6 if, after combining with the main stream, a final pH of 1.7 is desired.
  • the pH is preferably set below 1 at a temperature above 70 ° C., in particular in the range from 80 to 90 ° C., since this promotes decomposition.
  • the pH of the electrolyte to be fed to the anode chamber is set to a value in the range from 1 to 2.5.
  • a partial stream is in turn branched off from this stream for the purpose of virtually complete destruction of the halogen oxygen acids or their salts, so that ultimately a steady state is established in which as much halogen oxygen acids are destroyed by the partial stream treatment as are formed in the anode compartment.
  • the pH is adjusted to 0.6 and the pH of the anolyte after recombining is 1.1, a content of chlorine-oxygen acid or its salts of 20 g / l (calculated as sodium chlorate ) maintained.
  • a further advantageous embodiment of the invention consists in not degassing the electrolyte emerging from the anode space of the membrane cell before strengthening with alkali metal halide, but instead to adjust it to a pH of about 7 to 10 by adding alkali metal hydroxide solution.
  • the dissolved halogen gas which is present in small amounts, is converted into halogen oxygen acids or their salts, which are largely eliminated anyway by the acidification that occurs after the saturation and removal of the impurities.
  • the membrane cell itself has the known constructive elements.
  • Polyfluorohydrocarbons with cation-exchanging groups such as, for example, sulfonic acid (SO, H), carboxylic acid (COOH) and phosphonic acid (PO 3 H 2 ) groups, are suitable as membrane material.
  • Individual fluorine atoms can also be replaced by other halogen atoms, in particular chlorine atoms.
  • suitable membrane materials cf. also D. Bergner 1. c., page 441, right column ff.
  • the anodes to be used in carrying out the method according to the invention can consist of graphite.
  • titanium, niobium or tantalum electrodes coated with noble metal or noble metal oxide or so-called dimensionally stable anodes, in which the electrocatalytic effect of mixed oxides of noble metals and film-forming metals, in particular titanium, originate, are particularly advantageous.
  • the method according to the invention in its preferred embodiment with partial flow separation gives the possibility of changing the pH of the anolyte during operation of the membrane cell by appropriately dimensioning its quantity and its pH.
  • signs of aging in the membrane can be compensated for by lowering the pH of the anolyte.
  • Different membrane cells can also be supplied with anolyte of different pH values by differently dimensioning the partial and main streams.
  • Chlorine gas is discharged via line 20.
  • the electrolyte depleted in sodium chloride reaches the treatment room 4 via lines 2 and 3, is mixed there with sodium hydroxide solution supplied via line 5 and adjusted to a pH of 7 to 10.
  • sodium hydroxide solution supplied via line 5 and adjusted to a pH of 7 to 10.
  • dissolved chlorine gas is converted into hypochlorite, from which, depending on pH, temperature and time, some or all of the sodium chlorate is formed.
  • the solution then passes into the saturator 6 and is brought to a concentration of about 310 g / l with sodium chloride introduced over 7.
  • the impurities in particular the calcium and magnesium ions, are precipitated by adding sodium hydroxide solution above 9 to a pH of approximately 11.
  • the treatment in the filter device 10 and discharge of the precipitated impurities via line 11 reaches the Lö - solution in line 12 and is introduced into a partial stream 13 and a principal stream 14 split.
  • the main stream 14 flows in the direction of the anode compartments 1
  • the partial stream 13 in the device 15 is brought to a pH below 1.0, preferably below 0.8, by adding concentrated hydrochloric acid via line 16.
  • Chlorine oxygen acids or their salts are largely destroyed with the formation of chlorine.
  • the chlorine gas is combined with the chlorine gas originating from the anode spaces 1 of the membrane cells using a line 21
  • the solution then flows off via line 17 and - mixed with the solution of the main stream 14 - is fed via line 18 or 19 to the anode compartments 1.
  • variable mixing ratios and thus different pH values can be set in the solutions flowing through lines 18 and 19, respectively.
  • the membranes were used for the electrolysis.
  • the membranes consisted of ethylenediamine-modified Nafion® (a product from DuPont).
  • the applied cell voltage was 3.8 volts.
  • the anode compartments 1 of the membrane cells were charged with a brine which contained 310 g / l NaCl and had a pH of 1.7 and a temperature of 85 ° C.
  • the residence time of the anolyte in the anode compartments 1 was measured in such a way that the decrease in NaCl was 25 g / l. During this time, approx. 2 g / l chlorine oxygen acids (calculated as NaClO 3 ) were formed.
  • the electrolyte solution emerging from the anode compartments 1 was adjusted to pH 8 in the treatment compartment 4 with sodium hydroxide solution, then strengthened again in the saturator 6 to a NaCl concentration of 310 g / l and brought to pH 11 in the device 8 with additional sodium hydroxide solution, the contamination was felled.
  • the electrolyte was adjusted to pH 1.7 in the initial phase of the process and returned to the anode compartments.
  • the concentration of chlorine-oxygen acid had increased to 22 g / l (calculated as NaClO 3 )
  • a 10% partial stream of the pure sols emerging from the filter device 10 was passed via line 13 into the device 15 and there to pH 0 by adding hydrochloric acid , 6 set. As a result of this measure, the content of chlorine-oxygen acid in the partial stream was reduced to 2 g / l.
  • the chlorine gas formed was passed via line 21 to line 20.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Electroluminescent Light Sources (AREA)
  • Developing Agents For Electrophotography (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Elektroanalyse wässriger Alkalihalogenid-Lösungen in Membranzellen bei pH-Werten oberhalb 1,0 im Anodenraum, wobei die Alkalihalogenid-Lösung durch den Anodenraum sowie Zonen zur Aufkonzentrierung mit Alkalihalogenid und zur pH-Wert-Einstellung geführt wird.
  • Bis in die jüngste Zeit standen zur Elektrolyse von Alkalihalogenid-Lösungen, insbesondere Natriumchlorid-Lösungen, im wesentlichen zwei Verfahren, nämlich das Amalgam- und das Diaphragma-Verfahren, zur Verfügung. Das Amalgam-Verfahren hat den Vorzug, die Herstellung hochkonzentrierter Alkalilauge von hoher Reinheit zu gestatten, fordert jedoch infolge der Verwendung von Quecksilber hohe Aufwendungen für den Umweltschutz. Das Diaphragma-Verfahren verlangt derartige Aufwendungen nicht, ermöglicht jedoch nur die Herstellung von Alkalilauge erheblich geringerer Konzentration, die zudem beträchtliche Alkalihalogenid-Gehalte aufweist.
  • Nachdem es gelungen war, sogenannte lonenaustauscher-Membranen, die chemisch resistent, hydraulisch undurchlässig und im wesentlichen nur kationendurchlässig sind, zu schaffen, erlangen Membran-Verfahren zunehmend an Bedeutung. Es ist davon auszugehen, dass das Membran-Verfahren das Verfahren der Zukunft sein wird.
  • Beim Membran-Verfahren sind Anoden- und Kathodenraum der Elektrolysezelle durch eine Ionenaustauscher-Membran getrennt, durch die im wesentlichen nur die Alkaliionen hindurchtreten können. Diese werden an der Kathode elektrisch neutralisiert und bilden im Kathodenraum mit Wasser Alkalilauge und Wasserstoff. Halogenionen können die Membran nicht passieren und werden daher ausschliesslich im Anodenraum in Form von Halogengas freigesetzt.
  • Bei Anwendung der derzeit bekannten lonenaustauscher-Membranen ist hingegen nicht zu vermeiden, dass ein Teil der im Kathodenraum gebildeten OH-Ionen durch die Membran in den Anodenraum wandert. Beispielsweise bei der Natriumchlorid-Elektrolyse sind ca. 2/3 der in Abhängigkeit von der Qualität und Betriebsdauer der Membran erhaltenen Wirkungsgradverluste von 5 bis 20% auf den Eintritt der OH-Ionen in den Anodenraum zurückzuführen. Hier bilden die OH-ionen mit Halogengas - je nach dem pH-Wert des Anolyt-Chlorsauerstoffsäuren bzw. deren Salze, insbesondere Hypochlorit und Chlorat, die nur durch Säurezugabe zerstört werden können.
  • Die Bildung der Chlorsauerstoffsäuren bzw. deren Salze ist schliesslich auch verantwortlich dafür, dass die Löslichkeit des Alkalihalogenids abnimmt. Hierdurch wird das Abscheidepotential - im Extremfall um ca. 50 mV - unedler.
  • Um den vorstehend geschilderten Nachteil abzuschaffen, ist es bekannt, die Elektrolyse in der Membranzelle mit saürem Anolyt durchzuführen, wobei der Sole so viel Salzsäure zugegeben wird, dass die eindringenden OH-Ionen gerade neutralisiert werden [D. Bergner «Elektrolytische Chlorerzeugung nach dem Membran-Verfahren», Chemiker-Zeitung 101 (1977), Seiten 433 bis 447].
  • Auch ist es bekannt, die Säurezugabe derart zu bemessen, dass der pH-Wert des Anolyt im Bereich von etwa 1 bis 5, vorzugsweise 3,0 bis 4,0 (DE-A-2 409 193) bzw. bei ca. 2 (DE-A-2 631 523) liegt. Bei dem Verfahren gemäss US-A-3 948 737 soll der pH-Wert des Anolyt nicht über 4,5, vorzugsweise zwischen 2,5 und 4,0 liegen, wobei auch Werte von pH = 1 und tiefer zugelassen sind. In dem aus US-A-4 040 919 bekannten Verfahren zur Elektrolyse von Alkalihalogenid-lösungen in einer Membranzelle wird der Anolyt auf einen pH-Wert im Bereich von 0 bis 3 und vorzugsweise von 1 bis 2,5 mittels Salzsäure eingestellt. Ähnlich wird in dem Verfahren der GB-A-1 174264 bei der Alkalichloridelektrolyse in einer Diaphragmazelle die mit Alkalihalogenid wieder angereicherte Alkalihalogenidlösung auf einen pH-Wert von 0,2 bis 4,5 und vorzugsweise von 1,5 bis 4 eingestellt. Die Temperatur des Anolyten wird im Bereich von 85 bis 100°C gehalten.
  • Obgleich sich die Einstellung tiefer pH-Werte im Hinblick auf die Zerstörung der Chlorsauerstoffsäuren bzw. deren Salze empfiehlt, ist nachteilig, dass bei Einstellung sehr hoher Wasserstoffionenkonzentrationen Wasserstoffionen durch die Membran in den Kathodenraum wandern und dort durch Reaktion mit der Alkalilauge die Laugestromausbeute reduzieren. Es werden mithin zwar die Halogenstromausbeute verbessert, gleichzeitig aber die Laugestromausbeute verschlechtert (D. Bergner 1. c.).
  • Aufgabe der Erfindung ist, ein Verfahren bereitzustellen, das einfach in der Durchführung ist, die Nachteile der bekannten Verfahren vermeidet und hinsichtlich sowohl Halogenausbeute als auch Laugenausbeute zu vorteilhaften Ergebnissen führt.
  • Die Aufgabe wird gelöst, indem das Verfahren der eingangs genannten Art entsprechend der Erfindung derart ausgestaltet wird, dass nur ein Teilstrom der angereicherten Alkalihalogenidlösung auf einen pH-Wert unter 1,0 eingestellt wird.
  • Besonders vorteilhaft ist es, lediglich einen Teilstrom von maximal 20%, vorzugsweise von 8 bis 15%, zu behandeln und dabei die Säurezugabe derart zu wählen, dass nach Vereinigung mit dem Hauptstrom der angestrebte, im Bereich von 1,0 bis 6,0 liegende pH-Wert erzielt wird.
  • So ist beispielsweise aus der Alkalihalogenid- Lösung, die üblicherweise mit einem pH-Wert von etwa 11 aus den Zonen der Aufsättigung mit Alkalihalogenid und der Fällung und Filtration der Verunreinigungen anfällt, ein Teilstrom von 8% abzutrennen und auf pH = 0,4 einzustellen, wenn nach Wiedervereinigung ein End-pH-Wert von 1,5 angestrebt ist. Unter sonst gleichen Voraussetzungen ist ein Teilstrom von 15% hingegen nur auf einen pH-Wert von 0,67 einzustellen. Ein Teilstrom von 10% ist auf einen pH-Wert von 0,6 zu bringen, wenn nach der Vereinigung mit dem Hauptstrom ein End-pH-Wert von 1,7 erwünscht ist.
  • Im Hinblick auf eine möglichst quantitative Zerstörung der Halogen-Sauerstoffsäuren bzw. deren Salze und eine Verringerung der Bildung von CIOz ist es vorteilhaft, den Teilstrom auf einen pH-Wert unter 0,8 einzustellen und ihn in Abhängigkeit von dem angestrebten End-pH-Wert entsprechend klein zu wählen.
  • Vorzugsweise erfolgt die Einstellung des pH-Wertes unter 1 bei einer Temperatur oberhalb 70°C, insbesondere im Bereich von 80 bis 90°C, da hierdurch die Zersetzung begünstigt wird.
  • Das erfindungsgemässe Verfahren bewirkt zweierlei:
    • Durch die Ansäuerung, insbesondere eines Teilstromes, unter einen pH-Wert von 1, vorzugsweise unter 0,8, werden die Halogensauerstoffsäuren bzw. deren Salze praktisch quantitativ zerstört.
  • Infolge der Einstellung des Anolyten auf einen pH-Wert im Bereich von 1,0 bis 6,0 erfolgt nur eine geringfügige Bildung von Halogensauerstoffstoffsäuren bzw. deren Salze, die sich auf die Stromausbeute nicht sehr nachteilig auswirken. Insoweit werden besonders günstige Verhältnisse erzielt, wenn in weiterer vorteilhafter Ausbildung der Erfindung der pH-Wert des der Anodenkammer zuzuführenden Elektrolyts auf einen Wert im Bereich von 1 bis 2,5 eingestellt wird.
  • Bei der bevorzugten Ausgestaltung der Erfindung wird von diesem Strom wiederum ein Teilstrom zur praktisch vollständigen Zerstörung der Halogensauerstoffsäuren bzw. deren Salze abgezweigt, so dass sich letztlich ein stationärer Zustand einstellt, in dem ebensoviel Halogensauerstoffsäuren durch die Teilstrombehandlung zerstört wie im Anodenraum gebildet werden. Beispielsweise wird bei Abtrennung eines Teilstromes von 10%, pH-Wert-Einstellung auf 0,6 und einen pH-Wert des Anolyten nach Wiedervereinigung von 1,1 ein Gehalt an Chlorsauerstoffsäure bzw. deren Salze von 20 g/l\ (berechnet als Natriumchlorat) aufrechterhalten.
  • Eine weitere vorteilhafte Ausgestaltung der Erfindung besteht darin, den aus dem Anodenraum der Membrazelle austretenden Elektrolyt vor Aufstärkung mit Alkalihalogenid nicht- wie allgemein üblich-zu entgasen, sondern durch Zugabe von Alkalilaugeauf einen pH-Wert von ca. 7 bis 10 einzustellen. Hierdurch wird das gelöste, in geringfügigen Mengen vorhandene Halogengas in Halogensauerstoffsäuren bzw. deren Salze überführt, die durch die nach der Aufsättigung und Entfernung der Verunreinigungen erfolgende Ansäuerung ohnehin zum überwiegenden Teil beseitigt werden.
  • Die Membranzelle selbst weist die an sich bekannten konstrukiven Elemente auf. Als Membranmaterial sind Polyfluorkohlenwasserstoffe mit Kation-austauschenden Gruppen, wie z.B. Sulfonsäure-(SO,H), Carbonsäure-(COOH) und Phosphonsäure-(PO3H2) Gruppen, geeignet. Dabei können einzelne Fluoratome auch durch andere Halogenatome, insbesondere Chloratome, ersetzt sein. Bezüglich geeigneter Membranmaterialien vgl. auch D. Bergner 1. c., Seite 441, rechte Spalte ff.
  • Die bei der Durchführung des erfindungsgemässen Verfahrens einzusetzenden Anoden können aus Graphit bestehen. Insbesondere vorteilhaft sind jedoch mit Edelmetall oder Edelmetalloxid beschichtete Titan-, Niob- oder Tantal-Elektroden oder sogenannte dimensionsstabile Anoden, bei denen die elektrokatalytische Wirkung von Mischoxiden von Edelmetallen und filmbildenden Metallen, insbesondere Titan, ausgeht.
  • Als Kathodenmaterial ist insbesondere Stahl und Nickel, Nickel in Form der sogenannten porösen Doppelskelett-Kathoden, besonders geeignet.
  • Das erfindungsgemässe Verfahren in seiner bevorzugten Ausgestaltung mit Teilstromabtrennung gibt durch entsprechende Bemessung seiner Menge und seines pH-Wertes die Möglichkeit, während des Betriebes der Membranzelle den pH-Wert des Anolyt zu verändern. Insbesondere können Alterserscheinungen der Membran mit Absenkung des pH-Wertes des Anolyts ausgeglichen werden. Auch lassen sich verschiedene Membranzellen durch unterschiedliche Bemessung der Teil- und Hauptströme mit Anolyt unterschiedlicher pH-Werte versorgen.
  • Die Erfindung wird anhand des Fliessschemas und des Ausführungsbeispiels beispielsweise und näher erläutert.
  • Mit 1 sind die Anodenräume zweier Membranzellen für die Natriumchlorid-Elektrolyse veranschaulicht. Chlorgas wird über Leitung 20 abgeführt. Der an Natriumchlorid verarmte Elektrolyt gelangt über Leitungen 2 und 3 in den Behandlungsraum 4, wird dort mit über Leitung 5 zugeführter Natronlauge versetzt und auf einen pH-Wert von 7 bis 10 eingestellt. Dabei wird gelöstes Chlorgas in Hypochlorit umgewandelt, aus dem in Abhängigkeit von pH, Temperatur und Zeit teilweise oder ganz Na-Chlorat entsteht.
  • Anschliessend gelangt die Lösung in den Aufsättiger 6 und wird mit über 7 herangeführtem Kochsalz auf eine Konzentration von ca. 310 g/l gebracht. In der nachgeschalteten Vorrichtung 8 erfolgt die Fällung der Verunreinigungen, insbesondere der Kalzium- und Magnesiumionen, durch Zugabe von Natronlauge über 9 bis zu einem pH-Wert von ca. 11. Nach der Behandlung in der Filtervorrichtung 10 und Austrag der gefällten Verunreinigungen über Leitung 11 gelangt die Lö- sung in Leitung 12 und wird in einen Teilstrom 13 und einen Hauptstrom 14 aufgeteilt. Während der Hauptstrom 14 in Richtung der Anodenräume 1 fliesst, wird der Teilstrom 13 in der Vorrichtung 15 durch Zugabe konzentrierter Salzsäure über Leitung 16 auf einen pH-Wert unter 1,0, vorzugsweise unter 0;8, gebracht. Dabei werden Chlorsauerstoffsäuren bzw. deren Salze unter Bildung von Chlor weitgehend zerstört. Das Chlorgas wird mit dem aus den Anodenräumen 1 der Membranzellen stammenden Chlorgas unter Verwendung einer Leitung 21 vereinigt
  • Die Lösung fliesst dann über Leitung 17 ab und wird - mit der Lösung des Hauptstromes 14 vermischt- über die Leitung 18 bzw. 19 den Anodenräumen 1 zugeführt. Durch Einbau entsprechender Regelventile können variable Mischungsverhältnisse und damit unterschiedliche pH-Werte in den durch die Leitungen 18 bzw. 19 fliessenden Lösungen eingestellt werden.
  • Ausführungsbeispiel
  • Zur Durchführung der Elektrolyse dienten zwei Membranzellen mit Stahlkathoden und dimensionsstabilen Anoden auf Basis von Titan. Die Membranen bestanden aus äthylendiaminmodifizierten Nafion® (ein Produkt der Fa. DuPont). Die angelegte Zellenspannung lag bei 3,8 Volt.
  • Die Anodenräume 1 der Membranzellen wurden mit einer Sole beaufschlagt, die 310 g/I NaCI enthielt und einen pH-Wert von 1,7 und eine Temperatur von 85°C besass. Die Verweilzeit des Anolyt in den Anodenräumen 1 wurde dabei derart bemessen, dass die Abnahme an NaCI bei 25 g/I lag. Innerhalb dieser Zeit bildeten sich ca. 2 g/I Chlorsauerstoffsäuren (berechnet als NaClO3).
  • Die aus den Anodenräumen 1 austretende Elektrolytlösung wurde im Behandlungsraum 4 mit Natronlauge auf pH 8 eingestellt, dann im Aufsättiger 6 wieder auf eine NaCI-Konzentration von 310 g/I aufgestärkt und in der Vorrichtung 8 mit weiterer Natronlauge auf pH 11 gebracht, wobei die Verunreinigung gefällt wurde. Nach Filtration in der Filtervorrichtung 10 wurde in der Anfangsphase des Verfahrens der Elektrolyt auf pH 1,7 eingestellt und erneut den Anodenräumen zugeführt. Nachdem sich die Konzentration an Chlorsauerstoffsäure auf 22 g/l (berechnet als NaClO3) erhöht hatte, wurde ein 10% ausmachender Teilstrom der aus der Filtervorrichtung 10 austretenden Reinsole über Leitung 13 in die Vorrichtung 15 geleitet und dort durch Zugabe von Salzsäure auf pH 0,6 eingestellt. Durch diese Massnahme wurde der Gehalt an Chlorsauerstoffsäure im Teilstrom auf 2 g/l abgebaut. Das dabei gebildete Chlorgas wurde über Leitung 21 in Leitung 20 geführt.
  • Nach Vereinigung des von Chlorsauerstoffsäure weitgehend befreiten Teilstroms mit dem über Leitung 14 geführten Hauptstrom von Reinsole wurde einerseits ein Misch-pH-Wert von 1,7 und anderseits eine mittlere Konzentration von Chlorsauerstoffsäuren von 20 g/I (berechnet als NaClO3) erhalten. Diese Konzentration konnte während des gesamten Verfahrensablaufs aufrechterhalten werden.
  • Würde demgegenüber die aus der Filtervorrichtung austretende Reinsole lediglich auf einen pH-Wert von 1,7 angehoben, würde die Konzentration von Chlorsauerstoffsäure nach vergleichsweise kurzer Betriebsdauer 140 g/I erreichen. Dadurch würde die NaCI-Löslichkeit auf 270 g/I sinken, was mit einer Erhöhung des Abscheidepotentials um 50 m/V verbunden wäre. Das dadurch bedingte Auftreten von Nebenreaktionen hätte eine erhebliche Verschlechterung der Stromausbeute zur Folge.

Claims (5)

1.Verfahren zur Elektrolyse wässriger Alkalihalogenidlösungen in Membranzellen bei pH-Werten oberhalb 1,0 im Anodenraum, bei dem die Alkalihalogenidlösung bei erhöhter Temperatur durch den Anodenraum geführt, mit Alkalihalogenid wieder angereichert, auf einen pH-Wert unter 1,0 eingestellt und dann auf einen pH-Wert im Bereich von 1,0-6,0 angehoben wird, dadurch gekennzeichnet, dass nur ein Teilstrom der angereicherten Alkalihalogenidlösung auf einen pH-Wert unter 1,0 eingestellt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass man einen Teilstrom von maximal 20%, vorzugsweise von 8 bis 15%, auf einen solchen pH-Wert unter 1,0 einstellt, dass nach Vereinigung mit dem Hauptstrom der angestrebte, im Bereich von 1,0 bis 6,0 liegende pH-Wert erzielt wird.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass man den Teilstrom auf einen pH-Wert unter 0,8 einstellt.
4. Verfahren nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass man den pH-Wert der der Anodenkammer zuzuführenden angereicherten Alkalihalogenidlösung auf einen Wert im Bereich von 1,0 bis 2,5 einstellt.
5. Verfahren nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass man die den Anodenraum verlassende Alkalihalogenidlösung auf einen pH-Wert von 7 bis 10 einstellt
EP79200382A 1978-08-26 1979-08-20 Verfahren zur Elektrolyse wässriger Alkalihalogenid-Lösungen Expired EP0008470B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT79200382T ATE978T1 (de) 1978-08-26 1979-08-20 Verfahren zur elektrolyse waessriger alkalihalogenid-loesungen.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2837313 1978-08-26
DE19782837313 DE2837313A1 (de) 1978-08-26 1978-08-26 Verfahren zur elektrolyse waessriger alkalihalogenid-loesungen

Publications (2)

Publication Number Publication Date
EP0008470A1 EP0008470A1 (de) 1980-03-05
EP0008470B1 true EP0008470B1 (de) 1982-05-05

Family

ID=6047970

Family Applications (1)

Application Number Title Priority Date Filing Date
EP79200382A Expired EP0008470B1 (de) 1978-08-26 1979-08-20 Verfahren zur Elektrolyse wässriger Alkalihalogenid-Lösungen

Country Status (12)

Country Link
US (1) US4247375A (de)
EP (1) EP0008470B1 (de)
JP (1) JPS5531199A (de)
AT (1) ATE978T1 (de)
BR (1) BR7905453A (de)
CA (1) CA1158196A (de)
DE (2) DE2837313A1 (de)
ES (1) ES483640A1 (de)
FI (1) FI63260C (de)
MX (1) MX152740A (de)
NO (1) NO151973C (de)
ZA (1) ZA793571B (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4381230A (en) * 1981-06-22 1983-04-26 The Dow Chemical Company Operation and regeneration of permselective ion-exchange membranes in brine electrolysis cells
US4391680A (en) * 1981-12-03 1983-07-05 Allied Corporation Preparing alkali metal hydroxide by water splitting and hydrolysis
DE3216418A1 (de) * 1982-05-03 1983-11-03 Bayer Ag, 5090 Leverkusen Verfahren zur elektrolytischen herstellung von chlor und natronlauge aus sulfathaltigem salz
US4481088A (en) * 1982-07-06 1984-11-06 Olin Corporation Removal of chlorate from electrolyte cell brine
JPS6068997A (ja) * 1983-09-27 1985-04-19 Fuji Photo Film Co Ltd 平版印刷版用アルミニウム支持体の製造方法
JP3115440B2 (ja) * 1992-12-10 2000-12-04 ペルメレック電極株式会社 塩化アルカリ水溶液の電解方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL136394C (de) * 1965-11-29 1900-01-01
US3438879A (en) * 1967-07-31 1969-04-15 Hooker Chemical Corp Protection of permselective diaphragm during electrolysis
US3616328A (en) * 1968-09-23 1971-10-26 Hooker Chemical Corp Catholyte recirculation in diaphragm chlor-alkali cells
DE1803638A1 (de) * 1968-10-17 1970-05-27 Bayer Ag Verfahren zur Herstellung von Chlor und Natronlauge
BE795460A (fr) * 1972-02-16 1973-08-16 Diamond Shamrock Corp Perfectionnements relatifs a des cuves electrolytiques
US4040919A (en) * 1974-10-29 1977-08-09 Hooker Chemicals & Plastics Corporation Voltage reduction of membrane cell for the electrolysis of brine
JPS5318498A (en) * 1976-08-03 1978-02-20 Nippon Soda Co Ltd Preventing method for accumulation of alkali chlorates in salt water in ion exchange membrane method electrolysis of alkali chlorides

Also Published As

Publication number Publication date
EP0008470A1 (de) 1980-03-05
JPS636635B2 (de) 1988-02-10
ZA793571B (en) 1980-07-30
FI63260B (fi) 1983-01-31
CA1158196A (en) 1983-12-06
MX152740A (es) 1985-11-01
ATE978T1 (de) 1982-05-15
NO151973B (no) 1985-04-01
ES483640A1 (es) 1980-04-16
FI63260C (fi) 1983-05-10
NO792723L (no) 1980-02-27
NO151973C (no) 1985-07-31
DE2962706D1 (en) 1982-06-24
BR7905453A (pt) 1980-05-20
DE2837313A1 (de) 1980-03-13
US4247375A (en) 1981-01-27
FI792470A (fi) 1980-02-27
JPS5531199A (en) 1980-03-05

Similar Documents

Publication Publication Date Title
DE3118795C2 (de) Verfahren und Vorrichtung zur kontinuierlichen Herstellung von Chlordioxid durch Elektrolyse
DE2419690C3 (de) Verfahren zur Entfernung von Dichromaten aus bei der Elektrolyse anfallenden, mit Chloraten angereicherten Alkalimetallchlorat-Alkalimetallchloridlösungen
DE3013538A1 (de) Chloralkali-elektrolysezelle
DE1140907B (de) Verfahren zur Gewinnung von Chlor aus Soleloesungen
DE3001614A1 (de) Verfahren zum elektrolytischen zersetzen von chlorwasserstoffsaeure in einer elektrolysiervorrichtung
EP0008470B1 (de) Verfahren zur Elektrolyse wässriger Alkalihalogenid-Lösungen
DE69312655T2 (de) Verfahren zur Elektrolyse einer wässrigen Lösung von Alkalichlorid
DE10138215A1 (de) Verfahren zur elektrochemischen Herstellung von Chlor aus wässrigen Lösungen von Chlorwasserstoff
DE10106932A1 (de) Verfahren zur Herstellung von Natriumpersulfat
DD298004A5 (de) Verfahren zur herstellung von alkalidichromaten und chromsaeuren durch elektrolyse
DE2843479B2 (de) Verfahren zur Elektrolyse von Natriumchlorid in einer eine Ionenaustauschermembran enthaltenden Zelle
DE2432416A1 (de) Verfahren zur gewinnung von elektrolytisch hergestellten alkalichloraten
EP0011326A1 (de) Verfahren zur Herstellung von Chlordioxid und gegebenenfalls Chlor aus Chlorwasserstoff und elektrolytisch gewonnenem Alkalichlorat
DE2948343C2 (de)
DE2124045C3 (de) Verfahren zur elektrolytischen Her stellung von reinem Chlor, Wasserstoff und reinen konzentrierten Alkaliphosphat lösungen und Elektrolyslerzelle zur Durch führung des Verfahrens
DE69410142T2 (de) Verfahren zur Chlor-Alkali Elektrolyse mit Diaphragma und Zelle dazu
EP1167579B1 (de) Chloralkalielektrolyse-Verfahren in Membranzellen unter Elektrolyse von ungereinigtem Siedesalz
DD262679A5 (de) Verfahren zur entfernung von chrom-vi-ionen aus waessrigen loesungen
DE3875382T2 (de) Elektrochemisches verfahren.
WO2009144019A1 (de) Verfahren zur herstellung eines hypohalogenithaltigen biozids
DE2419857A1 (de) Verfahren zur elektrolyse von alkalimetallchloriden
DE3729669A1 (de) Verfahren zur herstellung von alkalimetallnitraten
EP3114087B1 (de) Verfahren und vorrichtung zur herstellung wässriger chlordioxidlösungen
DE2434921B2 (de) Elektrolysezelle und Verfahren zur Elektrolyse ionisierbarer chemischer Verbindungen
EP0141905B1 (de) Verfahren zur elektrochemischen Kompensation der Luftoxidation bei der elektrochemischen Regenerierung von chloridhaltigen Kupferätzlösungen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LU NL SE

17P Request for examination filed
ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LU NL SE

REF Corresponds to:

Ref document number: 978

Country of ref document: AT

Date of ref document: 19820515

Kind code of ref document: T

REF Corresponds to:

Ref document number: 2962706

Country of ref document: DE

Date of ref document: 19820624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19820820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19820831

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: UHDE GMBH

Effective date: 19830204

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19830505

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19830531

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19830613

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19830630

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19830831

Year of fee payment: 5

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 19831103

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19840914

Year of fee payment: 6

BERE Be: lapsed

Owner name: METALL-G. A.G.

Effective date: 19840820

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state
REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 79200382.4

Effective date: 19850612