EP0234256B1 - Verfahren zur Durchführung der HCI-Membranelektrolyse - Google Patents

Verfahren zur Durchführung der HCI-Membranelektrolyse Download PDF

Info

Publication number
EP0234256B1
EP0234256B1 EP87100678A EP87100678A EP0234256B1 EP 0234256 B1 EP0234256 B1 EP 0234256B1 EP 87100678 A EP87100678 A EP 87100678A EP 87100678 A EP87100678 A EP 87100678A EP 0234256 B1 EP0234256 B1 EP 0234256B1
Authority
EP
European Patent Office
Prior art keywords
electrolyte
carrying
cell
hci
membrane electrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87100678A
Other languages
English (en)
French (fr)
Other versions
EP0234256A1 (de
Inventor
Franz-Rudolf Dr. Minz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer AG filed Critical Bayer AG
Publication of EP0234256A1 publication Critical patent/EP0234256A1/de
Application granted granted Critical
Publication of EP0234256B1 publication Critical patent/EP0234256B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof
    • C25B1/26Chlorine; Compounds thereof

Definitions

  • the present invention relates to an improved method for performing HCI membrane electrolysis.
  • a 20 to 26% strength aqueous hydrochloric acid is fed to the individual cells divided by a diaphragm and combined to form an electrolyzer of 30-45 units from two separate circuits for catholyte or anolyte acid, wherein the anolyte acid flows through all the anode compartments in parallel and at the same time the catholyte acid flows through all the cathode compartments in parallel.
  • 30% hydrochloric acid is fed into both circuits to strengthen the depleted acid (Winnacker Küchler: Chemical Technology, Volume 2, 4th edition 1982, p. 443 ff).
  • a disadvantage of this diaphragm method is that due to the permeability of the diaphragm for the electrolytes, an exchange of fluid inside the cells that cannot be controlled from the outside takes place. For example, the chlorine dissolved in the anolyte acid is partially expelled there after passing through the catholyte side and thus contributes to the contamination of the hydrogen. Another part is reduced cathodically, which leads to a reduction in the product current efficiency. Partial mixing of the chlorine and hydrogen gases produced in the electrolysis can also occur through the diaphragm.
  • This process described as a "solid polymer electrolyte” (SPE) system, has the advantage that only one anolyte circuit is required, since the protons discharged on the cathode side migrate from the anode side through the membrane, so theoretically no “depletion” in the catholyte Ion occurs. In practice, however, water of hydration passes over to the cathode side, which must be removed.
  • SPE solid polymer electrolyte
  • a disadvantage of this method is that the current transfer from the collector electrodes to the "working electrodes" lies within the electrolyte and thus defined current transfers are very difficult to set and cannot be controlled from the outside.
  • Electrocatalysts Reduced oxides from the group of noble metals, which are more or less mixed with graphite, are specified as electrocatalysts.
  • these systems are much less stable than graphite under operating conditions. But if, for reasons of durability, graphite has to be used for the collector electrodes and also for the electrocatalytic layers on the membranes, the solid graphite electrodes of the conventional type are no longer a significant disadvantage. In addition, the recurring difficulties in the adhesion of the electrocatalyst to the membrane are avoided .
  • a conductive electrolyte is also required on the cathode side.
  • the conductivity maximum of aqueous hydrochloric acid is known to be at a concentration between 17 and 22% by weight of HCl. Since the concentration of the HCI solution in the cathode compartment decreases as a result of the transport of hydrated water through the membrane, the HCI solution must be renewed.
  • the object of the present invention is to provide a method for carrying out the HCl electrolysis which does not have the disadvantages of the methods described. This method is intended to combine the advantage of the SPE cell with only one electrolyte circuit with the advantages of an electrolysis cell with a finite electrode / membrane spacing.
  • This object is achieved in a simple manner by a method for carrying out the HCl membrane electrolysis, in which at least part of the electrolyte leaving the cathode space is fed directly into the inlet of the anode chamber.
  • the concentrated hydrochloric acid to be electrolyzed is first fed into the catholyte chamber of a cell divided by a cation exchange membrane.
  • the escaping acid which is diluted by the hydrate water transported with the protons to the cathode side, is then introduced into the anolyte compartment of the cell.
  • the water of hydrate penetrating the membrane is conducted in a short circle, the volume flow of the acid to be returned to the HCl absorption is reduced by this proportion.
  • FIG. 1 shows a cell (1) according to the invention.
  • An ion exchange membrane (4) of the Du Pont Nafion NX 430 type divides the cell into a cathode compartment (2) and an anode compartment (3).
  • 0.2 l / h of 30% hydrochloric acid are fed into the catholyte circuit (5) of the cell, the mixture enters the cell from below.
  • a corresponding amount of 21% HCI overflows through line (6) to the anolyte side and is fed into the anolyte circuit (7).
  • the impoverished acid finally leaves the cell at around 18%.
  • the corresponding amount of HCI is removed from the anolyte cycle so that its volume remains constant.
  • a cell voltage of 1.9 to 2.1 volts is set, depending on the distance between the electrodes.
  • the chlorine and hydrogen gases formed during electrolysis leave the cell together with the electrolyte; the gas lift effect means that more electrolyte leaves the cell than fresh acid has to be added according to the current strength. This excess amount is immediately fed back to the cell inlet through the corresponding circuit lines (5) and (7).
  • the chlorine and hydrogen products are separated from the corresponding electrolytes in so-called gas separators at points C and D.

Description

  • Die vorliegende Erfindung betrifft ein verbessertes Verfahren zur Durchführung der HCI-Membranelektrolyse.
  • Gemäß dem Stand der Technik wird bei der Durchführung der HCI-Elektrolyse eine 20 bis 26 %ige wässrige Salzsäure den durch ein Diaphragma geteilten und zu einem Elektrolyseur von 30-45 Einheiten zusammengefaßten Einzelzellen aus zwei getrennten Kreisläufen für Katholyt- bzw. Anolytsäure zugeführt, wobei die Anolytsäure parallel alle Anodenräume und gleichzeitig die Katholytsäure parallel alle Kathodenräume durchströmt. 30 %ige Salzsäure wird zur Aufstärkung der verarmten Säure in beide Kreisläufe eingespeist (Winnacker Küchler: Chemische Technologie, Band 2, 4. Auflage 1982, S. 443 ff).
  • Nachteilig an diesem Diaphragmaverfahren ist, daß aufgrund der Durchlässigkeit des Diaphragmas für die Elektrolyte ein von außen nicht kontrollierbarer Flüssigkeitsaustausch innerhalb der Zellen stattfindet. So wird das in der Anolytsäure gelöste Chlor nach Durchtritt auf die Katholytseite dort teilweise ausgetrieben und trägt somit zur Verunreinigung des Wasserstoffs bei. Ein anderer Teil wird kathodisch reduziert, führt also zu einer Verminderung der Produkt-Stromausbeute. Es kann auch zu einer teilweisen Vermischung der in der Elektrolyse produzierten Gase Chlor und Wasserstoff durch das Diaphragma hindurch kommen.
  • Diese Nachteile können dadurch vermieden werden, daß anstelle des Diaphragmas eine lonenaustauscher-Membran eingesetzt wird.
  • So ist in der DE-A 2 844 499 vorgeschlagen worden, eine beidseitig mit Elektrokatalysatoren beschichtete Ionenaustauschermembran zu verwenden und den Strom über "Kollektor-Elektroden" zu-oder abzuführen.
  • Dieses als "solid polymer electrolyte"-(SPE) System beschriebene Verfahren hat den Vorteil, daß nur noch ein Anolyt-Kreislauf benötigt wird, da die kathodenseitig entladenen Protonen von der Anodenseite durch die Membran wandern, im Katholyten theoretisch also keine "Verarmung" an Ionen auftritt. Praktisch tritt jedoch Hydratwasser zur Kathodenseite über, welches entfernt werden muß.
  • Nachteilig an diesem Verfahren ist jedoch, daß der Stromübergang von den Kollektorelektroden auf die "Arbeitselektroden" innerhalb des Elektrolyten liegt und somit definierte Stromübergänge nur sehr schwer einzustellen und von außen nicht kontrollierbar sind.
  • Ein weiterer Nachteil der DE-A 2 844 499 ist darin zu sehen, daß die als Kollektorelektroden vorgeschlagenen Metallsiebe in der technischen Anwendung anodenseitig nur sehr kurzzeitig und kathodenseitig nur unter kathodischem Schutz beständig sind. Entsprechende Siebe aus Graphit sind sehr kostenaufwendig sowie bei der Größe von technischen Elektrolyseuren mechanisch wenig stabil.
  • Als Elektrokatalysator werden reduzierte Oxide aus der Gruppe der Edelmetalle angegeben, die mehr oder weniger mit Graphit vermischt werden. Diese Systeme sind unter Betriebsbedingungen jedoch wesentlich weniger stabil als Graphit. Wenn aber schon aus Haltbarkeitsgründen Graphit für die Kollektorelektroden und auch für die elektrokatalytischen Schichten auf den Membranen verwendet werden muß, stellen die massiven Graphitelektroden herkömmlicher Art keinen nennenswerten Nachteil mehr dar. Außerdem werden die immer wieder auftretenden Schwierigkeiten bei der Haftung des Elektrokatalysators auf der Membran vermieden.
  • Wenn jedoch die Elektroden von der Membran getrennt werden, wird auch kathodenseitig ein leitfähiger Elektrolyt benötigt. Das Leitfähigkeitsmaximum von wässriger Salzsäure liegt bekanntermaßen bei einer Konzentration zwischen 17 und 22 Gew.-% HCI. Da die Konzentration der HCI-Lösung im Kathodenraum in Folge des Hydratwassertransportes durch die Membran abnimmt, muß eine Erneuerung der HCI-Lösung stattfinden.
  • Die Aufgabe der vorliegenden Erfindung ist es, ein Verfahren zur Durchführung der HCI-Elektrolyse zur Verfügung zu stellen, welches die Nachteile der beschriebenen Verfahren nicht aufweist. Dieses Verfahren soll den Vorteil der SPE-Zelle mit nur einem Elektrolytkreislauf verbinden mit den Vorteilen einer Elektrolysezelle mit endlichem Elektroden-/Membranabstand.
  • Diese Aufgabe wird in einfacher Weise gelöst durch ein Verfahren zur Durchführung der HCI-Membranelektrolyse, bei dem zumindest ein Teil des den Kathodenraum verlassenden Elektrolyten direkt in den Zulauf der Anodenkammer eingespeist wird.
  • Die zu elektrolysierende konzentrierte Salzsäure wird zunächst in die Katholytkammer einer durch eine Kationenaustauscher-Membran geteilten Zelle eingespeist. Die austretende, durch das mit den Protonen auf die Kathodenseite transportierte Hydratwasser verdünnte Säure wird anschließend in den Anolytraum der Zelle eingeleitet Nach entsprechender Verarmung durch die Elektrolyse läuft die verarmte Säure ab und kann nach Austreibung des Restchlors der Wiederaufsättigung mit gasförmiger HCI zugeführt werden. Beim erfindungsgemäßen Verfahren wird das die Membran durchdringende Hydratwasser im kurzen Kreis geführt, der Volumenstrom der zur HCI-Absorption zurückzuführenden Säure ist um diesen Anteil verringert.
  • Besonders vorteilhaft wird das erfindungsgemäße Verfahren so durchgeführt, daß ein Teil des die Elektrolyträume verlassenden Elektrolyten jeweils in den gleichen Elektrolytraum zurückgeführt wird.
    • Fig. 1 dient zur Verdeutlichung des erfindungsgemäßen Verfahrens. Die Menge der bei A (Fig. 1) zugeführten konzentrierten Salzsäure wird so geregelt, daß am Ablauf B die entsprechende Menge verarmter HCI abgeführt wird. Für den Fall, daß die Konzentration bei A 30 %, die bei B 18 % beträgt, stellt sich bei einer spezifischen Belastung von 3 KA/m2 in der Katholytkammer eine mittlere Konzentration von ca. 24 % ein.
    • Fig. 2 zeigt ein mögliches erfindungsgemäßes Schaltschema für eine Vielzahl von Einzelzellen, wie sie z.B. in einem aus 30-45 Einzelelementen zusammengesetzten Elektrolyseur vorhanden sind.
  • Im folgenden wird die vorliegende Erfindung beispielhaft erläutert, ohne daß dadurch eine Einschränkung der Erfindung zu sehen ist.
  • Beispiel
  • In Fig. 1 ist eine erfindungsgemäße Zelle (1) dargestellt. Eine Ionenaustauschermembran (4) vom Typ Nafion NX 430 der Fa. Du Pont teilt die Zelle in einen Kathodenraum (2) und einen Anodenraum (3). Am Punkt A werden 0,2 l/h 30 %ige Salzsäure in den Katholytkreislauf (5) der Zelle eingespeist, die Mischung tritt von unten in die Zelle ein. Eine entsprechende Menge 21 %ige HCI läuft durch Leitung (6) auf die Anolytseite über und wird in den Anolyt-kreislauf (7) eingespeist. Die verarmte Säure verläßt schließlich mit ca. 18 % die Zelle. An Punkt B wird die entsprechende Menge HCI aus dem Anolyt-kreislauf ausgeschleust, so daß dessen Volumen konstant bleibt. Bei einer spezifischen Belastung von 30 Aldm2 und einer Elektrolyttemperatur von etwa 80°C stellt sich je nach Elektrodenabstand eine Zellenspannung von 1,9 bis 2,1 Volt ein. Die bei der Elektrolyse gebildeten Gas Chlor und Wasserstoff verlassen gemeinsam mit dem Elektrolyten die Zelle; dabei bewirkt der Gaslifteffekt, daß mehr Elektrolyt die Zelle verläßt, als entsprechend der Stromstärke an Frischsäure zugespeist werden muß. Diese Oberschußmenge wird durch die entsprechenden Kreislaufleitungen (5) und (7) dem Zelleneinlauf sofort wieder zugeführt. Die Trennung der Produkte Chlor und Wasserstoff von den entsprechenden Elektrolyten erfolgt in sogenannten Gasseparatoren an den Punkten C und D.

Claims (2)

1. Verfahren zur Durchführung der HCI-Membranelektrolyse, dadurch gekennzeichnet, daß in den Kathodenraum die zu elektrolysierende wässrige Lösung von HCI eingespeist und zumindest ein Teil des den Kathodenraum verlassenden Elektrolyten direkt in den Zulauf der Anodenkammer eingespeist wird.
2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß ein Teil der die Elektrolyträume verlassenden Elektrolyten in den gleichen Elektrolytraum zurückgeführt wird.
EP87100678A 1986-01-30 1987-01-20 Verfahren zur Durchführung der HCI-Membranelektrolyse Expired - Lifetime EP0234256B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3602683 1986-01-30
DE19863602683 DE3602683A1 (de) 1986-01-30 1986-01-30 Verfahren zur durchfuehrung der hcl-membranelektrolyse

Publications (2)

Publication Number Publication Date
EP0234256A1 EP0234256A1 (de) 1987-09-02
EP0234256B1 true EP0234256B1 (de) 1990-03-28

Family

ID=6292898

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87100678A Expired - Lifetime EP0234256B1 (de) 1986-01-30 1987-01-20 Verfahren zur Durchführung der HCI-Membranelektrolyse

Country Status (4)

Country Link
US (1) US4725341A (de)
EP (1) EP0234256B1 (de)
JP (1) JPS62182292A (de)
DE (2) DE3602683A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5443804A (en) * 1985-12-04 1995-08-22 Solar Reactor Technologies, Inc. System for the manufacture of methanol and simultaneous abatement of emission of greenhouse gases
US5219671A (en) * 1985-12-04 1993-06-15 Solar Reactor Technologies, Inc. Hydrogen generation and utility load leveling system and the method therefor
DE4119606A1 (de) * 1991-06-14 1992-12-17 Sigri Great Lakes Carbon Gmbh Verfahren und vorrichtung zur aufarbeitung von salzsaeurehaltigem, mit begleitstoffen verunreinigtem wasser
CA2158068A1 (en) * 1993-03-15 1994-09-29 Mervyn Leonard Caesar Hydrogen/oxygen gas producer using an electrolysis process which is to incorporate a novel computer electronic system
US5855759A (en) * 1993-11-22 1999-01-05 E. I. Du Pont De Nemours And Company Electrochemical cell and process for splitting a sulfate solution and producing a hyroxide solution sulfuric acid and a halogen gas
US5976346A (en) * 1993-11-22 1999-11-02 E. I. Du Pont De Nemours And Company Membrane hydration in electrochemical conversion of anhydrous hydrogen halide to halogen gas
CA2408951C (en) * 2002-10-18 2008-12-16 Kvaerner Canada Inc. Mediated hydrohalic acid electrolysis
DE102013105177A1 (de) 2013-05-21 2014-11-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Gewinnung metallischer Anteile sowie von metallabgereichertem Material aus metallhaltigen Materialien

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4210501A (en) * 1977-12-09 1980-07-01 General Electric Company Generation of halogens by electrolysis of hydrogen halides in a cell having catalytic electrodes bonded to a solid polymer electrolyte
JPS6039757B2 (ja) * 1979-02-02 1985-09-07 クロリンエンジニアズ株式会社 塩酸の電解方法
JPS6039757A (ja) * 1983-08-12 1985-03-01 Mitsubishi Electric Corp 放電灯装置

Also Published As

Publication number Publication date
DE3602683A1 (de) 1987-08-06
EP0234256A1 (de) 1987-09-02
JPS62182292A (ja) 1987-08-10
US4725341A (en) 1988-02-16
DE3762054D1 (de) 1990-05-03

Similar Documents

Publication Publication Date Title
DE2844499C2 (de) Verfahren zum Herstellen eines Halogens
EP0068522B1 (de) Verfahren und Vorrichtung zur synthetischen Herstellung von Ozon durch Elektrolyse und deren Verwendung
DE2251660A1 (de) Verfahren und vorrichtung zur herstellung von hochreinem alkalimetallhydroxid in einer elektrolytischen zelle
EP0168600B1 (de) Bipolarer Elektrolyseapparat mit Gasdiffusionskathode
DE2912271C2 (de) Verfahren zur Überführung und Reinigung von Halogen und Halogenwasserstoffsäure in einem elektrochemischen System
EP0532188A2 (de) Elektrochemisches Verfahren
DE2741956A1 (de) Elektrolyse von natriumsulfat unter verwendung einer ionenaustauschermembranzelle mit festelektrolyt
DE102017212278A1 (de) CO2-Elektrolyseur
DE102013011298A1 (de) Vorrichtung und Verfahren zum Betrieb einer Elektrolyse mit einer Sauerstoff-Verzehr Kathode
EP0234256B1 (de) Verfahren zur Durchführung der HCI-Membranelektrolyse
EP1283281A2 (de) Verfahren zur elektrochemischen Herstellung von Chlor aus wässrigen Lösungen von Chlorwasserstoff
DE3640584A1 (de) Elektrodenanordnung fuer gasbildende elektrolyseure mit vertikal angeordneten plattenelektroden
EP4004259B1 (de) Kreuzflusswasserelektrolyse
DE102017219974A1 (de) Herstellung und Abtrennung von Phosgen durch kombinierte CO2 und Chlorid-Elektrolyse
EP0008470B1 (de) Verfahren zur Elektrolyse wässriger Alkalihalogenid-Lösungen
EP1453990B1 (de) Verfahren zur elektrolyse einer wässrigen lösung von alkalimetallchlorid
EP0241633A1 (de) Verfahren zur Elektrolyse von Alkalichlorid-Lösungen
DE102019219302A1 (de) Verfahren und Elektrolyseur zur Kohlenstoffdioxidreduktion
EP3597791B1 (de) Verfahren zur leistungsverbesserung von nickelelektroden
DE2821979A1 (de) Elektrolysezellen-anlage
EP1106714B1 (de) Verfahren zur Herstellung von Halogenen durch Gasphasenelektrolyse
DE10004877A1 (de) Verfahren und Elektrolysezelle zum Reduzieren korrodierend wirkender Bestandteile in Flüssigkeiten
DE2745542A1 (de) Verfahren zur elektrolyse von salzloesungen durch quecksilberkathoden
DE102021103580A1 (de) Verfahren zur Herstellung von Formamidinacetat
EP0588149A1 (de) Verfahren zur elektrochemischen Spaltung von Alkalisulfaten und Ammoniumsulfat in die freien Laugen und Schwefelsäure bei gleichzeitiger anodischer Oxidation von Schwefeldioxid

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19870120

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE FR GB IT NL

17Q First examination report despatched

Effective date: 19890103

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT NL

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3762054

Country of ref document: DE

Date of ref document: 19900503

ITF It: translation for a ep patent filed

Owner name: SOCIETA' ITALIANA BREVETTI S.P.A.

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19971212

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19980112

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19980123

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19980128

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19980130

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990131

BERE Be: lapsed

Owner name: BAYER A.G.

Effective date: 19990131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990801

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19990120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991103

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050120

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1153886

Country of ref document: HK