EP1283281A2 - Verfahren zur elektrochemischen Herstellung von Chlor aus wässrigen Lösungen von Chlorwasserstoff - Google Patents

Verfahren zur elektrochemischen Herstellung von Chlor aus wässrigen Lösungen von Chlorwasserstoff Download PDF

Info

Publication number
EP1283281A2
EP1283281A2 EP02016239A EP02016239A EP1283281A2 EP 1283281 A2 EP1283281 A2 EP 1283281A2 EP 02016239 A EP02016239 A EP 02016239A EP 02016239 A EP02016239 A EP 02016239A EP 1283281 A2 EP1283281 A2 EP 1283281A2
Authority
EP
European Patent Office
Prior art keywords
cathode
chamber
pressure
oxygen
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP02016239A
Other languages
English (en)
French (fr)
Other versions
EP1283281A3 (de
EP1283281B1 (de
Inventor
Andreas Bulan
Fritz Dr. Gestermann
Hans-Dieter Pinter
Gerd Speer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer Intellectual Property GmbH
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer AG filed Critical Bayer AG
Publication of EP1283281A2 publication Critical patent/EP1283281A2/de
Publication of EP1283281A3 publication Critical patent/EP1283281A3/de
Application granted granted Critical
Publication of EP1283281B1 publication Critical patent/EP1283281B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof
    • C25B1/26Chlorine; Compounds thereof

Definitions

  • the invention relates to a method for the electrochemical production of chlorine from aqueous solutions of hydrogen chloride in an electrolytic cell.
  • Aqueous solutions of hydrogen chloride fall for example as By-products in the production of organic chlorine compounds by Chlorination with elemental chlorine. Many of these organic chlorine compounds are intermediates for the large-scale production of plastics.
  • the Any aqueous solutions of hydrogen chloride must be recycled be supplied. Preferably, the recovery takes place in such a way that from the aqueous solutions of hydrogen chloride again chlorine is produced, which then can be used for example for further chlorinations.
  • the conversion to chlorine can e.g. by electrolysis of the aqueous solutions of Hydrogen chloride take place on a gas diffusion cathode.
  • a corresponding Method is known from US-A-5 770 035.
  • the electrolysis is carried out according to US-A-5 770 035 in an electrolytic cell with an anode compartment, with a suitable Anode, e.g. a noble metal coated or doped titanium electrode, with the aqueous solution of hydrogen chloride is filled.
  • the one formed at the anode Chlorine escapes from the anode compartment and becomes suitable treatment fed.
  • the anode compartment is from a cathode compartment by a commercially available Cation exchange membrane separated.
  • On the cathode side is a gas diffusion electrode on the cation exchange membrane. Behind the gas diffusion electrode there is a power distributor.
  • In the cathode compartment is usually an oxygen-containing gas or pure oxygen introduced.
  • the anode compartment is maintained at a higher pressure than the cathode compartment.
  • the setting of the pressure can e.g. done by a liquid immersion, through which in the anode chamber formed chlorine gas is passed.
  • the US-A-5,770,035 known method has the drawback, that at high current densities, including in particular current densities greater than 4000 A / m 2 are understood to be formed on the gas diffusion cathode, a relatively high amount of hydrogen.
  • high current densities are necessary in the technical implementation of the method for economic reasons.
  • the object of the invention is to provide a method for electrochemical Production of chlorine from aqueous solutions of hydrogen chloride, using itself When working with high current densities, as little hydrogen as possible is formed and sets the lowest possible voltage.
  • the invention relates to a process for the electrochemical production of Chlorine from aqueous solutions of hydrogen chloride in an electrolytic cell, comprising at least one anode chamber and a cathode chamber, wherein the Anodenhunt through a cation exchange membrane of the cathode chamber is separated, the anode chamber an anode and the cathode chamber an oxygen-consuming cathode contains, and in the anode chamber, the aqueous solution of Hydrogen chloride and introduced into the cathode chamber, an oxygen-containing gas is, wherein the absolute pressure in the cathode chamber is at least 1.05 bar.
  • oxygen-containing gas for example, pure oxygen, a mixture of Oxygen and inert gases, in particular nitrogen, or air are used.
  • Preferred oxygen-containing gas is pure oxygen, in particular a purity used by at least 99 vol .-%.
  • the indication of the pressure in the cathode chamber are absolute values.
  • the pressure in the cathode chamber is preferably 1.05 to 1.5 bar, especially preferably 1.05 to 1.3 bar.
  • the adjustment of the pressure in the cathode chamber on the inventive Value of at least 1.05 bar can be done, for example, that the Cathode chamber supplied oxygen-containing gas through a pressure holding device is accumulated.
  • a suitable pressure holding device is for example a Fluid compression, through which the cathode space is shut off.
  • a throttling About valves also provides a suitable method for adjusting the Pressure in the cathode compartment.
  • the pressure in the anode chamber is 50 to 500 mbar, completely more preferably 200 to 500 mbar higher than the pressure in the cathode chamber.
  • the process according to the invention is preferably operated at a current density of at least 3500 A / m 2 , more preferably at a current density of at least 4000 A / m 2 , particularly preferably at a current density of at least 5000 A / m 2 .
  • the temperature of the supplied aqueous solution of hydrogen chloride is preferably 30 to 80 ° C, particularly preferably 50 to 70 ° C.
  • the concentration of hydrochloric acid in the electrolyzer in the Carrying out the process according to the invention 5 to 20 wt .-%, especially preferably 10 to 15 wt .-%.
  • the spent hydrochloric acid in the electrolyser can through a hydrochloric acid supplied to the electrolyzer in the concentration range of 8 to Be supplemented 36 wt .-%.
  • the oxygen-containing gas is preferably supplied in such an amount that Oxygen in excess of the theoretically required amount is present. Particularly preferred is a 1.2 to 1.5-fold excess of oxygen.
  • the process according to the invention is carried out in an electrochemical cell (electrolysis cell) performed, the anode compartment through a cation exchange membrane is separated from the cathode chamber, wherein the cathode chamber a Contains oxygen-consuming cathode.
  • the electrolysis cell used may, for example, the following components comprising: an anode in an anode chamber, a cation exchange membrane, which is hydrostatically pressed onto an oxygen-consuming cathode (SVK), which itself in turn supported on a cathode-side power distributor and so electrically is contacted, and a cathode-side gas space (cathode chamber).
  • SVK oxygen-consuming cathode
  • the aqueous solution of hydrogen chloride is introduced into the anode chamber, the oxygen-containing gas in the cathode chamber.
  • oxygen-consuming cathode is not critical. It can be the well-known and partially commercially available oxygen-consuming cathodes are used. Preferably, however, oxygen-consuming cathodes are used which have a Catalyst of the platinum group, preferably platinum or rhodium.
  • Suitable cation exchange membranes are those made of perfluoroethylene, which contain sulfonic acid groups as active centers. They are both Single-layer membranes containing sulfonic acid groups with equal equivalent weights on both sides have, as well as membranes, sulfonic acid groups on both sides with different equivalent weights are suitable. Also Membranes with carboxyl groups on the cathode side are conceivable.
  • Suitable anodes are, for example, titanium anodes, in particular with a acid-resistant, chlorine-evolving coating.
  • the cathode-side power distributor can be made of titanium expanded metal or made of precious metal coated titanium.
  • FIG. 1 A suitable electrolytic cell for carrying out the method according to the invention is shown schematically in Fig. 1.
  • the electrolysis cell 1 is divided by a cation exchange membrane 6 into a cathode chamber 2 with an oxygen-consuming cathode 5 and an anode chamber 3 with an anode 4 .
  • the oxygen-consuming cathode 5 is located on the cathode side on the cation exchange membrane 6 .
  • Behind the Sauerstoffverzehrkathode 5 is a power distributor. 7 Due to the higher pressure in the anode chamber 3 , the cation exchange membrane 6 is pressed onto the oxygen-consuming cathode 5 and this in turn onto the current distributor 7 . In this way, the Sauerstoffverzehrkathode 5 is sufficiently electrically contacted and supplied with power.
  • the adjustment of the pressure in the cathode chamber 2 and anode chamber 3 is in each case via a pressure maintenance 8 via an HCl inlet 12 , an aqueous solution of hydrogen chloride is introduced into the anode chamber 3 , which forms at the anode 4 chlorine, which flows through the pressure maintenance 8 and is discharged from the anode chamber 3 via the Cl 2 outlet 13 .
  • oxygen-containing gas is introduced into the cathode chamber 2 , where it reacts with the oxygen-consuming cathode 5 to form water with protons which diffuse out of the anode chamber 3 into the oxygen-consuming cathode 5 .
  • the water formed is removed together with the excess oxygen-containing gas via the pressure maintenance 8 from the cathode chamber 2 , wherein the water formed via a H 2 O outlet 11 and the oxygen-containing gas via an O 2 outlet 10 is removed. It is also possible that the oxygen supply is from below and / or that the removal of water formed and oxygen-containing gas is carried out separately via a separate pressure maintenance.
  • the electrolysis was carried out in an electrolysis cell 1 divided into a cathode chamber 2 and an anode chamber 3 , as shown schematically in FIG. 1 and explained in greater detail above.
  • An activated titanium anode with a size of 10 cm ⁇ 10 cm was used as anode 4 .
  • the anode chamber 3 was supplied with an aqueous solution of hydrogen chloride.
  • the temperature of the aqueous solution of hydrogen chloride was 60 ° C, the concentration 12-15 wt .-%.
  • a gas diffusion electrode of the company E-TEK, type ELAT which was directly on a power distributor 7 in the form of an activated expanded titanium metal.
  • Cathode chamber 2 and anode chamber 3 were separated from a cation exchange membrane 6 from DuPont, type Nafion® 324.
  • pure oxygen having a content of greater than 99 vol .-% was introduced at a temperature of 20 ° C.
  • the electrolysis was at a pressure in the anode chamber 3 of 1 , 4 bar, abs. and a pressure in the cathode chamber 2 of 1 bar, abs., A voltage of 1.67 V and a current density of 6000 A / m 2 operated.
  • the excess oxygen-containing gas was removed from the cathode chamber 2 together with the water formed.
  • the concentration of hydrogen in this gas was determined by gas chromatography. The hydrogen concentration was 700 ppm after an electrolysis time of 10 minutes, increased steadily during the electrolysis and was 1600 ppm after an electrolysis time of 3 hours.
  • Example 1 An electrolysis of an aqueous solution of hydrogen chloride was carried out as described in Example 1.
  • the pressure in the anode chamber 3 was 1.4 bar, abs.,
  • the pressure in the cathode chamber 2 1 bar, abs.,
  • the voltage 1.82 V and the current density 7000 A / m 2 were measured.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur elektrochemischen Herstellung von Chlor aus wässrigen Lösungen von Chlorwasserstoff in einer Elektrolysezelle, umfassend eine Anodenkammer und eine Kathodenkammer, wobei die Anodenkammer durch eine Kationenaustauschermembran von der Kathodenkammer getrennt ist, die Anodenkammer eine Anode und die Kathodenkammer eine Gasdiffusionskathode enthält, und in die Anodenkammer die wässrige Lösung von Chlorwasserstoff und in die Kathodenkammer ein sauerstoffhaltiges Gas eingeleitet wird, wobei der Sauerstoffdruck in der Kathodenkammer mindestens 1,05 bar beträgt. <IMAGE>

Description

Die Erfindung betrifft ein Verfahren zur elektrochemischen Herstellung von Chlor aus wässrigen Lösungen von Chlorwasserstoff in einer Elektrolysezelle.
Wässrige Lösungen von Chlorwasserstoff (Salzsäuren) fallen beispielsweise als Nebenprodukte bei der Herstellung von organischen Chlorverbindungen durch Chlorierung mit elementarem Chlor an. Viele dieser organischen Chlorverbindungen sind Zwischenprodukte für die großtechnische Herstellung von Kunststoffen. Die anfallenden wässrigen Lösungen von Chlorwasserstoff müssen einer Verwertung zugeführt werden. Vorzugsweise erfolgt die Verwertung dergestalt, dass aus den wässrigen Lösungen von Chlorwasserstoff wieder Chlor hergestellt wird, das dann beispielsweise für weitere Chlorierungen eingesetzt werden kann.
Die Umsetzung zu Chlor kann z.B. durch Elektrolyse der wässrigen Lösungen von Chlorwasserstoff an einer Gasdiffusionskathode erfolgen. Ein entsprechendes Verfahren ist aus US-A-5 770 035 bekannt. Die Elektrolyse erfolgt gemäß US-A-5 770 035 in einer Elektrolysezelle mit einem Anodenraum, mit einer geeigneten Anode, z.B. einer edelmetallbeschichteten bzw. -dotierten Titanelektrode, der mit der wässrigen Lösung von Chlorwasserstoff gefüllt wird. Das an der Anode gebildete Chlor entweicht aus dem Anodenraum und wird einer geeigneten Aufbereitung zugeführt. Der Anodenraum ist von einem Kathodenraum durch eine handelsübliche Kationenaustauschermembran getrennt. Auf der Kathodenseite liegt eine Gasdiffusionselektrode auf der Kationenaustauschermembran auf. Hinter der Gasdiffusionselektrode befindet sich ein Stromverteiler. In den Kathodenraum wird üblicherweise ein Sauerstoff-haltiges Gas oder reiner Sauerstoff eingeleitet.
Der Anodenraum wird auf einem höheren Druck gehalten als der Kathodenraum. Dadurch wird die Kationenaustauschermembran auf die Gasdiffusionskathode und diese wiederum auf den Stromverteiler gedrückt. Die Einstellung des Drucks kann z.B. durch eine Flüssigkeitstauchung erfolgen, durch die das in der Anodenkammer gebildete Chlorgas geleitet wird.
Das aus US-A-5 770 035 bekannte Verfahren hat den Nachteil, dass bei hohen Stromdichten, worunter insbesondere Stromdichten größer als 4000 A/m2 zu verstehen sind, an der Gasdiffusionskathode eine vergleichsweise hohe Menge Wasserstoff gebildet wird. Hohe Stromdichten sind jedoch bei der technischen Durchführung des Verfahrens aus wirtschaftlichen Gründen notwendig. Außerdem stellt sich bei hohen Stromdichten eine vergleichsweise hohe Spannung ein, was einen hohen Energieverbrauch bedingt.
Aufgabe der Erfindung ist die Bereitstellung eines Verfahrens zur elektrochemischen Herstellung von Chlor aus wässrigen Lösungen von Chlorwasserstoff, wobei selbst beim Arbeiten mit hohen Stromdichten möglichst wenig Wasserstoff gebildet wird und sich eine möglichst niedrige Spannung einstellt.
Gegenstand der Erfindung ist ein Verfahren zur elektrochemischen Herstellung von Chlor aus wässrigen Lösungen von Chlorwasserstoff in einer Elektrolysezelle, umfassend mindestens eine Anodenkammer und eine Kathodenkammer, wobei die Anodenkammer durch eine Kationenaustauschermembran von der Kathodenkammer getrennt ist, die Anodenkammer eine Anode und die Kathodenkammer eine Sauerstoffverzehrkathode enthält, und in die Anodenkammer die wässrige Lösung von Chlorwasserstoff und in die Kathodenkammer ein sauerstoffhaltiges Gas eingeleitet wird, wobei der absolute Druck in der Kathodenkammer mindestens 1,05 bar beträgt.
Durch den erfindungsgemäß leicht erhöhten Druck in der Kathodenkammer wird die Bildung von Wasserstoff an der Sauerstoffverzehrkathode vermindert und zudem eine niedrigere Elektrolysespannung erzielt, als bei Reaktionsführung unter Normaldruck, entsprechend dem Umgebungsdruck, in der Kathodenkammer. Es ist erstaunlich und war nicht zu erwarten, dass bereits eine vergleichsweise geringe Erhöhung des Drucks in der Kathodenkammer zu einer deutlichen Reduzierung der unerwünschten Wasserstoffentwicklung an der Sauerstoffverzehrkathode und zu niedrigeren Elektrolysespannungen führt, was wiederum hinsichtlich des Energieverbrauchs vorteilhaft ist.
Als sauerstoffhaltiges Gas kann beispielsweise reiner Sauerstoff, ein Gemisch aus Sauerstoff und inerten Gasen, insbesondere Stickstoff, oder Luft eingesetzt werden. Bevorzugt wird als sauerstoffhaltiges Gas reiner Sauerstoff, insbesondere einer Reinheit von mind. 99 Vol.-% eingesetzt.
Bei der Angabe des Drucks in der Kathodenkammer handelt es sich um Absolutwerte. Bevorzugt beträgt der Druck in der Kathodenkammer 1,05 bis 1,5 bar, insbesondere bevorzugt 1,05 bis 1,3 bar.
Die Einstellung des Drucks in der Kathodenkammer auf den erfindungsgemäßen Wert von mindestens 1,05 bar kann beispielsweise dadurch erfolgen, dass das der Kathodenkammer zugeführte sauerstoffhaltige Gas durch eine Druckhaltevorrichtung angestaut wird. Eine geeignete Druckhaltevorrichtung ist beispielsweise eine Flüssigkeitstauchung, durch die der Kathodenraum abgesperrt wird. Ein Androsselung über Ventile stellt ebenfalls eine geeignete Methode zur Einstellung des Drucks im Kathodenraum dar.
Um einen hinreichenden Kontakt zwischen Kationenaustauschermembran und Sauerstoffverzehrkathode zu gewährleisten, wird vorzugsweise in der Anodenkammer ein Druck eingestellt, der 0,01 bis 1000 mbar höher ist als der Druck in der Kathodenkammer.
Insbesondere bevorzugt ist der Druck in der Anodenkammer 50 bis 500 mbar, ganz besonders bevorzugt 200 bis 500 mbar höher als der Druck in der Kathodenkammer.
Vorzugsweise wird das erfindungsgemäße Verfahren bei einer Stromdichte von mindestens 3500 A/m2 betrieben, besonders bevorzugt bei einer Stromdichte von mindestens 4000 A/m2, insbesondere bevorzugt bei einer Stromdichte von mindestens 5000 A/m2.
Die Temperatur der zugeführten wässrigen Lösung von Chlorwasserstoff beträgt vorzugsweise 30 bis 80°C, insbesondere bevorzugt 50 bis 70°C.
Vorzugsweise beträgt die Konzentration der Salzsäure im Elektrolyseur bei der Durchführung des erfindungsgemäßen Verfahrens 5 bis 20 Gew.-%, besonders bevorzugt 10 bis 15 Gew.-%. Die verbrauchte Salzsäure im Elektrolyseur kann durch eine dem Elektrolyseur zugeführte Salzsäure in Konzentrationsbereich von 8 bis 36 Gew.-% ergänzt werden.
Das sauerstoffhaltige Gas wird bevorzugt in einer solchen Menge zugeführt, dass Sauerstoff bezogen auf die theoretisch benötigte Menge im Überschuss vorliegt. Besonders bevorzugt ist ein 1,2 bis 1,5 facher Überschuß an Sauerstoff.
Das erfindungsgemäße Verfahren wird in einer elektrochemischen Zelle (Elektrolysezelle) durchgeführt, deren Anodenkammer durch eine Kationenaustauschermembran von der Kathodenkammer getrennt ist, wobei die Kathodenkammer eine Sauerstoffverzehrkathode enthält.
Die verwendete Elektrolysezelle kann beispielsweise folgende Komponenten umfassen: eine Anode in einer Andodenkammer, eine Kationenaustauschermembran, die hydrostatisch auf eine Sauerstoffverzehrkathode (SVK) aufgepresst wird, die sich wiederum auf einen kathodenseitigen Stromverteiler abstützt und so elektrisch kontaktiert wird, sowie einen kathodenseitigen Gasraum (Kathodenkammer).
Die wässrige Lösung des Chlorwasserstoffs wird in die Anodenkammer eingeleitet, das sauerstoffhaltige Gas in die Kathodenkammer.
Die Wahl der Sauerstoffverzehrkathode ist nicht kritisch. Es können die bekannten und zum Teil kommerziell verfügbaren Sauerstoffverzehrkathoden eingesetzt werden. Vorzugsweise werden jedoch Sauerstoffverzehrkathoden eingesetzt, die einen Katalysator der Platingruppe, vorzugsweise Platin oder Rhodium enthalten.
Als Kationenaustauschermembran eignen sich beispielsweise solche aus Perfluorethylen, die als aktive Zentren Sulfonsäuregruppen enthalten. Es sind sowohl Einschichten-Membranen, die beidseitig Sulfonsäuregruppen mit gleichen Äquivalentgewichten haben, als auch Membranen, die auf beiden Seiten Sulfonsäuregruppen mit unterschiedlichen Äquivalentgewichten haben, geeignet. Ebenfalls sind Membranen mit Carboxylgruppen auf der Kathodenseite denkbar.
Geeignete Anoden sind beispielsweise Titananoden, insbesondere mit einer säurefesten, Chlor-entwickelnden Beschichtung.
Der kathodenseitige Stromverteiler kann beispielsweise aus Titan-Streckmetall oder edelmetallbeschichtetem Titan bestehen.
Eine geeignete Elektrolysezelle zur Durchführung des erfindungsgemäßen Verfahrens ist schematisch in Fig. 1 dargestellt.
Die Elektrolysezelle 1 ist durch eine Kationenaustauschermembran 6 in eine Kathodenkammer 2 mit Sauerstoffverzehrkathode 5 und eine Anodenkammer 3 mit Anode 4 unterteilt. Die Sauerstoffverzehrkathode 5 liegt kathodenseitig auf der Kationenaustauschermembran 6 auf. Hinter der Sauerstoffverzehrkathode 5 befindet sich ein Stromverteiler 7. Durch den höheren Druck in der Anodenkammer 3 wird die Kationenaustauschermembran 6 auf die Sauerstoffverzehrkathode 5 und diese wiederum auf den Stromverteiler 7 gedrückt. Auf diese Weise wird die Sauerstoffverzehrkathode 5 hinreichend elektrisch kontaktiert und mit Strom versorgt. Die Einstellung des Drucks in Kathodenkammer 2 und Anodenkammer 3 erfolgt jeweils über eine Druckhaltung 8. Über einen HCl-Einlass 12 wird eine wässrigen Lösung von Chlorwasserstoff in die Anodenkammer 3 eingeleitet, wobei sich an der Anode 4 Chlor bildet, das die Druckhaltung 8 durchströmt und über der Cl2-Auslass 13 aus der Anodenkammer 3 abgeführt wird. Über einen O2-Einlass 9 wird sauerstoffhaltiges Gas in die Kathodenkammer 2 eingeleitet, wo es sich an der Sauerstoffverzehrkathode 5 unter Bildung von Wasser mit Protonen umsetzt, die aus der Anodenkammer 3 in die Sauerstoffverzehrkathode 5 eindiffundieren. Das gebildete Wasser wird gemeinsam mit dem überschüssigen sauerstoffhaltigen Gas über die Druckhaltung 8 aus der Kathodenkammer 2 entfernt, wobei das gebildete Wasser über einen H2O-Auslass 11 und das sauerstoffhaltige Gas über einen O2-Auslass 10 entnommen wird. Es ist auch möglich, dass die Sauerstoffzufuhr von unten erfolgt und/oder dass die Entfernung von gebildeten Wasser und sauerstoffhaltigem Gas getrennt über jeweils eine separate Druckhaltung vorgenommen wird.
In den folgenden Beispielen wird das erfindungsgemäße Verfahren weiter erläutert, wobei die Beispiele nicht als Einschränkung des allgemeinen Erfindungsgedankens zu verstehen sind.
Beispiel 1 (Vergleichsbeispiel)
Die Elektrolyse wurde in einer in eine Kathodenkammer 2 und eine Anodenkammer 3 unterteilten Elektrolysezelle 1 durchgeführt, wie sie in Fig. 1 schematisch dargestellt und oben näher erläutert ist. Als Anode 4 kam eine aktivierte Titan-Anode mit einer Grösse von 10 cm * 10 cm zum Einsatz. Der Anodenkammer 3 wurde eine wässrige Lösung von Chlorwasserstoff zugeführt. Die Temperatur der wässrigen Lösung von Chlorwasserstoff betrug 60°C, die Konzentration 12-15 Gew.-%. In der Kathodenkammer 2 befand sich als Sauerstoffverzehrkathode 5 eine Gasdiffusionselektrode der Firma E-TEK, Typ ELAT, die unmittelbar auf einem Stromverteiler 7 in Form eines aktivierten Titan-Streckmetalls auflag. Kathodenkammer 2 und Anodenkammer 3 wurden von einer Kationenaustauschermembran 6 der Firma DuPont, Typ Nafion® 324, getrennt. In die Kathodenkammer 2 wurde reiner Sauerstoff mit einem Gehalt von größer als 99 Vol.-% mit einer Temperatur von 20°C eingeleitet.
Die Elektrolyse wurde bei einem Druck in der Anodenkammer 3 von 1,4 bar, abs. und einem Druck in der Kathodenkammer 2 von 1 bar, abs., einer Spannung von 1,67 V und einer Stromdichte von 6000 A/m2 betrieben. Das überschüssige sauerstoffhaltige Gas wurde gemeinsam mit dem gebildeten Wasser aus der Kathodenkammer 2 abgeführt. Es wurde die Konzentration an Wasserstoff in diesem Gas mittels Gaschromatographie bestimmt. Die Wasserstoffkonzentration betrug nach einer Elektrolysedauer von 10 Minuten 700 ppm, stieg im Laufe der Elektrolyse stetig an und lag nach einer Elektrolysedauer von 3 Stunden bei 1600 ppm.
Beispiel 2 (Vergleichsbeispiel)
Es wurde eine Elektrolyse einer wässrigen Lösung von Chlorwasserstoff durchgeführt, wie in Beispiel 1 beschrieben, wobei der Druck in der Anodenkammer 3 jedoch 1,15 bar, abs. betrug. Die Wasserstoffkonzentration betrug nach 10 Minuten Elektrolysedauer 700 ppm, stieg im Lauf der Elektrolyse stetig an und lag nach 3 Stunden bei 1600 ppm.
Beispiel 3
Es wurde eine Elektrolyse einer wässrigen Lösung von Chlorwasserstoff durchgeführt, wie in Beispiel 1 beschrieben, wobei der Druck in der Kathodenkammer 2 jedoch 1,06 bar, abs. betrug und sich bei einer Stromdichte von 6000 A/m2 eine Spannung von 1,62 V einstellte. Die Wasserstoffkonzentration betrug 300 ppm und blieb über den Zeitraum der Elektrolyse von mehreren Tagen konstant.
Beispiel 4 (Vergleichsbeispiel)
Es wurde eine Elektrolyse einer wässrigen Lösung von Chlorwasserstoff durchgeführt, wie in Beispiel 1 beschrieben. Der Druck in der Anodenkammer 3 betrug 1,4 bar, abs., der Druck in der Kathodenkammer 2 1 bar, abs., die Spannung 1,82 V und die Stromdichte 7000 A/m2. Bereits nach einer Elektrolysedauer von 3 Minuten wurde eine Wasserstoffkonzentration von 8000 ppm gemessen.
Beispiel 5
Es wurde eine Elektrolyse einer wässrigen Lösung von Chlorwasserstoff durchgeführt, wie in Beispiel 4 beschrieben, wobei der Druck in der Kathodenkammer 2 jedoch 1,12 bar, abs. betrug und sich bei der gewählten Stromdichte von 7000 A/m2 eine Spannung von 1,74 V einstellte. Die Wasserstoffkonzentration betrug 600 ppm und blieb über den gesamten Zeitraum der Elektrolyse von mehreren Tagen konstant.

Claims (8)

  1. Verfahren zur elektrochemischen Herstellung von Chlor aus wässrigen Lösungen von Chlorwasserstoff in einer Elektrolysezelle, umfassend mindestens eine Anodenkammer und eine Kathodenkammer, wobei die Anodenkammer durch eine Kationenaustauschermembran von der Kathodenkammer getrennt ist, die Anodenkammer eine Anode und die Kathodenkammer eine Sauerstoffverzehrkathode enthält, und in die Anodenkammer die wässrige Lösung von Chlorwasserstoff und in die Kathodenkammer ein sauerstoffhaltiges Gas eingeleitet wird, dadurch gekennzeichnet, dass der Druck in der Kathodenkammer mindestens 1,05 bar beträgt.
  2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass der Druck in der Kathodenkammer 1,05 bis 1,5 bar beträgt.
  3. Verfahren gemäß einem der Ansprüche 1 und 2, dadurch gekennzeichnet, dass der Druck in der Anodenkammer 0,01 bis 1000 mbar höher ist als der Druck in der Kathodenkammer.
  4. Verfahren gemäß Anspruch 3, dadurch gekennzeichnet, dass der Druck in der Anodenkammer 50 bis 500 mbar höher ist als der Druck in der Kathodenkammer.
  5. Verfahren gemäß einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass es bei einer Stromdichte von mindestens 3500 A/m2 betrieben wird.
  6. Verfahren gemäß Anspruch 5, dadurch gekennzeichnet, dass es bei einer Stromdichte von mindestens 5000 A/m2 betrieben wird.
  7. Verfahren gemäß einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die eingesetzte Sauerstoffverzehrkathode einen Katalysator der Platingruppe, vorzugsweise Platin oder Rhodium enthält.
  8. Verfahren gemäß einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass eine Kationenaustauschermembran aus Perfluorethylen eingesetzt wird, die als aktive Zentren bevorzugt Sulfonsäuregruppen enthält.
EP02016239A 2001-08-03 2002-07-22 Verfahren zur elektrochemischen Herstellung von Chlor aus wässrigen Lösungen von Chlorwasserstoff Expired - Lifetime EP1283281B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10138215A DE10138215A1 (de) 2001-08-03 2001-08-03 Verfahren zur elektrochemischen Herstellung von Chlor aus wässrigen Lösungen von Chlorwasserstoff
DE10138215 2001-08-03

Publications (3)

Publication Number Publication Date
EP1283281A2 true EP1283281A2 (de) 2003-02-12
EP1283281A3 EP1283281A3 (de) 2003-05-28
EP1283281B1 EP1283281B1 (de) 2012-11-14

Family

ID=7694329

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02016239A Expired - Lifetime EP1283281B1 (de) 2001-08-03 2002-07-22 Verfahren zur elektrochemischen Herstellung von Chlor aus wässrigen Lösungen von Chlorwasserstoff

Country Status (7)

Country Link
US (1) US6790339B2 (de)
EP (1) EP1283281B1 (de)
CN (1) CN1247818C (de)
DE (1) DE10138215A1 (de)
ES (1) ES2397508T3 (de)
HK (1) HK1054575A1 (de)
PT (1) PT1283281E (de)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2445578C (en) 2001-04-27 2012-08-28 Johns Hopkins University Biological pacemaker comprising dominant-negative kir2.1aaa
DE10152275A1 (de) * 2001-10-23 2003-04-30 Bayer Ag Verfahren zur Elektrolyse von wässrigen Lösungen aus Chlorwasserstoff
EP1577424B1 (de) * 2002-11-27 2015-03-11 Asahi Kasei Chemicals Corporation Spaltfreie bipolare elektrolysezelle
DE10342148A1 (de) 2003-09-12 2005-04-07 Bayer Materialscience Ag Verfahren zur Elektrolyse einer wässrigen Lösung von Chlorwasserstoff oder Alkalichlorid
DE102006023261A1 (de) * 2006-05-18 2007-11-22 Bayer Materialscience Ag Verfahren zur Herstellung von Chlor aus Chlorwasserstoff und Sauerstoff
JP5041769B2 (ja) * 2006-09-06 2012-10-03 住友化学株式会社 スタートアップ方法
DE102008015901A1 (de) * 2008-03-27 2009-10-01 Bayer Technology Services Gmbh Elektrolysezelle zur Chlorwasserstoffelektrolyse
CN102395711B (zh) 2009-04-16 2014-09-03 氯工程公司 采用具有气体扩散电极的两室离子交换膜食盐水电解槽的电解方法
DE102009023539B4 (de) * 2009-05-30 2012-07-19 Bayer Materialscience Aktiengesellschaft Verfahren und Vorrichtung zur Elektrolyse einer wässerigen Lösung von Chlorwasserstoff oder Alkalichlorid in einer Elektrolysezelle
US9175135B2 (en) 2010-03-30 2015-11-03 Bayer Materialscience Ag Process for preparing diaryl carbonates and polycarbonates
ES2643234T3 (es) 2010-03-30 2017-11-21 Covestro Deutschland Ag Procedimiento para la preparación de carbonatos de diarilo y policarbonatos
US8562810B2 (en) 2011-07-26 2013-10-22 Ecolab Usa Inc. On site generation of alkalinity boost for ware washing applications
KR101585995B1 (ko) * 2012-01-10 2016-01-22 이시후꾸 긴조꾸 고오교 가부시끼가이샤 살균수 생성장치
HUE043980T2 (hu) * 2012-06-29 2019-09-30 Australian Biorefining Pty Ltd Eljárás és berendezés sósav generálására vagy feltárására fémsó oldatokból

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0785294A1 (de) * 1996-01-19 1997-07-23 De Nora S.P.A. Verfahren zur Elektrolyse von wassrigen Lösungen von Salzsäure
US6149782A (en) * 1999-05-27 2000-11-21 De Nora S.P.A Rhodium electrocatalyst and method of preparation

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS534796A (en) * 1976-07-05 1978-01-17 Asahi Chem Ind Co Ltd Electrolysis of pressurized alkali halide
US4311568A (en) * 1980-04-02 1982-01-19 General Electric Co. Anode for reducing oxygen generation in the electrolysis of hydrogen chloride
US6135331A (en) * 1999-08-13 2000-10-24 Davis; Richard Maurice Snow ski boot remover

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0785294A1 (de) * 1996-01-19 1997-07-23 De Nora S.P.A. Verfahren zur Elektrolyse von wassrigen Lösungen von Salzsäure
US6149782A (en) * 1999-05-27 2000-11-21 De Nora S.P.A Rhodium electrocatalyst and method of preparation

Also Published As

Publication number Publication date
PT1283281E (pt) 2013-01-24
HK1054575A1 (zh) 2003-12-05
JP4251432B2 (ja) 2009-04-08
EP1283281A3 (de) 2003-05-28
JP2003049290A (ja) 2003-02-21
EP1283281B1 (de) 2012-11-14
ES2397508T3 (es) 2013-03-07
CN1247818C (zh) 2006-03-29
CN1405357A (zh) 2003-03-26
DE10138215A1 (de) 2003-02-20
US20030024824A1 (en) 2003-02-06
US6790339B2 (en) 2004-09-14

Similar Documents

Publication Publication Date Title
EP0866890B1 (de) Verfahren zur direkten elektrochemischen gasphasen-phosgensynthese
DE69016459T2 (de) Elektrochemischer chlordioxidgenerator.
DE69215093T2 (de) Vorrichtung und Verfahren zur elektrochemischen Zersetzung von Salzlösungen um die entsprechenden Basen und Säuren zu bilden
EP0989206B1 (de) Elektrolysezelle und deren Verwendung
EP1283281B1 (de) Verfahren zur elektrochemischen Herstellung von Chlor aus wässrigen Lösungen von Chlorwasserstoff
EP1417356B1 (de) Elektrolysezelle, insbesondere zur elektrochemischen herstellung von chlor
EP1463847B1 (de) Elektroden für die elektrolyse in sauren medien
EP4041939A1 (de) Verfahren und elektrolysevorrichtung zur herstellung von chlor, kohlenmonoxid und gegebenenfalls wasserstoff
DD140262A5 (de) Verfahren zur kontinuierlichen herstellung von chlor
EP1953272A1 (de) Verfahren zur elektrochemischen Entchlorung von Anolytsole aus der NaCI-Elektrolyse
DE69508689T2 (de) Elektrode für elektrochemisches Verfahren und deren Verwendung
EP0391192A2 (de) Verfahren zur Herstellung von Alkalidichromaten und Chromsäuren durch Elektrolyse
DE102017219974A1 (de) Herstellung und Abtrennung von Phosgen durch kombinierte CO2 und Chlorid-Elektrolyse
EP0008470B1 (de) Verfahren zur Elektrolyse wässriger Alkalihalogenid-Lösungen
DE3602683A1 (de) Verfahren zur durchfuehrung der hcl-membranelektrolyse
DE10152275A1 (de) Verfahren zur Elektrolyse von wässrigen Lösungen aus Chlorwasserstoff
EP3597791B1 (de) Verfahren zur leistungsverbesserung von nickelelektroden
EP1167579B1 (de) Chloralkalielektrolyse-Verfahren in Membranzellen unter Elektrolyse von ungereinigtem Siedesalz
DD271722A5 (de) Elektrochemisches verfahren zur herstellung von fluorkohlenwasserstoffen
DE19625600B4 (de) Elektrolyseverfahren
DE10138966A1 (de) Verfahren zum geschlossenen Recycling von Ammoniumsalzen zu Ammoniak und Säuren
EP1106714B1 (de) Verfahren zur Herstellung von Halogenen durch Gasphasenelektrolyse
DE2235027A1 (de) Verfahren zur herstellung von akalimetallhydroxyden und elementarem chlor
EP0029083A1 (de) Verfahren zur gleichzeitigen Herstellung von Stickstoffmonoxid und Alkalihydroxid aus wässrigen Lösungen von Alkalinitrit durch Elektrolyse
WO2017174563A1 (de) Bifunktionelle elektrode und elektrolysevorrichtung für die chlor-alkali-elektrolyse

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20031128

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BAYER MATERIALSCIENCE AG

17Q First examination report despatched

Effective date: 20100714

RTI1 Title (correction)

Free format text: PROCESS FOR THE ELECTROCHEMICAL PRODUCTION OF CHLORINE FROM AQUEOUS HYDROCHLORIC ACID SOLUTIONS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 584067

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121115

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 50215645

Country of ref document: DE

Effective date: 20130110

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20130111

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2397508

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20130307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: BAYER INTELLECTUAL PROPERTY GMBH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130215

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130214

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20130815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50215645

Country of ref document: DE

Effective date: 20130815

BERE Be: lapsed

Owner name: BAYER MATERIALSCIENCE A.G.

Effective date: 20130731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130722

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130731

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130722

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130731

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50215645

Country of ref document: DE

Owner name: COVESTRO DEUTSCHLAND AG, DE

Free format text: FORMER OWNER: BAYER AG, 51373 LEVERKUSEN, DE

Effective date: 20121031

Ref country code: DE

Ref legal event code: R081

Ref document number: 50215645

Country of ref document: DE

Owner name: COVESTRO DEUTSCHLAND AG, DE

Free format text: FORMER OWNER: BAYER MATERIALSCIENCE AG, 51373 LEVERKUSEN, DE

Effective date: 20140526

Ref country code: DE

Ref legal event code: R081

Ref document number: 50215645

Country of ref document: DE

Owner name: BAYER INTELLECTUAL PROPERTY GMBH, DE

Free format text: FORMER OWNER: BAYER AG, 51373 LEVERKUSEN, DE

Effective date: 20121031

Ref country code: DE

Ref legal event code: R081

Ref document number: 50215645

Country of ref document: DE

Owner name: BAYER INTELLECTUAL PROPERTY GMBH, DE

Free format text: FORMER OWNER: BAYER MATERIALSCIENCE AG, 51373 LEVERKUSEN, DE

Effective date: 20140526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130722

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 584067

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130722

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20150629

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20150709

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20150717

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50215645

Country of ref document: DE

Owner name: COVESTRO DEUTSCHLAND AG, DE

Free format text: FORMER OWNER: BAYER INTELLECTUAL PROPERTY GMBH, 40789 MONHEIM, DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20160801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160723

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20181128

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20210628

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210622

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50215645

Country of ref document: DE