DE102017212278A1 - CO2-Elektrolyseur - Google Patents

CO2-Elektrolyseur Download PDF

Info

Publication number
DE102017212278A1
DE102017212278A1 DE102017212278.1A DE102017212278A DE102017212278A1 DE 102017212278 A1 DE102017212278 A1 DE 102017212278A1 DE 102017212278 A DE102017212278 A DE 102017212278A DE 102017212278 A1 DE102017212278 A1 DE 102017212278A1
Authority
DE
Germany
Prior art keywords
gas
space
catholyte
anode
anolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102017212278.1A
Other languages
English (en)
Inventor
Elvira Maria Fernández Sanchis
Marc Hanebuth
Ralf Krause
Erhard Magori
Katharina Stark
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to DE102017212278.1A priority Critical patent/DE102017212278A1/de
Priority to PCT/EP2018/067028 priority patent/WO2019015919A1/de
Priority to EP18739749.2A priority patent/EP3642392A1/de
Priority to CN201880047166.5A priority patent/CN110914478A/zh
Priority to US16/631,600 priority patent/US20200149170A1/en
Priority to AU2018302325A priority patent/AU2018302325A1/en
Publication of DE102017212278A1 publication Critical patent/DE102017212278A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/25Reduction

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

Die Erfindung betrifft einen CO2-Elektrolyseur mit einem Gasraum (4) der an eine Kathode (6) angrenzt die als Gasdiffusionselektrode (7) ausgestaltet ist, die wiederum an einen Kathodenraum (8) angrenzt und mit einer Anode (10) mit einem Anodenraum (12), wobei der Kathodenraum (8) und der Anodenraum (12) durch eine Membran (13) getrennt sind, wobei der Kathodenraum (8) zur Aufnahme eines Katholyten (14) und der Anodenraum (12) zur Aufnahme eine Anolyten (15) vorgesehen sind und der Gasraum (4) eine Zuführvorrichtung (16) von Eduktgas (18) aufweist, ferner umfasst der Elektrolyseur (2) einen Mischbehälter (20) zur gemeinsamen Aufnahme des Anolyten (15) und des Katholyten (14). Die Erfindung zeichnet sich dadurch aus, dass der Mischbehälter (20) einen gegenüber einer Atmosphäre (22) abgeschlossenen Gasabscheidebereich (24) aufweist und eine Verbindungsleitung (26) zwischen den Gasabscheidebereich (24) und dem Gasraum (4) vorgesehen ist.

Description

  • Die Erfindung betrifft einen CO2-Elektrolyseur nach Patentanspruch 1 sowie ein Verfahren zum Betreiben eines CO2-Elektrolyseurs nach Patentanspruch 4.
  • Ein CO2-Elektrolyseur, also einen Elektrolyseur bei dem als Eduktgas zumindest teilweise CO2 eingeleitet wird, ist dazu geeignet, verschiedene Produkte auf Basis des Kohlendioxides, beispielsweise Kohlenstoffmonoxid oder organische Produkte, die Kohlenstoff und Wasserstoff enthalten. Dabei ist die Verwendung eines Elektrolyseurs insbesondere dann zweckmäßig, wenn in einem Stromnetz überschüssige elektrische Energie vorhanden ist, und somit mit dieser überschüssigen elektrischen Energie chemische Wertstoffe erzeugt werden sollen.
  • Ein Konzept für CO2-Elektrolyseure basiert auf einem wässrigen Elektrolyt mit gelöstem Leitsalz, welcher durch Elektrolysezellen mit einer Trennmembran geleitet wird. Der kathodenseitige Anteil des Elektrolyts wird Katholyt genannt, der anodenseitige entsprechend Anolyt. Die Kathode ist als eine Gasdiffusionselektrode ausgeführt damit ein hinreichend guter Kontakt zwischen einer Gasphase, die die Eduktgase umfasst und dem Katholyt aufgebracht werden kann. Zweckmäßigerweise wird das Gas hinter der Gasdiffusionselektrode entlang geführt, sodass ein Produktgas am Ende der Elektrolysezelle gewonnen wird, ohne dass es in direkten Kontakt mit dem Katholyt gerät. Ein Abtrennen der Gasphase vom Katholyt ist für die Produktgewinnung somit nicht mehr nötig. Eine Besonderheit dieses Elektrolysekonzeptes besteht darin, dass der pH-Wert des wässrigen Katholyts nicht zu niedrig sein darf, da sonst Wasserstoff an der Kathode entstünde. Stattdessen muss der Katholyt im neutralen Bereich liegen oder basisch sein. Dies führt in der Praxis dazu, dass bei einem CO2-Elektrolyseur pro geflossenem Elektron ein Molekül CO2 von einem Gasraum aus durch die Gasdiffusionselektrode in den Katholyt überführt wird. Für die Umwandlung von einem Molekül CO2 in den Wertstoff CO, also Kohlenmonoxid, für die zwei Elektronen nötig sind, bedeutet das, dass zwei Moleküle CO2 in den Elektrolyt übertreten. Dies führt zu einer Anreicherung von Hydrogencarbonat im Elektrolyt. Daraus resultiert wiederum, dass das als Hydrogencarbonat gespeicherte Kohlendioxid schlussendlich im Prozess wieder als CO2 freigesetzt wird.
  • Das bedeutet, dass der Anteil an zugeführtem Kohlendioxid, das in einen Wertstoff umgewandelt wird, je nach Prozessführung erheblich kleiner als 100 %, was die Wirtschaftlichkeit des Prozesses gefährdet.
  • Die Aufgabe der Erfindung besteht darin, einen CO2-Elektrolyseur sowie ein Verfahren zum Betreiben eines CO2-Elektrolyseurs bereitzustellen, bei dem gegenüber dem Stand der Technik deutlich weniger Kohlendioxid, das als Eduktgas eingeführt wird, im Prozess verloren geht.
  • Die Lösung der Aufgabe besteht in einem CO2-Elektrolyseur nach Anspruch 1 sowie einem Verfahren zum Betreiben eines CO2-Elektrolyseurs nach Anspruch 4.
  • Der erfindungsgemäße CO2-Elektrolyseur nach Anspruch 1 weist einen Gasraum auf, der an einer Kathode angrenzt, die als Gasdiffusionselektrode ausgebildet ist. Die Gasdiffusionselektrode grenzt wiederum an einen Kathodenraum an, ferner umfasst der Elektrolyseur einen Anodenraum und eine Anode. Der Kathodenraum und der Anodenraum sind durch eine Membran getrennt angeordnet. Der Kathodenraum ist dazu geeignet, einen sogenannten Katholyten aufzunehmen, der Anodenraum hingegen ist zur Aufnahme eines Anolyten vorgesehen. Katholyt und Anolyt werden im Weiteren allgemein als Elektrolyte bezeichnet. Ferner existiert eine Zuführvorrichtung von Eduktgasen am Gasraum, und ein Mischbehälter, der dazu geeignet ist, gemeinsam zumindest Teilmengen des Anolyten und des Katholyten aufzunehmen. Die Erfindung zeichnet sich dadurch aus, dass der Mischbehälter einen gegenüber einer Atmosphäre abgeschlossenen Gasabscheidebereich aufweist und dass eine Verbindungsleitung zwischen dem Gasabscheidebereich des Mischbehälters und dem Gasraum vorgesehen ist.
  • Dabei versteht man unter dem Begriff Gasdiffusionselektrode eine Elektrode an der drei Aggregatszustände nämlich fest, flüssig und gasförmig miteinander in Kontakt stehen. Die feste Phase wird dabei durch einen Katalysator (bevorzugt auf der Elektrodenoberfläche aufgebracht) gebildet, der einer elektrochemischen Reaktion zwischen den flüssigen (in der Regel der Elektrolyt) und der gasförmigen Phase (in der Regel das Eduktgas) katalysiert. Das Eduktgas ist dabei ein Gas, das zumindest teilweise Kohlendioxid enthält, und zumindest teilweise an der Gasdiffusionselektrode zu einem Wertstoff, dem Produkt umgewandelt wird. Der Katholyt und der Anolyt sind Flüssigkeiten, in der Regel auf wässriger Basis, in denen sogenannte Leitsalze gelöst sind. Zur Bildung eines Konzentrationsausgleichs von Leitsalzionen der Elektrolyten werden diese beiden flüssigen Phasen zumindest teilweise in den Mischbehälter gegeben. Dies wirkt einer Entmischung, die bei dem Elektrolyseprozess unweigerlich eintritt, entgegen. Der Gasabscheidebereich ist Teil des Mischbehälters, er dient dazu, dass in dem Anolyt und in dem Katholyt gelöste Gase aus der Flüssigkeit ausgasen und sich bevorzugt oberhalb des Flüssigkeitsspiegels des Anolyten und Katholyten ansammeln. Dieser Bereich, in dem sich die freigesetzten Gase ansammeln, wird der Gasabscheidebereich genannt. Dieser Gasabscheidebereich ist gegenüber einer Atmosphäre also gegenüber dem Raum, in dem der Elektrolyseur aufgestellt ist, abgeschlossen. D. h. es kann im Wesentlichen (von Leckagen abgesehen) kein Gas ungehindert aus dem Gasabscheidebereich in die Atmosphäre oder anders ausgedrückt in die Umgebungsluft entweichen. Gezielt angebrachte Zu- und Abführleitungen sowie Sicherheitsvorrichtungen wie Überdruckventile sind von dem Atmosphärenabschluss ausgenommen.
  • Der Vorteil der Erfindung gegenüber dem Stand der Technik besteht darin, dass aufgrund der Abgeschlossenheit des Gasraums gegenüber der Atmosphäre, Gas, insbesondere Kohlendioxid, das aus dem Katholyten und dem Anolyten bzw. aus einem Gemisch dieser beiden flüssigen Elektrolyten entweicht, abscheidbar bzw. abtrennbar ist und über eine Verbindungsleitung wieder dem Gasraum insbesondere als Eduktgas zuführbar ist. D. h., das Eduktgas, insbesondere das Kohlendioxid, das durch die Gasdiffusionselektrode bauartbedingt in den Katholyten oder Anolyten gelangt, wird wiedergewonnen und als Eduktgas ein weiteres Mal dem Gasraum zugeführt. Auf diese Weise kann die Effizienz des Elektrolyseurs gegenüber eines Elektrolyseurs vergleichbarer Bauart erhöht werden.
  • In einer weiteren Ausgestaltungsform der Erfindung hat es sich als zweckmäßig herausgestellt, dass sowohl der Katholyt als auch der Anolyt als Leitsalze nur eine geringe Konzentration von Salzen aufweisen, die Hydrogencarbonationen, Carbonationen oder Hydroxidionen enthalten. Dies ist deshalb zweckmäßig, da die genannten Ionen dazu neigen, das Kohlendioxid aufzunehmen und im Katholyt bzw. Anolyt chemisch gebunden einzulagern. Durch einen geringen Anteil dieser genannten Ionen, der bevorzugt weniger als 20 % der Gesamtkonzentration von negativen Ladungsträgern im Anolyten und/oder Katholyten beträgt, besonders bevorzugt weniger als 10 % beträgt, kann die Aufnahme von Kohlendioxid am Anolyt oder Katholyt verringert werden, was ebenfalls die Effizienz des Elektrolyseurs verbessert bzw. auch die Ausscheidung im Gasabscheidebereich und das Auffangen von Kohlendioxid im Gasabscheidebereich effizienter gestaltet.
  • In einer weiteren Ausgestaltungsform der Erfindung ist am Mischbehälter eine Zuführvorrichtung für das Eduktgas vorgesehen und eine Zuführung des Eduktgases in den Gasraum erfolgt zumindest teilweise durch den Mischbehälter. Dies bedeutet, dass dem Gasraum nicht direkt das Eduktgas zugeführt wird, sondern dass dies zumindest teilweise vorerst durch den Gasabscheidebereich des Mischbehälters geleitet wird. Dies hat den Vorteil, dass vom Gasabscheidebereich des Mischbehälters kein Extragebläse nötig ist, um das dort abgeschiedene Kohlendioxid in den Gasraum zu befördern. Dieses dort abgeschiedene Gas wird somit durch das eingeführte Eduktgas mitgezogen und in dessen Strömung integriert.
  • Ein weiterer Bestandteil der Erfindung ist ein Verfahren zum Betreiben eines Kohlendioxidelektrolyseurs nach Anspruch 4. Dieses Verfahren beruht darauf, dass der Elektrolyseur eine Kathode aufweist, die in Form einer Gasdiffusionselektrode ausgestaltet ist und die an einen Kathodenraum angrenzt. Der Kathodenraum wird dabei von einem Katholyten durchströmt, wobei der Kathodenraum von einem Membran zu einem Anodenraum hin abgetrennt wird. Durch den Anodenraum wird wiederum ein Anolyt geführt und es ist in oder am Anodenraum eine Anode angeordnet. Ferner wird in einem, an die Gasdiffusionselektrode angrenzenden Gasraum ein Eduktgas eingeleitet, das Kohlendioxid enthält. Im Weiteren wird der Katholyt und der Anolyt nach dem Durchströmen des Anodenraums bzw. des Kathodenraums in einen Mischbehälter gebracht, wo diese zumindest teilweise in Mischung gehen und dadurch ihre Konzentration ausgleichen. Aus dieser Mischung des flüssigen Anolyten und Katholyten wird ein kohlendioxidhaltiges Gas entwickelt, das wiederum als Teil des Eduktgases dem Gasraum zugeführt wird.
  • Die Vorteile, die das beschriebene Verfahren gegenüber dem Stand der Technik aufweist, wurden bereits bezüglich der Vorrichtung des Kohlendioxidelektrolyseurs an sich dargelegt. Die Definition der Begriffe ist analog anzuwenden.
  • In einer weiteren Ausgestaltungsform der Erfindung herrscht im Elektrolyseur ein Betriebsdruck von weniger als 5 bar, besonders bevorzugt weniger als 1 bar und ganz besonders bevorzugt weniger als 0,5 bar vor. Ein geringerer Betriebsdruck führt zu einer geringeren Lösung von Kohlendioxid im Elektrolyten, also im Katholyten bzw. Anolyten, was die Ausbeute an Produktgasen erhöht.
  • Weitere Ausgestaltungsformen der Erfindung und weitere Merkmale werden anhand der folgenden Figuren näher erläutert. Dabei handelt es sich um rein exemplarische Ausgestaltungsformen, die keine Einschränkung des Schutzbereichs darstellen. Dabei zeigen:
    • 1 eine schematische Darstellung eines CO2-Elektrolyseurs, bei dem abgeschiedenes kohlendioxidhaltiges Gas aus einem Mischbehälter dem Gasraum zugeführt wird und
    • 2 einen Elektrolyseur gemäß 1, wobei Eduktgas durch den Mischbehälter in den Gasraum des Elektrolyseurs geleitet wird.
  • In 1 ist ein Elektrolyseur 2 gezeigt, dieser weist im zentralen Bereich einen Gasraum 4 auf, der durch eine Gasdiffusionselektrode 7, die hier auch die Kathode 6 bildet, begrenzt wird. Die Grenzfläche, die die Gasdiffusionselektrode 7 bildet, ist hin zu einem Kathodenraum 8 gebildet, wobei der Kathodenraum 8 wiederum auf einer weiteren Seite von einer Membran 13 gegenüber einen Anodenraum 12 getrennt ist. Im oder am Anodenraum 12 ist eine Anode 10 angeordnet. Sowohl der Kathodenraum 8 als auch der Anodenraum 10 werden von einem Elektrolyten in flüssiger Form durchströmt. Der Elektrolyt, der den Kathodenraum durchströmt, wird als Katholyt bezeichnet, entsprechend wird der Elektrolyt, der durch den Anodenraum fließt als Anolyt bezeichnet. Die Elektrolyten, die aus dem Anodenraum 12 und dem Kathodenraum 8 ausströmen, werden über eine Elektrolytleitung 17, 17' zu einem Mischbehälter 20 geleitet. Im Mischbehälter 20 werden (zumindest Teilmengen) des Anolyt 15 als auch des Katholyt 14 zu einer Mischung 21 gemischt, was zu einem Konzentrationsausgleich der in den einzelnen Elektrolyten enthaltenden Ionen führt. Grundsätzlich ist es von der aktuellen Prozessführung und dem daraus nötig werdenden Konzentrationsausgleich abhängig, ob die Elektrolyten vollständig oder nur zu Teilmengen im Mischbehälter zusammengeführt werden.
  • Gleichzeitig wird in dem Mischbehälter 20 oberhalb eines Flüssigkeitsspiegels der Mischung 21 ein CO2-haltiges Gas 23 entwickelt, das sich aus der Mischung von Anolyt 15 und Katholyt 14 bildet. Dieses CO2-haltige Gas 23 entstammt dem Gas, das durch die Gasdiffusionselektrode 7 in den Katholyten und evtl. auch über die Membran 13 in den Anolyten gelangt ist. Dieses Gas 23 sammelt sich in einem Gasabscheidebereich 24 im Mischbehälter 21. Dieser Gasabscheidebereich 24 ist gegenüber einer Atmosphäre 22 abgeschlossen. Dies bedeutet, dass kein Gas unerwünscht in die Atmosphäre austritt, vielmehr wird das Gas 23, das in dem Gasabscheidebereich 24 vorliegt, gezielt über eine Verbindungsleitung 26 der Zuführvorrichtung 16 für das Eduktgas 18 zugeführt und in den Gasraum 4 als Teil des Eduktgases eingeführt. Dieses Eduktgas 18 wird an der Gasdiffusionselektrode katalytisch in ein Produkt, insbesondere ein Produktgas 19, das beispielsweise Kohlenmonoxid sein kann, umgewandelt.
  • Der Elektrolyseur 2 gemäß 2 unterscheidet sich von dem Elektrolyseur 2 der 1 darin, dass die Zuführvorrichtung 16 des Eduktgases 18 derart ausgestaltet ist, dass die Zuführung des Eduktgases 18 durch den Mischbehälter 20 erfolgt und das Eduktgas 18 auch durch den Gasabscheidebereich 24 geleitet wird und über eine weitere Zuleitung 26, die dann nun Teil der Zuführvorrichtung 16 ist, in den Gasraum 4 geleitet wird. Der Unterschied zu dem Elektrolyseur 2 gemäß 1 besteht darin, dass hierbei die Strömung des Eduktgases 18 ausgenutzt wird, um das CO2-haltige Gas 23 aus dem Gasabscheidebereich herauszutransportieren und dieses in den Gasraum 24 zu befördern. Gemäß 1 wäre hierfür ein nicht dargestelltes Gebläse notwendig, das wiederum einer gewissen Energie bedarf, um betrieben zu werden.
  • Im Weiteren werden noch physikalisch-chemische Aspekte der Erfindung und des Betriebs eines CO2-Elektrolyseurs im Allgemeinen erläutert.
  • Grundsätzlich ist es zweckmäßig, wenn eine größere Anzahl von Zellen eines Elektrolyseurs 2 innerhalb eines Zellstapels, der auch als Stack bezeichnet wird, zusammengefasst sind. Um ein Elektrolyseursystem, das hier nicht graphisch dargestellt ist, zu erhalten, wird dieser Zellstapel mit zusätzlichen Peripherien für Kühlung, Eduktzufuhr und Produktabtrennung aber auch der Infrastruktur für den Anolyt 15 und den Katholyt 14 kombiniert. Bei der hier nicht dargestellten Peripherie gibt es viele unterschiedliche Möglichkeiten diese zweckmäßig zu verschalten.
  • Eine vollständige Trennung von Anolyt und Katholyt lässt sich grundsätzlich nur mit hohem technischen Aufwand realisieren, da ein Transport von Ionen durch die Membran möglich sein muss. Dieser Transport ist ionenselektiv. Neben den Ionen kann ebenfalls Wasser durch die Membran gelangen, was zu einer Aufkonzentrierung oder einer Verdünnung der Elektrolytströme führt. Dementsprechend würden separate Kreisläufe für Anolyt und Katholyt innerhalb der Peripherie dazu führen, dass ihre Zusammensetzungen auseinanderlaufen würden, was zu unerwünschten Effekten, wie z. B. eine höhere Elektrolysespannung oder einer Übersalzung mit Feststoffausfällung, führen würde. Aus diesem Grund werden Anolyt 15 und Katholyt 14 in dem Mischbehälter 20 zumindest teilweise gemischt. Hierdurch werden die Konzentrationen des Leitsalzes nach dem Durchlaufen des Anodenraumes 12 bzw. des Kathodenraumes 8 wieder angeglichen. Hierbei wird in den 1 und 2 eine vollständige Mischung von Anolyt 15 und Katholyt 14 gezeigt, was nicht notwendigerweise zwingend der Fall ist. Grundsätzlich kann es auch ausreichen, geringere Mengen bzw. Anteile des Anolyten 15 und des Katholyten 14 pro Durchlauf miteinander zu vermischen, um einen Konzentrationsausgleich zu gewährleisten.
  • Bei dem in 1 und 2 gezeigten Aufbau gibt es eine Stelle, an dem akkumuliertes Kohlendioxid aus dem Elektrolyt, also dem Katholyt 15 oder dem Anolyt 14 entweichen kann und zwar ist das der Abscheidebehälter 29, an dem Anodengas 30 ausgeleitet werden kann. Das dort abgeschiedene Gas kann bei entsprechender Verfahrensführung ebenfalls CO2-reich sein und kann ebenfalls wieder dem Gasraum 4 zugeführt werden, was jedoch eine Abtrennung vom ebenfalls im Anodengas vorhandenen oxidierenden Gas, in der Regel Sauerstoff, erforderlich machen würde. Dieser Ansatz ist an dieser Stelle nicht dargestellt.
  • Um eine hohe Leitfähigkeit des wässrigen Elektrolyts zu erlangen, enthält dieser ein gelöstes Salz, das auch als Leitsalz bezeichnet wird. Da die entstehenden ionische Spezies während der Elektrolyse den Ladungstransport durch das Fluid übernehmen, ist dieses Leitsalz im Elektrolyt, sei es Anolyt 15 oder Katholyt 14 von Bedeutung. Als Leitsalz kommen prinzipiell sämtliche Substanzen in Frage, die in gelöster Form Ionen bilden. Starke Elektrolyte sind hier bevorzugt, da diese praktisch vollständig dissoziieren und so eine maximale Menge an ionischen Spezies pro eingesetzter Menge Leitsalz entstehen. Typische Kandidaten für Leitsalze sind die Salze der Alkalimetalle und der Erdalkalimetalle, der Mineralsäuren z. B. Kaliumsulfat, Kalziumchlorid oder Natriumnitrat. Es können aber auch Salze der Phosphorsäure und der Kohlensäure verwendet werden. Besonders vorteilhaft sind auch Mischungen verschiedener Salze, da so höhere Löslichkeiten und in Konsequenz höhere Leitfähigkeiten möglich sind. Ein Leitsalz könnte also z. B. aus einer Mischung aus Kaliumhydrogencarbonat und Kaliumsulfat bestehen.
  • Leitsalze, die CO2 enthalten bzw. chemisch binden können, sind jedoch grundsätzlich nicht vorteilhaft. Diese können dazu führen, dass chemisch gebundenes Kohlendioxid in den Anodenraum 12 gelangt und dort aufgrund einer durch die Anodenreaktion hervorgerufene pH-Wertänderung wieder freigesetzt wird. Es handelt sich hierbei um Carbonate, Hydrogencarbonate und Hydroxide. Carbonate und Hydroxide können mit CO2 zu Hydrogencarbonat reagieren. Ein ähnlicher ebenfalls unerwünschter Transporteffekt kann durch physikalisch gelöstes Kohlendioxid hervorgerufen werden, wobei diese besonders bei hohen Betriebsdrücken bei der Elektrolyse auftritt. Wird mit dem Anolyt 15 praktisch physikalisch gelöstes CO2 in den Anodenraum gebracht, strebt dieses zwangsläufig dazu, in die Gasphase überzutreten. Grund hierfür ist das gebildete Anodengas, welches den CO2-Partialdruck erniedrigt und deshalb zu einer Übersättigung von Kohlendioxid in der flüssigen Phase führt. Kohlendioxid wird deshalb unvermeidlich ausgestrippt. Bei einem CO2-Elektrolyseur tritt chemisch und physikalisch gelöstes Kohlendioxid im Elektrolyten stets auf, sodass sich die beschriebenen Effekte kaum vollständig vermeiden lassen. Sie lassen sich jedoch durch geeignete Maßnahmen minimieren.
  • Geeignete Maßnahmen hierzu sind die bereits beschriebenen Zusammensetzungen des Leitsalzes. Hierbei ist es vorteilhaft, dass der Anteil an Hydrogencarbonat möglichst gering ist. Dies gilt auch für Carbonate und Hydroxide, da diese unter den typischen Bedingungen eines CO2-Elektrolyseurs in Hydrogencarbonat umgewandelt werden. Es hat sich herausgestellt, dass eine maximale Konzentration an negativen Ladungsträgern im Leitsalz von einem summarischen Anteil von Hydrogencarbonationen, Carbonationen, Hydroxidionen weniger als 20 %, bevorzugt weniger als 10 % betragen soll.
  • Ferner ist der Betriebsdruck möglichst gering, da sonst ein signifikanter Anteil von Kohlendioxid physikalisch im Elektrolyt gelöst wird und so in den Anodenbereich gelangt und wieder freigesetzt wird.

Claims (6)

  1. CO2-Elektrolyseur mit einem Gasraum (4) der an eine Kathode (6) angrenzt die als Gasdiffusionselektrode (7) ausgestaltet ist, die wiederum an einen Kathodenraum (8) angrenzt und mit einer Anode (10) mit einem Anodenraum (12), wobei der Kathodenraum (8) und der Anodenraum (12) durch eine Membran (13) getrennt sind, wobei der Kathodenraum (8) zur Aufnahme eines Katholyten (14) und der Anodenraum (12) zur Aufnahme eine Anolyten (15) vorgesehen sind und der Gasraum (4) eine Zuführvorrichtung (16) für die Zuführung von Eduktgas (18) aufweist, ferner umfasst der Elektrolyseur (2) einen Mischbehälter (20) zur zumindest teilweisen gemeinsamen Aufnahme des Anolyten (15) und des Katholyten (14), dadurch gekennzeichnet, dass der Mischbehälter (20) einen gegenüber einer Atmosphäre (22) abgeschlossenen Gasabscheidebereich (24) aufweist und eine Verbindungsleitung (26) zwischen den Gasabscheidebereich (24) und dem Gasraum (4) vorgesehen ist.
  2. Elektrolyseur nach Anspruch 1, dadurch gekennzeichnet, dass eine im Mischbehälter vorliegende Mischung aus Katholyt (14) und Anolyt (15) eine Konzentration C an negativen Ladungsträgern aufweist und der summarische Anteil von Hydrogencarbonationen, Carbonationen und Hydroxidionen weniger als 20 % der Gesamtkonzentration der negativen Ladungsträger, bevorzugt weniger als 10 % von C beträgt.
  3. Elektrolyseur nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass am Mischbehälter (20) eine Zuführvorrichtung (28) für das Eduktgas (18) vorgesehen ist und eine Zuführung des Eduktgases (18) in den Gasraum (4) zumindest teilweise durch den Mischbehälter (20) erfolgt.
  4. Verfahren zum Betreiben eines CO2 -Elektrolyseurs, wobei der Elektrolyseur (2) eine Kathode (6) aufweist, die in Form einer Gasdiffusionselektrode (7) ausgestaltet ist und die an einen Kathodenraum (8) angrenzt, der wiederum von einem Katholyten (14) durchströmt wird, ferner weist der Elektrolyseur (2) einen an den Kathodenraum (8) angrenzenden und von diesem durch eine Membran (13) getrennten Anodenraum (12) auf, in dem eine Anode (10) angeordnet ist, wobei der Anodenraum (12) von einem Anolyten (15) durchströmt wird und wobei in einen, an die Gasdiffusionselektrode (7) angrenzenden Gasraum (4) ein CO2 enthaltendes Eduktgas (18) eingeleitet wird, ferner werden nach einem Durchströmen des Kathodenraums (8) oder des Anodenraums (12) der Katholyt (14) und der Anolyt (15) in einen Mischbehälter (20) geleitet, wobei aus einer Mischung (21) des flüssigen Katholyten (14) und des flüssigen Anolyten (15) ein CO2-haltiges Gas (23) entwickelt wird, das wiederum als Teil des Eduktgases (18) dem Gasraum zugeführt wird.
  5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass ein, im Elektrolyseur (2) vorherrschender Betriebsdruck weniger als 5 bar, bevorzugt weniger als 1 bar, besonders bevorzugt weniger als 0,5 bar beträgt.
  6. Verfahren nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass das Eduktgas (18) durch den Mischbehälter (20) geleitet wird und gemeinsam mit dem dort entwickelten CO2-haltigen Gas (23) in den Gasraum (20) eingeleitet wird.
DE102017212278.1A 2017-07-18 2017-07-18 CO2-Elektrolyseur Withdrawn DE102017212278A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE102017212278.1A DE102017212278A1 (de) 2017-07-18 2017-07-18 CO2-Elektrolyseur
PCT/EP2018/067028 WO2019015919A1 (de) 2017-07-18 2018-06-26 Co2-elektrolyseur
EP18739749.2A EP3642392A1 (de) 2017-07-18 2018-06-26 Co2-electrolyseur
CN201880047166.5A CN110914478A (zh) 2017-07-18 2018-06-26 Co2电解槽
US16/631,600 US20200149170A1 (en) 2017-07-18 2018-06-26 CO2 Electrolyzer
AU2018302325A AU2018302325A1 (en) 2017-07-18 2018-06-26 CO2 electrolyser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102017212278.1A DE102017212278A1 (de) 2017-07-18 2017-07-18 CO2-Elektrolyseur

Publications (1)

Publication Number Publication Date
DE102017212278A1 true DE102017212278A1 (de) 2019-01-24

Family

ID=62874852

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102017212278.1A Withdrawn DE102017212278A1 (de) 2017-07-18 2017-07-18 CO2-Elektrolyseur

Country Status (6)

Country Link
US (1) US20200149170A1 (de)
EP (1) EP3642392A1 (de)
CN (1) CN110914478A (de)
AU (1) AU2018302325A1 (de)
DE (1) DE102017212278A1 (de)
WO (1) WO2019015919A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019217121A1 (de) * 2019-11-06 2021-05-06 Siemens Aktiengesellschaft Elektrolyseanlage und Verfahren zum Betreiben einer Elektrolyseanlage zur elektrochemischen Nutzung von Kohlenstoffdioxid

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019216601A1 (de) * 2019-10-29 2021-04-29 Siemens Aktiengesellschaft Elektrolyseur zur Kohlenstoffdioxidreduktion
JP7297710B2 (ja) * 2020-03-23 2023-06-26 株式会社東芝 二酸化炭素反応装置
CN111575726B (zh) * 2020-05-27 2021-10-01 上海科技大学 一种用于二氧化碳的电化学还原的电化学反应器
DE102020004630A1 (de) * 2020-07-30 2022-02-03 Linde Gmbh Druckhaltung in einer Elektrolyseanlage
JP7145264B1 (ja) * 2021-03-23 2022-09-30 本田技研工業株式会社 二酸化炭素処理装置、二酸化炭素処理方法及び炭素化合物の製造方法
CN113828126A (zh) * 2021-10-14 2021-12-24 马鹏飞 一种电解装置及co2消纳系统
CN114645290B (zh) * 2022-02-25 2023-06-30 东南大学 一种co2捕集与电再生同步转化系统及方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015201132A1 (de) * 2015-01-23 2016-07-28 Siemens Aktiengesellschaft Verfahren und Elektrolysesystem zur Kohlenstoffdioxid-Verwertung

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101981744A (zh) * 2007-04-03 2011-02-23 新空能量公司 用于产生可再生氢并截留二氧化碳的电化学系统、装置和方法
JPWO2012077198A1 (ja) * 2010-12-08 2014-05-19 トヨタ自動車株式会社 燃料製造システム
DE102015212504A1 (de) * 2015-07-03 2017-01-05 Siemens Aktiengesellschaft Elektrolysesystem und Reduktionsverfahren zur elektrochemischen Kohlenstoffdioxid-Verwertung, Alkalicarbonat- und Alkalihydrogencarbonaterzeugung
DE102015215309A1 (de) * 2015-08-11 2017-02-16 Siemens Aktiengesellschaft Präparationstechnik von kohlenwasserstoffselektiven Gasdiffusionselektroden basierend auf Cu-haltigen-Katalysatoren

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015201132A1 (de) * 2015-01-23 2016-07-28 Siemens Aktiengesellschaft Verfahren und Elektrolysesystem zur Kohlenstoffdioxid-Verwertung

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019217121A1 (de) * 2019-11-06 2021-05-06 Siemens Aktiengesellschaft Elektrolyseanlage und Verfahren zum Betreiben einer Elektrolyseanlage zur elektrochemischen Nutzung von Kohlenstoffdioxid

Also Published As

Publication number Publication date
AU2018302325A1 (en) 2020-01-16
EP3642392A1 (de) 2020-04-29
WO2019015919A1 (de) 2019-01-24
US20200149170A1 (en) 2020-05-14
CN110914478A (zh) 2020-03-24

Similar Documents

Publication Publication Date Title
DE102017212278A1 (de) CO2-Elektrolyseur
EP3292232B1 (de) Reduktionsverfahren zur elektrochemischen kohlenstoffdioxid-verwertung, alkalicarbonat- und alkalihydrogencarbonaterzeugung
DE2912271C2 (de) Verfahren zur Überführung und Reinigung von Halogen und Halogenwasserstoffsäure in einem elektrochemischen System
EP0095997A1 (de) Verfahren zur elektrolytischen Erzeugung von Wasserstoffperoxyd und dessen Verwendung
EP3885471A1 (de) Verbessertes verfahren zur herstellung von natriumalkoholaten
WO2019025092A1 (de) Vorrichtung und verfahren zur elektrochemischen nutzung von kohlenstoffdioxid
DE102013011298A1 (de) Vorrichtung und Verfahren zum Betrieb einer Elektrolyse mit einer Sauerstoff-Verzehr Kathode
WO2021069470A1 (de) Verfahren und elektrolysevorrichtung zur herstellung von chlor, kohlenmonoxid und gegebenenfalls wasserstoff
WO2019158307A1 (de) Elektrochemische herstellung eines gases umfassend co mit zwischenkühlung des elektrolytstroms
EP4004259B1 (de) Kreuzflusswasserelektrolyse
DE102019219302A1 (de) Verfahren und Elektrolyseur zur Kohlenstoffdioxidreduktion
WO2022022849A1 (de) Druckhaltung in einer elektrolyseanlage
DE102022122837B3 (de) Elektrolytisches Verfahren, Elektrolyseur, Elektrolysesystem, Verwendung und Anlage
EP0234256B1 (de) Verfahren zur Durchführung der HCI-Membranelektrolyse
DE102017219974A1 (de) Herstellung und Abtrennung von Phosgen durch kombinierte CO2 und Chlorid-Elektrolyse
DE4126349C2 (de) Verfahren zur elektrolytischen Herstellung von Methanol und Methan durch Reduktion von Kohlendioxid
EP1061158B1 (de) Parallel Betrieb von Amalgamelektrolyseuren und Membranelektrolyseuren
EP4010514A1 (de) Elektrolyseur und verfahren zur kohlenstoffdioxidreduktion
DE102020207186A1 (de) CO2 Elektrolyse mit Gasdiffusionselektrode und Salzbildungsvermeidung durch Elektrolytwahl
DE1442969A1 (de) Elektrolytisches Verfahren zur Gewinnung von reinem Sauerstoff
WO2020126118A1 (de) Elektrolyseur zur kohlenstoffdioxidreduktion
WO2023110198A1 (de) Zellkonzept zur nutzung nicht-ionisch leitfähiger extraktionsmedien
DE102019215620A1 (de) Verfahren und Vorrichtung zur Herstellung eines Produktgemischs mit einem kohlenstoffhaltigen Brennstoff
EP4335827A1 (de) Herstellen von wasserstoff und festem lithiumhydroxid
DE102022123619A1 (de) Elektrolytisches Verfahren und Anlage

Legal Events

Date Code Title Description
R163 Identified publications notified
R079 Amendment of ipc main class

Free format text: PREVIOUS MAIN CLASS: C25B0009080000

Ipc: C25B0009190000

R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee