EP1061158B1 - Parallel Betrieb von Amalgamelektrolyseuren und Membranelektrolyseuren - Google Patents

Parallel Betrieb von Amalgamelektrolyseuren und Membranelektrolyseuren Download PDF

Info

Publication number
EP1061158B1
EP1061158B1 EP00111000A EP00111000A EP1061158B1 EP 1061158 B1 EP1061158 B1 EP 1061158B1 EP 00111000 A EP00111000 A EP 00111000A EP 00111000 A EP00111000 A EP 00111000A EP 1061158 B1 EP1061158 B1 EP 1061158B1
Authority
EP
European Patent Office
Prior art keywords
brine
electrolysis
amalgam
station
stream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00111000A
Other languages
English (en)
French (fr)
Other versions
EP1061158A2 (de
EP1061158A3 (de
Inventor
Fritz Dr. Gestermann
Hans-Dieter Pinter
Helmut Ziegler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covestro Deutschland AG
Original Assignee
Bayer MaterialScience AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer MaterialScience AG filed Critical Bayer MaterialScience AG
Publication of EP1061158A2 publication Critical patent/EP1061158A2/de
Publication of EP1061158A3 publication Critical patent/EP1061158A3/de
Application granted granted Critical
Publication of EP1061158B1 publication Critical patent/EP1061158B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/34Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
    • C25B1/36Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis in mercury cathode cells
    • C25B1/42Decomposition of amalgams
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/34Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes

Definitions

  • the invention relates to a method for the parallel operation of amalgam electrolyzers and membrane electrolysers with a common brine circuit below Use of an oxygen consumption cathode resistant to mercury in the Membrane electrolyzer.
  • the oxygen consumable cathode for use in NaCl electrolysis is from the literature basically known. For their operation e.g. in a pressure-compensated arrangement, as described in DE 19622744 Cl, brine is of the usual membrane cell quality used. This brine is mercury-free to protect the cathode activation held.
  • the mercury contamination for chloralkali electrolysis using the amalgam process known NaCl brine is typically from about 10 mg / l to 400 mg / l in normal operation or as a peak value after the system has come to a standstill.
  • Another aspect is the gradual changeover from amalgam electrolysis on membrane processes play an important role: if the energetically less favorable, Mercury-resistant cathode activation during the parallel operation of amalgam and membrane processes should be used, with the aim of being more complete Conversion to the optimal cathode activation, which is sensitive to mercury the entire brine and alkali cycle must be completely changed mercury-free, which causes enormous problems, especially in the Alkaline cycle that mercury can be partially in metallic form.
  • the task is therefore to provide an electrolysis process in which an amalgam electrolysis and a Membrane electrolysis, preferably using an oxygen consumable cathode, can be operated in parallel with the same brine circuit.
  • the procedure is said to Have advantages of known methods with oxygen consumption cathodes.
  • the object is achieved through the use of oxygen consumption cathodes solved in a membrane electrolysis process that against the effects of Mercury are resistant.
  • the task is also accomplished through the use of a Ca / Mg ion exchanger dissolved, the Ca / Mg content even with mercury Brine lowers to ⁇ 20 ppb, which is necessary to ensure the full life of the membranes to ensure.
  • the catalyst matrix is sintered or pressed with the support.
  • the carbon components (soot) can also be dispensed with if the catalyst density and / or the rendered hydrophobic support are set such that the majority of the catalyst particles are also contacted electrically.
  • the carbon soot can be omitted from the oxygen depletion cathode so that the electrode matrix consists only of Teflon and silver, whereby the silver takes on the function of the catalyst as well as that of electron conduction and accordingly such a high Ag loading is necessary that the particles separate touch and form conductive bridges with each other.
  • the wire mesh, a fine expanded metal as known from battery technology, as also a felt made of silver, silver-plated nickel or silver-plated alkali-resistant material, e.g. Inconnel steel. It is essential that the silver catalyst is stable behaves towards mercury.
  • sulfate content at ⁇ 5 g / l is achieved by appropriate operation, for example continuous or discontinuous discharge of the sulfate by means of precipitation or partial flow precipitation, for example with addition of CaCO 3 , BaCl 2 or BaCO 3 , or in particular in the case of very low-sulfate salts, can be adjusted by discharging a partial stream of the depleted brine.
  • Another possibility is the nanofiltration of the brine or a partial flow of the brine by means of ion-selective membranes in the feed upstream of the membrane electrolyser, or another separation process, for example by means of ion exchangers. It is important that only the partial flow to the membrane electrolyzer has to be set to the sulfate ion concentration mentioned, with the side effect that the main flow also gradually adjusts to a lower content in the circuit.
  • the SiO 2 content in the NaCl brine can easily be kept at ⁇ 5 ppm by avoiding free concrete areas in the salt store (brine bunker).
  • Peak mercury levels with a concentration of up to 400 mg Hg / l in the brine are from the oxygen consumption cathode operated behind the membrane in the sodium hydroxide solution survived easily.
  • the usual concentration of 150-200 mg / l mercury at normal peaks and ⁇ 10 mg / l mercury in normal operation is for the operation of the oxygen consumption cathode no barrier.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Secondary Cells (AREA)

Description

Die Erfindung betrifft ein Verfahren zum parallelen Betrieb von Amalgamelektrolyseuren und Membranelektrolyseuren mit einem gemeinsamen Solekreislauf unter Verwendung einer gegen Quecksilber resistenten Sauerstoffverzehrkathode im Membranelektrolyseur.
Aus der Literatur ist die Sauerstoffverzehrkathode für den Einsatz in der NaCl-Elektrolyse grundsätzlich bekannt. Für ihren Betrieb z.B. in druckkompensierter Anordnung, wie in DE 19622744 Cl beschrieben, wird Sole in üblicher Membranzellenqualität eingesetzt. Zum Schutz der Kathodenaktivierung wird diese Sole quecksilberfrei gehalten.
Die Quecksilber-Verunreinigung der für die Chloralkalielektrolyse nach dem Amalgamverfahren bekannten NaCl-Sole beträgt typischerweise von etwa 10 mg/l bis 400 mg/l im Normalbetrieb bzw. als Spitzenwert nach Stillstand der Anlage.
Von gängigen Membranelektrolyseuren ist bekannt, dass Quecksilber, insbesondere in der oben genannten hohen Konzentration, relativ schnell zu einer Passivierung des Kathodencoatings (Kathodenmaterials) durch über die Membran aus dem Anodenraum einwandernde Quecksilber-Ionen führt. Dies zieht einen irreversiblen Spannungsanstieg zum Betrieb des Elektrolyseurs nach sich und erfordert einen höheren Energieeinsatz. Ein Parallelbetrieb von klassischen Amalgamelektrolyseuren und Membranelektrolyseuren mit einem gemeinsamen Solekreislauf verbietet sich deshalb, sieht man von der Alternative ab, eine aufwendige Quecksilber-Abtrennung (Fällung) aus der für die Membranelektrolyseure bestimmten Sole vorzunehmen oder aber einen separaten, quecksilberfreien Solekreislauf aufzubauen. Beide Varianten sind mit hohem Aufwand verbunden.
Versuche, quecksilberresistente Kathodenaktivierungen zu entwickeln, haben nicht den erhofften Erfolg gebracht, so dass zur vollen Nutzung der Energieeinsparung auch weiterhin von einer quecksilberfreien Sole ausgegangen werden muss. Dies wird üblicherweise über getrennte Solekreisläufe oder eine Quecksilberfällung mit Na2S durchgeführt. Beide Wege sind aufwendige Verfahren.
Ein weiterer Aspekt spielt bei schrittweiser Umrüstung von der Amalgamelektrolyse auf Membranverfahren eine wichtige Rolle: wenn die energetisch ungünstigere, quecksilberresistente Kathodenaktivierung während des Parallelbetriebs von Amalgam- und Membranverfahren zum Einsatz kommen sollte, mit dem Ziel, nach vollständiger Umrüstung auf die optimale, aber gegen Quecksilber empfindliche Kathodenaktivierung umzustellen, muss der gesamte Sole- und Laugekreislauf erst vollständig quecksilberfrei gemacht werden, was enorme Probleme bereitet, zumal im Laugekreislauf das Quecksilber teilweise in metallischer Form vorliegen kann.
Es stellt sich deshalb ausgehend von dem bekannten Stand der Technik die Aufgabe, ein Elektrolyseverfahren bereitzustellen, bei dem eine Amalgamelektrolyse und eine Membranelektrolyse, bevorzugt unter Verwendung einer Sauerstoffverzehrkathode, parallel mit gleichem Solekreislauf betrieben werden können. Das Verfahren soll die Vorteile bekannter Verfahren mit Sauerstoffverzehrkathoden aufweisen.
Die Aufgabe wird erfindungsgemäß durch den Einsatz von Sauerstoffverzehrkathoden in einem Membranelektrolyseverfahren gelöst, die gegen Einwirkungen von Quecksilber resistent sind. Die Aufgabe wird darüber hinaus durch den Einsatz eines Ca/Mg-Ionenaustauschers gelöst, der den Ca/Mg-Gehalt auch bei quecksilberhaltiger Sole auf < 20 ppb senkt, was notwendig ist, um die volle Lebensdauer der Membranen zu gewährleisten.
Gegenstand der Erfindung ist ein Verfahren zur Elektrolyse Natriumchlorid-haltiger Sole mit einem parallelen Betrieb von Amalgamelektrolyseuren und Membranelektrolyseuren mit Sauerstoffverzehrkathode mit einem gemeinsamen Solekreislauf, mit den Schritten:
  • Zuführen der Sole von einer Salzlösestation zu einer Fäll- und Filterstation und grobes Abtrennen von Sulfat-, Calzium- und Magnesiumionen aus der Sole in der Fäll- und Filterstation,
  • Aufteilen der Sole in einen Hauptstrom und einen Teilstrom, Elektrolysieren des Hauptstroms der Sole in einem Amalgamelektrolyseur,
       Vorbehandeln des Teilstroms der Sole durch Entfernen von freiem Chlor in einer Entchlorungsstation, Ausfällen von insbesondere Al-, Fe- und Mg-Ionen in einer Hydroxidfällungsstatio und Abtrennen von Calzium- und Magnesiumionen aus der Sole bis zu einem Gehalt von < 20 ppb in der Station, insbesondere einem Ionenaustauscher,
       anschließend Elektrolysieren des Teilstroms der Sole in einem Membranelektrolyseur, wobei ein Membranelektrolyseur mit einer quecksilberresistenten Sauerstoffverzehrkathode, wenigstens enthaltend einen Silber-Katalysator, verwendet wird, und
  • Zusammenführen der Anolytströme des Membranelektrolyseurs und des Amalgamelektrolyseur in einen gemeinsamen Anolytstrom.
  • Die Sauerstoffverzehrkathode hat vorzugsweise folgenden Aufbau:
    Der metallische Träger zur Verteilung der Elektronen besteht aus Gewebe aus Silberdraht oder versilbertem Nickeldraht oder einer anderen laugefesten Legierung, z.B. Inconel, die zur Vermeidung von schlecht leitenden Oxid- oder Hydroxidschichten ebenfalls versilbert oder anders veredelt sein sollten. Besonders vorteilhaft ist die Verwendung eines tiefstrukturierten Trägers wie z.B. Filz aus feinen Fasern des oben genannten Gewebematerials. Die Katalysatormatrix besteht aus dem bekannten Gemisch aus Teflon zur Einstellung der Hydrophobie und der Porosität für die Gasdiffusion, einem elektrisch leitfähigen Träger, z.B. Vulkanruß oder Acetylenruß, und dem darin fein verteilten Katalysatormaterial selbst, das in Form von katalytisch aktiven Silberpartikeln untergemischt ist. Die Katalysatormatrix ist mit dem Träger versintert oder verpresst. Alternativ kann auch auf die Kohlenstoffanteile (Ruß) verzichtet werden, wenn die Katalysatordichte und/oder der leitfähig gemachte hydrophobe Träger so eingestellt sind, dass die überwiegende Menge der Katalysatorpartikel auch elektrisch kontaktiert werden.
    Als Alternative kann der Kohlenstoffruß in der Sauerstoffverzehrkathode weggelassen werden, sodass die Elektrodenmatrix nur aus Teflon und Silber besteht, wobei das Silber neben der Katalysatorfunktion auch die der Elektronenleitung übernimmt und entsprechend eine so hohe Ag-Beladung notwendig ist, dass die Teilchen sich berühren und leitfähige Brücken untereinander bilden. Als Träger kann hier sowohl das Drahtgewebe, ein feines Streckmetall, wie aus der Batterietechnik bekannt, als auch ein Filz aus Silber, versilbertem Nickel oder versilbertem laugefestem Material, z.B. Inconnel-Stahl, dienen. Wesentlich ist, dass sich der Silberkatalysator stabil gegenüber Quecksilber verhält.
    Weitere bevorzugte Voraussetzungen für einen Parallelbetrieb von Amalgam- und Membranelektrolysen mit Sauerstoffverzehrkathoden sind die Einhaltung des Sulfatgehaltes bei <5 g/l, der durch entsprechende Fahrweise, z.B. kontinuierliches oder diskontinuierliches Ausschleusen des Sulfates mittels Fällung oder auch Teilstromfällung, beispielsweise unter Zufügung von CaCO3, BaCl2 oder BaCO3, oder aber auch insbesondere bei sehr sulfatarmen Salzen durch Ausschleusen eines Teilstroms der abgereicherten Sole eingestellt werden kann. Eine weitere Möglichkeit ist die Nanofiltration der Sole oder eines Teilstroms der Sole mittels ionenselektiver Membranen im Zulauf vor dem Membranelektrolyseur, oder aber ein anderes Trennverfahren, z.B. mittels Ionenaustauschern. Wichtig ist, dass nur der Teilstrom zum Membranelektrolyseur auf die genannte Sulfat-Ionenkonzentration eingestellt werden muss, mit dem Nebeneffekt, dass auch der Hauptstrom sich im Kreislauf allmählich auf einen niedrigeren Gehalt einstellt.
    Der SiO2-Gehalt in der NaCl-Sole kann durch Vermeidung freier Betonflächen im Salzvorrat (Solebunker) leicht bei < 5 ppm gehalten werden.
    Mit der Erfindung ergeben sich unter anderem die folgenden Vorteile:
    Der Silber-Katalysator in der vorliegenden Matrix aus Ruß und Teflon der vorzugsweise verwendeten Sauerstoffverzehrkathode ist offenkundig völlig unempfindlich gegenüber Quecksilber.
    Die Menge des durch die Membran aus dem Anodenraum in den Kathodenraum einwandernden Quecksilbers ist unter Umständen beträchtlich und kann an makroskopischen Amalgam-Ablagerungen am Zellenboden erkannt werden. Eine Störung der Sauerstoffverzehrkathode wird dabei nicht beobachtet.
    Quecksilber-Spitzenbelastungen mit einer Konzentration von bis zu 400 mg Hg/l in der Sole werden von der hinter der Membran in der Natronlauge betriebenen Sauerstoffverzehrkathode problemlos überstanden.
    Die übliche Konzentration von 150 - 200 mg/l Quecksilber bei normalen Spitzen sowie <10 mg/l Quecksilber im Normalbetrieb ist für den Betrieb der Sauerstoffverzehrkathode kein Hindernis.
    Versuche haben ergeben, dass bei dem erfindungsgemäßen Verfahren Betriebsspannungen für die Elektrolysezelle angewendet werden können, die unter denen eines quecksilberfreien Betriebs liegen. Die Differenz beträgt typischerweise 30 bis 80 mV. Die Erniedrigung der Betriebsspannung bleibt unerwarteterweise über einen langen Betriebszeitraum (1 Jahr) stabil.
    Das erfindungsgemäße Verfahren mit Sauerstoffverzehrkathode ermöglicht den parallelen Betrieb von klassischen Amalgamelektrolyseuren und Membranelektrolyseuren mit einem gemeinsamen Solekreislauf ohne weitere zusätzliche Aufbereitung der Sole.
    Der Parallelbetrieb von Amalgamelektrolyseuren und Membranelektrolyseuren mit einem gemeinsamen Solekreislauf spielt bei der Umstellung von der Amalgamelektrolyse auf die Membranelektrolyse eine besondere Rolle.
    Im folgenden wird das erfindungsgemäße Verfahren anhand von Figur 1 beispielhaft näher erläutert.
  • Figur 1 zeigt das Schema eines Parallelbetriebs einer Membranelektrolyse mit Sauerstoffverzehrkathoden und einer Amalgamelektrolyse.
  • Beispiele Beispiel 1 Gesamtverfahren:
    Die in der Salzlösestation 1 auf eine Betriebskonzentration von 300 bis 320 g/l aufgestärkte Sole 9 aus NaCl 12 durchläuft die gemeinsame Fäll- und Filterstation 2, in der je nach Salzherkunft Sulfat, Calzium, Magnesium abgetrennt werden unter Belassung einer für Amalgamelektrolysen zulässigen Restverunreinigung:
    Fe ∼ 0,12 mg/l
    Al ∼ 0,25 mg/l
    Ca ∼ 4,5 mg/l
    Mg ∼ 0,15 mg/l
    SO4 2- ∼ 7-10 g/l
    Die Fällung erfolgt im Nebenstrom mit 100 mg/l NaOH und 200 mg/l Na2CO3. Dabei fallen Ca, Mg, Fe sowie nur zu einem Teil Si und Al aus, die zusammen abgefiltert werden. Der Sulfatpegel kann lediglich über die als Dünnsole auszuschleusenden Wassermengen aus diversen Spül- und Prozessvorgängen auf einem Pegel von 10 bis 15 g/l gehalten werden. Dieser hohe Pegel ist für die Amalgamanlage unbedenklich.
    Die Sole 9 wird im Hauptstrom 10 in die vorhandene Amalgamelektrolyse 5 eingespeist. Im Teilstrom 11 zur Membranelektrolyse mit Sauerstoffverzehrkathode 4 wird zunächst in der Entchlorungsstation 7 das freie Chlor vernichtet und anschließend in einer Hydroxidfällungsstation 6 insbesondere der Gehalt an Al, Fe und Mg auf das für Membranzellen notwendige Maß abgesenkt. Im Ca/Mg-Ionenaustauscher 3 schließlich wird die immer notwendige abschließende Feinreinigung der Sole durch Abtrennung der störenden Ca-/Mg-Verunreinigungen durchgeführt. Es werden eingestellt:
  • Al <100 ppb
  • Fe <200 ppb
  • Ca + Mg <20 ppb
  • Nach Verlassen der Membranelektrolyse 4 mit Sauerstoffverzehrkathode vereinigt sich dieser Anolytstrom 13 mit dem Anolytstrom der Amalgamelektrolyseanlage 5. Der gemeinsame Anolytstrom 14 wird in der Salzlösestation 1 wieder mit Salz 12 aufkonzentriert.
    Kann der Sulfatgehalt über eine moderate Ausschleusung von Sole gesteuert werden, bietet sich diese im Bereich niedrigster Salzkonzentration im Gesamtsystem am Auslass 8 hinter der Elektrolysezelle 4 an. In günstigen Fällen besonders guter Salzqualität kann dieser Auslass 8 auch den Pegel der ansonsten in der Hydroxidfällung 6 auszufällenden Ionen unter der Toleranzgrenze für die Membranelektrolyse halten.
    Betrieb einer Hg-resistenten Elektrode:
    Es wurde eine für das Gesamtverfahren geeignete Elektrode unter Laborbedingungen getestet.
    Eine Membranelektrolysezelle 4 mit einer Sauerstoffverzehrkathode von 100 cm2 Fläche aus Ruß, Teflon und Silberkatalysator auf versilbertem Nickelgewebe der Fa. DeNora (Typ ESNS) wurde mit quecksilberhaltiger NaCl-Sole betrieben. Die Quecksilber-Verunreinigung der NaCl-Sole schwankte zwischen einem Gehalt von 10 mg/l und 400 mg/l und simulierte einen Quecksilber-Pegel, wie er aus einer Amalgamelektrolyseanlage 5 bei typischem Normalbetrieb oder nach Stillstand der Anlage 5 als Spitzenwert auftritt.
    Die Elektrolysezelle 4 zeigte überraschenderweise eine vollständige Quecksilber-Toleranz der Sauerstoffverzehrkathode über einen Betriebszeitraum von wenigstens 360 Tagen.
    Die Betriebsspannung der Elektrolysezelle 4 lag unter Normbedingungen (Stromdichte: 3kA/m2; Betriebstemperatur: 85°C; Solekonzentration: 210 g/l; NaOH--Konzentration: 32 Gew.-%) zwischen 1,92 und 1,97 Volt. Elektrolysezellen mit Sauerstoffverzehrkathode zeigten im quecksilberfreien Betrieb durchweg eine um 30 bis 80 mV höhere Betriebsspannung.
    Nach einer betriebsbedingten zwischenzeitlichen Abschaltung der Elektrolysezelle 4, bei der ursprünglich nicht mit einem Wiederbetrieb der Sauerstoffverzehrkathode gerechnet worden war, da sich Verstopfungen durch Amalgam in den kleinen (2 mm) Auslaufkanälen der Zelle gebildet hatten, konnte die Sauerstoffverzehrkathode der Elektrolysezelle 4 dennoch wieder in Betrieb genommen werden. Nach der Reinigung der Sauerstoffverzehrkathode wurde die Elektrolysezelle 4 mit derselben Kathode versuchsweise gestartet. Überraschenderweise arbeitete die Kathode erneut mit derselben niedrigen Betriebsspannung (1,92V) wie vor der Verstopfung des Auslaufs, bei der u.a. auch Natronlauge durch die Sauerstoffverzehrkathode in den Gasraum der Zelle 4 gedrückt worden war. Die Zelle 4 konnte nach der Störung noch über wenigstens 130 Tage problemlos weiterbetrieben werden.
    Das Beispiel zeigt, dass unter Verwendung der beschriebenen Elektrode das Gesamtverfahren problemlos ermöglicht wird, ohne dass man Störungen durch den Quecksilbergehalt der Sole 9, 11 erwarten muss.
    Beispiel 2
    Eine typische Amalgamzellensole 9 mit einem Hg-Gehalt zwischen 7 und 14 mg/l und einer Ca-Beladung von 7 mg/l wurde mit einem Soledurchsatz von 1 bzw. 2 l/h durch einen Ca/Mg-Ionenaustauscher 3 des Typs TP 208 der Bayer AG geleitet. Das Bettvolumen betrug 100 cm3 bei einem Säulendurchmesser von 3,1 cm. Die Betriebstemperatur betrug 65°C, der pH-Wert der Sole lag bei 9,5.
    Der Effekt der Ca-Abtrennung unter Hg-Belastung wurde in zwei Testläufen untersucht: Bei einem Durchsatz von 2 l/h, d.h. 20 Bettvolumina pro Stunde, konnte der Ca/Mg-Pegel über eine Durchflussmenge von insgesamt 800 Bettvolumina unterhalb der spezifizierten Grenze von 20 ppb gehalten werden. Danach wurde der Ionenaustauscher gemäß Anwendervorschrift regeneriert. Insgesamt wurden 15 Belade- und Regenerierzyklen gefahren. Es zeigte sich, dass die aus quecksilberfreiem Betrieb bekannte Beladekapazität von 7 bis 9 g/l Ca + Mg pro Liter Ionenaustauscher zu 60 % im stabilen Dauerbetrieb erreicht werden konnte.
    Bei Halbierung des Soledurchsatzes auf 1 l/h, d.h. 10 Bettvolumina pro Stunde, konnte die volle Beladekapazität von 7 bis 9 g/l Ca + Mg pro Liter Ionenaustauscher erzielt werden, so dass erst nach 1200 Bettvolumina Soledurchfluss der Ca/Mg-Grenzwert überschritten wurde und der Ionenaustauscher regeneriert werden musste. Dieser Zustand war über drei weitere Beladezyklen mit derselben Iönenaustauscherfüllung stabil.

    Claims (7)

    1. Verfahren zur Elektrolyse Natriumchlorid-haltiger Sole mit einem parallelen Betrieb von Amalgamelektrolyseuren (5) und Membranelektrolyseuren (4) mit Sauerstoffverzehrkathode mit einem gemeinsamen Solekreislauf, mit den Schritten:
      Zuführen der Sole (9) von einer Salzlösestation (1) zu einer Fäll- und Filterstation (2) und grobes Abtrennen von Sulfat-, Calzium- und Magnesiumionen aus der Sole (9) in der Fäll- und Filterstation (2),
      Aufteilen der Sole in einen Hauptstrom (10) und einen Teilstrom (11), Elektrolysieren des Hauptstroms (10) der Sole in einem Amalgamelektrolyseur (5),
      Vorbehandeln des Teilstroms (11) der Sole durch Entfernen von freiem Chlor in einer Entchlorungsstation (7), Ausfällen von insbesondere Al-, Fe- und Mg-Ionen in einer Hydroxidfällungsstation (6) und Abtrennen von Calziumund Magnesiumionen aus der Sole (11) bis zu einem Gehalt von < 20 ppb in der Station (3), insbesondere einem Ionenaustauscher,
      anschließend Elektrolysieren des Teilstroms (11) der Sole in einem Membranelektrolyseur (4), wobei ein Membranelektrolyseur (4) mit einer quecksilberresistenten Sauerstoffverzehrkathode, wenigstens enthaltend einen Silber-Katalysator, verwendet wird, und
      Zusammenführen der Anolytströme des Membranelektrolyseurs (4) und des Amalgamelektrolyseur (5) in einen gemeinsamen Anolytstrom (14).
    2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass eine Sauerstoffverzehrkathode, bestehend wenigstens aus einem elektrisch leitenden metallischen, laugefesten Träger, bevorzugt einem Gewebe, Streckmetall oder Filz aus Silberdraht oder versilbertem Nickel- oder Inconel-Draht und einer mit dem Träger versinterten oder verpressten Katalysatormatrix aus Teflon, elektrisch leitfähigem Matrixmaterial, bevorzugt Ruß, und Katalysatormaterial aus katalytisch aktiven Silberpartikeln oder anderen quecksilberverträglichen Katalysatorpartikeln, verwendet wird.
    3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Gehalt an Sulfationen in der Fäll- und Filterstation (2), insbesondere durch Fällung mit CaCO3, BaCl2 oder BaCO3 oder durch Nanofiltration auf <5 g/l eingestellt wird.
    4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass vor dem Elektrolysieren des Teilstroms (11) der Sole im Membranelektrolyseur (4) Calzium- und Magnesiumionen aus der Sole (11) in einem Ca/Mg-Ionenaustauscher (3) abgetrennt werden.
    5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass der Ca/Mg-Ionenaustauscher (3) ein quecksilberresistenter Ionenaustauscher ist.
    6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der gemeinsame Anolytstrom (14) von Amalgamelektrolyseur (5) und Membranelektrolyseur (4) in die Salzlösestation (1) zurückgeführt wird.
    7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der SiO2-Gehalt der Sole vor der Elektrolyse auf <5 ppm gehalten wird.
    EP00111000A 1999-06-12 2000-05-30 Parallel Betrieb von Amalgamelektrolyseuren und Membranelektrolyseuren Expired - Lifetime EP1061158B1 (de)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE19926887 1999-06-12
    DE19926887A DE19926887A1 (de) 1999-06-12 1999-06-12 Elektrolyseverfahren

    Publications (3)

    Publication Number Publication Date
    EP1061158A2 EP1061158A2 (de) 2000-12-20
    EP1061158A3 EP1061158A3 (de) 2000-12-27
    EP1061158B1 true EP1061158B1 (de) 2004-04-14

    Family

    ID=7911060

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP00111000A Expired - Lifetime EP1061158B1 (de) 1999-06-12 2000-05-30 Parallel Betrieb von Amalgamelektrolyseuren und Membranelektrolyseuren

    Country Status (14)

    Country Link
    US (1) US6224740B1 (de)
    EP (1) EP1061158B1 (de)
    JP (1) JP2001029956A (de)
    KR (1) KR20010049521A (de)
    CN (1) CN1277269A (de)
    AT (1) ATE264412T1 (de)
    BR (1) BR0002624A (de)
    CA (1) CA2311042A1 (de)
    DE (2) DE19926887A1 (de)
    ES (1) ES2219223T3 (de)
    NO (1) NO20002992L (de)
    SG (1) SG87894A1 (de)
    TW (1) TW539774B (de)
    ZA (1) ZA200002914B (de)

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    CN106216360A (zh) * 2016-08-16 2016-12-14 南京格洛特环境工程股份有限公司 一种副产品盐的精制及资源化利用方法

    Families Citing this family (6)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE10149779A1 (de) 2001-10-09 2003-04-10 Bayer Ag Verfahren zur Rückführung von Prozessgas in elektrochemischen Prozessen
    US7341667B2 (en) * 2003-10-31 2008-03-11 Mar Systems, Llc Process for reduction of inorganic contaminants from waste streams
    US8322909B2 (en) * 2004-09-22 2012-12-04 3M Deutschland Gmbh Mixer for multi-component pastes, kit, and method of mixing paste components
    EP1640060A1 (de) 2004-09-22 2006-03-29 3M Espe Ag Mischer für Mehrkomponentenpasten, Bausatz, und Verfahren zum Mischen von Pasten
    JP2008223115A (ja) * 2007-03-15 2008-09-25 Asahi Kasei Chemicals Corp 塩水の処理方法
    WO2011005742A1 (en) 2009-07-06 2011-01-13 Mar Systems, Llc Media for removal of contaminants from fluid streams and method of making and using same

    Family Cites Families (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE3037818C2 (de) * 1980-10-07 1985-08-14 Hoechst Ag, 6230 Frankfurt Verfahren zur Herstellung von Natriumbisulfat
    DE3543379A1 (de) * 1985-12-07 1987-06-11 Metallgesellschaft Ag Verfahren zur elektrolytischen herstellung von alkalimetallhydroxid, chlor und wasserstoff
    US5028302A (en) * 1989-11-16 1991-07-02 Texas Brine Corporation Purification of chlor-alkali membrane cell brine
    JPH08283978A (ja) * 1995-04-10 1996-10-29 Permelec Electrode Ltd ガス拡散電極の製造方法

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    CN106216360A (zh) * 2016-08-16 2016-12-14 南京格洛特环境工程股份有限公司 一种副产品盐的精制及资源化利用方法

    Also Published As

    Publication number Publication date
    ES2219223T3 (es) 2004-12-01
    JP2001029956A (ja) 2001-02-06
    DE50006039D1 (de) 2004-05-19
    CA2311042A1 (en) 2000-12-12
    ZA200002914B (en) 2000-12-12
    NO20002992D0 (no) 2000-06-09
    EP1061158A2 (de) 2000-12-20
    NO20002992L (no) 2000-12-13
    US6224740B1 (en) 2001-05-01
    SG87894A1 (en) 2002-04-16
    EP1061158A3 (de) 2000-12-27
    DE19926887A1 (de) 2000-12-14
    ATE264412T1 (de) 2004-04-15
    CN1277269A (zh) 2000-12-20
    KR20010049521A (ko) 2001-06-15
    BR0002624A (pt) 2001-01-02
    TW539774B (en) 2003-07-01

    Similar Documents

    Publication Publication Date Title
    EP3885471B1 (de) Verbessertes verfahren zur herstellung von natriumalkoholaten
    DE102017212278A1 (de) CO2-Elektrolyseur
    DE102009005011A1 (de) Verfahren und Vorrichtung zur elektrochemischen Desinfektion von Trink- und Brauchwasser mit hohen Härtegehalten
    DE3420483A1 (de) Bipolarer elektrolyseapparat mit gasdiffusionskathode
    EP1061158B1 (de) Parallel Betrieb von Amalgamelektrolyseuren und Membranelektrolyseuren
    DE102013011298A1 (de) Vorrichtung und Verfahren zum Betrieb einer Elektrolyse mit einer Sauerstoff-Verzehr Kathode
    DE10101494A1 (de) Tetramethylammoniumhydroxid-Synthese
    EP1953272A1 (de) Verfahren zur elektrochemischen Entchlorung von Anolytsole aus der NaCI-Elektrolyse
    DE2451846A1 (de) Verfahren zur elektrolytischen herstellung von metallhydroxidloesungen
    EP4041939A1 (de) Verfahren und elektrolysevorrichtung zur herstellung von chlor, kohlenmonoxid und gegebenenfalls wasserstoff
    DE60302067T2 (de) Verteilerelement für elektrochemische zelle mit elektrolytperkolation
    DE102019219302A1 (de) Verfahren und Elektrolyseur zur Kohlenstoffdioxidreduktion
    DE60212716T2 (de) Entfernung von nitrat
    DE102006038557A1 (de) Verfahren und Vorrichtung zur oxidativen elektrochemischen Behandlung wässriger Lösungen
    DE3602683A1 (de) Verfahren zur durchfuehrung der hcl-membranelektrolyse
    DE1567963B2 (de) Verfahren zum betreiben einer chloralkalidiaphragmazelle mit staendiger spuelung des anodenraums mit frischer sole
    WO2010078866A2 (de) Verfahren und vorrichtung zum regenerieren von peroxodisulfat-beizlösungen
    DE102005027735A1 (de) Elektrochemische Zelle
    DE2850575A1 (de) Verfahren zur elektrolytischen gewinnung von chlorsauerstoffsaeuren bzw. deren salze
    EP1167579B1 (de) Chloralkalielektrolyse-Verfahren in Membranzellen unter Elektrolyse von ungereinigtem Siedesalz
    EP3597791B1 (de) Verfahren zur leistungsverbesserung von nickelelektroden
    AT392487B (de) Verfahren zur stufenweisen membran-elektrolyse von alkalisulfathaeltigen, waesserigen loesungen sowie vorrichtung zur durchfuehrung des verfahrens
    DE19625600B4 (de) Elektrolyseverfahren
    EP0356806B1 (de) Verfahren zur Herstellung von Chromsäure
    WO2023030920A1 (de) Verfahren zur herstellung von alkalimetallalkoholaten in einer elektrolysezelle

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    PUAL Search report despatched

    Free format text: ORIGINAL CODE: 0009013

    AK Designated contracting states

    Kind code of ref document: A2

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    AK Designated contracting states

    Kind code of ref document: A3

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    17P Request for examination filed

    Effective date: 20010627

    AKX Designation fees paid

    Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    17Q First examination report despatched

    Effective date: 20030325

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: BAYER MATERIALSCIENCE AG

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040414

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040414

    Ref country code: CY

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040414

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: SE

    Payment date: 20040423

    Year of fee payment: 5

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: E. BLUM & CO. PATENTANWAELTE

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: CH

    Payment date: 20040505

    Year of fee payment: 5

    REF Corresponds to:

    Ref document number: 50006039

    Country of ref document: DE

    Date of ref document: 20040519

    Kind code of ref document: P

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: GERMAN

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: AT

    Payment date: 20040525

    Year of fee payment: 5

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040530

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040531

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: TRGR

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040714

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040714

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20040702

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2219223

    Country of ref document: ES

    Kind code of ref document: T3

    Ref country code: IE

    Ref legal event code: FD4D

    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20050117

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20050412

    Year of fee payment: 6

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20050505

    Year of fee payment: 6

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20050520

    Year of fee payment: 6

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20050525

    Year of fee payment: 6

    Ref country code: BE

    Payment date: 20050525

    Year of fee payment: 6

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050530

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050531

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050531

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050531

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: NL

    Payment date: 20050531

    Year of fee payment: 6

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    EUG Se: european patent has lapsed
    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060530

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060531

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060531

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20060531

    Year of fee payment: 7

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20061201

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20061201

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20060530

    NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

    Effective date: 20061201

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20070131

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20060531

    BERE Be: lapsed

    Owner name: *BAYER MATERIALSCIENCE A.G.

    Effective date: 20060531

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040914

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060531

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20070530